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Abstract
Matroids are combinatorial structures that abstract the notion of linear independence on
finite sets. In their most famous examples they closely connect finite dimensional linear
algebra with graph theory. In applications they are mostly regarded together with their
most important invariant: the Tutte polynomial T (x, y). This bivariate polynomial is
encoding a huge amount of combinatorial data of the underlying matroid (for example
the number of spanning trees and possible colourings of a graph).

Now arithmetic matroids form a true combinatorial generalisation of the notion of
ordinary matroids. While classical matroids are only concerned with the dependency
relations of the underlying structure, an arithmetic matroid is also equipped with a
certain multiplicity function that contains additional combinatorial information. These
multiplicities are also used to construct the so-called arithmetic Tutte polynomial M(x, y).
This advanced version of the Tutte polynomial may now encode various useful new data
of the underlying structure, depending on the choice of the multiplicities. For example,
if we consider a zonotope in Rn whose corners lie in a lattice Λ ⊆ Rn, then we will see
that we can associate an arithmetic matroid to the zonotope whose arithmetic Tutte
polynomial specialises to the Ehrhart polynomial of the zonotope. This theory was mainly
developed by the insights of Luca Moci in his pioneering paper A tutte polynomial for
toric arrangements [Moc11] from 2011. The abstract concept of an arithmetic matroid
was then firstly defined by Moci and D’Adderio [MD12] in 2012.

In this thesis we summarize the essential aspects of the theory of arithmetic matroids
and arithmetic Tutte polynomials. In the first part we start with an introduction to
standard matroid theory to establish the basic concepts and terminology.

Afterwards in the second part, we discuss the different axiomatisations as well as
the most important structural properties of arithmetic matroids. We will see the main
examples and talk about how to adapt the concepts of representability, duality, direct
sums, deletion and contraction of matroids to the arithmetic situation such that their
essential qualities are preserved.

The third part of this thesis is committed to the arithmetic Tutte polynomial, for which
we list generalisations of many of the identities known from the standard matroid case.
Eventually we talk about possible specialisations of the arithmetic Tutte polynomials in
the concrete cases of arithmetic matroids over lattice points and labeled graphs.

The fourth and final part of the thesis is dedicated to the construction of a class of
quasi-arithmetic matroids inside the realms of number theory. We will call them radical
matroids since they will have radicals as multiplicities. We aim for analysing cases where
radical matroids are also arithmetic matroids and will give a full characterisation of the
representable radical matroids.
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Kurzfassung
Ein Matroid ist eine kombinatorische Struktur, die das Konzept von linearer Abhängigkeit
auf ganz verschiedene endliche Mengen verallgemeinert. Klassischerweise werden Matroide
über endlichen Mengen von Vektoren oder über Graphen betrachtet. Wir erhalten dadurch
eine Theorie, die die strukturellen Grundkonzepte der Linearen Algebra mit denen der
Graphentheorie verbindet. Von besonderem Interesse ist hierbei das Tutte-Polynom
T (x, y) als strukturelle Invariante eines jeden Matroids. Dieses Polynom kodiert allerlei
nützliche kombinatorische Information der zu Grunde liegenden mathematischen Struktur.
So finden sich etwa die Anzahlen aller Möglichkeiten, einen Graphen mit einer gegebenen
Anzahl an Farben einzufärben, in seinem Tutte-Polynom versteckt.

Allerdings berücksichtigen gewöhnliche Matroid-Strukturen wirklich nur Sachverhalte
die aus der Unabhängigkeit der Teilmengen resultieren. Die italienischen Mathematiker
Luca Moci und Michele D’Adderio konfrontieren dieses Problem mit der von ihnen
entwickelten Theorie der arithmetischen Matroide. Arithmetische Matroide sind nun
Matroide, welche zusätzlich mit einer sogenannten Vielfachheitsfunktion ausgestattet
sind. Diese kann nun je nach Wahl ganz beliebige kombinatorische Daten beinhalten,
welche schließlich auch in die Definition des arithmetischen Tutte-Polynoms M(x, y) ein-
fließen. Dieses erweiterte Tutte-Polynom kann nun allerlei weitere Daten der zu Grunde
liegenden mathematischen Struktur in sich tragen. Beispielsweise werden wir sehen, dass
wir einen arithmetischen Matroid über einem Zonotop im Rn definieren können, dessen
arithmetisches Tutte-Polynom zum Ehrhart-Polynom des Zonotops spezialisiert werden
kann.

Diese Arbeit umfasst vier Teile, in denen wir die wichtigsten Aspekte der Theorie arith-
metischer Matroide und ihrer arithmetischen Tutte-Polynome zusammenfassen. Im ersten
Teil wiederholen wir die Grundbegriffe der klassischen Matroidtheorie. Anschließend
betrachten wir im zweiten Teil die Definition eines arithmetischen Matroids. Wir sehen
uns einige grundlegende Beispiele an und formulieren Konzepte wie Darstellbarkeit und
Dualität nun für den arithmetischen Fall.

Der dritte und größte Teil ist dem arithmetischen Tutte-Polynom gewidmet. Wir
sehen einige Verallgemeinerungen von Formeln, die aus der klassischen Matroidtheorie
bekannt sind. Anschließend schauen wir uns Anwendungen und Interpretationen des
arithmetischen Tutte-Polynoms in konkreten Fällen an.

Zu guter Letzt konstruieren wir eine neue Klasse an quasi-arithmetischen Matroiden
über Objekten der Zahlentheorie. Diese werden wir schließlich Radikalmatroide taufen,
da ihre Vielfachheitsfunktionen durch die Radikalfunktion gegeben sind. Wir erforschen
ihren Zusammenhang mit den arithmetischen Matroiden und geben eine vollständige
Charakterisierung aller darstellbaren Radikalmatroide an.
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1 Introduction

In the first part of this thesis we give a brief introduction to the basics of matroid theory.
The aim is to enable students and interested readers with various mathematical back-
grounds to follow the theory and comprehend the main results and their consequences.
However, basic knowledge of linear algebra and graph theory is required. We start by
giving an overview of the different notations and conventions we will use throughout
the thesis. After that we define the notion of a matroid in many of its possible ways.
We strengthen our intuition with several examples, then talk about duality and repres-
entability. Finally we define the famous Tutte polynomial, maybe the most important
structural invariant encoding a lot of the matroid’s combinatorial data.

1.1 Notations and conventions
Before we head straight into the depths of matroid theory I would like to state some
notations and conventions to which this thesis complies.

Definition. A list or multiset X is a collection of elements which occur together with a
certain multiplicity. More precisely it is a set, whose elements could be contained multiple
times. For lists element- and sublist-relations, as well as list operations like union or
intersection are defined analogously to set theory. Clearly, every set is also a list.

Example (Lists and sets). X = {a, b, b, c, c, c, c, d} and Y = {a, b, c, d} are lists with
Y ⊆ X but X ̸= Y . Here Y is also a set, while X is not.

Notation. The cardinality of a list X is denoted by |X|. Since we work mainly with finite
lists, the cardinality of X is just the number of elements counted with their multiplicities.
Sometimes the cardinality of an instance X will also be denoted by #X but only in rare
occasions where readability outweighs consistency.

If we want to stress that a union of lists X and Y is disjoint, we will denote it by
X ⊔ Y instead of simply writing X ∪ Y .

As usual, the empty list is denoted by ∅ and the power list of X, i.e. the list of all
sublists A of X, is denoted by P(X). Formally,

P(X) = {A | A ⊆ X}.

For a sublist A ⊆ X we write AC for the complement of A in X, i.e. AC = X \A.

Example. Let X = {a, a, b}. Then |X| = 3 and

P(X) = {∅, {a}, {a}, {b}, {a, a}, {a, b}, {a, b}, {a, a, b}}

1



1 Introduction

Moreover if A = {a} ⊆ X is a sublist. Then we have the complement given by AC =
X \A = {a, b}.

Notation. We denote by [n] the set {1, 2, 3, . . . , n} containing the positive integers from
1 to n ∈ N.

In matroid theory working with lists instead of sets yields some technical advantages.
It is simply more convenient if we do not have to worry whether some constructions
could lead to multiple elements in a set. Moreover lists are natural objects to observe
when working in non-simple graphs with multiple edges between its nodes.

Definition (Graphs). A graph is a pair G = (V,E) of a list V of vertices or nodes and E
a list of elements of the form {vi, vj}, vi, vj ∈ V representing edges connecting the vertices
vi and vj . In this thesis, we will always assume G to be a finite graph, i.e |V | < ∞.

• A path is a series of vertices (v1, v2, . . . , vn), vi ∈ V, i ∈ [n], such that {vi, vi+1} ∈
E,∀i ∈ [n− 1]. I.e. it is a walk starting from v1 to reach vn by moving along edges
{vi, vi+1}. Moreover we are only allowed to pass any edge just once. 1

• A circuit or cycle is a path (v1, v2, . . . , vn) with v1 = vn. In words it is a path along
edges whose starting point is also its destination point.

• A graph is called connected if for all vertices x, y ∈ V there exists a path
(v1, v2, . . . , vn) with x = v1 and y = vn. I.e. there exists a path connecting
any two vertices x, y ∈ V .

• A forest is a graph without any cycles.

• A connected forest is called a tree.

Example. Let V = {a, b, c, d, e} be the set of vertices, and let

E = {{a, b}, {a, b}, {a, b}, {c, d}, {a, d}, {b, e}, {b, e}}

be our list of edges. Then the graph G = (V,E) can be visualised by Figure 1.1.
Then a path from c to e would be given by P = (c, d, a, b, e). A circuit on the other
hand is given by C = (b, e, b). A tree would be induced by the sublist of edges T =
{{c, d}, {a, d}, {a, b}, {b, e}}.

1.2 Essentials of matroid theory
It is now time to start working with matroids. Generally speaking, matroids are a
combinatorial construction abstracting the notion of linear independence. Matroids are
defined on systems of finite sets and appear in several different fields of mathematics

1In literature one often demands for a path to consist of vertices which are pairwise distinct. However,
we stick to our less restricted definition.

2



1.2 Essentials of matroid theory

Figure 1.1: Visualisation of the graph G = (V,E).

that do not seem to be be related to each other, at least at first sight. However, matroid
theory is building bridges between them, extracting only the essence of their notions of
independence. In this manner matroid theory is connecting graph theory with linear
algebra. Further on we will see matroids defined upon finitely generated abelian groups
and eventually also matroids that are given only by lists of rational numbers.

In applications matroids are used to count objects. Depending on where our matroid
is defined we may count hyperplane arrangements in vector spaces, proper colourings of
vertices in graphs or lattice points in convex zonotopes. All those concrete structures
abstract to matroid theoretic objects that are encoded as specialisations of the so-called
Tutte polynomial. There matroid theory does its magic and then eventually the abstract
objects are realised and interpreted in the concrete setting.

In this section we give an introduction to the fundamental objects of this theory. We
start by defining matroids via several different families of axioms and introduce the
special terminology used in this field. Afterwards we discuss the aspects of duality and
representability. Those concepts stress the strong connections between vector spaces
and graphs. To do so, we follow the work of Oxley in his book Matroid Theory [Oxl92].
However, the notions presented could be found in any introductory script on matroid
theory. At the end of this section we make ourselves familiar with the Tutte polynomial
and its various forms and properties. All of this should serve as a solid backbone before
we concern ourselves with the quite more advanced topic of arithmetic matroids which
will truly generalise standard matroid theory.

1.2.1 Basic definitions

Let V be some vector space over a field K, and let X ⊆ V be a finite sublist of vectors. E.g.
let P ∈ Mn×m(K) be an n×m-matrix and let X be the list of its columns. Considering

3



1 Introduction

this system of finite lists, we call an element A ∈ P(X) independent, if the elements in
A are linearly independent as vectors in V . Let I ⊆ P(X) be the list of independent
sublists of X. We observe that the following properties are fulfilled:

(I1) ∅ ∈ I.

(I2) If A ∈ I and B ⊂ A then also B ∈ I. I.e. sublists of independent lists are
independent.

(I3) A,B ∈ I and |A| < |B| then there exists e ∈ B\A such that A ∪ {e} ∈ I.

This is rather obvious. The empty set is independent per default. Sublists of linearly
independent lists are always linearly independent themselves and property (I3) refers to
completing independent lists to a vector space basis.
Example. Let P ∈ M3×4(R) be given by

P =

⎛⎜⎝1 0 1 4
0 0 0 5
1 0 1 4

⎞⎟⎠ .
Therefore we get the list of its columns

X =
{︄⎛⎜⎝1

0
1

⎞⎟⎠ ,
⎛⎜⎝0

0
0

⎞⎟⎠ ,
⎛⎜⎝1

0
1

⎞⎟⎠ ,
⎛⎜⎝4

5
4

⎞⎟⎠}︄,
and further the list of independent sublists

I =
{︄{︄⎛⎜⎝1

0
1

⎞⎟⎠}︄,{︄
⎛⎜⎝1

0
1

⎞⎟⎠}︄,{︄
⎛⎜⎝4

5
4

⎞⎟⎠}︄,{︄
⎛⎜⎝1

0
1

⎞⎟⎠ ,
⎛⎜⎝4

5
4

⎞⎟⎠}︄,{︄
⎛⎜⎝1

0
1

⎞⎟⎠ ,
⎛⎜⎝4

5
4

⎞⎟⎠}︄}︄.
Considering this case it becomes rather clear why we prefer working with lists rather
than sets. If we do not want to restrict the choice of our matrix P , multiple entries may
occur naturally.

Now we change the setting. Let G = (V,E) be a finite graph, with vertices v ∈ V and
edges e ∈ E. Regarding the system P(E) we call subsets of edges A ∈ P(E) independent
if the subgraph H = (V,A) induced by A ⊆ E forms a forest, i.e. a graph without circuits.
Let again I ⊆ P(E) be the set of independent subsets of E. Then, astonishingly, we
observe that I again fulfils the properties (I1)–(I3) from above: the empty set can not
contain a circuit (since it does not contain anything) and subgraphs of forests remain
being forests. This yields (I1) and (I2). For (I3) the reasoning is a little longer. Let
A,B ∈ I be two independent sublists of edges with |A| < |B|. Additionally denote by
GA := (V,A) and GB := (V,B) the subgraphs of G induced by A and B, respectively.
Because of the independence, GB must have less connected components than GA. (Since
there are no circuits, each edge is connecting two components that are not connected

4



1.2 Essentials of matroid theory

otherwise.) Hence there are vertices u, v ∈ V that are contained in the same component
in GB but are distributed to two different components in GA. However, this tells us that
there is a path leading from u to v in GB that must pass an edge e ∈ B \A. But now we
already conclude that A ∪ {e} has to be independent, since if e was part of a circuit in
A ∪ {e} then u and v would already have been connected in GA, a contradiction.

However, thus we have found some notion of independence given by the axioms (I1)–(I3)
which exists above classical linear algebra and graph theory. Therefore we are able to
generalise, creating a new abstract concept of being independent.

Definition. A matroid MX over a finite groundlist X is a pair (X, I) with I ⊆ P(X),
such that I fulfils the axioms (I1), (I2) and (I3) stated above. The elements of I are
called independent lists.

The name matroid originates from the term matrix. This is rather intuitive, as we
have already seen, that the columns of any matrix over a field form a matroid.

Even though matroid theory is nowadays a discipline in mathematics on its own, strongly
related to combinatorics, geometry or discrete optimisation, much of its terminology still
refers to vector spaces and graph theory where the first matroids were defined. We will
now give some basic notions of matroid theory as well as some reference to their origin.

Definition. Let MX = (X, I) be a matroid over a finite list X.

• An element B ∈ I is called a basis if B is maximal in I. I.e.

B ∈ I is basis :⇔ (∀A ∈ I : B ⊆ A ⇒ B = A).

• A minimal dependent subset C ⊆ X is called a circuit. Formally:

C ∈ P(X)\I is a circuit :⇔ (∀A ⊊ C : A ∈ I).

Clearly the term basis originates from finite dimensional linear algebra, where the
bases of a vector space are exactly the maximal linearly independent subsets. However,
the name circuit refers to the graph theoretical setting. There, by the definition of
independence of sets of edges, the circuits are exactly given by those edges forming a
cycle! Meanwhile, a basis of a graph is realised by a spanning tree. In Figure 1.2 we have
two examples of identical graphs, where in the first one we marked their circuits, while
in the second one we marked a possible basis (i.e. a spanning tree).

It is a well known fact that the matroid structure MX is already determined by B ⊆ I
the list of bases. This can be deduced by the observation, that any independent list is
contained in a basis, i.e.

A ∈ I ⇔ ∃B ∈ B : A ⊆ B.

The same is true for C ⊆ P(X), the set of circuits, since a subset A ⊂ X is dependent
(i.e. not independent) if and only if there is some C ∈ C such that C ⊆ A. Therefore
the following two definitions are strongly related to the one given above. In fact all
collections of axioms deliver equivalent matroid structures. Some papers refer to this

5



1 Introduction

Figure 1.2: Circuits in red and green on the left and a basis marked in blue on the right.

property of matroids of being described in many different equivalent ways, as having
cryptomorphic definitions (e.g. in [Pag20, Section 1]).

Definition (Basis axioms). Let X be a finite list, B ⊂ P(X), then the pair (X,B) defines
a matroid MX if the following axioms hold:

(B1) B ̸= ∅.

(B2) For all bases B1, B2 ∈ B and for all x ∈ B1\B2 we have that there exists an element
y ∈ B2\B1 such that

(B1\{x}) ∪ {y} ∈ B.

Remark. The axiom (B2) is the matroid theoretical generalisation of the famous Steinitz
exchange lemma from linear algebra. It also implies, that all bases of a matroid share the
same cardinality. I.e. if B1, B2 ∈ B then |B1| = |B2|.

Corollary 1.2.1. Let G = (V,E) be a graph with k connected components (k ∈ N), then
all spanning forests in G contain the same number of edges, namely |V | − k. This is true
since every spanning forest corresponds to a basis in the according graph matroid.

Definition (Circuit axioms). Let X be a finite list, C ⊂ P(X), then the pair (X, C)
defines a matroid MX if the following axioms hold:

(C1) ∅ /∈ C.

(C2) If C1, C2 ∈ C and C1 ⊆ C2 then C1 = C2.

(C3) For all C1, C2 ∈ C with C1 ̸= C2 and x ∈ C1 ∩C2 we have the existence of a circuit
D ∈ C such that

D ⊆ (C1 ∪ C3)\{x}.

Example. Observe the small real valued matrix given by

P =
(︄

1 0 0 4
0 1 0 3

)︄
.

6



1.2 Essentials of matroid theory

We let again X be the list of its columns. If we consider the induced matroid MX then
we obtain the following list of bases:

B =
{︄{︄(︄

1
0

)︄
,

(︄
0
1

)︄}︄
,

{︄(︄
1
0

)︄
,

(︄
4
3

)︄}︄
,

{︄(︄
0
1

)︄
,

(︄
4
3

)︄}︄}︄
.

The independent sets in I are then given as all possible subsets of elements of B. Moreover
we obtain the following list of circuits:

C =
{︄{︄(︄

0
0

)︄}︄
,

{︄(︄
0
1

)︄
,

(︄
1
0

)︄
,

(︄
4
3

)︄}︄}︄
.

The relation with linear algebra suggests another crucial definition. In a vector space
V the cardinality of a maximal independent set (hence a basis) is called the dimension
of V and is usually denoted by dim(V ). In the more general case of a module M over a
ring R the derived notion is then called the rank of the module and is denoted by rk(M).
We have already seen, that in a matroid MX = (X,B) all bases have the same cardinality.
Therefore the rank of MX is well defined: rk(MX) = |B| , where B ∈ B is an arbitrary
basis.
Moreover, given a matroid MX on a groundlist X it is easy to check that for each
A ⊆ X we obtain an induced matroid MA with A as new groundlist. (Use: C ⊆ A is
independent in MA if C is independent as a subset of X in MX .) Therefore also the
value rk(MA) is well defined.
In conclusion we have established a rank function:

rk : P(X) → N ∪ {0}
A ↦→ rk(MA).

By abuse of notation we will simply write rk(A) instead of rk(MA).
Using the notion of the rank, one can characterise the bases of a matroid as the minimal
lists (with respect to inclusion) which have maximal rank. Therefore since the rank
function determines the bases, which again determine the matroid, it is no wonder that
we are able to define the whole matroid structure in terms of the rank function.

Definition (Rank axioms). A matroid MX = (X, rk) is a finite list X together with a
rank function rk : P(X) → N ∪ {0} such that the following axioms are satisfied:

(R1) If A ⊆ X, then rk(A) ≤ |A|.

(R2) If A,B ⊆ X and A ⊆ B then rk(A) ≤ rk(B).

(R3) If A,B ⊆ X, then rk(A ∪B) + rk(A ∩B) ≤ rk(A) + rk(B).

The following proposition gives a formal characterisation of our basic objects using the
rank function. (See also [Oxl92, Prop. 1.3.5 ].)

7
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Proposition 1.2.2. Let MX be a matroid with rank function rk and let A ⊆ X. Then

(i). A is independent if and only if rk(A) = |A|.

(ii). A is a basis if and only if rk(A) = |A| = rk(MX).

(iii). A is a circuit if and only if A ̸= ∅ and for all x ∈ A:

rk(A\{x}) = rk(A) = |A| − 1.

Proof. The proof follows immediately from the definitions already given and is rather
intuitive considering the basic examples of matroids over vector spaces or graphs.

The mathematician Poincaré once said: Mathematics is the art of giving the same
name to different things. And indeed, matroid theory is a formidable example for this,
finding similar structures by comparing fairly different things. The main tool for showing
that two mathematical structures are abstractly the same is the notion of an isomorphism.
These are also well defined for the matroid setting.

Definition. An isomorphism between matroids MX and MY is a bijection ϕ : X →
Y , such that ranks are preserved. I.e. if we have X = {x1, x2, . . . , xn} and Y =
{y1, y2, . . . , yn}, and if ϕ : X → Y with ϕ(xi) = yi for all i ∈ [n] is a bijection between
those lists, then ϕ also lifts to a bijection ϕ : P(X) → P(Y ) and vice versa. In this case,
ϕ is an isomorphism of matroids if rkX(A) = rkY (ϕ(A)) holds for all A ⊆ X. If such an
isomorphism exists, we call MX and MY isomorphic and write MX

∼= MY .

Remark. As matroid theory adapts and unifies many classical properties from either
vector spaces or graphs, the question arises, if there is some kind of morphism relating
their independence structures. Indeed, following the instructions of [Moc11, Remark
2.3.], we consider a graph G = (V,E) with V = {v1, . . . , vn} its set of vertices and E its
list of edges. Now we take a vector space ˜︁U with basis {e1, e2, . . . , en} bijective to V .
With an edge {vi, vj} ∈ E we associate the vector ei − ej ∈ ˜︁U . By doing so we obtain a
list X = {ei − ej | {vi, vj} ∈ E} bijective to E and spanning a hyperplane U in ˜︁U . Under
the bijection X ↔ E forests correspond to linearly independent subsets and ranks are
preserved. Hence the construction delivers an isomorphism of matroids ME

∼= MX .

Definition. A matroid MX is called a graph matroid (sometimes also graphoid) if it is
isomorphic to a matroid ME with E the set of edges of a graph G = (V,E). Moreover, a
matroid is called K-representable if it is isomorphic to a matroid MA given by a matrix
A with entries aij ∈ K.

Corollary 1.2.3. By the previous remark, every graph matroid is representable over any
field K.

Representability is a central property one might ask for a matroid. Of all used to
construct matroids, vector spaces appear to be the computationally most practical.
Moreover, linear algebra is a throughout well studied field. Hence, once you know that a
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1.2 Essentials of matroid theory

given matroid is representable, you might prefer to transfer it to a matrix and do your
operations there, where even a computer algebra system may help out.

Another major topic is duality. The duality relation originates from planar graphs but
adapts smoothly into matroid theory opening the door for different duality concepts in
various mathematical setups. We start by the intuitive description in planar graphs and
then move on to generalising the notion for abstract matroids.

1.2.2 Duality

A graph G is called planar if it can be embedded in the plane, i.e. simply speaking it
can be drawn on a sheet of paper such that none of its edges are intersecting each other.
In such a visualisation of a graph G we obtain another graph G∗ by following certain
construction steps:

1. In every area surrounded by edges of G, as well as in the unique unbound region,
draw a vertex associated to the very region.

2. Every edge in G has a region to its left and one to its right. For every edge in G
connect the vertices drawn in the left and right region by a line leading through
the regarded edge of G. If the region at both sides of the edge is the same, then
connect the vertex of it with itself.

The vertices set in the regions will be the vertices of G∗, the lines connecting them will
be its edges. In Figure 1.3 we see a visual example of the stated construction.

Figure 1.3: A graph (black) and its dual graph (red).

It is a result from graph theory that G∗ is well defined, independent of the visualisation
of G in the plane, and is unique up to isomorphism. The newly constructed graph G∗ is

9
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then called the dual graph of G.

At least in the picture above (Fig. 1.3) one can convince themselves that (G∗)∗ = G
holds. This is a general result from graph theory which we will not prove here. Instead
we translate this concept into matroid theory. The following statements and definitions
as well as their proofs can be found in [Oxl92, 2.1.].

Theorem 1.2.4 (Dual matroid). Let MX = (X,B) be a matroid defined by its list of
bases B. Define B∗ := {X\B | B ∈ B}. Then B∗ is the list of bases of a matroid on X.

Definition. The matroid M∗
X := (X,B∗) given by the previous theorem is called the

dual of MX . By the definition of M∗
X it is clear that (M∗

X)∗ = MX .

Definition. A basis of M∗
X is called a cobasis of MX .

In the same manner, circuits and independent sets of M∗
X are cocircuits and coindependent

sets of MX .
Given a matroid MX , the rank function of its dual is denoted by rk∗ and is called the
corank.

By definition, we have rk(X) = |B| for some basis B ∈ B. However, if B ∈ B then
X\B ∈ B∗ and therefore rk∗(X) = |X\B|. Hence for a matroid MX over a finite list X
we have (see [Oxl92, 2.1.8]):

rk(X) + rk∗(X) = |X|.

With a little more reasoning on the correlation between bases and cobases one can deduce
the following:

Proposition 1.2.5. Let X be a finite list inducing a matroid MX . Then for all sublists
A ⊆ X the rank of A in the dual M∗

X is given by

rk∗(A) = |A| − rk(X) + rk(X\A).

Statement and detailed proof can be found in [Oxl92, 2.1.9 & 2.1.10]. Sometimes when
studying matroids we find ourselves confronted with very small dependent subsets. In
fact, it can easily happen that a single element of the groundlist is already dependent.
Conversely, an element can be crucial to be contained in any basis. This leads to the
distinction of loops, coloops and so-called proper vectors, which has turned out very
useful in induction proofs of matroid identities.

Definition. Let MX be a matroid. As a reference to the linear case, the elements of
the groundlist X are also called vectors.

• A vector v ∈ X is called a loop if {v} is a circuit.

• A vector v ∈ X is called a coloop if rk(X\{v}) = rk(X) − 1.

• A vector v is called proper if it is neither a loop nor a coloop.
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1.2 Essentials of matroid theory

The terminology originates from graph theory, where the name loop becomes very
visual. A coloop is called a coloop since it is a loop in the dual. The following examples
give intuitive descriptions of loops and coloops in the most prominent cases of graphs
and vector spaces.

Example. In graphs and vector spaces, loops and coloops are very easy to detect.

(1) In a graph matroid, a loop is given by an edge e = {v, v} having the same starting-
and ending node, while a coloop is also called a bridge i.e. an edge f which is not
contained in any cycle. See Figure 1.4 for a visual example.

Figure 1.4: Loops, bridges/coloops and proper edges of a graph.

(2) In a matroid given by a matrix over a field K, a loop is given by a zero vector
0 ∈ Kd, while a coloop is a vector linearly independent of all other vectors in the
matroid. For example if X is the list of columns of the real matrix⎛⎜⎝0 3 4 5

0 6 7 8
9 0 0 0

⎞⎟⎠
then the first column-vector (0, 0, 9) is the only coloop.

It turns out that loops and coloops behave very pleasantly when regarding duality.
Their relations are summarised in the next proposition.

Proposition 1.2.6. If x ∈ X is a loop in a matroid MX , then x is a coloop in M∗
X .

Vice versa, if x is a coloop in MX then it is a loop in M∗
X . However, x proper remains

proper in the dual.

11



1 Introduction

Proof. Let v ∈ X be a loop. Then by using Proposition 1.2.5 we compute

rk∗(X\{v}) = |X\{v}| − rk(X) + rk(X\(X\{v})) =
= |X| − 1 − rk(X) + rk({v}) =
= |X| − 1 − rk(X) = rk∗(X) − 1.

Therefore v is a coloop in the dual.
If however v is coloop in the original matroid then

rk∗({v}) = |{v}| − rk(X) + rk(X\{v}) =
= 1 − rk(X) + rk(X) − 1 = 0.

Hence, {v} is a cocircuit. The rest of the statement follows by (M∗
X)∗ = MX .

