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Abstract. We give a short, self-contained evaluation of the Andrews–Burge
determinant (Pacific J. Math. 158 (1994), 1–14).

1. Introduction

In [9, Theorem 1], Andrews and Burge proved a determinant evaluation equiv-
alent to

(1.1) det
0≤i,j≤n−1

((

x+ i+ j

2i− j

)

+

(

y + i+ j

2i− j

))

= (−1)χ(n≡3 mod 4)2(
n

2)+1

×

n−1
∏

j=1

(

x+y
2 + j + 1

)

⌊(j+1)/2⌋

(

−
x+y
2 − 3n+ j + 3

2

)

⌊j/2⌋

(j)j
,

where the shifted factorial (a)k is given by (a)k := a(a + 1) · · · (a + k − 1),
k ≥ 1, (a)0 := 1, and where χ(A)=1 if A is true and χ(A)=0 otherwise. This
determinant identity arose in connection with the enumeration of symmetry
classes of plane partitions. The known proofs [9, 10] of (1.1) require that
one knows (1.1) to hold for x = y. Indeed, the latter was first established
by Mills, Robbins and Rumsey [15, p. 53], in turn using another determinant
evaluation, due to Andrews [3], whose proof is rather complicated. In the
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meantime, simpler proofs of the x = y special case of (1.1) were found by
Andrews [7], Andrews and Stanton [8], and Petkovšek and Wilf [16]. In this
note we describe a new, concise, and self-contained proof of (1.1), see section 3.

In fact, the main purpose of this note is to popularize the method that
I use to prove (1.1) (see section 2 for a description). This method is simple
but powerful. Aside from this note, evidence for this claim can be found e.g.
in [11, 12, 13, 14]. Thus, the method enlarges the not at all abundant collec-
tion of methods for evaluating determinants. In fact, aside from elementary
manipulations by row and column operations, we are just aware of one other
method, namely Andrews’ “favourite” method of evaluating determinants (cf.
[1, 2, 3, 4, 5, 6, 8]), which basically consists of guessing and then proving the
LU-factorization of the matrix in question (i.e., the factorization of the matrix
into a product of a lower triangular times an upper triangular matrix).

We should, however, also point out a limitation of our method. Namely,
in order to be able to apply our method, we need a free parameter occuring in
the determinant. (In (1.1) there are even two, x and y.) Andrews’ method, on
the other hand, might still be applicable if there is no free parameter present.
Still, it is safe to speculate that many more applications of our method are
going to be found in the future.

2. The method

The method that I use to prove (1.1) is as follows. Suppose we have a matrix
(

fij(x)
)

0≤i,j≤n−1
with entries fij(x) which are polynomials in x, and we want

to prove the explicit factorization of det
(

fij(x)
)

as a polynomial in x,

(2.1) det
0≤i,j≤n−1

(

fij(x)
)

= C(n)
∏

l

(x− al(n))
ml(n),

where C(n), al(n),ml(n) are independent of x, and the al(n)’s are pairwise
different for fixed n.

Then, in the first step, for each l we find ml(n) linearly independent linear
combinations of the columns, or of the rows, which vanish for x = al(n). In dif-
ferent, but equivalent terms, we find ml(n) linearly independent vectors in the
kernel of our matrix evaluated at x = al(n), i.e., in the kernel of

(

fij(al(n))
)

,

or of its transpose. That this really guarantees that (x−al(n))
ml(n) is a factor

of the determinant is a fact that might not be well-known enough. Therefore,
for the sake of completeness, we state it as a lemma at the end of this section
and provide a proof for it.

The finding of al(n) linearly independent linear combinations of columns
or rows which vanish for x = al(n) (equivalently, linearly independent vectors
in the kernel of the matrix, or its transpose, evaluated at x = al(n)) can
be done with some skill (and primarily patience) by setting x = al(n) in the
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matrix
(

fij(x)
)

, computing tables for the coefficients of the linear combinations
for n = 1, 2, . . . (by solving the respective systems of linear equations on the
computer), and finally guessing what the general pattern of the coefficients
could be. To prove that the guess is correct, in case of binomial determinants
(such as the one in (1.1)) one has to verify certain binomial identities. But
this is pure routine today, by means of Zeilberger’s algorithm [18, 19].

Next, in the second step, one checks the degrees of both sides of (2.1)
as polynomials in x. If it should happen that the degree of det

(

fij(x)
)

is not
larger than

∑

l ml(n), the degree of the right-hand side, then it follows by what
we did in the first step that the determinant det

(

fij(x)
)

has indeed the form
of the right-hand side of (2.1), where C(n) is some unknown constant. This
constant can then be determined in the third step by comparison of coefficients
of a suitable power of x.

Finally, here is the promised lemma, and its proof.

