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Preface

This book is based on a three-semester course of lectures delivered by the author
at the Faculty of Mathematics of the Vienna University. For preliminary versions of
the manuscript, see [113, 114].

The main emphasis of this book is on nonrelativistic and relativistic quantum
mechanics with standard applications to the hydrogen atom. Our main intention
is to present the quantum mechanics in a comprehensive manner, accessible for
a mathematician. The exposition is formalized (whenever possible) on the basis of
coupled Maxwell–Schrödinger and Maxwell–Dirac equations. This intention agrees
with Hilbert’s 6th Problem (“Axiomatize Theoretical Physics”), and Heisenberg’s
nonlinear programme [83, 84].

Our exposition starts with a chronological analysis of crucial empirical obser-
vations and their theoretical systematization, explaining inter alia the motivation
behind the Heisenberg and Schrödinger equations. The introduction of quantum ob-
servables stems from the agreement with corresponding classical observables for
short wavelength solutions, Hamilton–Jacobi’s theorem being taken into account.
Also, the relation between the quantum observables and the Noether symmetry
theory is discussed. The Lagrangian formalism is used as a fundamental unifying
principle to lay the basis for introduction of the coupled Maxwell–Schrödinger and
Maxwell–Dirac equations.

Of course, the equations and observables could be (and formally should be) ac-
cepted as axioms. On the other hand, it is crucially important to know the experi-
mental and mathematical facts behind quantum formalism to embed it in the whole
of physics.

Moreover, the modern form of quantum theory seems to be far from its com-
pleteness, like geometry in pre-Euclidean era. It is therefore particularly important
to understand the degree of confidence to individual constituents of the quantum
formalism. This is why we pay so much attention to the origin and motivation of the
formalism.

The hydrogen spectrum and the atom radiation are calculated with all detail.
Parallels between quantum and classical description are traced everywhere to moti-
vate the introduction of quantum differential cross section, magnetic moment, etc.
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viii Preface

The scattering problems are solved by application of the perturbation procedure
to the coupled Maxwell–Schrödinger equations. We point out some deficiency in
the perturbation procedure, which should be fixed with a nonperturbative approach,
however this correction is still an open problem.

The introduction of the electron spin is discussed in detail from experimental
and theoretical point of view. We calculate the Landé formula for the gyromag-
netic ratio via the spin-orbital interaction of Russell–Saunders, which explains the
Einstein–de Haas experiment and the anomalous Zeeman effect. Further we prove
the relativistic covariance of the Dirac equation, obtain the corresponding intrinsic
spin momentum, and the corresponding nonrelativistic approximations. Finally, we
calculate the hydrogen spectrum via the Dirac equation.

We make explicit invoked assumptions and approximations, and discuss a plausi-
ble treatment of some logical leaps in the theory. However, we did not try to establish
new rigorous results. Generally, our exposition is not mathematically rigorous. For
example, we do not distinguish between Hermitian symmetric and the selfadjoint
operators, even though the spectral resolution is used repeatedly.

In appendices (Chaps. 12 and 13), we explain related details from Classical Elec-
trodynamics and Special Relativity, Geometrical Optics, the Hamilton–Jacobi theo-
rem, an updated version of the Noether theory of currents, and the limiting amplitude
principle.

In Chap. 14, we collect classical calculations lying in the base of the ‘old quan-
tum mechanics’.

Further Reading Our main goal is to give a concise explanation of mathematical
principles of Quantum Mechanics. More technical details and a systematic com-
parison with experimental data can be found in [7, 11, 12, 20, 23, 34, 63, 75, 81,
130, 131, 145, 160, 171, 179, 191]. The books [46, 79, 89, 143] and [93, 185],
respectively, explain basic concepts of Quantum Mechanics and Classical Electro-
dynamics. A suitable introduction to the mathematical theory of the Schrödinger
equation is contained in [10].

We develop the methods of quantum mechanics for the hydrogen atom which can
be extended to other one-electron atoms (lithium, sodium, potassium atoms, etc),
and do not touch multi-electron problems of quantum chemistry [34, 41, 178, 187].
We also do not touch the Stability of Matter [31, 134], the Quantum Electrodynam-
ics and Quantum Field Theory [13, 14, 33, 64, 77, 85, 137, 138, 158, 159, 163, 189,
195, 196].
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Chapter 1
Genesis of Quantum Mechanics

Abstract Quantum mechanics rests on the centuries-long development of the the-
ory of structure and stability of matter. The development of quantum mechanics is
supposed to have started with the concept of atom, and further progressed in parallel
with the development of chemistry, mechanics, optics and electrodynamics. As long
ago as at the end of the 19th century, the atoms were already considered as vibrat-
ing systems composed of positive and negative charged particles. However, the pure
electromagnetic theory of atom stability turned out to be inconsistent, and the key
ideas came from the thermodynamics of radiation.

