
ABSTRACT

We present contributions to the theory of symmetric functions in three di!erent

but closely related directions. The first of these concerns the action of certain op-

erators, the Verschiebung operators, on various families of symmetric functions. In

the Schur function case this dates back to work of Littlewood and Richardson, and

is intimately related with the decomposition of an integer partition into its core and

quotient. More recently, Lecouvey and, indepdendently, Ayyer and Kumari pro-

vided similar expressions for the characters of the symplectic and orthogonal groups.

We lift these to the level of universal characters and give a uniform generalisation

involving a very general symmetric function defined by Hamel and King. The sec-

ond direction concerns generalisations of Littlewood-type identities involving sums

over partitions with empty 2-core. These formulae were recently conjectured by

Lee, Rains and Warnaar as bounded Littlewood identities for Macdonald polyno-

mials. We prove their conjectures in the Schur case using the powerful technique

of virtual Koornwinder integrals developed by Rains and Warnaar. Finally, we

provide combinatorial proofs of determinantal formulae, both of Jacobi–Trudi- and

Giambelli-type, for skew symplectic and orthogonal characters. These are based

on tableaux models for these skew characters given by Koike and Terada. Key

in the proofs are the Lindström–Gessel–Viennot lemma and a modified reflection

principle.

iii





ZUSAMMENFASSUNG

Diese Dissertation behandelt drei verwandte Themen innerhalb der Theorie der

symmetrischen Funktionen. Das erste Thema befasst sich mit dem sogenannten

“Verschiebungsoperator” und dessen Wirkung auf verschiedene Familien von sym-

metrischen Funktionen. Für Schur-Funktionen wurde dieses Problem zuerst in

Arbeiten von Littlewood und Richardson betrachtet und ein enger Zusammen-

hang zur Zerlegung von Zahlpartitionen in ihren Kern und Quotienten bewiesen.

Für Charaktere von symplektischen beziehungsweise orthogonalen Gruppen wur-

den ähnliche Resultate von Lecouvey und unabhängig von Ayyer and Kumari ent-

deckt. In dieser Dissertation verallgemeinern wir obige Resultate uniform für uni-

versale Charaktere, indem wir eine von Hamel und King definierte Familie von

symmetrischen Funktionen betrachten. Der zweite Teil dieser Arbeit befasst sich

mit Verallgemeinerungen von Littlewood-Identitäten für Summen über Partitionen

mit leerem 2-Kern. Diese Formeln wurden kürzlich von Lee, Rains und Warnaar in

Form von beschränkten Littlewood-Identitäten für Macdonald Polynome vermutet.

Wir beweisen ihre Vermutung für Schur-Funktionen mittels virtuellen Koornwinder-

Integralen, welche von Rains und Warnar entwickelt wurden. Der letzte Teil der

Dissertation beinhaltet kombinatorische Beweise von Jacobi–Trudi und Giambelli

Determinantenformeln für symplektische und orthogonale Charaktere, welche von

schiefen Partitionen indiziert und durch die Tableaux-Modelle von Koike und Ter-

ada definiert sind. Die Beweise bauen auf das Lindström–Gessel–Viennot Lemma

und dem modifiziertem Spiegelungsprinzip auf.
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INTRODUCTION

In this cumulative dissertation we present four contributions which broadly fall
within the realm of symmetric functions. Each component involves Schur functions
and classical group characters or their universal analogues. The first three articles
are also intimately related with the combinatorics of cores and quotients of integer
partitions. Before describing these contributions in detail, we place our work in its
historical context. This is not often done, and particularly for the first two articles
of the dissertation, brings forth aspects of the history of the theory of symmetric
functions which are not as well known as they should be.

Much of the work we present here, in particular the first two sections, has
its origins in work of A. R. Richardson and D. E. Littlewood which began with
their seminal paper on Schur functions and characters of the symmetric group
[47]. Richardson was aware of MacMahon’s extensive work on permanents and
determinants, including their relationship with the algebra of symmetric functions;
see [53]. Inspired by this, he introduced what he called the immanant of a matrix
(a name suggested by A. R. Forsyth), defined by replacing the usual sign of a
permutation w in the Leibniz formula for the determinant by the value of an
irreducible character of the symmetric group evaluated at w. The cases of the
trivial representation and the sign representation correspond to the permanent
and determinant of the matrix, respectively. Richardson computed immanants
of various matrices, including those considered by MacMahon in relation with
symmetric functions, before handing his computations over to Littlewood. Together
they realised that, when phrased in terms of a finite set of variables x1, . . . , xn,
certain immanants could be expressed as a ratio of determinants in powers of the
xi involving the partition labelling the corresponding irreducible character of the
symmetric group. After a thorough scouring of the literature, Littlewood and
Richardson discovered Schur’s thesis [67], in which the relationship between the
irreducible characters of the symmetric group and the bialternants first appeared.
They dubbed these symmetric functions “S-functions” (short for Schur functions)
and studied their properties in detail, including the first statement of what is now
called the Littlewood–Richardson rule for the product of Schur functions. In modern
terminology, they had essentially rediscovered the Frobenius characteristic map and
shown that the image of the irreducible character ωω is the Schur function sω. This
phase of their collaboration is beautifully described by Turnbull, who was close to
Richardson, in [76].

Their collaboration continued with the further papers [48, 49], in which they
consider various specialisations and variations of Schur functions which can be
obtained either by way of the immanant, or by Littlewood’s concept of “S-functions
of series” [43]. These include, for example, the principal specialisation of the
Schur functions, but in a di!erent form than Stanley’s hook-content formula [72,
Theorem 15.3], since the notion of hook-length had not yet been invented. A
di!erent flavour of formula is obtained by applying certain operators to the power
sum symmetric functions pk. Let ! denote the algebra of symmetric functions over
Q which is generated by the pk for k ↭ 1. For a positive integer t define an algebra
homomorphism εt : ! →↑ ! by

εtpk =

{
tpk/t if t divides k,

0 otherwise.
xi
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While not phrased in this precise manner, Littlewood and Richardson consider the
action of εt on the Schur functions. They characterise the vanishing precisely in
terms of the indexing partition and, when the action is nonzero, show that it is, up
to a sign, a product of t Schur functions. These results, together with more detailed
proofs, were included in Littlewood’s book first published in 1940 [44, §7].

The combinatorial underpinnings of Littlewood and Richardson’s Schur function
factorisation was only made clear in the following decades. In 1940 Nakayama
published the pair of papers [54, 55] on the modular representation theory of the
symmetric group. At the end of the second paper, he makes the striking conjecture
that for t prime the t-blocks of the symmetric group are characterised by t-core
partitions, those being partitions with no hook length equal to t. He also shows that
to each partition one may associate a unique t-core obtained by removing ribbons
of length t. Nakayama’s conjecture was proved several years later by Brauer and
Robinson [18, 65]. Robinson went on to introduce the notion of a star diagram
associated to a partition which encodes its t-hook structure [66]. This notion
was independently discovered by Nakayama and Osima [56], and expanded on by
Staal [71].

In view of the above constructions, Littlewood synthesised the above objects
into what he dubbed the t-residue and t-quotient [45]. In fact, the t-residue is just
Nakayama’s t-core and the t-quotient contains the same information as the star
diagram, but is more simply constructed. Let P denote the set of partitions and Ct

the set of all t-cores. What is now known as the Littlewood decomposition amounts
to a bijection

P →↑ Ct ↓ Pt

ϑ ↔→↑
(
t-core(ϑ), (ϑ(0), . . . ,ϑ(t→1)

)
)
,

where t-core(ϑ) is Nakayama’s t-core and the t-tuple of partitions (ϑ(0), . . . ,ϑ(t→1)
)

is Littlewood’s t-quotient. The bijection may be realised in several equivalent ways.
Littlewood gives an arithmetic construction in terms of beta sets, but there is also
the beautiful abacus model; see both [34, §2.7] and [51, p. 12]. This bijection,
while simple and elegant, has found many deep applications in various fields of
mathematics beyond modular representation theory, where it is still an important
tool. These include cranks for partition congruences [25], modular analogues of
Nekrasov–Okounkov formulae [31, 77] and the study of Hilbert schemes of points
on simple surface singularities [15, 28], to name only a few.

Littlewood gives two “applications” of the core-quotient construction in [45]: one
to character values of the symmetric group and one to a particular plethysm of
symmetric functions. In fact, both of these are equivalent to the theorem regarding
the evaluation of εtsω mentioned previously. Writing ⊋ for the empty partition,
this theorem may be stated as follows.

Theorem (Littlewood and Richardson). Let ϑ be a partition and t ↭ 2 an integer.
Then εtsω = 0 unless t-core(ϑ) = ⊋, in which case

εtsω = sgnt(ϑ)sω(0) · · · sω(t→1) ,

where sgnt(ϑ) is a sign defined in terms of the Littlewood decomposition of ϑ.

This essentially appears in [48, §4], and a slight generalisation in [49]. The proof
given by Littlewood in his book [44, §7.3] uses a twist of the Schur function by a
primitive t-th root of unity, and this equivalent formulation is often used to state
the theorem. The first two articles of this dissertation deal with generalisations
of this result involving the universal characters of the classical groups [2, 5]. This
includes a detailed discussion of the relationship with plethysm and characters of
the symmetric group. For more details see items (1) and (2) below.
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The third part of this dissertation is based on the so-called Littlewood identities,
which are a trio of summation formulae for Schur functions first written down
together by Littlewood in his book [44, p.238]. The sums are indexed respectively
by all partitions, partitions with even parts and partitions whose conjugate has even
parts. In fact, the first of these identities was already known to Schur [68]. The first
edition of his treatise on symmetric functions [50, §1.5], Macdonald gives a bounded
analogue of the Schur–Littlewood identity in which one restricts the sum-side by
demanding that the largest part of each partition occurring in the sum is bounded by
a fixed positive integer m. When the number of variables n is finite the evaluation
of this sum may be expressed as a determinant. While not noted by Macdonald,
this determinant may itself be expressed as a character of the odd orthogonal group
indexed by a partition of rectangular shape with n parts equal to m. He applied
this bounded Littlewood identity to give a new proof of MacMahon’s conjecture
for the number of symmetric plane partitions in a box [52], and further develops a
partial fraction technique for proving such identities which extends naturally to the
Hall–Littlewood polynomial case. Bounded analogues of the other two Littlewood
identities were given by Désarménien [20], Proctor [60] and Stembridge [73] and
Okada [58], respectively.

There has been continued interest in Littlewood-type identities since Littlewood
and Macdonald’s initial examples. This includes many applications to areas such
as alternating sign matrices and plane partitions [16, 17, 23, 73], longest increasing
subsequences [14], Rogers–Ramanujan-type identities [27, 73, 79], elliptic hyperge-
ometric series [63] and much more. The interested reader should consult [32] and
[64] for comprehensive references to the literature, as well as further remarks on the
history of such identities. Recently, Lee, Rains and Warnaar conjectured several
fascinating bounded Littlewood identities for Macdonald polynomials in which the
sum is over partitions with empty 2-core [42]. Surprisingly, their conjectures did not
reduce to known results in the Schur case, corresponding to q = t. Our contribution
in [4] is the resolution of their conjectures in the Schur case; see item (3) below for
more details.

Our final section deals with determinantal formulae for skew classical group
characters. While we have not delved into the full history of the Schur functions,
one of their earliest appearances is the (h-)Jacobi–Trudi formula which expresses
the Schur function as a determinant of complete homogeneous symmetric functions.
This was written down by Jacobi [33], but a rigorous proof was only provided many
years later by his student Trudi [75]. The e-Jacobi–Trudi formula was subsequently
discovered by Nägelsbach [57], and proved again by Kostka [38]. A direct proof that
these two determinants are equal in the case of the skew Schur functions is due to
Aitken [10].

The Schur functions may be realised as the characters of the irreducible polynomial
representations of GLn(C). The classical groups Sp2n(C), O2n(C) and SO2n+1(C)
also carry irreducible representations indexed by partitions. The characters of these
representations are Laurent polynomials in n variables which are invariant under
permutation and reciprocation. In his book on the classical groups, Weyl gives
Jacobi–Trudi-type expressions for these characters in terms of complete homogeneous
symmetric functions with alphabets (x1, 1/x1, . . . , xn, 1/xn).

The skew Schur functions may be expressed as a multivariate generating function
for skew semistandard Young tableaux. By interpreting such tableaux as intersection
lattice paths, Gessel and Viennot gave a beautiful combinatorial proof of the Jacobi–
Trudi formulae for skew Schur functions by way of the Lindström–Gessel–Viennot
lemma [26]. The main contribution of our article [7] is to extend this approach to the
skew characters of the classical groups, extending work of Fulmek and Krattenthaler
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in the straight shape case [24]. The key tool is expressions for these skew characters
as multivariate generating functions for special tableaux due to Koike and Terada
[37]. Again, more detail is given in item (4) below.

To conclude the introduction we give a list of the articles produced during
the candidature, [2, 4, 5, 6, 7, 9], together with a summary of their contents.
The remainder of the thesis comprises of the first four of these, which are included
unchanged from their published or submitted versions. Details about the publication
status of each article is also included.

1. Universal characters twisted by roots of unity,
Algebraic Combinatorics 6 (2023), 1653–1676.

In the pair of papers [48, 49], essentially sequels to [47], Littlewood and
Richardson computed the value of the Schur function with variables twisted
by a primitive t-th root of unity ϖ. That is, for Xn := (x1, . . . , xn) a
finite set of variables, they evaluated the Schur function at the alphabet
(Xn, ϖXn, . . . , ϖt→1Xn) where for a ↗ C we define aXn := (ax1, . . . , axn).
The vanishing is characterised in terms of the indexing partition. When the
evaluation is nonzero, they further show that it is, up to a sign, a product
of t Schur functions with alphabets (xt

1, . . . , x
t
n). This was rewritten by

Littlewood in his book [44, §7.3] in the more general setup of “Schur functions
of a series”. In more modern terminology, their theorem asserts that such
specialised Schur functions vanish unless the t-core of the indexing partition
ϑ is empty, and if so then the expression factors as a product of Schur
functions indexed by the t-quotient of ϑ. Farahat, a student of Littlewood,
has given a generalisation to skew Schur functions sω/µ for which the inner
shape µ is equal to the t-core of ϑ. The full skew Schur case appears in the
second edition of Macdonald’s book as an example [51, p. 91].

Inspired by a recent rediscovery of Littlewood and Richardson’s result by
Prasad [59], Ayyer and Kumari considered similar twists for the characters of
the symplectic and orthogonal groups [13]. Note that these are now Laurent
polynomials in n variables invariant under permutation and inversion of the
xi. Again the vanishing and factorisations of these twisted characters are
governed by the t-core and t-quotient of the indexing partition, but in a
di!erent form. For example, in the case of SO(2n+1,C) they show that the
twisted character vanishes unless t-core(ϑ) is self-conjugate. Their proofs
are based on the expressions for these characters as ratios of alternants,
which is the same approach taken by Littlewood and Richardson.

The main results of [2] are lifts of Ayyer and Kumari’s results to the
level of universal characters as defined by Koike and Terada [36]. These
are symmetric function lifts of the ordinary characters, and so the notion
of twisting by a root of unity is replaced by the Verschiebung operator εt,
something which is already done by Macdonald for the skew Schur case
mentioned above. The proofs are also rather based on Jacobi–Trudi-type
formulae for the universal characters, often taken as a definition, and derived
by Weyl in the case of the ordinary characters [81, Theorems 7.8.E & 7.8.A].

The end of the paper contains some discussions of variations on character
factorisations for other symmetric functions as well as short universal char-
acter lifts of some factorisation results of a very di!erent kind discovered by
Ciucu and Krattenthaler [19] and subsequently generalised by Ayyer and
Behrend [11].
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2. Character factorisations, z-asymmetric partitions and plethysm,
preprint, arXiv:2501.18520.

This paper greatly expands on the main results of the previous one. In
particular, we embed all of the factorisations of classical group characters
(including the Schur functions, corresponding to the GLn case) under the
Verschiebung operator in an infinite family involving an integer z and a
parameter q. Moreover, the signs involved are much more simply expressed
in terms of statistics on the indexing partitions. What facilitates this
generalisation is a very general symmetric function defined by Hamel and
King [29, 30] which contains the Schur functions and the universal characters
as special cases. We also study z-asymmetric partitions under the Littlewood
decomposition, and prove a characterisation result in this context. This
generalises classifications for self-conjugate and doubled distinct partitions,
corresponding to the cases z = 0 and z = 1, respectively, which are well
known.

The last part of the paper deals with the adjoint problem of computing
plethysms of symmetric functions by power sums. In the Schur case this
dates back to Littlewood [45, p. 351], and is referred to as the SXP rule. A
generalisation of this rule, manifesting as the Schur function expansion of
the expression sε (sω/µ ↘ pt), has been given a purely combinatorial proof
by Wildon [82], which we point out is equivalent to the action of the
Verschiebung operator on the skew Schur functions. In [41], Lecouvey used
his expressions for the symplectic and orthogonal characters under εt to
give analogues of the SXP rule for the universal characters. Remarkably, the
coe"cients in these expressions may all be expressed in terms of branching
coe"cients associated with SO(2n + 1,C). We simplify the statement of
these rules, and, in particular, show that the coe"cients vanish unless the
t-core of the indexing partition is empty in all three cases. The paper
concludes by explaining the connection between these results, symmetric
functions twisted by roots of unity and characters of the symmetric group.

A preliminary version of this work was published in the proceedings of
FPSAC 2025 and presented as a poster [3].

3. Proof of some Littlewood identities conjectured by Lee, Rains and

Warnaar,
Proceedings of the American Mathematical Society, Series B 11 (2024),
133–146.

The original Littlewood identities are a trio of summation formulae for Schur
functions, first written down together by Littlewood in his book [44, p. 238],
where sum is over either all partitions, all partitions with even parts, or all
partitions whose conjugate has even parts. They have many generalisations,
including bounded variants and analogues for other families of symmetric
functions. A major breakthrough in approaching these types of identities
was made by Rains and Warnaar [64] who prove many bounded Littlewood
identities for Macdonald–Koornwinder polynomials attached to root systems.
The key tools are various virtual Koornwinder integrals, originally introduced
by Rains [61]. Together with Lee [42], they further conjectured a new pair
of bounded Littlewood identities for Macdonald polynomials in which the
sum is over all partitions with empty 2-core, generalising Macdonald’s lifts
of the original Littlewood identities [51, p. 349].

Setting q = t in the Macdonald polynomial Pω(q, t) recovers the Schur
function sω. Surprisingly, the conjectured identities of Lee, Rains and

https://arxiv.org/abs/2501.18520
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Warnaar do not reduce to known identities for Schur functions, and, in
particular, the 2-core restriction is still present. (The same is not true of the
Hall–Littlewood case, q = 0, in which the 2-core restriction drops out.) The
main result of [4] is the resolution of the Schur cases of these conjectures in
the bounded case using the approach outlined by Lee, Rains and Warnaar
based on turning certain virtual Koornwinder integrals into Pfa"ans, which
may be simply evaluated. The full cases of their conjectures remain open.

4. Skew symplectic and orthogonal characters through lattice paths,
(joint with I. Fischer, H. Höngesberg and F. Schreier-Aigner)
European Journal of Combinatorics 122 (2024), Paper No. 104000, 26 pp.
The classical Jacobi–Trudi formulae are a fundamental pair of identities
expressing the (skew) Schur functions as determinants of elementary or
complete homogeneous symmetric functions. These formulae have beautiful
combinatorial proofs by way of the Lindström–Gessel–Viennot Lemma, in-
terpreting skew semistandard tableaux as families of nonintersecting lattice
paths [26]. Weyl proved analogues of the Jacobi–Trudi formulae for charac-
ters of the symplectic and orthogonal groups, which again may be expressed
as determinants of elementary or complete homogeneous functions with
variables (x1, 1/x1, . . . , xn, 1/xn) where n is the rank of the corresponding
Lie group [81, Theorems 7.8.E & 7.8.A]. Lattice path proofs of these identi-
ties were provided by Fulmek and Krattenthaler [24], who utilised various
tableaux models due to Proctor, Sundaram and King and Welsh, as well as
a modified reflection principle.

Compared to their non-skew counterparts, the skew characters of the
symplectic and orthogonal groups have received little attention from a com-
binatorial point of view. Indeed, from the perspective of combinatorics
one only finds the tableaux models of Koike and Terada [37] and some
factorisation theorems involving skew Schur functions [11, 12] in the liter-
ature. Our paper expands on this by providing the first e-Jacobi–Trudi
formulae for these skew characters together with lattice path proofs, the
h-Jacobi–Trudi formulae first appearing only recently in the work of Jing,
Li and Wang [35]. We use the tableaux models of Koike and Terada, which,
even in the non-skew case, lead to simpler proofs than those of Fulmek and
Krattenthaler.

Another type of determinantal formula for the Schur functions is the
Giambelli formula, which expresses the Schur function as a determinant
of Schur functions indexed by hook-shaped partitions. An extension of
the Giambelli formula for skew Schur functions was provided by Lascoux
and Pragacz [39]. Another upshot of the Koike–Terada tableaux is that we
are able to provide Lascoux–Pragacz-type identities for the skew classical
characters, together with purely combinatorial proofs.

5. Elliptic An Selberg integrals

(joint with E. M. Rains and S. O. Warnaar)
Constructive Approximation, to appear (accepted February 11th, 2025),
arXiv:2306.02442.
The Selberg integral is perhaps the most important example of a hypergeo-
metric integral. A k-dimensional generalisation of Euler’s beta integral, it
was discovered by Selberg in 1941 and he published a proof of his evaluation
in 1944 [69, 70]. After a period of obscurity it has since found applications in
a broad array of mathematical fields such as random matrix theory, analytic
number theory, enumerative combinatorics and conformal field theory. In

https://arxiv.org/abs/2306.02442
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this work we unify two generalisations of the Selberg integral for the first
time. The first of these is the Selberg integral associated with the Lie
algebra An, first evaluated by Warnaar [80], building on work of Tarasov
and Varchenko in the case of A2 [74]. The second is the elliptic Selberg
integral, conjectured by van Diejen and Spiridonov [21, 22] and proved by
Rains [62]. Our main result is an elliptic extension of the An Selberg integral,
giving the aforementioned unification of two important integral evaluations.
The evaluation is based on the very powerful elliptic interpolation kernel
of Rains. Indeed, by way of this kernel, we are able to prove extensions of
Selberg-type integrals involving symmetric functions in the integrand such
as the Alba–Fateev–Litvinov–Tarnopolsky (AFLT) integral, which recently
arose in the verification of the AGT conjecture for SU(2) [1]. This integral
was the subject of our earlier paper [8], in which many variations of the
AFLT integral are derived, including an elliptic analogue associated to A1.

6. A generalization of conjugation of integer partitions,
(joint with T. Eisenkölbl, I. Fischer, M. Gangl, H. Höngesberg, C. Kratten-
thaler and M. Rubey)
submitted, arXiv:2407.16043.
The starting point for this project was the observation that two statistics on
the set of partitions of n have symmetric joint distribution. For a positive
integer s these statistics are (1) the number of parts divisible by s and
(2) the number of cells in the Young diagram with hook length divisible
by s and zero leg-length. The proof is by way of an involution on the set
of partitions of s which interchanges the two statistics, and further leaves
invariant the sequence of nonzero remainders obtained by dividing each
part of the partition by s. For s = 1 the involution reduces to ordinary
conjugation of integer partitions. The bivariate generating function is also
derived, which was the inspiration for the construction of the involution,
and through which the symmetry may also be seen.
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UNIVERSAL CHARACTERS TWISTED BY ROOTS OF UNITY

SEAMUS P. ALBION

Abstract. A classical result of Littlewood gives a factorisation for the Schur
function at a set of variables “twisted” by a primitive t-th root of unity, charac-
terised by the core and quotient of the indexing partition. While somewhat
neglected, it has proved to be an important tool in the character theory of
the symmetric group, the cyclic sieving phenomenon, plethysms of symmetric
functions and more. Recently, similar factorisations for the characters of the
groups O(2n,C), Sp(2n,C) and SO(2n + 1,C) were obtained by Ayyer and
Kumari. We lift these results to the level of universal characters, which has
the benefit of making the proofs simpler and the structure of the factorisations
more transparent. Our approach also allows for universal character extensions
of some factorisations of a di!erent nature originally discovered by Ciucu and
Krattenthaler, and generalised by Ayyer and Behrend.
Keywords: Schur functions, symplectic characters, orthogonal characters,
universal characters, t-core, t-quotient.
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1. Introduction

In his 1940 book The Theory of Group Characters and Matrix Representations of
Groups, D. E. Littlewood devotes a section to the evaluation of the Schur function
sω at a set of variables “twisted” (not his term) by a primitive t-th root of unity ω

2020 Mathematics Subject Classification. 15A15, 20C15, 05E05, 05E10.
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[27, §7.3]. In modern terminology, Littlewood’s theorem asserts that sω evaluated
at the variables ω

j
xi for 1 ↭ i ↭ n and 0 ↭ j ↭ t→ 1 is zero unless the t-core of ε

is empty. Moreover, when it is nonzero, it factors as a product of Schur functions
indexed by the elements of the t-quotient of ε, each with the variables x

t
1, . . . , x

t
n.

The Schur functions are characters of the irreducible polynomial representations of
the general linear group GL(n,C). Ayyer and Kumari [5] have recently generalised
Littlewood’s theorem to the characters of the other classical groups O(2n,C),
Sp(2n,C) and SO(2n+ 1,C) indexed by partitions. While their factorisations are
still indexed by the t-quotient of the corresponding partition, the vanishing is
governed by the t-core having a particular form. More precisely, t-core(ε) is of the
form (a | a+ z) in Frobenius notation, where z = →1, 1, 0, for O(2n,C), Sp(2n,C)
and SO(2n+ 1,C) respectively. Note that these are the same partitions occurring
in Littlewood’s Schur expansion of the Weyl denominators for types Bn, Cn and Dn

[27, p. 238] (see also [31, p. 79]).
Littlewood’s proof, and the proofs of Ayyer and Kumari, use the Weyl-type

expressions for the characters as ratios of alternants. In the Schur case, Chen,
Garsia and Remmel [7] and independently Lascoux [24, Theorem 5.8.2] have given
an alternate proof based on the Jacobi–Trudi formula (2.3). This approach was
already known to Farahat, who used it to extend Littlewood’s theorem to skew
Schur functions sω/µ where µ is the t-core of ε [12, Theorem 2]. The full skew Schur
case was then given by Macdonald [31, p. 91], again proved using the Jacobi–Trudi
formula; see Theorem 3.1 below.

In this article we lift the results of Ayyer and Kumari to the much more general
universal characters of the groups O(2n,C), Sp(2n,C) and SO(2n+ 1,C) as defined
by Koike and Terada [20]. These are symmetric functions indexed by partitions
which, under appropriate specialisation of the variables, become actual characters
of their respective groups. In fact, these generalise the Jacobi–Trudi-type formulas
for the characters of these groups, which were first written down by Weyl [43,
Theorems 7.8.E & 7.9.A]. For the universal characters we generalise the notion of
“twisting” a set of variables by introducing operators ϑt : ! →↑ ! for each integer
t ↫ 2 which act on the complete homogeneous symmetric functions as

(1.1) ϑthr =

{
hr/t if t divides r,

0 otherwise.

It is not at all hard to show that the image of ϑt acting on a symmetric function at
the variables xt

1, . . . , x
t
n agrees with the result of twisting the variables x1, . . . , xn by

ω. The advantages of this framework for such factorisations are that the proofs are
much simpler, and the structure of the factorisations is made transparent. Moreover,
we are able to discuss dualities between these objects which are only present at the
universal level. A particularly important tool for our purposes is Koike’s universal
character rsω,µ (2.10) associated with a rational representation of GL(n,C). This
object, which is used later in Subsection 6.3 to prove other character factorisations,
appears to be the correct universal character analogue of the Schur function with
variables (x1, 1/x1, . . . , xn, 1/xn).

The remainder of the paper reads as follows. In the next section we outline the
preliminaries on partitions and symmetric functions needed to state our main results,
which follow in Section 3. In the following Section 4 we prepare for the proofs of
these results by giving a series of lemmas regarding cores and quotients and their
associated signs. The factorisations are then proved in Section 5, including a detailed
proof of the Schur case, following Macdonald. The final Section 6 concerns other
factorisation results relating to Schur functions and other characters. This includes
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universal extensions of factorisations very di!erent from those already discussed
originally due to Ciucu and Krattenthaler, later generalised by Ayyer and Behrend.

2. Preliminaries

2.1. Partitions. A partition ε = (ε1,ε2,ε3, . . . ) is a weakly decreasing sequence
of nonnegative integers such that only finitely many of the εi are nonzero. The
nonzero εi are called parts and the number of parts the length, written l(ε). We say
ε is a partition of n if |ε| := ε1 + ε2 + ε3 + · · · = n. Two partitions are regarded as
the same if they agree up to trailing zeroes, and the set of all partitions is written
P. A partition is identified with its Young diagram, which is the left-justified array
of squares consisting of εi squares in row i with i increasing downward. For example

is the Young diagram of (6, 4, 3, 2). We define the conjugate partition ε
→ by reflecting

the diagram of ε in the main diagonal x = y, so that the conjugate of (6, 4, 3, 2) above
is (4, 4, 3, 2, 1, 1). If ε = ε

→ then ε is called self-conjugate. For a square at coordinate
(i, j) where 1 ↭ i ↭ l(ε) and 1 ↭ j ↭ εi the hook length is h(i, j) = εi+ε

→
j→ i→j+1.

For example the square (1, 2) in

has hook length 8, with its hook shaded. A partition ε is a t-core if it contains no
squares of hook length t, the set of which is denoted Ct. For a pair of partitions ε, µ
we write µ ↓ ε if the diagram of µ can be drawn inside the diagram of ε, i.e., if
µi ↭ εi for all i ↫ 1. In this case we can form the skew shape ε/µ by removing the
digram of µ from that of ε. For example (3, 2, 1, 1) ↓ (6, 4, 3, 2) and the diagram of
(6, 4, 3, 2)/(3, 2, 1, 1) is given by the non-shaded squares of

A skew shape is called a ribbon (or border strip, rim hook, skew hook) if its diagram
is connected and contains no 2 ↔ 2 square. A t-ribbon is a ribbon with t boxes.
The height of a t-ribbon R, written ht(R), is one less than the number of rows it
occupies. In our example above R = (6, 4, 3, 2)/(3, 2, 1, 1) is an 8-ribbon with height
ht(R) = 3. We say a skew shape is tileable by t-ribbons or t-tileable if there exists a
sequence of partitions

(2.1) µ = ϖ
(0) ↓ ϖ

(1) ↓ · · · ↓ ϖ
(k↑1) ↓ ϖ

(k)
= ε

such that ϖ(i)/ϖ(i↑1) is a t-ribbon for 1 ↭ i ↭ k. A sequence D = (ϖ
(0)

, . . . , ϖ
(k)

) (not
to be confused with the t-quotient of ϖ below, for which we use the same notation)
satisfying (2.1) is called a ribbon decomposition (or border strip decomposition) of
ε/µ. We define the height of a ribbon decomposition to be the sum of the heights of
the individual ribbons: ht(D) :=

∑k
i=1 ht(ϖ

(i)
/ϖ

(i↑1)
). As shown by van Leeuwen

[26, Proposition 3.3.1] and Pak [35, Lemma 4.1] (also in [2, §6]), the quantity
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(→1)
ht(D) is the same for every ribbon decomposition of ε/µ. We therefore define

the sign of a t-tileable skew shape ε/µ as

(2.2) sgnt(ε/µ) := (→1)
ht(D)

.

Let rk(ε) be the greatest integer such that rk(ε) ↫ εrk(ω), usually called the
Frobenius rank of ε. Equivalently, rk(ε) is the side length of the largest square
which fits inside the diagram of ε (the Durfee square). A partition can alternatively
be written in Frobenius notation as

ε =
(
ε1 → 1, . . . ,εrk(ω) → rk(ε) | ε→

1 → 1, . . . ,ε
→
rk(ω) → rk(ε)

)
.

Any pair of integer sequences a1 > · · · > ak ↫ 0 and b1 > · · · > bk ↫ 0 thus
determines a partition ε = (a | b) with rk(ε) = k. For z ↗ Z and an integer sequence
of predetermined length a = (a1, . . . , ak) we write a + z := (a1 + z, . . . , ak + z).
Following Ayyer and Kumari [5, Definition 2.9], ε is called z-asymmetric if it is
of the form ε = (a | a + z) for some integer sequence a and integer z. Clearly a
0-asymmetric partition is self-conjugate. Partitions which are →1- and 1-asymmetric
are called orthogonal and symplectic respectively.

2.2. Cores and quotients. We now describe the t-core and t-quotient of ε arith-
metically following [31, p. 12]. There are many equivalent descriptions, see for
instance [13, 15, 16, 42]. We begin with the beta set of a partition, which is simply
the set of n integers

ϱ(ε;n) := {ε1 + n→ 1,ε2 + n→ 2, . . . ,εn↑1 + 1,εn},
where n ↫ l(ε) is fixed. The number of elements in this set congruent to r modulo
t is denoted by mr(ε;n) = mr. Each element which falls into residue class r for
0 ↭ r ↭ t→1 can be written as ς(r)k t+r for some integers ς(r)1 > · · · > ς

(r)
mr ↫ 0. These

integers are used to define a partition with parts ε
(r)
k = ς

(r)
k →mr(ε;n) + k where

1 ↭ k ↭ mr(ε;n), and the ordered sequence (ε
(0)

, . . . ,ε
(t↑1)

) of these partitions
is called the t-quotient. The precise order of the constituents of the t-quotient
depends on the residue class of n modulo t. However, the orders only di!er by cyclic
permutations, and Macdonald comments that it is best to think of the quotient
as a sort-of “necklace” of partitions. To simplify things somewhat, we adopt the
convention that the t-quotient is always computed with n a multiple of t, so that
the order of its constituents is fixed. To define the t-core, one writes down the n

distinct integers kt+ r where 0 ↭ k ↭ mr(ε;n)→ 1 and 0 ↭ r ↭ t→ 1 in descending
order, say as ς̃1 > · · · > ς̃n. Then t-core(ε)i := ς̃i →n+ i. If t-core(ε) is empty then
we say ε has empty t-core.

It will prove useful later on to work with the bead configurations (or bead diagrams,
abacus model) of James and Kerber [16, §2.7], which give a di!erent model for t-cores
and t-quotients. The “board” for a bead configuration is the set of nonnegative
integers arranged in t downward-increasing columns, called runners, according to
their residues modulo t. A bead is then placed at the space corresponding to
each element of ϱ(ε;n). For an example, let ε = (4, 4, 3, 2, 1) so that ϱ(ε; 6) =

{9, 8, 6, 4, 2, 0}. Then the bead configuration for ε with t = 3 and n = 6 and the
beads labelled by their position is

0 2

4

6 8

9
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Moving a bead up one space is equivalent to reducing one of the elements of ϱ(ε;n)
by t. This is, in turn, equivalent to removing a t-ribbon from ε such that what
remains is still a Young diagram (see for instance [31, p. 12]). Pushing all beads to
the top will give the bead configuration of t-core(ε), and this is clearly independent
of the order in which the beads are pushed. It follows that t-core(ε) is the unique
partition obtained by removing t-ribbons (in a valid way) from the diagram of
ε until it is no longer possible to do so. We note that if removing a ribbon R

corresponds to moving a bead from position b to b→ t, then ht(R) is equal to the
number of beads lying at the positions strictly between b→ t and b. The t-quotient
can be obtained from the bead configuration by reading the r-th runner, bottom-
to-top, as a bead configuration with mr(ε;n) beads. For our example, this means
that ϱ(t-core(ε); 6) = {6, 5, 3, 2, 1, 0}, so that t-core(ε) = (1, 1), with the quotient
((1, 1), (1), (1)) computed similarly.

The above procedure of computing the t-core and t-quotient actually encodes a
bijection

φt : P →↑ Ct ↔ Pt

ε ↘→↑
(
t-core(ε), (ε(0)

, . . . ,ε
(t↑1)

)
)
,

such that |ε| = |t-core(ε)|+ t(|ε(0)|+ · · ·+ |ε(t↑1)|). The arithmetic description of
this correspondence was first written down by Littlewood [29]. The idea of removing
ribbons from a partition until a unique core is obtained goes back to Nakayama [33].
The t-quotient of a partition has its origin in the star diagrams of Nakayama, Osima,
Robinson and Staal [34, 39, 40], which were shown to be equivalent to Littlewood’s
t-quotient by Farahat [10].

Let wt(ε;n) be the permutation of ϱ(ε;n) which sorts the elements of the beta
set so that their residues modulo t are increasing, and the elements within each
residue class decrease. The sign of wt(ε;n) will be denoted sgn(wt(ε;n)). The
permutation wt(ε;n) can also be read o! the bead configuration by first labelling
the beads “backwards”: label the bead with largest place 1, second-largest 2, and so
on. Reading the labels column-wise from bottom-to-top gives wt(ε;n) in one-line
notation. An inversion in this permutation corresponds to a pair of beads b1, b2 such
that b2 lies weakly below and strictly to the right of b1. With the same example
as before w3((4, 4, 3, 2, 1); 6) = 136425 and the bead at position 0 generates three
inversions, as it “sees” the beads 2, 4 and 8.

As follows from the above, a partition ε has empty t-core if and only if it is
t-tileable. In our results below we will need the following characterisation of when a
skew shape is t-tileable, generalising the notion of “empty t-core” to this case. We
briefly recall our convention that t-quotients are always computed with the number
of beads in the bead configuration a multiple of t.

Lemma 2.1. A skew shape ε/µ is tileable by t-ribbons if and only if t-core(ε) =
t-core(µ) and µ

(r) ↓ ε
(r) for each 0 ↭ r ↭ t→ 1.

Proof. The skew shape being t-tileable is equivalent to the diagram of µ being
obtainable from the diagram of ε by removing t-ribbons. In other words, we can
obtain the bead configuration of µ from that of ε, where both have nt beads, by
moving beads upwards. Assume that this is the case. Then mr(ε;nt) = mr(µ;nt)

for each 0 ↭ r ↭ t → 1, so that the r-th runner has the same number of beads
in each diagram. This implies that t-core(ε) = t-core(µ). It also follows that the
i-th bead in each runner of ε’s bead configuration must lie weakly below the i-th
bead in the same runner of µ’s bead configuration. Equivalently, µ(r)

i ↭ ε
(r)
i for all

0 ↭ r ↭ t→ 1 and 1 ↭ i ↭ mr(ε;nt), which in turn is equivalent to µ
(r) ↓ ε

(r). The
reverse direction is now clear. ↬



6 SEAMUS P. ALBION

Note that the lemma is also true when the t-quotients of ε and µ are computed
using the same integer n of any residue class modulo t. If ε/µ is t-tileable, then we
think of ε(0)

/µ
(0)

, . . . ,ε
(t↑1)

/µ
(t↑1) as its t-quotient. When ε/µ is not t-tileable, it

is not so clear how to define the t-quotient.

2.3. Symmetric functions and universal characters. Here we discuss some
basics of the theory of symmetric functions, following [31]. Let ! denote the ring of
symmetric functions in an arbitrary countable set of variables X = (x1, x2, x3, . . . ),
called an alphabet. Where possible, we write elements of ! without reference to an
alphabet if the expression is independent of the chosen alphabet. If for a positive
integer n one sets xi = 0 for all i > n then the elements of ! reduce to symmetric
polynomials in the variables (x1, . . . , xn). Another common specialisation sets
xn+i = x

↑1
i for 1 ↭ i ↭ n and xi = 0 for i > 2n. This gives Laurent polynomials

in the xi invariant under permutation and inversion of the variables (i.e., BCn-
symmetric functions). We will later write (x

±
1 , . . . , x

±
n ) for this alphabet.