Remark. Loops and coloops are very important objects in the theory of arithmetic
matroids, as they form so called molecules (see Section 2.1.1), a very simple matroid
structure at the basis of the theory. We may therefore give another very useful and
maybe more intuitive characterisation of loops and coloops.

• v ∈ X is a loop ⇔ v is not contained in any basis.

• v ∈ X is a coloop ⇔ v is not contained in any circuit ⇔ v is contained in every
basis.

1.2.3 Deletion and contraction
We are now going to introduce two very fundamental transformations on matroids. Those
will let us reduce more complex matroids step by step to a collection of simple ones.
Many statements in matroid theory, especially about the so called Tutte polynomial (see
Section 1.2.4), are proven by simplifying an arbitrary matroid to a very basic form, where
the statement might be trivial.

To give an overview of what is actually happening, we again train our intuition in the
setting of graphs! Let G = (V,E) be a graph with edges in E. Choose an edge e ∈ E.
Now consider two new graphs:
The deletion of G by e, often denoted as G\e is the subgraph of G given by

G\e := (V,E\{e}).

However, the contraction of G by e = {v1, v2} (v1, v2 ∈ V ) is the graph G/e given by

G/e := (˜︁V , ˜︁E)

where ˜︁V := V \{v1, v2} ∪ {˜︁v} and for all x, y ∈ ˜︁V we have that {x, y} ∈ ˜︁E if and only if
{x, y} ∈ E, or x = ˜︁v and ∃i ∈ {1, 2} : {vi, y} ∈ E. What the last definition essentially
means is, that we take the edge e and contract it. Therefore its start- and ending node fall
together and are identified with each other, v1 = v2 = ˜︁v. Both operations are visualised
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1.2 Essentials of matroid theory

in the three pictures below. Here we have a given graph in Figure 1.5 with a marked edge
e = {u, v}, followed by Figures 1.6 and 1.7 visualising the deletion and contraction of the
graph by e, respectively. Here we beautifully see how the edge e vanishes in the deletion
of the graph, while in the contraction graph the vertices v and u simply fall together.

Figure 1.5: A graph with an distinct edge e = (u, v).

Figure 1.6: Deletion of edge e. Figure 1.7: Contraction of edge e.

Remark. To stress the importance of these operations we consider again the situation
of graphs. Since the birth of graph theory mathematicians all over the world have
concerned themselves with the possible colourings of the vertices of a graph in a way
that neighbouring vertices are assigned different colours. Such a colouring is called
proper if neighbouring vertices are assigned different colours. Indeed, many questions in
computational science and combinatorics are closely related to the colouring of a graph
with a given number λ ∈ N of colours.
The chromatic polynomial of a graph G is the function χG : N → N that assigns to every
number λ of colours the number χG(λ) of different proper colourings of G. One can
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prove that χG fulfils the deletion-contraction recurrence:

χG(λ) = χG\e(λ) + χG/e(λ), ∀λ ∈ N,∀e ∈ E.

Using this, it is shown that χG(λ) is indeed a polynomial in λ for all graphs G, moreover
it is possible to compute χG(λ) recursively.

Now we would like to generalise these operations to matroids.

Definition ([Oxl92, p.22, p.106]). Let MX be a matroid on a finite list X and let
Y, Z ⊆ X.

• The restriction of MX to Y is the matroid MX|Y whose groundlist is Y and A ⊆ Y
is independent if A is independent in X.

• The deletion of MX by Z is the matroid MX\Z whose groundlist is X\Z and
A ⊆ X\Z is independent if A is independent in X.

• The contraction of MX to X\Z is the matroid MX/Z whose groundlist is again
X\Z and if BZ is a basis for MX|Z then A ⊂ X\Z is independent if A ∪ BZ is
independent in MX .

Remark. Clearly, the restriction of MX to Y is the same as the deletion of MX by X\Y .
I.e. MX \(X \ Y ) = MX|Y . Moreover the contraction MX/Z can be interpreted as the
dual construction of the deletion. In particular we have that (see [Oxl92, Prop. 3.1.4])

MX/Z = (M∗
X \ Z)∗.

Proposition 1.2.7 ([Oxl92, Prop. 3.1.6]). Let MX be a matroid and T ⊆ X.Then for
all sublists A ⊆ X \T we have

(a) rkMX \ T
(A) = rkMX

(A),

(b) rkMX/T
(A) = rkMX

(A ∪ T ) − rkMX
(T ).

Proof. The assertion in (a) is obvious from the definition of independent lists of MX \ T .
It remains to check (b).

(b): By the remark above we have rkMX/T
(A) = rk(M∗

X \ T
)∗(A).

Using rk∗(A) = |A| − rkX + rk(X\A) we compute:

rkMX/T
(A) = |A| − rkM∗

X \ T
(X \T ) + rkM∗

X \ T
(X\A)

= |A| − rk∗(X \T ) + rk∗(X \(A ∪ T ))
= |A| −

(︁
|X \T | − rk(X) + rk(T )

)︁
+

+
(︁
|X \(A ∪ T )| − rk(X) + rk(A ∪ T )

)︁
Now as A ⊆ X \T we obtain |A| − |X \T | + |X \(A∪ T )| = 0 and therefore indeed

rkMX/T
(A) = rkMX

(A ∪ T ) − rkMX
(T ).
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Notation. We will write M := MX and for T ⊆ X let M \T := MX \ T denote the
deletion by T and M/T := MX/T the contraction by T , respectively.

The following three results are important for the definition of minors, but as they will
not play any major role in the further theory of arithmetic matroids I refer to their proofs
in [Oxl92].

Proposition 1.2.8 ([Oxl92, 3.1.24] ). Let X be a finite list defining a matroid M and
let T ⊆ X be a sublist. Then we have

M \T = M/T ⇔ rk(T ) + rk(X \T ) = rk(X).

Corollary 1.2.9 ([Oxl92, 3.1.25]). Using the same notations as before, we deduce that
M \ e = M/e if and only if e ∈ X is either loop or coloop.

Eventually the following proposition tells us that deletion and contraction fulfil very
fine commutativity relations. In other words, we do not have to mind which operation
we apply first or last. The result will remain the same up to isomorphism.

Proposition 1.2.10 ([Oxl92, 3.1.26]). Let again X be a finite list generating a matroid
M. Moreover let T1, T2 ⊆ X be disjoint sublists. Then the following three identities hold.

(i). (M \T1) \T2 = (M \T2) \T1 = M \(T1 ⊔ T2).

(ii). (M/T1)/T2 = (M/T2)/T1 = M/(T1 ⊔ T2).

(iii). (M \T1)/T2 = (M/T2) \T1.

Definition ([Oxl92, p.109]). By the proposition above, every sequence of deletions and
contractions in a matroid M = MX can be summarised by an expression of the form
(M \T )/S for a pair of disjoint subsets T, S ⊆ X. Matroids of this structure are called
minors of M.

Deletion and restriction play a major role when it comes to analysing or computing
Tutte polynomials, as we will see in the next section.

1.2.4 The Tutte polynomial
In this last section of the first chapter we discuss the basic properties of the ordinary
Tutte polynomial. This serves more or less as an orientation for readers, who are familiar
with classical matroid theory. Thus for experts, the following identities will be common
knowledge. We also will not prove any of the results stated here, because in the next two
parts of this thesis we will define so-called arithmetic Tutte polynomials which embody a
true generalisation of ordinary Tutte polynomials. We will see proofs for their generalised
identities. The statements of this section will therefore follow as corollaries. However, we
start directly with the crucial definition.
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Definition ([Moc11, 2.1]). Given a matroid M over a finite list X, its Tutte polynomial
is defined as

TM(x, y) :=
∑︂

A⊆X

(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A).

This simple expression may be one of the most important invariants of matroids, since
it encodes a lot of the underlying matroid’s combinatorial structure. For example, just
by regarding the definition, one concludes that T (1, 1) equals the number of bases in
MX . In graphs, the Tutte polynomial was originally called the dichromatic polynomial
because of its strong relation to the chromatic polynomial defined above (see [Tut54, 3.]
and compare with 1.2.14).

We are now going to list several well known identities for the classical Tutte polynomial.
Firstly, just like the chromatic polynomial, the Tutte polynomial acts very nicely when
it comes to deletion and contraction of matroids. In particular the following famous
recursion holds (see for example [Moc11, Thm. 3.1]).

Proposition 1.2.11. Let M = MX be a matroid over a list X and let e ∈ X be a
proper vector. Then for the Tutte polynomial TM of M we have

TM(x, y) = TM \ e(x, y) + TM/e(x, y),

where M \ e and M/e again denote the deletion and contraction by e respectively.

There are several ways to build up a complicated matroid out of multiple simpler ones.
Beside the deletion-contraction recurrence, matroids may also be given as a so-called
direct sum of smaller matroids.

Definition ([MD12, 4.6.], [Oxl92, 4.2.12]). Given matroids M = (X, I) and N = (Y,J )
with independence-lists I and J and such that X∩Y = ∅, we can construct a new matroid
denoted by M ⊕ N = (Z,K) with Z = X ⊔ Y and K = {A ∪ B | A ∈ I and B ∈ J }.
This creation is called the direct sum of matroids.

This corresponds directly with the direct sum of vector spaces and the disjoint union of
graphs. Again we observe that the Tutte polynomial behaves very well when in symbiosis
with the direct sum.

Proposition 1.2.12. One has in terms of Tutte polynomials:

TM⊕N (x, y) = TM(x, y) · TN (x, y).

A recursion is not only given by deletion and contraction. Also when concerning
restriction and contraction, the Tutte polynomial fulfils astonishing identities. Kook,
Reiner and Stanton [KRS99, Thm. 1] established a so-called convolution formula for the
Tutte polynomial TM of a matroid M over a groundlist X.
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Theorem 1.2.13. The Tutte polynomial of a matroid M fulfils

TM(x, y) =
∑︂

A⊆X

TM|A(0, y)TM/A(x, 0),

where M|A denotes the restriction of M to A ⊆ X and M/A the contraction.

Since its first appearance the Tutte polynomial has risen to undeniable relevance for the
whole field of graph- and matroid theory. As always, mathematicians are both delighted
and fascinated when they discover that certain structures behave polynomially. However,
such an insight comes with a difficult task. Because if we have a polynomial, whose values
come with various combinatorial meanings, then what about the single coefficients? We
have to ask, how can the coefficients of the Tutte polynomial be interpreted?

This leads to another important notion in matroid theory, namely the one of internal
and external activity. This will deliver a combinatorial formula for the Tutte polynomial
over a matroid by a famous theorem of Crapo [Cra69]. In fact, Tutte himself originally
defined his dichromatic polynomial, which finally was named after him, using the concept
of internal/external activity in graphs (see [Tut54, 3.]). Crapo then proved that this
coincides with our modern definition of the Tutte polynomial.
The following definition for the matroid theoretic setup is taken from [MD12, Section
4.1].

Definition. Let X be the groundlist of a matroid. Fix a total order on X and extract a
basis B of X. We call v ∈ X \B externally active on B if v is dependent on the list of
elements of B following it (with respect to the total order). On the other hand, we call
v ∈ B internally active on B if v is externally active on the complement BC = X \B in
the dual matroid. (There BC is a basis.)
The number of externally active elements on B is denoted by e(B) and is called the
external activity on B. Dually, i(B) = e∗(BC) denotes the number of internally active
elements on B, called the internal activity on B.

Using this, we get the following theorem by Crapo:

Theorem 1.2.14. The Tutte polynomial of a matroid MX over a list X can be written
in the following way:

TMX
(x, y) =

∑︂
B⊆X,

B basis

xe∗(BC)ye(B).

Remark. In particular, observe that although we fixed an arbitrary total ordering on X,
inducing our external and internal activities, the resulting Tutte polynomial is independent
of our choice of the ordering. For graphs this was already proven by Tutte. [Tut54, p.
85–88]
Remark. Gessel and Sagan [GS96] give some more comprehensible and less abstract
definitions of external/internal activity in the case of graphs:
In a graph G = (V,E) a basis is given by a spanning forest T ⊆ E. Given a total ordering
on E, an edge e ∈ E \T is called externally active on T if it is the least edge in the
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unique cycle of T ∪ {e} (according to the total ordering). On the other hand e ∈ T is
internally active if it is the least edge in the unique cocycle contained in (G \T ) ∪ {e}
([GS96, p.2]) (in this setting, a cocycle is a minimal seperating set).

All of the identities stated above are also fulfilled in the case of arithmetic matroids.
Also we will see proofs for them in Chapter 3. Our main goal is now to generalise the
theory introduced here to the arithmetic case. There, many structural advantages apply.
The major purpose of considering an arithmetic matroid is that we are able to capture a
lot more information in our arithmetic Tutte polynomial than only simple dependency
relations. That insight opens great new opportunities for modern matroid theory and
may be one of the latest big steps in this active research field.
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In this chapter we finally start our journey into the depths of the modern theory of
arithmetic matroids. In 2011 Luca Moci [Moc11] established his Tutte polynomial for
toric arrangements encoding combinatorial data of subgroups and quotients of (geometric)
lattices. Being finitely generated abelian groups, they are always isomorphic to a free
group F ∼= Zr times a torsion group T ∼= Zm1 × · · · × Zmn . While the lattice structure of
F provides a matroid in a canonical way, the combinatorial data given by T , e.g. the
number of toric arrangements, is lost when only observing independence relations. Moci
confronted this problem by equipping the resulting matroid with a so called multiplicity
function that captures further combinatorial information of the underlying structure.

This construction yields a perfect setup to study toric arrangements and zonotopes.
But shortly afterwards Moci and D’Adderio [MD12] extracted the necessary axioms to
generalise their ideas to the notion of arithmeitic matroids. Since then the topic emerged
to a beautiful theory of never ending possibilities, with applications in combinatorics,
geometry, graph theory and abstract algebra.

The focus of this chapter will lie on the purely structural aspects of arithmetic matroids.
We introduce the notion of multiplicity functions on matroids and will state the necessary
axioms that this function has to satisfy to generate an arithmetic matroid. Moreover
we will construct the two main examples of arithmetic matroids, which correspond to
finitely generated abelian groups and labelled graphs.

After that we show how the notions of duality and representability extend to arithmetic
matroid theory. Eventually we are going to define deletion, contraction and restriction
operations on arithmetic matroids as a preparation to prove identities for the arithmetic
Tutte polynomial in the next chapter.

2.1 Basic definitions and examples of arithmetic matroids

In this section we discuss the possibilities of regarding certain multiplicity functions on
matroids. In the most general case this will lead to so-called multiplicity matroids. If those
multiplicities fulfil further properties we might get what we will call an arithmetic matroid.
In the first subsection we state the different systems of axioms, provided by different
sources, that define arithmetic matroids. Eventually we will discuss their equivalence.
We also introduce the notion of so-called molecules which embody a central structure in
this field.

Afterwards we construct arithmetic matroids over finitely generated abelian groups
and give some examples. Those are especially important since later on we are going to
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refer to them as exactly being the representable arithmetic matroids.

2.1.1 Multiplicities
Like described before, the main purpose of considering the little more complicated case
of arithmetic matroids is to involve more of the underlying combinatorial information
on the matroid in our Tutte polynomial. This is done by considering a second function
m : P(X) → Z besides the rank function. This multiplicity function assigns to every
sublist A ⊆ X an integer m(A) that could represent some data. However, a priori we may
allow any kind of function to apply. This directly leads to the definition of a matroid
with a multiplicity ([Moc11, 2.1]).

Definition. A multiplicity matroid is a pair (M,m), with M a matroid over a finite list
X and m a mapping m : P(X) → Z.
Its multiplicity Tutte polynomial is then defined by

M(x, y) =
∑︂

A⊆X

m(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A).

For the definition of a multiplicity matroid, we do not demand any further constraints
on the multiplicity function. Any arbitrary function on any arbitrary matroid delivers a
multiplicity matroid. Therefore also the multiplicity Tutte polynomial could appear in
various shapes. In particular also negative coefficients are possible, hence the multiplicity
Tutte polynomial cannot be considered a combinatorial object in general. Nevertheless
choosing an appropriate multiplicity could yield a new Tutte polynomial containing an
enormous amount of encoded combinatorial information.

Moci and D’Adderio defined the essential properties for m to generate a whole new class
of combinatorial structures generalising and adapting classical matroid theory, namely
so-called arithmetic matroids. The first defining system of axioms was given in [MD12,
2.3.] and they were formulated as follows:

Definition. A multiplicity matroid (MX ,m) is called an arithmetic matroid if the
multiplicity function m : P(X) → N \{0} fulfils the following five properties:

(AM1) If A ⊆ X and v ∈ X is dependent of A, then m(A ∪ {v}) divides m(A).

(AM2) If A ⊆ X and v ∈ X is independent of A, then m(A) divides m(A ∪ {v}).

(AM3) If A ⊆ B ⊆ X and B = A ⊔ F ⊔ T is a disjoint union such that for all A ⊆ C ⊆ B
we have that rk(C) = rk(A) + |C ∩ F |, then there holds

m(A) · m(B) = m(A ∪ F ) · m(A ∪ T ).

(AM4) If A ⊆ B ⊆ X and rk(A) = rk(B), then

ρB(A) :=
∑︂

A⊆T ⊆B

(−1)|T |−|A|m(T ) ≥ 0.
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(AM5) If A ⊆ B ⊆ X and rk∗(A) = rk∗(B), then

ρ∗
B(A) :=

∑︂
A⊆T ⊆B

(−1)|T |−|A|m(X \T ) ≥ 0.

In this case we call the multiplicity Tutte polynomial M(x, y) the arithmetic Tutte
polynomial of (MX ,m).

All those axioms from the definition are independent of each other, in the sense that
one can find multiplicity matroids that fulfil all but one axiom. The following matroids
serve as our first simple examples of multiplicity matroids, which are not yet arithmetic
matroids. They are all taken from [MD12, Rem. 4.3.].
Example. In the following example we observe matroids that contain no proper vectors,
i.e. they consist only of loops denoted by l and coloops denoted by c. Such matroids are
also first examples for so-called molecules.

• Let X1 = {l}, then we obtain a matroid structure in the sense of the rank axioms
by setting rk({l}) = rk(X1) = 0. Furthermore we turn it into a multiplicity matroid
by setting m(∅) = 3 and m(X1) = 2. Then simple calculations show, that this
construction fulfils all axioms of an arithmetic matroid but the first one.

• However, considering X2 = {c} with rk(X2) = 1 and letting m(X2) = 3 and
m(∅) = 2 then the resulting multiplicity matroid fulfils all axioms but the second
one. (Although the first one is satisfied trivially because of a lack of dependent
elements.)

• Now consider the the matroid on X3 = {l, c} given by rk({c}) = rk({c, l}) = 1 and
rk({l}) = rk(∅) = 0. Setting m({c}) = m({c, l}) = m(∅) = 2 and m({l}) = 1. This
yields a multiplicity matroid satisfying all axioms from above but the third one.
Moreover, the multiplicity Tutte polynomial is computed as M(x, y) = x+y+xy−1.

• Considering the matroid on X4 = {l1, l2, l3, l4} defined by rk(X4) = 0 (this means
rk(A) = 0 for all A ⊆ X4, i.e. X4 is consisting only of loops). If we set m(∅) = 4,
m(li) = 2 ∀i ∈ {1, 2, 3, 4} and m(A) = 1 for any other sublist A ⊆ X, we obtain
a multiplicity matroid fulfilling all but the fourth axiom. Its multiplicity Tutte
polynomial is given by M(x, y) = y4 + 4y − 1.

• Finally observe the matroid on X5 = {c1, c2, c3, c4} with rk(A) = |A| for all A ⊆ X5
(i.e. X5 is does only contain coloops). Using multiplicities (dual to the last example)
m(X5) = 4, m(A) = 2 if |A| = 3 and m = 1 else, we obtain that every axioms
is fulfilled but the fifth one and for the multiplicity Tutte polynomial we have:
M(x, y) = x4 + 4x− 1.

Considering the examples from above, note that if (AM3), (AM4) or (AM5) fail, it is
possible to gather a multiplicity Tutte polynomial with negative coefficients and thus a
non-combinatorial object. Indeed we will see that those axioms guarantee the positivity
of the coefficients of the multiplicity Tutte polynomial in case of arithmetic matroids.
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Example. ([MD12, Rem. 2.3.]) A trivial, yet important first example of arithmetic
matroids is constructed by taking an arbitrary matroid MX over a list X and setting
m(A) = 1 for all A ⊆ X. Clearly the constant function m ≡ 1 fulfils all five axioms.
In other words, every matroid can be considered an arithmetic matroid with trivial
multiplicity. Due to this, arithmetic matroids really can be viewed as a generalisation of
standard matroids. However, in this case we do not get any further structure on MX . In
particular the arithmetic Tutte polynomial coincides with the ordinary Tutte polynomial
since

M(x, y) =
∑︂

A⊆X

m(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

=
∑︂

A⊆X

1(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A) = T (x, y).

Even though we have already seen, that the axioms (AM1)–(AM5) are kind of inde-
pendent of each other, mathematicians found simpler descriptions of arithmetic matroids
reducing the originally five conditions to three. Those definitions usually make use of the
notion of so-called molecules. They are essentially minors of the matroid that correspond
to the situation of (AM3), where we observe sets A ⊆ B ⊆ X such that B = A ⊔ F ⊔ T
and for all A ⊆ C ⊆ B we have rk(C) = rk(A) + |C ∩ F |. In words: The superset B
consists of A, a free part F whose elements are coloops in (MX|B)/A, and a torsion part
T consisting of loops (w.r.t. (MX|B)/A).

Definition. In literature the definition of molecules varies and the formulations are not
all equivalent. However, they are strongly related. We state here the most common
variants.

(i) A molecule is an arithmetic matroid that has no proper vectors. I.e. it consists
only of loops and coloops. [MD12, 4.1]

(ii) Let MX be a matroid, R ⊆ S ⊆ X. Then the set

[R,S] := {A : R ⊆ A ⊆ S}

is called a molecule if S can be written as the disjoint union S = R⊔F ⊔ T and for
each A ∈ [R,S] we have rk(A) = rk(R) + |A∩ F | ([BM14, Section 2] or also [BL20,
Def 14]).

(iii) A molecule in a matroid MX is a triple α := (R,F, T ) of disjoint subsets of X such
that for every A ⊆ X with R ⊆ A ⊆ R ⊔ F ⊔ T we have rk(A) = rk(R) + |A ∩ F |.
[DM16, Def 1]

(iv) A molecule in a matroid MX is a pair (A,B) of sets A ⊂ B ⊆ X such that the
matroid (M/A) \BC has a unique basis. [Pag20, Def 1.4]

Remark. We should at least state why, and how these four definitions are related with
each other. Firstly, (ii) and (iii) are basically the same structure. Only in (ii) we call
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2.1 Basic definitions and examples of arithmetic matroids

the whole interval [R,S] a molecule. There we factorise the endpoint S = R ∪ F ∪ T (as
we are allowed by (ii) ) and see that this already yields the triple (R,F, T ) defining a
molecule in the sense of (iii). Conversely, given such a triple (R,F, T ) being a molecule
in the sense of (iii), we instantly obtain a (ii)-molecule by observing the interval of sets
[R,R ∪ F ∪ T ].
Now given a molecule (R,F, T ) in the sense of (iii) we set A := R and B := R ∪ F ∪ T .
Then the matroid (MX/A) \BC is isomorphic to the matroid MF ⊔T where we assume
every c ∈ F to be a coloop and every l ∈ T to be a loop. (This is implied by the
rank-property stated in (iii) ). Therefore (MX/A) \BC has a unique basis given by F ,
the set of coloops, and (A,B) is a molecule in the sense of (iv).
Naturally, every matroid with a unique basis cannot have any proper vector. Otherwise the
basis axiom (B2) would let us construct at least one other basis. Therefore (MX/A) \BC

given by a molecule in the sense of (iv) is already a molecule as described in (i).
Finally definition (i) translates into definition (ii) in the sense that given R and S =
R∪F ∪T as described above, the sets F and T define such a (i)-molecule in an appropriate
minor and therefore determine the rank of all sets A ⊆ [R,S].

In matroid theory, very simple matroids consisting only of singletons are called atoms.
Therefore the name molecule for a matroid consisting of several atoms seems intuitive.
However, using the notion of molecules we can reduce the definition of arithmetic matroids
to the following more compact version.

Definition ([BM14, Section 2] or [BL20, Def. 14]). An arithmetic matroid is a multiplicity
matroid (MX ,m) such that the multiplicity function m : P(X) → N \{0} satisfies the
following three axioms:

(P) For each molecule [R,S] the following inequality holds:

ρ(R,S) := (−1)|TRS | ∑︂
A∈[R,S]

(−1)|S|−|A|m(A) ≥ 0,

where TRS denotes the torsion part in the classical factorisation of the molecule:
S = R ⊔ FRS ⊔ TRS .

(A1) For all A ⊆ X and e ∈ X: if rk(A ∪ {e}) = rk(A) then m(A ∪ {e}) divides m(A).
Otherwise m(A) divides m(A ∪ {e}).

(A2) If [R,S] is a molecule, then m(R)m(S) = m(R ∪ F )m(R ∪ T ), where again S =
R ⊔ F ⊔ T is the molecule factorisation of S.

It is one advantage of this system of axioms that we are now able to define two
important pre-stages of arithmetic matroids. Especially quasi-arithmetic matroids play a
major role in some algebraic generalisations of arithmetic matroid theory.

Definition ([BM14, Section 2] or [BL20, Def. 14]). A multiplicity matroid, that satisfies
(P) is called pseudo-arithmetic matroid. On the other hand, a multiplicity matroid that
satisfies (A1) and (A2) is called a quasi-arithmetic matroid.
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2 Arithmetic matroids

The pair (MX ,m) is an arithmetic matroid if it is a quasi-arithmetic matroid as well as
a pseudo-arithmetic matroid.

Another, even more compact equivalent definition of arithmetic matroids is given by
Delucchi and Moci [DM16] using the language of posets in a very elegant way. Since
we aim for a complete introduction to the topic of arithmetic matroids based on only
fundamental knowledge in discrete mathematics, we will now repeat the fundamentals of
poset-theory. Most of it can be found in any course book on combinatorics, or even in
Delucchi-Moci [DM16, 2.1.].

First of all, we need some basic definitions that will turn out very useful later on.
Definition. Let P be a set and ≼ an order-relation on P , that is, ≼ is reflexive, transitive
and antisymmetric. Then (P,≼) is called a partially ordered set, or poset for short.
In a poset P an interval is any subset of P of the form [x, y] := {z ∈ P |x ≼ z ≼ y} for
some x, y ∈ P, x ≼ y. We will denote the set of all intervals of P by I(P ).
Remark. Since we are working with arithmetic matroids which are defined on finite lists,
also all posets occurring throughout this thesis will be finite. Thus in the following we
assume all our posets to be finite.
Definition. The Möbius function of a finite poset P is the function

µ : I(P ) → Z

defined via the following recursion:⎧⎨⎩µ(x, x) = 1 for all x ∈ P∑︁
x≤z≤y

µ(x, z) = 0 for all x < y ∈ P,

where we simply write µ(x, y) for µ([x, y]).
For a function on posets m : P → R the Möbius transform of m is given by

mµ : P → R

x ↦→
∑︂
z≥x

µ(x, z)m(z).

It is characterised by m(x) = ∑︁
z≥x

mµ(z).

Definition. Consider two elements x1, x2 ∈ P of a poset. A minimal upper bound for
x1, x2 is an element y ∈ P such that for all z ∈ P we have:

(z ≥ x1 and z ≥ x2) ⇐⇒ z ≥ y.

By antisymmetry, such an element y is unique. We denote it as y = x1 ∨ x2 and call it
the join of x1 and x2. A poset, in which every pair x1, x2 ∈ P admits a join, is called a
join-semilattice.
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We summarise some of the abstract definitions given above in the following famous
example.
Example (Boolean poset). Take Bn = {0, 1}n the set of ordered n-tuples with entries
0 or 1. On B define the following partial order: For all x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) let

x ≼ y :⇐⇒ (xi ≤ yi, ∀i ∈ [n]).

Then Bn is a locally finite poset called the Boolean poset and additionally it is a join-
semilattice where the join of x and y is given by

x ∨ y = (max{xi, yi})n
i=1.

Moreover, let X be a set of n elements (i.e. X ∼= [n]). Then the poset (P(X),⊆) is
isomorphic to Bn. In general, the isomorphism is constructed by labelling the elements
of X with numbers 1, 2, ..., n. Further, to a subset Y = {i1, ..., ik} ⊆ X we assign exactly
the element of {0, 1}n which shows a 1 at the ij ’th position for j = 1, 2, ..., k and 0
elsewhere. This gives a bijection P(X) ↔ {0, 1}n that preserves the orders of the posets.
To see this, regard for example Figure 2.1.

Figure 2.1: P({a, b, c}) is isomorphic to the boolean poset B3.

We now state two results of general poset theory that will come in handy when proving
positivity theorems for arithmetic matroids.
Lemma 2.1.1 ([DM16, Lemma 1]). Let P be a finite join-semilattice and D : P → Sets
be a function such that D(x) ∩D(y) = D(x ∨ y) for all x, y ∈ P . Then∑︂

z≥x

µ(x, z)|D(z)| ≥ 0

for all x ∈ P .
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Proof. For all x ∈ P we define

G(x) := D(x) \
⋃︂

z>x

D(z).

and set f(x) := |G(x)| ≥ 0. We claim that: D(x) = ⨆︁
z≥xG(z).