The fundamental principles of quantum mechanics can be perceived only from
systematic analysis of empirical observations and their theoretic classification. We
begin with early discoveries in chemistry and in spectral observations, Thomson’s
discovery of the electron, Lorentz’s electron theory, and Abraham’s mass-energy
identification.

Further we dwell upon Kirchhoff’s laws of radiation, Rayleigh–Jeans’s and
Planck’s theories of black-body radiation, and the ‘old’ quantum mechanics of
Niels Bohr. Next we show how these achievements emerged in the development
of Heisenberg’s matrix theory of quantum mechanics, de Broglie’s wave–particle
dualism and the generalizations thereof by Schrödinger.

Finally, we describe the quasiclassical asymptotics (‘geometrical optics’) for
short-wavelength solutions of the Schrödinger equation, which provides a ‘bridge’
between the quantum and classical description of matter.

1.1 Atoms and Spectra

Historically, the first information about the structure of matter was obtained from
chemical reactions, melting processes, and scattering of radiation by matter. The
latter phenomenon occurs commonly in the theory of the rainbow and from the
colors of burning carbon.

1.1.1 Concept of Atom

The explicit statement that matter is composed of indivisible particles called atoms
(from the Greek word ‘uncuttable’) can be traced back to the Greek philosophers
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2 1 Genesis of Quantum Mechanics

Leucippus and Democritus of Abdera (taught in the latter part of the fifth century
B.C.), who taught that all matter is made up of atoms and empty space. On the one
hand, the concept of an atom reflects the divisibility of a homogeneous substance,
and on the other, the existence of a minimal portion of the matter that retains its
peculiarity. In both these aspects, the concept of an atom resembles that of fabric.
Moreover, the words ‘matter’ and ‘fabric’ coincide in several languages reflecting
this similarity.

However, this concept has become widely accepted only after the appearance of
Dalton’s law of multiple proportions (1803).

1.1.2 Early Spectra Observations

The first spectral analysis of sunlight was made in 1666 by Newton, who is reputed
to have discovered that a prism could disperse white light into its constituent (rain-
bow) colors and a further prism recombine the colors to restore the white light.
More systematic observations were done by Melville in 1752 on burning substances
in flame.

The wave nature of light was suggested by Hooke in 1660’s and Huygens in 1678.
Different colors were shown to have different wavelengths by Young in 1801 using
diffraction gratings. The first man-made diffraction grating was made around 1785
by an American astronomer David Rittenhouse, even though its underlying principle
was discovered by Gregory in 1667s by sending sunlight through bird feather and
observing the produced diffraction pattern.

In 1814, Fraunhofer compared light from the Sun with radiation from sodium
chloride in flame and noticed dark lines in the Sun’s spectrum. With the aid of
diffraction gratings, Fraunhofer eventually observed 574 mysterious dark spectral
lines.

The spectrum of hydrogen, which turned out to be crucial in providing first in-
sight into atomic structure over half a century later, was observed by Ångström in
1853. David Alter described the spectrum of hydrogen and of other gases in 1855.

The first systematic study of radiation and spectra was made by Bunsen and
Kirchhoff in the early 1860s, who determined the spectra of more than 20 elements.
Their investigation made evident that the spectra are element-specific. This fact was
the starting point for the spectral analysis of chemical substances.

Wavelengths of more than 1000 spectral lines in the solar spectrum were mea-
sured with very high precision by Ångström in 1868.

1.1.3 Resonance Nature of Spectra

In 1849, Foucault examined the light spectrum produced by the voltaic arc between
carbon poles. He saw a bright double yellow line at exactly the same wavelength
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as Fraunhofer’s dark D-line in the solar spectrum. Proceeding further, Foucault sent
the sun’s light through the arc and then through a prism to have observed that the D-
lines in the spectrum were even darker than usual. After applying other sources, he
pointed out the arc emits the D-line, but absorbs it when it is emitted by a different
radiator [65].

