Monographs
-
A. Komech,
Quantum Mechanics:
Genesis and Achievements, Springer, Dordrecht, 2013.
ISBN-13: 978-9400755413
-
A. Komech, E. Kopylova, Dispersion Decay and Scattering Theory,
John Wiley & Sons, Hoboken, NJ, 2012.
ISBN: 978-1-118-34182-7
-
Yu. Egorov, A. Komech, M. Shubin,
Elements of the Modern Theory of Partial Differential Equations,
Springer, NY, 1999.
ISBN-13: 978-3540653776
-
A. Komech, A. Merzon,
Stationary Diffraction by Wedges, Lecture Notes in Mathematics 2249,
Springer Narure, Switzerland, 2019.
ISBN-13: 978-3030266981
-
A. Komech, E. Kopylova,
Attractors of Hamiltonian Nonlinear Partial Differential Equations,
Cambridge Tracts in Mathematics 224, Cambridge University Press,
Cambridge, 2021.
DOI: 10.1017/9781009025454, ISBN: 978-1-316-51691-1
-
A. Komech,
Lectures on Quantum Mechanics and Attractors,
World Scientific, Singapore, 2022.
ISBN: 978-981-124-889-4
Textbooks
-
A.I. Komech, A.A. Komech,
Principles of Partial Differential Equations, Springer, 2009.
ISBN-13: 978-1441910950
-
A. Komech,
Practical Solution
of Equations of Mathematical Physics,
1993 (2nd edition) [Russian].
Lecture notes
-
A. Komech,
Lectures on Elliptic Partial Differential Equations
(Method of Pseudodifferential Operators),
undergraduate course
given at Vienna University during October-December 2006.
-
A. Komech,
On Global Attractors of Hamilton
Nonlinear Wave Equations,
Lecture Notes
of the Max Planck Institute for Mathematics in the Sciences,
LN 24/2005, Leipzig, 2005.
http://www.mis.mpg.de/preprints/ln/lecturenote-2405-abstr.html
Papers
-
A. Komech, E. Kopylova,
On the Hamilton--Poisson structure and solitons for the Maxwell--Lorentz
equations with spinning particle,
J. Math. Anal. Appl.
522 (2023), no. 2, 126976.
-
A. Komech, E. Kopylova,
On the stability of solitons for the Maxwell--Lorentz
equations with rotating particle
,
Milan J. Math. (2022)
-
A. Komech, E. Kopylova,
On Global Attractors For 2d Damped Driven Schroedinger Equations,
Applicable Analysis 101 (2022), no. 15, 5490-5503.
Open access.
-
A. Komech,
On quantum jumps and attractors of the Maxwell-Schroedinger equations,
Annales mathematiques du Quebec 46 (2022), 139-159.
-
A. Komech, E. Kopylova,
Attractors of nonlinear Hamiltonian partial differential equations,
Russ. Math. Surv.
75
(2020), no.1, 1-87.
-
A. Komech, E. Kopylova,
Global attractor for 1D Dirac field coupled to nonlinear oscillator,
Comm. Math. Phys.
375
(2020), no. 1, 573-603. Open Access.
-
A. Komech, E. Kopylova,
On global attractor of 3D Klein-Gordon equation with several concentrated nonlinearities,
Dynamics of PDEs
16
(2019), 105-124.
-
A. Komech, E. Kopylova,
On the dispersion decay for crystals in
the linearized Schrödinger--Poisson model,
J. Math. Anal. Appl.
464
(2018), 864-882.
-
A. Komech, E. Kopylova,
On orbital stability of ground states for finite crystals
in fermionic Schrödinger--Poisson model,
SIAM J. Math. Analysis
50
(2018), no. 1,
64--85. Open access.
-
A. Komech, A. Merzon,
Asymptotic completeness of scattering in the nonlinear
Lamb system for nonzero mass,
Russ. J. Math. Phys.
24
(2017), no. 3,
336--346.
-
A. Komech, E. Kopylova, H. Spohn,
On global attractors and radiation
damping for nonrelativistic particle coupled to scalar field,
Algebra and Analysis
29
(2017), no. 2,
34--58.
-
A. Komech, E. Kopylova,
On stability of ground states for finite crystals in the Schrödinger--Poisson model,
J. Math. Phys.
58
(2017), no. 3,
031902-1 -- 031902-18. Open access.