Lemma. Let A = A(x) be a matrix whose entries are polynomials in x, and u
a number. If dimKerA(u) ≥ k, then u is a root of detA(x) of multiplicity at
least k.

Proof. Let v1, v2, . . . , vk be k linearly independent (column) vectors in the
kernel ofA(u). Without loss of generality, we may assume that v1, v2, . . . , vk are
such that the matrix [v1, v2, . . . , vk], formed by gluing the columns v1, v2, . . . , vk
to a matrix, is in column-echelon form. In addition, again without loss of
generality, we may assume that for any i = 1, 2, . . . , k the vector vi is of the
form vi = (0, . . . , 0, 1, . . . )t, i.e., the first i − 1 entries are 0, the i-th entry is
1, and the remaining entries could be anything. (To justify “without loss of
generality” one would possibly have to permute the columns of A.)

Now we consider the matrix Ã = Ã(x), formed by replacing for i =
1, 2, . . . , k the i-th column of A by the column Avi. It is an easy observa-
tion that Ã and A are related by elementary column operations. Therefore,
their determinants are the same. On the other hand, the i-th column of Ã(u)
is A(u)vi = 0, for any i = 1, 2, . . . , k. Hence, each entry of Avi, being a poly-

nomial in x, must be divisible by (x−u). Therefore, in the determinant det Ã,
we may take (x − u) out of the i-th column, i = 1, 2, . . . , k, with the entries
in the remaining determinant still being polynomials in x. This proves that
(x− u)k divides det Ã = detA, and, thus, the lemma. �

3. Proof of (1.1)

As announced in the previous section, the proof consists of three steps. For
convenience, let us denote the determinant in (1.1) by AB(x, y;n), or some-
times just AB(n) for short.
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Step 1. Identification of the factors. We show that the product on the
right-hand side of (1.1),

n−1
∏

j=1

(

x+y
2 + j + 1

)

⌊(j+1)/2⌋

(

−
x+y
2 − 3n+ j + 3

2

)

⌊j/2⌋
,

is indeed a factor of AB(n), in the way that was described in section 2. Let us
first consider just one part of this product,

n−1
∏

j=1

((x+ y)/2 + j + 1)⌊(j+1)/2⌋ .

Let us concentrate on a typical factor (x+ y+2j +2l), 1 ≤ j ≤ n− 1, 1 ≤ l ≤
(j + 1)/2. We claim that for each such factor there is a linear combination of
the columns that vanishes if the factor vanishes. More precisely, we claim that
for any j, l with 1 ≤ j ≤ n− 1, 1 ≤ l ≤ (j + 1)/2 there holds

(3.1)

⌊(j+2l−1)/2⌋
∑

s=2l−1

(j − 2l + 1)

(j − s)

(j + 2l − 2s)s−2l+1

(s− 2l + 1)!

· (column s of AB(−y − 2j − 2l, y;n))

+ (column j of AB(−y − 2j − 2l, y;n)) = 0.

To avoid confusion, for j = 2l− 1 it is understood by convention that the sum
in the first line of (3.1) vanishes.

To establish the claim, we have to check

(3.2)

⌊(j+2l−1)/2⌋
∑

s=2l−1

(j − 2l + 1)

(j − s)

(j + 2l − 2s)s−2l+1

(s− 2l + 1)!

·

((

−y − 2j − 2l + i+ s

2i− s

)

+

(

y + i+ s

2i− s

))

+

((

−y − j − 2l + i

2i− j

)

+

(

y + i+ j

2i− j

))

= 0.

The exceptional case j = 2l − 1 can be treated immediately. By assumption
the sum in the first line of (3.2) vanishes for j = 2l−1, and, by inspection, also
the last line in (3.2) vanishes for j = 2l − 1. So we are left with establishing
(3.2) for l ≤ j/2. In terms of the usual hypergeometric notation

rFs

[

a1, . . . , ar
b1, . . . , bs

; z

]

=
∞
∑

k=0

(a1)k · · · (ar)k
k! (b1)k · · · (bs)k

zk ,
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this means to check

(3.3)
(−1− i− 2j + 2l − y)1+2i−2l

(1 + 2i− 2l)!

× 4F3

[

− 1
2 −

j
2 + l,− j

2 + l,−1− 2i+ 2l, i− 2j − y

−j + 2l,− 1
2 − i

2 − j + l − y
2 ,−

i
2 − j + l − y

2

; 1

]

+
(−1− i+ 4l + y)1+2i−2l

(1 + 2i− 2l)!
4F3

[

− 1
2 −

j
2 + l,− j

2 + l,−1− 2i+ 2l, i+ 2l + y

−j + 2l,− 1
2 − i

2 + 2l + y
2 ,−

i
2 + 2l + y

2

; 1

]

+

((

−y − j − 2l + i

2i− j

)

+

(

y + i+ j

2i− j

))

= 0,

for 1 ≤ j ≤ n−1, 1 ≤ l ≤ j/2. This identity can be proved routinely by means
of Zeilberger’s algorithm [18, 19] and Salvy and Zimmermann’s Maple package
GFUN [17]. However, it happens that a 4F3-summation is already known that
applies to both 4F3-series in (3.3), namely Lemma 1 in [9]. (Here we need the
assumption l ≤ j/2.) Little simplification then establishes (3.3) and hence the

claim. Thus,
∏n−1

j=1 ((x+ y)/2 + j + 1)⌊(j+1)/2⌋ is a factor of AB(n).