Two fundamental algebraic bases for ! are the complete homogeneous symmetric
functions and the elementary symmetric functions, defined for any positive integer
r by

hr(X) :=

∑

1↭i1↭···↭ir

xi1 · · ·xir and er(X) :=

∑

1↭i1<···<ir

xi1 · · ·xir ,

respectively. We further set h0 = e0 := 1 and h↑r = e↑r = 0 for positive r. These
admit the generating functions

Hz(X) :=

∑

r↫0

z
r
hr(X) =

∏

i↫1

1

1→ zxi

Ez(X) :=

∑

r↫0

z
r
er(X) =

∏

i↫1

(1 + zxi).

The hr and er for r ↫ 1 are algebraically independent over Z and generate !. In view
of this, we can define a homomorphism ↼ : ! →↑ ! by ↼hr = er. It then follows
from the relation Hz(X)E↑z(X) = 1 that ↼er = hr, so that ↼ is an involution. We
also define the power sums by

pr(X) :=

∑

i↫1

x
r
i ,

for r ↫ 1 and p0 := 1. These satisfy ↼pr = (→1)
r↑1

pr.
The most important family of symmetric functions are the Schur functions. These

have several definitions, but for our purposes it is best to define them, already for
skew shapes, by the Jacobi–Trudi formula. If ε/µ is a skew shape and n an integer
such that n ↫ l(ε) we define

(2.3) sω/µ := det
1↭i,j↭n

(hωi↑µj↑i+j).

This is independent of n as long as n ↫ l(ε). If µ ≃↓ ε then we set sω/µ := 0. There
is also an equivalent formula in terms of the er, called the dual Jacobi–Trudi formula
(rarely also the Nägelsbach–Kostka identity)

sω/µ = det
1↭i,j↭m

(eω→
i↑µ→

j↑i+j).

Restricting to the µ empty case, we have s(r) = hr and s(1r) = er. Moreover, it is
clear that ↼sω/µ = sω→/µ→ .
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If the set of variables (x1, . . . , xn) is finite then the Schur function for µ = 0

admits another definition as a ratio of alternants

(2.4) sω(x1, . . . , xn) =
det1↭i,j↭n(x

ωj+n↑j
i )

det1↭i,j↭n(x
n↑j
i )

.

The denominator is the Vandermonde determinant and has the product repre-
sentation det1↭i,j↭n(x

n↑j
i ) =

∏
1↭i<j↭n(xi → xj). In this case we also define

sω(x1, . . . , xn) = 0 if l(ε) > n. If ε is a partition of length at most n, then

(2.5) s(ω1+1,...,ωn+1)(x1, . . . , xn) = (x1 · · ·xn)s(ω1,...,ωn)(x1, . . . , xn).

This allows for Schur functions with a finite set of n variables to be extended to
weakly decreasing sequences of integers of length exactly n.

Following Koike and Terada we define the universal characters for O(2n,C) and
Sp(2n,C) as the symmetric functions [20, Definition 2.1.1]

oω := det
1↭i,j↭n

(
hωi↑i+j → hωi↑i↑j

)
(2.6)

spω :=
1

2
det

1↭i,j↭n

(
hωi↑i+j + hωi↑i↑j+2

)
,(2.7)

where n ↫ l(ε). Like the Schur functions, these determinants also have dual versions

oω =
1

2
det

1↭i,j↭m

(
eω→

i↑i+j + eω→
i↑i↑j+2

)

spω = det
1↭i,j↭m

(
eω→

i↑i+j → eω→
i↑i↑j

)
,(2.8)

where m ↫ ε1. From this it is clear that ↼oω = spω→ . Koike alone added a third
universal character for the group SO(2n + 1,C) [19, Definition 6.4] (see also [25,
Equation (3.8)])

soω := det
1↭i,j↭n

(
hωi↑i+j + hωi↑i↑j+1

)
= det

1↭i,j↭m

(
eω→

i↑i+j + eω→
i↑i↑j+1

)
.

This universal character is self-dual under ↼, so ↼soω = soω→ . For later convenience
we also define a variant of the above as

so
↑
ω := det

1↭i,j↭n

(
hωi↑i+j → hωi↑i↑j+1

)
= det

1↭i,j↭m

(
eω→

i↑i+j → eω→
i↑i↑j+1

)
.

If X = (x1, x2, x3, . . . ) is a set of variables (which may be finite or countable) and
→X := (→x1,→x2,→x3, . . . ), then

so
↑
ω (X) = (→1)

|ω|
soω(→X),

since the hr and er are homogeneous of degree r.
For l(ε) ↭ n, each of the three above universal characters become actual char-

acters of irreducible representations of their associated groups when specialised to
(x

±
1 , . . . , x

±
n ) (hence the name universal characters).

The irreducible polynomial representations of GL(n,C) are indexed by partitions
of length at most n. On the other hand, the irreducible rational representations are
indexed by weakly decreasing sequences of integers of length n, which are called
staircases by Stembridge [41]. Such sequences are equivalent to pairs of partitions
ε, µ such that l(ε)+ l(µ) ↭ n. Given such a pair, one defines the associated staircase
[ε, µ] by [ε, µ]i := εi → µn↑i+1 for 1 ↭ i ↭ n. The characters of the rational
representations of GL(n,C) are then given by s[ω,µ](x1, . . . , xn) for all staircases
with n entries. Note that (2.5) implies that this object is just a Schur function up
to a power of x1 · · ·xn. In [28], Littlewood gave the expansion

(2.9) s[ω,µ](x1, . . . , xn) =

∑

ε

(→1)
|ε|
sω/ε(x1, . . . , xn)sµ/ε→(1/x1, . . . , 1/xn).
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For a pair of partitions ε, µ and sets of indeterminates X, Y , this may be used to
define the universal character associated to a rational representation of GL(n,C) as

(2.10) rsω,µ(X;Y ) :=

∑

ε

(→1)
|ε|
sω/ε(X)sµ/ε→(Y ).

Note that the only terms which contribute are those with ϖ ↓ ε and ϖ
→ ↓ µ. If we

let ↼X and ↼Y denote the involution ↼ acting on the set of variables in its subscript,
then

↼X↼Y rsω,µ(X;Y ) =

∑

ε

(→1)
|ε|
sω→/ε→(X)sµ→/ε(Y )

=

∑

ε→

(→1)
|ε|
sω→/ε(X)sµ→/ε→(Y )

= rsω→,µ→(X;Y ).

As shown by Koike [18], this object has a Jacobi–Trudi-type expression as a block
matrix

(2.11) rsω,µ(X;Y ) = det
1↭i,j↭n+m





(
hωi↑i+j(X)

)
1↭i,j↭n

(
hωi↑i↑j+1(X)

)
1↭i↭n
1↭j↭m(

hµi↑i↑j+1(Y )
)
1↭i↭m
1↭j↭n

(
hµi↑i+j(Y )

)
1↭i,j↭m



 ,

where n ↫ l(ε) and m ↫ l(µ). As for the other determinants, this is independent of
n and m as long as n ↫ l(ε) and m ↫ l(µ). The relation under ↼X↼Y implies we
have the dual form [18, Definition 2.1]

(2.12) rsω,µ(X;Y ) = det
1↭i,j↭n+m





(
eω→

i↑i+j(X)
)
1↭i,j↭n

(
eω→

i↑i↑j+1(X)
)
1↭i↭n
1↭j↭m(

eµ→
i↑i↑j+1(Y )

)
1↭i↭m
1↭j↭n

(
eµ→

i↑i+j(Y )
)
1↭i,j↭m



 ,

where n ↫ ε1 and m ↫ µ1. The definition (2.10) and the determinants (2.11) and
(2.12) are related by taking the Laplace expansion of each determinant according to
its presented block structure; see [18, Equation (2.1)]. Also, by the definition (2.10)
and (2.9) it is immediate that, for l(ε) + l(µ) ↭ n,

rsω,µ(x1, . . . , xn; 1/x1, . . . , 1/xn) = s[ω,µ](x1, . . . , xn).

We will always take X = Y in rsω,µ(X;Y ), which we write as rsω,µ in the rest of
the paper. In particular we note that rsω,µ = rsµ,ω.

As mentioned in the introduction, the notion of twisting the set of variables
x1, . . . , xn by a primitive t-th root of unity ω is replaced by the operator ϑt (1.1),
which has been considered by Macdonald [31, p. 91] and, for t = 2, by Baik and
Rains [6, p. 25]. Let X

t
:= (x

t
1, x

t
2, x

t
3 . . . ) and denote by ↽t the homomorphism

↽t : ! →↑ !Xt

f ↘→↑ f(X, ωX, . . . , ω
t↑1

X).

Since ↽tHz(X) = Hzt(X
t
), both ϑt and ↽t act on the hr in the same way, i.e., the

diagram

(2.13)
! !

!Xt

ϑt

ϖt
Xt

commutes, where the arrow labelled X
t is the substitution map. This implies the

claim of the introduction that the action of ϑt is equivalent to twisting the alphabet
X by a primitive t-th root of unity ω. If one wishes to think about this as a map
!X →↑ !X where X is some concrete alphabet, then substitute each x ↗ X by its
set of t-th roots x1/t

, ωx
1/t

, . . . , ω
t↑1

x
1/t and evaluate this expression. By the action
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of this map on the hr, such a map gives a symmetric function again in the variables
X. Using the generating function Ez(X) one may also show that [24, §5.8]

ϑter =

{
(→1)

r(t↑1)/t
er/t if t divides r,

0 otherwise.

Therefore ↼ and ϑt commute if t is odd, but not in general. Proposition 3.5 shows
that, in some cases, the maps commute up to a computable sign. Di!erent, but
closely related operators are discussed at the end of this paper.

3. Summary of results

With the preliminary material of the previous section under our belts, we are
now ready to state our main results regarding factorisations of universal characters
under ϑt. The first of these is the action of the map on the skew Schur functions.

Theorem 3.1. We have that ϑtsω/µ = 0 unless ε/µ is tileable by t-ribbons, in
which case

ϑtsω/µ = sgnt(ε/µ)

t↑1∏

r=0

sω(r)/µ(r) .

For µ empty, this result is due to Littlewood [27, p. 131], who proves it by direct
manipulation of the ratio of alternants (2.4). By (2.13) with X = (x1, . . . , xn),
one can recover Littlewood’s result by simply evaluating the right-hand side of
the equation at (x

t
1, . . . , x

t
n). He also states the µ empty case of the theorem in

the language of symmetric group characters: see both [27, p. 144] and [29, p. 340].
The generalisation to skew characters was discovered by Farahat [11] (see also [9,
Theorem 3.3]). The form we state here is precisely that of Macdonald [31, p. 91].
Curiously, Prasad recently rediscovered the µ empty case independently, with a
proof identical to Littlewood’s, but in a more representation-theoretic context [37].
A version of the result for Schur’s P -and Q-functions has been given by Mizukawa
[32, Theorem 5.1].

Theorem 3.1 has been rediscovered many times for both skew and straight shapes,
and often only in special cases. We make no attempt to give a complete history,
but it appears to us that the theorem deserves to be better known. The interested
reader can consult [44] for some exposition on the character theory side of this story.
On the symmetric functions side, such an exposition is lacking in the literature.

We now state, in sequence, the three factorisations lifting [5, Theorems 2.11, 2.15
& 2.17] to the level of universal characters, beginning with the universal orthogonal
character.

Theorem 3.2. Let ε be a partition of length at most nt. Then ϑtoω = 0 unless
t-core(ε) is orthogonal, in which case

ϑtoω = (→1)
ϱoω;nt sgn(wt(ε;nt))oω(0)

↓(t↑1)/2↔∏

r=1

rsω(r),ω(t↑r) ↔
{
so

↑
ω(t/2) t even,

1 t odd,

where

⇀
o
ω;nt =

t↑1∑

r=↓(t+2)/2↔

(
mr(ε;nt) + 1

2

)

+ rk(t-core(ε)) +

{(n+1
2

)
+ nrk(t-core(ε)) t even,

0 t odd.

Our next result is the same factorisation for the symplectic character.
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Theorem 3.3. Let ε be a partition of length at most nt. Then ϑtspω = 0 unless
t-core(ε) is symplectic, in which case

ϑtspω = (→1)
ϱspω;nt sgn(wt(ε;nt))spω(t↑1)

↓(t↑3)/2↔∏

r=0

rsω(r),ω(t↑r↑2)

↔
{
soω((t↑2)/2) t even,
1 t odd,

where

⇀
sp
ω;nt =

t↑2∑

r=↓t/2↔

(
mr(ε;nt) + 1

2

)
+

{(n+1
2

)
+ nrk(t-core(ε)) t even,

0 t odd.

Finally, we can claim a similar factorisation for soω.

Theorem 3.4. Let ε be a partition of length at most nt. Then ϑtsoω = 0 unless
t-core(ε) is self-conjugate, in which case

ϑtsoω = (→1)
ϱsoω;nt sgn(wt(ε;nt))

↓(t↑2)/2↔∏

r=0

rsω(r),ω(t↑r↑1) ↔
{
1 t even,
soω((t↑1)/2) t odd,

where1

⇀
so
ω;nt =

t↑1∑

r=↓(t+1)/2↔

(
mr(ε;nt) + 1

2

)
+

{
0 t even,
nrk(t-core(ε)) t odd.

Some remarks are in order. Firstly, the three signs sgn(wt(ε;nt))(→1)
ϱ•ω;nt are

actually independent of n as long as nt ↫ l(ε), a fact which we prove in Lemma 4.8
below. As remarked by Ayyer and Kumari [5, Remark 2.19], the order of the
quotient is unchanged upon replacing n ↘↑ n+1, so the product in the evaluation is
independent of n. It is in principle possible to carry out our proof technique below
under the assumption that l(ε) is bounded by an arbitrary integer, say k, where k

is not necessarily a multiple of t. In this case the evaluation is of course the same,
however the sign will be expressed di!erently and the t-quotients in the evaluations
will be a cyclic permutation of the ones presented. Since the proof is simplest when
this k is a multiple of t, we stick to this case.

To obtain the theorems of Ayyer and Kumari one evaluates the right-hand side of
each identity at the set of variables (x

±t
1 , . . . , x

±t
n ). Using (2.5) and the definition of

rsω,µ it follows that in this case the rational universal characters occurring in each
evaluation agree with the Schur functions s

µ(k)
i

(x
±t
1 , . . . , x

±t
n ) in the notation of [5].

As we have already seen the maps ↼ and ϑt do not commute in general. However,
when acting on sω/µ and soω, they commute up to an explicitly computable sign.

Proposition 3.5. We have the relations

↼ϑtsω/µ = (→1)
(t↑1)(|ω(0)/µ(0)|+···+|ω(t↑1)/µ(t↑1)|)

ϑt↼sω/µ,

and
↼ϑtsoω = (→1)

(t↑1)(|ω(0)|+···+|ω(t↑1)|)
ϑt↼soω.

We remark that the second relation does not hold with soω replaced by spω or oω

as written above since ↼so
↑
ω = so

↑
ω→ .

1We have corrected the lower bound in the sum defining ω
so
ω;nt from →t/2↑ in [5, Theorem 2.17]

(there denoted ε) to →(t+ 1)/2↑.



UNIVERSAL CHARACTERS 11

4. Auxiliary results

The purpose of this section is to collect all the small facts about beta sets and
the signs (2.2) which we need to prove our main results. To begin, we relate the
bead configurations of a partition and its conjugate.

Lemma 4.1. Let ε be a partition of length at most nt such that ε1 ↭ mt. Then
the bead configuration for ϱ(ε

→
;mt) can be obtained from the bead configuration for

ϱ(ε;nt) with n +m rows by rotating the picture by 180
↗ and then interchanging

beads and spaces.

Proof. This is a consequence of the fact [31, p. 3] that for l(ε) ↭ n and ε1 ↭ m,

{0, 1, . . . ,m+n→1} = {εi+n→i : 1 ↭ i ↭ n}⇐{m+n→1→(ε
→
j+m→j) : 1 ↭ j ↭ m},

where ⇐ denotes a disjoint union. ↬

This lemma immediately implies the following relationship between the t-core
and t-quotient of ε and ε

→.

Corollary 4.2. For a partition ε we have t-core(ε→
) = t-core(ε)→ and the t-quotient

of ε→ is
(
(ε

(t↑1)
)
→
, . . . , (ε

(0)
)
→).

The next pair of lemmas are due to Ayyer and Kumari, the first of which
characterises partitions with z-asymmetric t-cores in terms of their beta sets [5,
Lemma 3.6].

Lemma 4.3. For a partition ε of length at most nt, t-core(ε) is of the form
(a | a+ z) for some integer →1 ↭ z ↭ t→ 1 if and only if

mr(ε, nt) +mt↑r↑z↑1(ε, nt) = 2n for 0 ↭ r ↭ t→ z → 1,(4.1a)
mr(ε, nt) = n for t→ z ↭ r ↭ t→ 1,(4.1b)

where the indices of the mr are taken modulo t.

The second lemma of Ayyer and Kumari we need is [5, Lemma 3.13], which is
used later on to simplify signs.

Lemma 4.4. Let ε be a partition of length at most nt. If t-core(ε) is orthogonal,
then

rk(t-core(ε)) =
↓(t↑1)/2↔∑

r=1

|mr(ε;nt)→ n| =
t↑1∑

r=↓(t+2)/2↔

|mr(ε;nt)→ n|(4.2)

If t-core(ε) is symplectic, then

rk(t-core(ε)) =
↓(t↑3)/2↔∑

r=0

|mr(ε;nt)→ n| =
t↑2∑

r=↓t/2↔

|mr(ε;nt)→ n|(4.3)

If t-core(ε) is self-conjugate, then

rk(t-core(ε)) =
↓(t↑2)/2↔∑

r=0

|mr(ε;nt)→ n| =
t↑1∑

r=↓(t+1)/2↔

|mr(ε;nt)→ n|(4.4)

Next, we show that the sign of a tileable skew shape can be expressed in terms
of the signs of the permutations wt(ε;n).

Lemma 4.5. For ε/µ t-tileable and any integer n such that n ↫ l(ε),

sgnt(ε/µ) = sgn(wt(ε;n)) sgn(wt(µ;n)).
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Proof. Since ε/µ is t-tileable, it has a ribbon decomposition D = (ϖ
(0)

, . . . , ϖ
(k)

)

where ϖ
(0)

= µ and ϖ
(k)

= ε. Also, ϖ(k↑1) can be obtained from ε by moving one
bead at some position upward one space. By our characterisation of the inversions
in the permutation wt(ε;n), we see that moving a bead at position ⇁ up one space
changes the sign by (→1)

bk where bk is the number of beads at positions between
⇁ → t and ⇁. In other words, sgn(wt(ε;n)) = (→1)

bk sgn(wt(ϖ
(k↑1)

;n)). Moreover,
bk = ht(ϖ

(k)
/ϖ

(k↑1)
), so that

sgn(wt(ε;n)) sgn(wt(µ;n)) = (→1)

∑k
i=1 bi = (→1)

ht(D)
= sgnt(ε/µ). ↬

We also have the following useful relationship between the sign of ε/µ and ε
→
/µ

→.

Lemma 4.6. For ε/µ t-tileable,

sgnt(ε/µ) sgnt(ε
→
/µ

→
) = (→1)

(t↑1)(|ω(0)|+···+|ω(t↑1)|↑|µ(0)|↑···↑|µ(t↑1)|)
.

Proof. To prove the claim of the lemma we will proceed by induction on |ε/µ|. If
|ε/µ| = 0 then ε = µ and the equation is trivial. Now fix µ and assume the result
holds for ε/µ being t-tileable. Adding a t-ribbon to ε/µ moves one of the beads, say
at position b, in the bead configuration for ε down a single space. The change in the
number of inversions in wt(ε;nt) is the number of beads b

→ such that b < b
→
< b+ 1.

A consequence of Lemma 4.1 is that wt(ε
→
;mt) will change by the number of empty

spaces between b and b+ 1. There are t→ 1 spaces and beads between b and b+ 1,
so the left-hand side changes by (→1)

t↑1 when adding a t-ribbon. But adding a
t-ribbon to ε/µ changes some element of the t-quotient of ε by a single box, also
corresponding to a change in sign of (→1)

t↑1. ↬

There is another sign relation between orthogonal and symplectic t-cores, but
this time using the permutations wt.

Lemma 4.7. Let ε be an orthogonal or symplectic t-core whose diagram is contained
in an nt↔ nt square. Then

sgn(wt(ε;nt)) sgn(wt(ε
→
;nt)) = (→1)

rk(ω)
.

Proof. Assume that ε is a non-empty, orthogonal t-core (if ε is empty the result is
trivial) and fix n so that the condition of the theorem holds. The key observation
is that for an orthogonal t-core, the bead configuration of ε→ with nt beads can
be obtained from the bead configuration of ε with nt beads by reducing the
labels by 1 modulo t. For example if ε = (12, 7, 5, 3, 2, 2, 1, 1, 1, 1, 1) then ε

→
=

(11, 6, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1) and their bead configurations for t = 6 and n = 2 are

and

respectively, where we have suppressed the labels. This is a consequence of Lemma 4.3
with z = ±1 and Lemma 4.1. When passing from ε to ε

→, the inversions contributed
by the beads in the first runner are removed and replaced by additional inversions
associated to the remaining beads in the first n rows. Modulo two, this is equivalent
to each bead in the zeroth runner now seeing all of the beads in the same row twice,
plus all other beads in the other runners once. Let b be the number of beads in the
first n rows of the runners from 1 to t→ 1 in the bead configuration of ε. Then the
sign change is

sgn(wt(ε;nt)) = sgn(wt(ε
→
;nt))(→1)

n2(t↑1)+b
.
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Since ε is an orthogonal t-core, n2
(t→1)+b ⇒ rk(ε) (mod 2) by (4.2) and Lemma 4.3

with z = →1. ↬
The next lemma proves the claim made after Theorems 3.2–3.4 that the signs

occurring in those factorisations are independent of n.

Lemma 4.8. The signs (→1)
ϱ•ω;nt sgn(wt(ε;nt)) for • ↗ {o, sp, so} are independent

of n as long as nt ↫ l(ε).

Proof. Assume that nt ↫ l(ε). Incrementing n by one adds a row of beads to the
top of the bead configuration of ε, and so mr(ε; (n+ 1)t) = mr(ε;nt) + 1. In the
inversion count, the rth bead in the new first row sees

t↑1∑

k=r+1

(mk(ε;nt) + 1)

other beads. Summing over k = 0, . . . , t→ 1 we see that

sgn(wt(ε; (n+ 1)t)) = sgn(wt(ε;nt))(→1)

∑↓t/2↔
r=1 (m2r↑1(ω;nt)+1)

.

Now assume that ε has an orthogonal t-core. Then by Lemma 4.3 with z = →1 the
above has the same parity as

↓t/2↔∑

r=1

(m2r↑1(ε;nt) + 1) ⇒






(n+1)t
2 t even,

t↑1
2 +

∑(t↑1)/2
r=1 mr(ε;nt) t odd,

(mod 2).

A short calculation shows that

⇀
o
ω;(n+1)t = ⇀

o
ω;nt +

↓(t↑1)/2↔∑

r=1

mr(ε;nt) +

{
n+

t
2 + rk(t-core(ε)) t even,

t↑1
2 t odd,

⇒ ⇀
o
ω;nt +

{
(n+1)t

2 t even,
t↑1
2 +

∑(t↑1)/2
r=1 mr(ε;nt) t odd

(mod 2).

where the last equality uses (4.2). The remaining two cases follow similarly. ↬
We conclude this section with a small lemma relating the indices in the Jacobi–

Trudi determinants with partition quotients.

Lemma 4.9. Let ε, µ be partitions of length at most nt and assume that for
0 ↭ r, s ↭ t → 1 we have εi → i ⇒ r (mod t), µj → j ⇒ s (mod t) for 1 ↭ i, j ↭ nt.
If r → s+ z ⇒ 0 (mod t) for some z ↗ Z, then
εi → µj + j → i+ z

t
= ε

(r)
k → µ

(s)
ς → k + ⇁+mr(ε;nt)→ms(µ;nt) + (r → s+ z)/t,

for some k, ⇁ such that 1 ↭ k ↭ mr(ε;nt) and 1 ↭ ⇁ ↭ ms(µ;nt). Alternatively, if
r + s+ z ⇒ 0 (mod t) then
εi + µj → i→ j + z

t
= ε

(r)
k +µ

(s)
ς →k→⇁→2n+1+mr(ε;nt)+ms(µ;nt)+(r+s+z)/t

for some k, ⇁ such that 1 ↭ k ↭ mr(ε;nt) and 1 ↭ ⇁ ↭ ms(µ;nt).

Proof. We first write εi + nt → i = ς
(r)
k t + r and µj + nt → j = π

(s)
ς t + s for

1 ↭ k ↭ mr(ε;nt) and 1 ↭ ⇁ ↭ ms(µ;nt). Then
εi → µj → i+ j + z

t
= ς

(r)
k + π

(s)
ς + (r → s+ z)/t

= ε
(r)
k + µ

(s)
ς → k + ⇁+mr(ε;nt)→ms(µ;nt) + (r → s+ z)/t,

by the definition of the t-quotient. The second claim is analogous. ↬
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5. Proofs of theorems

In this section we provide proofs of Theorems 3.2, 3.3 and 3.4. Since our proof
strategy follows that of Macdonald’s proof of the skew Schur case [31, p. 91]
(Theorem 3.1 above), we reproduce this proof in detail as preparation for what
remains. We also give a detailed example in the orthogonal case in Section 5.2 to
further elucidate the structure of the remaining proofs.

5.1. Proof of Theorem 3.1. Let n be a nonnegative integer and µ ↓ ε be a pair
of partitions such that l(ε) ↭ nt. Consider the Jacobi–Trudi determinant

sω/µ = det
1↭i,j↭nt

(hωi↑µj↑i+j).

Before applying the map ϑt, we rearrange the rows and columns of this determinant
by the permutations wt(ε;nt) and wt(µ;nt) respectively. By Lemma 4.5 this
introduces a sign of sgnt(ε/µ). The rows and columns are now arranged in such a
way that the residue classes of εi → i and µj → j are grouped in ascending order,
and the values within each class are decreasing. From this vantage point it is easy
to apply the map ϑt since ϑthωi↑µj↑i+j vanishes unless εi → i ⇒ µj → j (mod t).
Therefore, ϑtsω/µ has a block-diagonal structure, with each block having size
mr(ε;nt) ↔ mr(µ;nt) for 0 ↭ r ↭ t → 1. We conclude that ϑtsω/µ = 0 unless
mr(ε;nt) = mr(µ;nt) for all 0 ↭ r ↭ t → 1. Assuming this is the case, then
the entries of the of the minor corresponding to the residue class r are given by
Lemma 4.9, and are

h(ωi↑µj↑i+j)/t = h
ω(r)
k ↑µ(r)

ε ↑k+ς

for some k and ⇁ with 1 ↭ k, ⇁ ↭ n. Note that the rows and columns are in the
desired order (i.e., in each n ↔ n minor the indices increase from 1 to n) thanks
to the permutations we applied at the beginning of the proof. We have therefore
shown that if mr(ε;nt) = mr(µ;nt) for all 0 ↭ r ↭ t→ 1, then

ϑtsω/µ = sgnt(ε/µ)

t↑1∏

r=0

sω(r)/µ(r) .

Now, if µ(r) ≃↓ ε
(r) for any r such that 0 ↭ r ↭ t→ 1 this expression will give zero,

from which we conclude, by Lemma 2.1, that ϑtsω/µ = 0 unless ε/µ is t-tileable.

5.2. An example. The structure of the remaining proofs is best outlined through
a detailed example. To this end, let t = 4 and ε = (12, 12, 12, 8, 8, 8, 7, 7, 3, 3, 2). We
therefore have that 4-core(ε) = (4, 1, 1), which is clearly orthogonal, and

(
ε
(0)

,ε
(1)

,ε
(2)

,ε
(3)

)
=

(
(2, 2), (4, 1), (3, 2, 1), (2, 1, 1)

)
.

Now choose n = 3, so that nt = 12 ↫ l(ε). Using the definition of oω as a
Jacobi–Trudi-type determinant (2.6) we immediately see that

ϑ4oω =



h3 · →h2 · h4 · →h1 · h5 · →1 ·
· h3 → h2 · · · h4 → h1 · · · h5 → 1 · ·

→h2 · h3 · →h1 · h4 · →1 · h5 ·
· · · h2 → 1 · · · h3 · · · h4

h1 · →1 · h2 · · · h3 · · ·
· h1 → 1 · · · h2 · · · h3 · ·
· · · h1 · · · h2 · · · h3

1 · · · h1 · · · h2 · · ·
· · · · · 1 · · · h1 · ·
· · · · · · 1 · · · h1 ·
· · · · · · · · · 1 · ·
· · · · · · · · · · · 1



,
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where we write · in place of 0 to avoid clutter. The next step is to permute the rows
and columns of the matrix according to the permutations w4(ε; 12) and w4(0; 12),
respectively. In this case, the first permutation is odd and the second even, so we
are left with

ϑ4oω = →



h2 → 1 h3 h4 · · · · · · · · ·
h1 h2 h3 · · · · · · · · ·
· · 1 · · · · · · · · ·
· · · h3 h4 h5 · · · →h2 →h1 →1

· · · · 1 h1 · · · · · ·
· · · · · · h3 → h2 h4 → h1 h5 → 1 · · ·
· · · · · · h1 → 1 h2 h3 · · ·
· · · · · · · 1 h1 · · ·
· · · →h2 →h1 →1 · · · h3 h4 h5

· · · →1 · · · · · h1 h2 h3

· · · · · · · · · 1 h1 h2

· · · · · · · · · · · 1



.

The top-left 3↔ 3 minor and central 3↔ 3 minor occupying rows 6–8 and columns
7–9 are clearly equal to o(2,2) and so

↑
(3,2,1), respectively. One way to isolate the

copy of so↑(3,2,1) is to push it so that it is the bottom-right 3↔ 3 submatrix, while
preserving the order of the other rows and columns. In this case such a procedure
will introduce a sign of →1. Putting this together, we have shown that

ϑ4oω = o(2,2)so
↑
(3,2,1)



h3 h4 h5 →h2 →h1 →1

· 1 h1 · · ·
→h2 →h1 →1 h3 h4 h5

→1 · · h1 h2 h3

· · · 1 h1 h2

· · · · · 1



.

Our goal is to show that this final unidentified determinant is equal to rs(4,1),(2,1,1).
Clearly the extra signs can be cleared by multiplying the first two rows and first
three columns by →1 each, generating an overall sign of →1. Then one need only
push the first column past the second and third, which does not change the sign,
and the resulting determinant is precisely a copy of rs(4,1),(2,1,1). Thus,

ϑ4oω = →o(2,2)so
↑
(3,2,1)rs(4,1),(2,1,1).

Note that (→1)
ϱoω;12 = 1 so the overall sign clearly agrees with Theorem 3.2. In the

next sections we show that, with a little extra work, this argument also works in
general for the universal characters oω, spω and soω.

5.3. Proof of Theorem 3.2. Let ε be a partition such that l(ε) ↭ nt and consider
the definition (2.6) of oω

oω = det
1↭i,j↭nt

(
hωi↑i+j → hωi↑i↑j

)
.

We permute the rows and columns by wt(ε;nt) and wt(0;nt) respectively, which
introduces a sign of

(5.1) (→1)
(
n+1
2 )(

t
2) sgn(wt(ε;nt)).

The modular behaviour of the indices of each row is now known. There are three
possibilities for the entries of ϑtoω: both h’s may survive, one h may survive, or
the entry is necessarily zero. For both to survive, we see that hωi↑i+j and hωi↑i↑j
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are nonzero under ϑt if and only if εi → i ⇒ →j ⇒ 0 (mod t) or, if t is even,
εi → i ⇒ →j ⇒ t/2 (mod t). In the first instance, by Lemma 4.9,

ϑt

(
hωi↑i+j → hωi↑i↑j

)
= h

ω(0)
k ↑k+ς+m0(ω;nt)↑n

→ h
ω(0)
k ↑k↑ς+m0(ω;nt)↑n

,

where 1 ↭ k ↭ m0(ε;nt) and 1 ↭ ⇁ ↭ n. Moreover, all other entries in the first
m0(ε;nt) rows and n columns are zero. If t is even then we also find a submatrix
of size mt/2(ε;nt) ↔ n in the rows 1 +

∑(t↑2)/2
r=0 mr(ε;nt) to

∑t/2
r=0 mr(ε;nt) and

columns 1 + nt/2 to n(t+ 2)/2. The entries of this submatrix are

ϑt

(
hωi↑i+j → hωi↑i↑j

)
= h

ω(t/2)
k ↑k+ς+mt/2(ω;nt)↑n

→ h
ω(t/2)
k ↑k↑ς+mt/2(ω;nt)↑n+1

,

where 1 ↭ k ↭ mt/2(ε;nt) and 1 ↭ ⇁ ↭ n. Again, all other entries in these rows
and columns are necessarily zero under ϑt. Given a row corresponding to the
residue class r where 1 ↭ r ↭ ⇑(t→ 1)/2⇓, there are two possibilities for the entry to
potentially survive: the column corresponds to the residue class r or t→ r. Again,
by Lemma 4.9,

ϑt

(
hωi↑i+j → hωi↑i↑j

)
=

{
h
ω(r)
k ↑k+ς+mr(ω;nt)↑n

if j ⇒ →r (mod t),

→h
ω(r)
k ↑k↑ς+mr(ω;nt)↑n+1

if j ⇒ r (mod t).

The set of indices of the complete homogeneous symmetric functions in such a row
are


ε
(r)
k → k → ⇁+mr(ε, nt) + 1 | 1 ↭ ⇁ ↭ 2n


(5.2a)

=

ε
(r)
k → k + ⇁ | 1 ↭ ⇁ ↭ mr(ε, nt)


⇐

ε
(r)
k → k → ⇁+ 1 | 1 ↭ ⇁ ↭ mt↑r(ε, nt)


.

If we look at the complementary row corresponding to t→ r, then a similar compu-
tation shows that the indices are


ε
(t↑r)
k → k → ⇁+mt↑r + 1 | 1 ↭ ⇁ ↭ 2n


(5.2b)

=

ε
(t↑r)
k → k + ⇁ | 1 ↭ ⇁ ↭ mt↑r(ε, nt)


⇐

ε
(t↑r)
k → k → ⇁+ 1 | 1 ↭ ⇁ ↭ mr(ε, nt)


.

We have now identified the entries which do not necessarily vanish under ϑt. These
can be rearranged into a block-diagonal matrix. If t is even, we move the submatrix
corresponding to t/2 to the bottom-right mt↑1(ε;nt) rows and n columns, which
picks up a sign of

(→1)
mt/2(ω;nt)

∑t↑1
r=(t+2)/2

mr(ω;nt)+n2(t↑2)/2
.

We then group the rows and columns corresponding to the residue classes r and t→r

together with 0 ↭ r ↭ ⇑(t→1)/2⇓ increasing. The determinant is now block-diagonal
and the blocks have dimension m0(ε;nt) ↔ n, (mr(ε;nt) +mt↑r(ε;nt)) ↔ 2n for
1 ↭ r ↭ ⇑(t → 1)/2⇓ and, if t is even, mt/2(ε;nt) ↔ n. Since the determinant
of a block-diagonal matrix vanishes if one of the blocks is not a square, we can
therefore conclude that ϑtoω vanishes unless the conditions (4.1) with z = →1 hold
in Lemma 4.3, i.e., unless t-core(ε) is orthogonal. In this case the top-left n ↔ n

minor is equal to oω(0) and if t is even the bottom-right minor corresponds to so
↑
ω(t/2) .

Note that in this case the grouping of the 2n↔ 2n minors does not change the sign
of the determinant since each row and column is pushed past an even number of
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rows or columns. For each 1 ↭ r ↭ ⇑(t→ 1)/2⇓ these final minors are of the form




h
ω(r)
1 +mr↑n

· · · h
ω(r)
1 +mr↑1

→h
ω(r)
1 +mr↑n↑1

· · · →h
ω(r)
1 +mr↑2n

...
...

...
...

h
ω(r)
mr+1↑n

· · · h
ω(r)
mr

→h
ω(r)
mr↑n

· · · →h
ω(r)
mr↑2n+1

→h
ω(t↑r)
1 +mt↑r↑n↑1

· · · →h
ω(t↑r)
1 +mt↑r↑2n

h
ω(t↑r)
1 +mt↑r↑n

· · · h
ω(t↑r)
1 +mt↑r↑1

...
...

...
...

→h
ω(t↑r)
mt↑r

↑n
· · · →h

ω(t↑r)
mt↑r

↑2n+1
h
ω(t↑r)
mt↑r

+1↑n
· · · h

ω(t↑r)
mt↑r





,

where we write mr = mr(ε;nt). Clearing the negatives in this minor produces
the sign (→1)

mr(ω;nt)+n. If mr(ε;nt) = mt↑r(ε;nt) = n then we are done. If
mr(ε;nt) > n then we need to move the columns n+ 1 to mr(ε;nt) so they are the
first mr(ε;nt)→ n columns, and then reverse the order. This gives a sign of

(→1)
n(mr(ω;nt)↑n)+(

mr(ω;nt)↑n
2 )

= (→1)
(
mr(ω;nt)

2 )↑(n2).

If mr(ε;nt) < n then we need to push the mt↑r(ε;nt)→ n missing rows past the
n→mr rows to their right and then reverse again, giving the same sign

(→1)
(mt↑r(ω;nt)↑n)mr(ω;nt)+(

mt↑r(ω;nt)↑n

2 )
= (→1)

(
mr(ω;nt)

2 )↑(n2),

since mt↑r(ε;nt)→n = n→mr(ε;nt). In each of the three cases the resulting deter-
minant is equal to rsω(r),ω(t↑r) . Collecting all of the above determinant manipulations,
the value of ⇀oω;nt is

(n+ 1)nt(t→ 1)

4
+

↓(t↑1)/2↔∑

r=1

((
mr + 1

2

)
+

(
n+ 1

2

))

+

{
n
∑(t↑2)/2

r=1 mt↑r +
n2(t↑2)

2 t even,
0 t odd.

To see that this agrees with the sign of Ayyer and Kumari, we use (4.2) together with
the fact that for odd t, (t+1)(t→1)n(n+1)/4 is even and for even t, n(n+1)(t

2→2)/4

has the same parity as n(n + 1)/2. The above exponent therefore has the same
parity as

⇀
o
ω;nt =

t↑1∑

r=↓(t+2)/2↔

(
mr(ε;nt) + 1

2

)
+rk(t-core(ε))+

{(n+1
2

)
+ nrk(t-core(ε)) t even,

0 t odd.

This completes the proof.

5.4. Proof of Theorem 3.3. It is of course possible to prove Theorem 3.3 by
direct manipulation of the h Jacobi–Trudi-type formula for spω (2.7). However, it
will be more insightful to begin with the e Jacobi–Trudi-type formula (2.8)

spω = det
1↭i,j↭nt

(
eω→

i↑i+j → eω→
i↑i↑j

)
,

where we assume that n is an integer such that nt ↫ ε1. We further assume that
nt ↫ l(ε), since, in the end, our sign will be independent of n. The values of ϑthr

and ϑter di!er by a sign of (→1)
(t↑1)r/t, and the indices of the e’s in this formula

are the same as the h’s in the formula for oω→ ((2.6) with ε ↘↑ ε
→), so we can simply

replace each h by a signed e in the previous proof. Moreover, by Corollary 4.2, we
know that the t-quotient of ε→ is simply the reverse of the t-quotient of ε. We can
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therefore already claim that ϑtspω vanishes unless t-core(ε) is symplectic, in which
case

ϑtspω = (→1)
φ
sgn(wt(ε

→
;nt))spω(t↑1)

↓(t↑3)/2↔∏

i=0

rsω(i),ω(t↑i↑2) ↔
{
soω((t↑2)/2) t even,
1 t odd,

where

δ = (t→ 1)

t↑1∑

r=0

|ε(r)|+
t↑1∑

r=↓(t+1)/2↔

(
mr(ε

→
;nt)

2

)

+ rk(t-core(ε)) +

{(n+1
2

)
+ nrk(t-core(ε)) t even,

0 t odd.