⊇: z ≥ x means z = x ∨ z. Therefore G(z) ⊆ D(z) = D(z) ∩D(x) ⊆ D(x).

⊆: Let d ∈ D(x). The set Pd := {y ∈ P | d ∈ D(y)} has a unique maximal element
p̂ (since d ∈ D(y) and d ∈ D(y′) imply d ∈ D(y) ∩ D(y′) = D(y ∨ y′), and hence
y ∨ y′ ∈ Pd). We observe that d ∈ D(p̂) \

⋃︁
z>p̂D(z) = G(p̂). The uniqueness of p̂

implies that the union is indeed disjoint. This proves the claim.
Thus we deduce that for all x ∈ P we have

|D(x)| =
∑︂
z≥x

f(z)

and therefore by Möbius inversion∑︂
z≥x

µ(x, z)|D(z)| = f(x) ≥ 0.

With this lemma we are able to prove the following theorem.
Theorem 2.1.2 ([DM16, Thm. 1]). Let P be a join-semilattice, and consider two
functions m1,m2 : P → Z. If (mi)µ(x) ≥ 0 for all x ∈ P, i ∈ {1, 2}, then (m1m2)µ(x) ≥ 0
for all x ∈ P .

Proof. We define a family of sets. For every i = 1, 2 and x ∈ P let

Gi(x) := {Y i,x
1 , . . . , Y i,x

mµ
i (x)},

where the Y i,x
j are formal elements - i.e. Y i,x

j = Y ′i′,x′

j if and only if i = i′, x = x′ and
j = j′. Note that the Gi(x) are well defined due to the positivity condition on mµ

i .
Furthermore let Ai(x) := ⨆︁

z≥xGi(z) be the disjoint union. Then we have

Ai(x′) ∩Ai(x′′) = Ai(x′ ∨ x′′).

By the definition of mµ
i we also observe that

|Ai(x)| =
∑︂
z≥x

mµ
i (z) = mi(x).

Finally we define another family of sets (A12(x))x∈P given by

A12(x) := A1(x) ×A2(x)
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and again we see (since Cartesian products commute with intersections):

A12(x′) ∩A12(x′′) = (A1(x′) ∩A1(x′′)) × (A2(x′) ∩A2(x′′)) = A12(x′ ∨ x′′).

By now, we have collected all the information we need. We apply Lemma 2.1.1 and get

(m1m2)µ(x) =
∑︂
z≥x

µ(x, z)|A12(z)| ≥ 0.

Now the claim follows since |A12(z)| = m1(z)m2(z) for all z ∈ P .

Finally we can define arithmetic matroids combining the languages of molecules and
posets. Following Delucchi and Moci [DM16, Section 2.2], to each molecule α = (R,F, T )
we associate a poset

Bα = {(F ′, T ′) | F ′ ⊆ F, T ′ ⊆ T}

ordered by (F ′, T ′) ≼ (F ′′, T ′′) :⇔ F ′ ⊇ F ′′ and T ′ ⊆ T ′′.
Observe that Bα is bounded, having a unique minimal element 0̂ = (F, ∅) and a unique
maximal element 1̂ = (∅, T ). Additionally, every interval in Bα (e.g. [(F ′, T ′), (F ′′, T ′′)])
is the poset Bα′ for another molecule given by α′ = (R ∪ F ′′ ∪ T ′, F ′ \F ′′, T ′′ \T ′).
Now given any multiplicity m : P(X) → Z and a molecule α = (R,F, T ) of a matroid
MX over a set X, we define the function mα : Bα → Z via

mα(F ′, T ′) := m(R ∪ F ′ ∪ T ′).

Definition. [DM16, Def. 2] An arithmetic matroid is a multiplicity matroid (MX ,m)
where the multiplicity function m : P(X) → Z satisfies the following three axioms:

(P) For every molecule α of the underlying matroid (M, rk) we have

mµ
α(0̂) ≥ 0.

(Q) For every molecule α = (R,F, T ) of (M, rk) it holds that

m(R)m(R ∪ F ∪ T ) = m(R ∪ F )m(R ∪ T ).

(A) For all A ⊆ X and all v ∈ X we have
(︂m(A ∪ {v})

m(A)
)︂2(rk(A∪{v})−rk(A))−1

∈ Z,

which is again just a very fancy way of expressing that m(A) has to divide m(A∪{v})
whenever v is independent from A and m(A ∪ {v}) divides m(A) if v is dependent
on A.

Remark. [DM16, Rem. 2] Comparing this definition directly with the second one above,
one can easily see that (Q) and (A2) are equivalent. Same holds for the axioms (A)
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and (A1) using only fundamental calculations. Still, we need to remark that also the
positivity axioms (P) give equivalent statements. To see this, observe that for a molecule
α = (R,F, T ) we have that the according poset Bα is boolean and the length of the
interval (Bα)≤(T ′,F ′) is |T ′| + |F \F ′|. Hence the Möbius function µ of Bα fulfils

µ(0̂, (T ′, F ′)) = (−1)|T ′|+|F \ F ′|.

Therefore a little computation shows:

(mα)µ(0̂) =
∑︂

T ′⊆T
F ′⊆F

µ(0̂, (T ′, F ′))m(R ∪ F ′ ∪ T ′)

=
∑︂

T ′⊆T
F ′⊆F

(−1)|T ′|+|F \ F ′|m(R ∪ F ′ ∪ T ′)

= (−1)|T | ∑︂
T ′⊆T
F ′⊆F

(−1)|T \ T ′|+|F \ F ′|m(R ∪ F ′ ∪ T ′)

= (−1)|T | ∑︂
R⊆A⊆R∪F ∪T

(−1)|(R∪F ∪T ) \ A|m(A) = ρ(R,R ∪ F ∪ T ),

where the last expression is the one used in our second definition. Hence our second and
third definition are indeed equivalent. Still we have to check, that these two really coincide
with our first definition of arithmetic matroids. I refer to the originally five axioms
(AM1)–(AM5). Firstly, we may recognise that axiom (A) is a combination of (AM1) and
(AM2), containing both of their statements, and vice versa. As (Q) is formulated over
molecules, this is exactly (AM3). Therefore it remains to check whether (P) represents
both (AM4) and (AM5). We recall the conditions for (AM4): If A ⊆ B ⊆ X and
rk(A) = rk(B), then

ρB(A) :=
∑︂

A⊆T ⊆B

(−1)|T |−|A|m(T ) ≥ 0.

Now we may observe, that such an A and B form a molecule α = (A,A ∪ ∅ ∪ B \A)
where the free part FAB is empty (since rk(A) = rk(B)). Therefore (P) implies (AM4)
as (P) demands positivity for all molecules. Now (AM5) is the dual version of (AM4),
hence there we observe the same molecule, but now the torsion part is empty. Again (P)
implies (AM5).
Conversely (AM4) and (AM5) induce (P) since we can reduce the sum in the molecule
case to a double sum representing both the situation of (AM4) and (AM5) sequentially.
To sum things up, all our three definitions are equivalent and in future proofs we will
always refer to the one most convenient for our current situation.

For example, using the third definition and our knowledge of posets, we are already
able to prove the following magnificent result:

Lemma 2.1.3 ([DM16, Lem. 2]). Fix a matroid MX = (X, rk) over a set X. Let
m′,m′′ : P(X) → Z both be multiplicities on MX . If both m′ and m′′ satisfy axiom (P),
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then so does m = m′m′′.

Proof. Consider a molecule α. The poset Bα is boolean, in particular it is a join-semi-
lattice. We already remarked, that every interval of Bα defines again a molecule in
our matroid and therefore m′ and m′′ fulfil the conditions of Theorem 2.1.2 about the
positivity of Möbius transforms. Hence (m′m′′)µ(0̂) ≥ 0, as desired.

The consequences of this lemma are far-reaching since now we can deduce a certain
algebraic structure on the sets of arithmetic multiplicities on a given matroid. The
following two statements specify this observation.

Theorem 2.1.4 ([DM16, Thm. 2]). If both (MX ,m1) and (MX ,m2) are arithmetic
matroids, then also (MX ,m1m2) is an arithmetic matroid.

Proof. By the previous lemma, m1m2 fulfils axiom (P). Axioms (A) and (Q) are satisfied
trivially.

Corollary 2.1.5 ([DM16, Rem. 3]). Given a matroid MX , the set

{(MX ,m) | m : P(X) → Z,m fulfils (P), (Q) and (A)}

of arithmetic matroids defined on MX forms a commutative monoid with respect to the
natural product of multiplicities.

With this we conclude our chapter of the basic definitions of arithmetic matroids. We
may move on to constructing our first concrete examples.

2.1.2 The main examples of arithmetic matroids
After we have seen a lot of different formulations to abstractly define arithmetic matroids,
it is now time to study explicit examples of our object of interest. Like so often new
mathematics is created as an offspring when one is confronted with some other difficult
objective. As already noted, Luca Moci, father of this very theory, humbled over arith-
metic matroids while studying geometric lattices and their so-called toric arrangements.
In this section we will closely follow his work in [Moc11] to examine the main example of
an arithmetic matroid. Afterwards we will study examples of arithmetic matroids defined
on labelled graphs.

Let X be a finite list of vectors spanning a real vector space U . If we denote with
I the set of linearly independent subsets of X then we arrive at our classical example
of a matroid MX = (X, I). The rank of a subset A ⊆ X is therefore simply given as
rk(A) = dim(⟨A⟩R), the dimension of its linear span ⟨A⟩R ⊆ U .

Definition ([Moc11, 2.2.]). A (geometric) lattice Λ of rank n is a discrete subgroup of
Rn which spans the whole Rn as a real vector space. Every such Λ can be obtained from
some basis of the vector space by taking all linear combinations of its elements with
integer coefficients. Therefore Λ ∼= Zn as additive groups. In particular any lattice is a
finitely generated abelian group.
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Let X be a finite list of elements in a lattice Λ and consider the resulting matroid. For
every A ⊆ X we denote by ⟨A⟩Z the according sublattice of Λ generated by the elements
of A, and by ⟨A⟩R the subspace of U := Λ ⊗ R spanned by A. Moreover we define

ΛA := Λ ∩ ⟨A⟩R,

which gives the largest sublattice of Λ in which ⟨A⟩Z has finite index. Therefore the
multiplicity m : P(X) → Z given by

m(A) := [ΛA : ⟨A⟩Z]

is well-defined, turning (MX ,m) into a multiplicity matroid. (By [G : H] we denote the
index of a subgroup H ⊆ G.)

We now claim that any such pair (MX ,m) is already an arithmetic matroid.
We will prove this even for the slightly more general case of abstract finitely generated

abelian groups. Each such group is basically a direct sum of a lattice structure and
a finite abelian group. To be more precise, the following theorem is one of the main
statements of any advanced course in abstract algebra.

Theorem 2.1.6. Let G be a finitely generated abelian group. Then there exist unique
r, t ∈ N ∪ {0} and a series of positive integers d1, d2, . . . , dt, where di divides di+1 for all
i = 1, . . . t− 1, such that

G ∼= Zr ⊕
t⨁︂

i=1
Z/diZ.

In particular, any such G is isomorphic to a direct sum Gf ⊕Gt, with Gf a free abelian
group, called the free part of G, and a finite group Gt, called the torsion subgroup of
G. The integer r ∈ N ∪ {0} is called the rank of G.

Now let X be a finite list of elements of a finitely generated abelian group G. For any
A ⊆ X we denote by ⟨A⟩ ⊆ G the subset of G generated by the elements of A. Naturally
every ⟨A⟩ is again a finitely generated abelian subgroup and the theorem above can be
applied. We let rk(A) be the rank of ⟨A⟩ as described in the theorem.
One can easily see, that this describes a matroid structure (X, rk). Nevertheless one may
also notice, that this matroid is indifferent to the matroid described by the projection of
X onto the free part Gf since the rank rk : P(X) → N does ignore the torsion parts of
the induced subgroups. In other words, we really do lose structural information when
considering only classical matroids on X. We remind the reader that this is the reason
why multiplicities were introduced in the first place: to capture combinatorial information
that would have been lost otherwise. In our case, the multiplicity function of our choice
is again the according index. For any A ⊆ X let GA be the maximal subgroup of G, such
that ⟨A⟩ has finite index in GA. Then similarly to before, we define

m(A) := [GA : ⟨A⟩].
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Again we obtain a multiplicity matroid (X, rk,m). Moreover we instantly observe that
m(∅) = |Gt| and we have m(∅) = 1 if and only if G is a free abelian group. [MD12, 2.4.]

Theorem 2.1.7 ([MD12, Section 2.4]). Let X be a finite list of elements of a finitely
generated abelian group G. Let MX be the canonical matroid defined by X and let the
function m : P → Z be defined as in the last paragraph. Then (MX ,m) is an arithmetic
matroid.

The proof of the theorem uses various other statements, also about general duality
and representability of arithmetic matroids. Both notions will be covered in the next
section. Nevertheless we state the proof and refer in certain situations to the results in
the future chapters. For now we gather some theorems of algebra and group theory as
well as some simple observations that will turn out very useful in the proof. Firstly, we
remind ourselves of the generalised theorem of Lagrange:
Lemma 2.1.8. Let U ⊆ H ⊆ G be a chain of subgroups of a finite group G. Then we
have for their indices, that

[G : U ] = [G : H] · [H : U ].

Moreover we will make use of the following isomorphism-theorems.
Lemma 2.1.9 (Isomorphism theorems).

I. Let G be a group, N a normal subgroup and H a subgroup of G. Then

H/(H ∩N) ∼= HN/N

with HN := {hn | h ∈ H,n ∈ N}.

II. Let G be a group, H a normal subgroup of G and N a subgroup of H which is also
normal in G. Then

(G/N)/(H/N) ∼= G/H.

All of these are commonly known statements of algebra and can be found in any good
coursebook (e.g. in [KM17, Thm. 3.13, Thm. 4.12, Thm. 4.14]).
Remark. [MD12, Rem. 2.7] If we have a finitely generated abelian group G with a
subgroup H ⊆ G, we can factorise G = Gf ⊕Gt and H = Hf ⊕Ht into free- and torsion
parts according to Theorem 2.1.6. Then necessarily Ht is a subgroup of Gt. By the first
isomorphism theorem we get

H +Gt

Gt

∼=
H

H ∩Gt

∼= Hf .

Now choose a suitable subgroup H ′
f ≤ Gf such that H +Gt = H ′

f ⊕Gt, for which we
observe

H ′
f =

H ′
f ⊕Gt

Gt
= H +Gt

Gt

∼= Hf .
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In a similar manner we also deduce

G

H +Gt

∼=
G/Gt

(H +Gt)/Gt
= (Gf ⊕Gt)/Gt

(H ′
f ⊕Gt)/Gt

∼=
Gf

H ′
f

and
H +Gt

H
∼=

Gt

H ∩Gt
= Gt

Ht
.

Therefore

[G : H] = [G : H +Gt] · [H +Gt : H] = [Gf : H ′
f ] · [Gt : Ht].

Hence, whenever we are only interested in multiplicities, replacing H = Hf ⊕ Ht by
H ′ = H ′

f ⊕ Ht when necessary, we can always assume Hf ⊆ Gf . Moreover, for our
matroid and A ⊆ X a list we get

m(A) = [GA : ⟨A⟩] = [(GA)f ⊕ (GA)t : ⟨A⟩f ⊕ ⟨A⟩t] =
= [(GA)f : ⟨A⟩f ] · [(GA)t : ⟨A⟩t].

Now, last but not least, in order to give a full proof, we need to talk about toric
arrangements in finitely generated abelian groups. For the following definitions and
the resulting lemma, we refer to [Moc11, Section 5.2].
Let Γ := Λ × Γt be a finitely generated abelian group with Λ a lattice and Γt its torsion
group. Define

TΓ := Hom(Γ,C∗),

where C∗ denotes the multiplicative complex group.
TΓ can be viewed as the direct product of a complex torus TΛ and the finite group Γ∗

t

Pontryagin-dual (and isomorphic) to Γt, which yields the structure of an abelian linear
algebraic group. Topologically we have a disjoint union of |Γt| copies of the complex
torus TΛ = Hom(Λ,C∗).[MD12, Section 3.1]
Additionally, we can identify Γ with the group of multiplicative characters of TΓ, i.e.
Γ ∼= Hom(TΓ,C∗): given γ ∈ Γ and t ∈ TΓ we may simply set

γ(t) := t(γ).

Now let X ⊂ Λ be a finite subset spanning a sublattice of Λ with finite index. For every
character λ ∈ X we study its kernel:

Hλ := ker(λ) = {t ∈ TΓ | λ(t) = 1}.

This is a (non-connected) subvariety of TΓ. The family T (X) := {Hλ|λ ∈ X} is called
the generalised toric arrangement induced by X on TΓ.

By C(X) we denote the set of all the connected components of all intersections of the
subvarieties Hλ, ordered by reverse inclusion. Its minimal elements are the connected
components of TΓ. Observe that since dim(TΓ) equals the rank of Λ, the maximal
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elements of C(X) are 0-dimensional and as they are connected they are in fact points.
Let C0(X) denote the set of those points.

Finally, for A ⊆ X we set
HA :=

⋂︂
λ∈A

Hλ.

With all of this in mind, we obtain the following result:

Lemma 2.1.10 ([Moc11, Lem. 5.4]). The multiplicity m(A) equals the number of con-
nected components of HA.

Proof. By definition we have for every A ⊆ X that m(A) = [GA : ⟨A⟩]. But from a
different perspective if we set G′

A = (G/⟨A⟩)t to be the torsion group of the quotient,
then we deduce straightforwardly that m(A) = |G′

A|.
With this we have practically by definition that m(X) = |HX | and this coincides with

the number of points in the arrangement. However, then for every A ⊆ X we have

|HA| = m(A),

where HA denotes the set of points of the restricted toric arrangement T (A) induced
by A in TΓA

. Now we denote by H0
A the connected component of HA that contains the

identity. This is a subtorus of TΓ, moreover the quotient map

TΓ → TΓ/H
0
A

∼= TΓA

yields a bijection between the points in HA and the connected components of HA.

Eventually we have gathered everything we need to prove Theorem 2.1.7.

Proof (of the theorem). We prove axioms (AM1)–(AM5).

(AM1) Let A ⊆ X and let v ∈ X be dependent on A. This means, if ⟨A⟩ ∼= Zr ⊕Ht with
Ht its torsion group, then ⟨A ∪ {v}⟩ ∼= Zr ⊕H ′

t. Since clearly ⟨A⟩ ⊆ ⟨A ∪ {v}⟩ we
can assume Ht ⊆ H ′

t and clearly GA ⊆ GA∪{v} is a subgroup. Moreover we observe
that ⟨A⟩ has finite index in ⟨A∪{v}⟩ by dependence of v, hence we get by Lagrange

[GA∪{v} : ⟨A⟩] = [GA∪{v} : ⟨A ∪ {v}⟩] · [⟨A ∪ {v}⟩ : ⟨A⟩] < ∞

Therefore truly GA = GA∪{v} by definition of GA. In conclusion we obtain

m(A) = [GA : ⟨A⟩] = [GA∪{v} : ⟨A⟩] = m(A ∪ {v}) · [⟨A ∪ {v}⟩ : ⟨A⟩]

which yields the claim.

(AM2) We will see soon, that (AM2) can be considered dual to (AM1). Hence (AM2)
follows if we show that the dual multiplicity matroid again can be considered a
matroid over a list of elements of a finitely generated abelian group. This is indeed
true and will be shown in the next section. (See Theorem 2.2.2.)
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(AM3) Let [A,B] a molecule in MX , B = A⊔F ⊔ T . By the isomorphism theorem we get

⟨B⟩/⟨A ∪ F ⟩ ∼= ⟨A ∪ T ⟩/(⟨A ∪ T ⟩ ∩ ⟨A ∪ F ⟩) (2.1.1)

Now we claim that we already have ⟨A ∪ T ⟩ ∩ ⟨A ∪ F ⟩ = ⟨A⟩. We prove ⊆, since
the right-to-left inclusion is trivial.
Let g ∈ ⟨A ∪ T ⟩ ∩ ⟨A ∪ F ⟩. Hence we find expansions

g =
∑︂
a∈A

αaa+
∑︂
t∈T

βtt =
∑︂
a∈A

γaa+
∑︂
f∈F

δff,

with αa, βt, γa, δf ∈ Z. Let F ′ ⊆ F be the subset, for which the corresponding
coefficients δf ′ , for f ′ ∈ F ′, are nonzero. If F ′ = ∅, then g = ∑︁

a∈A
γaa and hence

g ∈ ⟨A⟩. Therefore we assume F ′ ̸= ∅. We define C = A ∪ F ′ and by assumption
we have

rk(C) = rk(A) + |F ′|.

Nevertheless,∑︂
f ′∈F ′

δf ′f ′ =
∑︂
f∈F

δff =
∑︂
a∈A

αaa+
∑︂
t∈T

βtt−
∑︂
a∈A

γaa ∈ ⟨A ∪ T ⟩,

and rk(A ∪ T ) = rk(A) ([A,B] molecule). Therefore we conclude

rk(C) ≤ rk(A ∪ T ) + |F ′| − 1 = rk(A) + |F ′| − 1,

which yields a contradiction.
Hence we indeed have ⟨A ∪ T ⟩ ∩ ⟨A ∪ F ⟩ = ⟨A⟩.
Going back to equation (2.1.1) we observe that

⟨B⟩/⟨A ∪ F ⟩ ∼= ⟨A ∪ T ⟩/⟨A⟩. (2.1.2)

Using that rk(B) = rk(A ∪ F ) and rk(A ∪ T ) = rk(A) as well as our previous
remark we compute:

m(A ∪ F )
m(B) = [GA∪F : ⟨A ∪ F ⟩]

[GB : ⟨B⟩] = [GB : ⟨A ∪ F ⟩]
[GB : ⟨B⟩]

(Lagrange) = [⟨B⟩ : ⟨A ∪ F ⟩]
(2.1.2) = [⟨A ∪ T ⟩ : ⟨A⟩]

= [GA : ⟨A⟩]
[GA : ⟨A ∪ T ⟩] = [GA : ⟨A⟩]

[GA∪T : ⟨A ∪ T ⟩]

= m(A)
m(A ∪ T ) .

This proves (AM3).
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(AM4) For sets A ⊂ B ⊂ X with rk(A) = rk(B) one observes by using the Lemma 2.1.10
above and the principle of inclusion-exclusion that ρB(A) is equal to the number of
connected components of

HA \
⋃︂

B⊇T ⊃A

HT ,

and therefore clearly is a non-negative integer.

(AM5) Again, this axiom can be considered to be the dual of (AM4). Hence by proving
that a so-called representable multiplicity matroid has a representable dual one can
deduce (AM5). This will happen in the next section. (See again Theorem 2.2.2.)

This yields that a finite list of elements of a finitely generated abelian group indeed
induces an arithmetic matroid.

We study a first example of this class of arithmetic matroids.
Example. Let G = Z2 ⊕ Z/2Z. In G we regard the finite list

X =
{︄⎛⎜⎝1

2
0̄

⎞⎟⎠
⏞ ⏟⏟ ⏞

a

,

⎛⎜⎝4
8
1̄

⎞⎟⎠
⏞ ⏟⏟ ⏞

b

}︄
.

Then m(∅) = 2 and for the singletons we compute that G{a} = ⟨(1, 2)⟩Z ⊕ (Z/2Z) and
also G{b} = ⟨(1, 2)⟩Z ⊕ (Z/2Z). Thus we deduce that m({a}) = 2 and for m({b}) we
compute

m({b}) = [(G{b})f : ⟨b⟩f ] · [(G{b})t : ⟨b⟩t]
= [⟨(1, 2)⟩Z : ⟨(4, 8)⟩Z] · [(Z/2Z) : ∅]
= 4 · 2 = 8.

Now for m(X) we observe that b is dependent on {a}. Hence we have that m(X) divides
m({a}) = 2. Therefore m(X) = 1 or 2. And indeed GX = ⟨(1, 2)⟩Z ⊕ (Z/2Z) = ⟨X⟩Z.
Thus m(X) = 1. For the arithmetic Tutte polynomial we have

M(x, y) = m(∅)(x− 1) + m({a}) + m({b}) + m(X)(y − 1)
= 2x− 2 + 2 + 8 + y − 1 = 2x+ y + 7.

For lattices we now want to regard their arithmetic Tutte polynomialM(x, y). Therefore
let Λ ⊂ Rn be such a lattice and let X ⊆ Λ be a finite list of elements.

Definition. To such a list X we associate a zonotope, that is, a convex polytope defined
as follows (see [Moc11, Section 2.2]):

Z(X) :=
{︂ ∑︂

x∈X

λxx | 0 ≤ λx ≤ 1
}︂
.
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In case that X is a linearly independent subset of vectors in Rd, Z(X) is also called the
parallelepiped spanned by the elements of X.

Example. If we consider the list X =
{︄(︄

−3
1

)︄
,

(︄
2
2

)︄
,

(︄
1

−1

)︄}︄
⊆ Z2, then the correspond-

ing zonotope Z(X) is given as in Figure 2.2.

Figure 2.2: The zonotope Z(X).

Remark. If we identify Λ with Zd, we obtain that for every sublist A ⊆ X with maximal
rank that

m(A) = [ΛA : ⟨A⟩Z] = gcd(det(B) | B ⊆ A, basis).

Proposition 2.1.11 ([Moc11, Prop. 2.2.]). MX(1, 1) is equal to the volume of the
zonotope Z(X).

Proof. By [She74, Section 5], the zonotope Z(X) can be divided into a family of polytopes
{ΠB}, where B varies over all bases extracted from our list X. Moreover, every ΠB is a
translation of the zonotope Z(B) generated by the B ⊆ X. This may again be seen in
Figure 2.2 above. Therefore

vol(ΠB) = | det(B)|

However, since B is a basis,

m(B) = [Λ : ⟨B⟩Z] = | det(B)|.

Now we remember the definition

MX(x, y) =
∑︂

A⊆X

m(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A)
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and hence obtain
MX(1, 1) =

∑︂
B⊆X
Bbasis

m(B),

which yields the assertion.

One can also prove, and this is done in [Moc11, Section 4], that the arithmetic Tutte
polynomial counts the integer points inside the zonotope. Let us be more specific. Given
again Λ a lattice and V = Λ ⊗ R the vector space spanned by it, then a point x ∈ V is
called integer if it is also contained in Λ. Thus one has the following.

Theorem 2.1.12 ([Moc11, Prop. 4.5]). Let X be a list of elements of a lattice Λ. Then
X induces a zonotope Z(X) and an arithmetic matroid with arithmetic Tutte polynomial
MX(x, y). Then the number |Z(X) ∩ Λ| of integer points contained in the zonotope is
equal to MX(2, 1).

In the next part we will see that the arithmetic Tutte polynomial even does specialise
to the Ehrhart polynomial of the zonotope Z(X) (see Theorem 3.2.1). However, we
now want to talk about our second classical example of arithmetic matroids. Namely
arithmetic matroids over labelled graphs.

Graphs and vector spaces were the inspiring objects for general matroid theory. While
the relation between vector spaces and finitely generated abelian groups seems obvious,
the question arises, if we are also able to define arithmetic matroids over graphs? Due to
the beauty of mathematics, the answer is yes.
The following construction and the necessary definitions are originally taken from [DM13],
but one can also find them summed up in [BL20, Section 2.3]. We start defining our
basic objects. For preparation we consider a graph G = (V,E) with V its set of vertices
and E its list of edges. Within this section G might have multiple parallel edges, but
without any loops. Now we divide E into two distinguished lists R and D. Hence we
assume that E = R ⊔D is a disjoint union, by which we further call the elements of R
regular edges, while D will contain the so-called dotted edges.

Figure 2.3: A labelled graph with regular edges (black) and dotted edges (brown).
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Definition ([DM13, Section 1]). In this context a labelled graph is a pair (G, l), where
G = (V,E) = (V,R ∪D) is a graph and l : E → N ∪ {0} a labelling. For e ∈ E we call
l(e) the label of e.

For this kind of labelled graphs we also define an adapted concept of deletion and
contraction.

• The (labelled) deletion of a regular edge e ∈ R corresponds to the pair (G \ e, l1)
where G \ e coincides with the classical deletion of graphs and l1 : E \{e} → N∪{0}
is simply the restriction of l to E \{e}.

• The (labelled) contraction of a regular edge e ∈ R is given by the pair (G/e, l2)
where G/e = (V,E2) is obtained from G by removing e from R and putting it into
D. (i.e. if E2 = R2 ∪D2 then R2 = R \{e} and D2 = D ∪ {e}) In this case l2 still
coincides with l.

Example. In the pictures below (Figure 2.4), we regard the labelled deletion and the
labelled contraction of the regular edge e of the labelled graph (G, l) from Figure 2.3.
Nevertheless, we leave out the labels to preserve visibility.