-
V. Imaykin, A. Komech, H. Spohn,
On invariants for the Poincaré
equations and applications,
J. Math. Phys.
58
(2017), no. 1,
012901-1 -- 012901-13. arXiv:1603.03997.
-
A. Komech, E. Kopylova,
On the linear stability of crystals
for the Schrödinger-Poisson model,
J. Stat. Phys.
165
(2016), no. 2,
246-273.
-
A. Komech,
Attractors of nonlinear Hamilton PDEs,
Discrete and Continuous Dynamical Systems A
36
(2016), no. 11, 6201-6256.
-
A. Komech,
On crystal ground state in the Schrödinger-Poisson model with point ions,
Math. Notes
99
(2016), no. 6, 886-894.
-
A. Komech, E. Kopylova,
Asymptotic stability of stationary states in the wave equation coupled to a nonrelativistic particle,
Russ. J. Math. Phys.
23
(2016), no. 1, 93-100.
-
A. Komech, A.E. Merzon, J.E. De la Paz Mendez,
Time-dependent scattering of generalized plane waves by wedge,
Mathematical Methods in Applied Sciences
38
(2015), no. 18, 4774-4785. arXiv:1405.7114.
-
A. Komech,
On the Hartree-Fock dynamics in wave-matrix picture,
Dynamics of PDE
12
(2015), no. 2, 157-176. arXiv:1407.5208
-
A. Komech,
On dynamical justification of quantum scattering cross section,
J. Math. Anal. Appl.
432
(2015), no. 1, 583-602.
arXiv:1206.3677
-
A. Komech, A.E. Merzon, J.E. De la Paz Mendez,
On uniqueness and stability of Sobolev's solution in scattering by wedges,
Zeitschrift für angewandte Mathematik und Physik,
66
(2015), no. 5, 2485-2498.
http://link.springer.com/article/10.1007/s00033-015-0533-y
-
A. Komech, E. Kopylova,
On the eigenfunction expansion for Hamilton operators,
J. Spectral Theory
5
(2015), no.2, 331-361.
-
A. Komech, A.E. Merzon, J.E. De la Paz Mendez, T. J. Villalba Vega,
On the Keller-Blank solution to the scattering problem of pulses by wedges,
Mathematical Methods in Applied Sciences,
38
(2015), no. 10, 2035-2040.
DOI: 10.1002/mma.3202
http://onlinelibrary.wiley.com/doi/10.1002/mma.3202/
-
A. Komech,
On the crystal ground state in the Schrödinger-Poisson model,
SIAM J. Math. Anal
47
(2015), no.2, 1001-1021. arXiv:1310.3084
-
A. Komech, E. Kopylova,
Weighted energy decay for magnetic Klein-Gordon equation,
J. Applicable Analysis
94
(2015), no. 2, 219-233. arXiv:1309.1759.
DOI: 10.1080/00036811.2014.884710
-
V. Imaykin, A. Komech, H. Spohn,
On Lagrangian theory for rotating charge coupled to the Maxwell field,
Physics Letters A
379
(2015), no. 1-2, 5-10. arXiv:1206.3641
-
A.I. Komech, E.A. Kopylova,
On eigenfunction expansion of solutions to the Hamilton equations, J. Stat. Phys.
154
(2014), no. 1-2, 503-521. arXiv:1308.0485
DOI 10.1007/s10955-013-0846-1
-
A.A. Komech, A.I. Komech,
On the Titchmarsh convolution theorem for distributions on the circle, Funct. Anal. Appl.
47
(2013), no. 1, 21-26.
-
A.I. Komech, E.A. Kopylova, S.A. Kopylov,
On nonlinear wave equations with parabolic potentials, J. Spec. Theory
3
(2013), no. 4, 485-503. arXiv:1206.6073
DOI 10.4171/JST
-
A.I. Komech, A.E. Merzon,
On asymptotic completeness of scattering in
the nonlinear Lamb system II, J. Math. Physic
54 (2013), 012702-012710.
arXiv:1205.5850
-
A.I. Komech, E. Kopylova,
Dispersive decay for the magnetic Schrödinger equation, J. Funct. Analysis
264 (2013), no. 3, 735-751.
arXiv:1006.2618
-
V. Imaykin, A.I. Komech, B. Vainberg,
Scattering of solitons for coupled wave-particle equations, J. Math. Analysis and Appl.