All that remains now is to show that this sign agrees with that of Theorem 3.3. By a
combination of Lemmas 4.6 and 4.7 we may replace sgn(wt(ε

→
;nt)) by sgn(wt(ε;nt)),

which cancels rk(t-core(ε)) + (t→ 1)
∑t↑1

r=0|ε(r)| in δ. If we call this new exponent
δ
→, then we also have by Lemma 4.1 that mr(ε

→
;nt) = mr↑1(ε;nt) for ⇑(t+ 1)/2⇓ ↭

r ↭ t→ 1, which implies δ
→
= ⇀

sp
ω;nt.

5.5. Proof of Theorem 3.4. The final proof closely follows the first. Let ε be a
partition of length at most nt and consider

soω = det
1↭i,j↭nt

(
hωi↑i+j + hωi↑i↑j+1

)
.

As before we apply the permutations wt(ε;nt) and wt(0;nt) to the rows and columns
of this determinant, introducing the sign (5.1). Unlike before, there is only one case
in which both h’s may survive. If t is odd and εi → i ⇒ →j ⇒ (t→ 1)/2 (mod t) then
we have

ϑt

(
hωi↑i+j + hωi↑i↑j+1

)

= h
ω((t↑1)/2)
k ↑k+ς+m(t↑1)/2(ω;nt)↑n

+ h
ω((t↑1)/2)
k ↑k↑ς+1+m(t↑1)/2(ω;nt)↑n

.

where 1 ↭ k ↭ m(t↑1)/2(ε;nt) and 1 ↭ ⇁ ↭ n. These entries lie in the rows
1+

∑(t↑3)/2
r=0 mr(ε;nt) to

∑(t↑1)/2
r=0 mr(ε;nt) and columns 1+n(t→1)/2 to n(t+1)/2,

and outside of their intersection, all other entries in these rows and columns are zero.
Now consider a row corresponding to the residue class r for 0 ↭ r ↭ ⇑(t → 2)/2⇓.
Then the column must fall into the residue class r or t→ r→ 1 in order for the entry
to not necessarily vanish. In this case we now have

ϑt

(
hωi↑i+j + hωi↑i↑j+1

)
=

{
h
ω(r)
k ↑k+ς1+mr(ω;nt)↑n

if j ⇒ →r (mod t),

h
ω(r)
k ↑k↑ς1+mr(ω;nt)↑n+1

if j ⇒ r + 1 (mod t).

Again, a similar computation holds for the row corresponding to t→ r → 1, and the
sets of indices agree with (5.2) but with t→ r ↘↑ t→ r → 1 in (5.2b). If t is odd we
move the central submatrix corresponding to (t→ 1)/2 to the top-left, picking up a
sign of

(→1)
m(t↑1)/2(ω;nt)

∑(t↑3)/2
r=0 mr(ω;nt)+n2(t↑1)/2

.

The grouping and rearrangement of the remaining minors is the same as in the
first proof above. We only remark that the result is the determinant of a block-
diagonal matrix with blocks of dimensions (mr(ε;nt) + mt↑r↑1(ε;nt)) ↔ 2n for
0 ↭ r ↭ ⇑(t → 2)/2⇓ plus one of size m(t↑1)/2(ε;nt) ↔ n if t is odd. Thus the
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determinant vanishes unless (4.1) holds with z = 0, i.e., unless t-core(ε) is self-
conjugate. Accounting for the sign of (→1)

(
mr(ω;nt)

2 )+(
n
2) from reordering the columns

in the copies of rsω(r),ω(t↑r↑1) , the exponent ⇀
so
ω;nt has the value

(n+ 1)nt(t→ 1)

4
+

↓(t↑2)/2↔∑

r=0

((
mr

2

)
+

(
n

2

))

+

{
0 t even,
n
∑(t↑3)/2

r=0 mr + n
2
(t→ 1)/2 t odd.

By (4.4) this has the same parity as

⇀
so
ω;nt =

t↑1∑

r=↓(t+1)/2↔

(
mr(ε;nt) + 1

2

)
+

{
0 t even,
nrk(t-core(ε)) t odd.

5.6. Proof of Proposition 3.5. To close out this section, we sketch the proof
of Proposition 3.5. In the Schur case, by Corollary 4.2 and the fact that ε/µ is
t-tileable if and only if ε→

/µ
→ is, we already have ↼ϑtsω/µ = ±ϑt↼sω/µ. The precise

di!erence in sign is then provided by Lemma 4.6. Again using Corollary 4.2, we
have

↼ϑtsoω = (→1)
ϱsoω;nt sgn(wt(ε;nt))

↓(t↑2)/2↔∏

r=0

rs(ω(r))→,(ω(t↑r↑1))→

↔
{
1 t even,
so(ω((t↑1)/2))→ t odd,

= (→1)
ϱsoω;nt+ϱsoω→;nt sgn(wt(ε;nt)) sgn(wt(ε

→
;nt))ϑtsoω→ ,

where n should be large enough so that ε is contained in an nt↔nt box. Combining
Lemmas 4.5 and 4.6 shows that, in this case,

sgn(wt(ε;nt)) sgn(wt(ε
→
;nt)) = (→1)

(t↑1)(|ω(0)|+···+|ω(t↑1)|)
.

Moreover, ⇀soω;nt = ⇀
so
ω→;nt, so that the total sign agrees with the claim.

6. Other factorisations

6.1. Littlewood-type factorisations. In [27, §7.3], Littlewood proves a factorisa-
tion slightly more general than the one contained in Theorem 3.1 for µ empty; see
also [5, Theorem 2.7]. Here, and below, we let ε

(r)
= ε

(k) if k ⇒ r (mod t).

Theorem 6.1. Let ε be a partition of length at most nt+ 1 and X = (x1, . . . , xn)

a set of variables. Then for another variable q,

sω(X, ωX, . . . , ω
t↑1

X, q) = 0

unless t-core(ε) = (c) for some 0 ↭ c ↭ t→ 1, in which case

sω(X, ωX, . . . , ω
t↑1

X, q) = sgnt(ε/(c))q
c
sω(c↑1)(X

t
, q

t
)

t↑1∏

r=0
r ↘=c↑1

sω(r)(X
t
).

This theorem can also be placed in our framework, however in a somewhat less
elegant manner than our other results. The operator ϑ

q
t : ! →↑ !⇔Z Z[q] which

gives the above may be defined by

ϑ
q
that+b := q

b
∑

k↫0

q
kt
ha↑k =

∑

k↫0

q
k
ϑthat+b↑k.
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Note that the sums are finite since hr vanishes for negative r, and that for q = 0

this reduces to the operator ϑt from the earlier sections. Alternatively, since

hr(X, q) =

∑

k↫0

q
k
hr↑k(X),

the image of ϑq
t acting on any symmetric function f is the same as the image of ϑt

acting on f(X, q), where ϑt acts only on the X variables. Using ϑ
q
t , Littlewood’s

above theorem may be phrased as follows. After the statement we provide a short
proof which relies only on Theorem 3.1.

Proposition 6.2. We have that ϑq
tsω = 0 unless t-core(ε) = (c) for some c such

that 0 ↭ c ↭ t→ 1, in which case

ϑ
q
tsω = sgnt(ε/(c))q

c
t↑1∏

r=0
r ↘=c↑1

sω(r)

∑

k↫0

q
kt
sω(c↑1)/(k).

Proof. The first observation is that

ϑ
q
tsω =

∑

k↫0

q
k
ϑtsω/(k),

which is a simple consequence of the branching rule for Schur functions [31, p. 72].
In the case that l(t-core(ε)) > 1 then each term in the sum on the right-hand side
vanishes by Theorem 3.1 as the t-cores of the inner and outer shape can never be
equal. Now assume t-core(ε) = (c) for some 0 ↭ c ↭ t→ 1, which is a complete set
of t-cores with length one. Then the nonzero terms in the sum on the right-hand
side are those for which k is of the form ⇁t+ c with ⇁ ↫ 0 and ⇁t+ c ↭ ε1. Therefore

ϑ
q
tsω = q

c
∑

ς↫0

q
ςt
ϑtsω/(ςt+c) = q

c
∑

ς↫0

sgnt(ε/(⇁t+ c))q
ςt
sω(c↑1)/(ς)

t↑1∏

r=0
r ↘=c↑1

sω(r) ,

again by Theorem 3.1. By our convention we always compute the t-quotient using a
beta set with number of elements a multiple of t. This means that the single row
(⇁t + c) has one non-empty element in its t-quotient, ε(c↑1). Moreover, since the
partitions (⇁t+ c) all di!er by a ribbon of height zero, the sign of each term in the
sum is the same and equal to sgnt(ε/(c)). Putting all of this together, we arrive at

ϑ
q
tsω = sgnt(ε/(c))q

c
t↑1∏

r=0
r ↘=c↑1

sω(r)

∑

ς↫0

q
ςt
sω(c↑1)/(ς). ↬

We do not see, at this stage, whether it is possible to extend the previous result
to skew Schur functions. If we expand ϑ

q
tsω/µ as in the proof above, we find that

ϑ
q
tsω/µ =

∑

ε≃µ

q
|ε|↑|µ|

ϑtsω/ε ,

where ϖ ↖ µ means that ϖ/µ is a horizontal strip, i.e., ϖ ↙ µ and ϖ/µ contains at
most one box in each column of its Young diagram. Of course, this implies that
ϑ
q
tsω/µ = 0 if there does not exist a ϖ such that ϖ ↖ µ and ε/ϖ is t-tileable. However,

the sum may vanish even if such a ϖ exists. For example,
ϑ
q
2s(4,4)/(1) = qϑt

(
s(4,4)/(2) + s(4,4)/(1,1)

)
+ q

3
ϑt

(
s(4,4)/(4) + s(4,4)/(3,1)

)

= q(s(2)s(2)/(1) → s(2)s(2)/(1)) + q
3
(s(2) → s(2))

= 0.

In a similar direction Pfannerer [36, Theorem 4.4] has shown that, if ε has empty
t-core and m = ⇁t + k is any integer, then the Schur function sω(1, ω, . . . , ω

m↑1
)
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always factors as a product of Schur functions with variables all one indexed by the
t-quotient of ε. When m is a multiple of t this becomes a special case of Littlewood’s
theorem (Theorem 3.1 with µ empty) noted by Reiner, Stanton and White [38,
Theorem 4.3]. Pfannerer’s result has subsequently been generalised by Kumari [22,
Theorem 2.2], in addition to analogues of Theorem 6.1 for other classical group
characters. It is an open problem to see how these factorisations fit into our story.

6.2. Factorisations of supersymmetric Schur functions. Recently, Kumari
has given a version of Theorem 3.1 for the so-called skew hook Schur functions (or
supersymmetric skew Schur functions) [21, Theorem 3.2]. For two independent sets
of variables (alphabets), we denote their plethystic di!erence by X → Y ; see, e.g.,
[14, 23] for the necessary background on plethystic notation. We also note that for
an alphabet X, we let ⇀X be the alphabet with all variables negated. The complete
homogeneous supersymmetric function used in [21] may be defined as

r∑

j=0

hj(X)er↑j(Y ) = hr[X → ⇀Y ].

The hook Schur function is then the Jacobi–Trudi determinant of these functions,
so that

sω/µ[X → ⇀Y ] = det
1↭i,j↭n

(
hωi↑µj↑i+j [X → ⇀Y ]

)
.

From this, it follows readily that Kumari’s factorisation for the hook Schur functions
is contained in Theorem 3.1 above at the alphabet X → ⇀Y .

6.3. Factorisations of rsω,µ. To close, we point out that the universal character
rsω,µ can be used to lift some factorisation results, discovered by Ciucu and Krat-
tenthaler [8, Theorems 3.1–3.2] and subsequently generalised by Ayyer and Behrend
[3, Theorems 1–2], to the universal character level. In the next result we write
ε+ 1

n
= (ε1 + 1, . . . ,εn + 1) where n ↫ l(ε).

Theorem 6.3. For ε a partition of length at most n, there holds
rsω,ω = soωso

↑
ω ,(6.1a)

and
rsω+1n,ω = oω+1nspω.(6.1b)

Moreover, for ε a partition of length at most n+ 1,
rs(ω1,...,ωn),(ω2,...,ωn+1)+rs(ω1↑1,...,ωn+1↑1),(ω2+1,...,ωn+1)(6.2a)

= sp(ω1,...,ωn)o(ω2,...,ωn+1),

and
rs(ω1+1,...,ωn+1),(ω2,...,ωn+1)+rs(ω1,...,ωn+1),(ω2+1,...,ωn+1)(6.2b)

= so(ω1+1,...,ωn+1)so
↑
(ω2,...,ωn+1)

.

To get back to the results of Ayyer and Behrend one simply evaluates both sides
of each equation at the alphabet (x

±
1 , . . . , x

±
n ). The precise forms present in [3,

Equations (18)–(21)] then follow from (2.5).2 As identities for Laurent polynomials
the pairs of identities (6.1) and (6.2) admit uniform statements. However no
such uniform statement will exist for the above generalisation, since this requires
characters indexed by half-partitions, which cannot be handled by the universal
characters. Ayyer and Fischer [4] have also given skew analogues of the non-universal
case of Theorem 6.3. Jacobi–Trudi formulae for the symplectic and orthogonal

2The factor of (1 + ϑ0,ωn+1
) in [3, Equation (20)] is not present in our generalisation (6.2a)

since the second character vanishes if ϖn+1 = 0.
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characters have recently been derived in [1, 17], and so there are candidates for the
universal characters for those objects. However, the main obstacle in lifting Ayyer
and Fischer’s results to the universal level is the lack of a skew analogue of rsω,µ.

Proof of Theorem 6.3. First up is (6.1a), which is the simplest of the four. In the
determinant

rsω,ω = det
1↭i,j↭2n

 (
hωi↑i+j

)
1↭i,j↭n

(
hωi↑i↑j+1

)
1↭i,j↭n(

hωi↑i↑j+1

)
1↭i,j↭n

(
hωi↑i+j

)
1↭i,j↭n


,

add the blocks on the right to the blocks on the left, and then subtract the blocks
on the top from the blocks on the bottom, giving

rsω,ω = det
1↭i,j↭2n

(
hωi↑i+j + hωi↑i↑j+1

)
1↭i,j↭n

(
hωi↑i↑j+1

)
1↭i,j↭n

0
(
hωi↑i+j → hωi↑i↑j+1

)
1↭i,j↭n



= soωso
↑
ω .

For the second identity (6.1b),

rsω+1n,ω = det
1↭i,j↭2n

(
hωi↑i+j+1

)
1↭i,j↭n

(
hωi↑i↑j+2

)
1↭i,j↭n(

hω↑i↑j+1

)
1↭i,j↭n

(
hωi↑i+j

)
1↭i,j↭n


,

and we add columns 1, . . . , n → 1 to the columns n+ 2, . . . , 2n and then subtract
the bottom two blocks from the top two, resulting in

rsω+1n,ω

=
1

2
det

1↭i,j↭2n

(
hωi↑i+j+1 → hωi↑i↑j+1

)
1↭i,j↭n

0(
hω↑i↑j+1

)
1↭i,j↭n

(
hωi↑i+j + hωi↑i↑j+2

)
1↭i,j↭n



= oω+1nspω.

In the third identity, we consider the second determinant in the sum in (6.2a)

det
1↭i,j↭2n





(
hωi↑i+j↑1

)
1↭i,j↭n+1

(
hωi↑i↑j

)
1↭i↭n+1
1↭j↭n↑1(

hωi+1↑i↑j+2

)
1↭i↭n↑1
1↭j↭n+1

(
hωi+1↑i+j+1

)
1↭i,j↭n↑1



 .

Push the first column so it becomes the (n+ 1)-st, and then push the (n+ 1)-st
row to the final row, which picks up a minus sign. The resulting determinant di!ers
from that of rs(ω1,...,ωn),(ω2,...,ωn+1) in only the last row, so we can take the sum of
the two, giving

det
1↭i,j↭2n





(
hωi↑i+j

)
1↭i,j↭n

(
hωi↑i↑j+1

)
1↭i↭n(

hωi+1↑i↑j+1

)
1↭i↭n↑1
1↭j↭n

(
hωi+1↑i+j

)
1↭i↭n↑1
1↭j↭n

(hωn+1↑n↑j+1 → hωn+1↑n+j↑1)1↭j↭n (hωn+1↑n+j → hωn+1↑n↑j)1↭j↭n



 .

In this new determinant, add columns n+ 1, . . . , 2n→ 1 to columns 2, . . . , n, and
then subtract rows 2, . . . , n from rows n+ 1, . . . , 2n→ 1, which gives

1

2
det

1↭i,j↭2n





(
hωi↑i+j + hωi↑i↑j+2

)
1↭i,j↭n

(
hωi↑i↑j+1

)
1↭i↭n

0
(
hωi+1↑i+j → hωi+1↑i↑j

)
1↭i,j↭n



 ,

which equals sp(ω1,...,ωn)o(ω2,...,ωn+1). The final factorisation (6.2b) follows almost
identically. ↬
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CHARACTER FACTORISATIONS, z-ASYMMETRIC PARTITIONS AND
PLETHYSM

SEAMUS ALBION

Abstract. The Verschiebung operators ωt are a family of endomorphisms on the ring of
symmetric functions, one for each integer t ↭ 2. Their action on the Schur basis has its origins
in work of Littlewood and Richardson, and is intimately related with the decomposition of a
partition into its t-core and t-quotient. Namely, they showed that the action on sω is zero if
the t-core of the indexing partition is nonempty, and otherwise it factors as a product of Schur
functions indexed by the t-quotient. Much more recently, Lecouvey and, independently, Ayyer
and Kumari have provided similar formulae for the characters of the symplectic and orthogonal
groups, where again the combinatorics of cores and quotients plays a fundamental role. We embed
all of these character factorisations in an infinite family involving an integer z and parameter
q using a very general symmetric function defined by Hamel and King. The proof hinges on a
new characterisation of the t-cores and t-quotients of z-asymmetric partitions which generalise
the well-known classifications for self-conjugate and doubled distinct partitions. We also explain
the connection between these results, plethysms of symmetric functions and characters of the
symmetric group.

1. Introduction

For each integer t ↭ 2 the Verschiebung operator
1 ωt is an endomorphism on the ring of symmetric

functions defined by

(1.1) ωthk =

{
hk/t if t divides k,

0 otherwise,

where hk denotes the k-th complete homogeneous symmetric function. The action of ωt on the
Schur basis was first computed by Littlewood and Richardson, but phrased in a di!erent way
[41, 42]. They classified the partitions for which ωtsω = 0 and further show that when it is nonzero
the result is a product of t Schur functions indexed by partitions depending only on ε. Almost two
decades later, Littlewood realised that this action is intimately related with the decomposition of a
partition into its t-core and t-quotient, concepts which were not yet known at the time of the work
with Richardson. Much more recently, Lecouvey [33] and, independently, Ayyer and Kumari [3]
computed the action of ωt on the characters of the symplectic and orthogonal groups in a finite
number of variables. In [2] we lifted these results to the universal characters of the associated groups.
Again, the combinatorics of cores and quotients is at the heart of the evaluations. Our main result
of the present paper, Theorem 4.3, embeds all of these “character factorisations” in an infinite family
paramaterised by an integer z and involving a parameter q. This is achieved by computing the
action of ωt on a very general symmetric function of Hamel and King [19, 20]. For q = 0 we recover
the Schur case and for z → {↑1, 0, 1} the symplectic and orthogonal cases. What facilitates this
generalisation is a characterisation of the t-cores and t-quotients of the z-asymmetric partitions of
Ayyer and Kumari which are a z-deformation of self-conjugate partitions; see Theorem 2.3. Before
explaining our contributions in detail, we survey the history of these results, since it appears that
they are not so well-known. Moreover, it involves a rich interplay between (modular) representation
theory, symmetric functions and the combinatorics of integer partitions.

2020 Mathematics Subject Classification. 05A17, 15A15, 20C15, 20C30, 05E05, 05E10.
This research was funded in part by the Austrian Science Fund (FWF) 10.55776/F1002, in the framework of the

Special Research Programme “Discrete Random Structures: Enumeration and Scaling Limits”.
1The name Verschiebung (German for shift) comes from the theory of Witt vectors; see [17, §2.9] and [18,

Exercise 2.9.10].
25



1.1. Historical background. The notion of a hook of an integer partition was introduced by
Nakayama in the pair of papers [48, 49]. For an integer t ↭ 2 he showed that one can associate
to each partition a t-core, being a partition containing no hook of length t. His motivation came
from the modular representation theory of the symmetric group, and in particular he conjectured
that for t prime two partitions belong to the same t-block of the symmetric group if and only if
they have the same t-core [49, §6]. This conjecture was proved several years later by Brauer and
Robinson [6, 59].2 Following the proof of Nakayama’s conjecture, Robinson introduced the notion
of a star diagram associated to a partition, which encodes its t-hook structure [60], work which was
continued by Staal [62]. This was independently discovered by Nakayama and Osima, who gave a
second, independent proof of Nakayama’s conjecture [50].

Inspired by Robinson’s work, Littlewood synthesised the aforementioned ideas into what he
dubbed the t-residue and t-quotient of a partition [38]. In fact, the t-residue is just Nakayama’s
t-core, while the t-quotient contains the same information as the star diagram of Robinson, but is
more simply constructed. Perhaps due to its more straightforward nature, Littlewood’s construction
is now the most well-known. To be a little more explicit, let P denote the set of partitions and Ct

the set of all t-cores. What is now known as the Littlewood decomposition amounts to a bijection

ϑt : P ↑↓ Ct ↔ Pt

ε ↗↑↓
(
t-core(ε), (ε(0), . . . ,ε(t→1)

)
)
,

where t-core(ε) is Nakayama’s t-core and the t-tuple of partitions (ε(0), . . . ,ε(t→1)
) is Littlewood’s

t-quotient. The bijection may be realised in several equivalent ways. Below we will use the realisation
in terms of Maya diagrams or, equivalently, the binary encoding of partitions. Littlewood’s original
construction was purely arithmetic, and his motivation was similar to the authors before him. In his
paper he gives a short, independent proof of Nakayama’s conjecture, and then uses the t-quotient
as a tool to produce relationships between modular characters inside t-blocks. He gives two further
applications of the construction: one to character values of the symmetric group and one to a
particular plethysm of symmetric functions.

Let ϖω denote the irreducible character of the symmetric group Sn indexed by the partition
ε of n. We use the usual notations for partitions; see Subsection 2.1 for the relevant definitions.
Here we only note that tµ stands for the partition with all parts multiplied by t and for a partition
with empty t-core sgnt(ε) is equal to ±1 and may be defined in terms of the heights of ribbons; see
(2.1). Littlewood stated the following theorem.

Theorem 1.1 ([38, p. 340]). Let ε be a partition of nt. Then ϖω
(tµ) = 0 unless the t-core of ε is

empty, in which case

(1.2) ϖω
(tµ) = sgnt(ε) Ind

Sn
S|ω(0)|↑···↑S|ω(t→1)|

(
ϖω(0)

↘ · · ·↘ ϖω(t→1))
(µ).

In fact, this result appears already in a paper of Littlewood and Richardson from seventeen years
prior [41, Theorem IX].3 There, however, the elegance of the theorem is almost completely obscured
by the absence of the concepts of the t-core and t-quotient. An extension to skew characters ϖω/µ

was given by Farahat, a student of Littlewood [12]. For more on this theorem and its generalisations
see Subsection 6.2.

The second application is to a particular instance of plethysm of symmetric functions. Again,
deferring precise definitions until later on, let sω = sω(x1, x2, . . . ) be the Schur function indexed
by ε and pr(x1, x2, . . . ) = xr

1 + xr
2 + · · · the r-th power sum symmetric function. The plethysm

pr ≃ sω = sω ≃ pr is defined by

(1.3) sω ≃ pr := sω(x
r
1, x

r
2, x

r
3, . . .).

Also, for a multiset of skew shapes S we let cωS denote the coe"cient of sω in the Schur expansion of∏
µ↓S sµ. When S consists of only two straight shapes µ, ϱ then cωµ,ε are the Littlewood–Richardson

coe"cients famously characterised by Littlewood and Richardson in [40]. Thus we will refer to

2The proof is joint work but appears in separate papers published simultaneously in the Transactions of the Royal
Society of Canada.

3Curiously, Littlewood’s citation of this result points to his treatise [36], although it appears earlier in the work
with Richardson.
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the cωS as multi-Littlewood–Richardson coe!cients. Littlewood’s second application is the Schur
expansion of the plethysm (1.3).

Theorem 1.2 ([38, p. 351]). For a partition ε and integer t ↭ 2,

sω ≃ pt =
∑

ε
t-core(ε)=⊋

sgnt(ϱ)c
ω
ε(0),...,ε(t→1)sε .

This formula has come to be known as the SXP rule. It has a generalisation as an expansion of
the expression sϑ (sω/µ ≃ pt) due to Wildon [68] which we will meet later on in Section 5.

A glance at the structure of the theorems suggests there must be a relation between them, and
indeed the proof of Theorem 1.2 in [38] uses Theorem 1.1. Remarkably, Littlewood and Richardson’s
proof of the first theorem is based on a Schur function identity which is in a sense dual to the
second theorem. (Littlewood provides a proof of a slightly more general result in [38], of which
Theorem 1.1 is a special case, which is independent of the proof given earlier.) To explain this,
recall that the Hall inner product is the inner product on the ring of symmetric functions ! for
which the Schur functions are orthonormal:

(1.4) ⇐sω, sµ⇒ = ςωµ,

where ςωµ is the usual Kronecker delta. As an operator on the algebra of symmetric functions, the
plethysm by pt has an adjoint, which is denoted by ωt. That is, for any f, g → !,

(1.5) ⇐f ≃ pt, g⇒ = ⇐f,ωtg⇒.
The operator ωt turns out to be the Verschiebung operator defined above (1.1).

With the aid of Theorem 1.2 the evaluation of the action of ωt on the Schur functions is a short
exercise. Setting (f, g) ↗↓ (sµ, sω) in (1.5) gives ⇐sµ ≃ pt, sω⇒ = ⇐sµ,ωtsω⇒. Therefore

⇐sµ,ωtsω⇒ =
{
sgnt(ε)c

µ
ω(0),...,ω(t→1) if t-core(ε) = ⊋,

0 otherwise.

By the definition of the multi-Littlewood–Richardson coe"cients we obtain the following.

Theorem 1.3. For ε a partition and t ↭ 2 an integer we have that ωtsω = 0 unless t-core(ε) = ⊋,

in which case

ωtsω = sgnt(ε)sω(0) · · · sω(t→1) .

As already mentioned above, this result has its origins in the work of Littlewood and Richardson
in the 1930’s. At the generality of the above theorem the result first appears in Littlewood’s book
[36, §7.3]. There the language of cores and quotients is of course not used, nor is the Verschiebung
operator. Rather he gives an equivalent formulation in terms of his notion of the “S-function of
a series”; see [34] or [63, Exercise 7.91]. There is also an extension of Theorem 1.3 to skew Schur
functions due to Farahat and Macdonald; see Theorem 3.2 below. How precisely Theorems 1.1, 1.2
and 1.3 are equivalent will be explained in Subsection 6.2.

1.2. Generalisations to classical group characters. In their paper on what are now called LLT
polynomials, Lascoux, Leclerc and Thibon pointed out that the adjoint relationship (1.5) combined
with a refinement of the Littlewood decomposition to ribbon tableaux due to Stanton and White
[64] leads to a combinatorial proof of the identity of Theorem 1.3 [31, §IV]. Indeed, the operator
ωt and its plethysm adjoint are “q-deformed” and then used to define the LLT polynomials. In
extending this construction to other types, Lecouvey proved beautiful variations of Theorem 1.3 for
the characters of Sp2n and O2n in the case t is odd and SO2n+1 for general t [32, §3]. (Here and
throughout all matrix groups are taken over C.) Rather than expressing these results as products
of characters, he gives the expansion of the evaluation in terms of Weyl characters where the
coe"cients are branching coe"cients corresponding to the restriction of an irreducible polynomial
representation to a subgroup of Levi type. The obstruction for t even in the first two cases is
precisely that the coe"cients cannot be interpreted as branching coe"cients.

Recently Ayyer and Kumari rediscovered the factorisation results of Lecouvey, but in a slightly
di!erent form by “twisting” a finite set of n variables by a primitive t-th root of unity [3]. This point
of view is explained in Section 6. By working with the explicit Laurent polynomial expressions for
the symplectic and orthogonal characters they could show that for all t ↭ 2 these twisted characters
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factor as a product of other characters. They also characterise the vanishing of these twisted
characters in a much simpler manner. For example they show that the twisted character of SO2n+1

indexed by ε vanishes unless t-core(ε) is self-conjugate. The even orthogonal and symplectic cases
admit similarly simple descriptions. For t = 2 these factorisations may be found already in the
work of Mizukawa [46].

Lecouvey also proved striking extensions of Theorem 1.2 to the universal characters of the
symplectic and orthogonal groups [33]. These are symmetric function lifts of the ordinary characters
first defined by Koike and Terada [27] using the Jacobi–Trudi formulae of Weyl. (Lecouvey’s
extensions are anticipated by work of Littlewood [39] for the ordinary characters and Scharf and
Thibon for the universal characters [61, §6], both only for t = 2, 3.) Inspired by the work of Ayyer
and Kumari we lifted their factorisations to the level of universal characters [2].4 Our proofs there
are based on the Jacobi–Trudi formulae for these symmetric functions. In the present work we
utilise a di!erent approach based on expressions for the universal characters in terms of skew Schur
functions. For example, let soω denote the universal odd orthogonal character. Then

(1.6) soω := det
1↭i,j↭l(ω)

(hωi→i+j + hωi→i→j→1) =

∑

µ↓P0
µ↔ω

(↑1)
(|µ|→rk(µ))/2sω/µ,

where P0 is the set of self-conjugate partitions, µ ⇑ ε means the Young diagram of µ is contained
in that of ε and rk(µ) denotes the Frobenius rank of µ. We will now state the expression for ωtsoω,
in which we will write ε̃ := t-core(ε), a short-hand also used below whenever it is convenient. We
also note that for a pair of partitions ε, µ the symmetric function rsω,µ is the universal character
lift of the irreducible rational representation of GLn indexed by the pair of partitions (ε, µ); see
(3.14) and the surrounding discussion for a definition.

Theorem 1.4. For ε a partition and t ↭ 2 an integer we have that ωtsoω = 0 unless t-core(ε) is

self-conjugate, in which case

ωtsoω = (↑1)
(|ω̃|→rk(ω̃))/2

sgnt(ε/ε̃)

↗(t→2)/2↘∏

r=0

rsω(r),ω(t→r→1) ↔
{
1 t even,

soω((t→1)/2) t odd.

This may be found in various forms in [32, §3.2.4], [3, Theorem 2.17] and [2, Theorem 3.4]. The
key di!erence between this theorem and all its previous iterations is that the overall sign is explicitly
expressed in terms of statistics on ε and its t-core. While not visible from the above we are also
able to show that in the symplectic and even orthogonal cases the sign is just as simple. The proof
of the above theorem we present below uses the skew Schur expansion in (1.6), the skew Schur
function case of Theorem 1.3 (Theorem 3.2 below) and properties of the Littlewood decomposition
restricted to the set of self-conjugate partitions. More precisely, it was observed by Osima [52] that
a partition is self-conjugate if and only if t-core(ε) is self-conjugate and

(1.7) ε(r)
= (ε(t→r→1)

)
≃ for 0 ↫ r ↫ t↑ 1.

Note that the partitions paired by this condition are precisely the partitions paired in the factorisation
of ωtsoω.

In fact much more is true. Our main result, which we state as Theorem 4.3 below, embeds
Theorem 1.4 as the (z, q) = (0, 1) case of an infinite family of such factorisations where z is an
arbitrary integer and q is a formal variable. The generalisation of the character soω, denoted Xω(z; q),
is a symmetric function defined by Hamel and King [19, 20], building on work of Bressoud and Wei
[7]. It may be expressed as a Jacobi–Trudi-type determinant or as a sum of skew Schur functions
à la (1.6). This sum is indexed by z-asymmetric partitions, a term coined by Ayyer and Kumari,
which are a z-deformation of self-conjugate partitions. In fact, what facilitates the factorisation
of this object under ωt is that the Littlewood decomposition for z-asymmetric partitions has a
nice structure, involving “conjugation conditions” such as (1.7). Indeed, this is our other main
result, Theorem 2.3, which characterises z-asymmetric partitions in terms of their Littlewood
decompositions. For z = 0 this is the self-conjugate case discussed prior, and for z = 1 this appears
in the seminal work of Garvan, Kim and Stanton on cranks [14].

4At the time we were unfortunately not aware of the work of Lecouvey.
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1.3. Summary of the paper. The paper reads as follows. In the next section we introduce the
necessary definitions and conventions for integer partitions, including the Littlewood decomposition.
This includes our first main result, Theorem 2.3, the characterisation of z-asymmetric partitions
under the Littlewood decomposition. Section 3 then turns to symmetric functions and universal
characters. We survey the action of the Verschiebung operators on the classical bases of the ring
of symmetric functions, and introduce a new deformation of the rational universal characters
which arise naturally in our main factorisation theorem. Section 4 then contains the companions
of Theorem 1.4 for the symplectic and even orthogonal characters, our generalisation, stated as
Theorem 4.3, and its proof. Then Section 5 is used to survey the known SXP rules for Schur
functions and universal characters. This includes Wildon’s generalisation of Theorem 1.2 which we
show is equivalent to the skew case of Theorem 1.3 (Theorem 3.2 below). Using our combinatorial
setup, we give reinterpretations of Lecouvey’s SXP rules, and in particular show that for all types
they may be expressed as sums over partitions with empty t-core. We close with some remarks
about related results, including a discussion of the precise relationship between the first three
theorems of the introduction.

2. Partitions and the Littlewood decomposition

This section contains the necessary preliminaries regarding integer partitions. We also describe
the Littlewood decomposition in terms of Maya diagrams which is essentially the abacus model of
James and Kerber [22]. Our main results in this section, Theorem 2.3 and its corollaries, give a
characterisation of z-asymmetric partitions in terms of the Littlewood decomposition.

2.1. Preliminaries. A partition is a weakly decreasing sequence of nonnegative integers ε =

(ε1,ε2,ε3, . . . ) such that the size |ε| := ε1 + ε2 + ε3 + · · · is finite. The nonzero εi are called parts

and the number of parts the length, denoted l(ε). The set of all partitions is written P and the
empty partition, the unique partition of 0, is denoted by ⊋. We write (mϖ

) for the partition with φ
parts equal to m, and the sum ε+ (mϖ

) is then the partition obtained by adding m to the first φ
parts of ε. We identify a partition with its Young diagram, which is the left-justified array of cells
consisting of εi cells in row i with i increasing downward. An example is given in Figure 1. We
define the conjugate partition ε≃ by reflecting the diagram of ε in the main diagonal, so that the
conjugate of (6, 5, 5, 1) is (4, 3, 3, 3, 3, 1). A partition is self-conjugate if ε = ε≃.

The Frobenius rank of a partition, rk(ε), is defined as the number of cells along the main diagonal
of its Young diagram. We extend this by an integer c → Z to a statistic rkc(ε) which we call the
c-shifted Frobenius rank . If c ↭ 0 this is the Frobenius rank of the partition obtained by deleting
the first c rows of ε, while for c ↫ 0 it is the Frobenius rank of the partition with the first ↑c
columns of ε removed. Another way to notate partitions is with Frobenius notation, which records
the number of cells to the right of and below each cell on this main diagonal. This is written

ε =
(
ε1 ↑ 1, . . . ,εrk(ω) ↑ rk(ε) | ε≃

1 ↑ 1, . . . ,ε≃
rk(ω) ↑ rk(ε)

)
;

again, see Figure 1 for an example. Any two strictly decreasing nonnegative integer sequences u, v
with the same number of elements, say k, thus give a unique partition ε = (u | v) of Frobenius rank
k. Clearly self-conjugate partitions are those of the form (u | u). Now let u+z := (u1+z, . . . , uk+z)
for any z → Z. Ayyer and Kumari define z-asymmetric partitions to be those of the form (u+ z | u)
for any sequence u (of any length) and fixed z → Z [3, Definition 2.9]. The set of z-asymmetric
partitions is denoted by Pz and (6, 5, 5, 1) in Figure 1 is 2-asymmetric. The generating function
for z-asymmetric partitions is given by

∑

ω↓Pz

q|ω| = (↑q1+|z|
; q2)⇐.

This is easy to see by the fact that a z-asymmetric partition is uniquely determined by its set of
hook lengths on the main diagonal. These are all distinct integers of the form “odd plus |z|”, which
gives the proof. Clearly the conjugate of a z-asymmetric partition is ↑z-asymmetric.

Given a cell s in the Young diagram of ε its hook length is one more than the sum of the number
of cells below and to the right of s; see Figure 1. The hook of s is then the set of cells counted. A
hook is a principal hook if it is the hook of a cell on the main diagonal. For an integer t ↭ 2 we say
a partition is a t-core if it contains no cell with hook length t (or, equivalently, no cell with hook
length divisible by t). For a pair of partitions ε, µ we say µ is contained in ε, written µ ⇑ ε, if its
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9 7 6 5 4 1

7 5 4 3 2

6 4 3 2 1

1

Figure 1. The partition ε = (6, 5, 5, 1) = (5, 3, 2 | 3, 1, 0) with its main diagonal
shaded (left) and the same partition with hook length of each cell inscribed (right).
We have |ε| = 17, l(ε) = 4, rk(ε) = 3, rk2(ε) = 1 and rk→3(ε) = 2.

Young diagram may be drawn inside the Young diagram of ε. The corresponding skew shape is the
arrangement of cells formed by removing µ’s diagram from ε’s. A skew shape is a ribbon if it is
edge-connected and contains no 2↔ 2 square of cells, and a t-ribbon is a ribbon containing t cells.5
The height of a ribbon R, ht(R), is one less than the number of rows it occupies; see Figure 2.

•

Figure 2. The pair of partitions (4, 4, 2, 1) ⇑ (6, 5, 5, 1). The unshaded cells form
a 6-ribbon of height 2 and the corresponding cell with hook length 6 is marked.

We say a skew shape ε/µ is t-tileable if there exists a sequence of partitions

µ =: ϱ(0) ⇑ ϱ(1) ⇑ · · · ⇑ ϱ(m→1) ⇑ ϱ(m)
:= ε

such that the skew shapes ϱ(r)/ϱ(r→1) are each t-ribbons for 1 ↫ r ↫ m. It is a non-trivial fact, see,
e.g. [53, Lemma 4.1], that the sign

(2.1) sgnt(ε/µ) := (↑1)

∑m
r=1 ht(ε(r)/ε(r→1))

is constant over the set of all t-ribbon decompositions of ε/µ (so, indeed, the above is well-defined).
In the case µ = ⊋ and t = 2 the above sign is simply equal to

sgn2(ε) = (↑1)
odd(ω)/2

where odd(ε) is equal to the number of odd parts of ε; see, e.g., [5, Equation (5.15)].

2.2. Littlewood’s decomposition. Here we describe the Littlewood decomposition through the
lens of Maya diagrams, which is essentially the abacus of James and Kerber [22, §2.7] or the
Brettspiele of Kerber, Sänger and Wagner [23]. Littlewood’s original algebraic description may be
found in [38] and [44, p. 12].

Given a partition ε its beta set is the subset of the half integers given by

↼(ε) :=
{
εi ↑ i+

1

2
: i ↭ 1

}
.

This is visualised as a configuration of “beads” on the real line placed at the positions indicated by
↼(ε), and this visualization is the Maya diagram. Note that for any partition the configuration
will eventually contain only beads to the left and only empty spaces to the right. The map from
partitions to Maya diagrams is clearly a bijection, and one way to reconstruct ε from ↼(ε) is to
count the number of empty spaces to the left of each bead starting from the right. From the Maya
diagram we extract t subdiagrams, called runners, formed by the beads at positions x such that
x↑ 1/2 is equal to r modulo t for 0 ↫ r ↫ t↑ 1. Arranging the runners with r increasing upward
we obtain the t-Maya diagram. An example of this procedure is given in Figure 3. The partitions
corresponding to each runner are denoted by ε(r) according to the residues modulo t of the original
positions, and these precisely form Littlewood’s t-quotient .