Figure 2.4: labelled deletion and contraction of the former regular edge e.

However, we do not only want our graphs be labelled but also directed. We put forward
the following definition.

Definition ([DM13, Section 1]). A directed graph is a pair (V,E) with V again a finite
set of vertices and E now a list of ordered pairs of vertices. Elements of E are called
directed edges and are hence of the form (v1, v2) with v1, v2 ∈ V . Let G = (V,E) be a
normal, not directed, graph. An orientation Eθ = Rθ ∪Dθ of the edges E = R ∪D is
a list of ordered pairs of elements of V , such that by forgetting the ordering we would
again obtain E. I.e for every (v, u) ∈ Eθ we find a {v, u} ∈ E.

Now, following [DM13, Section 2.3], we want to associate an arithmetic matroid MG,l

to a labelled graph (G, l). As a first step, we enumerate the elements of V = {v1, . . . , vn}
and fix an orientation Eθ on E. After that, for each element e = (vi, vj) ∈ Eθ we define
the vector xe ∈ Zn by the following rule: The i’th coordinate of xe equals l(e) while its
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j’th coordinate is given by −l(e). All other values shall be set to zero. To sum things up
we have

(xe)k =

⎧⎪⎪⎨⎪⎪⎩
l(e) if k = i

−l(e) if k = j

0 else.

In a next step we may define XR and XD containing the xe constructed via edges of R and
D respectively. Finally we regard the group G = Zn/⟨XD⟩, where we identify elements
of XR with their corresponding cosets in G. Since G clearly is a finitely generated
abelian group, XR induces an arithmetic matroid. We set MG,l := MXR

and obtain our
arithmetic matroid over the labelled graph (G, l).

By now we have constructed the most important examples of arithmetic matroids,
namely those defined over finitely generated abelian groups. These do not only let
us define arithmetic matroids over graphs but do also serve as blueprints for a typical
object of our interest. In that manner all arithmetic matroids, which can be realised
over lists of elements of finitely generated abelian groups are called representable. This
directly refers to representability in classical matroid theory, where one observes finite
dimensional vector spaces instead of abelian groups. The study this very fundamental
concept, together with the essential notion of duality, will be our next big goal.

2.2 Duality and representability
Duality and representability are both central concepts in matroid theory. Every matroid
has a unique dual and its information is also encoded in the primal Tutte polynomial.
The development of a notion of duality for arithmetic matroids, which in the end fulfils
similar properties, is a huge achievement of arithmetic matroid theory.

On the other hand, representability is a quality that an arithmetic matroid might
satisfy or not. However, in many cases it yields various computational advantages if one
works with representable arithmetic matroids.

In this section we want to generalise both concepts to the situation of arithmetic
matroids. Moreover we also show that these generalised notions satisfy the same essential
qualities.

2.2.1 Duality
We start off by reminding ourselves of the definition of duality in classical matroid
theory: If MX = (X,B) is a matroid over a set X with B its family of bases, then
the dual matroid M∗

X is also defined over X but now its family of bases is given by
B∗ = {X \B | B ∈ B}.

Now we concern ourselves with the case that MX is not only a matroid but is also
equipped with a multiplicity function m fulfilling the necessary axioms such that (MX ,m)
is an arithmetic matroid. The question is how to construct a dual multiplicity m∗ which
also turns the dual M∗

X into an arithmetic matroid.
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The answer is given in [MD12, Section 2.3] and is very simple. We put forward the
following definition.

Definition (Dual multiplicity matroids). Let (MX ,m) be a multiplicity matroid. Its
dual multiplicity matroid is defined by (M∗

X ,m
∗), where M∗

X is the classical dual matroid
of MX and m∗ : P(X) → Z is given by

m∗(A) = m(X \A).

Again (or still) by abuse of notation we may simply write MX for the whole multiplicity
matroid (MX ,m) and in the same manner denote the dual multiplicity matroid just by
M∗

X . Just by definition we then again observe the easy relation (M∗
X)∗ = MX . This

coincides with the classical notion. In addition, in the case of not only multiplicity- but
already arithmetic matroids, we obtain the following beautiful result.

Lemma 2.2.1 ([MD12, Lem. 2.2]). The dual of an arithmetic matroid is again an
arithmetic matroid.

Proof. We check (AM1)–(AM5) from our first definition of arithmetic matroids. Firstly,
we see that (AM1) and (AM2) are dual to each other in the sense that (AM2) is equivalent
to

(AM1∗) If A ⊆ X and v ∈ X is independent of A in the dual (this means rk∗(A ∪ {v}) =
rk∗(A) + 1 ), then m∗(A) divides m∗(A ∪ {v}),

while on the other hand (AM1) is equivalent to

(AM2∗) If A ⊆ X and v ∈ X is dependent on A in the dual (i.e. rk∗(A ∪ {v}) = rk∗(A) ),
then m∗(A ∪ {v}) divides m∗(A).

Now, since (AM1) and (AM2) are fulfilled in the original arithmetic matroid, by the
equivalence the according axioms also have to be satisfied in the dual multiplicity matroid.

Observe that, in this case simply by their formulation, axioms (AM4) and (AM5) are
dual to each other too. Hence it remains to check (AM3).

However, the third axiom turns out to be self-dual. Let A ⊆ B ⊆ X form a molecule in
the dual, i.e. B can be written as a disjoint union B = A∪ T ∪F and for all A ⊆ C ⊆ B
one has rk∗(C) = rk∗(A) + |C ∩F |. In particular this implies that rk∗(B) = rk∗(A) + |F |.

Now using the formula for rk∗ given in Proposition 1.2.5 from the introductory part
we get that

|B| − rk(X) + rk(X \B) = |A| − rk(X) + rk(X \A) + |F |,

which in addition yields

rk(X \A) = rk(X \B) + |B| − |A| − |F | = rk(X \B) + |T |. (2.2.1)
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Moreover we may observe that X \A can be written as a disjoint union X \A = (X \B)∪
T ∪ F . Additionally we have for every C with A ⊆ C ⊆ B that (X \B) ⊆ (X \C) ⊆
(X \A). We may thus compute:

|C| − rk(X) + rk(X \C) = rk∗(C)
= rk∗(A) + |C ∩ F |

(again by 1.2.5) = |A| − rk(X) + rk(X \A) + |C ∩ F |.

Hence we deduce that

rk(X \C) = rk(X \A) + |A| + |C ∩ F | − |C|
= rk(X \A) − |C ∩ T |

(use (2.2.1) = rk(X \B) + |T | − |C ∩ T |
= rk(X \B) + |(X \C) ∩ T |.

In conclusion, we have shown that if [A,B] is a molecule in the dual, then [X \B,X \A]
is a molecule in the primal matroid. Hence axiom (AM3) applies in this situation and we
finally compute for the dual multiplicities that

m∗(A) · m∗(B) = m(X \A) · m(X \B)
(by primal (AM3)) = m((X \B) ∪ F ) · m((X \B) ∪ T )

= m((X \B) ∪ (X \(X \F ))) · m((X \B) ∪ (X \(X \T )))
= m(X \(B ∩ (X \F ))) · m(X \(B ∩ (X \T )))
= m(X \(A ∪ T )) · m(X \(A ∪ F ))
= m∗(A ∪ T ) · m∗(A ∪ F ).

Therefore we have verified (AM3) in the dual and we are done.

Having this quite handy and well-behaved notion of duality up our sleeve we may
now go on studying the little more complex concept of representability. We want to
know, how to generalise the classical notion in ordinary matroids, such that it gets on
well with the multiplicity function. Furthermore we will see how duality interferes with
representability. The very satisfying answer to that question will eventually complete the
proof of Theorem 2.1.7.

2.2.2 Representability

We already have given a formal definition of representability in the introductory part.
Nevertheless I would like to discuss the concept again in more detail.

We remind ourselves that some of the first matroids ever studied were finite lists
of vectors over a finite dimensional vector space. Such a list of vectors can always be
depicted as a matrix where its columns coincide exactly with the entries of our list. Even
the name matroid originates from the term matrix.

41



2 Arithmetic matroids

In other words, a matrix can be viewed as the most classical or most simple form
of a matroid. The other origin of matroid theory is graph theory. However, we have
already remarked in the introductory part, that every graphical matroid is isomorphic to
a matroid over a vector space and hence given by a matrix too. We notice that it can be
useful to study matroids that can be represented by a matrix since this property seems
to be incident on all fundamental examples of matroids.

We pour our observations into a detailed definition.

Definition. A matroid MX over a finite set X is called representable over Kn if it can
be realised by a list of vectors in Kn. In other words, MX is representable if there is a
matroid-isomorphism to the matroid induced by a finite list of vectors, where the rank is
given by the dimension of the span of subsets.

In our context we are mostly interested in matroids representable over R. Luca
Moci and Michele D’Adderio call this class of matroids 0-representable (compare [MD12,
Section 3]). For arithmetic matroids they generalise the notion of representability as
follows: Firstly, representability is always a notion considered stable under isomorphisms.
Therefore, one needs to make precise, what it means for two arithmetic matroids to be
isomorphic to each other.

Definition. An isomorphism ϕ between two arithmetic matroids (X, rkX ,mX) and
(Y, rkY ,mY ) is a bijection ϕ : X → Y such that ranks and multiplicities are preserved
under ϕ. Concretely this means that for all B ⊆ Y and A ⊆ X with ϕ(A) = B one has
rkY (B) = rkX(A) and mY (B) = mX(A).

Now representability of arithmetic matroids is defined in the following way.

Definition (arithmetic representability, [MD12, Section 3]). Let MX ˆ︁=(MX ,m) be an
arithmetic matroid. Then MX is considered representable if it can be realised by a list of
elements of a finitely generated abelian group. I.e. it is isomorphic to one of the matroids
described in Section 2.1.2. Furthermore we call the arithmetic matroid MX

• 0-representable if the underlying matroid is 0-representable;

• torsion-free if m(∅) = 1; and

• GCD if its multiplicity function fulfils the so-called GCD-rule: m(A) is equal to the
greatest common divisor (GCD) of the multiplicities of the maximal independent
sublists of A. Formally:

m(A) = gcd({m(B) | B ⊆ A and |B| = rk(B) = rk(A)}).

Remark ([MD12, Rem. 3.1]). These properties fulfil certain relations. Firstly, if an
arithmetic matroid is representable, then it clearly is also 0-representable. One may take
for example the tensor with Q to see this.

If an arithmetic matroid is representable and torsion-free, then one can conclude, that
it is already GCD (see [MD12, Rem. 3.9]).
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Observing the definition, we see that for arithmetic matroids, finitely generated abelian
groups take the place of vector spaces in standard matroid theory. But since arithmetic
representability demands strong criteria not only on the rank but also on the multiplicity
function it is possible to construct arithmetic matroids that are 0-representable but not
representable in the arithmetic context. The following example is taken from [MD12,
Example 3.3].
Example. Let X = {a, b, c}. We obtain a matroid structure on X by fixing the three
bases {a, b}, {a, c} and {b, c}. Clearly the resulting matroid is 0-representable. It is
realised by three pairwise non-parallel vectors in the plane. Take for example a ↔ (1, 0),
b ↔ (1, 1) and c ↔ (0, 1).

Clearly one can define a representable arithmetic matroid on X. Just observe the
lattice Λ = ⟨(1, 0), (1, 1), (0, 1)⟩Z ∼= Z2 and set the multiplicities as discussed in the last
section. Since the construction is torsion-free, the resulting matroid would also be GCD.

However, one could also take some other multiplicities. Let us set the multiplicities of
the bases m({a, b}) = m({a, c}) = m({b, c}) = 2 and let m(A) = 1 for any other subset
A ⊆ X. Then one can easily check that (AM1)–(AM5) are satisfied and we therefore
obtain an arithmetic matroid that is also torsion-free. But since m(X) = 1 ̸= 2 =
gcd({B | B is a basis}) we have that the arithmetic matroid is not GCD. Reviewing the
previous remark it therefore cannot be representable.
Example. Since arithmetic representability implies 0-representability and every matroid
can become an arithmetic matroid when equipped with suitable (maybe trivial) mul-
tiplicities, clearly every matroid that is not 0-representable yields an example for a
non-representable arithmetic matroid. E.g. in [MD12, Example 3.2] the Fano matroid is
suggested. It is given by the seven non-zero elements of F3

2, where F2 denotes the field
with two elements.

By now we have a well behaved and understandable concept of representability. Like in
ordinary matroid theory it covers the main examples, in this case arithmetic matroids over
lattices, finitely generated abelian groups and graphs. The next step will be to combine
both the notion of representability and duality. Their symbiosis can be summarised in
the following statement.
Theorem 2.2.2 (Representability of the dual [MD12, Section 3.4]). Let MX be a
representable arithmetic matroid. Then its dual M∗

X also is representable.
Proof. We need an abelian group G′ and a finite list X ′ ⊆ G′ such that the resulting
arithmetic matroid MX′ is isomorphic to M∗

X . Clearly we must have |X| = |X ′| and
also the relation rk(X ′) = |X| − rk(X) needs to hold.

To construct the desired object we start from our given matroid MX . Since this one
is representable we extract a finitely generated abelian group G whose elements realise
MX . Recall that Theorem 2.1.6 guarantees us a representation of G as

G ∼= Zr ⊕ Z/d1Z ⊕ Z/d2Z · · · ⊕ Z/dsZ,

where di divides di+1 for all i = 1, . . . , s − 1. It is a well known fact from abstract
algebra that this representation is also unique. We realize it as Zr+s/⟨Q⟩, with Q =
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2 Arithmetic matroids

{q1, . . . , qs} ⊂ Zr+s, where qi is defined by having di in the (r + i)’th position and 0
elsewhere. We fix the order in which the elements of Q are given.

The finite list X ⊆ G, which is inducing our matroid, is then given as a list of cosets
X = {x̄1, x̄2, . . . , x̄n}. Here x̄i = xi + ⟨Q⟩ for some xi ∈ Zr+s. We choose suitable such
representatives xi for all i = 1, . . . , n and collect them in a new list ˜︁X = {x1, . . . , xn}.
Moreover we remember the order of the elements in ˜︁X.

Now we regard the (r + s) × (n + s) matrix ( ˜︁X,Q) = (x1, . . . , xn, q1, . . . , qs), whose
columns are given by the elements of ˜︁X and Q respectively in the fixed orders. Its
transpose ( ˜︁X,Q)T shall then be interpreted as the list of the rows of ( ˜︁X,Q) in order from
up to down. Its elements are now vectors in Zn+s. Finally we set G′ := Zn+s/⟨( ˜︁X,Q)T ⟩
and X ′ = {ē1, . . . , ēn} the demanded list of cosets, where as usual ei denotes the i’th
unit vector with 1 at the i’th position and 0 elsewhere.

Let M′
X denote the arithmetic matroid induced by the pair (G′, X ′).

Claim ([MD12, Thm. 3.8]). The matroid M′
X is already isomorphic to the dual M∗

X .
At first, we introduce some useful notations.

• We denote the set {1, 2, . . . , n} simply by [n].

• For J ⊆ [n] we let x̄J := {x̄i ∈ X | i ∈ J} and also ēJ := {ēi ∈ X ′ | i ∈ J}.

• Just like before, given a finite list Y ⊂ Zm with a fixed order on it, we denote by
(Y ) the m× |Y | matrix whose columns are the elements of Y .

Now in order to prove the claim, we give an intuitive bijection between M′
X and M∗

X

and then show that it is rank- and multiplicity preserving. Hence let A ⊆ X, then A is
uniquely given by a finite list J ⊆ [n]. (The same is true for each B ⊆ X ′). In particular
in this case we have A = x̄J . Therefore an intuitive choice of a bijection is given by
x̄J ↔ ēJ .

We need to show, that this mapping preserves ranks and multiplicities. At first we
make the following observation: Let A ⊆ ˜︁X be a sublist with elements in Zr+s and let
A = {ā | a ∈ A} ⊆ X be the according list of cosets with elements in G. Now we use

⟨A ∪Q⟩/⟨Q⟩ ∼= ⟨Ā⟩,

and therefore conclude, that the rank of A is equal to the rank of ⟨A∪Q⟩ minus the rank
of ⟨Q⟩. (∗)

Moreover the multiplicity of A in G equals the multiplicity of A∪Q in Zr+s. Indeed, let
⟨H⟩/⟨Q⟩ be the maximal subgroup of G, in which ⟨Ā⟩ has finite index, where H ⊆ Zr+s.
Thus we have

[⟨H⟩/⟨Q⟩ : ⟨A ∪Q⟩/⟨Q⟩] = [⟨H⟩ : ⟨A ∪Q⟩].

Note that ⟨H⟩ clearly is the maximal subgroup in Zr+s in which ⟨A∪Q⟩ has finite index.
Analogous reasoning applies also to sublists of G′ using ( ˜︁X,Q)T instead of Q. This shows
we can reduce the problem of computing ranks and multiplicities in G or G′ to computing
them in Zr+s and Zn+s, respectively.
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2.3 Deletion, contraction and direct sums of arithmetic matroids

Therefore let J ∈ [n]. We want to compute the rank of ēJ . By the above it suffices to
find at first the rank of the matrix (eJ ∪ ( ˜︁X,Q)T ), where eJ = {ei | i ∈ J} is a set of
unit vectors in Zn+s. This matrix takes the following form:⎛⎜⎜⎜⎜⎝

(eJ) ( ˜︁X)T

0 . . . 0
...

... (Q)T

0 . . . 0

⎞⎟⎟⎟⎟⎠ .

Thus, the rank of (eJ ∪ ( ˜︁X,Q)T ) is given by |J | plus the rank of xJC ∪ Q where
xJC = {xi | i ∈ JC} and JC = [n] \ J . Observe that the rank of ēJ is simply the rank of
(eJ ∪ ( ˜︁X,Q)T ) minus the rank of ( ˜︁X,Q)T . The last one clearly equals the rank of ˜︁X ∪Q.
We put all this information together and obtain:

rk(ēJ) = |J | − rk( ˜︁X ∪Q) + rk(xJC ∪Q)
= |J | − (rk( ˜︁X ∪Q) − rk(Q)) + (rk(xJC ∪Q) − rk(Q))

(∗) = |J | − rk(X) + rk(x̄JC ).

Now using x̄JC = X \ x̄J and Proposition 1.2.5 we get exactly rk(ēJ) = rk∗(x̄J) as
demanded.

It is still left to compute the multiplicity m′(ēJ) of ēJ in M′
X . We use the fact that

in Zn+s the multiplicity of a sublist can be computed by taking the greatest common
divisor of all minors of maximal rank in the matrix (eJ ∪ ( ˜︁X,Q)T ) (compare with [MD12,
Rem. 3.9], this is because arithmetic matroids in Zm are GCD). Now note that each such
minor must involve all rows indexed by J , otherwise one could find a nonzero minor of
higher order taking the missing rows. Nevertheless, such a nonzero minor of maximal
rank is clearly plus or minus a nonzero minor of maximal rank of the matrix (xJC ∪Q).
However, those are exactly the minors observed when computing the multiplicity of x̄JC .
Therefore

m′(ēJ) = m(x̄JC ) = m(X \ x̄J) = m∗(x̄J).

This completes the proof of the claim and therefore of the theorem.

Besides duality, there exist several other operations on matroids. For the end of this
chapter we would like to generalise them too to the arithmetic case. This is done in the
next section.

2.3 Deletion, contraction and direct sums of arithmetic matroids

We have already introduced deletion and contraction by a proper vector v ∈ X in an
ordinary matroid M = (X, rk). These fundamental constructions have been denoted
M \ v for the deletion by v and M/v for the contraction by v. (See Section 1.2.3 to
refresh the details.)
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Also the direct sum M1 ⊕ M2 of two matroids M1 and M2 has been defined in the
introductory part. (Find the definition just before Proposition 1.2.12.)

We now want to briefly discuss how these constructions generalise to the case of arith-
metic matroids. In particular, we want to state how to choose the resulting multiplicity
functions of the deletion, contraction and direct sum, such that the arithmetic Tutte
polynomial inherits the beautiful properties of the ordinary Tutte polynomial in the
non-arithmetic case.

This is done in a simple definition. See [MD12, Sections 4.3 and 4.6] for further details.

Definition. Let M = (X, rk), M1 = (X1, rk1) and M2 = (X2, rk2) be matroids and
let m, m1 and m2 be suitable multiplicity functions such that (M,m), (M1,m1) and
(M2,m2) form arithmetic matroids.

Moreover let v ∈ X be a proper vector (i.e. neither loop nor coloop). We define

• the deletion of (M,m) by v as the arithmetic matroid (M \ v,m\ v), where M \ v
denotes the classical deletion of the underlying matroid and the multiplicity is given
by m\ v := m(A) for all A ⊆ X \ v;

• the contraction of (M,m) by v as the arithmetic matroid (M/v,m/v), where M/v
denotes the classical contraction of the underlying matroid and the multiplicity is
given by m/v := m(A ∪ {v}) for all A ⊆ X \ v;

• the direct sum of (M1,m1) and (M2,m2) as the arithmetic matroid (M1⊕M2,m⊕)
where M1 ⊕ M2 denotes the classical direct sum of matroids and the multiplicity
is given by m⊕(A) := m1(A ∩X1) · m2(A ∩X2) for all A ⊆ X1 ∪X2.

Remark. All the constructions given above are indeed arithmetic matroids themselves.
In case of deletion and contraction this is straightforward to see: m\ v and m/v are both
defined via m and hence they fulfil the defining axioms (AM1)–(AM5) since m does so.

In case of m⊕ we may argue by writing

m⊕ = m′
1 · m′

2,

where m′
i for i = 1, 2 may be defined by m′

i(A) = mi(A∩Xi). Clearly m′
i is an arithmetic

multiplicity on X1 ∪ X2 fulfilling all the necessary axioms since mi fulfils them on Xi.
Therefore (M1 ⊕ M2,m

′
1) and (M1 ⊕ M2,m

′
2) are both arithmetic matroids. But since

the arithmetic matroids on a given underlying matroid form a commutative monoid with
respect to the product of multiplicities (compare with Theorem 2.1.4), also (M1⊕M2,m⊕)
has to be an arithmetic matroid.
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Even though arithmetic matroids are very fascinating mathematical structures on their
own, at the end of the day we still want to do combinatorics with them. To do this, we
regard their most important combinatorial invariant: the arithmetic Tutte polynomial.
For an arithmetic matroid M = (X, rk,m) over a set X we recall its definition:

MM(x, y) =
∑︂

A⊆X

m(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A).

In the case of representable arithmetic matroids we already have stated some of its
marvelous properties, as well as some possible interpretations of special values. In this
chapter we want to further analyse its structure in relation to the underlying arithmetic
matroid. We will look at proofs for some formulas similar to the ones fulfilled by the Tutte
polynomial in the case of ordinary matroids, which we also mentioned in the introductory
part. Eventually we are going to give an overview on some more possible interpretations
of its values in the concrete settings of geometric lattices and labelled graphs.

3.1 Identities for the arithmetic Tutte polynomial

In this section we want to generalise the identities presented in the introductory part and
fulfilled by the ordinary Tutte polynomial to the arithmetic case. We will see that the
same or very similar statements hold. In any case will the results for the ordinary Tutte
polynomial follow directly from the theorems stated in this section just by regarding
m ≡ 1, the trivial multiplicity.

We start by showing how the arithmetic Tutte polynomial behaves with respect to
direct sums of the underlying arithmetic matroids. Afterwards we show some deletion-
contraction recurrences satisfied by the arithmetic Tutte polynomial. Those will be used
to prove an expansion of the arithmetic Tutte polynomial into so-called external activity
polynomials. They are strongly related to a generalised version of Crapo’s theorem (see
Theorem 1.2.14) which we show afterwards. Finally we discuss a beautiful convolution-like
formula abstracting the one given by Kook, Reiner and Stanton in [KRS99, Thm. 1] and
stated as Theorem 1.2.13 in the introductory part.

3.1.1 Arithmetic Tutte polynomials of direct sums

We start with a very easy result concerning the direct sum of arithmetic matroids. It
tells us how to compute the arithmetic Tutte Polynomial of the sum by knowing the
arithmetic Tutte polynomial of the summands.
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Proposition 3.1.1 ([MD12, Section 4.6]). Let M1 ⊕ M2 be the direct sum of two
arithmetic matroids M1 and M2. Then their arithmetic Tutte polynomials fulfil:

MM1⊕M2(x, y) = MM1(x, y) ·MM2(x, y).

Proof. We remind ourselves that every A ⊆ X1 ⊔X2 can be written as a decomposition
A = B ⊔ C, with B = A ∩ X1 and C = A ∩ X2. Then we simply have by definition
m⊕(A) = m1(B) · m2(C) and rk⊕(A) = rk1(B) + rk2(C). Hence clearly we have

MM1⊕M2(x, y) =
∑︂

A⊆X1∪X2

m⊕(A)(x− 1)rk⊕(X1∪X2)−rk⊕(A)(y − 1)|A|−rk⊕(A)

=
∑︂

B⊆X1
C⊆X2

m⊕(B ∪ C)(x− 1)rk⊕(X1∪X2)−rk⊕(B∪C)(y − 1)|B∪C|−rk⊕(B∪C)

=
∑︂

B⊆X1
C⊆X2

m1(B)m2(C)(x− 1)rk1(X1)+rk2(X2)−rk1(B)−rk2(C)(y − 1)|B|+|C|−rk1(B)−rk2(C)

= MM1(x, y) ·MM2(x, y).

3.1.2 Deletion and contraction recurrences

We continue with maybe the most important relations satisfied by the arithmetic Tutte
polynomial, the deletion and contraction recurrence. It will let us reduce critical obser-
vations to the case of molecules, where everything is quite easy. The lemma proven in
this section will be crucial to prove the more involved external activity expansion of the
arithmetic Tutte polynomial and was originally used to prove the combinatorial formula
generalising Crapo’s theorem ([MD12, Section 6]).

We state it right away. For simplicity we reuse the notations of the situation of ordinary
matroids. Thus, if M = (X, rk,m) is an arithmetic matroid and v ∈ X is a proper vector,
then we denote by M \ v and M/v the deletion and contraction of M by v in terms of
arithmetic matroids, respectively.

Lemma 3.1.2 ([MD12, Lem. 5.4]). Let M = (X, rk,m) be an arithmetic matroid and
let v ∈ X be a proper vector. Then the arithmetic Tutte polynomial fulfils the following
recursion:

MM(x, y) = MM \ v(x, y) +MM/v(x, y),

where MM \ v(x, y) and MM/v(x, y) denote the arithmetic Tutte polynomials of the deletion
and contraction, respectively.

Proof. Recall Proposition 1.2.7 that tells us that rkd(A) = rk(A) and rkc(A) = rk(A ∪
{v}) − rk({v}) for all A ⊆ X \{v}, where rkd and rkc denote the rank functions in the
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underlying deletion- and contraction matroids, respectively. Then we simply compute

MM(x, y) =
∑︂

A⊆X

m(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

=
∑︂

v /∈A⊆X

m(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A)+

+
∑︂

v∈A⊆X

m(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

=
∑︂

v /∈A⊆X

m\ v(A)(x− 1)rkd(X \{v})−rkd(A)(y − 1)|A|−rkd(A)+

+
∑︂

v∈A⊆X

m/v(A \{v})(x− 1)rkc(X \{v})−rkc(A \{v})(y − 1)|A \{v}|−rkc(A \{v})

= MM \ v(x, y) +MM/v(x, y).

Some properties of the arithmetic Tutte polynomial correspond very well to this deletion
and contraction recurrence. Hence when proving them, the previous lemma allows us
to reduce the problem to the case, where no proper vectors are left. I.e. to the case
of molecules. If we want to further simplify the situation, and we do, we may use the
following result.

Lemma 3.1.3 ([MD12, Lem. 5.7]). Let M = (X, rk,m) be an arithmetic matroid with
no proper vectors. Assume v ∈ X is a coloop, then we have

MM(x, y) = (x− 1)MM \ v(x, y) +MM/v(x, y).

Proof. Since v ∈ X is a coloop, we observe that for v ∈ A ⊆ X we have rkd(A \{v}) =
rkc(A \{v}) = rk(A) − 1, where rkd and rkc denote the rank functions in the deletion
and the contraction, respectively. Therefore we may compute that

MM(x, y) =
∑︂

A⊆X

m(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

=
∑︂

v /∈A⊆X

m(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A)+

+
∑︂

v∈A⊆X

m(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

=
∑︂

v /∈A⊆X

m\ v(A)(x− 1)rkd(X \{v})+1−rkd(A)(y − 1)|A|−rkd(A)+

+
∑︂

v∈A⊆X

m/v(A \{v})(x− 1)rkc(X \{v})−rkc(A \{v})(y − 1)|A \{v}|−rkc(A \{v})

= (x− 1)MM \ v(x, y) +MM/v(x, y),

just as desired.
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By duality we can conclude the following statement immediately.

Lemma 3.1.4 ([MD12, Lem. 5.9]). Let M = (X, rk,m) be an arithmetic matroid with
no proper vectors. Assume v ∈ X is a loop, then we have

MM(x, y) = MM \ v(x, y) + (y − 1)MM/v(x, y).