389 (2012), no. 2, 713-740.
arXiv:1006.2618
-
A.I. Komech, E. Kopylova, D. Stuart,
On asymptotic stability of solitary waves for
Schödinger equation coupled
to nonlinear oscillator, II,
Comm. Pure Appl. Anal. 202(2012),
no. 3, 1063-1079.
arXiv:0807.1878
-
V. Imaykin, A.I. Komech, H. Spohn,
Scattering asymptotics for a charged particle
coupled to the Maxwell field, J. Math. Physics
52 (2011), no. 4, 042701-042701-33.
arXiv:0807.1972
-
A.I. Komech, E.A. Kopylova, H. Spohn,
Scattering of solitons for Dirac equation
coupled to a particle ,
J. Math. Analysis and Appl. 383 (2011),
no. 2, 265-290.
arXiv: 1012.3109
-
A.I. Komech, E.A. Kopylova,
On convergence to equilibrium distribution for Dirac
equation, Markov Processes Related Fields 17 (2011), no. 4, 523-540.
-
E.A. Kopylova, A.I. Komech,
On asymptotic stability of kink for relativistic
Ginzburg-Landau equation, Arch. Rat. Mech. Anal. 202 (2011), no. 2, 213-245.
arXiv:0910.5539
-
A.I. Komech, A.A. Komech,
On global attraction to quantum stationary states. Dirac equation with mean field interaction,
Commun. Math. Anal.
,
Conference 3
(2011), 131-136. arXiv:0910.0517
-
A. Comech, A.I. Komech,
Well-posedness and the energy and charge conservation for nonlinear wave equations in discrete space-time,
Russ. J. Math. Phys., 18 (2011), no.4, 410-419. arXiv:0910.5538
-
E.A. Kopylova, A.I. Komech,
On asymptotic stability of moving kink for relativistic
Ginzburg-Landau equation ,
Comm. Math. Physics, 302 (2011), no.1, 225-252. arXiv:0910.5538
-
A.I. Komech, A.A. Komech,
Global attraction to solitary waves for nonlinear Dirac equation
with mean field interaction,
SIAM J. Math.
Analysis, 42 (2010), no. 6, 2944-2964. arXiv:0910.0517
-
A.I. Komech, E. Kopylova,
Weighted energy decay for
2D Klein-Gordon equation,
J. Functional Analysis
259 (2010), no. 2, 477-502.
-
A.I. Komech, E. Kopylova,
Weighted energy decay for
1D Klein-Gordon equation,
Comm. PDE
35 (2010), 353-374.
-
A.I. Komech, E. Kopylova,
Weighted energy decay for
3D Klein-Gordon equation,
J. Differential Equations
248 (2010), no. 3, 501-520.
arXiv:1003.3799
doi:10.1016/j.jde.2009.06.011
-
A.I. Komech, A.A. Komech,
On global attraction to solitary waves for the
Klein-Gordon field coupled to several nonlinear oscillators,
J. des Mathematiques Pures et App.
93 (2010), 91-111.
arXiv:math/0702660
doi:10.1016/j.matpur.2009.08.011
-
A.I. Komech, A.A. Komech,
On global attraction to solitary waves with mean field interaction
Klein-Gordon equation, Annales l'IHP ANL 26 (2009), no. 3, 855-868.
arXiv:math/0708.1131
-
A.I. Komech, A.E. Merzon,
On asymptotic completeness of scattering in the nonlinear Lamb system,
J. Math. Physics
50 (2009), 023514-1 --023514-10.
-
A.I. Komech, A.E. Merzon,
Scattering in the nonlinear Lamb system,
Physics Letters A
373 (2009), 1005-1010.
-
A.I. Komech, A.A. Komech,
Global Attraction to Solitary Waves
in Models Based on the Klein-Gordon Equation,
SIGMA, Symmetry Integrability Geom. Methods Appl.
4 (2008),
Paper 010, 23 pages, electronic only.
http://www.emis.de/journals/SIGMA/2008/,
arXiv:math/0711.0041
-
V. Buslaev, A. Komech, E. Kopylova, D. Stuart,
On asymptotic
stability of solitary waves in nonlinear Schrödinger equation,
Comm. Partial Diff. Eqns
33 (2008), no. 4, 669-705. arXiv:math-ph/0702013
-
A. Komech, E. Kopylova, B. Vainberg,
On dispersive properties of discrete 2D
Schrödinger and Klein-Gordon equations,
J. Funct. Anal.
254 (2008), no. 8, 2227-2254.