The next important observation is that t-hooks in ε correspond to beads in its t-Maya diagram
which contain no bead immediately to their left. For example, Figure 1 shows that (6, 5, 5, 1)

5Elsewhere in the literature ribbons are variously called border strips, rim hooks or skew hooks.
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contains two 3-hooks, and in Figure 3 one bead in runner 0 and one in runner 2 have free spaces to
their left. Moving such a bead one space to its left removes the t-ribbon associated with that hook.
Repeating this procedure until all beads are flush-left in the t-Maya diagram produces a unique
partition t-core(ε) which, as the notation suggests, is a t-core. The uniqueness is clear from the
t-Maya diagram picture. Furthermore, the height of the removed ribbon is equal to the number of
beads between its initial and terminal position, i.e., to |↼(ε) ⇓ {x↑ 1, . . . , x↑ t+ 1}| if we move
the bead at position x. Note that in the ordinary Maya diagram this corresponds to the number of
beads “jumped over”. Let us collect these observations into the following theorem.

ε(0)

ε(1)

ε(2)

ε

Figure 3. The Maya diagram of ε = (6, 5, 5, 1) (top) and the 3-Maya diagram of
the same partition (bottom). We have that 3-core(ε) = (1, 1), ↽3((1, 1)) = (1,↑1, 0)
and (ε(0),ε(1),ε(2)

) = ((1),⊋, (2, 2)).

Theorem 2.1 (Littlewood’s decomposition). For any integer t ↭ 2 the above procedure encodes a

bijection

P ↑↓ Ct ↔ Pt

ε ↗↑↓
(
t-core(ε), (ε(0), . . . ,ε(t→1)

)
)

such that |ε| = |t-core(ε)|+ t(|ε(0)|+ · · ·+ |ε(t→1)|).

When a skew shape ε/µ is t-tileable can be characterised completely in terms of the Littlewood
decomposition of ε and µ. Since ε/µ being t-tileable means that we may obtain the diagram of
µ from that of ε by removing ribbons in any order, it follows that ε/µ is t-tileable if and only if
t-core(ε) = t-core(µ) and µ(r) ⇑ ε(r) for each 0 ↫ r ↫ t↑ 1.

We will also need a di!erent characterisation of t-cores. Call a Maya diagram balanced if it
contains as many beads to the right of 0 as empty spaces to the left. The way we defined Maya
diagrams ensures they are always balanced, but Figure 3 shows that the constituent diagrams
of the quotient need not be. Let c+r (resp. c→r ) denote the number of beads to the right of 0

(resp. number of empty spaces to the left of 0) in row ε(r) of the t-Maya diagram. Now the sequence
of integers (c0, . . . , ct→1) defined by cr := c+r ↑ c→r has total sum zero, and is invariant under valid
bead movements. As observed by Garvan, Kim and Stanton, this encodes a bijection [14, Bijection
2]

(2.2) ↽t : Ct ↑↓ {(c0, . . . , ct→1) → Zt
: c0 + · · ·+ ct→1 = 0}

such that for µ → Ct

|µ| =
t→1∑

r=0

(
tc2r
2

+ rcr

)
.

In what follows we extend (2.2) to a map P ↑↓ Zt, the fibres of which are the sets of all partitions
with a given core.

In the introduction we noted that self-conjugate partitions satisfy a nice symmetry with respect
to the Littlewood decomposition. To explain where this comes from, note that the conjugate
of a partition can be read o! its (ordinary) Maya diagram by interchanging beads and empty
spaces and then reflecting the picture about 0. In the t-Maya diagram this corresponds to
conjugating each runner and reversing the order of the runners. This implies that the t-quotient
of ε≃ is given by ((ε(t→1)

)
≃, . . . , (ε(0)

)
≃
) in terms of the t-quotient of ε. Furthermore, we have that

t-core(ε≃
) = t-core(ε)≃ which, if ↽t(ε) = (c0, . . . , ct→1), translates to ↽t(ε≃

) = (↑ct→1, . . . ,↑c0) in
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terms of (2.2). From these properties it immediately follows that the Littlewood decomposition of
a self-conjugate partition much satisfy cr + ct→r→1 = 0 for 0 ↫ r ↫ t↑ 1 and ε(r)

= (ε(t→r→1)
)
≃ for

r in the same range. This is equivalent to the conditions given in the introduction. Garvan, Kim
and Stanton [14, §8] show that something similar holds for 1-asymmetric partitions.

Proposition 2.2. If ε → P1 then t-core(ε),ε(0) → P1 and the remaining entries in the quotient

satisfy ε(r)
= (ε(t→r)

)
≃
for 1 ↫ r ↫ t↑ 1.

Our first main result is a generalisation of this proposition to z-asymmetric partitions. To fix
some notation, let Cz;t ⇔ Zt consist of those t-tuples for which cr + cz→r→1 = 0 for 0 ↫ r ↫ z ↑ 1

and cs + ct+z→s→1 = 0 for z ↫ s ↫ t↑ 1. Also recall the c-shifted Frobenius rank rkc(ε) from the
previous Subsection 2.1.

Theorem 2.3. Let t ↭ 2 and z be integers and ε a partition such that 0 ↫ z ↫ t↑ 1 and ε → Pz.

Then ↽t(t-core(ε)) → Cz;t and the quotient (ε(0), . . . ,ε(t→1)
) is such that for 0 ↫ r ↫ z ↑ 1 with

cr ↭ 0 there exist partitions ϱ(r) with

(2.3a) ε(r)
= ϱ(r) + (1

cr+rkcr (ε
(r))

) and ε(z→r→1)
= (ϱ(r))≃ + (1

rkcr (ε
(r))

)

and for z ↫ s ↫ t↑ 1,

(2.3b) ε(s)
= (ε(t+z→s→1)

)
≃.

Proof. The proof is by induction on z. For z = 0 the result is clear from the properties of self-
conjugate partitions under the Littlewood decomposition. Now choose a strict partition v and let
ε = (v + z ↑ 1 | v) for some fixed z ↭ 1. Assume that ↽t(t-core(ε)) → Cz→1;t and further that the
conditions (2.3) are satisfied (with z replaced by z ↑ 1 in the latter). We wish to show that the
partition µ = (v + z | v) has ↽t(t-core(µ)) → Cz;t and that the conditions (2.3) hold for µ. Also set
↽t(t-core(ε)) = (c1, . . . , ct→1) and ↽t(t-core(µ)) = (d1, . . . , dt→1).

The key observation is that we may obtain the t-Maya diagram of µ from that of ε as follows:
beads lying at positive positions are moved upwards cyclically one runner in the same column,
except those passing from ε(t→1) to ε(0), which move an additional space to the right. An example
of this is given in Figure 4. If we imagine that the t-Maya diagram is wrapped around a bi-infinite
cylinder, then this corresponds to cutting the cylinder along 0, “twisting” so that beads passing
from r = t ↑ 1 to r = 0 are also moved one space to the right, and then re-gluing. From this
construction we observe that for 0 ↫ r ↫ z ↑ 1

(2.4) dr + dz→r→1 = c+r→1 ↑ c→r + c+z→r→2 ↑ c→z→r→1.

We already have that cr + cz→r→2 = 0 for 0 ↫ r ↫ z↑ 2 by our assumption. However, (2.3a) implies
the slightly stronger condition that c→r = c+z→r→2 (or, equivalently, c+r = c→z→r→2). This is because
conjugation of a runner interchanges c+r and c→r . Thus, in the range 1 ↫ r ↫ z↑2 we have that (2.4)
vanishes. For r = 0 one needs to use that ε(z)

= (ε(t→1)
)
≃ and cz + ct→1 = 0. The same argument

in the range z ↫ s ↫ t↑ 1 completes the proof that ↽t(t-core(µ)) → Cz;t.

ε(0)

ε(1)

ε(2)

µ(0)

µ(1)

µ(2)

Figure 4. The 3-Maya diagram of (6, 5, 5, 1) (top) and the 3-Maya diagram of
(7, 6, 6, 1) (bottom) corresponding to action the “cut and twist” map.
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Let ε(r)
<0 (resp. ε(r)

>0) denote the negative (resp. positive) half of the runner corresponding to ε(r). It
is clear that, when indices are read modulo t, µ(r)

= ε(r)
<0↖ε

(r→1)
>0 and µ(z→r→1)

= ε(z→r→1)
<0 ↖ε(z→r→2)

>0

for 0 ↫ r ↫ z ↑ 1. Since the ε(r) satisfy (2.3) in the range 1 ↫ r ↫ z ↑ 2, then so will the µ(r) with
cr replaced by dr. The cases r = 0 and for z ↫ s ↫ t↑ 1 follow by the same argument, the former
using the fact that the positive beads in ε(t→1)

>0 will move one space to the right. ↬
While we have stated the above theorem only for 0 ↫ z ↫ t↑ 1, it may be extended to arbitrary

z ↭ 0. Since this is not as elegant as the above, we now state this separately as a corollary.

Corollary 2.4. Let t ↭ 2 and z = at+ b be integers and ε a partition such that 0 ↫ b ↫ t↑ 1 and

ε → Pz. Then ↽t(t-core(ε)) → Cb;t and the quotient (ε(0), . . . ,ε(t→1)
) is such that for 0 ↫ r ↫ b↑ 1

with cr ↭ 0 there exist partitions ϱ(r) with

(2.5a) ε(r)
= ϱ(r) + ((a+ 1)

cr+rkcr (ε
(r))

) and ε(b→r→1)
= (ϱ(r))≃ + ((a+ 1)

rkcr (ε
(r))

),

and for b ↫ s ↫ t↑ 1 with cs ↭ 0 there exist partitions ⇀(s) with

(2.5b) ε(s)
= ⇀(s) + (acs+rkcs (ϱ

(s))
) and ε(t+b→s→1)

= (⇀(s))≃ + (arkcs (ϱ
(s))

).

This corollary follows simply from the observation that t iterations of the “cut and twist” map
used in the previous proof shift all beads at positive positions one place to the right. If b is odd then
(2.5a) says that ε((b→1)/2) → Pa+1 and if t+ b is odd then (2.5b) says that ε((t+b→1)/2) → Pa. Since
we may obtain negative z by conjugation, Corollary 2.4 gives a characterisation of z-asymmetric
partitions under the Littlewood decomposition.

Our next corollary, which will prove useful in the statement of our main results, characterises
when a t-core is z-asymmetric, and gives the minimal z-asymmetric partition with a given core.
The first part of this is due to Ayyer and Kumari [3, Lemma 3.6] in a slightly di!erent form.

Corollary 2.5. A t-core µ is z-asymmetric if and only if 0 ↫ z ↫ t↑ 2 and ↽t(µ) satisfies cr = 0

for 0 ↫ r ↫ z ↑ 1. Moreover, for any sequence c → Cz;t the unique z-asymmetric partition ε with

↽t(t-core(ε)) = c and minimal |ε| has quotient ε(r)
= (1

cr) for those r with 0 ↫ r ↫ z ↑ 1 and

cr > 0.

Proof. By Theorem 2.3 a z-asymmetric partition µ must have ↽t(µ) → Cz;t and ε(r)
= ⊋ for all

0 ↫ r ↫ t↑ 1. However, the restrictions (2.3a) admit the empty partition as a solution if and only
if cr = 0. The second part of the corollary is then immediate. ↬

This shows that while the t-core of a 0- or 1-asymmetric partition is always itself 0- or 1-
asymmetric, the same is not necessarily true for z-asymmetric partitions when z ↭ 2. Indeed, our
running example of (6, 5, 5, 1) is 2-asymmetric but has t-core (1, 1) which is clearly not 2-asymmetric.

A key tool we need below is an expression for the Frobenius rank of a partition in terms of the
Frobenius ranks of its core and quotient. This is due to Brunat and Nath, however, we restate it in
our terminology and provide a short proof. Some related results about the Frobenius ranks of ↑1-,
0- and 1-asymmetric partitions may be found in [3, Lemma 3.13].

Lemma 2.6 ([8, Corollary 3.29]). For any partition ε and integer t ↭ 2,

rk(ε) = rk(t-core(ε)) +
t→1∑

r=0

rkcr (ε
(r)

).

Proof. Let ↽t(ε) = (c0, . . . , c1). As we have already remarked, rk(ε) is equal to the number of beads
at positive positions in the Maya or t-Maya diagram, i.e., rk(ε) =

∑t→1
r=0 c

+
r . A simple rewriting of

this expression gives
t→1∑

r=0

c+r =

t→1∑

r=0
cr>0

(c+r ↑ c→r ) +
t→1∑

r=0
cr>0

c→r +

t→1∑

r=0
cr↭0

c+r .

The first sum on the right is equal to rk(t-core(ε)) since, after pushing all beads to the left, this
will count the beads remaining at positive positions. If cr = 0 then the beads on runner r do not
contribute to rk(t-core(ε)) and so rk(ε(r)

) = c+r . Now consider the case cr > 0. Counted from the
right, the first cr beads in this runner are already accounted for by rk(t-core(ε)). The quantity
c→r = c+r ↑ cr then counts the number of remaining beads at positive positions, which is equal to

33



the Frobenius rank of ε with the first cr rows removed, i.e., to rkcr(ε). By conjugation the same
argument works in the case cr < 0, completing the proof. ↬

Observe that if the t-core of ε is empty then

rk(ε) =
t→1∑

r=0

rk(ε(r)
),

since rk0(ε(r)
) = rk(ε(r)

). An example of the computation of the Frobenius rank using the lemma
is given in Figure 5.

ε ↗↑↓ 3-core(ε) ε(0) ε(1) ε(2)

Figure 5. The Littlewood decomposition of ε = (8, 4, 3, 3, 3, 1, 1) with t = 3 and
↽3(ε) = (0, 1,↑1). The marked cells explain the computation of the Frobenius
rank: the left- and right-hand sides both contain three shaded cells since the first
row of ε(1) and the first column of ε(2) are ignored.

To conclude this section, we give an alternate characterisation of the sign (2.1) in terms of
certain permutations. For a partition ε and an integer n such that n ↭ l(ε) we write ⇁t(ε;n)
for the permutation on n letters which sorts the list (ε1 ↑ 1, . . . ,εn ↑ n) such that their residues
modulo t are increasing, and the elements within each residue class are decreasing. For example
if t = 3, ε = (6, 5, 5, 1) and n = 6 then the list is (5, 3, 2,↑3,↑5,↑6). Our permutation is then
⇁3(ε; 6) = 246513 in one-line notation. Inversions in this permutation may be read o! the t-Maya
diagram. They correspond to pairs of beads (b1, b2) such that b2 lies weakly to the right of and
strictly above b1. (Note that we only consider the first n beads, read top-to-bottom and right-to-left.)

In the following lemma we write sgn(w) for the sign of the permutation w.

Lemma 2.7 ([2, Lemma 4.5]). Let ε/µ be a t-tileable skew shape. Then for any integer n ↭ l(ε)
we have

(2.6) sgnt(ε/µ) = sgn(⇁t(ε;n)) sgn(⇁t(µ;n)).

Proof. Let ε/µ have ribbon decomposition

µ =: ϱ(0) ⇑ ϱ(1) ⇑ · · · ⇑ ϱ(m→1) ⇑ ϱ(m)
:= ε,

where ϱ(r)/ϱ(r→1) is a t-ribbon for each 1 ↫ r ↫ m. The contribution of the ribbon ε/ϱ(m→1) to
the sign on the left is (↑1)

ht(ω/ε(m→1)). If the removal of this ribbon corresponds to moving a bead
from position x to x↑ t, then this sign is equal to (↑1)

b where b = |↼(ε) ⇓ {x↑ 1, . . . , x↑ t+ 1}|
counts the number of beads strictly between x and x↑ t. By the construction of the permutations
⇁t(ε;n) and ⇁t(ϱ(m→1)

;n), we have (↑1)
b
= sgn(⇁t(ε;n)) sgn(⇁t(ϱ(m→1)

;n)). In other words, upon
removing a single ribbon, both the left- and right-hand sides of (2.6) change by the same quantity.
Iterating this completes the proof. ↬

3. Generalised universal characters

We now return to symmetric functions. The first part of this section is devoted to the Verschiebung
operator, defined as the adjoint of the plethysm by a power sum symmetric function. After briefly
surveying its action on various classes of symmetric functions we state our variants of this action
on the universal characters. This is followed by the main theorems, which compute the image of
the general symmetric function Xω defined in the introduction.
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3.1. Symmetric functions and plethysm. Here we give the basic facts relating to symmetric
functions; see [44, Chapter 1] or [63, Chapter 7]. We work in the algebra of symmetric functions over
Q and in a countable alphabet X = (x1, x2, x3, . . .), denoted !. Important families of symmetric
functions we require are the elementary symmetric functions and the complete homogeneous

symmetric functions, defined for integers k ↭ 0 by

ek(X) :=

∑

1↭i1<···<ik

xi1 · · ·xik and hk(X) :=

∑

1↭i1↭···↭ik

xi1 · · ·xik ,

respectively. As in the introduction we will drop the alphabet of variables and write ek and hk for
the above. These are extended to partitions by hω := hω1hω2hω3 · · · and analogously for the eω and
pω. The final “obvious” basis consists of the monomial symmetric functions

mω(X) :=

∑

ς

xς1
1 xς2

2 xς3
3 · · · ,

where the sum is over all distinct permutations of the partition ε = (ε1,ε2,ε3, . . .). Over Q, all
four of the above families form linear bases for !.

The most important family of symmetric functions are certainly the Schur functions sω. The
simplest way to define them at the generality of skew shapes is by the Jacobi–Trudi determinant
(3.1) sω/µ := det

1↭i,j↭l(ω)
(hωi→µj→i+j),

where h→k := 0 for k ↭ 1. Similarly we have the dual Jacobi–Trudi formula
sω/µ = det

1↭i,j↭ω1

(eω↑
i→µ↑

j→i+j),

and again e→k := 0 for k ↭ 1. The symmetric functions sω form a basis for ! which is orthonormal
with respect to the Hall inner product (1.4). Another way to define the skew Schur function is by
the adjoint relation
(3.2) ⇐sω/µ, f⇒ = ⇐sω, sµf⇒.

for any f → !. As already covered above, the Littlewood–Richardson coe!cients cωµε are the
structure constants of the Schur basis:

sµsε =

∑

ω

cωµεsω.

Combining this with (3.2) in the case f = sε then gives

sω/µ =

∑

ε

cωµεsε .

From these equations one sees that cωµε is symmetric in µ, ϱ and will vanish unless µ, ϱ ⇑ ε and
|ε| = |µ|+ |ϱ|. These properties extend analogously to the multi-Littlewood–Richardson coe"cients.

We also have the following orthogonality relations among other symmetric functions
(3.3) ⇐hω,mµ⇒ = ςωµ and ⇐pω, pµ⇒ = zωςωµ,

where ςωµ is the usual Kronecker delta and zω :=
∏

i↫1 mi(ε)!imi(ω). It is customary to define a
homomorphism on symmetric functions by ωhk = ek, which is in fact an involution. One may show
using the Jacobi–Trudi formulae that ωsω/µ = sω↑/µ↑ . Moreover, ωmω = fω where the fω are the
forgotten symmetric functions, and ω is an isometry.

Plethysm is a composition of symmetric functions first introduced by Littlewood [35]; see also
[44, p. 135]. In the introduction we defined the plethysm by a power sum symmetric function pt,
which raises each variable to the power of t. Some properties of this plethysm are f ≃ pt = pt ≃ f
and ps ≃ pt = pst for s, t → N. Moreover if f is homogeneous of degree n then [63, Exercise 7.8]

(3.4) ω(f ≃ pt) = (↑1)
n(t→1)

(ωf) ≃ pt.
Recall from earlier that the adjoint of this plethysm with respect to the Hall scalar product is
denoted ωt, the t-th Verschiebung operator. We take the adjoint relation as defining this operator;
the definition in (1.1) given at the very beginning will serve as a special case of the following. The
next proposition gives the action of this operator on most of the families of symmetric functions we
have seen so far. We also provide short proofs of these claims, writing ε/t as short-hand for the
partition (ε1/t,ε2/t,ε3/t, . . .) when all parts of ε are divisible by t.
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Proposition 3.1. Let t ↭ 2 be an integer and ε a partition. If t does not divide each part of ε
then ωthω = ωteω = ωtpω = 0. If it does, then

(3.5) ωthω = hω/t, ωteω = (↑1)
|ω|(t→1)/teω/t and ωtpω = tl(ω)pω/t.

Proof. Beginning with the complete homogeneous symmetric function case, it is clear from the
definition of the mµ that mµ ≃ pt = mtµ. Therefore

⇐ωthω,mµ⇒ = ⇐hω,mµ ≃ pt⇒ = ⇐hω,mtµ⇒ = ςω,tµ,

where the last equality is an application of (3.3). This implies that ωthω = 0 if t does not divide
each part of ε. If it does, then the above is equal to ςω/t,µ, which implies that ωthω = hω/t.

For the second case, note that since ω is an isometry

⇐ωteω, fµ⇒ = ⇐eω, fµ ≃ pt⇒ = ⇐hω,ω(fµ ≃ pt)⇒.

By (3.4) we now have ω(fµ ≃ pt) = (↑1)
|µ|(t→1)mtµ. Therefore

⇐ωteω, fµ⇒ = (↑1)
|µ|(t→1)⇐hω,mtµ⇒ = (↑1)

|µ|(t→1)ςω,tµ,

again with the aid of (3.3). Exactly as before this implies that ωteω = 0 unless all parts of ε are
divisible by t. If they are then ωteω = (↑1)

|ω|(t→1)/teω/t, completing the proof of this case.
The power sum case is almost identical. First we use (3.3) to obtain

⇐ωtpω, pµ⇒ = ⇐pω, pµ ≃ pt⇒ = ⇐pω, ptµ⇒ = zωςω,tµ.

This tells us that ωtpω vanishes unless all parts of ε are divisible by t. Thus the power sum
expansion of ωtpω has a single term with coe"cient zω/zω/t = tl(ω). ↬

The actions of ωt presented in the previous proposition are all rather simple, and follow the same
pattern of dividing all parts of the partition by t if possible. A much richer structure underlies the
action of the t-th Verschiebung operator on the (skew) Schur functions, utilising Littlewood’s core
and quotient construction.

Theorem 3.2. For any integer t ↭ 2 and skew shape ε/µ we have ωtsω/µ = 0 unless ε/µ is

t-tileable, in which case

ωtsω/µ = sgnt(ε/µ)
t→1∏

r=0

sω(r)/µ(r) ,

where the sign is defined in (2.1).

For µ = ⊋ this reduces to Theorem 1.3 of the introduction. As alluded to there, the skew
case was first worked out by Farahat, but only when µ = t-core(ε) [13]. To our knowledge, the
first statement of the full skew Schur case appears in the second edition of Macdonald’s book as
an example [44, p. 92]. It then makes a further appearance in the work of Lascoux, Leclerc and
Thibon [31, p. 1049], which cites Kerber, Sänger and Wagner [23]. However, the latter does not
use Schur functions, and rather gives a new proof of Farahat’s skew generalisation of Theorem 1.1
using “Brettspiele”, which are essentially our Maya diagrams. In none of these references is the
vanishing described in terms of the tileability of the skew shape ε/µ, with this observation coming
from Evseev, Paget and Wildon [10, Theorem 3.3] in the context of symmetric group characters
(where the term t-decomposable is used rather than our t-tileable). In the precise form above this
appears in [2, Theorem 3.1].

In an e!ort to keep this paper for the most part self-contained we now provide a proof using
Macdonald’s approach, which is the same as that of Farahat.

Proof of Theorem 3.2. The first step of the proof is clear: apply ωt to the Jacobi–Trudi formula
(3.1) to obtain

(3.6) ωtsω/µ = det
1↭i,j↭n

(
ωthωi→µj→i+j

)
,

where n ↭ l(ε) is a fixed integer. An entry (i, j) in this new determinant is nonzero only
if εi ↑ i ↙ µj ↑ j (mod t). In order to group those entries within the same residue class,
permute the rows and columns according to the permutations ⇁t(ε;n) and ⇁t(µ;n). The resulting
determinant has a block-diagonal structure. If ↽(ε) = (c0, . . . , ct→1), ↽(µ) = (d0, . . . , dt→1) and
n = at + b (0 ↫ b ↫ t ↑ 1), then the rth block along the main diagonal will have dimensions
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(cr +a+[r ↭ b])↔ (dr +a+[r ↭ b]). Here [·] denotes the Iverson bracket which is equal to one if the
statement · is true and zero otherwise. These blocks will all be square if and only if ↽(ε) = ↽(µ),
i.e., unless t-core(ε) = t-core(µ), and thus the determinant necessarily vanishes if this is not the
case. It follows from our definition of the t-quotient that after applying the Verschiebung operator
the indices of the complete homogeneous symmetric functions in the rth block along the diagonal
are of the form h

ω(r)
i →µ(r)

j →i+j
where 1 ↫ i ↫ cr + a+ [r ↭ b] and 1 ↫ j ↫ dr + a+ [r ↭ b]. Thus we

have shown that, if t-core(ε) = t-core(µ), then

ωtsω/µ = sgn(⇁t(ε;n)) sgn(⇁t(µ;n))
t→1∏

r=0

sω(r)/µ(r) .

This product of skew Schur functions will further vanish unless µ(r) ⇑ ε(r) for each 0 ↫ r ↫ t↑ 1.
Putting this together with the previous vanishing we determine that ωtsω/µ is zero unless ε/µ is
t-tileable, in which case it is given by the above product. The sign is then equal to sgnt(ε/µ) by
Lemma 2.7. ↬

3.2. Generalised universal characters. For a finite set of n variables the Schur polynomial
sω(x1, . . . , xn) is the character of the irreducible polynomial representation of GLn indexed by
ε. The classical groups O2n, Sp2n and SO2n+1 also carry irreducible representations indexed by
partitions. The characters of these representations are rather Laurent polynomials symmetric under
permutation and inversion of the n variables. Using the Jacobi–Trudi formulae for these characters,
originally due to Weyl, they may still be expressed as determinants in the complete homogeneous
symmetric functions of the form hr(x1, 1/x1, . . . , xn, 1/xn) [67, Theorems 7.8.E & 7.9.A]. Rather
than working with these characters we will use the universal characters, as defined by Koike and
Terada [26, 27]. These are symmetric function lifts of the ordinary characters given by ‘forgetting’
the variables in Weyl’s Jacobi–Trudi formulae:

spω :=
1

2
det

1↭i,j↭k
(hωi→i+j + hωi→i→j+2)(3.7a)

oω := det
1↭i,j↭k

(hωi→i+j ↑ hωi→i→j)(3.7b)

soω := det
1↭i,j↭k

(hωi→i+j + hωi→i→j+1),(3.7c)

where k is an integer such that l(ε) ↫ k. We also have the dual forms

spω = det
1↭i,j↭ϖ

(eω↑
i→i+j ↑ eω↑

i→i→j)(3.8a)

oω =
1

2
det

1↭i,j↭ϖ
(eω↑

i→i+j + eω↑
i→i→j+2)(3.8b)

soω = det
1↭i,j↭ϖ

(eω↑
i→i+j + eω↑

i→i→j+1),(3.8c)

where here φ is an integer such that ε1 ↫ φ. Comparing (3.7) and (3.8) it is clear that ωoω = spω↑

and ωsoω = soω↑ .
Let !

BC
n denote the ring of Laurent polynomials in x1, . . . , xn which are symmetric under

permutation and inversion of the variables. Define for integers n ↭ 1 the restriction maps
πn : ! ↑↓ !

BC
n by πn(er) = er(x1, 1/x1, . . . , xn, 1/xn). If r > 2n then πn(er) = 0, and moreover,

πn(er ↑ e2n→r) = 0 for each 0 ↫ r ↫ n. For a partition ε with l(ε) ↫ n the images of the
universal characters under πn are the actual characters of their respective groups indexed by
ε. If l(ε) > n then these specialisations either vanish or, up to a sign, produce an irreducible
character of the same group associated to a di!erent partition which is determined by the so-called
“modification rules”; see [24] and [27, §2]. We also have the modified map π≃

n which acts by
π≃
n(er) = er(x1, 1/x1, . . . , xn, 1/xn, 1) and satisfies πn(soω) = π≃

n(oω) for ε with l(ε) ↫ n.
In the introduction we already met the character soω in (1.6) and saw that it could be expanded

as a signed sum over skew Schur functions where the inner shape is a self-conjugate (0-asymmetric)
partition. In fact, all three of the characters (3.7) admit such expressions:

spω =

∑

µ↓P→1

(↑1)
|µ|/2sω/µ,(3.9a)
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oω =

∑

µ↓P1

(↑1)
|µ|/2sω/µ,(3.9b)

soω =

∑

µ↓P0

(↑1)
(|µ|→rk(µ))/2sω/µ.(3.9c)

The Schur functions themselves may be simply expanded in terms of these universal characters:

(3.10) sω =

∑

µ

( ∑

ε
ε even

cωµε

)
oµ =

∑

µ

( ∑

ε
ε↑ even

cωµε

)
spµ =

∑

µ

(∑

ε

(↑1)
|ε|cωµε

)
soω,

where here we write “ϱ even” meaning ϱ has only even parts. This last set of equalities are precisely
the “Character Interrelation Theorem” of Koike and Terada; see [27, Theorem 2.3.1] and [26,
Theorem 7.2].

While these three are the most well-known universal characters, we need two more. The first of
these is the universal character associated with the negative part of the odd orthogonal group

(3.11) so
→
ω := det

1↭i,j↭k

(
hωi→i+j ↑ hωi→i→j+1

)
=

∑

µ↓P0

(↑1)
(|µ|+rk(µ))/2sω/µ.

There is also an e-Jacobi–Trudi formula where the sum is replaced by a di!erence in (3.8c). Writing
↑X := (↑x1,↑x2, x3, . . . ) we further have so

→
ω (X) = (↑1)

|ω|
so

+
ω (↑X), where, in order to avoid

confusion, from now on we write so
+
ω in place of soω.

The next universal character we need is that of an irreducible rational representation of GLn;
see [25, 65]. (The universal characters of the polynomial representations are the Schur functions.)
These representations are indexed by weakly decreasing sequences of integers with length exactly n,
or, alternatively, pairs of partitions ε, µ such that l(ε) + l(µ) ↫ n. Given such a pair we let the i-th
component of the associated GLn weight [ε, µ]n be given by εi ↑ µn→i+1. Recall that the Schur
polynomial sω(x1, . . . , xn) may be extended to weakly decreasing sequences of integers of length n
by the relation

(3.12) s(ω1+1,...,ωn+1)(x1, . . . , xn) = (x1 · · ·xn)s(ω1,...,ωn)(x1, . . . , xn).

The character of an irreducible rational representation of GLn is then simply s[ω,µ]n(x1, . . . , xn).
Littlewood gave the following expansion in terms of skew Schur polynomials [37]:

(3.13) s[ω,µ]n(x1, . . . , xn) =

∑

ε

(↑1)
|ε|sω/ε(x1, . . . , xn)sµ/ε↑(1/x1, . . . , 1/xn).

Koike used this expression to define a universal character which depends on two independent
alphabets X = (x1, x2, x3, . . . ) and Y = (y1, y2, y3, . . . ) as [25]6

(3.14) rsω,µ(X;Y ) :=

∑

ε

(↑1)
|ε|sω/ε(X)sµ/ε↑(Y ),

which is an element of !X ↘ !Y . Define the restriction map π̃n : !X ↘ !Y ↑↓ !
±
n , the space of

symmetric Laurent polynomials in x1, . . . , xn, by

(3.15) π̃n(rsω,µ(X;Y )) = rsω,µ(x1, . . . , xn; 1/x1, . . . , 1/xn) = s[ω,µ](x1, . . . , xn),

for l(ε) + l(µ) ↫ n. Again, if this final condition is violated then there are modification rules which
allow for the specialisation to be expressed as the character of a di!erent rational representation. This
object also has Jacobi–Trudi-type expressions. In terms of the complete homogeneous symmetric
functions the first of these is

(3.16) rsω,µ(X;Y ) = det




(hωi→i+j(X))1↭i,j↭k (hωi→i→j+1(X))1↭i↭k

1↭j↭ϖ

(hµi→i→j+1(Y ))1↭i↭ϖ
1↭j↭k

(hµi→i+j(Y ))1↭i,j↭ϖ



 ,

where k ↭ l(ε) and φ ↭ l(µ). Again we have the dual form

rsω,µ(X;Y ) = det




(eω↑

i→i+j(X))1↭i,j↭k (eω↑
i→i→j+1(X))1↭i↭k

1↭j↭ϖ

(eµ↑
i→i→j+1(Y ))1↭i↭ϖ

1↭j↭k
(eµ↑

i→i+j(Y ))1↭i,j↭ϖ



 ,

6Our rsω,µ stands for “rational Schur function”.
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where now k ↭ ε1 and φ ↭ µ1. Exactly how these determinantal representations of rsω,µ(X;Y ) and
the skew Schur expansion are related will be explained below. In what follows we will predominantly
use this symmetric function for X = Y , in which case we suppress the alphabet and simply write
rsω,µ = rsω,µ(X;X). We have already used this in Theorem 1.4 of the introduction.

In analysing Goulden’s combinatorial proof of the Jacobi–Trudi formula [16], Bressoud and Wei
[7] discovered a uniform extension of (3.9) involving an integer z ↭ ↑1 which reproduces the above
for z = ↑1, 1, 0 respectively. This was generalised further by Hamel and King to an expression valid
for all z → Z and including an additional parameter q [19, 20]. Then the main result of Hamel and
King is

Xω(z; q) := det
1↭i,j↭k

(
hωi→i+j + [j > ↑z]qhωi→i→j+1→z

)
(3.17a)

=

∑

µ↓Pz

(↑1)
(|µ|→rk(µ)(z+1))/2qrk(µ)sω/µ,(3.17b)

where k is an integer such that k ↭ l(ε) and we have used the Iverson bracket from the proof
of Theorem 3.2. Their paper [19] provides a proof of the identity (3.17a) = (3.17b) using the
Laplace expansion of the determinant, whereas in [20] a combinatorial proof is provided using the
Lindström–Gessel–Viennot lemma [15]. The general symmetric function X (z; q) also reduces to the
three classical cases, but in a slightly di!erent manner to the determinant of Bressoud and Wei:

spω = Xω(↑1; 1), oω = Xω(1;↑1), and so
±
ω = Xω(0;±1).

The expansion in terms of skew Schur functions immediately implies the following duality with
respect to the involution ω:

(3.18) ωXω(z; q) = Xω↑(↑z; (↑1)
zq).

This extends ωoω = spω↑ .
The symmetric function Xω(z; q) is the subject of the first main result of Hamel and King in

[19, 20]. They also introduce a generalisation of the determinantal form of rsω,µ(X;Y ) (3.16) in
a similar vein, involving two parameters u, v and a pair of (possibly negative) integers a, b. We
express this as

rsω,µ(X;Y ; a, b;u, v)(3.19)

:= det





(
hωi→i+j(X)

)
1↭i,j↭k

(
[j > ↑a]uhωi→i→j→a+1(X)

)
1↭i↭k
1↭j↭ϖ(

[j > ↑b]vhµi→i→j→b+1(Y )
)
1↭i↭ϖ
1↭j↭k

(
hµi→i+j

)
1↭i,j↭ϖ

.



 ,

where as usual k ↭ l(ε) and φ ↭ l(µ) are integers. For (a, b, u, v) = (0, 0, 1, 1) we recover Koike’s
rational universal character. Observe that the structure of this determinant, including Iverson
brackets, is clearly similar to that of Xω(z; q). Since the determinant is quite complicated, let us
give an example for (ε, µ, a, b, k, φ) = ((3, 2), (4, 2, 1, 1),↑1, 2, 2, 4):

(3.20) det





h3(X) h2(X) 0 uh2(X) uh1(X) u
h1(X) h2(X) 0 u 0 0

vh1(Y ) v h4(Y ) h5(Y ) h6(Y ) h7(Y )

0 0 h1(Y ) h2(Y ) h3(Y ) h4(Y )

0 0 0 1 h1(Y ) h2(Y )

0 0 0 0 1 h1(Y )




.

Using both algebraic and lattice path techniques, Hamel and King show that this more general
symmetric function expands nicely in terms of skew Schur functions [19, Theorem 2]

rsω,µ(X;Y ; a, b;u, v) =
∑

ε

(↑1)
|ε|
(uv)rk(ε)sω/(ε+ark(ε))(X)sµ/(ε↑+brk(ε))(Y ),

where the sum is over all partitions ϱ = (a1, . . . , ak | b1, . . . , bk) of arbitrary Frobenius rank
such that ar ↭ max{0,↑a} and br ↭ max{0,↑b} for 1 ↫ r ↫ k = rk(ϱ). For example, in
computing rs(3,2),(4,2,1,1)(X;Y ;↑1, 2;u, v) from (3.20) the term ϱ = (1) is excluded from the sum
since (1) = (0 | 0) in Frobenius notation. Intuitively, this ensures that the Frobenius rank of the
partition ϱ + (ark(ε)) is never less than the Frobenius rank of ϱ.
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A variant of the Koike and Hamel–King determinants involving an additional positive integer
c occurs naturally in our factorisation results for universal characters below. Here we write
[k, φ] := (k + 1, . . . , φ), which we treat as empty for k ↭ φ. The modified Hamel–King determinant
is defined by the identity

uc
(↑1)

kc+(
c
2)rsω,µ(X;Y ; a, b; c;u, v)

=det




(hωi→i+j(X))i↓[0,k]

j↓[c,k]

(
[j > ↑a↑ c]uhωi→i→j→a+1(X)

)
i↓[0,max{k,c}]

j↓[→c,ϖ](
[j > ↑b]vhµi→i→j+1→b(Y )

)
i↓[0,ϖ]
j↓[c,k]

(hµi→i+j(Y )) i↓[0,ϖ]
j↓[→c,ϖ]





where k ↭ l(ε) and φ ↭ l(µ). For c = 0 this reduces to the Hamel–King determinant (3.19). While
not entirely clear from the definition, this determinant does not depend on k or φ as long the length
conditions hold. In the case that c ↭ k the two sub-matrices on the left do not appear due to
having no valid column indices. Like Koike’s character, this also has an expansion in terms of skew
Schur functions. Recall from Theorem 2.3 that rkc(ε) denotes the Frobenius rank of the partition
obtained by removing the first c rows of ε.

Theorem 3.3. For partitions ε, µ, and integers a, b, c such that c ↭ 0 we have

rsω,µ(X;Y ; a, b; c;u, v) =
∑

ε

(↑1)
|ε|
(uv)rkc(ε)sω/(ε+(ac+rkc(ε)))(X)sµ/(ε↑+(brkc(ε)))(Y ),

where the sum is over all partitions ϱ for which rkc(ϱ) = rkc(ϱ + (ac+rkc(ε))).

Proof. The technique is the same as in [25, p. 68] and [19, p. 553]. Without loss of generality assume
that k ↭ c. We apply the Laplace expansion to the determinantal form of rsω,µ(X;Y ; a, b; c;u, v)
according to the given block structure, choosing the first k rows to be fixed. We index the sum
by permutations w → Sk+ϖ/(Sk ↔Sϖ) acting on the set {c+ 1, . . . , k} ↖ {c, . . . , 1↑ φ}. (In other
words, the first k columns are labelled c+ 1, . . . , k and the final φ columns c, . . . , 1↑ φ.) Define the
sets Kw := {w(j) : 1 ↫ j ↫ k} and Lw := {w(j) : 1↑ φ ↫ j ↫ 0}. Then the Laplace expansion of
rsω,µ(X;Y ; a, b; c;u, v) may be expressed as

(↑1)
kc+(

c
2)

∑

w↓Sk+ϑ/(Sk↑Sϑ)

sgn(w)ur→cvs det
1↭i↭k
j↓Kw

(▷jhωi→i+pj (X)) det
1↭i↭ϖ
j↓Lw

(↼jhµi→i→qj+1(Y )),

where we set

▷j :=






1 if c+ 1 ↫ j ↫ k,

0 if c↑ a+ 1 ↫ j ↫ c,

1 if 1↑ φ ↫ j ↫ c↑ a,

and ↼j :=






0 if c+ 1 ↫ j ↫ c↑ b↑ 1,

1 if c↑ b ↫ j ↫ k,

1 if 1↑ φ ↫ j ↫ c,

which encode the Iverson brackets from the full determinant,

(3.21) pj :=

{
j if c+ 1 ↫ j ↫ k,

j ↑ a if 1↑ φ ↫ j ↫ c,
and qj :=

{
j + b if c+ 1 ↫ j ↫ k,

j if 1↑ φ ↫ j ↫ c.