Since an arithmetic matroid without any proper vectors only consists of loops and
coloops the two lemmas above let us reduce the underlying matroid step by step, vector
by vector, to the empty matroid. There some a priori difficult questions may be answered
trivially. The combination of all three lemmas in this section lets us reduce every
(arithmetic) matroid to the empty one. We will use this technique to prove the more
advanced formulas of the arithmetic Tutte polynomial waiting ahead in the next section.

3.1.3 External activity expansion of the arithmetic Tutte polynomial

In this section we are going to analyse an expansion of the arithmetic Tutte polynomial in
terms of external and internal activity polynomials. We remind ourselves of the definition
of external activity on a basis B. We observe an (arithmetic) matroid MX on a list X
and fix a total order on its elements. Then a vector v ∈ X \B is called externally active
on the basis B if v is dependent on the elements of B following it in the fixed order. On
the other hand v ∈ B is internally active on B if it is externally active on BC in the dual
matroid.

Now following the instructions in [MD12, Section 5.1] we let M = (MX ,m) be an
arithmetic matroid. Again we fix a total order on the vectors in X. Now we take a basis
B ⊆ X and a list T with B ⊆ T ⊆ X.

Definition (Local activities). For every pair (B, T ), with B a basis and T a list as
described in the paragraph above we define the local external activity of the basis B in
the list T as the number e(B, T ) of vectors v ∈ T which are externally active on B.

Dually we define e∗(BC , ˜︁T ), with BC ⊆ ˜︁T , to be the number of vectors in ˜︁T externally
active on BC in the dual matroid (where BC is a basis).

Remark. Note that loop vectors in T are never in B (since B is a basis) and are always
externally active.

Using this we are able to define the external and internal activity polynomials.

Definition. For a sublist A ⊆ X we set

ρ(A) :=
∑︂

T ⊇A

(−1)|T |−|A|m(T ).

Now the external activity polynomial of a basis B in X is defined as

EB(x) =
∑︂

T ⊇B

ρ(T ) · xe(B,T ),
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while the internal activity polynomial of a basis B in X is defined in M∗
X as the dual

polynomial:
E∗

BC (x) =
∑︂
˜︁T ⊇BC

ρ∗( ˜︁T ) · xe∗(BC ,˜︁T ).

With those in our repertoire we are able to construct the following expression:

˜︂MM(x, y) :=
∑︂

B⊆X
B basis

1
m(B)E

∗
BC (x) · EB(y).

However, the new name turns out to be redundant, due to the following theorem of
D’Adderio and Moci.

Theorem 3.1.5 ([MD12, Thm. 5.1]). The arithmetic Tutte polynomial of an arithmetic
matroid M = (MX ,m) coincides with ˜︂MM(x, y), i.e. we have

MM(x, y) =
∑︂

B⊆X
B basis

1
m(B)E

∗
BC (x) · EB(y).

Remark. Since B is a basis, the term ρ(T ) inside the external activity polynomial, as
well es its dual expression, fulfil the setting of axioms (AM4) and (AM5), respectively.
Hence we have that ρ(T ) ≥ 0 and ρ∗( ˜︁T ) ≥ 0 for all summands in the polynomials. In
particular we conclude, that the arithmetic Tutte polynomial MM(x, y) does indeed have
positive coefficients.

To prove the theorem above we apply the strategy discussed in the last section. We will
prove separately that the polynomial ˜︂MM(x, y) fulfils the same deletion and contraction
recurrences. The first recurrence will reduce the question of equality to the case of
molecules and the second one will further reduce it to the special situation where the
arithmetic matroid is given by the empty list. But there the question is trivial, since

M∅(x, y) = m(∅) = ˜︂M∅(x, y).

Therefore we need to prove both recurrences.

Lemma 3.1.6 ([MD12, Lem. 5.4]). Let M = (X, rk,m) be an arithmetic matroid. We
fix a total order on X and let v ∈ X be the greatest proper vector. Then we have

˜︂MM(x, y) = ˜︂MM \ v(x, y) + ˜︂MM/v(x, y).
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3 The arithmetic Tutte polynomial

Proof. We observe that

˜︂MM(x, y) =
∑︂

B⊆X
B basis

1
m(B)E

∗
BC (x) · EB(y)

=
∑︂

B⊆X
v∈B basis

1
m(B)E

∗
BC (x) · EB(y) +

∑︂
B⊆X

v /∈B basis

1
m(B)E

∗
BC (x) · EB(y)

Claim. The first sum already equals the polynomial ˜︂MM/v(x, y) for the contraction
matroid by the vector v.

Actually for each basis B, the set B \{v} remains a basis in the contraction, and every
externally active vector on B remains externally active in the contraction on B \{v}. On
the other hand, what was not externally active on B, is still not active on B \{v} in the
contraction. Therefore e(B, T ) = ec(B \{v}, T ), for all (B, T ), v ∈ B.

Now if we use the short notation mc for the multiplicity in the contraction by v, then
we remind ourselves that mc(A) = m(A ∪ {v}) for all subsets A ⊆ X \{v} (which is the
groundlist of M/v). Thus we also deduce that for all S ⊆ X \{v} such that S ⊇ B \{v}
we have ρc(S) = ρ(S ∪ {v}). However, this already yields that EB(y) is the external
activity polynomial of the basis B \{v} in the contraction by v.

Additionally, in the dual, v cannot be externally active on BC , just because v is the
greatest proper vector. Hence in the contraction of M by v, which corresponds to the
deletion of v dually, we also have that vectors being externally active on BC in the dual,
remain active, while on the other hand, what was not active on BC before is still not
active in the dual after contraction. We get e∗(B, T ) = e∗

c(B, T ), for all (B, T ), v ∈ B.

Eventually, for all S ⊆ X \{v} with S ⊇ BC we compute

ρ∗(S) + ρ∗(S ∪ {v}) =
∑︂
T ⊇S

(−1)|T |−|S|m∗(T ) +
∑︂

T ⊇S∪{v}
(−1)|T |−|S|m∗(T )

=
∑︂
T ⊇S

(−1)|T |−|S|m∗(T ) −
∑︂
T ⊇S
v∈T

(−1)|T |−|S|m ∗ (T )

=
∑︂
T ⊇S
v /∈T

(−1)|T |−|S|m∗(T )

=
∑︂
T ⊇S
v /∈T

(−1)|T |−|S|m(X \T )
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=
∑︂
T ⊇S
v /∈T

(−1)|T |−|S|m((X \{v}) \T ∪ {v})

=
∑︂
T ⊇S
v /∈T

(−1)|T |−|S|mc((X \{v}) \T )

=
∑︂
T ⊇S
v /∈T

(−1)|T |−|S|m∗
c(T ) = ρ∗

c(S).

Therefore when we observe for the internal activity polynomial that

E∗
BC (x) =

∑︂
˜︁T ⊇BC

ρ∗( ˜︁T ) · xe∗(BC ,˜︁T )

=
∑︂

v /∈˜︁T ⊇BC

(︁
ρ∗( ˜︁T ) · xe∗(BC ,˜︁T ) + ρ∗( ˜︁T ∪ {v}) · xe∗(BC ,˜︁T ∪{v}))︁

(∗) =
∑︂

v /∈˜︁T ⊇BC

(ρ∗( ˜︁T ) + ρ∗( ˜︁T ∪ {v})) · xe∗(BC ,˜︁T ),

where we used at (∗) that v is not active on BC ; we deduce by applying ρ∗(T ) + ρ∗(T ∪
{v}) = ρ∗c (T ) that E∗

BC (x) is already the internal activity polynomial in the contraction
matroid. With this, we proved our claim.

By dual reasoning, it immediately follows that the second summand equals ˜︂MM \ v(x, y)
and we are done.

With this and using Lemma 3.1.2 the problem stated by the theorem reduces to the
molecular case. It remains to prove the second recurrence for ˜︂MM(x, y).

Lemma 3.1.7 ([MD12, Lem. 5.10]). If M = (X, rk,m) is an arithmetic matroid with
no proper vectors and v ∈ X is a coloop, then the following equation holds:

˜︂MM(x, y) = (x− 1)˜︂MM \ v(x, y) + ˜︂MM/v(x, y).

Proof. Let B be the unique basis of our matroid. Then we have

˜︂MM(x, y) = 1
m(B)E

∗
BC (x) · EB(y).

Now we do the usual decomposition with E∗
BC (x):

E∗
BC (x) =

∑︂
˜︁T ⊇BC

v∈˜︁T
ρ∗( ˜︁T ) · xe∗(BC ,˜︁T ) +

∑︂
˜︁T ⊇BC

v /∈˜︁T
ρ∗( ˜︁T ) · xe∗(BC ,˜︁T ) (3.1.1)

We mind that v is a coloop and hence it is contained in B. Thus it can never act on B.
On the other hand, v is a loop in the dual and v /∈ BC . Therefor it is always externally
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active on BC in the dual. By this, we observe that∑︂
˜︁T ⊇BC

v∈˜︁T
ρ∗( ˜︁T ) · xe∗(BC ,˜︁T ) = x ·

∑︂
˜︁T ⊇BC

v∈˜︁T
ρ∗( ˜︁T ) · xe∗(BC ,˜︁T \{v}).

For v ∈ ˜︁T we are able to compute:

ρ∗
d( ˜︁T \{v}) = ρ∗

X \{v}( ˜︁T \{v})

=
∑︂

˜︁T \{v}⊆A⊆X \{v}

(−1)|A|−|˜︁T \{v}| · m∗
d(A)

=
∑︂

˜︁T \{v}⊆A⊆X \{v}

(−1)|A|−|˜︁T \{v}| · md((X \{v}) \A)

=
∑︂

˜︁T \{v}⊆A⊆X \{v}

(−1)|A|−|˜︁T \{v}| · md(X \(A ∪ {v}))

=
∑︂

˜︁T ⊆A′⊆X

(−1)|A′|−|˜︁T | · md(X \A′)

=
∑︂

˜︁T ⊆A′⊆X

(−1)|A′|−|˜︁T | · m∗
d(A′) = ρ∗

X( ˜︁T ) = ρ∗( ˜︁T ).

By this we obtain, that the left summand of equation (3.1.1) already equals the internal
activity polynomial E∗

d,BC (x) times x for the deletion of v. Moreover for the other
summand we have∑︂

˜︁T ⊇BC

v /∈˜︁T
ρ∗( ˜︁T ) · xe∗(BC ,˜︁T ) =

∑︂
˜︁T ⊇BC

ρ∗( ˜︁T )xe∗(BC ,˜︁T \{v}) −
∑︂
˜︁T ⊇BC

v∈˜︁T
ρ∗( ˜︁T )xe∗(BC ,˜︁T \{v}).

By our previous calculations the right summand in this equation clearly coincides with
−E∗

d( ˜︁T ). For the first summand we make the same observations and computations as in
the proof of Lemma 3.1.6 to show that for BC ⊆ ˜︁S ⊆ X \{v} we have ρ∗( ˜︁S)+ρ∗(S∪{v}) =
ρ∗

c( ˜︁S). This yields that the first summand is indeed equal to E∗
c,BC (x), the internal activity

polynomial for the contraction of the coloop v.

We make a short recap of what we have proven so far. By now we have shown that

˜︂MM(x, y) = 1
m(B)E

∗
BC (x) · EB(y)

= 1
m(B)

(︂
x · E∗

d,BC (x) + E∗
c,BC (x) − E∗

d,BC (x)
)︂
EB(y)

= (x− 1)
(︂ 1
m(B)E

∗
d,BC (x)EB(y)

)︂
+ 1

m(B)E
∗
c,BC (x)EB(y). (3.1.2)
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It remains to consider the external activity polynomial EB(y). Mind that v is a coloop,
therefore the local external activities remain the same both in the deletion and the
contraction of v. I.e e(B, T ) = e(B \{v}, T \{v}). Also in the proof of Lemma 3.1.6 we
already remarked that ρc(T \{v}) = ρ(T ) for T ⊇ B in the contraction. On the other
hand in the deletion we compute:

ρd(T \{v}) =
∑︂

T \{v}⊆A⊆X \{v}
(−1)|T \{v}|−|A|md(A)

=
∑︂

T \{v}⊆A⊆X \{v}
(−1)|T \{v}|−|A|m(A)

(∗) =
∑︂

T \{v}⊆A⊆X \{v}
(−1)|T \{v}|−|A|md(A ∪ {v})m(B \{v})

m(B)

=
∑︂

T ⊆A′⊆X

(−1)|T |−|A′|md(A′)m(B \{v})
m(B) = ρ(T )m(B \{v})

m(B) ,

where at (∗) we use (AM3), which yields that m(B \{v})m(A ∪ {v}) = m(A)m(B). By
all this we conclude that

EB(y) = Ec,B(y) = m(B)
m(B \{v})Ed,B(y).

Hence, finally we can continue at equation (3.1.2) and conclude

˜︂MM(x, y) = (x− 1)
(︂ 1
m(B)E

∗
d,BC (x)EB(y)

)︂
+ 1

m(B)E
∗
c,BC (x)EB(y)

= (x− 1)
(︂ 1
m(B)

m(B)
m(B \{v})E

∗
d,BC (x)Ed,B(y)

)︂
+ 1

m(B)E
∗
c,BC (x)Ec,B(y)

= (x− 1)
(︂ 1
md(B \{v})E

∗
d,BC (x)Ed,B(y)

)︂
+ 1

mc(B \{v})E
∗
c,BC (x)Ec,B(y)

= (x− 1)˜︂MM \ v(x, y) + ˜︂MM/v(x, y).

This completes the proof.

Again by duality we also obtain the dual statement.

Lemma 3.1.8 ([MD12, Lem. 5.11]). If M = (X, rk,m) is an arithmetic matroid and
v ∈ X is a loop, then the following equation holds:

˜︂MM(x, y) = ˜︂MM \ v(x, y) + (y − 1)˜︂MM/v(x, y).

However, with this and our observations before we can also consider Theorem 3.1.5
proven. Both expressions MM(x, y) and ˜︂MM (x, y) fulfil the same recurrences, and they
both coincide on the empty matroid. Hence they have to coincide in general.

We conclude this section with an example to visualise the proven assertions.
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3 The arithmetic Tutte polynomial

Example. We regard the following example taken from [MD12, Example 5.3]. Let M be
the representable arithmetic matroid given by the list

X =
{︄⎛⎜⎝1

2
0̄

⎞⎟⎠
⏞ ⏟⏟ ⏞

a:=

,

⎛⎜⎝2
0
1̄

⎞⎟⎠
⏞ ⏟⏟ ⏞

b:=

,

⎛⎜⎝0
0
2̄

⎞⎟⎠
⏞ ⏟⏟ ⏞

c:=

,

⎛⎜⎝0
0
3̄

⎞⎟⎠
⏞ ⏟⏟ ⏞

d:=

}︄
⊆ G := Z2 ⊕ Z/6Z.

Simple calculations yield the following multiplicities:
m(∅) = 6, m({a}) = 6, m({b}) = 12, m({c}) = 2, m({d}) = 3, m({a, b}) = 24,
m({a, c}) = 2, m({a, d}) = 3, m({b, c}) = 4, m({b, d}) = 6, m({c, d}) = 1, m({a, b, c}) = 8,
m({a, b, d}) = 12, m({a, c, d}) = 1, m({b, c, d}) = 2 and finally m(X) = 4. In this example
B := {a, b} is the only basis of this matroid, while BC = {c, d} is therefore the only basis
in the dual. We compute the ρ-expressions:

ρ(X) = m(X) = 4,
ρ({a, b, c}) = m({a, b, c}) − m(X) = 8 − 4 = 4,
ρ({a, b, d}) = m({a, b, d}) − m(X) = 12 − 4 = 8,
ρ({a, b}) = m({a, b}) − m({a, b, d}) − m({a, b, c}) + m(X) = 24 − 8 − 12 + 4 = 8,

and dually

ρ∗(X) = m∗(X) = m(∅) = 6,
ρ∗({a, c, d}) = m∗({a, c, d}) − m∗(X) = m({b}) − m(∅) = 12 − 6 = 6,
ρ∗({b, c, d}) = m∗({b, c, d}) − m∗(X) = m({a}) − m(∅) = 6 − 6 = 0,
ρ∗({c, d}) = m∗({c, d}) − m∗({a, c, d}) − m∗({b, c, d}) + m∗(X) = · · · = 12.

The next thing to calculate are the local activities. This turns out to be rather easy
in our case since we only have one unique basis and all elements outside are loops and
therefore always externally active. We obtain for e(B, T ) = |T | − |B| for all lists T ⊇ B
containing the basis. Dually we have e(BC , ˜︁T ) = | ˜︁T | − |BC |. By all of this we deduce
that

EB(y) = 4y2 + 4y + 8y + 8 = 4y2 + 12y + 8 and
E∗

BC (x) = 6x2 + 6x+ 0x+ 12 = 6x2 + 6x+ 12.
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3.1 Identities for the arithmetic Tutte polynomial

Hence we have indeed

˜︂MM(x, y) = 1
m({a, b})EB(y)EBC (x)

= 1
24(4y2 + 12y + 8)(6x2 + 6x+ 12)

= 4 + 6y + 2x+ 2x2 + 3x2y + 3xy + 2y2 + x2y2 + xy2

= 6(x− 1)2 + (6 + 12)(x− 1) + (2 + 3)(x− 1)2(y − 1) + 24 + (2 + 3 + 4 + 6)(x− 1)(y − 1)+
+ 1(x− 1)2(y − 1)2 + (8 + 12)(y − 1) + (1 + 2)(x− 1)(y − 1)2 + 4(y − 1)2

= MM(x, y).

3.1.4 The generalisation of Crapo’s theorem

The aim of this section is to generalise Theorem 1.2.14 to the case of arithmetic matroids.
I.e. we would like to have an explicit formula for the arithmetic Tutte polynomial that
gives us a direct interpretation of the coefficients. A first proof was given by D’Adderio
and Moci in [MD12, Section 6]. However, we follow the later work of Brändén and Moci
in [BM14]. In fact, they have shown an even more generalised identity for the multivariate
version of the the arithmetic Tutte polynomial. We will adapt their proof to the bivariate
situation.

The form of the Tutte polynomial in Crapo’s theorem is given in terms of external
activities. To be more precise, we have

TM(x, y) =
∑︂

B⊆X,
B basis

xe∗(BC)ye(B).

For the generalised version in arithmetic matroid theory one may already guess that we
might need to express the arithmetic Tutte polynomial in terms of local activities, like
they were introduced in the last section (see Section 3.1.3).

Therefore the aim is to prove a formula for the arithmetic Tutte polynomial, which is
similar to

MM(x, y) =
∑︂

(B,T )∈B
xe∗(BC ,˜︁T )ye(B,T ),

where the sum is taken over a suitable list B of pairs (B, T ), with B a basis and T ⊇ B.
To do so, firstly we need a lemma which lets us control the molecular case.

Lemma 3.1.9 ([BM14, Lem. 4.3]). Let [R,S] = [R,R∪F ∪T ] be a molecule in a matroid
MX . Then for an arbitrary multiplicity function m : P(X) → R we have∑︂

R⊆A⊆S

m(A)(x− 1)rk(S)−rk(A)(y − 1)|A|−rk(A)

=(y − 1)|R|−rk(R) ∑︂
K⊆F
L⊆T

ρ(R ∪ L, S \K)x|K|y|L|.
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Additionally, if (MX ,m) is a quasi-arithmetic matroid, we observe that∑︂
R⊆A⊆S

m(A)(x− 1)rk(S)−rk(A)(y − 1)|A|−rk(A) =

= (y − 1)|R|−rk(R)
(︄ ∑︂

K⊆F

ρ(R,R ∪ (F \K))
m(R) x|K|

)︄
·
(︄ ∑︂

L⊆T

ρ(R ∪ L,R ∪ T )y|L|
)︄
.

Remark. Recall that, by axiom (AM1), ρ(R,R∪(F \ K))
m(R) is an integer.

Proof of the lemma. For R ⊆ A ⊆ S we set A1 := A ∩ T and A2 := A ∩ F . Then we
manipulate the following expression and may compute:∑︂

A1⊆T,A2⊆F

m(R ∪A1 ∪A2)(x− 1)rk(S)−rk(R∪A1∪A2)(y − 1)|A1∪A2|−rk(A1∪A2) =

=
∑︂

A1⊆T,A2⊆F

m(R ∪A1 ∪A2)(x− 1)|F \ A2|(y − 1)|A1|

=
∑︂

A1⊆T,A2⊆F

m(R ∪A1 ∪A2)
∑︂

K⊆F \ A2,L⊆A1

x|K|y|L|(−1)|A1|+|A2|+|F |+|K|+|L|

=
∑︂

L⊆T,K⊆F

x|K|y|L| ∑︂
L⊆A1⊆T

K⊆A2⊆F \ K

(−1)|A1|+|A2|+|F |+|K|+|L| · m(R ∪A1 ∪A2)

=
∑︂

L⊆T,K⊆F

x|K|y|L|ρ(R ∪ L, S \K).

We obtain the first formula from the assertion by multiplying this equation with the
factor (y − 1)|R|−rk(R). Now the second formula in case of quasi-arithmetic matroids
follows from the first one by using (AM3), which yields

m(R ∪ L ∪A1 ∪A2) = m(R ∪ L ∪A1)m(R ∪A2)
m(R) .

Hence also
ρ(R ∪ L, S \K) = ρ(R ∪ L,R ∪ T )ρ(R,R ∪ F \K)

m(R) ,

by which we obtain the desired decomposition.

Now that we have analysed the molecular case, the strategy is again to reduce arbitrary
matroids to molecules. The next proposition provides the necessary technical details to
achieve this. However, at first we need again a piece of new notation.

Notation. Let MX be a matroid over a list X and let B be a basis. We denote by E(B)
the list of externally active elements on B in X. Similarly let I(B) = E∗(B) denote the
list of elements in X internally active on B. Then just as before we have

• e(B) = |E(B)| and
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• e∗(B) = |I(B)|.

With this we are able to state the crucial proposition. Note that this is a statement
valid for arbitrary (not necessarily arithmetic) matroids.

Proposition 3.1.10 ([BM14, Prop. 4.4]). Let MX be a matroid over a list X and denote
by B the list of its bases. Then we have:

(i). P(X) can be decomposed into a disjoint union

P(X) =
⋃︂

B∈B
[B \ I(B), B ∪ E(B)],

(ii). for each B ∈ B, [B \ I(B), B ∪ E(B)] is a molecule with free part F = I(B) and
torsion part T = E(B).

Proof. For the first assertion see [Bj2, Prop. 7.3.6] for reference.

(i). We need to show, that for all A ⊆ X there is a unique basis BA ∈ B such that
A ∈ [BA \ I(BA), BA ∪ E(BA)].
Therefore let A ⊆ X be arbitrary. Now in the restriction matroid MX|A induced
by A, we denote by bA the largest basis with respect to lexicographic order. (Recall
that X is totally ordered and inherits its order to A.) As a list bA is independent
in X. By the result [Bj2, Prop. 7.2.2 and (7.9)] there exists a unique basis BA such
that BA \ I(BA) ⊆ bA ⊆ BA.
Now let a ∈ A \BA = A \ bA, and assume that a is not externally active on BA.
But then there exists an element b ∈ BA with b < a and (BA \{b}) ∪ {a} is again
a basis. In a next step, we observe that if b /∈ A then this would imply that
bA ∪ {a} ⊆ A was independent. However, this is impossible since bA is a basis of
MX|A and a /∈ bA.
Nevertheless, if we assume b ∈ A then this yields again a contradiction, because
then b ∈ BA ∩ A = bA with b < a. However, then bA < ((bA \{b}) ∪ {a}) in the
lexicographic order. This cannot be since bA was constructed maximal. Therefore
all elements of A \BA have to be externally active. Hence, by now we have shown
BA \ I(BA) ⊆ bA ⊆ A ⊆ BA ∪ E(BA).
To prove uniqueness, we assume another basis B with B \ I(B) ⊆ A ⊆ B ∪ E(B).
Claim. E(B) is contained in cl(B \ I(B)), where

cl(D) := {x ∈ X | rk(D ∪ {x}) = rk(D)},

is the closure of a subset D ⊆ X.
To prove the claim let p ∈ E(B). We denote by C the unique circuit established in
B ∪ {p}. Moreover we denote by C ′ the according broken circuit C \{p}. Since p is
externally active, we have for all q ∈ C ′ that p < q and (B \ q) ∪ p is a basis. Thus
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q is not internally active. (Compare with the characterisation given in the remarks
below Theorem 1.2.14.) Now since p lies in the closure of C ′ and C ′ ⊆ B \ I(B)
the claim follows.
However, from this we may deduce that b := B ∩ A is a basis of MX|A. Now
we suppose that b ̸= bA. We may write explicitly b = {x1, x2, . . . , xa} and bA =
{y1, y2, . . . , ya}. Since bA was chosen to be maximal with respect to the lexicographic
order there is an index k such that xi = yi for i = 1, 2, . . . , k − 1 and xk < yi for
i ≥ k. Now by the matroid basis axiom (B2) the set (b \{xk}) ∪ {yj}, for some
j ≥ k, is again a basis. But then yj cannot be externally active on b and therefore
not in B. But this contradicts the assumption A ⊆ B ∪ E(B). Thus b = bA and
by B \ I(B) ⊆ b ⊆ B we obtain B = BA.

(ii). We set R = B \ I(B) and S = R ⊔ I(B) ⊔ E(B). We need to argue that for
A ∈ [R,S] we have

rk(A) = rk(R) + |A ∩ I(B)|.

Write A = R ∪ (A ∩ I(B)) ∪ (A ∩ E(B)). Remember that the claim above said
E(B) ⊆ cl(B \ I(B)) and hence E(B) ⊆ cl(R). That means that

rk(A) = rk(R ∪ (A ∩ I(B)) ∪ (A ∩ E(B))) =
= rk(R ∪ (A ∩ I(B))).

Now we remind ourselves that R ⊆ B and A ∩ I(B) ⊆ B a basis. Therefore we
continue:

. . . = |R ∪ (A ∩ I(B))| = |R| + |A ∩ I(B)| = rk(R) + |A ∩ I(B)|.

This completes the proof.

We now follow the further instructions of [BM14, Section 4] to generalise Crapo’s
theorem. Hence let MX be a pseudo-arithmetic matroid over a list X with multiplicity
function m : P(X) → Z. We define ˜︁B to be the list of pairs (B, T ) with B a basis
and T ⊆ E(B) ∪ I(B). Moreover every pair (B, T ) shall occur in ˜︁B exactly ρ((B ∪
T ) \ I(B), (B \T ) ∪ E(B)) times. Then eventually we have the following result (see
[MD12, Thm. 6.1] or [BM14, Thm. 4.6]).

Theorem 3.1.11 (Generalisation of Crapo’s theorem). Let M be a pseudo-arithmetic
matroid over a list X. Then its multiplicity Tutte polynomial is obtained by

MMX
(x, y) =

∑︂
(B,T )∈˜︁B x

i(B,T )ye(B,T ),

where i(B, T ) = |T ∩ I(B)| and e(B, T ) = |T ∩ E(B)| refer to local activities.

Proof. The statement follows immediately from Proposition 3.1.10, which let us de-
compose the underlying matroid into molecules, and Lemma 3.1.9 which handles the
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molecular case. In particular, notice that we decompose our matroid in molecules [R,S],
where R is of the form R = B \ I(B) for a basis B. Therefore we have |R| − rk(R) = 0
and the factor (y − 1)|R|−rk(R) in Lemma 3.1.9 vanishes.

Proposition 3.1.10 and Lemma 3.1.9 are particularly useful tools. From them one can
deduce the following theorem, which is a result from general multiplicity matroid theory.

Theorem 3.1.12 ([BM14, Thm. 4.5]). Pseudo-arithmetic matroids form the most general
class of multiplicity matroids closed under deletion and contraction such that the associated
multiplicity Tutte polynomials have positive coefficients.

Remark. This justifies the name positivity axiom for axiom (P), which is equivalent to
(AM4) and (AM5).

Proof. Let MX be a pseudo-arithmetic matroid. The generalised theorem of Crapo yields
the positivity of all coefficients and since deletion and contraction of pseudo-arithmetic
matroids stay pseudo-arithmetic this class fulfils the demanded qualities.

Now let C be another class of multiplicity matroids, whose multiplicity Tutte polynomi-
als have positive coefficients and assume C is closed under deletion and contraction. Let
M ∈ C be a multiplicity matroid over a list X. If [R,S] is an arbitrary molecule in M, we
may contract all elements in R and delete all elements in X \S. The resulting matroid still
has to be in C. However, by the first equation of Lemma 3.1.9 the associated multiplicity
Tutte polynomial has constant coefficient ρ(R,S). By the positivity property of matroids
in C we have ρ(R,S) ≥ 0. Hence M ∈ C already has to be pseudo-arithmetic.

Proposition 3.1.10 and Lemma 3.1.9 also enable us to give an exorbitantly simpler
proof of Theorem 3.1.5 from the last section. For interested readers I refer to it in [BM14,
Thm. 4.8]. However, we move on to show the generalised convolution identity for the
arithmetic Tutte polynomials.

