1.4.1 The RGB Color Model

The red-green-blue model is formed by a color cube $ \{(R,G,B):0\leq R,G,B\leq 1\}$.

Figure: The RGB-cube
\begin{figure}\begin{picture}(5,5)(-1,-1)
\put(0,0){\makebox(0,0){$\bullet$}\lin...
...kebox(0,0){Black}}
\put(1.5,2.2){\makebox(0,0){White}}
\end{picture}\end{figure}

Conversion from $ (R,G,B)$ to $ (X,Y,Z)$ is given via the chromaticities $ (X_r,Y_r,Z_r)$, $ (X_g,Y_g,Z_g)$ and $ (X_b,Y_b,Z_b)$ of the CRTs phosphors by matrix multiplication via:

$\displaystyle \begin{pmatrix}
X \\ Y \\ Z
\end{pmatrix}=
\begin{pmatrix}
Xr & X...
...Zr & Z_g & Z_b \\
\end{pmatrix}\cdot
\begin{pmatrix}
R \\ G \\ B
\end{pmatrix}$

Let $ C_r:=X_r+Y_r+Z_r$. Then $ X_r=x_r\cdot C_r$, $ Y_r=y_r\cdot C_r$ and $ Z_r=z_r\cdot C_r=(1-x_r-y_r)\cdot C_r$.

This can be calculated from $ X=\frac{x}{y}Y$, $ Y=Y$, $ Z=\frac{1-x-y}{y}Y$.

Andreas Kriegl 2003-07-23