We also have the quantities r = {1 ↫ j ↫ k : 1↑ φ ↫ w(j) ↫ c} and s = {1↑ φ ↫ j ↫ c : c+ 1 ↫
w(j) ↫ k}.

As a next step we reverse the order of the columns labelled c, . . . , 1 and then move them to the
left, which cancels the overall sign from the determinant defining our symmetric function. Treating
the w as permutations of the set {1, . . . , k} ↖ {0, . . . , 1↑ φ} we then choose coset representatives
such that w(1) < · · · < w(k) and w(↑1) > · · · > w(1 ↑ φ) ordered canonically as integers. For
example, in two-line notation with (k, φ) = (3, 2) one such coset representative is

(
1 2 3 0 ↑1

↑1 2 3 1 0

)
.

The coset representatives of Sk+ϖ/(Sk ↔Sϖ) and partitions ϱ ⇑ (kϖ) are in bijection; see [44, p. 3]
or [19, p. 553]. The assignment w(i) = i ↑ ϱi if 1 ↫ i ↫ k and w(i) = ϱ≃1→i + i for 1 ↑ φ ↫ i ↫ 0

gives the corresponding partition. In the above example we obtain ϱ = (2), and the sign of the
permutation will be equal to = (↑1)

|ε|. Moreover, r ↑ c = s = rkc(ϱ). To complete the proof we
need only observe that the definitions of pj and qj from (3.21) imply that the terms in the sum
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which are nonzero come from partitions ϱ for which ϱ + (ac+rkc(ε)) ⇑ ε and ϱ≃ + (brkc(ε)) ⇑ µ. We
must also have that rkc(ϱ) = rkc(ϱ + (ac+rkc(ε))). This completes the proof. ↬
3.3. Restriction rules. Later on we will require some general restriction rules due to Koike and
Terada. The purpose of this subsection is to collect these results. The first of these rules gives
the restriction of an irreducible GLn character to any subgroup of the form GLk ↔GLn→k where
0 ↫ k ↫ n. This uses the restriction homomorphism π̃n defined in (3.15).

Theorem 3.4 ([25, Proposition 2.6]). Let ε, µ be partitions such that l(ε) + l(µ) ↫ n. Then for

any integer k such that 0 ↫ k ↫ n,

(3.22) π̃n(rsω,µ(X;Y )) =

∑

ε,ϱ,φ,ϑ

(∑

↼

cωε,φ,↼c
µ
ϱ,ϑ,↼

)
π̃k(rsε,ϱ(X;Y ))π̃n→k(rsφ,ϑ (X;Y )).

The next result gives the restriction of SO2n+1 to a maximal parabolic subgroup GLk↔SO2(n→k)+1.
We write πn;Z and π̃n;X,Y for the restriction maps acting on the labelled sets of variables.

Theorem 3.5 ([28, Theorem 2.1]). For any partition ε and integers k, n such that 0 ↫ k ↫ n, then

(3.23) π̃k;X,Y πn→k;Z(so
+
ω (X,Y, Z)) =

∑

µ,ε,ϱ

(∑

↼

cωµ,ε,ϱ,↼,↼

)
π̃k(rsµ,ε(X;Y ))πn→k(so

+
ϱ ).

Care needs to be taken in considering the case k = n, in which case π0 will extract the constant
term of so+ω . This may be computed by (3.9c) and is

π0(so
+
ω ) =

{
(↑1)

(|ω|→rk(ω))/2 if ε → P0,

0 otherwise.

Finally, we also have an expression for the restriction of SO2n+1 to GLn, which is di!erent to
the k = 0 case above.

Theorem 3.6 ([28, Theorem A.1]). For a partition ε of length at most n we have that

(3.24) π̃n(so
+
ω (X,Y )) =

∑

µ,ε

(∑

↼

cωµ,ε,↼

)
π̃n(rsµ,ε(X;Y )).

The di!erence between the k = n case of (3.23) and (3.24) is that for n ↭ 2l(ε) the latter will
contain only positive terms, and there is no need for modification rules in the computation of the
sum. In general, the restriction maps in Theorem 3.5 can be removed if k ↭ 2l(ε) and n↑ k ↭ l(ε),
but of course this excludes the case n = k; see [28, Corollary 2.3].

4. Factorisations of universal characters

We now turn to the factorisation of the universal characters under the operator ωt. As a first step
we state the universal character lifts of the factorisation results of Lecouvey from [32], amounting
to the computation of ωtoω, ωtspω and ωtsoω in our notation. These also include the results of
Ayyer and Kumari [3] as special cases. As seen in the previous section, these universal characters
have a uniform generalisation in Hamel and King’s symmetric function Xω(z; q). Our main result is
the computation of ωtXω(z; q) for all z → Z, amounting to a large generalisation of the results of
Lecouvey and Ayyer and Kumari.

4.1. Factorisations of classical characters. In [32], Lecouvey sought generalisations of the LLT
polynomials beyond type A. To achieve this goal he needed analogues of the action of the t-th
Verschiebung operator on the Schur polynomials, Theorem 3.2, for the symplectic and orthogonal
characters. These results, stated in [32, Section 3.2], give conditions on the vanishing of the
characters under ωt for all t. In addition, with the restriction that t must be odd in the symplectic
and odd orthogonal cases, he expresses the result using branching coe"cients involving a subgroup
of Levi type. In subsequent work [33], he used these factorisations to give expressions for the
plethysm so

+
ω ≃ pt and its cousins by passing from the characters to the universal characters. For

t = 2 some preliminary work towards the computation of these twisted characters was done by
Mizukawa [45].

Independently of the results of Lecouvey, Ayyer and Kumari also proved expressions for the action
of the t-th Verschiebung operator on the (non-universal) symplectic and orthogonal characters, but
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rather phrased in terms of “twisting” by a root of unity [3]. There are, however, key di!erences
between their results and those of Lecouvey. Their twisted character identities, when they are
nonzero, factor as products of other characters. Moreover, they give nicer conditions for when the
characters are nonzero. Namely, they show that oω, spω and so

+
ω vanish under ωt if and only if the

t-core of ε is 1-, ↑1- or 0-asymmetric respectively.7 Lifts of the results of Lecouvey, Ayyer and
Kumari to the universal characters were given in [2]. The proofs there, like Lecouvey’s, are based on
the Jacobi–Trudi formulae for the classical groups. Note that in [3], due to twisting by a primitive
t-th root of unity, the characters are associated with a Lie group of rank nt. In [32], no such
restriction on the rank n is assumed, only that the length of the partition indexing the character is
at most n. Indeed, depending on the remainder of n modulo t the structure of the factorisation
of the classical characters will change. We will discuss this more below in the case of SO2n+1,
and show that the construction of Lecouvey may be phrased in terms of the classical Littlewood
decomposition. Note that in Schur case it is clear from Theorem 3.2 that cyclic permutations of
the quotient do not change the result, and so no such distinction must be made in that case.

Recall that in the skew Schur function case, when it is nonzero, the sign of ωtsω/µ may be
expressed elegantly in terms of the t-ribbon tiling of the skew shape ε/µ. In all previous work
the signs obtained by applying the operator ωt to the ordinary and universal characters were not
expressed in such a combinatorial manner, rather as the sign of a permutation multiplied by some
further factors to account for matrix operations occurring in the proof. In the present work we are
able to improve on this by giving explicit expressions for the signs based on tilings of skew shapes
and statistics on the indexing partitions, as already exemplified in Theorem 1.4 of the introduction.

Let us now state the two missing cases, beginning with the even orthogonal universal char-
acter. In these results we again write ε̃ as shorthand for the t-core of ε. We also set rsω,µ :=

rsω,µ(X;X; 0, 0; 0; 1, 1).

Theorem 4.1. For all t ↭ 2 and a partition ε we have that ωtoω vanishes unless t-core(ε) → P1,

in which case

ωtoω = (↑1)
|ω̃|/2

sgnt(ε/ε̃)oω(0)

↗(t→2)/2↘∏

r=1

rsω(r),ω(t→r) ↔
{
so

→
ω(t/2) t even,

1 t odd.

If l(ε) ↫ n then restricting to !
BC
n recovers [3, Theorem 2.15]. Secondly, we have the symplectic

case.

Theorem 4.2. For all t ↭ 2 and a partition ε we have that ωtspω vanishes unless ε̃ → P→1, in

which case

ωtspω = (↑1)
(|ω̃|+rk(ω̃))/2

sgnt(ε/ε̃)spω(t→1)

↗(t→3)/2↘∏

r=0

rsω(r),ω(t→r→2) ↔
{
soω((t→2)/2) t even,

1 t odd.

As for the previous theorem we may recover [3, Theorem 2.11]. The odd orthogonal case is given
in Theorem 1.4 above and generalises [3, Theorem 2.17].

The aforementioned three theorems appeared in [2, Theorems 3.2–3.4] with the same signs as in
[3]. The expressions for the signs we present here are not only of a more combinatorial flavour, but
also easier to compute. Another upshot of these expressions is that they show that the algorithms
for computing the action of ωt on the classical characters in Lecouvey’s work [32] can be phrased
entirely in terms of the Littlewood decomposition of the underlying partition.

4.2. A uniform (z, q)-analogue. The universal characters and the Schur functions are all contained
in the general symmetric function Xω(z; q) of Hamel and King. Thus, a natural question is whether
the operator ωt acts as nicely on this symmetric function as it does for its special cases. Our main
result is the a"rmative answer to this question for all integers z and including the parameter q.

Recall from Corollary 2.5 that µc denotes the minimal z-asymmetric partition with ↽t(µc) = c.
If z < 0 then the conditions in that corollary need to be conjugated. From here on out we
write rsω,µ(a; c; q) := rsω,µ(X;X; a, a; c; q, q) and extend this to negative c by rsω,µ(a;↑c; q) :=

rsµ,ω(a; c; q).

7Note that 1-asymmetric partitions have several names including threshold partitions or doubled distinct partitions.
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Theorem 4.3. Let a, b, t, z be integers such that t ↭ 2 and z = at+ b where 0 ↫ b ↫ t↑ 1. Then

ωtXω(z; q) vanishes unless ↽t(t-core(ε)) := c → Cb;t and ε ∝ µc. If these conditions are satisfied,

then

ωtXω(z; q)

= ◁(q)

↗(b→2)/2↘∏

r=0

rsω(r),ω(b→r→1)(a+ 1; cr; q)

↗(t+b→2)/2↘∏

s=b

rsω(s),ω(t+b→s→1)(a; cs; q)

↔






1 if b even, t even,

Xω((b→1)/2)(a+ 1; q) if b odd, t odd,

Xω((t+b→1)/2)(a; q) if b even, t odd,

Xω((b→1)/2)(a+ 1; q)Xω((t+b→1)/2)(a; q) if b odd, t even,

where the factor ◁(q) may be expressed as

◁(q) = (↑1)
(|µc|→(z+1)rk(t-core(ω))/2

sgnt(ε/µc)q
rk(t-core(ω)).

This result contains all of the factorisation theorems for ordinary and universal characters
previously mentioned. Upon setting q = 0 all characters reduce to Schur functions (either one or
a product of two) and so we recover the straight shape case of Theorem 3.2 which was stated as
Theorem 1.3 in the introduction. However, Theorem 3.2 is a key ingredient in our proof below,
so we are not able to claim a new proof of this result. Substituting q = (↑1)

z and then choosing
z = 0, 1 or ↑1 gives the factorisations for the classical characters in Theorems 1.4, 4.1 and 4.2
respectively. If we instead keep the parameter q then we further obtain q-deformations of these
factorisations.

Our proof is based on the skew Schur expansion of Xω(z; q) (3.17b). This is in contrast to
previous proofs of these characters factorisations which were all based on determinantal expressions.
Our technique gives a better understanding of the structure of these factorisations. In particular,
through Theorem 2.3 and its corollaries, it explains the combinatorial mechanism of these results.
Of course, by using the determinantal forms of all the symmetric functions involved it is possible to
give a purely determinantal proof, however again the sign will not be so easily expressed in this
case.

4.3. Proof of Theorem 4.3. Since the proof has several components, we break it up into smaller
sections. The initial step is obvious: apply the t-th Verschiebung operator to Xω(z; q) using the
skew Schur expansion (3.17b) and Theorem 3.2. This gives

ωtXω(z; q) =
∑

µ↓Pz

(↑1)
(|µ|→rk(µ)(z+1))/2qrk(µ)ωtsω/µ

=

∑

µ↓Pz
ω/µ t-tileable

(↑1)
(|µ|→rk(µ)(z+1))/2qrk(µ) sgnt(ε/µ)

t→1∏

r=0

sω(r)/µ(r) .(4.1)

4.3.1. Vanishing. From here the vanishing part of the theorem is already evident. Firstly, ε/µ is
t-tileable only if t-core(ε) = t-core(µ), so that ↽t(t-core(ε)) must lie in Cb;t since µ is z-asymmetric.
If this is the case then Corollary 2.5 provides the minimal term in the sum. In the case z ↭ 0, this
term can only appear if, for 0 ↫ r ↫ b↑1 with cr > 0 we have ε(r) ∝ ((a+1)

cr ) and for b ↫ s ↫ t↑1

with cs > 0 we have ε(s) ∝ (acs). If z < 0 then we need only conjugate these conditions.

4.3.2. Identification of the prefactor. Now assume that we are in the case where ωtXω(z) is nonzero.
That is, ↽t(t-core(ε)) → Cb;t and we have the minimal requirements on the t-quotient just given.
Observe that

sgnt(ε/µ) = sgnt(ε/µc) sgnt(µ/µc),

so we may already pull out an overall sign of sgnt(ε/µc). Also, rk(µc) = rk(t-core(ε)) thanks to
Lemma 2.6. The Littlewood decomposition implies that |µc| is the minimal size of all partitions in
the sum, so we in fact can remove an overall factor of

◁(q) := (↑1)
(|µc|→(z+1)rk(t-core(ω)))/2qrk(t-core(ω)) sgnt(ε/µc),
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as desired.
Collecting the above we now have that

(4.2) ωtXω(z; q)

= ◁(q)
∑

µ↓Pz
ω/µ t-tileable

(↑1)

∑t→1
r=0(t|µ

(r)|→(z+1)rkcr (µ
(r)))/2

sgnt(µ/µc)

t→1∏

r=0

qrkcr (µ
(r))sω(r)/µ(r) .

As a direct consequence of our Theorem 2.3 we can replace the sum over µ → Pz with a sum over
t-tuples of partitions satisfying the conditions (2.5) such that

µ = ϑ→1
t

(
c, (µ(0), . . . , µ(t→1)

)
)
.

In fact, the conditions (2.5) ensure that the product of skew Schur functions coincides with the
product obtained by expanding the right-hand side of the theorem.

4.3.3. Factorisation of the sign. The only thing needed in order to show that the sum (4.1) decouples
in the desired way is the factorisation of the interior sign. This will be achieved by an inductive
argument by considering terms in the sum, say µ and ϱ, for which |µ|↑ |ϱ| is as small as possible.
Also, it is most convenient here to assume that z ↭ 0. For z ↫ 0 the same set of steps will yield the
factorisation of the sign.

Consider the case where t+ b is odd and b < t↑ 1 and fix all entries in the quotient of µ except
for µ((t+b→1)/2). Since c(t+b→1)/2 = 0 the minimal choice of quotient entry is µ((t+b→1)/2)

= ⊋ and
rkc(t+b→1)/2

(µ((t+b→1)/2)
) = rk(µ((t+b→1)/2)

). There are two ways to add cells to µ((t+b→1)/2)) whilst
remaining in the set of z-asymmetric partitions: (i) we may add a row of a+ 1 cells, the left-most
of which sits on the main diagonal of µ((t+z→1)/2) or (ii) a pair of cells at either end of a principal
hook of µ. In case (i), in terms of the t-Maya diagram, this corresponds to moving a bead directly
to the left of the origin a+ 1 spaces to the right. As we know from Lemma 2.7, the sign sgnt(µ/µc)

will change by the number of beads passed over. The conditions (2.5a) ensure that there are no
beads present in this region in any of the runners labelled 0 ↫ r ↫ b↑ 1. Therefore the only beads
counted when computing the sign lie above runner (t+ b↑ 1)/2 in the column directly to the left of
the origin, and strictly between runners b↑ 1 and (t+ b↑ 1)/2 in column a+1. However, conditions
(2.5b) tell us that the number of such beads is always (t↑ b↑ 1)/2, since the runners either side of
(t+ b↑ 1)/2 form pairs up to a-shifted conjugation. This introduces a factor of (↑1)

(t→b→1)/2, but
since we have added a+ 1 cells to the t-quotient and the rank has further increased by one this
sign change cancels with that coming from the exponent of ↑1, leading to no overall sign change.
In case (ii) the rank is unchanged and the two ribbons must be conjugates of one another, so their
heights sum to t↑ 1. Putting this together, we see that the sign associated to µ((t+b→1)/2) is equal
to (↑1)

(|µ(t+b→1)|→(a+1)rk(µ(t+b→1)))/2.
Now assume that b is odd. Again since cb→1 = 0 the minimal choice of µ(b→1) is ⊋ and

rkcb→1(µ
(b→1)

) = rk(µ(b→1)
). The analysis is almost exactly the same as that of the previous

paragraph. We again have two cases corresponding to either increasing the rank of µ(b→1) or not.
If we do not, then the sign will change since we add a pair of conjugate ribbons. If the rank
does increase, then we are moving a bead from column ↑1 of runner b ↑ 1 to column a + 2. In
the range b ↫ s ↫ t ↑ 1 we will find precisely t ↑ b beads, since each runner will have a single
bead in either column ↑1 or column a+ 1 by the conjugation conditions. Similar to the previous
case we will find (b↑ 1)/2 beads in the range 0 ↫ r ↫ b↑ 1, thus contributing (↑1)

(2t→b→1)/2 all
together. But this is precisely the sign coming from the change in size and rank of the quotient,
leading to no overall change in sign. Thus we have shown that the sign in this case changes by
(↑1)

(|µ(b→1)|→(a+2)rk(µ(b→1)))/2.
For the next case take a pair of runners r and t + b ↑ r ↑ 1 for b ↫ r ↫ t ↑ 1 such that

r ′= t + b ↑ r ↑ 1. The partitions µ(r) and µ(t+b→r→1) in the quotient are governed by a single
partition, ⇀(r), such that µ(r)

= ⇀(r) + (acr+rkcr (ϱ
(r))

) and µ(t+z→r→1)
= (⇀(r))≃ + (arkcr (ϱ

(r))
).

Without loss of generality assume that cr ↭ 0. By the definition of the quotient partitions we have
rkcr (µ

(r)
) = rkcr (⇀

(r)
) = rk→cr (⇀

(t+z→r→1)
) = rkct+b→r→1(µ

(t+b→r→1)
). The minimal partition in the

sum, µc, has already absorbed some of the contribution from µ(r), so we are left with the sign
contribution (↑1)

|ϱ(r)|→(z+1)rkcr (ϱ
(r)). As above there are two cases: (i) rkcr (⇀

(r)
) does not increase
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and (ii) rkcr (⇀
(r)

) increases. In case (i) then the analysis is exactly the same as before and the two
ribbons added will be conjugates of one another so that the overall sign changes. For case (ii), it
is convenient to use the t-Maya diagram. Indeed, increasing rkcr(ϱ

(r)
) by one corresponds to the

moving of two beads on runners r and t+ b↑ r↑ 1 from column ↑1 to column a+1. If we interpret
the sign of these two ribbons in terms of bead-counting, then the only beads not double-counted
are those strictly between the runners r and t+ b↑ r ↑ 1. However, between the two runners in
question all quotient elements are a-shifted conjugate pairs with the addition of an a-symmetric
partition in the case t+ b is odd. This implies that the number of beads contributing to the sign
is equal to the number of such runners, namely to t+ b↑ 2r ↑ 2. This procedure is exemplified
in Figure 6. Since we have added a single cell to ⇀(r) and increased its rank by 1 the overall sign
changes in this case. In either case we see that the sign may be expressed as (↑1)

|ϱ(r)|.

ε(0)

ε(1)

ε(2)

ε(3)

ε(4)

Figure 6. The 5-Maya diagram of the 5-asymmetric partition ε =

(20 15 13 12 9 8 6 5 | 15 10 8 7 4 3 1 0) with ↽5(ε) = (2,↑1, 0, 1,↑2). The
beads shaded red have been moved two spaces to the right, producing a sign of ↑1.

For our final cases we take the pair of runners r and b ↑ r ↑ 1 where 0 ↫ r ↫ b ↑ 1 and
r ′= b ↑ r ↑ 1. Without loss of generality again assume that cr ↭ 0. The associated pair of
partitions is here governed by a single partition ϱ(r) for which µ(r)

= ϱ(r) + ((a+ 1)
cr+rkcr (ε

(r))
)

and µ(z→r→1)
= (ϱ(r))≃ + ((a+ 1)

rkcr (ε
(r))

). However, the analysis of the previous paragraph applies
in the same manner to this case. If we add a cell to ϱ(r) such that the cr-shifted rank does not
change then this corresponds to a pair of conjugate ribbons and again giving an overall sign of ↑1.
On the other hand, if rkcr(ϱ(r)) increases then the sign also changes by ↑1, corresponding to a
total sign change of (↑1)

|ε(r)| in either case.
Combining all of the above cases we have shown that if z ↭ 0 the sign in the sum is equal to

(4.3)
↗(b→2)/2↘∏

r=0

(↑1)
|ε(r)|

↗(b+t→2)/2↘∏

r=b

(↑1)
|ϱ(r)|

↔






1 b even, t even,
(↑1)

(|µ((b→1)/2)|→(a+2)rk(µ((b→1)/2))/2 b odd, t odd,
(↑1)

(|µ((t+b→1)/2)|→(a+1)rk(µ((t+b→1)/2)))/2 b even, t odd,
(↑1)

(|µ((b→1)/2)|→(a+2)rk(µ((b→1)/2))+|µ((t+b→1)/2)|→(a+1)rk(µ((t+b→1)/2)))/2 b odd, t even.

It follows from the same set of steps that in the case z ↫ 0 the same sign is obtained, and we spare
the reader repeating the details.

4.3.4. Final steps for factorisation. To conclude the proof, note that the structure of the sign
decomposition (4.3) is the same as that of the theorem. In particular, the sign factors completely over
the quotient, and the sum now decouples into a product of sums. Recalling our convention regarding
rsω,µ(a; c; q) when c < 0, the sums governed by the ϱ(r) for 1 ↫ r ↫ ∞(b↑ 2)/2∈ will each produce a
copy of rsω(r),ω(b→r→1)(a+ 1; cr; q). The sums governed by the ⇀(r) for b ↫ r ↫ ∞(t+ b↑ 2)/2∈ will
give copies of rsω(r),ω(t+b→r→1)(a; cr; q). If b is odd then we also pick up a copy of Xω((b→1)/2)(a+1; q),
and if b+ t is odd then we pick up a copy of Xω((t+b→1)/2)(a; q), as desired.
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5. Plethysm rules for universal characters

As we discussed in the introduction, the factorisation of the Schur function under ωt is intimately
related with the Schur expansion of the plethysm sω ≃ pt. This expression, known as the SXP rule,
has several extensions, the most general of which we will reproduce here together with a short proof
showing the equivalence with (the full) Theorem 3.2. Then our attention turns to generalisations of
this rule to the universal characters due to Lecouvey.

5.1. Wildon’s SXP rule. One of the first applications of Littlewood’s core and quotient con-
struction is to the plethysm sω ≃ pt, his expression for which is now referred to as the SXP rule

[38, p. 351]. The rule was reproved by Chen, Garsia and Remmel in [9], relying on the µ = ⊋
case of Theorem 3.2. It was later given an involutive proof by Remmel and Shimozono [56, §5].
Recently, Wildon proved an extension of the SXP rule which manifests as the Schur expansion for
the expression sϑ (sω/µ ≃ pt) and, moreover, his proof relies entirely on a sequence of bijections and
involutions. Here, we wish to point out that Wildon’s SXP rule is equivalent to the full Theorem 3.2.

Theorem 5.1 ([68, Theorem 1.1]). For any integer t ↭ 2 and partitions ε, µ, 0 ,

sϑ (sω/µ ≃ pt) =
∑

ε
ε/ϑ t-tileable

sgnt(ϱ/0)c
ω
ε(0)/ϑ (0),...,ε(t→1)/ϑ (t→1),µsε .

Proof. By the definition of the skew Schur functions we may express the coe"cient of sε in the
Schur expansion of the left-hand side as

⇐sϑ (sω/µ ≃ pt), sε⇒ = ⇐sω/µ,ωtsε/ϑ ⇒.

Applying Theorem 3.2 with ε/µ ↗↓ ϱ/0 on the right-hand side of this equation then shows that the
above vanishes unless ϱ/0 is t-tileable, in which case it is given by

sgnt(ϱ/0)


sω/µ,

t→1∏

r=0

sε(r)/ϑ (r)


= sgnt(ϱ/0)


sω, sµ

t→1∏

r=0

sε(r)/ϑ (r)



= sgnt(ϱ/0)c
ω
ε(0)/ϑ (0),...,ε(t→1)/ϑ (t→1),µ. ↬

5.2. SXP rules for universal characters. Since, like the Schur functions, the universal characters
admit nice factorisations under the map ωt, it is natural to also seek SXP-type rules for these
symmetric functions. This question has already been considered by Lecouvey, who, following his
paper [32], gave analogues of the SXP rule for the universal symplectic and orthogonal characters
[33]. In this section we wish to restate these rules more explicitly by using our combinatorial
framework.

Define coe"cients a•ω,ε(t) where • is one of sp, o or so
+ by

oω ≃ pt =
∑

ε

aoω,ε(t)oε , spω ≃ pt =
∑

ε

aspω,ε(t), and so
+
ω ≃ pt =

∑

ε

aso
+

ω,ε (t)so
+
ε .

To begin, we first point out that it is not di"cult to give explicit, albeit cumbersome, expressions
for these coe"cients.

Lemma 5.2 ([32, Lemma 3.1.1]). We have

aoω,ε(t) =
∑

µ↓P1

∑

ϱ
t-core(ϱ)=⊋

∑

↼
↼ even

(↑1)
|µ|/2

sgnt(⇀)c
ω
ϱ(0),...,ϱ(t→1),µc

ϱ
ε,↼,

aspω,ε(t) =
∑

µ↓P→1

∑

ϱ
t-core(ϱ)=⊋

∑

↼
↼↑ even

(↑1)
|µ|/2

sgnt(⇀)c
ω
ϱ(0),...,ϱ(t→1),µc

ϱ
ε,↼,

aso
+

ω,ε (t) =
∑

µ↓P0

∑

ϱ
t-core(ϱ)=⊋

∑

↼

(↑1)
|ε|+(|µ|→rk(µ))/2

sgnt(⇀)c
ω
ϱ(0),...,ϱ(t→1),µc

ϱ
ε,↼.

Moreover, aoω,ε(t) = (↑1)
|ω|(t→1)aspω↑,ε↑(t).
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Proof. We begin with the first identity. Expanding oω ≃ pt in terms of skew Schur functions and
then applying the SXP rule of Theorem 5.1 with 0 = ⊋ leads to

oω ≃ pt =
∑

µ↓P1

∑

ϱ
t-core(ϱ)=⊋

(↑1)
|µ|/2

sgnt(⇀)c
ω
ϱ(0),...,ϱ(t→1),µsϱ.

By the character interrelation formula (3.10) we have

oω ≃ pt =
∑

ε

oε

( ∑

µ↓P1

∑

ϱ
t-core(ϱ)=⊋

∑

↼
↼ even

(↑1)
|µ|/2

sgnt(⇀)c
ω
ϱ(0),...,ϱ(t→1),µc

ϱ
ε,↼

)
.

The same steps yield the formulae for the other characters. For the duality between the coe"cients
one uses the involution ω combined with (3.4). Note that the universal characters are not homo-
geneous symmetric functions. However, the skew Schur expansions show that in the symplectic
and even orthogonal cases they are sums of homogeneous symmetric functions whose degrees agree
modulo two, and so the identity still holds in this case. ↬

In fact, Lecouvey shows that aoω,ε(t) = aso
+

ω,ε (t), his argument being based on the fact that π≃
n

and the plethysm by pt commute. Using this fact applied to the universal character oω shows the
equality of the coe"cients for n ↭ tl(ε). We have not found a simple explanation at the level of
universal characters for why the expressions given above for the coe"cients aoω,ε(t) and aso

+

ω,ε (t)
coincide.

As we remarked in Subsection 4.1, Lecouvey has given algorithms for computing the action of ωt

on classical group characters. For the odd orthogonal group SO2n+1 this algorithm is crucial in
stating his SXP-type rules. In view of Theorem 1.4, we may restate this algorithm entirely in terms
of the classical Littlewood decomposition. What follows is a reinterpretation of the algorithm given
in [33, §4].

Construction 5.3. Let n, t → N be such that n = at + b for 0 ↫ b ↫ t ↑ 1. Further let ε be a
partition of length at most n with ↽t(ε) = (c0, . . . , ct→1) and quotient (ε(0), . . . ,ε(t→1)

). Reading
indices modulo t we define for 0 ↫ r ↫ ∞ t→2

2 ∈ sequences

1(r)
:= [ε(→r→b→1),ε(r→b)

]2a+dr + (c2a+dr
→r→b→1),

where we additionally set

dr :=






1 if 0 ↫ r ↫ b↑ 1,

2 if 0 ↫ t↑ r ↑ 1 ↫ b↑ 1 and 0 ↫ r ↫ b↑ 1,

0 otherwise.

Also, if t is odd, 1((t→1)/2)
:= ε((t→1)/2→b) where l(1((t→1)/2)

) ↫ a+ d(t→1)/2 and

d(t→1)/2 :=

{
1 if b > (t↑ 1)/2,

0 if b ↫ (t↑ 1)/2.

Given the above, write
1n(ε; t) := (1(0), . . . , 1(↗(t→1)/2↘)

).

The output of this construction is a dominant weight for

Gn(ε; t) := GL2a+d0 ↔ · · ·↔GL2a+d↓(t→2)/2↔ ↔
{
SO2(a+d(t→1)/2)+1 if t odd,
1 if t even,

a Levi subgroup of SO2n+1. Let gn(ε; t) denote the corresponding Lie algebra. We write V so2n+1(ε)
for the irreducible finite-dimensional representation of SO2n+1 of highest weight ε, and similarly
for V gn(µ;t)(1(µ; t)). The branching coe"cient [V so2n+1(ε) : V gn(µ;t)(1n(µ; t))] then gives the
multiplicity of V gn(µ;t)(1n(µ; t)) when V so2n+1(ε) is restricted to Gn(µ; t). Note that if b = 0, so
that n is a multiple of t, then this construction will output the partitions in the quotient paired as
in Theorem 1.4.
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For an example, take (n, t) = (8, 5) so that (a, b) = (1, 3). Then for the partition ε =

(15, 14, 10, 7, 4, 3, 2, 1) we have ↽5(ε) = (0,↑1, 1, 0, 0) and
(
ε(0),ε(1),ε(2),ε(3),ε(4)

)
=

(
⊋,⊋, (2, 2, 1), (1), (3, 1)

)
.

Construction 5.3 will output

18(ε; 5) =
(
(0,↑1,↑1), (0, 0,↑1), (3, 1)

)
,

and G8(ε; 5) = GL3 ↔GL3 ↔ SO5.
Let Cb;t denote the set of sequences (c0, . . . , ct→1) → Zt such that cr→b + ct→r→1→b = 0, where

indices are read modulo t. When viewed as encoding t-cores, this corresponds to the set of t-cores
µ which, after shifting the indices of ↽t(µ) cyclicly b places to the right, are self-conjugate. We are
now ready to state the SXP rule for the odd orthogonal characters.

Theorem 5.4 ([33, Theorem 4.1.1]). Let t ↭ 2 and n be integers such that n = at + b where

0 ↫ b ↫ t↑ 1. Then for any partition ε with l(ε) ↫ n,

(5.1) πn(so
+
ω ) ≃ pt

=

∑

µ
l(µ)↭n

↽t(µ)↓Cb;t

(↑1)
(|µ̃|→rk(µ̃))/2

sgnt(µ/µ̃)[V
so2n+1(ε) : V gn(µ;t)(1n(µ; t))]πn(so

+
µ ).

There are also versions of this result for Sp2n and O2n in the case t is even, but they are not
stated in [33]. For t odd there cannot be rules of this form since the coe"cients describing the
action of the Verschiebung operator on the characters are not branching coe"cients. This is further
clarified by the appearance of the “negative” odd orthogonal characters in Theorems 1.4 and 4.1.
However, Theorem 5.4 is all that is needed to state the universal character lifts of these rules.

As remarked in [33, p. 769], it is possible to give explicit expressions for the branching coe"cients
occurring in (5.1) in terms of (multi-)Littlewood–Richardson coe"cients. These are particularly
simple for n ↭ tl(ε), since for these values of n the coe"cients stabilise.

Lemma 5.5. Assume that n ↭ tl(ε) and t-core(ε) = ⊋. If t is even, then

[V so2n+1(ε) : V gn(µ;t)(1n(µ; t))] =
∑

↼1,...,↼t/2

cω↼1,...,↼t/2,µ(0),...,µ(t→1) .

If t is odd, then
8

[V so2n+1(ε) : V gn(µ;t)(1n(µ; t))] =
∑

↼1,...,↼(t+1)/2

cω↼1,...,↼(t+1)/2,↼(t+1)/2,µ(0),...,µ(t→1) .

Else, if t-core(ε) ′= ⊋ then

[V so2n+1(ε) : V gn(µ;t)(1n(µ; t))] = 0.

Proof. Assume that n ↭ tl(ε) and t-core(µ) = ⊋. The output of Construction 5.3 applied to
µ yields a tuple of weights (1(0), . . . , 1(↗(t→1)/2↘

)) which are made up of pairs of partitions, with
an additional single partition if t is odd. If t is even then we first use the restriction rule of
Theorem 3.6, which is positive since n ↭ tl(ε) ↭ 2l(ε). From here we then iterate the rule of
Theorem 3.4 to branch onto the group Gn(µ; t). In the case t is odd, then we begin with the rule of
Theorem 3.5, choosing k = a+ d(t→1)/2, and then iterate Theorem 3.4 to land in Gn(µ; t). Since we
have assumed that n ↭ tl(ε), these rules will all contain only positive terms, expressed as sums of
multi-Littlewood–Richardson coe"cients as in the statement.

Now assume that t-core(µ) ′= ⊋ and that n = tl(ε). We have that
∑t→1

r=0 l(µ
(r)

) ↫ l(µ) ↫ l(ε),
which may be seen from the t-Maya diagram. Since µ has nonempty t-core there exists some r for
which ct→r→1 ′= 0 and l(µ(r)

) + l(µ(t→r→1)
) ↫ l(ε). This means that the length of at least one of the

partitions which make up 1(r), which has been shifted by ct→r→1, will be greater than the length of
ε, and so the branching coe"cients will vanish in this case. ↬

8It is correct that ε
(t+1)/2 occurs twice in the lower-index of the multi-Littlewood–Richardson coe!cient.
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Note that the above also shows that for any n such that n ↭ tl(ε) the branching coe"cients are
always the same, since increasing n by one merely permutes the µ(r).

Let us denote the stablised version of the above coe"cients from Lemma 5.5 by bω,µ(t). We may
now state the SXP rules for the universal characters.

Theorem 5.6 ([33, Theorem 4.5.1]). For ε a partition and t ↭ 2 and integer we have

so
+
ω ≃ pt =

∑

µ
t-core(µ)=⊋

sgnt(µ)bω,µ(t)so
+
µ ,

oω ≃ pt =
∑

µ
t-core(µ)=⊋

sgnt(µ)bω,µ(t)oµ,

and

spω ≃ pt = (↑1)
|ω|(t→1)

∑

µ
t-core(µ)=⊋

sgnt(µ
≃
)bω↑,µ↑(t)spµ.

where bω,µ(t) denotes the branching coe!cients of Lemma 5.5.

Proof. The first equation is immediate from the large-n vanishing part of Lemma 5.5. As remarked
after the proof of Lemma 5.2 the coe"cients in the expansions of so+ω ≃pt and oω ≃pt coincide, which
establishes the second equality. By the duality part of that same lemma, or by directly applying
the ω involution,

aspω,µ(t) = (↑1)
|ω|(t→1)aoω↑,µ↑(t) = (↑1)

|ω|(t→1)
sgnt(µ

≃
)bω↑,µ↑(t). ↬

As this section shows, SXP rules for symplectic and orthogonal characters are intimately connected
with the representation theory of their associated groups. Thus, it is not clear if there exists a
general SXP rule for the symmetric function Xω(z; q) in the same manner. We have also not found a
simple proof of the fact that the stabilised coe"cients sgnt(µ)bω,µ(t) agree with aso

+

ω,µ (t) as expressed
in Lemma 5.2. Finally, it does not appear that adjoint relation between ωt and the plethysm by pt
may be employed to give short proofs of the SXP rules based on the factorisations of Theorems 1.4,
4.1 and 4.2. This is because there is no orthonormality for the universal characters under the
Hall inner product. In contrast, Lecouvey uses deformations of the Verschiebung operator with
respect to the standard inner product on the character rings under which the Weyl characters are
orthonormal.

6. Variations on factorisations

To conclude, we explain the connections between the results of this paper and very closely related
results: symmetric functions twisted by roots of unity and characters of the symmetric group.

6.1. Symmetric polynomials twisted by roots of unity. A perspective we have not taken in
this paper is that of “twisting” a symmetric polynomial by a primitive t-th root of unity. In fact,
this is very closely connected to the original work of Littlewood and Richardson on this topic; see
the papers [34, 40, 41] or Littlewood’s book [36, §7.3]. The interested reader should consult the
recent paper of Ayyer and Kumari [4], which proves new results regarding twisting both ordinary
and universal characters by roots of unity, as well as surveying some of the results we will now
discuss.

A simple generating function argument shows that the action of the t-th Verschiebung oper-
ator on, for instance, the complete homogeneous symmetric functions, agrees with the result of
replacing Xn ↗↓ (Xn, ⇀Xn, . . . , ⇀t→1Xn) where aXn := (ax1, . . . , axn) for any a → C and evaluating.
Littlewood and Richardson apply this twisting to the bialternant formula for the Schur functions
and then through a sequence of matrix manipulations deduce the vanishing and factorisation. This
is the same approach which is taken in the work of Ayyer and Kumari [3]. The advantage of this
approach is it allows for slightly more general statements, such as the following theorem due to
Littlewood and Richardson.
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Theorem 6.1 ([42, Theorem XI]). Let ε be a partition of length at most nt+ 1. Then for another

variable y we have that

sω(Xn, ⇀Xn, . . . , ⇀
t→1Xn, y) = 0

unless t-core(ε) = (k) for some 0 ↫ k ↫ t↑ 1, in which case

sω(Xn, ⇀Xn, . . . , ⇀
t→1Xn, y) = sgnt(ε/(k))y

ksω(k→1)(Xt
n, y

t
)

t→1∏

r=0
r ⇒=k→1

sω(r)(Xt
n).