Foucault discovered that if a brighter radiator giving a continuous spectrum was
placed behind the arc, so that the spectrum of this radiator was seen through the arc,
then the D-line appeared dark, just as in the solar spectrum [192, p. 369].

Similarly, Kirchhoff and Bunsen identified some of the Fraunhofer dark lines
with the spectral lines of oxygen. This means that the dark lines are the result of
absorption of the sunlight by the oxygen atoms in the Earth atmosphere, as explained
by Kirchhoff and Bunsen in 1859.

The agreement of the emitted and absorbed frequencies, as discovered by Fou-
cault, Kirchhoff and Bunsen, suggested the resonance nature of the absorption and
the oscillatory model of atoms: in 1852 Stokes suggested that atomic spectra are
produced by periodic vibrations of constituent parts of atoms and molecules.

1.1.4 Combination Principle

Johann Balmer spent many years on deciphering Ångström’s numerical data on the
hydrogen spectra. His efforts culminated in 1885 in the astonishing discovery of
empirical formula for the wavelength of some hydrogen spectral lines,

ωmn = ωm − ωn, (1.1)

with m ≥ n = 2 and the spectral terms

ωn = −B/n2, n = 1,2, . . . , B ≈ 104 × 1030 s−1. (1.2)

In 1888, Rydberg suggested the general Combination Principle (1.1) with all
m,n = 1,2, . . . for the hydrogen spectral lines. This suggestion was experimentally
confirmed by Paschen (1908), Lyman (1909), and Brackett (1914), who discovered
the hydrogen spectral lines (1.1) corresponding to n = 3, n = 1, and n = 4, respec-
tively. The combination principle, as further extended to all elements by Ritz in
1908, is one of the underlying principles for Heisenberg’s matrix theory of quantum
mechanics; it was justified later by the Schrödinger theory.

1.2 Electrodynamics

The next step toward understanding the structure of matter was provided by electro-
magnetic phenomena: magnetization of iron needles, electric discharge, the Zeeman
splitting of spectral lines in a magnetic field, etc.
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1.2.1 Ampère Theory of Magnetization

The magnetization of iron needles was known in China since 2000 BC. In 1820,
Ersted discovered the magnetic field generated by electric current. In the same year,
Ampère, Biot, Savart and Laplace examined the relation between current and mag-
netic field to discover what we now call the Ampère law and the Biot–Savart–
Laplace law. These investigations suggested to Ampère in 1820 the presence of
atomic and molecular circular currents; with this basis the theory was capable of
explaining the magnetization of iron needles due to reorientation of microscopic
currents under the influence of the Earth’s magnetic field.

1.2.2 Maxwell Electrodynamics

In 1855–1861, Maxwell put forward the equations for the electric and magnetic
fields E(t,x), B(t,x) as generated by density ρ(t,x) and current j(t,x). The equa-
tions result from a mathematical synthesis of the empirical Coulomb’s, Biot–Savart–
Laplace’s, and Faraday’s laws.

The Maxwell Equations

Written in unrationalized Gaussian units (cgs), the Maxwell equations are as fol-
lows:

⎧
⎪⎪⎨

⎪⎪⎩

div E(t,x) = 4πρ(t,x), curl E(t,x) = −1

c
Ḃ(t,x),

div B(t,x) = 0, curl B(t,x) = 4π

c
j(t,x) + 1

c
Ė(t,x);

(1.3)

here c is the speed of light in vacuum, and the dot indicates differentiation with
respects to time. The Maxwell equations imply the continuity equation for charge

ρ̇(t,x) + div j(t,x) = 0 (1.4)

which is equivalent to the charge conservation law. Of course, this equivalence can-
not be considered as the proof of the (experimentally known) charge conservation,
since it was used in derivation of the Maxwell equations.

The Lorentz Force

In accordance with Ampère’s law (1820), the force acting on a current element in
a magnetic field is as follows (in unrationalized Gaussian units):

F = q
v
c

× B(x); (1.5)
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here q is the charge of a particle, v is its velocity, and x is its position. Taking into
account the action of electric field, this gives the Lorentz equation for a charged
particle

mẍ(t) = q

[

E
(
t,x(t)

) + ẋ(t)

c
× B

(
t,x(t)

)
]

; (1.6)

here m stands for the electron mass, and x(t), for its trajectory.