3.1.5 A convolution formula

In this section we aim to generalise the convolution formula of the Tutte polynomial of
ordinary matroids M over a list X to the case of multiplicity matroids. This convolution
formula (Theorem 1.2.13) has been stated in the introductory part. It says that

TM(x, y) =
∑︂

A⊆X

TM|A(0, y)TM/A(x, 0),

where M|A and M/A denote the restriction and contraction matroids by a sublist A ⊆ X,
respectively.

Spencer Backman and Matthias Lenz (see [BL20]) proved the following generalisation.

Theorem 3.1.13. Let (M,m) be a multiplicity matroid over a list X. As before, we
denote by MM(x, y) its multiplicity Tutte polynomial and by TM(x, y) its ordinary Tutte
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polynomial. Then the following equations hold:

MM(x, y) =
∑︂

A⊆X

MM|A(0, y) · TM/A(x, 0)

=
∑︂

A⊆X

TM|A(0, y) ·MM/A(x, 0).

Remark. A direct corollary of Theorem 3.1.13 would be again, that the coefficients of a
pseudo-arithmetic matroid are indeed positive.

However, Theorem 3.1.13 can again be generalised. We already know, if M is a
matroid over a list X and m1,m2 : P(X) → Z are two multiplicity functions, then
(M,m1), (M,m2) and also (M,m1 · m2) arise to three multiplicity matroids over X.
Especially if both (M,m1) and (M,m2) are arithmetic matroids, then also (M,m1 · m2)
is arithmetic (compare with Theorem 2.1.4). With this in mind we get the following
convolution formula for the multiplicity Tutte polynomial (see [BL20, Thm. 4]).

Theorem 3.1.14 (Convolution theorem). Let (M,m1) and (M,m2) be defined as above,
then we have in terms of multiplicity Tutte polynomials:

M(M,m1m2)(x, y) =
∑︂

A⊆X

M(M,m1)|A(0, y)M(M,m2)/A(x, 0).

Remark. If we choose m2 ≡ 1, then we obtain again Theorem 3.1.13.
A compact proof for Theorem 3.1.14 is provided by Ye Liu, Tan Nhat Tran and

Masahiko Yoshinaga ([LTY21]). There the researchers proved a similar identity for
so-called G-Tutte polynomials which form a generalisation of standard multiplicity Tutte
polynomials. We adapt their proof in [LTY21, Thm. 8.6] to our case.

Proof of Theorem 3.1.14. Recall that m|A(T ) = m(T ) and m/A(S) = m(S ∪ A) in case
of restriction to A and contraction of A, respectively. Then the right-hand side of the
formula is equal to∑︂
A⊆X

(︂ ∑︂
T ⊆A

m1(T )(−1)rk(A)−rk(T )(y − 1)|T |−rk(T )
)︂

·
(︂ ∑︂

A⊆S⊆X

m2(S)(x− 1)rk(X)−rk(A)−(rk(S)−rk(A))(−1)|S|−|A|−(rk(S)−rk(A))
)︂

=
∑︂

T ⊆A⊆S⊆X

m1(T )m2(S)(x− 1)rk(X)−rk(S)(y − 1)|T |−rk(T )(−1)|S|−|A|−rk(S)−rk(T )

=
∑︂

T =A=S⊆X

m1(T )m2(S)(x− 1)rk(X)−rk(S)(y − 1)|T |−rk(T )

+
∑︂

T⊊S⊆X

(︂
m1(T )m2(S)(x− 1)rk(X)−rk(S)(y − 1)|T |−rk(T ) ∑︂

T ⊆A⊆S

(−1)|S|−|A|−rk(S)−rk(T )
)︂
.

Eventually we observe that the first big sum is equal to M(M,m1m2)(x, y), while the second
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sum vanishes because, when T ⊊ S then we have∑︂
T ⊆A⊆S

(−1)|A| = 0.

This concludes the proof.

With this we have completely adapted the formulas stated in the introduction. Our
final task for this part is to work with the arithmetic Tutte polynomial in concrete
settings. This emphasises the relevance and elegance of arithmetic matroid theory in
applications.

3.2 Specialisations, interpretations and generalisations of the
arithmetic Tutte polynomial

In the last section of this part I would like to list some known identities which the
arithmetic Tutte polynomial fulfils in explicit situations. Just like the ordinary Tutte
polynomial also its arithmetic version admits certain characteristic functions when
providing special values for either one or both variables.

The focus will lie on representable arithmetic matroids, since this class is the one most
thoroughly studied. This means we will again enter the realms of lattice geometry, where
the arithmetic Tutte polynomial yields a lot of information about lattice points inside of
the zonotope spanned by a list of vectors. We will indeed see, that the arithmetic Tutte
polynomial specialises to the Ehrhart polynomial, which counts intersections with the
underlying lattice (see [DM12]).

After that, we concern ourselves again with the situation of labelled graphs. There
one defines so-called arithmetic colourings and arithmetic flows on these graphs (see
[BM14, Sections 8, 9] or [BL20, p. 4]). One then observes that the arithmetic Tutte
polynomial fulfils simple relations with the characteristic polynomials counting these
flows and colourings.

3.2.1 Arithmetic matroids over lattice points

We briefly recall the setup. Let Λ ⊂ Rn be a lattice with dim(Λ) = n. Then a finite
list X ⊂ Λ of lattice points defines a matroid MX via the usual relations of linear
independence in Rn. In particular we have for all A ⊆ X that

rk(A) = dim(⟨A⟩R),

where ⟨A⟩R denotes the classical span of A in the vector space Rn.
Moreover MX arises to an arithmetic matroid due to the multiplicity function m :

P(X) → Z associating to every subset A ⊆ X the value

m(A) = [ΛA : ⟨A⟩Z].

63
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Here ⟨A⟩Z denotes the subgroup of Λ generated by A ⊆ X, while ΛA ≤ Λ is defined
as the largest subgroup of the lattice such that ⟨A⟩Z has finite index and finally [G : H]
just denotes the index of a subgroup H in a group G. We have proven in Section 2.1.2
that the triple (X, rk,m) fulfils all axioms defining an arithmetic matroid. Again we will
simply denote it by M. Since Λ is a lattice, the arithmetic matroid is torsion-free and
clearly representable. Therefore it is also GCD as we remarked in Section 2.2.2. This
means that we have

m(A) = gcd({m(B) | B ⊆ A and |B| = rk(B) = rk(A)})

for all sublists A ⊆ X.
Now we would like to place our focus on the arithmetic Tutte polynomial MM(x, y).

In Section 2.1.2 we already have mentioned some identities fulfilled by it in this setup. I
remind that the zonotope Z(X) induced by the list X is the convex polytope defined as
follows:

Z(X) :=
{︂ ∑︂

x∈X

αxx : 0 ≤ αx ≤ 1
}︂
.

Then we proved that MM(1, 1) is equal to the volume of Z(X) (see Proposition 2.1.11).
We also mentioned that MX(2, 1) = |Z(X) ∩ Λ|, thus MM(x, y) encodes the number of
lattice points inside of the associated zonotope Z(X) (see Theorem 2.1.12).

We now want to emphasise this relation by showing that the arithmetic Tutte polynomial
specialises to the Ehrhart polynomial. To do so, firstly we gather some general theory
about Ehrhart polynomials. For the following see e.g. [DM12].

Definition ([DM12, Section 2.1]). Let P be a convex n-dimensional polytope in Rn

such that all its vertices lie in a lattice Λ. This means, there exist lattice points
v1, v2, . . . , vk ∈ Λ, with k ∈ N, such that

P = conv(v1, v2, . . . , vk) :=
{︂ k∑︂

i=1
tivi : ti ≥ 0,

k∑︂
i=1

ti = 1
}︂
,

and V oln(P ) > 0. The dilation of P by the factor k ∈ N is defined as

kP = conv(kv1, kv2, . . . , kvn),

the convex hull of the vertices multiplied by k. For such a polytope P we define the
Ehrhart polynomial E : N → N by

E(k) = |kP ∩ Λ|,

i.e. E(k) equals the number of lattice points in kP . Analogously, if we denote by P ◦ the
interior of P , then we define I : N → N by

I(k) = |(kP )◦ ∩ Λ|,

64
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counting the interior lattice points of kP .

Remark. Clearly if P has vertices in Λ then also kP is a polytope with vertices in Λ.
Moreover if X ⊆ Λ is a finite list of lattice points, then the induced zonotope Z(X) is
indeed such a convex polytope with vertices in Λ.
Example. The following Figure 3.1 visualises the concepts described in the last definition.
Here we have the zonotope Z(X) from a previous example marked in red together with
its dilation 2Z(X) in pink. Also we see the Z2-lattice points contained in Z(X).

Figure 3.1: Integer points and the dilation of a zonotope.

Although the name already suggests this, Ehrhart has shown that E(k) is indeed a
polynomial in k of degree n (see [Ehr62] or compare with [BHHL11] or [DM12, Section
2.1]). Additionally, also I(k) is a polynomial and one observes that

I(k) = (−1)nE(−k).

This formula is called Ehrhart-Macdonald reciprocity (see [BR15, Theorem 4.1]). In case
of zonotopes Z(X) generated by a finite list of lattice points X ⊆ Λ we would like to
connect those two functions with our arithmetic Tutte polynomial. Our goal is to show
the following theorem.

Theorem 3.2.1 ([DM12, Thm. 3.2]). Let X be a finite list of elements of an n-
dimensional lattice, such that the induced zonotope Z(X) is also n-dimensional. Moreover
let E(k) be the Ehrhart polynomial of Z(X) and let MX be the arithmetic matroid given
by X. Then we have

E(k) = knMX(1 + 1/k, 1)

where MX(x, y) denotes the arithmetic Tutte polynomial of MX in abuse of notation.

To prove this we need a lemma and the notion of the dilation of a list.
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Definition ([DM12, Section 3]). For a finite list of lattice points X = {x1, x2 . . . , xm}
we define its dilation by k ∈ N as the list

kX := {kx1, kx2, . . . , kxm}.

Remark. Note that clearly Z(kX) = kZ(X).
Then the following lemma compares the arithmetic Tutte polynomial of the arithmetic

matroid MX with the one of the related arithmetic matroid MkX induced by the dilation
of X by k ∈ N.
Lemma 3.2.2 ([DM12, Lem. 3.1]). Let MX be an arithmetic matroid generated by a
list of lattice points X ⊆ Λ and let MkX be the according arithmetic matroid over the
dilated list kX, k ∈ N. Then for the arithmetic Tutte polynomials we have

MkX(x, y) = knMX

(︂x− 1
k

+ 1, y
)︂
.

Proof. By definition of the arithmetic Tutte polynomial we write

MkX(x, y) =
∑︂

A⊆X

m(kA)(x− 1)n−rk(A)(y − 1)|A|−rk(A).

Additionally again by simply using the definition of m in a lattice matroid we have
m(kA) = krk(A)m(A) (this gets apparent for example when recalling the GCD-rule).
However, inserting this into the formula we compute

kn
∑︂

A⊆X

m(A)
(︂x− 1

k

)︂n−rk(A)
(y − 1)|A|−rk(A) = knMX

(︂x− 1
k

+ 1, y
)︂
.

Another observation, that we will not prove here, concerns the coefficients of the
Ehrhart polynomial. Namely, if Z(X) is a zonotope with Ehrhart polynomial E(k), we
write

E(k) =
n∑︂

i=0
ai · ki,

with ai ∈ R its coefficients. Then by [Sta97, Exer. 31, p. 272] or also [BHHL11, Section
2] we have

ai =
∑︂

A⊆X
rk(A)=|A|=i

gcd(i-minors of A).

In particular, the sum is taken over all independent sublists A ⊆ X with |A| = i. Then we
remind the reader, that our matroid is GCD. Hence the sum translates into multiplicities:

ai =
∑︂

A⊆X
A indep.

m(A). (3.2.1)
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Now Michele D’Adderio and Luca Moci give two different proofs for Theorem 3.2.1.
One uses Theorem 2.1.12 which states that MX(2, 1) = |Z(X) ∩ Λ| and combines it with
Lemma 3.2.2. The other one relies heavily on the representation of the coefficients in
equation (3.2.1). We repeat both beautiful proofs from [DM12, Thm. 3.2].

Proof 1. By Theorem 2.1.12 we have

E(k) = MkX(2, 1) = knMX(1 + 1/k, 1),

where the second equality follows immediately from Lemma 3.2.2.

Proof 2. By definition we have

MX(t+ 1, 1) =
∑︂

A⊆X
A indep.

m(A)tn−rk(A) =
∑︂

A⊆X
A indep.

m(A)tn−|A|.

Here we used that for independent A ⊆ X the equation rk(A) = |A| holds. However,
using equation (3.2.1) we conclude for the Ehrhart polynomial that

E(k) =
∑︂

A⊆X
A indep.

m(A)k|A|.

Eventually we compute

knMX(1/k + 1, 1) = kn
∑︂

A⊆X
A indep.

m(A)
(︂1
k

)︂n−|A|

=
∑︂

A⊆X
A indep.

m(A)k|A| = E(k).

By using the Ehrhart-Macdonald reciprocity we can also relate the function I(k) of
inner lattice points with the arithmetic Tutte polynomial.

Corollary 3.2.3 ([DM12, Cor. 3.3]). Let Z(X) be a n-dimensional zonotope generated
by a finite list X of points in a lattice Λ. We denote by MX(x, y) the resulting arithmetic
Tutte polynomial of the representable arithmetic matroid given by X. Then for the
polynomial I(k) counting the lattice points in (kZ(X))◦ we have

I(k) = knMX(1 − 1/k, 1).

One may notice that the second proof of the theorem above did not use the statement
of Theorem 2.1.12 saying that MX(2, 1) = |Z(X) ∩ Λ|. Therefore we get this statement
again as a corollary.
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Example. The almost simplest thinkable example is the one of a rectangle in the plane.
E.g. let X = {(3, 0), (0, 4)}. Then we compute the corresponding arithmetic Tutte
polynomial:

MX(x, y) =
∑︂

A⊆X

m(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

= m(∅)(x− 1)2 + (m({(3, 0)} + m({(0, 4)}))(x− 1) + m(X)
= (x− 1)2 + 7(x− 1) + 12
= x2 − 2x+ 1 + 7x− 7 + 12
= x2 + 5x+ 6.

Then we first observe, that MX(2, 1) = 20 really does coincide with the number of lattice

Figure 3.2: Integer points of a simple zonotope and its dilation by 2.

points in the associated zonotope Z(X) (check with Figure 3.2). Now if we dilate our
list by a non-negative integer k ∈ Z then clearly the number of lattice points in Z(kX)
is given by

E(k) = (k · 3 + 1)(k · 4 + 1).
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On the other hand, we compute

E(k) = (k · 3 + 1)(k · 4 + 1)
= 12k2 + 7k + 1

= k2
(︂ 1
k2 + 7

k
+ 12

)︂
= k2

(︂(︂
1 + 1

k

)︂2
+ 5

(︂
1 + 1

k

)︂
+ 6

)︂
= k2MX

(︂
1 + 1

k
, 1
)︂
.

Especially for k = 2 we obtain E(2) = 63 (compare with Figure 3.2).

3.2.2 Arithmetic colourings and flows

Since the very beginning of graph theory mathematicians wanted to colour the vertices
of a graph in such a way that neighbouring vertices are assigned different colours. Such a
colouring is called proper. The Four-colour problem is concerned with the problem to dye
the vertices of every planar graph in such a proper way while only using four different
colours in total. This problem, which is a theorem by now, kept mathematicians busy
over generations. In the end it took very efficient computer systems to eventually prove
that four colours are indeed enough. However, the theoretical offspring of all the failed
attempts to attack this problem can be considered quite fruitful. Some may say that
matroid theory itself was mainly developed to understand graph colourings. In particular
remember that even Tutte called his famous polynomial the dichromatic polynomial
(Greek: chroma = colour, see [Tut54]). With this in mind it seems natural to assume
that it might be possible to relate the arithmetic Tutte polynomial with some kind of
colouring on graphs as well. After all arithmetic matroids are a true generalisation of
ordinary matroids.

In fact this was done again by Michele D’Adderio and Luca Moci in [DM13]. In this
section we summarise their pioneering achievements on this topic.

Firstly I want you to consider the following. Arithmetic matroids are matroids equipped
with some extra structure. Ordinary matroids appear as special cases where this extra
structure (in our case the multiplicity function m) takes certain values (here: m = 1
constant). If we translate this principle to graphs it becomes reasonable why arithmetic
matroids are defined on labelled graphs. The labels provide this extra structure, which
is in the end determining the multiplicities of the induced arithmetic matroids. If all
edges are labelled trivially with 1, then also the resulting arithmetic matroid will be an
ordinary matroid, at least from the combinatorial point of view.

I refer to Section 2.1.2 where we introduced the construction of arithmetic matroids
over labelled graphs with regular and dotted edges. These will be the central objects
of this section. And on these labelled graphs we want to study so-called arithmetic
colourings.
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Definition ([DM13, Section 3.1]). Let (G, l) be a labelled graph as described in Section
2.1.2, G = (V,R ⊔D), and choose a positive integer q ∈ N. Then an arithmetic (proper)
q-colouring is a map c : V → Z/qZ such that the following two conditions are fulfilled:

(i). If u, v ∈ V and e = {u, v} ∈ R then l(e) · c(u) ̸= l(e) · c(v).

(ii). If u, v ∈ V and e = {u, v} ∈ D then l(e) · c(u) = l(e) · c(v).

Example. If we take our labelled graph from our previous examples (with a minor change
of the labels) and set q = 4 then we get a proper arithmetic q-colouring in the following
way: see Figure 3.3.

Figure 3.3: A proper arithmetic 4-colouring marked in green.

Remark ([DM13, Rem. 3.1]). The idea of the disjoint decomposition E = R ⊔D of the
set of edges into regular and dotted edges is that vertices connected via a dotted edge are
kind of identified with each other. This becomes apparent when recalling the contraction
operation with this kind of labelled graphs. When contracting a regular edge e ∈ R
then it switches sets and becomes dotted. This now relates to the classical contraction
operation in graphs where two neighboring vertices collide into a new one. The same
principle applies again in condition (ii) for arithmetic colourings. Two vertices connected
via a dotted edge are vaguely identified with each other and should have similar colours.
(I say similar and not identical because l(e) · c(u) = l(e) · c(v) does not imply c(u) = c(v)
since c(u), c(v) ∈ Z/qZ.)

However, observe that if l(e) = 1 for all edges e and D = ∅, then we obtain the classical
notion of colouring the underlying graph properly with q different colours.

In the case l(e) = 1 constantly for all e ∈ E but D ̸= ∅ we still would get a classical
q-colouring on the graph G′ obtained from G via classically contracting all dotted edges
e ∈ D.

More generally, for every dotted edge e ∈ D with l(e) = 1 if we apply a classical
contraction of e, we obtain a new graph G which possesses the same number of arithmetic
q-colourings.
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The beautiful results of D’Adderio and Moci only apply to q ∈ Z that behave well with
the arithmetics of the labels. The crucial condition is stated in the following definition.

Definition ([DM13, Section 3.1]). Given a labelled graph (G, l) a positive integer q ∈ N
is called admissible if it is a multiple of l(e) for all edges e. I.e.

q ∈ N>0 admissible :⇐⇒ ∀e ∈ E : l(e)|q.

Example. In our last example, where we produced an arithmetic 4-colouring, the number
of colours 4 was indeed not admissible. However, if we take q = 12, which is admissible,
then the same colouring yields an arithmetic 12-colouring.

We are now interested in the number of arithmetic q-colourings, for a given q ∈ N \{0}.
To study this we regard the characteristic function of this problem.

Definition ([DM13, Section 3.1]). Given a labelled graph (G, l) let χG,l : N \{0} →
N ∪ {0} be the function, that associates to every positive integer q ∈ N \{0} the number
of arithmetic q-colourings on (G, l).

Remark. We will see in the proof that when restricted to the set of admissible positive
integers q, the function

χG,l(q) = #arithmetic q-colourings on (G, l)

becomes polynomial in q. Therefore χG,l : N \{0} → N ∪ {0} is called the arithmetic
chromatic polynomial of (G, l).
Remark ([DM13, Rem. 3.2]). Note that in general χG,l does not behave like a polynomial
anymore when applied to arbitrary q. In that case χG,l is a quasipolynomial function in
q.
Remark ([DM13, Rem. 3.3]). In the case l ≡ 1 every q ∈ N \{0} becomes admissible and
if additionally D = ∅ then χG,l reduces to the classical chromatic polynomial χG of the
underlying graph G, counting proper colourings with q colours (compare with [Tut54]).

We may now state how the arithmetic chromatic polynomial χG,l of a labelled graph
(G, l) is connected to the arithmetic Tutte polynomial MG,l(x, y) of the arithmetic matroid
induced by (G, l). In particular, the following theorem also yields the polynomial structure
of χG,l when applied to an admissible positive integer q. However, to state the result
properly we first introduce some notation.

Notation. Let (G, l) be a labelled graph with list of edges E = R ⊔D. We denote by
G = (V ,E) the new graph obtained from G by classically contracting all edges in D.
Note that the graph G may now have loops.

Theorem 3.2.4 ([DM13, Thm. 3.1]). Let (G, l) be a labelled graph, MG,l the associated
arithmetic matroid with MG,l(x, y) its arithmetic Tutte polynomial. Moreover let k be the
number of connected components of the graph G. Then, if q ∈ N \{0} is admissible we
have

χG,l(q) = (−1)|V |−kqkMG,l(1 − q, 0).
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3 The arithmetic Tutte polynomial

Corollary 3.2.5 ([DM13, Cor. 3.2]). If l ≡ 1 constant and D = ∅ we obtain the equation
for the ordinary chromatic polynomial

χG(q) = (−1)|V |−kqkTG(1 − q, 0),

where k is again the number of connected components of the graph G = (V,E) and
TG(x, y) denotes the (classical) Tutte polynomial associated to G.

Remark ([DM13, Rem. 3.4]). The condition on q to be admissible is necessary. We
take the example from the paper, where (G, l) is a given labelled graph with vertices
V = {a, b, c} no regular edges (i.e. R = ∅) and dotted edges D = {{a, b}, {b, c}}, on
which we have labels l({a, b}) = 2 and l({b, c}) = 6. If we now set q = 2, then the
conditions for an arithmetic 2-colouring are trivially satisfied for all possible colourings.
Hence we obtain 23 = 8 different arithmetic 2-colourings (compare with Figure 3.4).

Figure 3.4: The simple counterexample.

Now following the construction for a representation of the corresponding arithmetic
graph matroid we fix the orientation Eθ = {(a, b), (c, b)} and obtain the lists XD =
{(2,−2, 0), (0,−6, 6)} ⊆ Z3 and XR = ∅ ⊆ H = Z3/⟨XD⟩ = Z3/⟨(2,−2, 0), (0,−6, 6)⟩.
Some easy computation yields MG,l(x, y) = 12 constantly. Thus by the theorem above
we would obtain

χG,l(q) = qMG,l(1 − q, 0) = 12q.

However, this would tell us that χG,l(2) = 12 · 2 = 24 ̸= 8 a contradiction. Therefore we
really have to demand for q to be admissible.

The proof of the theorem follows a strategy that is similar to the one in the proof of
Theorem 3.1.5 in Section 3.1.3. To prove the equality of the two polynomials we show at
first that both expressions fulfil the same recursions. Due to that we may reduce the
problem to a trivial case where equality is obvious (or at least easier to prove). Now for
the start let us introduce a short notation for the right-hand-side formula in the theorem.
We write ˜︁χG,l(q) := (−1)|V |−kqkMG,l(1 − q, 0).
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Thus our aim is to prove χG,l(q) = ˜︁χG,l(q) for every admissible q.
In a first step we want to get rid of all regular edges. As before, for a labelled graph

(G, l) and a regular edge e ∈ R we denote by G \ e and G/e the labelled deletion and
contraction, respectively. (Review Section 2.1.2 for definitions.) Then the following
recursion formula for χG,l(q) is deduced immediately from its definition.

Lemma 3.2.6 ([DM13, Lem. 4.1]). Let (G, l) be a labelled graph and let q ∈ N \{0} be
an admissible integer. Then for a regular edge e ∈ R we have

χG,l(q) = χG \ e,l(q) − χG/e,l(q).

Following our strategy we now need to show that ˜︁χG,l fulfils the same recursion.

Lemma 3.2.7 ([DM13, Lem. 4.2]). Let (G, l) be a labelled graph and let q ∈ N \{0} be
an admissible integer. Then for a regular edge e ∈ R we have

˜︁χG,l(q) = ˜︁χG \ e,l(q) − ˜︁χG/e,l(q).

Proof. Clearly we want to use the various deletion and contraction recursions fulfilled by
MG,l(x, y). They all have been proven in Section 3.1.2. To apply them properly we have
to distinguish three cases.

Case 1: e is a proper edge. This means the corresponding edge in G is neither a loop nor a
coloop which means it is contained in a circuit. Then we may compute

˜︁χG,l(q) = (−1)|V |−kqkMG,l(1 − q, 0)

(Lem. 3.1.2) = (−1)|V |−kqk(︁MG \ e,l(1 − q, 0) +MG/e,l(1 − q, 0)
)︁

= (−1)|Vd|−kqkMG \ e,l(1 − q, 0) − (−1)|Vc|−kqkMG/e,l(1 − q, 0)
= ˜︁χG \ e,l(q) − ˜︁χG/e,l(q),

where |V d| = |V | and |V c| = |V | − 1 denote the sets of vertices of the deletion and
and contraction graphs, or rather their cardinalities.

Case 2: e is a coloop. In this case the corresponding edge in G is not a loop and is not
contained in a circuit. Then we may compute

˜︁χG,l(q) = (−1)|V |−kqkMG,l(1 − q, 0)

(Lem. 3.1.3) = (−1)|V |−kqk(︁− qMG \ e,l(1 − q, 0) +MG/e,l(1 − q, 0)
)︁

= (−1)|Vd|−(k+1)q(k+1)MG \ e,l(1 − q, 0) − (−1)|Vc|−kqkMG/e,l(1 − q, 0)
= ˜︁χG \ e,l(q) − ˜︁χG/e,l(q),

since G \ e has now one more component, |V d| = |V | and |V c| = |V | − 1.
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3 The arithmetic Tutte polynomial

Case 3: e is a loop. In this case the corresponding edge in G is also a loop. Therefore we
have

˜︁χG,l(q) = (−1)|V |−kqkMG,l(1 − q, 0)

(Lem. 3.1.4) = (−1)|V |−kqk(︁MG \ e,l(1 − q, 0) −MG/e,l(1 − q, 0)
)︁

= (−1)|Vd|−kqkMG \ e,l(1 − q, 0) − (−1)|Vc|−kqkMG/e,l(1 − q, 0)
= ˜︁χG \ e,l(q) − ˜︁χG/e,l(q),

since |V d| = |V | and |V c| = |V |.

Due to this result it remains to prove Theorem 3.2.4 for the case where R = ∅, i.e.
there are no regular edges. For our next step we reduce the problem to the case of
connected graphs where we only have one connected component.

Proposition 3.2.8 ([DM13, Section 4]). If Theorem 3.2.4 applies to connected labelled
graphs with no regular edges, then it is also true for labelled graphs with several components
and no regular edges.

Proof. Let (G, l) be a labelled graph with k connected components denoted byG1, G2, . . . , Gk,
each of them equipped with a labelling l1, l2, . . . , lk, respectively. Then the associated
arithmetic matroid MG,l is the direct sum of the arithmetic matroids given by the single
components MGi,li . Hence the arithmetic Tutte polynomial MG,l(x, y) is the product of
the arithmetic Tutte polynomials MGi,li of the components. Moreover observe that for
all i = 1, . . . , k the graph Gi consists only of one single vertex (since all dotted edges are
contracted and there are no regular ones). Therefore we have |V | = k. Now assuming
that the questioned assertion holds on connected graphs we deduce

˜︁χG,l(q) = (−1)|V |−kqkMG,l(1 − q, 0)
= qkMG,l(1 − q, 0)

= qk ·
k∏︂

i=1
MGi,li(1 − q, 0)

=
k∏︂

i=1
q ·MGi,li(1 − q, 0)

(assumption) =
k∏︂

i=1
χGi,li(q) = χG,l(q).

Note that the last equation follows immediately from the definition of χG,l(q).

To sum things up, to show Theorem 3.2.4 it is enough to prove the following statement.
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Lemma 3.2.9 ([DM13, Lem. 4.3]). Let (G, l) be a connected labelled graph without any
regular edges (i.e. R = ∅) and let q be an admissible positive integer. Then the following
equation holds:

χG,l(q) = ˜︁χG,l(q).

Proof. In such a connected graph without any regular edges, observe that we have

˜︁χG,l(q) = q ·MG,l(1 − q, 0) = q · m(∅).

Recall the algebraic construction for the representability of MG,l given in Section 2.1.2.
Note that then m(∅) is equal to the cardinality of the torsion subgroup of Z|V |/XD. This
can be computed as the GCD of the non-zero minors of maximal rank of the matrix
[XD], which contains the elements of XD as its columns.