This has itself been generalised in several directions. For instance, Littlewood also characterises
the vanishing and factorisation of sω(1, . . . , ⇀m) where m is an arbitrary positive integer independent
of t [36, §7.2] which has proved important in the context of cyclic sieving; see [55, Theorem 4.3],
[57, Lemma 6.2] and [54, Theorem 4.4]. Recently Kumari extended this by replacing the variable y
in Theorem 6.1 by a set of variables y1, . . . , yr, generalising Littlewood’s result [30]. She also proves
similar results for the characters of the symplectic and orthogonal groups for these same twists,
however, the evaluations are not always products, and are quite complicated. None of these results
extend elegantly through the Verschiebung operators. We have given a version of Theorem 6.1
involving a deformation of the Verschiebung operator [2, Proposition 6.2], but this is, in our opinion,
not particularly natural. There is also a version of Theorem 3.2 for flagged skew Schur functions
[29].

Outside of the realm of classical symmetric functions and classical group characters there has
been little interest in the action of the operators ωt. To our knowledge the only work in this
direction is due to Mizukawa [45], who has given expressions for the action of the Verschiebung
operators on the Schur Q-functions, as well as SXP-type rules. These involve variants of the
Littlewood decomposition for partitions with distinct parts (also called bar partitions), the concepts
of which were developed in the papers of Morris [47] and Olsson [51]. By considering the double of
a strict partition which is 1-asymmetric, an idea Humphreys attributes to Macdonald [21], these
results may be phrased in terms of the ordinary Littlewood decomposition. Using this, one may
extend Mizukawa’s results to skew Schur Q-functions by use of their definition as a Pfa"an, which
plays the same role as the Jacobi–Trudi formula in the proof of Theorem 3.2.

6.2. Characters of the symmetric group. In this paper we have not discussed equivalent
statements for the characters of the symmetric group, as in Littlewood and Richardson’s original
Theorem 1.1. Here we give the precise connection between these two perspectives.

The following may be found in, for instance, [44, §I.7]. Let Rn denote the space of class functions
on Sn. The characteristic map ch

n
: Rn ↑↓ !

n is defined by

ch
n
(f) =

1

n!

∑

w↓Sn

f(w)pcyc(w),

where !
n denotes the space of homogeneous symmetric functions of degree n and cyc(w) is a

partition of n encoding the cycle type of w. Under this map ch
n
(ϖω

) = sω. Now let R :=


n↫0 R
n.

For f → Rn and g → Rm defining the induction product f · g := Ind
Sn+m

Sn↑Sm
(f ↘ g) turns R into a

graded algebra. We also have a scalar product on R which for f =
∑

n↫0 fn and g =
∑

n↫0 gn is
given by

(6.1) ⇐f, g⇒≃ :=
∑

n↫0

⇐fn, gn⇒Sn ,

where ⇐fn, gn⇒Sn is the ordinary scalar product of Sn characters. The map ch :=


n↫0 ch
n is then

an isometric isomorphism between R and !. We now define the actions of the t-th Verschiebung
operator and its adjoint on R. On ! this adjoint is the plethysm by a power sum pt, but in general
it is the Frobenius operator or Adams operation (the former is not to be confused with the Frobenius
characteristic, another name given to ch). As in the case of the characteristic map we first define
for f → Rn the operator ωn

t by

(6.2) ωn
t (f)(µ) = f(tµ).

From this we see that if f → Rn then ωt(f) → Rn/t if t | n and is the zero function otherwise. Then
ωt :=


n↫0 ω

n
t . In particular if 1n denotes the trivial representation of Sn then ωt(1n) = 1n/t if t
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divides n and is equal to zero otherwise. Since ch(1n) = hn it follows that chωt = ωt ch, where on
the left we use (6.2) and on the right we use the Verschiebung operator on !. The same is true of
ch

→1. The action of 2n
t may now be defined by

(6.3) 2n
t (ϖ

ω
)(µ) =

{
tl(µ)ϖω

(µ/t) if t | µi for all i ↭ 1,

0 otherwise.

Then also set 2t :=


n↫0 2
n
t . Note similarity between (6.3) and the expression for ωtpω from

Proposition 3.1. The fact that these operators are adjoint with respect to (6.1) then follows from
the orthonormality of the irreducible characters. All in all, the point of the above constructions is
that the characteristic map, when applied to the expression of Theorem 1.1, yields the expression
for ωtsω of Theorem 1.3. By applying ch

→1 to Theorem 3.2 we obtain the following theorem of
Farahat.

Theorem 6.2 ([12]). Let ε/µ be a skew shape with |ε/µ| = nt. Then ωt(ϖω/µ
) = 0 unless ε/µ is

t-tileable, in which case

ωt(ϖ
ω/µ

) = sgnt(ε/µ)
t→1∏

r=0

ϖω(r)/µ(r)

,

where the product on the right-hand side is the induction product.

The operators ωt and 2t in the context of symmetric group characters first appeared in the
relatively unknown paper of Kerber, Sänger and Wagner [23]. In particular, they state the actions
(6.2) and (6.3) in Section 4 of that paper, together with the adjoint relation. These are then
used to give a proof of Farahat’s generalisation of Theorem 1.1, which describes the action of the
Verschiebung operator on the skew character ϖω/µ. This is notably di!erent to Farahat’s proof,
which uses symmetric functions. They also prove the character-theoretic analogue of the SXP rule,
our Theorem 1.2, which is equivalent to Littlewood’s original rule for the plethysm sω ≃ pt. Another
proof of Farahat’s theorem is given in [10, §3]. For a more recent application of these ideas to
characters of the symmetric group see the paper of Rhoades [58].

There has also been some recent interest in the character values ϖω
tµ from a slightly di!erent

perspective. Lübeck and Prasad [43] have shown that for ε a partition with empty 2-core the
character value ϖω

2µ is equal, up to the sign sgn2(ε), to the value of an irreducible character of the
wreath product Z2 ∋Sn (also known as the hyperoctahedral group) indexed by (ε(0),ε(1)

) evaluated
at the conjugacy class (µ,⊋). (For the necessary background on characters of wreath products see
[44, Chapter I, Appendix B].) Their proof is heavily algebraic, and along the way they prove and
apply the t = 2 cases of Theorems 1.1 and 1.3. They also consider the case where 2-core(ε) = (1),
which itself hinges on the t = 2 case of Theorem 6.1 and its character-theoretic analogue, also
contained in a theorem of Littlewood [38, p. 340]. This was generalised by Adin and Roichman [1],
who further show that for t-core(ε) = ⊋ the value sgnt(ε)ϖ

ω
tµ may be expressed as the character

of the wreath product G ∋Sn indexed by (ε(0), . . . ,ε(t→1)
) evaluated at the t-tuple (µ,⊋, . . . ,⊋)

where G is any finite abelian group of order t. Their proof is of a more combinatorial flavour, using
Stembridge’s Murnaghan–Nakayama rule for wreath products [66, §4] and ribbon combinatorics.
Note that this does not cover the vanishing of the character values ϖω

(tµ) in the case t-core(ε) is
nonempty. Since Stembridge’s rules work more generally for skew shapes, it would be interesting
to investigate a skew extension of these results, putting Farahat’s theorem into the picture. For
further remarks on this side of the story we refer to the review of the paper of Lübeck and Prasad
by Wildon [69], which includes a proof of Theorem 1.1 using the SXP rule.

Acknowledgements. I thank Cédric Lecouvey for kindly explaining the connections between our
results, his work and the results of Ayyer and Kumari. Thanks also to Arvind Ayyer for useful
discussions.
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PROOF OF SOME LITTLEWOOD IDENTITIES CONJECTURED

BY LEE, RAINS AND WARNAAR

SEAMUS P. ALBION

Abstract. We prove a novel pair of Littlewood identities for Schur functions,
recently conjectured by Lee, Rains and Warnaar in the Macdonald case, in
which the sum is over partitions with empty 2-core. As a byproduct we obtain
a new Littlewood identity in the spirit of Littlewood’s original formulae.
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1. Introduction

The classical Littlewood identities are the following three summation formulae
for Schur functions:

∑

ω

sω(x) =
∏

i↭1

1

1→ xi

∏

i<j

1

1→ xixj
,(1.1a)

∑

ω
ω even

sω(x) =
∏

i↭1

1

1→ x
2
i

∏

i<j

1

1→ xixj
,(1.1b)

∑

ω
ω→ even

sω(x) =
∏

i<j

1

1→ xixj
,(1.1c)

where x = (x1, x2, x3, . . . ) is a countable alphabet. Here and throughout the rest
of the paper “ω even” means the partition ω has only even parts and ω

→ denotes
the conjugate of ω. These identities were first written down together by Littlewood
[16, p. 238], however (1.1a) was already known to Schur [27]. They have since
a!orded many far-reaching generalisations and have found applications in areas

2020 Mathematics Subject Classification. 05E05, 33D05, 33D52.
Key words and phrases. empty 2-core, Koornwinder polynomials, Littlewood identities, Schur

functions.
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such as combinatorics, representation theory and elliptic hypergeometric series. In
particular there are many generalisations of (1.1) at the Schur level [3, 7, 10, 11,
12, 13, 21, 22, 28]. Also see [25] for comprehensive references to the literature.

The purpose of this note is to prove the Schur function case of a pair of Little-
wood identities for Macdonald polynomials recently conjectured by Lee, Rains and
Warnaar [15, Conjecture 9.5]. To state these we need some notation. Denote the
multiset of hook lengths of a partition ω by Hω. We refine this by writing H

e/o
ω for

the submultiset of even/odd hook lengths. The standard infinite q-shifted factorial
is given by (a; q)↑ :=

∏
i↭0(1→ aq

i) and we define a statistic

(1.2) ε(ω) :=
∑

(i,j)↓ω

(→1)ωi+ω→
j↔i↔j+1(ωi → i),

in terms of the Young diagram of ω; see Subsection 2.1 below. Finally, let !̂F denote
the completion of the ring of symmetric functions over the field F with respect to
the natural grading by degree.

Theorem 1.1. As identities in !̂Q(q) at the alphabet x = (x1, x2, x3, . . . ) we have
that

(1.3)
∑

ω
2-core(ω)=0

q
ε(ω)

∏
h↓H

o
ω
(1→ q

h)
∏

h↓H
e
ω
(1→ qh)

sω(x) =
∏

i↭1

(qx2
i ; q

2)↑
(x2

i ; q
2)↑

∏

i<j

1

1→ xixj
,

and

(1.4)
∑

ω
2-core(ω)=0

q
ε(ω→)

∏
h↓H

o
ω
(1→ q

h)
∏

h↓H
e
ω
(1→ qh)

sω(x) =
∏

i↭1

(q2x2
i ; q

2)↑
(qx2

i ; q
2)↑

∏

i<j

1

1→ xixj
.

The condition 2-core(ω) = 0 generalises both the even row and even column
conditions of (1.1b) and (1.1c). Indeed, by Lemma 2.2 we have that ε(ω) = 0 if
and only if ω is even. Thus when setting q = 0 (1.3) and (1.4) collapse to (1.1b)
and (1.1c) respectively. In this sense these identities are in the spirit of Kawanaka’s
identity [13, Theorem 1.1]

∑

ω

∏

h↓Hω

(
1 + q

h

1→ qh

)
sω(x) =

∏

i↭1

(→qxi; q)↑
(xi; q)↑

∏

i<j

1

1→ xixj
,

since this reduces to (1.1a) when q = 0. Unlike Kawanaka’s identity one can make
sense of the q ↑ 1 limit of (1.3) and (1.4). In either case we obtain the following
Littlewood-type identity.

Corollary 1.2. As an identity in !̂Q at the alphabet x = (x1, x2, x3, . . . ),

∑

ω
2-core(ω)=0

∏
h↓H

o
ω
h

∏
h↓H

e
ω
h
sω(x) =

∏

i↭1

1

(1→ x
2
i )

1/2

∏

i<j

1

1→ xixj
.

The outline of the paper is as follows. In the next section we give preliminaries
regarding partitions, Schur functions and Koornwinder polynomials. In Section 3
we prove a pair of vanishing integrals for Schur functions again conjectured by Lee,
Rains and Warnaar in the Macdonald case [15, Conjecture 9.2]. Then, in Section 4,
we follow the techniques of [25] to prove the bounded analogues of Theorem 1.1 con-
jectured in [15, Conjecture 9.4]. The theorem then follows by taking an appropriate
limit. We conclude with a derivation of Corollary 1.2.
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2. Partitions and (BCn)-symmetric functions

2.1. Partitions. A partition ω = (ω1,ω2,ω3, . . . ) is a weakly decreasing sequence
of nonnegative integers such that finitely many ωi are nonzero. The sum of the
entries is denoted |ω| := ω1 + ω2 + ω3 + · · · and if |ω| = n we say ω is a partition of
n. Nonzero entries are called parts, and the number of parts is called the length,
denoted l(ω). We denote by P the set of all partitions and by Pn the set of all
partitions with length at most n. In particular P0 = {0} where 0 denotes the
unique partition of zero. If ω ↓ Pn we write ω + ϑ for the partition (ω1 + n →

1,ω2 + n → 2, . . . ,ωn). The number mi(ω) of occurrences of an integer i as a part
of ω is called the multiplicity. Sometimes we express a partition in terms of its
multiplicities as ω = (1m1(ω)2m2(ω)3m3(ω) · · · ). We write µ ↔ ω if the partition µ

is contained in ω, i.e. if µi ↭ ωi for all i ↫ 1. If ω ↗ (mn) for some nonnegative
integers m,n, then we write (mn) → ω for the complement of ω inside (mn), that
is, (mn) → ω := (m → ωn,m → ωn↔1, . . . ,m → ω1). A partition is identified with its
Young diagram, which is the left-justified array of squares with ωi squares in row i

with i increasing downward. For example

is the Young diagram of (6, 4, 3, 1). The conjugate of a partition, written ω
→, is

obtained by reflecting the Young diagram in the main diagonal, so that (6, 4, 3, 1)→ =
(4, 3, 3, 2, 1, 1). The arm and leg lengths of a square s = (i, j) ↓ ω are given by

a(s) := ωi → j and l(s) := ω
→

j → i,

which are the number of boxes strictly to the right and below s respectively. The
hook length is the sum of these including s itself, so that h(s) := a(s) + l(s) + 1.
Using the same example as above, in the Young diagram

s

we have labelled the square s = (2, 2) so that a(s) = 2, l(s) = 1 and h(s) = 4.
As in the introduction we denote the multiset of hook lengths of ω by Hω. This is
further refined as He

ω and H
o
ω, the multisets of hook lengths which are even or odd,

respectively. In terms of these we define the hook polynomials

Hω(q) :=
∏

h↓Hω

(1→ q
h)

H
e/o
ω (q) :=

∏

h↓H
e/o
ω

(1→ q
h),

which are invariant under conjugation of ω. For z ↓ C we also need the content
polynomials

Cω(z; q) :=
∏

(i,j)↓ω

(1→ zq
j↔i)

C
e/o
ω (z; q) :=

∏

(i,j)↓ω
i + j even/odd

(1→ zq
j↔i).

In this paper we will frequently encounter partitions with empty 2-core, written
2-core(ω) = 0. One definition of such partitions is that their diagrams may be tiled
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by dominoes. Our running example of (6, 4, 3, 1) has empty 2-core since it admits
the tiling

which is clearly not unique. We will now give some conditions which are equivalent
to ω having empty 2-core which all easily follow by induction on |ω|. The reader
interested in more general statements involving Littlewood’s decomposition of a
partition into its r-core and r-quotient for all r ↫ 2 may consult, for example, [17]
or [19, p. 12–15].

Lemma 2.1. For ω ↓ P2n the following are equivalent:
(1) 2-core(ω) = 0.
(2) |H

o
ω| = |H

e
ω| = n.

(3) The set

{ω1 + 2n→ 1,ω2 + 2n→ 2, . . . ,ω2n↔1 + 1,ω2n}

contains n even and n odd integers.

2.2. Auxiliary results. Here we prove some properties of the statistic ε(ω) (1.2).
Firstly, as we have already used in the introduction, we have the following charac-
terisation of the vanishing of ε(ω).

Lemma 2.2. Let 2-core(ω) = 0. Then ε(ω) ↫ 0 with ε(ω) = 0 if and only if ω is
even.

Proof. If ω is even then ε(ω) = 0 since the number of even and odd hook lengths in
each row is equal. Assume that ω is not even. Then ω has an even number of odd
parts. Let ωi1 , ωi2 be the final two odd rows of ω. Since 2-core(ω) is empty these
must be separated by an even number of even rows (possibly zero). Ignoring the
rows above, the contribution to ε(ω) below and including row ωi1 may be computed
as

ωi1 → ωi2 + i2 → i1 + 2
i2↔1∑

j=i1+1

(→1)i1+j↔1(ωj → j).

Since the numbers ωj → j are strictly decreasing this sum is positive. The next
nonzero contribution to ε(ω) will come from the pair of odd rows above in the same
fashion. Thus repeating the above shows that if ω has empty 2-core and contains
at least two odd rows then ε(ω) > 0. ↬

Note that ε((2, 1, 1, 1)) = 0, so that ε(ω) may vanish for partitions with nonempty
2-core.

Lemma 2.3. For ω ↓ P2n there holds

(2.1) ε(ω) =
∑

(i,j)↓ω+ϑ

(→1)ωi↔i↔j+1(ωi → i)→
∑

1↫i<j↫2n

(→1)ωi↔ωj+j↔i(ωi → i).

Moreover, if 2-core(ω) = 0, then

(2.2) ε(ω→) =
|ω|

2
→ n

2
→ n+

∑

1↫i<j↫2n

(→1)ωi↔ωj+j↔i(ωj → j).

Proof. We interpret the definition of ε(ω) as a sum over the Young diagram of ω
where each square has weight (→1)ωi+ω→

j↔i↔j+1(ωi → i). In the Young diagram of
ω+ϑ place the integer (→1)ωi↔i↔j+1(ωi→i) in box (i, j). Summing over i, j gives the
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first sum on the right of (2.1). To identify the second sum, we remove the columns
with index ωj + 2n→ j + 1 for 2 ↭ j ↭ 2n whose entries are (→1)ωi↔ωj+j↔i(ωi → i).
The remaining diagram is that of ω with entries (→1)ωi+ω→

j↔i↔j+1(ωi → i), which
shows the first identity.

The proof of the second identity is similar. Note that by (1.2), ε(ω→) may be
written as

ε(ω→) =
∑

(i,j)↓ω

(→1)ωi+ω→
j↔i↔j+1(ω→

j → j).

We thus fill the diagram of ω+ϑ with integers (→1)ωi↔i↔j+1(2n→j), so that removing
the same columns as before now gives

ε(ω→) =
∑

(i,j)↓ω+ϑ

(→1)ωi↔i↔j+1(2n→ j)→
∑

1↫i<j↫2n

(→1)ωi↔ωj+j↔i(j → ωj → 1).

A simple calculation shows that for 2-core(ω) = 0,
∑

(i,j)↓ω+ϑ

(→1)ωi↔i↔j+1(2n→ j) +
∑

1↫i<j↫2n

(→1)ωi↔ωj+j↔i =
|ω|

2
→ n

2
→ n,

completing the proof. ↬

2.3. Schur functions. For completeness we give a definition of the Schur functions
in terms of the classical ratio of alternants. For ω ↓ Pn the Schur function is defined
as

sω(x1, . . . , xn) :=
det1↫i,j↫n(x

ωj+n↔j
i )

det1↫i,j↫n(x
n↔j
i )

,

and sω(x1, . . . , xn) := 0 for l(ω) > n. The set of the sω(x1, . . . , xn) indexed over
Pn forms a Z-basis for the ring of symmetric functions in n variables, denoted !n.
We also use the Schur functions in countably many variables x = (x1, x2, x3, . . . ),
such as in Theorem 1.1, which may be defined by the Jacobi–Trudi determinant
[19, p. 41]. The set of such sω(x) when indexed over all partitions ω form a Z-basis
for the ring of symmetric functions !. We also require the ring !̂ which is the
completion of ! with respect to the natural grading by degree [23, p. 66].

Several of the results we need below are best stated in terms of Macdonald
polynomials, which are a q, t-analogue of the Schur functions [19, §VI]. We simply
note that the Macdonald polynomials Pω(x; q, t) are a basis for !Q(q,t) and reduce
to the Schur functions when q = t, i.e., Pω(x; q, q) = sω(x).

2.4. Koornwinder polynomials and integrals. The Koornwinder polynomials
are a family of BCn-symmetric functions depending on six parameters first intro-
duced by Koornwinder [14] as a multivariate analogue of the Askey–Wilson poly-
nomials [1]. Here we write x = (x1, . . . , xn), x± = (x1, x

↔1
1 , . . . , xn, x

↔1
n ) and for a

single-variable function g(xi) we set

g
(
x
±

i

)
:= g(xi)g

(
x
↔1
i

)

g
(
x
±

i x
±

j

)
:= g(xixj)g

(
x
↔1
i xj

)
g
(
xix

↔1
j

)
g
(
x
↔1
i x

↔1
j

)
.

Below the function will be one of g(xi) = (xi; q)↑ or g(xi) = (1→ xi). Also for the
infinite q-shifted factorial we adopt the usual multiplicative notation

(a1, . . . , an; q)↑ := (a1; q)↑ · · · (an; q)↑.

Let W := Sn ⊋ (Z/2Z)n be the group of signed permutations on n letters. A
Laurent polynomial f(x) ↓ C[x±] is called BCn-symmetric if it is invariant under
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the natural action of W on the n variables where the reflections act by xi ↘↑ 1/xi.
For ω ↓ Pn define the orbit-sum indexed by ω as

m
BC
ω (x) :=

∑

ϖ

x
ϖ
,

where the sum is over all elements ϖ of the W -orbit of ω, the reflections act on
sequences by ϖi ↘↑ →ϖi, and x

ϖ := x
ϖ1
1 · · ·x

ϖn
n . The orbit-sums form a ba-

sis for the ring !BC
n of BCn-symmetric functions. For q, t, t0, t1, t2, t3 ↓ C with

|q|, |t|, |t0|, |t1|, |t2|, |t3| < 1, define the Koornwinder density by

”(x; q, t; t0, t1, t2, t3) :=
n∏

i=1

(x±2
i ; q)↑∏3

r=0(trx
±

i ; q)↑

∏

1↫i<j↫n

(x±

i x
±

j ; q)↑

(tx±

i x
±

j ; q)↑
.

This further allows one to define an inner product on !BC
n by

≃f, g⇐
(n)
q,t;t0,t1,t2,t3 :=

∫

Tn

f(x)g(x↔1)”(x; q, t; t0, t1, t2, t3) dT (x),

where Tn is the standard n-torus and the measure T (x) is given by

dT (x) :=
1

2nn!(2ϱ i )n
dx1

x1
· · ·

dxn

xn
.

The Koornwinder polynomials are defined to be the unique BCn-symmetric func-
tions satisfying

Kω = m
BC
ω +

∑

µ<ω

cωµm
BC
µ ,

where cωµ ↓ C(q, t, t0, t1, t2, t3), and for which

≃Kω,Kµ⇐
(n)
q,t;t0,t1,t2,t3 = 0 if ω ⇒= µ.

Note that µ ↭ ω denotes the extension of the usual dominance order to all partitions
ω, µ ↓ P: µ ↭ ω if and only if µ1 + · · · + µi ↭ ω1 + · · · + ωi for all i ↫ 1.
The Koornwinder polynomials satisfy many nice properties such as the quadratic
norm evaluation and evaluation symmetry [4, 26]. The key identity we need is [25,
Equation (2.6.9)] (see also [23, Corollary 7.2.1])

(2.3) lim
m↗↑

(x1 . . . xn)
m
K(mn)↔ω(x; q, t; t0, t1, t2, t3)

= Pω(x; q, t)
n∏

i=1

(t0xi, t1xi, t2xi, t3xi; q)↑
(x2

i ; q)↑

∏

1↫i<j↫n

(txixj ; q)↑
(xixj ; q)↑

.

We will only use this for ω = 0, in which case P0(x; q, t) = 1.
For a basis {fω} of !BC

n we write [fω]g for the coe"cient of fω in the expansion
g =

∑
ω cωfω where the cω lie in some coe"cient ring. The virtual Koornwinder

integral of a BCn-symmetric function f is defined as

I
(n)
K (f ; q, t; t0, t1, t2, t3) := [K0(x; q, t; t0, t1, t2, t3)]f.

This is extended to allow for symmetric function arguments via the homomorphism
!2n →↑ !BC

n for which f(x1, . . . , x2n) ↘↑ f(x1, x
↔1
1 , . . . , xn, x

↔1
n ). Of course since

K0 = 1 the orthogonality of the Koornwinder polynomials allows us to express this
as

I
(n)
K (f ; q, t; t0, t1, t2, t3) =

≃f, 1⇐(n)q,t;t0,t1,t2,t3

≃1, 1⇐(n)q,t;t0,t1,t2,t3

.
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Note that the denominator has the explicit evaluation

≃1, 1⇐(n)q,t;t0,t1,t2,t3 =
n∏

i=1

(t, t0t1t2t3tn+i↔2; q)↑
(q, ti; q)↑

∏
0↫r<s↫3(trtst

i↔1; q)↑
,

which is Gustafson’s generalised Askey–Wilson integral [9]. The virtual Koorn-
winder integral can be evaluated for many choices of the argument f , see [15, 23,
24, 25]. In particular, the vanishing integrals of the next section may be expressed
in terms of virtual Koornwinder integrals. We need one final identity involving
virtual Koornwinder integrals. To state this conveniently, let

f
(m)
ω (q, t; t0, t1, t2, t3) := [Pω(x; q, t)](x1 · · ·xn)

m
K(mn)(x; q, t; t0, t1, t2, t3).

Proposition 2.4 ([25, Proposition 4.9]). For nonnegative integers n,m and ω ↗

(2m)n,

f
(m)
ω (q, t; t0, t1, t2, t3) = (→1)|ω|I(m)

K

(
Pω→(t, q); t, q; t0, t1, t2, t3

)
.

3. Vanishing integrals

In this section we evaluate a pair of vanishing integrals for Schur functions con-
jectured by Lee, Rains and Warnaar in the Macdonald case [15, Conjecture 9.2].

For a, b, q ↓ C with |a|, |b|, |q| < 1 we define

I
(n)
ω (a, b; q) :=

1

Zn(a, b; q)

∫

Tn

sω

(
x
±

1 , . . . , x
±

n

) n∏

i=1

(x±2
i ; q)↑

(ax±2
i , bx

±2
i ; q2)↑

⇑

∏

1↫i<j↫n

(
1→ x

±

i x
±

j

)
dT (x),

where ω is a partition with length at most 2n and the normalising factor is given
by

Zn(a, b; q) :=

∫

Tn

n∏

i=1

(x±2
i ; q)↑

(ax±2
i , bx

±2
i ; q2)↑

∏

1↫i<j↫n

(
1→ x

±

i x
±

j

)
dT (x)

=
n∏

i=1

(abqn+i↔2; q)↑
(qi,→aqi↔1,→bqi↔1; q)↑(abq2i↔2; q2)2

↑

.

Note that in terms of virtual Koornwinder integrals this is

I
(n)
ω (a, b; q) = I

(n)
K (sω; q, q, a

1/2
,→a

1/2
, b

1/2
,→b

1/2).

Lee, Rains and Warnaar prove the following properties of the above integral.

Proposition 3.1 ([15, Proposition 9.3]). For a, b, q ↓ C with |a|, |b|, |q| < 1 and ω a
partition of length at most 2n the integral I(n)ω (a, b; q) vanishes unless 2-core(ω) = 0.
Furthermore

I
(n)
ω (q, q; q) =

n∏

i=1

(1→ q
2i↔1)2n↔2i+1

(1→ q2i)2n↔2i
(3.1a)

⇑ Pf
1↫i,j↫2n

(
q
(ωi↔ωj+j↔i↔1)/2

1→ qωi↔ωj+j↔i
ς(ωi → ωj + j → i odd)

)
,

and

I
(n)
ω (1, q2; q) =

1

2n↔1(1 + qn)

n∏

i=1

(1→ q
2i↔1)2n↔2i+1

(1→ q2i)2n↔2i
(3.1b)

⇑ Pf
1↫i,j↫2n

(
1 + q

ωi↔ωj+j↔i

1→ qωi↔ωj+j↔i
ς(ωi → ωj + j → i odd)

)
.

61



Lee, Rains and Warnaar also give a conjectural Macdonald polynomial analogue
of this proposition [15, Conjecture 9.2]. There the generalisations of (3.1) are
explicit products. Our next proposition gives the evaluation of the Pfa"ans in the
previous proposition, verifying the conjecture of Lee, Rains and Warnaar for q = t.

Proposition 3.2. For ω with length at most 2n and 2-core(ω) = 0,

(3.2) I
(n)
ω (q, q; q) = q

ε(ω→)C
e
ω(q

2n; q)Ho
ω(q)

C
o
ω(q

2n; q)He
ω(q)

and

(3.3) I
(n)
ω (1, q2; q) = q

ε(ω) 1 + q
n+2ε(ω→)↔2ε(ω)

1 + qn

C
e
ω(q

2n; q)Ho
ω(q)

C
o
ω(q

2n; q)He
ω(q)

.

Proof. Since the structure of the Pfa"ans is similar, we focus on the second identity,
and evaluate (3.1b).

Fix a partition ω ↓ P2n with empty 2-core. Define the set J ↗ {1, . . . , 2n} as
the collection of integers j for which column j has a nonzero entry in the first row,
and set I := {1, . . . , 2n} \ J . Since 2-core(ω) = 0 it follows that |I| = |J | = n. The
elements of I and J are labeled by ik and jk respectively, where 1 ↭ k ↭ n and
ordered naturally. With this established we define the n⇑n matrix M with entries
Mk,ϱ by

Mk,ϱ :=
1 + q

ωik
↔ωjε

+jε↔ik

1→ q
ωik

↔ωjε
+jε↔ik

.

The Pfa"an in (3.1b) may be expressed in terms of the determinant of M . Indeed,
by pushing the rows with indices in J to the right we see that

Pf
1↫i,j↫2n

(
1 + q

ωi↔ωj+j↔i

1→ qωi↔ωj+j↔i
ς(ωi → ωj + j → i odd)

)

= (→1)(
n
2)+

∑
j↑J j Pf

(
0 M

→M
t 0

)

= (→1)
∑

j↑J j detM.

The determinant may be evaluated simply by applying the following generalisation
of Cauchy’s double alternant which may be found in [5, Example 3.1; a = 0]:

det
1↫i,j↫n

(
bxi + cyj

xi + yj

)
= (b→ c)n↔1

(
b

n∏

i=1

xi + (→1)n↔1
c

n∏

i=1

yi

)

⇑

∏
1↫i<j↫n(xi → xj)(yi → yj)∏n

i,j=1(xi + yj)
.

We apply this with (b, c, xk, yϱ) ↘↑ (→1, 1, qωik
↔ik ,→q

ωjε
↔jε) for 1 ↭ k, φ ↭ n. After

some elementary manipulations the evaluation may now be expressed as

I
(n)
ω (1, q2; q)

=

∏
i↓I q

ωi↔i +
∏

j↓J q
ωj↔j

1 + qn

n∏

i=1

(1→ q
2i↔1)2n↔2i+1

(1→ q2i)2n↔2i

⇑

∏

1↫i<j↫2n
ωi ↔ ωj + j ↔ i even

1→ q
ωi↔ωj+j↔i

qωj↔j

∏

1↫i<j↫2n
ωi ↔ ωj + j ↔ i odd

q
ωj↔j

1→ qωi↔ωj+j↔i
.

The terms of the form 1→ q
x can be simplified thanks to the identity [19, p. 10–11]

Cω(q2n; q)

Hω(q)
=

∏

s↓ω

1→ q
n+c(s)

1→ qh(s)
=

∏
1↫i<j↫n 1→ q

ωi↔ωj+j↔i

∏n
i=1(q; q)i

,
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where l(ω) ↭ n. Restricting all products to even/odd exponents implies that
C

e
ω(q

2n; q)Ho
ω(q)

C
o
ω(q

2n; q)He
ω(q)

=
∏

1↫i<j↫2n
ωi ↔ ωj + j ↔ i even

(1→ q
ωi↔ωj+j↔i)

∏

1↫i<j↫2n
ωi ↔ ωj + j ↔ i odd

1

1→ qωi↔ωj+j↔i

⇑

n∏

i=1

(1→ q
2i↔1)2n↔2i+1

(1→ q2i)2n↔2i
.

It remains to show that the powers of q agree in the prefactor. Since
∏

i↓I

q
ωi↔i +

∏

j↓J

q
ωj↔j =

2n∏

i=1
ωi ↔ i even

q
ωi↔i +

2n∏

i=1
ωi ↔ i odd

q
ωi↔i

,

this may be reduced to the pair of identities

ε(ω) =
2n∑

i=1
ωi ↔ i even

(ωi → i) +
∑

1↫i<j↫2n

(→1)ωi↔ωj+j↔i(ωj → j),

and

n+ 2ε(ω→)→ 2ε(ω) =
2n∑

i=1
ωi ↔ i odd

(ωi → i)→
2n∑

i=1
ωi ↔ i even

(ωi → i).

In the first of these write
2n∑

i=1
ωi ↔ i even

(ωi → i) =
∑

(i,j)↓ω+ϑ

(→1)ωi↔i↔j+1(ωi → i) +
2n∑

i=1

(ωi → i)

= ε(ω) +
∑

1↫i<j↫2n

(→1)ωi↔ωj+j↔i(ωi → i) +
2n∑

i=1

(ωi → i),

where in the second equality we have applied (2.1) from Lemma 2.3. Since

∑

1↫i<j↫2n

(→1)ωi↔ωj+j↔i(ωi → i) +
∑

1↫i<j↫2n

(→1)ωi↔ωj+j↔i(ωi → i) +
2n∑

i=1

(ωi → i)

=
2n∑

i,j=1

(→1)ωi↔ωj+j↔i(ωi → i)

= 0,

the first identity follows. For the second identity, a similar rewriting, now using
(2.2) of Lemma 2.3, shows us that

2n∑

i=1
ωi ↔ i odd

(ωi → i)→
2n∑

i=1
ωi ↔ i even

(ωi → i)

= →2
∑

(i,j)↓ω+ϑ

(→1)ωi↔i↔j+1(ωi → i)→
2n∑

i=1

(ωi → i)

= →2ε(ω)→ |ω|+ 2n2 + n→ 2
∑

1↫i<j↫2n

(→1)ωi↔ωj+j↔i(ωi → i)

= n+ 2ε(ω→)→ 2ε(ω).
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This finishes the evaluation of (3.1b). The evaluation of (3.1a) is almost identical
except one directly applies (2.2) of Lemma 2.3 to compute the exponent of q in the
prefactor. ↬

4. Bounded Littlewood identities

Here we use the integral evaluations of the previous section to prove a bounded
analogue of Theorem 1.1. This is followed by proofs of the theorem and of Corol-
lary 1.2.

4.1. A bounded analogue of Theorem 1.1. Bounded Littlewood identities are
generalisations of ordinary Littlewood identities in which the largest part of the
indexing partition has an upper bound, say m, such that sending m to infinity
recovers an ordinary (unbounded) Littlewood identity. The first example of such an
identity was discovered by Macdonald [18, §1.5] where he used a bounded analogue
of (1.1a) to prove the MacMahon and Bender–Knuth conjectures on plane partitions
[2, 20]. Bounded analogues of the remaining two classical identities (1.1b) and (1.1c)
were obtained by Désarménien, Proctor and Stembridge [7, 22, 28] and Okada [21]
respectively. A host of other bounded identities for Hall–Littlewood and Macdonald
polynomials may be found in [25] and references therein. For further discussion of
the history of bounded Littlewood identities see [10]. We now state the bounded
analogue of Theorem 1.1.

Theorem 4.1. For nonnegative integers m and n,

(4.1)
∑

ω
2-core(ω)=0

q
ε(ω→)C

e
ω(q

↔2m; q)Ho
ω(q)

C
o
ω(q

↔2m; q)He
ω(q)

sω(x)

= (x1 · · ·xn)
m
K(mn)

(
x; q, q; q1/2,→q

1/2
, q

1/2
,→q

1/2
)
,

and

(4.2)
∑

ω
2-core(ω)=0

q
2ε(ω→)↔ε(ω) + q

m+ε(ω)

1 + qm

C
e
ω(q

↔2m; q)Ho
ω(q)

C
o
ω(q

↔2m; q)He
ω(q)

sω(x)

= (x1 · · ·xn)
m
K(mn)(x; q, q; 1,→1, q,→q).

These identities are indeed bounded since C
e
ω(q

↔2m; q) vanishes if ω1 > 2m.
Since, by [15, Lemma 4.1], the Koornwinder polynomials on the right reduce to clas-
sical group characters for q = 0, one recovers the previously mentioned Désarménien–
Proctor–Stembridge and Okada identities respectively in this case. The Koorn-
winder polynomials for q = t on the right-hand side may alternatively be expressed
as a ratio of determinants of Askey–Wilson polynomials [1]; see, e.g., [6, Defini-
tion 4.1]. This, however, does not seem to shed light on a more explicit expression
for the evaluation of these sums. In particular, the specialisations of K(mn) above
are not contained in [15, Lemma 4.1].

The following argument is sketched in [15, §9], but we give the details in the
Schur case. Assuming the Macdonald polynomial version of the vanishing integrals
[15, Conjecture 9.2], the same argument gives the conjectural Littlewood identities.

Proof of Theorem 4.1. The goal is to find an expression for the coe"cient of sω(x)
in the Schur expansion of the right-hand side. By Proposition 2.4 this coe"cient is

f
(m)
ω (x; q, q, t0, t1, t2, t3) = (→1)|ω|I(m)

K (sω→(x); q, q; t0, t1, t2, t3).

If we specialise (t0, t1, t2, t3) = (q1/2,→q
1/2

, q
1/2

,→q
1/2) then this reduces to

f
(m)
ω

(
x; q, q; q1/2,→q

1/2
, q

1/2
,→q

1/2
)
= (→1)|ω|I(m)

ω→ (q, q; q).
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The integral on the right is (3.2), as desired, and vanishes unless 2-core(ω) = 0. In
this case the sign disappears since |ω| is even and we obtain

(→1)|ω|I(m)
ω→ (q, q; q) = q

ε(ω)C
e
ω→(q2m; q)Ho

ω→(q)

C
o
ω→(q2m; q)He

ω→(q)
.

By [15, Lemma 2.3] we may alternatively express this as

(4.3) q
ε(ω)C

e
ω→(q2m; q)Ho

ω→(q)

C
o
ω→(q2m; q)He

ω→(q)
= q

ε(ω→)C
e
ω(q

↔2m; q)Ho
ω(q)

C
o
ω(q

↔2m; q)He
ω(q)

This establishes (4.1). For (4.2) the same procedure applies with the substitution
(t0, t1, t2, t3) = (1,→1, q,→q) and by using the integral (3.3). ↬
4.2. Proof of Theorem 1.1. With the bounded identities established we may
take the m ↑ ⇓ limit of both identities to obtain their unbounded counterparts.
For the Koornwinder side we use (2.3) with (ω, q, t) = (0, q, q) and (t0, t1, t2, t3) =
(q1/2,→q

1/2
, q

1/2
,→q

1/2) or (t0, t1, t2, t3) = (1,→1, q,→q). In the case of (4.1) this
yields

lim
m↗↑

(x1 . . . xn)
m
K(mn)

(
x; q, q; q1/2,→q

1/2
, q

1/2
,→q

1/2
)

=
n∏

i=1

(q1/2xi,→q
1/2

xi, q
1/2

xi,→q
1/2

xi; q)↑
(x2

i ; q)↑

∏

1↫i<j↫n

1

1→ xixj

=
n∏

i=1

(qx2
i ; q

2)↑
(x2

i ; q
2)↑

∏

1↫i<j↫n

1

1→ xixj
,

where we have used
(a,→a; q)↑ = (a2; q2)↑.

For the limit of the summand we use it in conjugate form (4.3) so that

lim
m↗↑

q
ε(ω)C

e
ω→(q2m; q)Ho

ω(q)

C
o
ω→(q2m; q)He

ω(q)
= q

ε(ω)H
o
ω(q)

H
e
ω(q)

.