1.2.3 Cathode Rays: Thomson’s Discovery of Electron

Cathode rays indicate the existence of electric flux in the vacuum. These rays were
discovered first by Geissler and Plucker around 1855 in a vacuum tube (glass bulb
with two electrodes) with better vacuum conditions than those used by Faraday in
1836–1838.

Plucker produced “. . . a bright stream-like glow between the electrodes, which
was much brighter than any achieved in previous experiments. He found that the
glow responded to a magnetic field: it could be moved by a powerful magnet. The
discovery indicated that the stream crossing the vacuum was composed of charged
particles rather than rays.

The next scientist to conduct important research using vacuum tubes was Hittorf
in 1869. A student of Plucker, Hittorf further improved the method for creating a
vacuum within glass tubes of his own design. He observed that the luminescent glow
increased dramatically as the pressure within the tube continued to decrease. He also
placed tiny obstacles inside the tube in the path between the two electrodes. When
a current was applied, the glow would be partially obscured by these obstacles,
casting shadows. This further confirmed the idea that the glow was caused by a
particle emission. . . ” [139].

The Geissler vacuum tube was considerably improved by Crookes in 1875,
whose works supported the previous observations on cathode rays. Moreover, he
“. . . installed tiny vanes within his tubes. As the current was applied, the vanes would
turn slightly, as if they were blown by a gust of wind. . . ” [139].

The rays were emitted from the cathode, and their deflection in a magnetic field
demonstrated their negative charge. French physicist Jean Baptiste Perrin showed
in 1895 that the rays deposit negative electric charge on a charge collector placed
inside cathode-ray tube [152].

“. . . Some physicists, like Goldstein, Hertz, and Lenard, thought that this phe-
nomenon is like the light, due to vibrations of the ‘ether’ or even that it is the light
of short wavelength. It is easily understood that such rays may have a rectilinear
path, excite phosphorescence, and affect photographic plates. Others, like Crookes
and J. J. Thomson, thought that these rays are formed by the negatively charged mat-
ter moving with great velocity, and on this hypothesis their mechanical properties,
as well as the manner in which they become curved in a magnetic field, are readily
explicable. . . ” [152].
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The discussion was cut short after the famous series of experiments conducted
by Thomson in 1893–1897 [182, 183], who succeeded in deflecting cathode rays by
an electrostatic field, thus showing that they consist of negatively charged particles.
He also systematized all previous observations and demonstrated the particle-like
behavior of the cathode rays, which is in agreement with the Lorentz equation (1.6).
Since this equation is capable of yielding only the ratio q/m, one cannot separately
obtain q and m from observations of interactions between particles and the Maxwell
field.

Cathode rays were shown by Thomson as being identical with a beam of nega-
tively charged particles (electrons). He also introduced the name electron for these
particles (the term electron had been used earlier, and Thomson preferred at first to
call it simply a ‘corpuscle’ [69, p. 311]). This study has led to the first measurement
of the ratio

|e|/m = 1.76 × 107 emu/g, (1.7)

where e < 0 is the electron charge, and m is its mass. This ratio proved to be fairly
close to its present value, which is 1.75882012(15) × 107 emu/g.

Magnetic deflection of the cathode rays was also observed by Kauffmann in
1901–1906 [98], who also evaluated the ratio e/m; the resulting value has occurred
to be quite close to that obtained by Thomson.

On the other hand, subsequent development suggested that cathode rays should
be looked upon not as a beam of particles but rather as waves, whose diffraction was
observed in 1924–1927 by Davisson and Germer [40].

The contradiction between these two wave/particle points of view was removed
by geometrical optics for short-wavelength solutions of the Schrödinger equation
(see Sect. 3.2.2).

1.2.4 Elementary Electric Charge

Faraday Laws of Electrolysis

In 1834, Faraday estimated F ≈ 96,500 C/mol for the absolute value of charge car-
ried by ions of valency one in a mole of a chemical substance (the modern value
is F = 96,485.3365(21) C/mol). The value NA ≈ 7.15 × 1023 mol−1 for the Avo-
gadro’s number was estimated in 1909 by Perrin on the basis of Einstein’s theory
of Brownian motion [144, 165] (the modern value is NA = 6.022141 × 1023/mol).
This gives the value of the electron’s charge as the ratio of the Faraday constant F

to the Avogadro number NA; using the values obtained by Faraday and Perrin, this
gives

e = − F

NA

≈ −1.34 × 10−19 C = −1.34 × 10−20 emu (1.8)
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(the modern value is e = −1.6021766 × 10−20 emu). As a result, the ratio (1.7)
gives the corresponding value of the electron mass:

m ≈ e

1.76 × 107 emu/g
≈ 0.76 × 10−27 g (1.9)