To compute the number of arithmetic q-colourings we set h := |XD| = |D| and n = |V |.
Since G is assumed to be connected we have h ≥ n− 1. We may now lay our focus at
[XD]T , the transpose of the matrix [XD]. This can be considered as a linear operator
acting on the left, i.e. if we think of the elements of (Z/qZ)n and (Z/qZ)h as column
vectors and have

[XD]T : (Z/qZ)n → (Z/qZ)h.

Each element of (Z/qZ)n refers to a possible but not yet proper arithmetic q-colouring. I
remind that for e ∈ D the associated element xe ∈ XD is defined as

(xe)k =

⎧⎪⎪⎨⎪⎪⎩
l(e) if k = i

−l(e) if k = j

0 else.

Hence, applying the transpose [XD]T to a colouring c ∈ (Z/qZ)n refers to checking
condition (ii) of the definition of proper q-colourings. Since checking condition (i) is
obsolete as we do not have any regular edges, we obtain the following relation:

c ∈ (Z/qZ)n is proper ⇐⇒ c ∈ ker([XD]T ).

Thus we need to count the elements in ker([XD]T ). To do so we look at the following
exact sequence. (Recall that a sequence is exact if the image of each homomorphism
equals the kernel of the successive one.)

0 → ker([XD]T ) ι
↪→ (Z/qZ)n [XD]T−→ (Z/qZ)h π−→ (Z/qZ)h

im[XD]T → 0,

where ι is simply the inclusion and π denotes the canonical quotient map. Now since we
have (Z/qZ)n/ ker([XD]T ) ∼= im[XD]T we obtain that

|(Z/qZ)h|
| im[XD]T |

= |(Z/qZ)h|
|(Z/qZ)n|

· | ker([XD]T )| = qh−n| ker([XD]T )|.
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3 The arithmetic Tutte polynomial

Next, we note again by the isomorphism theorem that the left-hand side equals

[(Z/qZ)h : im[XD]T ] = [Zh : im[XT
D | q · Ih] ], (3.2.2)

where [XT
D | q · Ih] denotes the h × (n + h)-matrix whose first n columns are given by

the columns of [XD]T and the other h columns are given by the columns of q-times the
h× h-identity matrix Ih. Again we interpret [XT

D | q · Ih] as a linear operator

[XT
D | q · Ih] : Zn+h → Z.

However, if we want to compute the index on the right-hand side of equation (3.2.2)
we get m(∅) · qh−n+1. This is true due the fact that we calculate in Zh and thus the
GCD-rule applies. Hence m(∅) · qh−n+1 equals the GCD of the minors of maximal rank
of [XT

D | q · Ih]. However, since l(e) divides q for every edge e ∈ E = D, it is enough to
compute the GCD of only those minors of maximal rank which contain n− 1 columns of
[XD]T (which correspond to the edges of a spanning tree) and where the rest is filled up
with columns of q · Ih (all other minors are multiples of these). But this tells us that the
solution is qh−n+1 times the GCD of the minors of rank n− 1 in [XD]T , which are the
same as in [XD]. However, we have already seen that this last number equals m(∅). This
yields the computation of the index.

Combining all this information we deduce that

χG,l(q) = | ker([XD]T )| = q · m(∅) = q ·MG,l(1 − q, 0) = ˜︁χG,l(q),

just as demanded.

This also concludes the proof of Theorem 3.2.4 and Corollary 3.2.5. Moreover this
yields that the (arithmetic) chromatic polynomial is indeed a polynomial when applied
to admissible integers q.

Now we want to concern ourselves with the kind of dual concept of so-called arithmetic
flows. We start by giving the formal definition.

Definition ([DM13, Section 5.1]). Let (G, l) be a labelled graph. On G fix an orientation
θ and denote by Gθ the resulting directed graph. Again choose q to be a positive integer
and let H = Z/qZ.

Now to each directed edge e = (u, v) ∈ Eθ associate a weight w(e) ∈ H, and to every
vertex v ∈ V we associate the value

u(v) :=
∑︂

e∈ out(v)
l(e) · w(e) −

∑︂
e∈ in(v)

l(e) · w(e) ∈ H,

where out(v) and in(v) denote the sets of outgoing and incoming edges of v, respectively.
Then we call the function w : E → H an arithmetic (nowhere zero) q-flow if the following
conditions are satisfied:

(i). For every v ∈ V we have u(v) = 0 ∈ H.
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(ii). For every regular edge e ∈ Rθ we have w(e) ̸= 0 ∈ H.

Remark ([DM13, Rem. 5.1]). Again we restrict our observations to the case where q is
admissible. And if l ≡ 1 is the trivial label and D = ∅ we obtain the classical notion of a
nowhere zero q-flow on an oriented labelled graph.

Definition ([DM13, Rem. 5.2]). The arithmetic flow polynomial of a labelled graph
(G, l) is defined as the function χ∗

G,l : N \{0} → N that assigns to every positive integer
the number of arithmetic q-flows on (G, l). In the trivial case l ≡ 1 constant and D = ∅
we recover the classical flow polynomial χ∗

G(q) of the underlying graph G.

Remark ([DM13, Lem. 5.1]). Note that the orientation of the edges of G does not appear
in the definition of χ∗

G,l. However, it turns out that the arithmetic flow polynomial is
independent of the orientation θ. This is true due to the fact that if we change the
orientation of an edge e ∈ Eθ, then for every flow w : Eθ → H we may simply change the
sign of w(e) and get a flow on the new orientation.

For the arithmetic flow polynomial we have some results that are similar to those for
the arithmetic chromatic polynomial. First of all, also χ∗

G,l is polynomial for admissible
q.

Theorem 3.2.10 ([DM13, Thm. 5.2]). Let (G, l) a labelled graph with k connected
components and let q be an admissible integer. Then we have

χ∗
g,l(q) = (−1)|R|−|V |+kq|D|−|V |+|V |MG,l(0, 1 − q),

where G = (V ,E) is again the graph obtained from G by classically contracting all edges
in D.

In the trivial case of l ≡ 1 and D = ∅ we obtain the following immediate corollary.

Corollary 3.2.11 ([DM13, Cor. 5.3]). For a graph G = (V,E) with k connected com-
ponents and Tutte polynomial TG(x, y) we have

χ∗
G(q) = (−1)|E|−|V |+kTG(0, 1 − q).

The proof for Theorem 3.2.10 uses similar methods as in the proof of Theorem 3.2.4 for
the arithmetic chromatic polynomial. Thus for the interested reader we refer to [DM13,
Section 6] for the details. We have finished our work on possible specialisations. In the
last section of this chapter we dedicate ourselves to possible further generalisations of
arithmetic Tutte polynomials.

3.2.3 Generalisations of the arithmetic Tutte polynomial
The aim of this section is to give an overview of the current state of research in the field
of arithmetic matroids and arithmetic Tutte polynomials. Moreover it should serve as an
orientation for interested readers who want to further deepen their knowledge. We freely
mention some of the directions researchers have taken to expand the theory.
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3 The arithmetic Tutte polynomial

We begin with the multivariate arithmetic Tutte polynomial. In classical matroid
theory, the Tutte polynomial TM(x, y) is a bivariate invariant of a given matroid M. If
M = (X, rk) then Sokal [Sok05] generalised this construction to the multivariate Tutte
polynomial in the variables q and v = (vx)x∈X given by

ZM(q,v) =
∑︂

A⊆X

q− rk(A) ∏︂
x∈A

vx.

Then Brändén and Moci [BM14] adapted this concept to the case of arithmetic matroids.
For A = (X, rk,m) being an arithmetic matroid they defined the multivariate arithmetic
Tutte polynomial as

ZA(q,v) =
∑︂

A⊆X

m(A)q− rk(A) ∏︂
x∈A

vx.

This polynomial fulfils again a contraction and deletion recurrence as well as a gener-
alised Crapo-like formula (see [BM14, Thm. 4.6] and compare with Theorem 3.1.11).
Additionally we can recover the bivariate arithmetic Tutte polynomial, because simply
by the definitions we deduce that

ZA((x− 1)(y − 1), (y − 1)) = (x− 1)−rk(X)MA(x, y),

where v = (y − 1) means that every ve = (y − 1) for all e ∈ X (see [BM14, Section 2]).
Another big step of abstraction was achieved by Ye Liu, Tan Nhat Tran and Masahiko

Yoshinaga in their publication about so-called G-Tutte polynomials [LTY21].

Definition ([LTY21, Def. 4.6]). Let Γ be a finitely generated abelian group, X a
finite list of elements in Γ and let G be a torsionwise finite abelian group. Then the
G-multiplicity m(X,G) ∈ Z is defined by

m(X,G) := #Hom((Γ/⟨X⟩)tor, G),

where Htor denotes the torsion group of an abelian group H.

Definition ([LTY21, Def. 4.8]). Let Γ, X ⊆ Γ and G be defined as described above.
Then the G-Tutte polynomial of X and G is defined as

TG
X (x, y) :=

∑︂
A⊆X

m(A,G)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A).

Again this polynomial fulfils several identities one might expect from a Tutte-like
polynomial. Moreover it is a real generalisation of the arithmetic Tutte polynomial, at
least for representable arithmetic matroids, due to the following proposition.

Proposition 3.2.12 ([LTY21, Prop. 4.13]). Let X be a finite list of elements in the
finitely generated abelian group Γ, and let G = C∗. Then TG

X (x, y) = MX(x, y).

Proof. The proof relies on the observation that for A ⊆ X we have

#Hom((Γ/⟨A⟩)tor,C∗) = |(Γ/⟨A⟩)tor|
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which is equal to the arithmetic multiplicity m(A).

A generalisation that is dedicated to rather structural aspects was examined by Roberto
Pagaria. He successfully combined the two abstract notions of orientable matroids and
arithmetic matroids. His results on orientable arithmetic matroids can be found in
[Pag20].

The notions of arithmetic colourings and flows on graphs can be transferred to CW
complexes. This was done by Emanuele Delucchi and Luca Moci in [DM16]. There
again characteristic functions χ(q) and χ∗(q) are observed and it is shown that these are
specialisations of the so-called Tutte quasi-polynomial.

Last but by far not least, Alex Fink and Luca Moci abstracted the concept of a matroid
as a whole in their article Matroids over a ring [FM16]. There they give purely
algebraic descriptions of matroids and arithmetic matroids by interpreting a matroid
as a mapping M that assigns to each sublist A of a groundlist X a finitely generated
R-module, where R is a ring (see [FM16, Def. 2.1] for more details).

We have now finished our summery of the basic theory of arithmetic matroids. In the
final chapter of this thesis I would like to introduce a new class of (quasi-) arithmetic
matroids with a strong connection to elementary number theory: The so-called radical
matroids.
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In the final chapter of this thesis we apply the theory, we gathered by now, to elementary
number theory. More precisely we want to develop (quasi-) arithmetic matroid structures
on lists of integers and rationals. The independence relations will emerge from divisibility
by prime factors, while the multiplicity arises from a derived form of the radical function.
This yields another interesting example for arithmetic matroids outside the realms of
graphs and vector spaces. We start with the general construction of those radical matroids
in abstract unique factorisation domains (UFD) and then head on to the examination of
their basic properties in the case of rational numbers.

There we will see some explicit examples. We remark that not all radical matroids can
also be considered as arithmetic matroids. However, we will discuss some criteria on the
underlying list X ⊆ Q such that we obtain an arithmetic matroid. Afterwards we give a
full characterisation of the representable radical matroids.

4.1 The basic construction
Let M = (X, rk,m) be a multiplicity matroid. Recall that M is called a quasi-arithmetic
matroid if the following two axioms are fulfilled.

(A) If A ⊆ X and v ∈ X is dependent of A, then m(A ∪ {v}) divides m(A). However,
if A ⊆ X and v ∈ X is independent of A, then m(A) divides m(A ∪ {v}).

(Q) If [R,S] is a molecule of M then we have

m(R) · m(S) = m(R ∪ F ) · m(R ∪ T ),

where F and T denote as always the free part and the torsion part of the molecule,
respectively.

To be a fully arithmetic matroid M would also have to satisfy the positivity axiom:

(P) For each molecule [R,S] the following inequality holds:

ρ(R,S) := (−1)|T | ∑︂
A∈[R,S]

(−1)|S|−|A|m(A) ≥ 0.

While the positivity requires m : P(X) → Z, the axioms (A) and (Q) work for
multiplicities with values in arbitrary UFDs. Therefore we would like to start our
construction in this rather abstract setting. For this we will recall some terminology and
basic notions from abstract algebra.

81



4 Radical matroids

4.1.1 Algebra prerequisites
The following definitions and constructions are taken from [KM17]. However, this content
may be found in any script on advanced or commutative algebra. Let R be a commutative
ring. By R∗ we denote the multiplicative group of units in R. Additionally R is called
an integral domain if it does not contain any zero-divisors (compare with [KM17, Section
13]). In such a ring we establish the following definitions.

Definition ([KM17, Section 16.1]). Let x, z ∈ R. We say that x divides z in R and
write as usual x|z if there exists another element y ∈ R with xy = z. Let p ∈ R \ R∗.

• p is called irreducible if there do not exist any a, b ∈ R \ R∗ with ab = p.

• p is called prime if for all a, b ∈ R we have that p|ab implies p|a or p|b.

It is a well known fact that prime implies irreducible. The converse is not true in general.
However, the cases where irreducibility already yields prime are the most interesting
ones. Such a ring deserves its own definition.

Definition ([KM17, Thm. 17.1]). An integral domain R where every irreducible element is
already a prime element is called a unique factorisation domain (short UFD). Equivalently,
R is a UFD if and only if every non-zero element x ∈ R can be factorised

x = p1 · p2 · · · · · pk · u

into prime elements p1, p2, . . . , pk ∈ R, u ∈ R∗ a unit and this factorisation is unique up
to the order of the primes and the multiplication with units.

Example ([KM17, Section 19.1]). The classical example for a UFD would be the ring of
integers Z. However, if K is a field then the ring of polynomials K[X] is a UFD. More
generally, if R is a UFD then so is R[X].
Remark. Concerning the multiplication with units, observe that if u ∈ R∗ is a unit and
p ∈ R is a prime element, then also u · p is prime. For instance, 7 is a prime number in Z
and −1 is a unit. Clearly also −7 ∈ Z is a prime element. For the prime factorisation of
42 we obtain

42 = 2 · 3 · 7 = (−1) · (−2) · (−3) · (−7).

In this sense we say that 7 and −7 are associated to each other. In general we can state
the following.

Definition. Let R be a UFD and let p, q ∈ R be prime elements. We say p and q are
associated with each other if there exists a unit u ∈ R∗ such that p = u · q.

Example. In Z we have that 3 and −3 or p and −p are associated with each other for
all positive primes p. Another example could be made in C[X], the ring of complex
polynomials. In C[X] the prime elements are given as the linear factors f(x) = ax+ b for
a, b ∈ C, a ̸= 0. Now (C[X])∗ = C \{0} and we have for example that x+ 1 is associated
to ix+ i. Moreover, the factorisation into prime elements in C[X] refers directly to the
fundamental theorem of algebra.

82



4.1 The basic construction

It is easy to see, that this defines an equivalence relation on the set of prime elements
in a UFD. We now would like to make the prime decomposition unique up to the order
of factors. This is done by choosing one representative of each equivalence class of prime
elements.

Notation. Let R be a UFD. We denote by ˆ︁P the set of prime elements in R. Additionally,
we write P for any fixed system of representatives of prime elements. Hence we have
P ⊆ ˆ︁P given in a way, such that for all prime elements p̂ ∈ ˆ︁P there exists exactly one
p ∈ P such that p̂ = u · p for a unit u ∈ R∗. If R = Z then we write P for the positive
prime numbers.

Example. In the set integers Z, the set of positive prime numbers P does indeed provide
such a system of representatives. On the other hand, in C[X] one may choose P to be
the set of monic linear factors, i.e. P = {x− c | c ∈ C}.

With a fixed system P of representatives in a unique factorisation domain R, the prime
factorisation of every x ∈ R with x ̸= 0 becomes unique up to the order of factors. More
precisely, there exist unique factors p1, . . . , pn ∈ P and a unique unit ux ∈ R∗ such that

x = p1 · p2 · · · · · pk · ux.

Definition. Let R be a UFD and let x, y ∈ R. We write x and y in their unique prime
factorisations x = p1 · p2 · · · · · pk · ux and y = q1 · q2 · · · · · qm · uy with respect to a fixed
system of prime representatives P. We call x and y coprime if the two elements do not
share any common prime divisors. I.e. we have {p1, p2, . . . , pk} ∩ {q1, q2, . . . , qm} = ∅.

UFDs will provide the formal setting for the divisibility demanded by axiom (A) of
quasi-arithmetic matroids. The underlying matroid structure will come from the following
construction.

Definition ([KM17, Section 13.8.1]). Let R be an integral domain. On R × (R \{0})
we define the following equivalence relation:

(a, b) ∼ (c, d) :⇐⇒ ad = bc.

We denote by the fraction a
b the equivalence class of (a, b). Then the quotient field Q of

R is given by
Q := quot(R) =

{︂a
b

: a, b ∈ R, b ̸= 0
}︂

together with the operations

a

b
+ c

d
= ad+ bc

bd
and

a

b
· c
d

= ac

bd
.

It is easy to check that Q = quot(R) is indeed a field. In the case of R being a UFD
we can now deduce the following theorem.
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4 Radical matroids

Theorem 4.1.1. Let R be a UFD with quotient field Q. Then every element x ∈ Q can
be written as

x = p1 · p2 · · · · · pk

q1 · q2 · · · · · qm
· ux = p1 · p2 · · · · · pk · q−1

1 · q−1
2 · · · · · q−1

m · ux,

where p1, p2, . . . , pk, q1, q2, . . . , qm ∈ P are representative prime elements, pi ̸= qj for all
i ∈ [k], j ∈ [m] and ux ∈ R∗ is a unit of the ring. Moreover this representation is unique
up to the order of the prime elements.

Sketch of proof. The idea of the proof works simply by observing that every x ∈ Q can
be written as unique fraction x = a

b with a, b ∈ R being coprime. Then one just inserts
the unique prime factorisations a = p1 · p2 · · · · · pk · ua and b = q1 · q2 · · · · · qm · ub in R
into the formula and we are done by setting ux := ua · u−1

b ∈ R∗.

Example. Let R = Z, then Q = quot(Z). Then for example we have

420
198 = 70

33 = 2 · 5 · 7
3 · 11 .

Now with this notation and the previous theorem we obtain the following as an
immediate corollary.

Lemma 4.1.2. Let Q∗ = Q \{0} be the multiplicative group of units. Then

Q∗ = R∗ · ⟨P⟩Z,

i.e. Q∗/R∗ is generated by the prime elements as a group.

This observation will yield the matroid structure for our radical matroids, since from
Lemma 4.1.2 we get that every finite list X ⊆ Q∗ is contained in a finitely generated
abelian group. What is left to obtain a quasi-arithmetic matroid is a suitable multiplicity
function. This will be constructed in the following section.

4.1.2 The radical function

Let z ∈ N be an integer with prime factorisation z = pa1
1 · pa2

2 · · · · · pak
k where ai ∈ N for

all i ∈ [k] and the pi are pairwise distinct. Then the radical of z is defined as

rad(z) = rad(pa1
1 · pa2

2 · · · · · pak
k ) = p1 · p2 · · · · · pk.

In other words, the radical is the product of all primes occurring in the factorisation
but each only taken once. This function plays a major role in some questions of number
theory. The most prominent may be the famous abc-conjecture which is also connected
to Fermat’s last theorem. (Compare with [LS11, Section 1] or [Oes88].)
Example. We compute the radical for the numbers 2, 4, 6, 60, 99 ∈ Z. Then rad(2) = 2,
rad(4) = 2, rad(6) = 6, rad(60) = 30 and rad(99) = 33.
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The idea is to establish the radical as the multiplicity function for our quasi-arithmetic
matroid. To do so we have to generalise the notion of the radical step by step, first to
arbitrary UFDs and their quotient fields and eventually to a radical of a list of fractions.
The radical for a UFD and its quotient field may be defined analogously to the integer
case.

Definition. Let R be a UFD, P ⊆ R a system of prime representatives and let Q be its
quotient field. By Theorem 4.1.1 we can write every element x ∈ Q as

x = ux

∏︂
p∈P

pap

with ux ∈ R∗ a unit, ap ∈ Z and ap = 0 for all but finitely many exponents. Then we
define the radical of x (with respect to P) by

rad(x) = radP(x) :=
∏︂
p∈P
ap ̸=0

p ∈ R.

Again one may say that rad(x) equals the product of all prime elements occurring in its
unique prime factorisation but taken only once.

Remark. We observe the following useful property of the radical. If x, y1, y2, . . . , yk ∈ R
(a UFD) and x = y1 · y2 · · · · · yk where the yi are not necessarily prime elements, then we
have

rad(x) = rad
(︂ k∏︂

i=1
rad(yi)

)︂
.

The proof works simply by noticing that each prime element occurring on either side also
appears on the other. However, we will use a similar structure to define a radical for lists
of elements in Q.

Definition. Let Q be the quotient field of a UFD R. For a finite list A ⊆ Q we set

rad(A) := rad
(︂ ∏︂

a∈A

rad(a)
)︂
.

Again one could say that the rad(A) is the product of all prime elements, occurring in
any factorisation of elements of A, taken once.

Remark. In this thesis we follow the convention that the empty product is equal to 1.
Thus we also have rad(1) = 1. In the same manner we also set rad(∅) = 1.

We summarise our insights in two examples.

Example. Let A = {20, 21
46 ,

8
25} ⊆ Q. We fix P = P, the set of positive prime numbers.
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4 Radical matroids

Then we compute

rad(A) = rad
(︂ ∏︂

a∈A

rad(a)
)︂

= rad
(︂

rad(20) · rad
(︂21

46
)︂

· rad
(︂ 8

25
)︂)︂

= rad(10 · rad(21) · rad(46) · rad(8) · rad(25))
= rad(10 · 21 · 46 · 2 · 5)
= 2 · 3 · 5 · 7 · 23 = 4830.

Example. Let A =
{︂

x3−2x2−5x+6
x2+25 , x2 − 2x − 8

}︂
⊆ C(X) = quot(C[X]). We choose

P = {x+ c | c ∈ C} the set of monic linear factors. Then

rad(A) = rad
(︂

rad
(︂x3 − 2x2 − 5x+ 6

x2 + 25
)︂

· rad(x2 − 2x− 8)
)︂

= rad(rad(x3 − 2x2 − 5x+ 6) · rad(x2 + 25) · rad(x2 − 2x− 8))
= rad((x− 1)(x+ 2)(x− 3) · (x+ i5)(x− i5) · (x+ 2)(x− 4))
= (x− 1)(x+ 2)(x− 3)(x+ i5)(x− i5)(x− 4)
= x6 − 6x5 + 28x4 − 124x3 + 51x2 + 650x− 600.

By now we have collected everything we need to define a quasi-arithmetic matroid on
some finite list X ⊆ Q∗ with radical multiplicities.

4.1.3 The definition of radical matroids

Let ˜︁X ⊆ Q∗ be a finite list of elements, where Q denotes again the quotient field of
a unique factorisation domain R. Just like before we call P ⊆ R a fixed set of prime
elements. Since we do not want to concern ourselves with the technical details of
associated primes and the non-uniqueness induced by them, we would like to identify
elements of Q∗ if they differ only by a unit of the underlying ring. Algebraically this is
done by taking a quotient of abelian groups:

Q∗ → Q∗/R∗.

We introduce the following notations.

Notation. For a finite list ˜︁X ⊆ Q∗ we denote by X the same list, but now interpreted
as X ⊆ Q∗/R∗, a sublist of the quotient group. We let PX ⊆ P be the set of prime
elements that appear in the unique factorisations of elements of X. Since X is finite, also
the set PX has to be finite.

Now we use Lemma 4.1.2 to see that

X ⊆ ⟨PX⟩Z ⊆ Q∗/R∗ ∼= ⟨P⟩Z.
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4.1 The basic construction

We deduce that X is a sublist of Λ := ⟨PX⟩Z a finitely generated abelian group, since
clearly Λ ∼= Z|PX |. Thus Λ is even a lattice. This induces a matroid structure via the
classical rank function in Z|PX |. Now one could easily obtain a torsion-free arithmetic
matroid by associating the classical multiplicity m : P(X) → Z for lattices. Therefore we
obtain an arithmetic Tutte polynomial Mm(x, y) ∈ Z[x, y]. However, we want to equip
the matroid (X, rk) with a radical multiplicity rad(A) for A ⊆ X. Note that this is now a
function rad : P(X) → R. Therefore, in general, we get a multiplicity Tutte polynomial
Mrad(x, y) ∈ R[x, y].

Definition. We call the multiplicity matroid M = (X, rk, rad) a radical matroid. Its
multiplicity Tutte polynomial is then given by

MM(x, y) =
∑︂

A⊆X

rad(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A).

Conversely, we say that an arbitrary multiplicity matroid N is radical if it is isomorphic
to some radical matroid.

The combinatorial meaning of a Tutte polynomial in R[x, y] may be questionable.
Nevertheless we prove that such a radical matroid gets as close to an arithmetic matroid
as possible in this abstract setting.

Theorem 4.1.3. Let M = (X, rk, rad) be a radical matroid. Then M is also an (abstract)
quasi-arithmetic matroid.

Proof. We need to check axioms (A) and (Q) stated at the beginning of this section.

(A) Let A ⊆ X be a sublist and let v ∈ X \A. Firstly, we notice that by definition of
the radical the identity rad(A)| rad(A ∪ {v}) holds in any case, since v can only
contribute new factors and will not delete any old ones. Thus it remains to show
that when v is dependent on A, then also rad(A ∪ {v}) divides rad(A).
But this is easily seen to be true. Because if the factorisation of rad(A∪ {v}) would
contain any prime elements that were not included in the factorisation of rad(A),
then those additional prime elements must originate from the factorisation of the
element v. However, if v was built upon prime elements that are not contained in
any factorisation of elements of A, then v could not be dependent on A.
Hence rad(A∪{v}) and rad(A) are factorised into the same prime elements and since
in the radical every prime element is taken exactly once, we have that rad(A∪ {v})
divides rad(A). (We even have that rad(A ∪ {v}) = rad(A) in this case.)

(Q) Let [R,S] be a molecule of M. Therefore we have S = R ⊔ F ⊔ T and for all
C ∈ [R,S] it holds that rk(C) = rk(R) + |C ∩ F |. We need to show that

rad(R) · rad(S) = rad(R ∪ F ) · rad(R ∪ T ).

Now by construction we have that every element of T is dependent on R. Therefore
by our observations in the paragraph before we know that rad(R) = rad(R ∪ T ).
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4 Radical matroids

Since the radical function takes its values in R an integral domain, we can therefore
reduce the problem to the question, whether we have rad(S) = rad(R ∪ F )?

However, again this can be verified by comparing prime elements in the factorisation
of either side. If we write B := R ∪ F , then we have S = B ∪ T and again the
elements of T are dependent on B. Therefore we obtain rad(B ∪ T ) = rad(B) or in
other words

rad(S) = rad(R ∪ F ),

just as demanded.

Therefore we have proven that a radical matroid is indeed a quasi-arithmetic matroid.

Now we would like to reenter the realms of integers and rationals, where we additionally
have a notion of positivity. There we want to check whether our construction already leads
to an arithmetic matroid. The answer is maybe. There are radical matroids which are also
arithmetic matroids, however some others are not. This very fascinating correspondence
between being arithmetic and being radical is the main subject of the next chapter.

4.2 Basic properties of radical matroids

In this section we restrict ourselves again to the most interesting case of R = Z. We
choose again the positive primes P to be our system of representatives. In this situation
the quotient field Q is simply given by the field of rationals Q and radical matroids
M = (X, rk, rad) are defined finite lists of invertible rational numbers X ⊆ Q∗ = Q \{0}.
Moreover, in the way we constructed the radical of sublists, we have again that rad(A) ∈ Z
for any A ⊆ X. This means that we may consider again whether our radical matroid
fulfils positivity (P) and therefore may already be an arithmetic matroid. In this case we
also have an arithmetic Tutte polynomial MM(x, y) with positive integer coefficients.

4.2.1 Arithmetic radical matroids

In this chapter we want to analyse in which cases we might get an arithmetic radical
matroid, i.e. which constraints has the list X ⊆ Q to obey. This is indeed a matter of
discussion because not every radical matroid in Q will fulfil positivity. It is a shame, but
even a short list may already give a counterexample.

Example. Let X = {4, 6} ⊆ Q then [∅, X] is a molecule and

ρ(∅, X) =
∑︂

A⊆X

(−1)|X \ A| rad(A)

= (−1)2 rad(∅) + (−1)1 rad({4}) + (−1)1 rad({6}) + (−1)0 rad({4, 6})
= 1 − 2 − 6 + 6 = −1 ≱ 0.
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4.2 Basic properties of radical matroids

And indeed, if we compute the multiplicity Tutte polynomial we obtain

M(x, y) =
∑︂

A⊆X

rad(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

(rk(A) = |A|) =
∑︂

A⊆X

rad(A)(x− 1)rk(X)−rk(A)

= rad(∅)(x− 1)2 + rad(4)(x− 1) + rad(6)(x− 1) + rad(4 · 6)
= x2 + 6x− 1.