-
A.I. Komech, A.A. Komech,
Global well-posedness for the Schrodinger equation
coupled to a nonlinear oscillator,
Russ. J. Math. Phys. 14 (2007), no. 2, 164-173.
math.AP/0608780
-
A.I. Komech, A.E. Merzon,
Relation between Cauchy data
in the scattering by wedge,
Russ. J. Math. Phys. 14 (2007), no. 3, 279-303.
-
A.I. Komech, A.A. Komech,
Global attractor
for a nonlinear oscillator coupled to the Klein-Gordon field,
Arch. Rat. Mech. Anal.185 (2007), 105-142.
arXiv:math.AP/0609013
-
A. Komech, E. Kopylova, M. Kunze,
Dispersive estimates for 1D discrete
Schrödinger and Klein-Gordon equations,
Applicable Analysis
85 (2006), no. 12, 1487-1508.
-
A.I. Komech, A.A. Komech,
On global attraction
to solitary waves for the
Klein-Gordon equation coupled to nonlinear oscillator,
C. R., Math., Acad. Sci. Paris
343 (2006), no. 2, 111-114.
-
V.Imaikin, A. Komech, B. Vainberg,
On scattering of solitons for
the Klein-Gordon equation coupled to a particle,
Comm. Math. Phys.
268 (2006), no. 2, 321-367. arXiv:math.AP/0609205
-
A. Komech, E.A. Kopylova,
Scattering of solitons
for Schrödinger equation coupled to a particle,
Russian J. Math. Phys. 50 (2006),
no. 2, 158-187. arXiv:math.AP/0609649
-
M. Freidlin, A. Komech,
On metastable
regimes in stochastic Lamb system,
Journal of Mathematical Physics
47 (2006), 043301-1 -- 043301-12.
-
A. Komech, A.E.Merzon,
Limiting amplitude principle
in the diffraction by wedges,
Mathematical Methods in Applied Sciences
29 (2006), 1147-1185.
-
T. Dudnikova, A. Komech,
Two-temperature
problem for the Klein-Gordon equation,
J. Theory Probability and Appl.
50 (2005), no. 4, 675-710.
[Russian].
English translation:
On two-temperature
problem for the Klein-Gordon
equation,
Theory Prob. Appl.
50 (2006), no. 4, 582-611.))
-
A. Komech, E.Kopylova, N.Mauser,
On convergence
to equilibrium distribution for Schrödinger equation,
Markov Processes and Related Fields
11 (2005),
no. 1, 81-110.
-
T. Dudnikova, A. Komech,
On the convergence
to a statistical equilibrium
in the crystal coupled to a scalar field,
Russ. J. Math. Phys.
12 (2005), no. 3, 301-325.
-
A. Komech, N.J. Mauser, A.E. Merzon,
On Sommerfeld representation
and uniqueness in diffraction by
wedges,
Mathematical Methods in Applied Sciences
28 (2005), no. 2, 147-183.
-
A. Komech, N.J. Mauser, A. Vinnichenko,
On attraction to solitons
in relativistic nonlinear wave equations,
Russ. J. Math. Phys.
11 (2004), no. 3,
289-307.
-
V.Imaikin, A. Komech, N.J. Mauser,
Soliton-type asymptotics
for the coupled Maxwell-Lorentz equations,
Ann. Inst. Poincaré, Phys. Theor.
5 (2004),
1117-1135.
-
V.Imaikin, A. Komech, H.Spohn,
Rotating charge
coupled to the Maxwell field: scattering
theory and adiabatic limit,
Monatshefte fuer Mathematik
142 (2004), no. 1-2, 143-156.
-
T.Dudnikova, A. Komech, N.Mauser,
On two-temperature problem
for harmonic crystals, Journal
of Statistical Physics
114 (2004), no. 3/4, 1035-1083.
-
A. Komech, E.Kopylova, N.Mauser,
On convergence to
equilibrium distribution for wave equation
in even dimensions,
Ergodic Theory and Dynamical Systems
24 (2004), 1-30.
-
A. Komech,
On attractor of a singular nonlinear
U(1)-invariant Klein-Gordon equation ,
p. 599-611 in:
Proceedings of the 3rd ISAAC Congress,
Freie Universitat Berlin, Berlin, 2003.
-
V.Imaikin, A. Komech, H.Spohn,
Scattering theory
for a particle coupled to a scalar field,
Journal of Discrete and Continuous Dynamical Systems
10 (2003), no. 1&2, 387-396.