(the modern value is m = 9.10938188 × 10−28 g). On the other hand, the mass of
a hydrogen atom is MH = 1/NA. Hence, the electron mass constitutes a very small
part of the atomic mass: using the Faraday value of F and the Thomson ratio (1.7),
it is found that

MH

m
= 1

m · NA

= 1.76 × 107

F
≈ 1820 ± 10, (1.10)

which is quite close to the modern value of 1837.

Millikan’s ‘Oil Drop’ Experiment

In 1909–1914, Millikan, celebrated for his ‘oil-drop’ method for finding the charge
on the electron, has measured elementary electric charges by taking into account
the balance between the downward gravitational force with the upward buoyant and
electric forces on tiny charged droplets of oil suspended between two metal elec-
trodes [141]. By repeating the experiment for several droplets, Millikan was able to
confirm that the charges of droplets differ by integer multiples of some fundamen-
tal value, and calculated it to be 1.5924(17) × 10−19 C; this value agrees (within
1% accuracy) with the currently accepted value

|e| = 1.602176487(40) × 10−19 C. (1.11)

The error in Millikan’s result was caused by systematic errors in the calculation of
air viscosity.

1.2.5 The Zeeman Effect

In 1895, Zeeman [193] discovered the splitting of spectral lines of atoms and
molecules in a magnetic field. This reflected the fact that the atomic and molecular
spectra are produced by moving charged particles—a further argument to support
Stokes’s ideas on the oscillatory nature of the spectra.

1.2.6 Lorentz’s Theory of Electrons

Observation of cathode rays is further evidence for the presence of electric charges
in atoms; this was already known after Faraday’s discovery of the laws of electrol-
ysis. The presence of electric currents in atoms was suggested earlier by Ampère’s
theory of magnetization.
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These facts supported the view on the nature of the electromagnetic theory of
matter as arising from collection of charged particles interacting with the electric
and magnetic fields, E(t,x) and B(t,x), which are governed by the Maxwell equa-
tions (1.3). In particular, Lorentz’s book [136] summarizes almost all of the work
on the ‘electron theory’ of matter up to 1878. The theory is based on the Maxwell
electrodynamics and on some specific assumptions about the atomic structure.

Namely, Lorentz used the classical model of atom as a damped oscillator subject
to a Maxwell field (cf. (1.6)):

m
[
ẍ(t) + γ ẋ(t) + ω2

0x(t)
] = e

[

E(t,x(t) + ẋ(t)

c
× B(t,x(t)

]

. (1.12)

The friction term γ ẋ was introduced to secure stability under external perturbation
E = E0e

−iωt for all frequencies ω ∈R. The friction models a radiation of energy to
infinity.

The Lorentz theory has partially explained many fundamental phenomena, viz.,
polarization and dispersion (Lecture 14.4), the normal Zeeman effect (Lecture 14.5),
etc.

1.2.7 Abraham: Mass–Energy Identification

The Thomson experiments and Lorentz’s theory suggested for a purely electromag-
netic description of the matter. In particular, stability and dynamics of the electron
were to be explained by the Maxwell electrodynamics.

In 1902, Abraham analyzed the dynamics of moving electron [1, 2]. The main
idea was that the comoving field carries the energy and momentum, as defined by
(12.94) and (12.103) on � =R

3, as follows:

E(v) = 1

8π

∫
[
E2

v(x − vt) + B2
v(x − vt)

]
dx,

G(v) = 1

4πc

∫

Ev(x − vt) × Bv(x − vt) dx;
(1.13)

here Ev and Bv are the comoving fields, and v is electron velocity.
The first important observation was that the field energy (1.13) for the point elec-

tron is infinite, since the Coulombic fields Ev(x) and Bv(x) are of order |x|−2 as
x → 0. This explains why did Abraham introduce the model of the extended elec-
tron with the charge uniformly distributed over the sphere |x| = ε > 0. Then the
energy is given by the first integral of type (1.13) over |x| > ε, which is finite of
order 1/ε.