Now we prove that

n−1
∏

j=2

(

−(x+ y)/2− 3n+ j +
3

2

)

⌊j/2⌋

is a factor of AB(n). Also here, let us concentrate on a typical factor (x+ y+
6n− 2j− 2l− 1), 2 ≤ j ≤ n− 1, 1 ≤ l ≤ j/2. This time we claim that for each
such factor there is a linear combination of the columns that vanishes if the
factor vanishes. More precisely, we claim that for any j, l with 2 ≤ j ≤ n− 1,
1 ≤ l ≤ j/2 there holds

n−l
∑

s=1

(2n− j − s)j−2l

(n+ l − j)j−2l

(s)n−l−s (3n+ l − 2j − 2)n−l−s

4n−l−s (n− l − s)! (2n− j − 1
2 )n−l−s

· (column s of AB(−y − 6n+ 2j + 2l + 1, y;n)) = 0.

This means to check

n−l
∑

s=1

(2n− j − s)j−2l

(n+ l − j)j−2l

(s)n−l−s (3n+ l − 2j − 2)n−l−s

4n−l−s (n− l − s)! (2n− j − 1
2 )n−l−s

·

((

−y − 6n+ 2j + 2l + 1 + i+ s

2i− s

)

+

(

y + i+ s

2i− s

))

= 0

Converting this into hypergeometric notation and cancelling some factors, we
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see that we have to check

(3.4) (4− i+ 2j + 2l − 6n− y)2i−1

× 5F4

[

1− 2i, 5
2 + j + l − 3n, 2 + j − 2n,

4 + 2j − 4n, 2 + 2l − 2n, 2− i
2 + j + l − 3n−

y
2 ,

1 + l − n, 3 + i+ 2j + 2l − 6n− y
5
2 − i

2 + j + l − 3n−
y
2

; 1

]

= −(3− i+ y)2i−1

× 5F4

[

1− 2i, 5
2 + j + l − 3n, 2 + j − 2n, 1 + l − n, 2 + i+ y

4 + 2j − 4n, 2 + 2l − 2n, 3
2 − i

2 + y
2 , 2−

i
2 + y

2

; 1

]

Again, in view of Zeilberger’s algorithm, this is pure routine. However, also
this identity happens to be already in the literature. It is exactly identity (5.7)
in [8], with a = 3

2 − i+ j + l − 3n− y, x = 3
2 + j + l − 3n, z = 1 + j − 2n,

p = 2i− 1. Thus,
∏n−1

j=2

(

−(x+ y)/2− 3n+ j + 3
2

)

⌊j/2⌋
is a factor of AB(n).

Step 2. Bounding the polynomial degrees. The degree of AB(n) as a poly-
nomial in x is obviously at most

(

n
2

)

. But the degree of the product on the

right-hand side of (1.1) is exactly
(

n
2

)

. Therefore it follows that

(3.5) det
0≤i,j≤n−1

((

x+ i+ j

2i− j

)

+

(

y + i+ j

2i− j

))

= C(n)
n−1
∏

j=1

(

x+y
2 + j + 1

)

⌊(j+1)/2⌋

(

−
x+y
2 − 3n+ j + 3

2

)

⌊j/2⌋
,

with some C(n) independent of x, and, by symmetry, also independent of y.

Step 3. Determining the constant. To compute C(n), on both sides of

(3.5) set y = x and then compare coefficients of x(
n

2). On the right-hand
side the coefficient is (−1)χ(n≡3 mod 4)C(n), whereas on the left-hand side the
coefficient is

det
0≤i,j≤n−1

(

2
1

(2i− j)!

)

= 2n
n−1
∏

i=0

1

(2i)!
det

0≤i,j≤n−1

(

(2i− j + 1)j
)

= 2n
n−1
∏

i=0

1

(2i)!
det

0≤i,j≤n−1

(

(2i)j
)

= 2n
n−1
∏

i=0

1

(2i)!

∏

0≤i<j≤n−1

(2j − 2i)

= 2n+(
n

2)
n−1
∏

i=0

i!

(2i)!

= 21+(
n

2)
n−1
∏

i=1

1

(i)i
,
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where in the step from the first to the second line we used elementary column
operations, and the subsequent step is just the Vandermonde determinant eval-
uation.

This completes the proof of (1.1). �
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