-
V.Imaikin, A. Komech, P.Markowich,
Scattering of solitons
of the Klein-Gordon equation coupled
to a classical particle, Journal of Mathematical Physics
44 (2003), no. 3, 1202-1217.
-
T.Dudnikova, A. Komech, H.Spohn,
On the convergence
to statistical equilibrium for harmonic
crystals,
Journal of Mathematical Physics
44 (2003), no. 6, 2596-2620.
-
T.Dudnikova, A. Komech, N.Mauser,
On the convergence
to a statistical equilibrium for the
Dirac equation, Russian Journal of Math. Phys.
10 (2003), no. 4, 399-410.
-
A. Bensoussan, C. Iliine, A. Komech,
Breathers
for a relativistic nonlinear wave equation, Arch.
Rat. Mech. Anal.
165 (2002), 317-345.
-
T.V. Dudnikova, A.I. Komech, E.A. Kopylova, Yu.M. Suhov,
On convergence to equilibrium
distribution, I. Klein-Gordon equation with mixing,
Comm. Math. Phys.
225 (2002), no. 1, 1-32.
-
T.V. Dudnikova, A.I. Komech, N.E. Ratanov, Yu.M. Suhov,
On convergence to equilibrium
distribution, II. Wave equation with mixing,
Journal of Statistical Physics
108 (2002), no. 4, 1219-1253.
-
T. Dudnikova, A. Komech, H. Spohn,
On a two-temperature problem
for wave equation with
mixing, Markov Processes and Related Fields
8 (2002), no. 1, 43-80.
-
A.Merzon, A. Komech, P.Zhevandrov,
A method of complex
characteristics for elliptic problems
in angles and its applications, Translations. Series 2. American Mathematical Society. 206,
American Mathematical Society (AMS), Providence, RI, 2002.
-
T. Dudnikova, A. Komech, H. Spohn,
Energy-momentum
relation for solitary waves of relativistic
wave equation, Russian Journal Math. Phys.
9 (2002), no. 2, 153-160.
-
V.Imaikin, A. Komech, H.Spohn,
Soliton-like asymptotics
and scattering for a particle coupled
to Maxwell field, Russian Journal of Mathematical Physics
9 (2002), no. 4, 428-436.
-
A. Komech, H.Spohn,
Long-time asymptotics
for the coupled
Maxwell-Lorentz equations,
Communications in Partial Differential Equations
25 (2000), no. 3&4, 559-584.
-
A. Komech,
Attractors of non-linear
Hamiltonian
one-dimensional wave equations,
Russian Math. Surv.
55 (2000), no. 1, 43-92.
-
A. Komech,
On transitions
to stationary states in one-dimensional nonlinear wave equations,
Arch. Rat. Mech. Anal. 149 (1999), no. 3, 213-228.
-
A. Komech, M. Kunze, H. Spohn,
Effective Dynamics
for a mechanical particle coupled to a
wave field, Comm. Math. Phys.
203 (1999), 1-19.
-
A. Komech, P. Joly, O. Vacus,
On transitions
to stationary states in a Maxwell-Landau-
Lifschitz-Gilbert system, SIAM J. Math. Anal. 31 (1999), no. 2, 346-374.
-
A. Komech,
On transitions
to stationary states in Hamiltonian nonlinear wave equations, Phys.
Letters A 241 (1998), 311-322.
-
A. Komech, H. Spohn,
Soliton-like asymptotics
for a classical particle interacting with a scalar
wave field, Nonlinear Analysis 33 (1998), no. 1, 13-24.
-
A. Komech, H. Spohn, M. Kunze,
Long-Time Asymptotics for a Classical Particle
Interacting with a Scalar Wave Field, Comm. Partial Dif. Equns.
22 (1997), no.1/2, 307-335.
-
A. Komech, B. Vainberg,
On asymptotic stability of stationary solutions to nonlinear wave and Klein-Gordon equations, Arch. Ration. Mech. Anal.
134 (1996), no.3, 227-248.
-
A. Komech,
On stabilization
of string-nonlinear oscillator interaction,
J. Math. Anal. Appl.
196 (1995), 384-409.
-
A. Komech,
Elliptic boundary value problems on manifolds with a piecewise smooth boundary,
Math. USSR Sbornik
21 (1973), no.1, 91-135.