Thus we have proved (1.3). As before the same procedure yields (1.4).

4.3. Proof of Corollary 1.2. In order to obtain Corollary 1.2 we take q ↑ 1 in
either (1.3) or (1.4). Let (a; q)n :=

∏n↔1
k=0(1→ aq

k). Then we may take the limit of
the product-side of (1.3) by using

lim
q↗1

(qx2
i ; q

2)↑
(x2

i ; q
2)↑

= lim
q↗1

↑∑

n=0

(q; q2)n
(q2; q2)n

x
2n
i

=
↑∑

n=0

1 · 3 · · · (2n→ 1)

2 · 4 · · · 2n
x
2n
i

=
1

(1→ x
2
i )

1/2
,

where in the first line we have applied the q-binomial theorem [8, Equation (1.3.2)]:
↑∑

n=0

(a; q)n
(q; q)n

z
n =

(az; q)↑
(z; q)↑

.

The q ↑ 1 limit of the product-side of (1.4) gives the same result. The limit
of either sum follows from the characterisation of partitions with empty 2-core in
Lemma 2.1, namely that |H

e
ω| = |H

o
ω|.
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SKEW SYMPLECTIC AND ORTHOGONAL CHARACTERS THROUGH

LATTICE PATHS

SEAMUS P. ALBION, ILSE FISCHER, HANS HÖNGESBERG, AND FLORIAN SCHREIER-AIGNER

Abstract. The skew Schur functions admit many determinantal expressions. Chief
among them are the (dual) Jacobi–Trudi formula and the Lascoux–Pragacz formula, the
latter being a skew analogue of the Giambelli identity. Comparatively, the skew char-
acters of the symplectic and orthogonal groups, also known as the skew symplectic and
orthogonal Schur functions, have received less attention in this direction. We establish
analogues of the dual Jacobi–Trudi and Lascoux–Pragacz formulae for these characters.
Our approach is entirely combinatorial, being based on lattice path descriptions of the
tableaux models of Koike and Terada. Ordinary Jacobi–Trudi formulae are then derived
in an algebraic manner from their duals.

1. Introduction

The classical groups, a term coined by Weyl, are the general linear groups over the real
numbers, complex numbers and quaternions and certain subgroups thereof. We are con-
cerned with the complex general linear, symplectic and orthogonal groups, which we write
as GL(n,C), Sp(2n,C) and O(n,C) respectively. Each of these groups carry families of
irreducible representations indexed by partitions. In the case of GL(n,C), these representa-
tions are precisely the irreducible polynomial representations whose characters are the Schur
polynomials, which are symmetric polynomials in n variables. For the symplectic and or-
thogonal groups, the irreducible characters in question are symmetric Laurent polynomials
in the variables x1, x

→1
1 , . . . , xn, x→1

n (also known as BCn-symmetric polynomials). These
characters sometimes go by the name of symplectic and orthogonal Schur polynomials, but
we will refer to them simply as the symplectic and orthogonal characters.

The Schur polynomials have several di!erent determinantal expressions. Among them
are the Jacobi–Trudi formula and its dual, the Nägelsbach–Kostka identity, which express
the Schur polynomial as (isobaric) determinants in the complete homogeneous or elementary
symmetric functions respectively. There is also the Giambelli formula, which expresses the
Schur polynomial as a determinant of Schur polynomials indexed by hook-shaped Young
diagrams. These two types of determinantal expressions have analogues for skew Schur
polynomials, the skew version of the Giambelli formula being due to Lascoux and Pragacz
[17, 18]. Analogously, the symplectic and orthogonal characters were given Jacobi–Trudi-
type expressions by Weyl [24, Theorems 7.8.E & 7.9.A], there expressed in terms of complete
homogeneous or elementary symmetric functions with variables x1, x

→1
1 , . . . , xn, x→1

n . They
also have Giambelli formulae, being first proved by Abramsky, Jahn and King [1], the
structure of which is identical to the Schur case.

From a combinatorial point of view, the Schur polynomials may be defined as a weighted
sum over semistandard Young tableaux or, equivalently, Gelfand–Tsetlin patterns. This
extends easily to the skew case. By interpreting these tableaux as families of nonintersecting
lattice paths, Gessel and Viennot [8] provided a beautiful proof of the skew Jacobi–Trudi
formulae using what is now known as the Lindström–Gessel–Viennot lemma. Stembridge
then applied this approach to the Giambelli and Lascoux–Pragacz formulae [22, §9].

In [5], Fulmek and Krattenthaler set out to provide similar lattice path proofs of the
symplectic and orthogonal Jacobi–Trudi formulae and their duals as well as the Giambelli

I.F., H.H., and F.S.-A. acknowledge the financial support from the Austrian Science Foundation FWF,
grant P34931.

67



68 S. P. ALBION, I. FISCHER, H. HÖNGESBERG, AND F. SCHREIER-AIGNER

formulae in the straight case. For the symplectic identities they use the tableaux of King
[13]. In the orthogonal case there are several di!erent tableaux models, and of these Fulmek
and Krattenthaler exploit the tableaux of Proctor, Sundaram as well as of King and Welsh
[14, 21, 23]. The main tools in their proofs are the Lindström–Gessel–Viennot lemma and a
modified reflection principle. They succeeded in proving the dual Jacobi–Trudi formulae for
the symplectic and orthogonal characters in this way, and pass to the ordinary formulae by
the dual paths of Gessel and Viennot. For the Giambelli identities, they prove the symplectic
and odd orthogonal cases. However, they were unable to obtain a lattice path proof of the
even orthogonal Giambelli formula. (This was due to the even orthogonal Sundaram-type
tableaux they introduce not having an appropriate weight function; see the discussions in
[3, §3.6] and [5, §8].)

Compared to the skew Schur polynomials, skew analogues of the symplectic and orthog-
onal characters have received little attention. Indeed, only very recently did Jing, Li and
Wang obtain Jacobi–Trudi formulae for these characters [12, Propositions 3.2–3.3], and there
only in terms of the complete symmetric functions. The goal of the present paper is to pro-
vide dual Jacobi–Trudi-type formulae for the skew symplectic and orthogonal characters.
We accomplish this in a purely combinatorial way, using an approach that is somewhat in
the vein of the one used by Fulmek and Krattenthaler with an extension to the skew set-
ting. In addition, we also produce Lascoux–Pragacz-type skew analogues of the Giambelli
formulae for these characters. What facilitates these more general formulae are the tableaux
models for skew symplectic and orthogonal characters due to Koike and Terada [16]. These
tableaux have already proved combinatorially useful in proving factorisation theorems for
skew symplectic and orthogonal characters in work of Ayyer and the second named author
[2]. Remarkably, our proofs are simpler than those of Fulmek and Krattenthaler, which
further emphasises that the tableaux of Koike and Terada are the better tool in the combi-
natorial setting.

We begin in the next section by providing definitions and statements of our results. In
Section 3 we introduce the tableaux of Koike and Terada as well as the corresponding
families of nonintersecting lattice paths. In the following Section 4 we give proofs of the
dual Jacobi–Trudi formulae. In order to relate these to the results of Jing, Li and Wang,
we use the standard algebraic approach for proving the equivalence of the ordinary Jacobi–
Trudi formula and its dual in Section 5. Following this, Section 6 contains the proofs of the
Lascoux–Pragacz-type skew analogues of the Giambelli formulae.

2. Definitions and main results

A partition is a weakly decreasing sequence of positive integers ω = (ω1, . . . ,ωk). We

call the ωi its parts, l(µ) := k its length and |ω| :=
∑k

i=1 ωi its size. The Young diagram
of a partition ω is a collection of left-justified boxes (cells) with ωi cells in the i-th row
from the top. For the rest of the paper, we do not distinguish between a partition and its
associated Young diagram. The conjugate ω↑ = (ω↑

1, . . . ,ω
↑
m) of ω is the partition where ω↑

i

is the number of boxes in the i-th column of the Young diagram of ω, counted from the left.
For two partitions ω, µ, we say that µ is contained in ω, denoted by µ → ω, if the Young
diagram of µ can be obtained from the Young diagram of ω by removing boxes. In this
case, we denote by ω/µ the skew shaped Young diagram (or skew shape for short) obtained
by removing all boxes of the Young diagram of µ from the one of ω. The size of ω/µ is
the number of boxes in ω/µ and denoted by |ω/µ|. We will sometimes write (nm) for the
rectangular partition with m parts equal to n.

We are interested in irreducible characters of the classical Lie groups GL(n,C), Sp(2n,C)
and O(n,C) indexed by partitions. The definitions of these objects may be found, for
instance, in [6, §24] or [21, Appendix B], and we only cover the essentials needed to state our
results. The characters we are interested in are all symmetric or BCn-symmetric polynomials
with variables x := (x1, . . . , xn), the rings of which we denote by ”n and ”BC

n respectively.
For GL(n,C), the characters of the irreducible polynomial representations are the Schur
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polynomials sω(x) where ω runs over all partitions of length at most n. They are easily
computed, for l(ω) ↭ n, by

(1) sω(x) :=
det1↭i,j↭n(x

ωj+n→j
i )

det1↭i,j↭n(x
n→j
i )

,

setting ωj = 0 for j > l(ω). In fact, this convention is used throughout the whole paper. The
formula is a special case of the Weyl character formula. If l(ω) > n then sω(x) := 0. From
the definition it is clear that these are in fact symmetric polynomials of homogeneous degree
|ω|. When ω is a single row or column of r boxes then the Schur polynomials reduce to the
complete homogeneous symmetric polynomials hr and the elementary symmetric polynomials
er in x respectively.

For the symplectic group Sp(2n,C) we have irreducible characters given by the Weyl
formula

spω(x) :=
det1↭i,j↭n(x

ωj+n→j+1
i ↑ x

→(ωj+n→j+1)
i )

det1↭i,j↭n(x
n→j+1
i ↑ x→(n→j+1)

i )
,

where again l(ω) ↭ n. The orthogonal case is little more delicate. For a statement P we
write [P ] for the Iverson bracket: [P ] = 1 if P is true and [P ] = 0 otherwise. Then the even
orthogonal group O(2n,C) has irreducible characters

oω(x) := 2[ωn ↓=0] det1↭i,j↭n(x
ωj+n→j
i + x

→(ωj+n→j)
i )

det1↭i,j↭n(x
n→j
i + x→(n→j)

i )
.

If ωn = 0 then this is also the character of the irreducible representation of the special
orthogonal group SO(2n,C) corresponding to ω. However, if ωn ↓= 0 then the above splits
into a sum of two irreducible characters of SO(2n,C), one indexed by ω and the other
by (ω1, . . . ,ωn→1,↑ωn), which is of course not a partition. In the odd orthogonal case
O(2n+1,C) there is no such distinction, and therefore we will label the irreducible characters
of O(2n+ 1,C) (or SO(2n+ 1,C)) by

soω(x) :=
det1↭i,j↭n(x

ωj+n→j+1/2
i ↑ x

→(ωj+n→j+1/2)
i )

det1↭i,j↭n(x
n→j+1/2
i ↑ x→(n→j+1/2)

i )
.

We will refer to these two sets of orthogonal characters as even orthogonal characters and
odd orthogonal characters respectively.

Each of the above four families of characters have skew variants. In Section 3 we will
explicitly define each of these families in terms of skew tableaux, however for now let us
explain where they come from. We say two partitions interlace, written µ ↫ ω, if µ → ω and

ω1 ↬ µ1 ↬ ω2 ↬ µ2 ↬ · · · .

One of the fundamental properties of the Schur polynomials is the branching rule [20, p. 72]

sω(x1, . . . , xn) =
∑

µ↫ω

x|ω/µ|
n sµ(x1, . . . , xn→1).

Since ω and µ interlace, the skew shape ω/µ has no two boxes in the same column. It-
erating the branching rule n times naturally leads to the notion of semistandard Young
tableaux. Alternatively, one could iterate only k times for 1 ↭ k ↭ n↑ 1. The coe#cient of
sµ(x1, . . . , xn→k) in this expansion is the skew Schur polynomial sω/µ(xn→k+1, . . . , xn). In
other words, we have the more general branching rule

sω(x1, . . . , xn) =
∑

µ↔ω

sµ(x1, . . . , xn→k)sω/µ(xn→k+1, . . . , xn).

In representation-theoretic terms, the branching rule describes the restriction of the irre-
ducible representation indexed by ω to the subgroup GL(n ↑ 1,C) ↔ GL(1,C), or more
generally to GL(n↑ k,C)↔GL(k,C).

Koike and Terada [16] carried out this same procedure for the symplectic and orthogonal
groups. They use the branching rules of Zhelobenko [25] to define skew analogues of the
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symplectic and orthogonal characters. In their most general form these characters depend
on a skew shape ω/µ and integers n,m such that l(µ) ↭ m and l(ω) ↭ n + m. Following
our notation from above, we denote these by spmω/µ, so

m
ω/µ and omω/µ. These objects are, like

their non-skew variants, symmetric Laurent polynomials in x1, x
→1
1 . . . , xn, x→1

n . While we
give a combinatorial definition of these characters below, we should mention that Jing, Li
and Wang have given alternative definitions in terms of vertex operators [12].

The main goal of this paper is to prove, combinatorially, two types of determinantal
formulae for spmω/µ, so

m
ω/µ and omω/µ: (i) dual Jacobi–Trudi-type formulae and (ii) Giambelli–

Lascoux–Pragacz-type formulae. The Jacobi–Trudi-type formulae are then derived from
their duals in an algebraic manner.

For µ → ω, l(ω) ↭ n and ω1 ↭ N , and the Jacobi–Trudi identity and its dual are

(2) sω/µ(x) = det
1↭i,j↭n

(hωi→µj→i+j(x)) = det
1↭i,j↭N

(eω→
i→µ→

j→i+j(x)),

where we remind the reader that x = (x1, . . . , xn) for a non-negative integer n that is fixed
throughout the paper. Here we have stated this as an identity for the Schur polynomials,
but it also holds in the ring of symmetric functions on a countable set of variables, in which
case the sω/µ are the skew Schur functions.

We set x± := (x1, x
→1
1 , . . . , xn, x→1

n ) and are now ready to state our theorems.

Theorem 2.1. Let m,n,N be non-negative integers and ω, µ partitions such that µ → ω,
l(µ) ↭ m, l(ω) ↭ n+m and ω1 ↭ N . Then

spmω/µ(x) = det
1↭i,j↭N

(
eω→

i→µ→
j→i+j(x

±)↑ eω→
i+µ→

j→i→j→2m(x±)
)
,(3a)

somω/µ(x) = det
1↭i,j↭N

(
eω→

i→µ→
j→i+j(x

±) + eω→
i+µ→

j→i→j→2m+1(x
±)

)
,(3b)

omω/µ(x) =
1

2[m=l(µ)]
det

1↭i,j↭N

(
eω→

i→µ→
j→i+j(x

±) + eω→
i+µ→

j→i→j→2m+2(x
±)

)
.(3c)

A main contribution of our work is to provide, as we believe, enlightening combinatorial
explanations of these formulae. By using an algebraic approach, we can dualise these three
identities and obtain the following ordinary Jacobi–Trudi-type formulae for these characters.

Theorem 2.2. Let m,n,N be non-negative integers and ω, µ partitions such that µ → ω,
l(µ) ↭ m, l(ω) ↭ n+m and l(ω) ↭ N . Then

spmω/µ(x) = det
1↭i,j↭N

(
hωi→µj→i+j(x

±) + [j > m+ 1]hωi→i→j+2m+2(x
±)

)
,(4a)

somω/µ(x) = det
1↭i,j↭N

(
hωi→µj→i+j(x

±) + [j > m]hωi→i→j+2m+1(x
±)

)
,(4b)

omω/µ(x) = det
1↭i,j↭N

(
hωi→µj→i+j(x

±)↑ [j > m]hωi→i→j+2m(x±)
)
.(4c)

For µ empty and m = 0, these formulae are due to Weyl [24, Theorems 7.8.E & 7.9.A].
The identities (4a) and (4c) as stated were recently obtained by Jing, Li and Wang [12,
Propositions 3.2–3.3].

Our combinatorial approach also admits the derivation of Giambelli-type formulae, and,
in order to formulate them, we need the Frobenius notation of a partition. For a partition ω,
let (p, p) be the diagonal cell with maximal p which is still contained in the Young diagram
of ω (p is the size of the Durfee square). For 1 ↭ i ↭ p, let εi be the number of cells right
of (i, i) in the same row and ϑi be the number of cells below (i, i) in the same column.
We then write ω = (ε1, . . . ,εp|ϑ1, . . . ,ϑp). Using Frobenius notation for ω and µ, that is,
ω = (ε1, . . . ,εp|ϑ1, . . . ,ϑp) and µ = (ϖ1, . . . , ϖq|ϱ1, . . . , ϱq), the Lascoux–Pragacz formula
reads as

(5) sω/µ(x) = (↑1)q det





(
s(εi|ϑj)(x)

)
1↭i,j↭p

(
hεi→ϖj (x)

)
1↭i↭p,
1↭j↭q(

eϑj→ϱi(x)
)
1↭i↭q,
1↭j↭p

0



 .
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This was shown by Lascoux and Pragacz in [17, 18]. The µ empty case is much older, being
due to Giambelli [9], and is therefore known as the Giambelli identity. We provide the
following analogues.

Theorem 2.3. Let ω = (ε1, . . . ,εp|ϑ1, . . . ,ϑp) and µ = (ϖ1, . . . , ϖq|ϱ1, . . . , ϱq) be two parti-
tions such that µ → ω, l(µ) ↭ m and l(ω) ↭ n+m. Then

spmω/µ(x) = (↑1)q det





(
spm(εi|ϑj)

(x)
)
1↭i,j↭p

(
spm(εi)/(ϖj)

(x)
)
1↭i↭p,
1↭j↭q(

spm
(1ωj+1)/(1εi+1)

(x)
)
1↭i↭q,
1↭j↭p

0



 ,(6a)

somω/µ(x) = (↑1)q det





(
som(εi|ϑj)

(x)
)
1↭i,j↭p

(
som(εi)/(ϖj)

(x)
)
1↭i↭p,
1↭j↭q(

som
(1ωj+1)/(1εi+1)

(x)
)
1↭i↭q,
1↭j↭p

0



 ,(6b)

omω/µ(x) = (↑1)q det





(
om(εi|ϑj)

(x)
)
1↭i,j↭p

(
om(εi)/(ϖj)

(x)
)
1↭i↭p,
1↭j↭q(

om
(1ωj+1)/(1εi+1)

(x)
)
1↭i↭q,
1↭j↭p

0



 .(6c)

As mentioned in the introduction, for µ empty these formulae reduce to those of Abram-
sky, Jahn and King [1]. Like their formulae, ours have the exact same structure as in the
Schur case since s(1ωj+1)/(1εi+1)(x) = eϑj→ϱi(x) and s(εi)/(ϖj)(x) = hεi→ϖj (x).

Weyl’s Jacobi–Trudi formulae for the symplectic and orthogonal characters are used by
Koike and Terada to define the universal characters for these groups [15]. This is achieved
by “forgetting” the variables x± in either (3) and (4) and then treating the determinants
as polynomials in the er or hr respectively, and thus as elements of the ring of symmetric
functions at an arbitrary alphabet. By specialising the arbitrary alphabet to x± the actual
characters are recovered. Many identities between the general linear characters (Schur func-
tions) and the orthogonal and symplectic characters are derived by Koike and Terada using
only the universal characters. It would be interesting to investigate whether using (3) and
(4) to define skew analogues of the universal characters leads to similar “universal” proofs
of identities such as, for example, branching rules.

Note that Hamel [10] has given determinantal formulae for skew analogues of the sym-
plectic and odd orthogonal characters using outside decompositions as introduced in [11].
However, the skew tableaux she defines are di!erent to those of Koike and Terada, and so
are the associated skew characters.

3. Tableaux and lattice paths

In this section, we introduce the underlying combinatorial models for sω/µ, sp
m
ω/µ, so

m
ω/µ

and omω/µ in terms of tableaux. There are several possibilities for the models underlying

somω/µ and omω/µ, and we choose those defined by Koike and Terada in [16]. In the non-skew

case, all of the various combinatorial models and their equivalences may be found in [21]
(also see [4]). We then also introduce the corresponding families of non-intersecting lattice
paths.

3.1. Semistandard Young tableaux. Let µ → ω be two partitions. A semistandard Young
tableau of shape ω/µ is a filling of the cells of the Young diagram ω/µ with positive integers
such that the entries increase weakly along rows and strictly down columns; see Figure 1 for
an example. We denote by SSYTn

ω/µ the set of semistandard Young tableaux of shape ω/µ

and maximal entry n. The weight xT of a semistandard Young tableau T is defined as the
monomial

xT = x# of 1’s in T
1 · · ·x# of n’s in T

n .
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The skew Schur polynomial sω/µ(x) corresponding to the shape ω/µ is defined as the mul-
tivariate generating function of semistandard Young tableaux of shape ω/µ, i.e.,

sω/µ(x) =
∑

T↗SSYTn
ϑ/µ

xT .

Our path models depend on arbitrary integers N ↬ ω1 and n ↬ l(ω). A family of Schur
paths associated with the shape ω/µ is a family of N non-intersecting lattice paths with
starting points Si = (µ↑

i ↑ i + 1, 2l(µ) ↑ µ↑
i + i ↑ 1), end points Ej = (ω↑

j ↑ j + 1, n ↑ ω↑
j +

j ↑ 1 + 2l(µ)) for 1 ↭ i, j ↭ N , where also here we set ω↑
j = 0 and µ↑

i = 0 for j > l(ω↑) and
i > l(µ↑), and with step set {(1, 0), (0, 1)}. The weight of a family of paths is the product of
the weights of its steps, where the i-th step of a path has weight xi if it is horizontal and 1
otherwise. Phrased di!erently, the weight of a horizontal step starting at (a, b) has weight
xa+b→2l(µ)+1 (this is called the e-labelling).

1

1 2 2

3 3 4 5

5 6

6

(0, 0)

S1

S2

S3

S4

E1

E2

E3

E4

3

5 6

1

3

6

2

41 2

5

Figure 1. A semistandard Young tableau of shape (4, 4, 4, 2, 1)/(3, 1) (left)
and the corresponding family of Schur paths (right) for N = 4 and n = 6.

The bijection between semistandard Young tableaux T of shape ω/µ and families of Schur
paths associated with the shape ω/µ is as follows. The path starting at Si corresponds to
the i-th column of T and the j-th step in the path is a horizontal step if and only if j appears
as a filling in the i-th column. See Figure 1 for an example.

3.2. Skew (n,m)-symplectic semistandard Young tableaux. Let µ → ω be two parti-
tions and n,m integers with l(µ) ↭ m and l(ω) ↭ n+m. A skew (n,m)-symplectic semistan-
dard Young tableau (or skew (n,m)-symplectic tableau) of skew shape ω/µ is a semistandard
Young tableau of skew shape ω/µ which is filled by

1 < 1 < 2 < 2 < · · · < n < n,

and satisfies the

• m-symplectic condition: the entries in row m+ i are at least i.

We denote by SPT(n,m)
ω/µ the set of skew (n,m)-symplectic tableaux of shape ω/µ. For a skew

(n,m)-symplectic tableau T , the weight xT is defined as

xT =
n∏

i=1

x(# of i’s in T )→(# of i’s in T )
i .
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The skew m-symplectic character spmω/µ(x) is defined as the multivariate generating function

of skew (n,m)-symplectic tableaux of shape ω/µ:

spmω/µ(x) =
∑

T↗SPT(n,m)
ϑ/µ

xT .

For our path model, we again fix an integer N ↬ ω1. A family of (n,m)-symplectic paths
associated with the shape ω/µ a family of N non-intersecting lattice paths with starting
points Si = (µ↑

i↑ i+1, 2m↑µ↑
i+ i↑1) end points Ej = (ω↑

j ↑ j+1, 2n+2m↑ω↑
j + j↑1) for

1 ↭ i, j ↭ N . The step set of these paths is {(1, 0), (0, 1)}, and additionally each path must
stay weakly above the line y = x↑1. The weight of a vertical step is 1 and a horizontal step
has weight xi if it is the (2i)-th step of a path and weight x→1

i if it is the (2i ↑ 1)-st step
of a path. Equivalently, the weight of a horizontal step starting at (a, b) is x→1

(a+b)/2→m+1 if
a+ b is even and x(a+b+1)/2→m if a+ b is odd.

1 2

1 2

1 2

2

3

(0, 0)

S1

S2

S3 E1

E2

E3

1 1 2

31

2 2

2

Figure 2. A skew (3, 2)-symplectic tableau of shape (3, 2, 2, 1, 1)/(1) (left)
and its associated family of (3, 2)-symplectic paths (right).

There is a bijection between skew (n,m)-symplectic tableaux and families of (n,m)-
symplectic paths that is very similar to the one in the Schur case. Namely, given a skew
(n,m)-symplectic tableau T , the path starting at Si of the corresponding family of symplectic
paths is obtained by associating the j-th step of the path with the j-th element in the
sequence 1, 1, 2, 2, . . . and letting a step being horizontal if and only if the corresponding
element in the sequence appears in the i-th column. An example is given in Figure 2.

3.3. Skew (n,m)-odd orthogonal semistandard Young tableaux. Let ω, µ be parti-
tions such that µ → ω, l(µ) ↭ m and l(ω) ↭ n+m. A skew (n,m)-odd orthogonal semistan-
dard Young tableau (or skew (n,m)-odd orthogonal tableau) associated with the shape ω/µ
is a skew semistandard Young tableau of shape ω/µ which is filled by

1̂ < 1 < 1 < · · · < n̂ < n < n

and satisfies

• the modified m-symplectic condition: the entries in row m+ i are at least î, and
• the m-odd orthogonal condition: the symbol î can only appear in the first column
of the (m+ i)-th row.

Note that, unlike in [16], we use î instead of ^i. Denote by SOT(n,m)
ω/µ the set of skew (n,m)-

odd orthogonal tableaux of shape ω/µ. We define the weight xT of a tableau T ↗ SOTm
ω/µ
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as

xT =
n∏

i=1

x(# of i’s in T )→(# of i’s in T )
i .

The skew m-odd orthogonal character somω/µ(x) is the multivariate generating function of

skew (n,m)-odd orthogonal tableaux of shape ω/µ:

somω/µ(x) =
∑

T↗SOT(n,m)
ϑ/µ

xT .

A family of (n,m)-odd orthogonal paths associated with the shape ω/µ is a family of
non-intersecting (n,m)-symplectic paths for which we extend the step set by a diagonal
step (1, 1) which can only occur when the starting point is of the form (i, i). The weight
of a family of (n,m)-odd orthogonal paths is the product of the weights of all steps, where
horizontal and vertical steps have the same weight as in the symplectic case and diagonal
steps have weight 1.

1

1̂ 1 1

2 2 3

3 3

4̂ 4

(0, 0)

S1

S2

S3

E1

E2

E3

1̂

2

3
4̂

1

2

3

4

1 1

3

Figure 3. A skew (4, 1)-odd orthogonal tableau of shape (3, 3, 3, 2, 2)/(2)
(left) and its associated family of (4, 1)-odd orthogonal paths (right).

We obtain a weight preserving bijection from skew (n,m)-odd orthogonal tableaux of
shape ω/µ to families of (n,m)-odd orthogonal paths associated with the shape ω/µ as
follows. We follow the same procedure as in the symplectic setting by interpreting first each
î entry as i. Note that each horizontal step corresponding to an î entry ends at the line
y = x ↑ 1 and therefore has to be followed by a vertical step. Now replace each of these
horizontal steps coming from an î entry and its following vertical step by a diagonal step.
See Figure 3 for an example.

3.4. Skew (n,m)-even orthogonal semistandard Young tableaux. As before, let µ →

ω be partitions such that l(µ) ↭ m and l(ω) ↭ n + m. A skew (n,m)-even orthogonal
semistandard Young tableau (or skew (n,m)-even orthogonal tableau) of shape ω/µ is a
semistandard Young tableau of shape ω/µ which is filled by the symbols

q1 < 1̂ < 1 < 1 < · · · < qn < n̂ < n < n

and satisfies

• the modified m-symplectic condition: the entries in row m+ i are at least î,
• the modified m-odd orthogonal condition: the symbol î can only appear in the first
column of the (m+ i)-th row and it appears if and only if the entry above is qi, and

• the m-even orthogonal condition: if i appears in the first column of the (m + i)-th
row and i also appears in the same row, then there is an i immediately above this i
entry.
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Note that, unlike in [16], we use the symbols qi and î instead of \i Zi; this corresponds to
interchanging the roles of qi and î if compared to [2].

We denote the set of skew (n,m)-even orthogonal tableaux of shape ω/µ by OT(n,m)
ω/µ .

The weight xT of a skew (n,m)-even orthogonal tableau T is defined as

xT =
n∏

i=1

x(# of i entries in T )→(# of i entries in T )
i .

The skew m-even orthogonal character omω/µ(x) is the multivariate generating function of

skew (n,m)-even orthogonal tableaux of shape ω/µ, so

omω/µ(x) =
∑

T↗OT(n,m)
ϑ/µ

xT .

We say that a family of lattice paths is strongly non-intersecting if there is no intersection
between any pair of paths when considering them as subsets of R2. (For our application
of the Lindström–Gessel–Viennot Lemma 4.2, we will also need the notion of weakly non-
intersecting in Section 4.2, where we only forbid intersections at lattice points that are
endpoints of steps in both paths.)

A family of (n,m)-even orthogonal paths associated with the shape ω/µ is a family of
strongly non-intersecting symplectic paths for which we extend the step set by a horizontal
step (2, 0), called an o-horizontal step, which can only occur starting at a point of the form
(i↑2, i), and where the family of paths does not have any trapped position as defined below.
We draw o-horizontal steps as arcs to avoid confusion.

Figure 4. The local configuration around a trapped position which is
marked as a red dot.

For positive integers i, d, we call the position (m + i ↑ d,m + i + d ↑ 1) trapped if the
following is satisfied:

• the lattice point (m+ i↑ d,m+ i+ d↑ 1) is not contained in any path,
• for each d↑ ↗ {0, . . . , d ↑ 1}, there is a lattice path which passes through (m + i ↑
d↑,m+ i+ d↑ ↑ 1) by a horizontal step followed by a vertical step, and

• there is a path passing through the point (m + i ↑ d ↑ 1,m + i + d) by a vertical
step followed by a horizontal step.

See Figure 4 for an example with d = 3.
We now describe the weight preserving bijection from (n,m)-even orthogonal tableaux

of shape ω/µ to families of (n,m)-even orthogonal paths associated with the same shape
that are strongly non-intersecting. First we interpret each qi as i and each î as i and apply
the map from (n,m)-symplectic tableaux to families of (n,m)-symplectic paths. Then we
replace the pairs of horizontal steps associated with qi, î coming from the modified m-odd
orthogonal condition by an o-horizontal step. For an example see Figure 5. In order to
see that this map is a bijection it su#ces to check that a tableau contradicts the m-even
orthogonal condition if and only if the corresponding family of paths has a trapped position,
which is done next.

Assume that T is a tableau contradicting the m-even orthogonal-condition, i.e., there
exists an integer i such that the (m + i)-th row starts with an entry i and also contains
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1 1

1 1 1 2
q3 3 3 4

3̂ 4

4 4

(0, 0)

S1

S2

S3

S4
E1

E2

E3

E4

1

4
q3 3̂

1

3

4 4

1 1

3

1 2
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Figure 5. A skew (4, 1)-even orthogonal tableau of shape (4, 4, 4, 2, 2)/(2)
(left) and its associated family of (4, 1)-even orthogonal paths (right).

an entry i whose entry above is not i. It is immediate that the top neighbour of the first
i in this row can not be i since this would contradict the condition that rows are weakly
increasing. Denote by d the number of i entries in the (m + i)-th row. When looking at
the corresponding family of paths, the (d↑ + 1)-st entry i corresponds to a horizontal step
ending at the point (m+ i↑d↑,m+ i+d↑↑1). Since the bottommost of these paths touches
the line y = x ↑ 1 at (m + i,m + i ↑ 1) and all paths are strongly non-intersecting, each
of these horizontal steps are followed by a vertical step. The first entry i in the (m+ i)-th
row corresponds to a horizontal step starting at (m + i ↑ d ↑ 1,m + i + d). Since the top
neighbour of this i is not i, the step before has to be a vertical step. This implies that the
position (m+ i↑ d,m+ i+ d↑ 1) is trapped.

4. Combinatorial proofs of the dual Jacobi–Trudi formulae

The proofs of the dual Jacobi–Trudi formulae for all of the skew characters under con-
sideration — skew symplectic, skew odd orthogonal and skew even orthogonal — follow
a similar scheme: we interpret the respective tableaux columnwise as non-intersecting lat-
tice paths as seen in Section 3. Thus, each column corresponds to a lattice path whose
generating function can be written in terms of elementary symmetric functions in the alpha-
bet x± = (x→1

1 , x1, . . . , x→1
n , xn). Applying the Lindström–Gessel–Viennot Lemma 4.2 then

yields a determinantal formula.
The proofs increase in complexity and a brief summary is as follows.

• For the skew symplectic case, we have to compute the generating function of lattice
paths consisting of unit horizontal and vertical steps in the positive direction which
do not cross the line y = x ↑ 1. This is achieved by using a modified reflection
principle (Lemma 4.1) by Fulmek and Krattenthaler [5], which provides a di!erence
of two elementary symmetric functions as the generating function, see Lemma 4.3.

• In the case of skew odd orthogonal characters, we need to compute the generating
function of lattice paths which may additionally have diagonal steps along the line
y = x. For each fixed number of such diagonal steps in the lattice path, we obtain a
di!erence of elementary symmetric functions in Lemma 4.4. Adding these di!erences
together allow telescopic cancelling, which finally yields a sum of two elementary
symmetric functions in Corollary 4.5.

• In the case of skew even orthogonal characters, we allow horizontal double steps
ending on the line y = x instead of diagonal steps. By similar means (Lemma 4.6), we
also obtain a sum of two elementary symmetric functions as the generating function



SKEW CHARACTERS THROUGH LATTICE PATHS 77

for these lattice paths in Corollary 4.7. However, applying the Lindström–Gessel–
Viennot Lemma 4.2 in this case also results in families of lattice paths that do not
correspond to a skew (n,m)-even orthogonal tableau. We provide a sign-reversing
involution between those and families of lattice paths with trapped positions at the
end of the section.

4.1. Modified reflection principle. One of the main tools in proving the dual Jacobi–
Trudi formulae is a modified reflection principle which we present next.

A lattice point (x, y) ↗ Z2 is said to be even if x + y is even, otherwise it is said to be
odd. Suppose we have a lattice path starting in P = (a, b) that consists of unit horizontal
and vertical steps in the positive direction. In addition, we assume that P is an even point.
We assign weights to the steps as follows. Vertical steps have weight 1, whereas the weights
of horizontal steps are given by a modified e-labelling: the step from (i, j) to (i + 1, j) has
weight x→1

(i+j→a→b)/2+1 if (i, j) is even and x(i+j→a→b+1)/2 if (i, j) is odd. Now the weight of
the path is the product of the weights of its steps.

Furthermore, consider a line y = x+ d such that d is even and P lies above that diagonal
line, that is, b > a + d. The modified reflection principle will enable us to derive combi-
natorially a formula for the generating function of such lattice paths that start at P and
that have no intersection with the line y = x+ d. This is done by computing the generating
function of those paths that have an intersection with y = x + d and then subtracting it
from the generating function of all lattice paths.

Lemma 4.1. Let a, b, c, d, f ↗ Z such that a + b and d are even, b > a + d and f > c + d.
There is a weight-preserving bijection between lattice paths with unit horizontal and vertical
steps that start at the point P = (a, b) and end at (c, f), and that have an intersection with
the line y = x+ d, and lattice paths with unit horizontal and vertical steps that start at the
reflected point P ↑ = (b↑ d, a+ d) of P along y = x+ d and also end at (c, f).

Proof. The proof is illustrated in Figure 6. Suppose our path touches the line for the first

x1

x3

x4 x4 x5

x6 x6 x7 x7

x8

x1 x2 x2 x3

x5

P

Q

P ↑

Figure 6. The modified reflection principle where xi := x→1
i .

time at the point Q, when traversing it starting at P . The modified reflection of the path
from P to Q along the line y = x + d works as follows: P is reflected in the usual way, so
it is mapped to P ↑ = (b ↑ d, a + d). The same applies to all other even points and to odd
points at which the path does not turn; these are odd points that lie in between either two
vertical or two horizontal steps. The remaining points are odd points in which the path
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turns. We reflect these points in such a way that the directions of the turns are maintained.
Concretely, if an odd point (x, y) comes with a left turn (a horizontal step followed by a
vertical step), it is mapped to (y↑ d+ 1, x+ d↑ 1); if it comes with a right turn (a vertical
step followed by a horizontal step), it is mapped to (y ↑ d↑ 1, x+ d+ 1).

Note that the modification of the usual reflection ensures that the mapping is weight-
preserving. ⊜
4.2. The Lindström–Gessel–Viennot Lemma. Another important tool is the well-known
Lindström–Gessel–Viennot Lemma [7, 8, 19]. We state it in a form that is convenient for
us. We need the following two notions.

• We say that a family of lattice paths is weakly non-intersecting if no pair of paths
has an intersection at a lattice point that is the endpoint of steps in both paths.

• We say that a family of lattice paths is strongly non-intersecting if no pair of paths
intersects when considering them as subsets of R2.

One may interpret the first notion of non-intersecting when considering the paths as
graphs, and the second notion when considering their natural embeddings in R2. The
background for these notions is that the Gessel–Viennot sign-reversing involution can only
be applied if there is a pair of paths that intersect at a lattice point that is the endpoint
of steps in both paths, which is precisely the case when the family is not weakly non-
intersecting. Also note that the two notions of non-intersecting are equivalent for families
of Schur paths, of m-symplectic paths, and of m-odd orthogonal paths, however, they di!er
for families of m-even orthogonal paths due to the steps of length 2. Thus we may simply
say non-intersecting in the first two cases.

Lemma 4.2 (The Lindström–Gessel–Viennot Lemma). We consider lattice paths on the
lattice Z2 which is equipped with edge weights and where the allowed steps are given by a finite
subset of Z2 such that the step set does not allow self-intersections of paths. Let S1, . . . , Sn

and E1, . . . , En be lattice points and let P(Si ↘ Ej) denote the generating function of lattice
paths from Si and Ej with respect to the step set and the edge weights. Then

det
1↭i,j↭n

(P(Si ↘ Ej))

is the signed generating function of families of n lattice paths such that the following is
satisfied.

• The S1, S2, . . . , Sn are the starting points and the E1, E2, . . . , En are the ending
points.

• The paths are weakly non-intersecting.
• The sign is sgnς where ς is the permutation of {1, 2, . . . , n} such that Si is connected
to Eς(i) for i = 1, 2, . . . , n.

4.3. Skew symplectic characters. For the skew symplectic character spmω/µ, we have to

compute the generating function of families of non-intersecting lattice paths from (µ↑
j ↑ j +

1, 2m↑µ↑
j+j↑1) to (ω↑

i↑ i+1, 2n+2m↑ω↑
i+ i↑1) for 1 ↭ i, j ↭ N with ω1 ↭ N , l(µ) ↭ m

and l(ω) ↭ n+m that consist of unit horizontal and vertical steps in the positive direction
and that do not cross the line y = x↑ 1, see Section 3.2. In order to apply Lemma 4.2, we
first compute the generating function of paths between pairs of starting and ending points.

Lemma 4.3. Let a, b, c ↗ Z and n ↗ N such that a + b is even and the points (a, b) and
(c, 2n+a+b↑c) lie strictly above the line y = x↑1. Then, with the path set-up of Lemma 4.1,
the generating function of paths from (a, b) to (c, 2n+ a+ b↑ c) is given by

ec→a(x
±)↑ ec→b→2(x

±),

where x± = (x1, x
→1
1 , . . . , xn, x→1

n ).