The principal discovery of Abraham was the relation

G(v) = mev
√

1 − β2
with me = 4

3

E(0)

c2
, (1.14)
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where β := |v|/c, see [7, vol. I, (65.9)] and Sect. 12.9. Hence, the total momentum
of the moving electron is as follows:

P(v) = mv + mev
√

1 − β2
. (1.15)

This gives the total mass of the electron:

M = m + me
√

1 − β2
; (1.16)

here m is the ‘bare’ mass of the electron, and me√
1−β2

is its ‘electromagnetic mass’.

On the other hand, from the Kauffmann experiments (1901–1906) it follows that
the total electron momentum increases with velocity proportionally to (

√
1 − β2)−1.

This is why Abraham suggested to completely reduce the bare mass of the electron
setting m = 0 (“Voilà l’atome dématérialisé, . . . la matière disparaît. . . ” [90, pp. 63,
87, 88]). In this case, (1.14) becomes

Mc2 = 4

3
E(0). (1.17)

Feynman has also suggested that ‘almost all’ mass of the electron is due to its elec-
tromagnetic energy [63].

This identification of the mass with the energy, as suggested by Abraham, was
the first step to the wave theory of matter. Such a theory was later developed by de
Broglie and Schrödinger.

Einstein had corrected relation (1.17) and extended it to any type of energy and
mass as follows:

E = Mc2. (1.18)

This formula holds for selfconsistent relativistic models [53]. The Abraham puz-
zling factor 4/3 can be explained as being due to the fact that the classical model
is not self-consistent because of electrostatic repulsion. The theoretical and practi-
cal importance of this formula can hardly be overrated. In particular, this formula
provided the main stimulus for practical use of nuclear energy.

1.3 Thermodynamics

Thomson’s discovery of the electron seems to confirm the Lorentz electron theory.
However, the Lorentz basic equation (1.12) contains only one frequency ω0, and
so is incapable of explaining Combination Principle (1.1) and predicting spectral
terms (1.2).

This problem was solved for the first time by Bohr and Debye in 1913 in the
old Bohr quantum mechanics (Sect. 1.4), and more satisfactory, by Heisenberg and
Schrödinger in 1925–1926.
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The crucial role in the development of the old quantum mechanics was played
by Planck’s investigation (started in 1894) of the thermodynamic equilibrium in the
radiation-matter system. Planck’s studies were inspired by the radiation law, which
was discovered by Kirchhoff in 1859 [99].

1.3.1 Equilibrium Radiation

The Kirchhoff discovery is based on the coincidence of the absorption and emission
spectrum of the carbon (1849), as observed by Foucault, and the similar coincidence
for sodium, as verified by Bunsen and Kirchhoff (1859). In short,

the emissivity is proportional to the absorptivity

This statement is supported by the following experiments:

(i) Let us take two cups (black and white) at normal temperature (20 ◦C). The
absorption under an external illumination of the black cup obviously exceeds
that of the white one. Now let us heat the cups in an oven up to 200–300 ◦C.
Then the thermal radiation of the black cup is more intense than that of the
white one—this can be felt by hand.

(ii) A small aperture in a platinum cavity is black at normal temperature (20 ◦C); it
shines brightly at high temperatures (1600 ◦C).

Taking into account these and other observations, Kirchhoff suggested that the
thermodynamic equilibrium of a substance at any fixed temperature T should be
looked upon as a statistical equilibrium between the absorbed and emitted light: the
spectrum, which is the set of all frequencies ω, and the intensity I (ω) = IT (ω) of
the absorbed and emitted light should coincide.

On the other hand, the equilibrium radiation field is substance-dependent. This
suggests a new question on thermodynamic equilibrium between different sub-
stances: the surrounding radiation field should correspond to each of the substances.
Hence, it is natural to suppose the existence of a universal equilibrium radiation field
corresponding to any fixed temperature.

In this radiation field, each substance emits (and absorbs) its characteristic com-
ponents of light, and reflects other components. In the equilibrium, the sum of the
emitted and reflected light coincides with the equilibrium radiation. This means that
the resulting radiation of all substances is identical, i.e. of the same color. This phe-
nomenon was well known from experiments on melting metals as early as in the
sixth millennium BC: it is impossible to distinguish visually the heated iron ore
from the burning carbon in thermodynamic equilibrium during fusion in the blast
furnace. This coincidence of colors of the iron ore and carbon was used as an indi-
cation of the start of the melting.