On the other hand, there also exist radical matroids that satisfy positivity like the
following example shows.

Example. Let X = {2, 3, 5}. Then each pair of sublists A ⊆ B ⊆ X yields a molecule
[A,B]. However, by the multiplicativity of the radical in this case we deduce that if
A ̸= ∅ then we have

ρ(A,B) = rad(A)ρ(∅, B \A).

Thus it is enough to check positivity for molecules of the form [∅, A] with A ⊆ X. We
compute:

ρ(∅, ∅) = rad(∅) = 1 ≥ 0,
ρ(∅, {2}) = (−1)1 rad(∅) + (−1)0 rad(2) = −1 + 2 = 1 ≥ 0.

Analogously we deduce that ρ(∅, {3}) = 2 and ρ(∅, {5}) = 4 and both are greater than
zero. For the lists with two elements we have

ρ(∅, {2, 3}) = (−1)2 rad(∅) + (−1)1 rad(2) + (−1)1 rad(3) + (−1)0 rad(2 · 3)
= 1 − 2 − 3 + 6 = 2 ≥ 0,

ρ(∅, {2, 5}) = (−1)2 rad(∅) + (−1)1 rad(2) + (−1)1 rad(5) + (−1)0 rad(2 · 5)
= 1 − 2 − 5 + 10 = 4 ≥ 0,

ρ(∅, {3, 5}) = (−1)2 rad(∅) + (−1)1 rad(3) + (−1)1 rad(5) + (−1)0 rad(3 · 5)
= 1 − 3 − 5 + 15 = 8 ≥ 0,

and finally:

ρ(∅, {2, 3, 5}) = (−1)3 rad(∅) + (−1)2(rad(2) + rad(3) + rad(5))+
+ (−1)1(rad(2 · 3) + rad(2 · 5) + rad(3 · 5)) + (−1)0 rad(2 · 3 · 5)
= −1 + 10 − 31 + 30 = 8 ≥ 0.

Hence we also expect the arithmetic Tutte polynomial to have non-negative coefficients.
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Indeed,

M(x, y) =
∑︂

A⊆X

rad(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

(rk(A) = |A|) =
∑︂

A⊆X

rad(A)(x− 1)rk(X)−rk(A)

= rad(∅)(x− 1)3 + (x− 1)2(rad(2) + rad(3) + rad(5))+
+ (x− 1)(rad(2 · 3) + rad(2 · 5) + rad(3 · 5)) + rad(2 · 3 · 5)
= (x− 1)3 + 10(x− 1)2 + 31(x− 1) + 30
= x3 + 7x2 + 14x+ 8.

So X = {2, 3, 5} really does deliver an arithmetic matroid.
Regarding these two examples the question arises, what did go wrong in the first one

or rather why did the second one work out? A superficial survey on the elements of both
underlying lists points out that 2, 3 and 5 are primes while 4 and 6 are definitely not.
This suggests a connection. However, it turns out that the elements of the list X do not
have to be prime to generate an arithmetic matroid. It is enough that they are pairwise
coprime. Since we consider X ⊆ Q a list of rationals, we need to clarify what we mean
by this term in our context.

Definition. Let R be an UFD and Q its quotient field. We say that x, y ∈ Q are coprime
if their radicals rad(x) and rad(y) are coprime in R, i.e. they do not share any common
prime factors in their factorisation.
Additionally a list A ⊆ Q is called coprime if all its elements are pairwise coprime.

Remark. In our situation this means, that two rationals are coprime if their radicals are
coprime in the classical integer-sense. For example 7

2 and 3
5 are coprime while 15

80 and 1
111

are not since their radicals share a 3.
With this new notion we obtain the following crucial result.

Proposition 4.2.1. Let X = {p1, p2, . . . , pn} ⊆ Q be coprime and such that |pi| ≠ 1 for
all i ∈ [n]. Then M = (X, rk, rad) defines an arithmetic matroid.

Proof. We already know that M is a quasi-arithmetic matroid due to Theorem 4.1.3.
Thus it remains to check positivity.
Since all elements of X are pairwise coprime and not equal to plus or minus one we
conclude that the list X does only consist of coloops. Therefore we have that every pair
of sublists A ⊆ B ⊆ X gives a molecule [A,B]. Now since also all elements of B are
pairwise coprime we obtain for every C ∈ [A,B] that

rad(C) = rad(A ∪ (C ∩ (B \A))) = rad(A) · rad(C ∩ (B \A)).

And this yields that we have

ρ(A,B) = rad(A) · ρ(∅, B \A).
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Hence, just like in the previous example, it is enough to show ρ(∅, Z) ≥ 0 for all sublists
Z ⊆ X. By abuse of notation we write Z = {p1, p2, . . . , pk}, k ≤ n. Then we prove

ρ(∅, Z) =
∑︂

A⊆Z

(−1)|Z|−|A| rad(A) ≥ 0

by induction on k, the number of elements in Z. (Note that the factor (−1)|T | from the
definition of ρ(R,S) vanishes since we do not have any loops, i.e. T = ∅.)
k = 0: In this case we have Z = ∅ and

ρ(∅, ∅) = (−1)0 rad(∅) = 1 ≥ 0.

k > 0: Assume we have ρ(∅, Z ′) ≥ 0 for all Z ′ ⊆ X with |Z ′| < k. Then we compute for
Z = {p1, . . . , pk}:

ρ(∅, Z) =
∑︂

A⊆Z

(−1)|Z|−|A| rad(A)

=
∑︂

pk∈A⊆Z

(−1)|Z|−|A| rad(A) +
∑︂

pk /∈A⊆Z

(−1)|Z|−|A| rad(A)

(∗) =
∑︂

A′⊆Z′

(−1)|Z′|−|A′| rad(A′) · rad({pk}) +
∑︂

A′⊆Z′

(−1)|Z′|−|A′|+1 rad(A′)

=
(︁

rad(pk) − 1
)︁

·
∑︂

A′⊆Z′

(−1)|Z′|−|A′| rad(A′)

=
(︁

rad(pk) − 1
)︁⏞ ⏟⏟ ⏞

≥0

· ρ(∅, Z ′)⏞ ⏟⏟ ⏞
≥0

≥ 0,

where at (∗) we set A′ := A \{pk} and Z ′ := Z \{pk}. In the last line we used our
induction hypothesis for Z ′. This yields the proof.

We now would like to analyse the case, where we also include loops. In our setting a
loop is either a 1 or −1. Since both give us the same radical and do not interfere with
any independences we can assume without loss of generality that all loops included are
equal to plus one. Moreover 1 is trivially coprime with any other number and thus we
get the following.

Proposition 4.2.2. Let X = {p1, p2, . . . , pn,

m times⏟ ⏞⏞ ⏟
1, 1, . . . , 1} ⊆ Q be coprime such that

|pi| ≠ 1 for all i ∈ [n]. Then M = (X, rk, rad) defines an arithmetic matroid.

Proof. Following the reasoning of the proof of the last Proposition 4.2.1 we deduce
that it is enough to show ρ(∅, Z) ≥ 0 for all sublists Z ⊆ X. Once more we write

Z = {p1, p2, . . . , pk,

l times⏟ ⏞⏞ ⏟
1, . . . , 1} by abuse of notation. We operate again by induction, this

time on l the number of loops contained in Z.
l = 0: This case is already covered by the proof of Proposition 4.2.1. Hence we move on.
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l > 0: Set 1l := {1, 1, . . . , 1} be the list containing 1 exactly l times. Choose one of this
loops in 1l and mark it as 1̂. Then for Z we compute:

ρ(∅, Z) = (−1)l
∑︂

A⊆Z

(−1)|Z|−|A| rad(A)

= (−1)l
∑︂

1̂∈A⊆Z

(−1)|Z|−|A| rad(A) + (−1)l
∑︂

1̂/∈A⊆Z

(−1)|Z|−|A| rad(A)

(∗) = (−1)l
∑︂

A′⊆Z′

(−1)|Z′|−|A′| rad(A′) + (−1)l+1 ∑︂
A′⊆Z′

(−1)|Z′|−|A′| rad(A′)

= (−1)l(︁ρ(∅, Z ′) − ρ(∅, Z ′)
)︁

= 0 ≥ 0.

Here, at (∗) we define Z ′ to be the list that contains the same elements as Z but with
one 1 less. Note that deleting a 1 also does not change the radical! However, this proves
the assertion.

Remark. The very attentive reader might have noticed that the proof by induction given
above did not use any induction hypothesis. And that is right. The proof is not really an
induction but a simple case distinction. However, since it obviously has the shape of an
induction, even reducing the problem to the lower case, I decided to leave it that way.
Moreover this yields the fascinating observation that for radical matroids ρ(R,S) = 0
whenever S contains a loop which is not already contained in R.

In the first example given above the list X = {4, 6} did not give an arithmetic matroid.
Clearly 4 and 6 are not coprime. However, this is not the main reason why this list fails
to induce an arithmetic matroid. Indeed it is easy to give an example of a list X that is
not coprime, but satisfies positivity (P).
Example. Let X = {15, 21}. Then X is not coprime since gcd(15, 21) = 3. However, one
can compute that

ρ(A,A) = rad(A) ≥ 0, ∀A ⊆ X,

ρ(∅, {15}) = −1 + 15 = 14,
ρ(∅, {21}) = −1 + 21 = 20,

ρ(∅, {15, 21}) = 1 − 15 − 21 + 105 = 70
ρ({15}, {15, 21}) = −15 + 105 = 90
ρ({21}, {15, 21}) = −21 + 105 = 84.

Thus we checked that X really induces an arithmetic matroid even though it is not
coprime.

We deduce that it is not a simple matter of being coprime or not that decides whether
positivity works out. The following result states simple conditions to check, whether
positivity fails and their proof will explain why.

Lemma 4.2.3. Let X = {α, x1, . . . , xn} ⊆ Q∗ be a list with |α| ≠ 1. Now if there exists
a sublist A ⊆ X \{α} such that
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• α is independent of A and

• rad(α) divides rad(A),

then the resulting multiplicity matroid M = (X, rk, rad) is not arithmetic.

Proof. Let A = {a1, a2, . . . , ak} ⊆ X \{α} be minimal such that rad(α)| rad(A). I.e if
a ∈ A then rad(α) does not divide rad(A \{a}). Now |α| ≠ 1 implies that A is not empty,
hence there exists an a1 ∈ A. Additionally, the minimality condition on A yields that
rad(A \{a1}) ̸= rad(A). Therefore the element a1 must introduce new primes to the
radical, which tells us that a1 is independent of A.

By all this we conclude that [A \{a1}, A ∪ {α}] is a molecule with free set F = {a1, α}
and empty torsion set T = ∅. But for this molecule we compute

ρ(A \{a1}, A ∪ {α}) = (−1)|T | ∑︂
A \{a1}⊆C⊆A∪{α}

(−1)|A∪{α}|−|C| rad(C)

= rad(A \{a1}) − rad(A) − rad((A ∪ {α}) \{a1}) + rad(A ∪ {α})⏞ ⏟⏟ ⏞
=rad(A)

= rad(A \{a1}) − rad((A ∪ {α}) \{a1})⏞ ⏟⏟ ⏞
=l·rad(A \{a1})

< 0.

In the last line we used that α is independent of A and hence also independent of A \{a1}.
In terms of multiplicities this yields that rad(A \{a1}) divides rad((A ∪ {α}) \{a1}).
Moreover we cannot have equality because then we would get rad(α)| rad(A \{a1}) =
rad((A ∪ {α}) \{a1}) which contradicts the minimality condition on A. Hence we have

rad((A ∪ {α}) \{a1}) = l · rad(A \{a1})

for some integer l ≥ 2 and thus the negativity stated above. Therefore we found a
molecule not satisfying positivity. Hence M cannot be an arithmetic matroid.

Remark. The lemma above applies to the example of X = {4, 6}, since 4 is independent
of {6} in the multiplicative Z–lattice ⟨2, 3⟩Z spanned by the underlying primes. However,
we have that rad(4) = 2 divides 6 = rad({6}).

Remark. The independence condition in Lemma 4.2.3 is crucial. If we take X = {2, 4}
then the construction [∅, {2, 4}] from the proof of the lemma, is not a molecule. And
indeed, since rk(X) = 1, if we compute the multiplicity Tutte polynomial we get

M(x, y) =
∑︂

A⊆X

rad(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

= (x− 1)⏞ ⏟⏟ ⏞
A=∅

+ 2⏞⏟⏟⏞
{2}

+ 2⏞⏟⏟⏞
{4}

+ 2(y − 1)⏞ ⏟⏟ ⏞
{2,4}

= x+ 2y + 1.
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Also the division condition is necessary. We have already shown that X = {15, 21} gives
an arithmetic matroid out of a not-coprime list.
Remark. Examples suggest that a list X ⊆ Q∗ induces an arithmetic matroid whenever
Lemma 4.2.3 does not apply. This would then give an if and only if statement which
fully characterises the family of arithmetic radical matroids in Q∗. However, whether this
statement is true or not is left as an open problem for the moment and may be content
of further studies.

Our next topic will be the question on how to relate radical matroids with known
examples of arithmetic matroids from other domains. Naturally this question refers
mainly to arithmetic radical matroids and the crucial property, which one might ask for,
is the one of representability.

4.2.2 Representable radical matroids

First things first, a radical matroid can only be representable if it fulfils positivity. Hence
in this section we assume all our radical matroids to be arithmetic. Another crucial
observation yields the following: Since we have in every radical matroid that rad(∅) = 1
we get the next statement trivially.

Corollary 4.2.4. An arithmetic radical matroid M = (X, rk, rad) is always torsion-free.

This is easy to see, as soon as we remind ourselves that the definition of a torsion-free
arithmetic matroid (X, rk,m) simply demands m(∅) = 1. We recall that a representable,
torsion-free matroid M = (X, rk,m) already has to be GCD. I.e. its multiplicities satisfy
the GCD-rule: ∀A ⊆ X :

m(A) = gcd({m(B) | B ⊆ A and |B| = rk(B) = rk(A)}).

Hence the next question to ask would be whether arithmetic radical matroids fulfil this
rule or not. Fortunately, we obtain the following result.

Proposition 4.2.5. A radical matroid M = (X, rk, rad) is always GCD.

Proof. Let M = (X, rk, rad) be a radical matroid and choose an arbitrary sublist A ⊆ X.
Inside of A let B be a maximal rank sublist. I.e. B ⊆ A with |B| = rk(B) = rk(A). Now
we recall that for v ∈ A, dependent on B, we have rad(B) = rad(B ∪ {v}). (Remember
this is true due the fact that v cannot contribute further prime elements without being
independent.)

However, since every element of A is dependent on B because it is of maximal rank,
we obtain that

rad(A) = rad(B).

Furthermore we conclude for any two maximal rank sublists B and B′ in A we have

rad(B) = rad(B′),
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and therefore we deduce that

rad(A) = rad(B) = gcd({rad(B′) | B′ ⊆ A and |B′| = rk(B′) = rk(A)}).

Hence, since A was arbitrary, M is GCD.

Remark. Note that the last proposition as well as its proof do also work in the more
general case where X lies in the quotient field Q of a UFD R.

To sum things up: we know that all our arithmetic radical matroids are torsion-free
and GCD. This kind of suggests that all arithmetic radical matroids could also be
representable. Unfortunately this is not the case. It turns out that only a special family
of arithmetic radical matroids is representable. The next definition yields a hint, what to
look for.

Definition. Let X ⊆ Q∗ be a list defining a radical matroid. Then we call X essentially
coprime if all independent sublists of X are coprime.

We will see that an arithmetic radical matroid is representable if and only if the
defining list X is essentially coprime. To show this will be our next big achievement.
Nevertheless to prove this assertion we need to further study the structure of arithmetic
radical matroids. The one crucial thing we know is, that Lemma 4.2.3 from the last
section may not apply to them. However, this already leads to strong conditions, that
we summarise in the following corollary.

Corollary 4.2.6. Let X ⊆ Q∗ and let M = (X, rk, rad) be the induced radical matroid.
Assume that M is also an arithmetic matroid, then we have for any sublist A ⊆ X and
every element v ∈ X that

• v is dependent on A ⇐⇒ rad(v) divides rad(A) ⇐⇒ rad(A ∪ {v}) = rad(A).

• v is independent of A ⇐⇒ there exists a prime p ∈ P that divides rad(v) but does
not divide rad(A).

I.e. every independent element must contribute new primes to the radical.

Proof. The second equivalence of the first bullet point is always true. For the rest
compare with Lemma 4.2.3.

Remark. Recall that this was not true for the list {4, 6}. Here 4 was independent of {6}
but did not contribute new primes to its radical. Hence the resulting radical matroid
could not be arithmetic. However, the list {2, 4} indeed did yield an arithmetic radical
matroid because 2 and 4 are dependent on each other.

We will use these observations to prove the main result of this section.

Theorem 4.2.7. Let X ⊆ Q∗ be a finite list of invertible rationals such that the resulting
radical matroid M = (X, rk, rad) is also an arithmetic matroid. Then M is representable
if and only if X is essentially coprime.
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Proof. We prove the theorem by constructing an arithmetic matroid isomorphism ϕ
between M and the canonical arithmetic matroid of some sublattice in Zn. Without
loss of generality, we may assume that all of the elements in X are positive, since the
multiplication with −1 ∈ Z∗ neither changes the matroid structure nor the multiplicities
on the sublists. Then, first of all we denote by PX the set of primes that occur in any
factorisation of any element of X. Equivalently, PX is the set of prime factors of rad(X).
Then, since X is finite, also PX is finite. Fix a total order on PX , for example according
to the total order in Z, and write

PX = {p1, p2, . . . , pn},

where all pi are different and pi ≤ pj if i ≤ j. Now every element v ∈ X has a unique
representation in terms of primes in PX :

v =
n∏︂

i=1
pvi

i = pv1
1 · · · · · pvn

n with vi ∈ Z for i ∈ [n].

We obtain a bijection v ↔ (v1, v2, . . . , vn) and call (v1, v2, . . . , vn) ∈ Zn the coordinate
vector of v in the prime-lattice.

We are now able to define our morphism ϕ : X → Y ⊆ Zn. Let v ∈ X then we set

ϕ(v) := rad(v) · (1 − δ0,vi)n
i=1,

where the vector (1 − δ0,vi)n
i=1 is the vector whose i’th component is given by

1 − δ0,vi =
{︄

1 if vi ̸= 0
0 if vi = 0.

In words you could say, to get ϕ(v) you put a 1 in each component, where the according
prime is represented in the factorisation of v and a 0 for each prime that does not appear,
and then you multiply everything by rad(v).

Note that ϕ is not injective in the classical set theoretic sense. For example if we have
X = {2, 3, 5, 25} then PX = {2, 3, 5} so ϕ maps into Z3. We get that ϕ(2) = (2, 0, 0),
ϕ(3) = (0, 3, 0), ϕ(5) = (0, 0, 5) but also ϕ(25) = (0, 0, 5). However, that does not matter
since we are working with lists. Hence the image list would then be given by

Y =
{︄⎛⎜⎝2

0
0

⎞⎟⎠ ,
⎛⎜⎝0

3
0

⎞⎟⎠ ,
⎛⎜⎝0

0
5

⎞⎟⎠ ,
⎛⎜⎝0

0
5

⎞⎟⎠}︄.
Here we consider Y as a sublist of the lattice Z3. Thus we get a classical arithmetic
matroid over a lattice. In this simple example one may already see that ϕ preserved
both ranks and multiplicities of sublists. Nevertheless it remains to prove this in general.
Let X again be arbitrary and essentially coprime. We need to show that for all A ⊆ X
we have rkM(A) = rkZn(ϕ(A)) and also rad(A) = m(ϕ(A)). We start by showing that ϕ
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preserves ranks.
We prove this by induction on the cardinality of A. For reasons of simplicity we will

denote both rkM and rkZn by rk. It will be always clear from the context where we study
our ranks. Then the assertion is clearly true for the empty set. For singletons {v} ⊆ X
we compute:

v = 1: Then rk({1}) = 0 = rk({0}) where 0 = ϕ(1) is the zero vector in Zn.

v ̸= 1: Then rk({v}) = 1 but since then ϕ(v) ̸= 0 also rk(ϕ(v)) = 1.

Now assume that |A| = k and ϕ preserves ranks for all lists C ⊆ X with |C| ≤ k. Take
any v ∈ X \A. We need to consider again two cases, whether v is independent of A or
dependent on it. If ϕ(v) remains independent of ϕ(A) or dependent, respectively, then
we know ϕ preserves also the rank of A ∪ {v}.

Case 1: Let v be independent of A. Then we know by Corollary 4.2.6 that the factorisation
of v includes a prime pj ∈ PX that is not included in any factorisation of elements
of A. Then by construction of ϕ we have that the j’th component of ϕ(v) equals
rad(v) while the j’th components of all elements in ϕ(A) must be zero. Thus ϕ(v)
is independent of ϕ(A).

Case 2: Let v be dependent on A. If we add rad(v) to our list X, then M is simply the
deletion of (X ∪{rad(v)}, rk, rad) by rad(v). Multiplicities and ranks stay the same.
Therefore without loss of generality we can assume rad(v) ∈ X (even v = rad(v) is
possible). Now v dependent on A implies rad(v) dependent on A and vice versa due
to Corollary 4.2.6. However, we have ϕ(v) = ϕ(rad(v)). Hence again w.l.o.g. we
may assume that v = rad(v). In the same manner we can assume that a = rad(a)
for all elements a ∈ A.
Now assume that ϕ(v) was independent of ϕ(A). Observe that by construction
of ϕ we have that ϕ(v) is independent of ϕ(A) if and only if the coordinate
vector (v1, . . . , vn) of v is dependent on the coordinate vectors (a1, . . . , an) of
the elements a ∈ A. This is true since (v1, . . . , vn) = (1 − δ0,vi)n

i=1 and also
(a1, . . . , an) = (1 − δ0,ai)n

i=1 for all a ∈ A since we assumed v = rad(v) and
a = rad(a). Eventually we remind that independence of the coordinate vectors
translates directly to independence in M, since the underlying matroid structure
was induced by the multiplicative Z–lattice of primes in PX just by definition
of radical matroids. Hence we would have v independent of A which yields the
contradiction we were looking for.

Note that ϕ preserves ranks in any case, since we never used that X was essentially
coprime. Finally we need to check if ϕ also preserves multiplicities if and only if X was
essentially coprime.

For such an essentially coprime X also each sublist A is essentially coprime. The
multiplicity m(ϕ(A)) can then be computed as the GCD of all multiplicities of all maximal
rank sublists ϕ(B) of ϕ(A), where also B ⊆ A has full rank. However, m(ϕ(B)) can be
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calculated as the GCD of all full-rank-minors of ϕ(B) as a matrix. Now observe that
all vectors of ϕ(B) are of the shape rad(v) · (1 − δ0,vi)n

i=1, v ∈ B. Hence if ϕ(B)′ is a
full-rank submatrix of ϕ(B), such that det(ϕ(B)′) gives such a minor, we may compute

det(ϕ(B)′) =
∏︂
v∈B

rad(v) det(ϕ(B)),

where ϕ(B) is the matrix resulting from ϕ(B)′ after we put every factor rad(v) outside
using the multi-linearity of the determinant. Then ϕ(B) has only values 1 or 0 and since
we have full rank we deduce that det(ϕ(B)) = 1 or −1.

Since X is essentially coprime, B is coprime and we deduce that∏︂
v∈B

rad(v) = rad(B).

Now since all w ∈ A are dependent on B we have rad(B) = rad(A). Eventually we deduce
that m(ϕ(A)) is the GCD of multiplicities which are plus or minus rad(A). Therefore we
have m(ϕ(A)) = rad(A) as demanded. This proves that all arithmetic radical matroids
defined upon essentially coprime lists are representable.

Finally it only remains to prove that the arithmetic radical matroid M is not represent-
able if the underlying list X is not essentially coprime. This means there exist elements
v, w ∈ X independent of each other such that there is a prime p that divides both rad(v)
and rad(w). Now we assume indirectly that there existed a morphism ψ : X → Zd that
preserved both ranks and multiplicities (d ∈ N some dimension). First we observe that

m(ψ(v)) = rad(v)

implies that rad(v) = gcd({ψ(v)i | i ∈ [d]}), due to the GCD rule. Here ψ(v)i just
denotes the i’th component of the vector ψ(v) ∈ Zd. The same is true for ψ(w), i.e
rad(w) = gcd({ψ(w)i | i ∈ [d]}). Now we analyse the set A = {v, w}. All full-rank minors
of ψ(A) = (ψ(v), ψ(w)) as a matrix include both nonzero entries of ψ(v) and ψ(w). Both
columns of ψ(A) are divisible by the prime p, hence each full-rank minor is divisible by
p2. Therefore again by the GCD rule we have that p2 must divide m(ψ(A)). However,
clearly p2 cannot divide rad(A). Thus

m(ψ(A)) ̸= rad(A)

and therefore the radical arithmetic matroid cannot be representable.

Remark. If X is essentially coprime, then we could choose an arbitrary basis B =
{b1, . . . , br}, where r = rk(X). Using the second basis axiom (B2) and Corollary 4.2.6
we deduce that for every other basis B′ there exists an ordering of its elements B′ =
{b′

1, . . . , b
′
r} such that

rad(bi) = rad(b′
i), for all i ∈ [r].

Moreover for every proper vector v ∈ X we have exactly one j ∈ [r] such that rad(v) =
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rad(bj) and therefore v is dependent on bj . With this in mind we can find a simpler
morphism θ : X → Zr with

θ(v) := (rad(bj) · δj,i)r
i=1,

where again δj,i denotes the Kronecker-delta. One can then show again that θ preserves
both ranks and multiplicities.

Observe that X being essentially coprime prohibits that we get into the situation
of Lemma 4.2.3. For, if α ∈ X is independent of some sublist A ⊆ X, then α is
also independent of a maximal independent sublist B ⊆ A. Therefore rad(α) and
rad(B) = rad(A) are coprime since X was essentially coprime. Therefore α could never
divide rad(A). Using this, we also get the following corollary immediately from the proof
of Theorem 4.2.7.

Corollary 4.2.8. Let M be a radical matroid that is defined upon a list X which is
essentially coprime. Then M is an arithmetic radical matroid.

Proof. In this situation we get by ϕ : X → Zn an isomorphism between M and an
arithmetic matroid in Zn. Hence M has to be arithmetic itself.

This is another minor step towards the full characterisation of all arithmetic radical
matroids. Another interesting conclusion from Theorem 4.2.7 is that there are arithmetic
radical matroids that are not representable.

Example. We have already seen that X = {15, 21} gives an arithmetic matroid. However,
it is not essentially coprime. This tells us that we have constructed an example of an
arithmetic matroid which is torsion-free, GCD, but not representable.

By this we conclude that we have found a new class of arithmetic matroids that exists
independent of the representable ones.

4.3 Final comments

The combinatorial relevance of radical matroids remains uncertain. For example the
interpretation of special values of the arithmetic Tutte polynomial could be content of
future studies. However, the concept of radical matroids opens a new application of
arithmetic matroid theory inside the realms of number theory. Matroid theory in general
is a science of connecting mathematical structures living in (a priori) very unfamiliar
domains. Now we are able to associate arithmetic matroids to a large class of lists of
rational numbers. This may enable us to further use methods from geometry and graph
theory on number theoretical questions.

Especially the radical function arises in the original formulation of the so-called abc-
conjecture, whose verification would have a strong connection to Fermat’s last theorem
(compare with [Lan93] or [Oes88]).
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Definition ((Masser, Oesterle, 1986) or [Lan93, p. 95]). A so-called abc-triple is a triple
of positive integers a, b, c ∈ N, where a and b are coprime and c = a+ b. Then clearly
the whole set {a, b, c} is coprime.

In its classical form, the abc-conjecture is then formulated in the following way.

Conjecture 4.3.1. For all real ϵ > 0 there exists a Kϵ ∈ R such that for each abc-triple
we have

c < Kϵ
(︁

rad(abc)
)︁1+ϵ

.

Now since for every abc-triple the set X = {a, b, c} is coprime, we obtain an arithmetic
radical matroid M = (X, rk, rad). For this we calculate its arithmetic Tutte polynomial
(observing |A| = rk(A) for all A ⊆ X):

Mabc(x, y) =
∑︂

A⊆{a,b,c}
rad(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

= (x− 1)3 + (rad(a) + rad(b) + rad(c))(x− 1)2+
+ (rad(ab) + rad(ac) + rad(bc))(x− 1) + rad(abc).

Therefore rad(abc) = rad(X) = Mabc(1, y). In particular we have rad(abc) = Mabc(1, 1)
and Mabc(1, 1) is equal to the volume of the zonotope spanned by the representation
ϕ(X) of M = (X, rk, rad). This yields just another small link of this famous conjecture
into the realms of geometry.

However, this concludes our study of arithmetic matroids and their arithmetic Tutte
polynomials. Its a fascinating field of research with inexhaustible possibilities for ap-
plications. Other multiplicities will give other specialisations of the arithmetic Tutte
polynomial and therefore we await a rich and fruitful series of results to be discovered in
the future.
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