Proof. We use the modified reflection principle from Lemma 4.1 with (a, b, c, d, f) ≃↘ (a, b, c,↑2, 2n+
a+b↑c) for this proof. The generating function of all lattice paths from (a, b) to (c, 2n+a+
b↑ c) with the given step set regardless of whether they cross the line y = x↑1 is ec→a(x±).
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Next, we derive the generating function of all lattice paths from (a, b) to (c, 2n+a+b↑c)
that do cross that line. Those paths touch at least once the line y = x↑2. We take the initial
part of a path from (a, b) to that first intersection point and reflect it in a weight-preserving
way according to the modified reflection principle. This yields paths from (b + 2, a ↑ 2) to
(c, 2n+ a+ b↑ c). The generating function of these paths is ec→b→2(x±), which we need to
subtract from ec→a(x±) to obtain the result. ⊜

In view of the above, the generating function of lattice paths from (µ↑
j↑j+1, 2m↑µ↑

j+j↑1)
to (ω↑

i ↑ i+ 1, 2n+ 2m↑ ω↑
i + i↑ 1) which do not cross the line y = x↑ 1 is given by

eω→
i→µ→

j→i+j(x
±)↑ eω→

i+µ→
j→i→j→2m(x±).

Note the requirement that (ω↑
i ↑ i + 1, 2n + 2m ↑ ω↑

i + i ↑ 1) lies above the line y = x ↑ 1
is equivalent to l(ω) ↭ n +m. Applying the Lindström–Gessel–Viennot Lemma 4.2 finally
yields

spmω/µ(x) = det
1↭i,j↭N

(
eω→

i→µ→
j→i+j(x

±)↑ eω→
i+µ→

j→i→j→2m(x±)
)
,

and this concludes the combinatorial proof of Theorem 2.1 (3a).

4.4. Skew odd orthogonal characters. For the skew odd orthogonal character somω/µ,
we have to compute as before the generating function of families of non-intersecting lattice
paths from (µ↑

j ↑ j+1, 2m↑µ↑
j + j↑ 1) to (ω↑

i ↑ i+1, 2n+2m↑ω↑
i + i↑ 1) for 1 ↭ i, j ↭ N

with ω1 ↭ N , l(µ) ↭ m and l(ω) ↭ n+m that do not cross the line y = x↑1; see Section 3.3.
In this case, however, we have a bigger step set. We allow unit horizontal and vertical steps
in the positive direction and, in addition, diagonal steps (1, 1) on the line y = x which
have weight 1. In order to compute this generating function, we first derive the generating
function of individual paths with a given number k of diagonal steps and then we sum over
all non-negative integers k.

Lemma 4.4. Let k be a positive integer and let {(1, 0), (0, 1), (1, 1)} be the step set such
that diagonal steps are only allowed along the line y = x. Also let a, b, c ↗ Z and n ↗ N
such that a+ b is even and the points (a, b) and (c, 2n+ a+ b↑ c) lie strictly above the line
y = x↑ 1. Then the generating function of lattice paths from (a, b) to (c, 2n+ a+ b↑ c) that
do not cross the line y = x↑ 1 and that have exactly k diagonal steps is

ec→b→k(x
±)↑ ec→b→k→2(x

±),

where x± = (x1, x
→1
1 , . . . , xn, x→1

n ).

Proof. First, we map a path with k diagonal steps to a path which only consists of unit
horizontal and vertical steps as follows. Replace every diagonal step by two vertical steps.
In the process, we keep the terminal part of the path and shift the initial part accordingly.
This is illustrated in Figure 7. We obtain a lattice path from (a+k, b↑k) to (c, 2n+a+b↑c)
that does not cross the line y = x↑ 2k ↑ 1 but intersects the line y = x↑ 2k.

We observe that this mapping is a weight-preserving bijection. For the inverse mapping,
we consider a lattice path from (a + k, b ↑ k) to (c, 2n + a + b ↑ c) not crossing the line
y = x↑ 2k↑ 1 but intersects the line y = x↑ 2k. Since the path goes to (c, 2n+ a+ b↑ c),
there must be a point where the path touches the line y = x ↑ 2k and continues with at
least two vertical steps. We take the rightmost of such points, replace the first two vertical
steps by a diagonal step and shift the initial part of the path by (↑1, 1). We thus obtain a
path from (a+ k↑ 1, b↑ k+1) to (c, 2n+ a+ b↑ c) not crossing the line y = x↑ 2k+1 but
intersecting the line y = x ↑ 2k + 2. As before, there is a point where the path intersects
with the line y = x ↑ 2k + 2 and continues with at least two vertical step. We iteratively
repeat the step of replacing two vertical steps by a diagonal step at the rightmost occurrence
and shifting the initial part of the path by (↑1, 1) until we have got a path that starts at
(a, b) and has k diagonal steps.

With this weight-preserving bijection in mind, the statement in the theorem follows by
applying twice the modified reflection principle from Lemma 4.1 as follows.
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P

y = x↑ 1

P ↑

y = x↑ 1

y = x↑ 2k

Figure 7. Situation in Lemma 4.4 when replacing diagonal steps by ver-
tical steps of length 2.

To compute the generating function of paths from (a + k, b ↑ k) to (c, 2n + a + b ↑ c)
that intersect the line y = x ↑ 2k, we reflect (a + k, b ↑ k) along y = x ↑ 2k, which yields
(b+ k, a↑ k). Hence, the generating function is ec→b→k(x±).

From the latter generating function, we have to subtract the generating function of paths
that cross the line y = x ↑ 2k ↑ 1; note that such paths always have to intersect the line
y = x↑2k because of the end point (c, 2n+a+b↑c). Paths that cross the line y = x↑2k↑1
definitely intersect the line y = x ↑ 2k ↑ 2. Reflecting (a + k, b ↑ k) along y = x ↑ 2k ↑ 2
gives (b+ k+ 2, a↑ k↑ 2), which implies that the generating function of paths crossing the
line y = x↑ 2k ↑ 1 is ec→b→k→2(x±). This concludes the proof of the lemma. ⊜

The generating function of paths from (a, b) to (c, 2n+ a+ b↑ c) without diagonal steps
is ec→a(x±) ↑ ec→b→2(x±), which follows from Lemma 4.3. Next we sum the generating
functions for paths with exactly k diagonal steps for all non-negative k. This sum turns out
to be a telescoping sum which reduces to a sum of two terms after cancellation:
(
ec→a(x

±)↑ ec→b→2(x
±)

)
+

∑

k↬1

(
ec→b→k(x

±)↑ ec→b→k→2(x
±)

)
= ec→a(x

±) + ec→b→1(x
±).

This leaves us with the following.

Corollary 4.5. Let a, b, c ↗ Z and n ↗ N such that a + b is even and the points (a, b) and
(c, 2n+a+ b↑ c) lie strictly above the line y = x↑1. Then the generating function of lattice
paths from (a, b) to (c, 2n+ a+ b↑ c) with step set {(1, 0), (0, 1), (1, 1)} that do not cross the
line y = x↑ 1 and where diagonal steps are only allowed on the line y = x is

ec→a(x
±) + ec→b→1(x

±),

where x± = (x1, x
→1
1 , . . . , xn, x→1

n ).

By setting a = µ↑
j ↑ j + 1, b = 2m ↑ µ↑

j + j ↑ 1 and c = ω↑
i ↑ i + 1 in Corollary 4.5 and

applying the Lindström–Gessel–Viennot Lemma (Lemma 4.2), we finally obtain

somω/µ(x) = det
1↭i,j↭N

(
eω→

i→µ→
j→i+j(x

±) + eω→
i+µ→

j→i→j→2m+1(x
±)

)
,

and this concludes the combinatorial proof of Theorem 2.1 (3b).
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4.5. Skew even orthogonal characters. Recall that in the case of skew even orthogonal
characters, we have to compute the generating function of strongly non-intersecting lattice
paths from (µ↑

j ↑ j+1, 2m↑µ↑
j + j↑ 1) to (ω↑

i ↑ i+1, 2n+2m↑ω↑
i + i↑ 1) for 1 ↭ i, j ↭ N

with ω1 ↭ N , l(µ) ↭ m and l(ω) ↭ n +m that do not cross the line y = x ↑ 1 and where
a certain pattern that corresponds to the m-even orthogonal condition is not allowed; see
Section 3.4. The step set is {(1, 0), (0, 1), (2, 0)}, where the horizontal steps (2, 0), called
o-horizontal steps, are only allowed to start at points on the line y = x+2 (and thus end on
the line y = x). The o-horizontal steps are equipped with the weight 1 and the unit steps
have weights according to the standard e-labelling.

We compute the generating function of such paths in Corollary 4.7 in a similar manner to
the previous section. However, we also need to deal with the avoidance of the patterns that
take care of the m-even orthogonal condition, that is, with trapped positions. It turns out
that this combines nicely with the application of the Lindström–Gessel–Viennot Lemma 4.2.
Namely, when applying the lemma to the generating functions of paths from Corollary 4.7, we
may have pairs of paths that are weakly non-intersecting but not strongly non-intersecting.
With our step set such intersections may only occur when o-horizontal steps intersect with
two unit vertical steps. Therefore, we present a sign-reversing involution that shows that
families of lattice paths with such intersections and with trapped positions indeed cancel
after applying the Lindström–Gessel–Viennot Lemma 4.2.

Lemma 4.6. Let k be a positive integer and let {(1, 0), (0, 1), (2, 0)} be the step set such
that o-horizontal steps are only allowed to end on the line y = x. Also let a, b, c ↗ Z and
n ↗ N such that a + b is even and (a, b) and (c, 2n + a + b ↑ c) lie strictly above the line
y = x↑ 1. Then the generating function of lattice paths from (a, b) to (c, 2n+ a+ b↑ c) that
do not cross the line y = x↑ 1 and that have exactly k o-horizontal steps is

{
ec→b→2k+2(x±)↑ ec→b→2k→2(x±) if b↑ a ↬ 2,

ec→a→2k(x±)↑ ec→b→2k→2(x±) otherwise,

where x± = (x1, x
→1
1 , . . . , xn, x→1

n ).

Proof. We proceed in a way similar to the proof of Lemma 4.4. First, we replace every
o-horizontal step by a double vertical step whilst keeping the terminal part of the path but
shifting the initial part accordingly. See Figure 8 for an illustration. This results in a path
from (a + 2k, b ↑ 2k) to (c, 2n + a + b ↑ c) that intersects the line y = x ↑ 4k + 2 but that
does not cross the line y = x↑ 4k ↑ 1.

This mapping is again a weight-preserving bijection. We continue by using the modified
reflection principle in Lemma 4.1.

In order to compute the generating function of paths from (a+2k, b↑2k) to (c, 2n+a+b↑c)
that intersect the line y = x ↑ 4k + 2, we have to distinguish two cases. If (a + 2k, b ↑ 2k)
already lies below y = x ↑ 4k + 2, that is, if b ↑ a = 0, then the generating function is
simply ec→a→2k(x±). Otherwise, we reflect (a+ 2k, b↑ 2k) along y = x↑ 4k + 2 and obtain
(b+ 2k ↑ 2, a↑ 2k + 2). Thus, the generating function of these paths is ec→b→2k+2(x±).

Lattice paths from (a+2k, b↑2k) to (c, 2n+a+ b↑ c) which cross the line y = x↑4k↑1
touch also the line y = x ↑ 4k ↑ 2. Reflecting (a + 2k, b ↑ 2k) along y = x ↑ 4k ↑ 2 gives
(b + 2k + 2, a ↑ 2k ↑ 2), and thus the generating function of these paths is ec→b→2k→2(x±).
This completes the proof. ⊜

Using Lemma 4.3, we know that the generating function of lattice paths from (a, b) to
(c, 2n + a + b ↑ c) that do not go below the line y = x ↑ 1 and have no o-horizontal steps
is ec→a(x±)↑ ec→b→2(x±). By summing over all possible numbers of o-horizontal steps, we
finally obtain in the case b↑ a ↬ 2:

(
ec→a(x

±)↑ ec→b→2(x
±)

)
+

∑

k↬1

(
ec→b→2k+2(x

±)↑ ec→b→2k→2(x
±)

)
= ec→a(x

±) + ec→b(x
±).
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P

y = x↑ 1

P ↑

y = x↑ 1

y = x↑ 4k + 2

Figure 8. Situation in Lemma 4.6 when replacing o-horizontal steps by
vertical steps of length 2.

On the other hand, if b↑ a = 0, we obtain

(
ec→a(x

±)↑ ec→a→2(x
±)

)
+

∑

k↬1

(
ec→a→2k(x

±)↑ ec→a→2k→2(x
±)

)
= ec→a(x

±).

Corollary 4.7. Let a, b, c ↗ Z and n ↗ N such that a + b is even and the points (a, b) and
(c, 2n+a+ b↑ c) lie strictly above the line y = x↑1. Then the generating function of lattice
paths from (a, b) to (c, 2n+ a+ b↑ c) with step set {(1, 0), (0, 1), (2, 0)} that do not cross the
line y = x↑ 1 and where o-horizontal steps are only allowed to end on the line y = x is

{
ec→a(x±) if b↑ a = 0,

ec→a(x±) + ec→b(x±) if b↑ a ↬ 2,

where x = (x1, x
→1
1 , . . . , xn, x→1

n ).
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We now apply the Lindström–Gessel–Viennot Lemma 4.2 to all lattice paths from (µ↑
j ↑

j + 1, 2m↑ µ↑
j + j ↑ 1) to (ω↑

i ↑ i+ 1, 2n+ 2m↑ ω↑
i + i↑ 1) for 1 ↭ i, j ↭ N with ω1 ↭ N ,

l(µ) ↭ m, l(ω) ↭ n + m and step set {(1, 0), (0, 1), (2, 0)} such that the paths weakly stay
above the line y = x ↑ 1 and o-horizontal steps are only allowed to end on the line y = x.
By Corollary 4.7 this gives

(7)
1

2[m=l(µ)]
det

1↭i,j↭N

(
eω→

i→µ→
j→i+j(x

±) + eω→
i+µ→

j→i→j→2m+2(x
±)

)
.

Note that the prefactor 1
2 takes care of the case m = l(µ) because then the first column

of the underlying matrix in the previous determinant is (2eω→
1→µ→

1
(x±), 2eω→

2→µ→
1→1(x

±), . . . ,

2eω→
N→µ→

1→N+1(x
±))↘.

To complete the proof, we want to show that (7) indeed represents a formula for omω/µ(x).
This is done by a sign-reversing involution. First, we recall that the Lindström–Gessel–
Viennot Lemma 4.2 (7) yields a signed enumeration of weakly non-intersecting lattice paths
where o-horizontal steps might intersect with vertical steps. Figure 9 shows an example of
lattice paths with such intersections. On the other hand, there might still be trapped posi-
tions. The sign-reversing involution will transform an intersection into a trapped position,
or vice versa.

Figure 9. Weakly non-intersecting lattice paths that are enumerated by
the Lindström–Gessel–Viennot Lemma.

The intersections between o-horizontal steps and a pair of unit vertical steps only occur
along the line y = x+1. Consider such an intersection and assume it is at the point (d, d+1).
That means we have an o-horizontal step (d ↑ 1, d + 1) ↘ (d + 1, d + 1) in one path, and
two unit vertical steps (d, d) ↘ (d, d + 1) ↘ (d, d + 2) in the other path. We perform
the following local changes to the family of lattice paths along the line y + x = 2d + 1 as
indicated in Figure 10: First we resolve the crossing by replacing it by the following two
turns (d, d) ↘ (d+ 1, d) ↘ (d+ 1, d+ 1) and (d↑ 1, d+ 1) ↘ (d, d+ 1) ↘ (d, d+ 2), which
will then appear in di!erent paths. Note that this changes the sign of the permutation,
however, it does not change the weight. Then we look for the unoccupied point (x0, y0) on
the line y+ x = 2d+1 that is above the line y = x↑ 1 and has minimal y0 ↑ x0. This point
is unique and between that point and the line y = x↑ 1 there is a series of left turns along
the line y + x = 2d+ 1. We take the left turn (x0, y0 ↑ 1) ↘ (x0 + 1, y0 ↑ 1) ↘ (x0 + 1, y0)
and replace it by (x0, y0 ↑ 1) ↘ (x0, y0) ↘ (x0 + 1, y0).

Note that this local transformation only changes the sign of the weight. In addition,
we see that the resulting constellations such as on the right of Figure 10 are exactly the
trapped positions that cannot occur in the lattice path interpretation of skew (n,m)-even
orthogonal tableaux due to the m-even orthogonal condition. This observation leads us to
the announced sign-reversing involution.

Consider the families of lattice paths whose signed enumeration is given by (7). If it
contains a crossing of an o-horizontal step with two vertical steps or if it contains a trapped
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⇐↘

Figure 10. Local changes between lattice paths with an intersection of an
o-horizontal step with two vertical steps (left) and with a trapped position
(right).

position then choose a canonical occurrence as follows. Both the crossings and the trapped
position are located on lines y + x = 2d + 1 for integers d. We consider the crossing
or the trapped position for which the d is minimal. Then we perform the local changes
as exemplified in Figure 10. This mapping changes the sign of the weight and is readily
invertible. We are left with families of lattice paths that have neither crossings nor trapped
positions, which are exactly those that correspond to skew (n,m)-even orthogonal tableaux.
This finally proves that

omω/µ(x) =
1

2[m=l(µ)]
det

1↭i,j↭N

(
eω→

i→µ→
j→i+j(x

±) + eω→
i+µ→

j→i→j→2m+2(x
±)

)
,

and concludes the combinatorial proof of Theorem 2.1 (3c).

5. Proofs of the Jacobi–Trudi formulae

The purpose of this section is to derive ordinary Jacobi–Trudi-type formulae for the char-
acters spmω/µ, so

m
ω/µ and omω/µ. We achieve this by an algebraic approach using complementary

cofactors, which is one of the standard ways to prove the equivalence of the Jacobi–Trudi
formula for Schur functions and its dual. These computations all work in the ring of sym-
metric functions on a countable alphabet X = (x1, x2, x3, . . . ), and so in this section we
work in such generality. The formulae for the actual characters are obtained by substituting
x± = (x1, x

→1
1 , . . . , xn, x→1

n ) for X.
Given an N↔N matrix A and a pair of sequences ς, φ of the same length, we let Aς

φ denote
the matrix obtained by extracting rows and columns with indices from ς and φ respectively
in the given order. The basic lemma we need is the following [6, Lemma A.42].

Lemma 5.1. Let A and B be N ↔ N mutually inverse matrices and let (ς,ς↑) and (φ, φ ↑)
be pairs of complementary subsets of {1, . . . , N} such that |ς| = |φ |. Then

det(Aς
φ ) = ↼ det(A) det

(
Bφ →

ς→
)
,

where ↼ is the product of the signs of the permutations formed by the words ςς↑ and φφ ↑.

Recall that the matrices
(
ei→j(X)

)
1↭i,j↭r

and
(
(↑1)i→jhi→j(X)

)
1↭i,j↭r

,

are lower-unitriangular, i.e., lower-triangular with diagonal entries all 1, and where as before
X = (x1, x2, x3, . . . ). Moreover, thanks to the relationship [20, p. 21]

(8)
r∑

k=0

(↑1)ker→k(X)hk(X) = ϱr,0

where ϱa,b is the usual Kronecker delta, they are mutually inverse. We actually require the
following slightly more general pair of matrices.

Lemma 5.2. For m,N ↗ N, k ↗ Z and a parameter t the matrices

E(N,m, k; t) :=
(
ei→j(X) + [j < m+ ⇒k/2⇑] tei+j→2m→k(X)

)
1↭i,j↭N
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and

H(N,m, k; t) :=
(
(↑1)i→j

(
hi→j(X)↑ [i > m+ ⇓k/2⇔] (↑1)kth2m→i→j+k(X)

))
1↭i,j↭N

are lower-unitriangular and mutually inverse.

Proof. The (i, j)-th entry in the product of the two matrices is

N∑

↼=0

(↑1)↼→jei→↼(X)h↼→j(X) +

m+≃k/2⇐→1∑

↼=0

(↑1)↼→jtei+↼→2m→k(X)h↼→j(X)

↑

N∑

↼=m+⇒k/2⇑+1

(↑1)↼→j+ktei→↼(X)h2m→↼→j+k(X),

where we assume that i ↬ j since the lower-triangularity is clear from the definition. The
first sum in this expression simplifies to

N∑

↼=0

(↑1)↼→jei→↼(X)h↼→j(X) =
i→j∑

↼=0

(↑1)↼ei→j→↼(X)h↼(X) = ϱi→j,0,

by (8). For the remaining sums, we obtain by substituting ↽ ≃↘ m ↑ ↽ + ⇒k/2⇑ ↑ 1 in the
first sum and ↽ ≃↘ m+ ↽+ ⇓k/2⇔+ 1 in the second sum

m+≃k/2⇐→1∑

↼=0

(↑1)↼→jtei+↼→2m→k(X)h↼→j(X)↑
N∑

↼=m+⇒k/2⇑+1

(↑1)↼→j+ktei→↼(X)h2m→↼→j+k(X)

=

m+≃k/2⇐→1∑

↼=0

(↑1)↼→j+≃k/2⇐+m+1tei→↼→m→⇒k/2⇑→1(X)hm+≃k/2⇐→↼→j→1(X)

↑

N→m→⇒k/2⇑→1∑

↼=0

(↑1)↼→j+≃k/2⇐+m+1tei→↼→m→⇒k/2⇑→1(X)hm+≃k/2⇐→↼→j→1(X)

= 0,

where the last equality follows since the summands are equal and vanish unless the index
satisfies ↽ ↭ min{m+ ⇒k/2⇑ ↑ 1, N ↑m↑ ⇓k/2⇔ ↑ 1}. ⊜

Recall from [20, p. 3] that for a partition ω → (NM ) the sets

(9) {ωi +M ↑ i+ 1 : 1 ↭ i ↭ M} and {M + j ↑ ω↑
j : 1 ↭ j ↭ N}

form a disjoint union of {1, . . . , N + M}. This implies that for partitions µ → ω → (NM )
the sequences

(ς,ς↑) := (ω↑
1 +N, . . . ,ω↑

N + 1, N ↑ ω1 + 1, . . . , N +M ↑ ωM )

(φ, φ ↑) := (µ↑
1 +N, . . . , µ↑

N + 1, N ↑ µ1 + 1, . . . , N +M ↑ µM ).

form permutations of {1, . . . , N+M}. Applying Lemma 5.1 with these choices of (ς,ς↑) and
(φ, φ ↑), A = E(N +M,m, k; t) and B = H(N +M,m, k; t) we obtain that the determinants

(10a) det
1↭i,j↭N

(
eω→

i→µ→
j→i+j(X)+ [N +µ↑

j ↑ j+1 < m+ ⇒k/2⇑]teω→
i+µ→

j→i→j+2(N→m+1)→k(X)
)

and

(10b) det
1↭i,j↭M

(
hωi→µj→i+j(X)↑[N↑µj+j > m+⇓k/2⇔](↑1)kthωi+µj→i→j+2(m→N)+k(X)

)
,

are equal. Note that in this case the product of the signs of the permutations is ↼ =
(↑1)|ω|+|µ|, which is a consequence of the proof that (9) form a disjoint union of {1, . . . , N +
M}. If one sets t = 0 in (10) then

det
1↭i,j↭N

(
eω→

i→µ→
j→i+j(X)

)
= det

1↭i,j↭M

(
hωi→µj→i+j(X)

)
,
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showing that the Jacobi–Trudi formula and its dual are equal. The dual forms of our Jacobi–
Trudi formulae for the skew characters spmω/µ, so

m
ω/µ and omω/µ are similarly contained in (10).

We can now prove Theorem 2.2.

Proof of Theorem 2.2. Fix partitions µ → ω such that l(µ) ↭ m, l(ω) ↭ n+m and ω → (NM ).
For the symplectic case we set (m, k, t) ≃↘ (N +m, 2,↑1) in (10), which gives

det
1↭i,j↭N

(
eω→

i→µ→
j→i+j(X)↑ [µ↑

j ↑ j < m]eω→
i+µ→

j→i→j→2m(X)
)

= det
1↭i,j↭M

(
hωi→µj→i+j(X) + [j ↑ µj > m+ 1]hωi+µj→i→j+2m+2(X)

)
.

Since µ↑
j ↭ m for 1 ↭ j ↭ N we always have two terms in each entry of the determinant on

the left. After replacing X by (x1, x
→1
1 , . . . , xn, x→1

n ) it is equal to spmω/µ by (3a). Further,
m + µj ↑ j + 1 < 0 is only true for j > m + 1, so the determinant on the right-hand side
becomes (4a) with N ≃↘ M and the same variable substitution.

Instead taking (m, k, t) ≃↘ (N +m, 1, 1) in (10) produces

det
1↭i,j↭N

(
eω→

i→µ→
j→i+j(X) + [µ↑

j ↑ j < m]eω→
i+µ→

j→i→j→2m+1(X)
)

= det
1↭i,j↭M

(
hωi→µj→i+j(X) + [j ↑ µj > m]hωi+µj→i→j+2m+1(X)

)
.

By the same arguments as above the left-hand side is equal to somω/µ and the right-hand side

to (4b) with N ≃↘ M , after appropriate substitution of variables.
Finally, choosing (m, k, t) ≃↘ (N +m, 0, 1) in (10) yields

det
1↭i,j↭N

(
eω→

i→µ→
j→i+j(X) + [µ↑

j ↑ j < m↑ 1]eω→
i+µ→

j→i→j→2m+2(X)
)

= det
1↭i,j↭M

(
hωi→µj→i+j(X)↑ [j ↑ µj > m]hωi+µj→i→j+2m(X)

)
.

The right-hand clearly gives (4c) with N ≃↘ M . If m = l(µ) = µ↑
1 then the (1, j)-th entry of

the determinant on the left-hand side is equal to eω→
i→µ→

j→i+j(X) which is half of the (1, j)-th

entry of (3c). Hence by factoring out 1
2 from the first column, the left-hand side of the above

equation is equal to (3c). ⊜

In [5], Fulmek and Krattenthaler derive the Jacobi–Trudi formulae for spω and oω using
Gessel and Viennot’s technique of dual paths, which is, in essence, a combinatorial realisation
of the approach of this section.

6. Combinatorial proofs of the Giambelli formulae

Fulmek and Krattenthaler [5] provided combinatorial proofs of the Giambelli identities
for ordinary symplectic and odd orthogonal characters based on Stembridge’s proof of the
Giambelli identity for ordinary Schur functions [22]. We adapt their ideas in order to prove
combinatorially the respective skew Giambelli identities analogous to formula (5). By means
of a sign-reversing involution similar to the one in Section 4.5, we are also able to provide a
combinatorial proof of the Giambelli identity for skew even orthogonal characters.

In Section 3, we obtained the lattice path models (families of (n,m)-symplectic/odd
orthogonal/even orthogonal paths) that we used to prove the dual Jacobi–Trudi formulae
by reading o! the corresponding tableaux columnwise. Ordinary Giambelli-type identities
express characters of arbitrary shapes as determinants whose entries are characters of hook
shapes. That observation suggests to read o! tableaux hookwise.

Consider the Young diagram of shape ω/µ for two partitions µ → ω. The hook at position
(i, j) consists of the cells

• (i, j) ↖ {(i, k) : j + 1 ↭ k ↭ ωi} ↖ {(k, j) : i+ 1 ↭ k ↭ ω↑
j} if (i, j) ↗ ω/µ and

• {(i, k) : µi + 1 ↭ k ↭ ωi} ↖ {(k, j) : µ↑
j + 1 ↭ k ↭ ω↑

j} if (i, j) /↗ ω/µ.
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In other words, the hook at a position (i, j) is the union of the cell (i, j) (the corner of the
hook) together with the cells to the right of it in the i-th row (the arm of the hook) and
with the cells below of it in the j-th column (the leg of the hook) provided that (i, j) is part
of the Young diagram of shape ω/µ. If (i, j) is not an element of the skew shape ω/µ, that
is, (i, j) /↗ ω/µ, then the hook is not connected and we call it broken. Figure 11 illustrates
the two di!erent types of hooks.

• A A A
L
L

• A A A

L
L
L

Figure 11. A Young diagram of shape (8, 6, 6, 6, 4, 3)/(3, 3, 2, 1) with the
hook at position (4, 3) (left) and with the broken hook at position (2, 2)
(right) marked. The arms of the hooks are shaded blue with inscribed A’s
and the legs shaded red with inscribed L’s.

Next, we introduce the set-up common to all three considered models for the lattice paths
that we obtain by reading o! tableaux hookwise; for the specific details of each model see
the following subsections. Let ω = (ε1, . . . ,εp|ϑ1, . . . ,ϑp) and µ = (ϖ1, . . . , ϖq|ϱ1, . . . , ϱq) be
two partitions µ → ω with l(µ) ↭ m and l(ω) ↭ n+m. Define Ai := (↑εi, 2n+2m↑ 1) and
Bi := (ϑi+1, 2n+2m↑ϑi↑1) for 1 ↭ i ↭ p and Ci := (↑ϖi, 2m) andDi := (ϱi+1, 2m↑ϱi↑1)
for 1 ↭ i ↭ q.

We will associate lattice paths corresponding to the principal hooks of the skew tableaux:
the i-th principal hook is the hook at the diagonal position (i, i). For q + 1 ↭ i ↭ p, the
paths from Ai to Bi correspond to the i-th principal hook read from right to left and from
top to bottom. For 1 ↭ i ↭ q, the i-th principal hook is broken. The paths from Ai to Ci

correspond to the arm of the i-th principal hook read from right to left, whereas the paths
from Di to Bi correspond to the leg of the i-th principal hook read from top to bottom.

The lattice paths fulfil the following properties:

• In the region {(x, y) ↗ Z2 : x ↭ 0}, lattice paths stay weakly above the line x = 2m
and horizontal unit steps (i, 2m + j) ↘ (i + 1, 2m + j) get the weight x→1

(j+2)/2 if j
is even and x(j+1)/2 if j is odd.

• In the region {(x, y) ↗ Z2 : x ↬ 0}, lattice paths stay weakly above the lines
y = ↑x+ 2m and y = x↑ 1 and horizontal unit steps (i, 2m+ j) ↘ (i+ 1, 2m+ j)
are assigned the weight x→1

(i+j+2)/2 if i+ j is even and x(i+j+1)/2 if i+ j is odd.

All other steps have weight 1, and the weight of a family of paths is the product of the
weights of all its steps. Note that this set-up constitutes a combined e- and h-labelling: We
have an e-labelling in the region x > 0 for the legs of the hooks and an h-labelling in the
region x ↭ 0 for the arms and the corners of the hooks. The exact lattice path model for
each of the skew characters is specified in the respective section.

A crucial observation will be be the following: For each of the di!erent lattice path
models, the families of p + q lattice paths from {A1, . . . , Ap, D1, . . . , Dq} to {B1, . . . , Bp,
C1, . . . , Cq} are strongly non-intersecting if and only if we have paths from Ai to Ci as
well as from Di to Bi for 1 ↭ i ↭ q and from Ai to Bi for q + 1 ↭ i ↭ p. By applying the
Lindström–Gessel–Viennot Lemma 4.2 and — in the case of skew even orthogonal characters
— by a sign-reversing involution, we will show that

(11) (↑1)q det




(P(Ai ↘ Bj))1↭i,j↭p (P(Ai ↘ Cj))1↭i↭p,

1↭j↭q

(P(Di ↘ Bj))1↭i↭q,
1↭j↭p

(P(Di ↘ Cj))1↭i,j↭q







88 S. P. ALBION, I. FISCHER, H. HÖNGESBERG, AND F. SCHREIER-AIGNER

yields the respective Giambelli-type formulae, where (↑1)q is the sign of the permutation
(

1 · · · q q + 1 · · · p p+ 1 · · · p+ q
p+ 1 · · · p+ q q + 1 · · · p 1 · · · q

)
.

The sign can be readily computed since the permutation is equal to

(1 p+ 1)(2 p+ 2) · · · (q p+ q)

in cycle notation, which is a product of exactly q transpositions.
In the following three subsections, we prove Theorem 2.3.

6.1. Proof of the skew symplectic Giambelli identity (6a). A skew (n,m)-symplectic
tableau is encoded by non-intersecting lattice paths from Ai to Ci and from Di to Bi for
1 ↭ i ↭ q as well as from Ai to Bi for q+1 ↭ i ↭ p with step set {(1, 0), (0,↑1)} in the region
x ↭ 0 and step set {(1, 0), (0, 1)} in the region x ↬ 0 that stay all weakly above the line
y = x↑ 1; see Figure 12 for an example. Given a skew shape ω/µ, the generating function

1 3 4

1 2 3

1 2 2 3

2 3 4 4

3

A1

4

3

1

C1

A2

3

2

1

C2

A3

3

2

4

B3

A4

4

B4

D2

2

3

B2

D1

1

2 3

B1

(0, 0)

Figure 12. A skew (4, 2)-symplectic tableau of shape (5, 3, 1, 0|4, 2, 1, 0)/
(2, 0|1, 0) (left) and its associated family of non-intersecting lattice paths
(right).

spmω/µ(x) is thus the sum over all families of p+q strongly non-intersecting lattice paths with

starting points {A1, . . . , Ap, D1, . . . , Dq} and endpoints {B1, . . . , Bp, C1, . . . , Cq} such that
Ai is connected to Ci and Di to Bi for 1 ↭ i ↭ q as well as having Ai connected to Bi for
q+1 ↭ i ↭ p. Applying the Lindström–Gessel–Viennot Lemma 4.2 implies that spmω/µ(x) is

given by (11). There are clearly no lattice paths from any Di to Cj , hence P(Di ↘ Cj) =
0. Moreover, the paths from Ai to Cj correspond to complete homogeneous symmetric
functions, that is, P(Ai ↘ Cj) = hεi→ϖj (x

±) = spm(εi)/(ϖj)
(x). Regarding the paths from

Di to Bj , we have to keep in mind that no lattice paths are allowed to touch or cross the
line y = x↑ 2. Hence, Lemma 4.3 implies that P(Di ↘ Bj) = eϑj→ϱi(x

±)↑ eϑj+ϱi→2m(x±).
Finally, the paths from Ai to Bj correspond to skew m-symplectic characters indexed by
hooks, so P(Ai ↘ Bj) = spm(εi|ϑj)

.

6.2. Proof of the skew odd orthogonal Giambelli identity (6b). In the case of skew
m-odd orthogonal characters somω/µ, we consider similar lattice paths as in the previous

section with the only addition that we also allow diagonal steps (1, 1) along the line y = x.
These steps correspond to the entries î in the (m+ i)-th row of the first column of the skew
(n,m)-odd orthogonal tableau as before and are equipped with the weight 1. See Figure 13
for an example. As seen before, it su#ces to compute the determinantal expression (11)
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1 1 2
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1 2 3
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1 1
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2̂

4

B1
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Figure 13. A skew (4, 3)-odd orthogonal tableau of shape (4, 2, 1|5, 3, 2)/
(1, 0|2, 0) (left) and its associated family of non-intersecting lattice paths
(right).

in our setting. The expressions for P(Di ↘ Cj) and P(Ai ↘ Cj) are the same as in the
symplectic case, so P(Di ↘ Cj) = 0 and P(Ai ↘ Cj) = hεi→ϖj (x

±) = som(εi)/(ϖj)
(x).

The entry P(Di ↘ Bj) = eϑj→ϱi(x
±) + eϑj+ϱi→2m+1(x±) = som

(1ωj+1)/(1εi+1)
(x) is a simple

consequence of Corollary 4.5, and P(Ai ↘ Bj) corresponds to the skew m-odd orthogonal
character som(εi|ϑj)

(x).

6.3. Proof of the skew even orthogonal Giambelli identity (6c). Now, we consider
lattice paths in our general set-up with step set {(1, 0), (0,↑1)} in the region x ↭ 0 and step
set {(1, 0), (0, 1), (2, 0)} in the region x ↬ 0 such that all lattice paths stay weakly above
the line y = x ↑ 1 and o-horizontal steps are only allowed if they end on the line y = x.
As before, we interpret the entries of a skew (n,m)-even orthogonal tableau of shape ω/µ
hookwise as lattice paths. Yet again, consecutive entries qi and î in the first column are
interpreted as an o-horizontal step with weight 1 drawn as an arch. As a result, we obtain
a family of p + q strongly non-intersecting lattice paths, where ω = (ε1, . . . ,εp|ϑ1, . . . ,ϑp)
and µ = (ϖ1, . . . , ϖq|ϱ1, . . . , ϱq). See Figure 14 for an example. However, not every family
of non-intersecting lattice paths in our set-up corresponds to a skew (n,m)-even orthogonal
tableau. In fact, the m-even orthogonal condition implies that the configurations illustrated
in Figure 15 cannot occur. To be more precise, assume we have a skew (n,m)-even orthogonal
tableau with entry i in the first column of the (m+ i)-th row and i also appears in the j-th
column of that row. Then the entry in the same column one row above is supposed to be
i. If that entry at position (m + i ↑ 1, j) is not i, then we obtain one of the three cases in
Figure 15; namely (a) if j < m+ i, (b) if j = m+ i and (c) if j > m+ i. In particular, the
vacancies indicated by the red points imply that the families of lattice paths are not obtained
by skew (n,m)-even orthogonal tableaux. Note that case (a) is equivalent to the case of the
trapped position in Section 3.4. The reason for the other cases is that the trapped position
moves from a region with e-labelling to a region with h-labelling.

The corners of the nested left turns in Figure 15 are each lying on the line y + x =
2m + 2i ↑ 1; we say that 2m + 2i ↑ 1 is the distance between the origin and the trapped
positions.
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Figure 14. A skew (5, 2)-even orthogonal tableau of shape (4, 3, 2, 0|
6, 4, 2, 1)/(3, 0|1, 0) (left) and its associated family of non-intersecting lat-
tice paths (right).

(a) (b) (c)

Figure 15. Local configurations of trapped positions at (m + i ↑ 1, j) if
(a) j < m + i, (b) j = m + 1 or (c) j > m + 1. The large points indicate
vacancies.

As in the cases before, we want to apply the Lindström–Gessel–Viennot Lemma 4.2. The
evaluation of the determinant (11) in the current set-up yields

(↑1)q

2[m=l(µ)⇓m ↓=0]
det




(om(εi|ϑj)

(x))1↭i,j↭p (hεi→ϖj (x
±))1↭i↭p,

1↭j↭q

(eϑj→ϱi(x
±) + eϑj+ϱi→2m+2(x±))1↭i↭q,

1↭j↭p
0



 ,

which, by rewriting the entries in terms of the even orthogonal characters, is equal to (6c).
However, a priori this is not the generating function of skew (n,m)-even orthogonal tableaux
since it also enumerates the trapped positions in Figure 15 as well as families of weakly
but not strongly non-intersecting lattice paths with intersections of o-horizontal steps with
vertical steps along the line y = x+ 1. We provide a sign-reversing involution under which
these families of lattice paths cancel out, ultimately showing that the above is indeed equal
to omω/µ(x).

Consider the families of lattice paths enumerated by (6c) as described above. Assume
a given family of lattice paths has intersections involving o-horizontal steps or trapped
positions that we have specified above. If an intersection lies on the line y + x = d, then
we say that d is the distance between the origin and that intersection. We take the unique
trapped position or intersection with the smallest distance to the origin and perform the
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corresponding local changes shown in Figure 16; the rest of the paths are left unchanged.
Thus, the weight of the family of lattice paths is exactly changed by a factor of ↑1.

⇐↘

(a)

⇐↘

(b)

⇐↘

(c)

Figure 16. Local changes on the families of lattice paths enumerated by
(6c).

This sign-reversing involution cancels all families of lattice paths that contain one of the
trapped positions or an intersection of an o-horizontal step with two vertical steps. We are
left with exactly those families of strongly non-intersecting lattice paths that correspond to
skew (n,m)-even orthogonal tableaux. This completes the proof of Theorem 2.3.

Acknowledgement. We thank Ole Warnaar for useful comments on an earlier version of
this paper.
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