This coincidence occurs inside the oven and bears evidence on the thermody-
namic equilibrium in the absence of external illumination; the latter allows one to
distinguish different substances exactly because the light source is not in the ther-
modynamic equilibrium with the substances, and the emission does not balance the
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absorption. For example, the emitted light is negligible under a bright illumination
by the sun, electricity, etc. at room temperatures (20 ◦C). On the other hand, differ-
ent objects cannot be distinguished if the source is at the same temperature as the
substances (as in the dark room).

The universal equilibrium spectral density is referred to as the ‘black-body radia-
tion’, since by definition the reflection of the ‘black-body’ is zero, and hence in this
case its emission (radiation) would equal the equilibrium density. For example, the
radiation spectrum of the burning carbon is a good approximation to the equilibrium
spectral density.

It is worth pointing out, however, that the universal equilibrium spectral density
is independent of the radiating body; hence the reference to the ‘black-body’ is
only a convention. Also, perfect black bodies do not exist in nature. In practice, the
‘black-body’ is modeled by a small aperture in a heated cavity, inasmuch as the
aperture absorbs all incident waves.

A precise formulation of Kirchhoff’s law is as follows:

For every temperature T > 0, there is a specific spectral intensity I (ω) = IT (ω)

of light (per unit volume) which is in statistical equilibrium with any substance of
temperature T .

Kirchhoff deduced this law from the second law of thermodynamics. Namely,
let us consider the light inside two cavities made of different materials, which is in
thermodynamic equilibrium with the walls at the same temperature. Let us bring the
cavities in the contact through a common aperture with an optical filter, allowing
the light exchange at a fixed frequency. Given different spectral densities at this
frequency, this results in energy exchange between the cavities to cause one cavity
to heat and the other one to cool down, no work being done [7].

1.3.2 Experiments and Theory

The experimental measurements of the equilibrium spectral density I (ω) were per-
formed by Tyndall (1865), Stefan (1879), Crova (1880), Langley (1886), Weber
(1887), and Paschen and Wanner (1895–1899). In 1899, Lummer and Pringscheim,
and Kurlbaum and Rubens made very precise measurements involving ω = 2πc/λ,
which corresponds to wavelengths λ ranging between 0.4 μm (dark violet H-line
of ionized calcium) and 50 μm (far-infrared spectra), where μm = 10−4 cm and
temperatures ranged between −188 ◦C and 1600 ◦C.

The results of empirical observations were summarized by Wien in 1896: for
large frequencies ω corresponding to (small) wavelengths λ between 0.4 μm and
18 μm, Wien’s formula reads as follows:

I (ω) ∼ ω3e− γω
T , γ ≈ 0.76 × 10−11 K s, ω 	 1. (1.19)
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In 1879, Stefan has experimentally discovered the law of total radiated energy den-
sity:

∫ ∞

0
I (ω)dω = CT 4 (1.20)

(the radiation of heat per unit of time and area of a body of absolute temperature T

is proportional to T 4). Boltzmann deduced this Stefan–Boltzmann law in 1884 from
the second law of thermodynamics [7].

Next step was made by Wien who set forth the scaling law

I (ω) = ω3f

(
ω

T

)

, (1.21)

which was suggested by the displacement of the maximum value depending on T .
This law was based on experimental evidence: at high temperatures the spectrum
of burning carbon shifts to smaller wavelength. Wien theoretically justified this
formula in 1893 by further analyzing the second law of thermodynamics. Clearly,
(1.21) supports the law (1.20).

In 1894, Rayleigh and Jeans deduced the formula

I (ω) = ω2kT

π2c3
(1.22)

where

k = R/NA = 1.38 × 10−16 erg/K (1.23)

is the Boltzmann constant, R = 8.3141 × 107 erg
mol K is the universal gas constant,

and NA = 6.022 × 1023 mol−1 is the Avogadro number. The underlying analysis re-
sides in the classical electrodynamics and in the Boltzmann’s equipartition principle
(1876) for the oscillators of the Maxwell field.

Unfortunately, for ω 	 1 this formula cannot be valid, since it gives infinite total
radiation (1.20). On the other hand, the Rayleigh–Jeans formula is supported by
experimental evidence for small frequencies ω.

Conversely, the Wien distribution agrees well with experimental data for large
ω/T , but it contradicts the experimental evidence for small ω/T .

In 1900, Planck discovered his famous formula

I (ω) = �ω3

π2c3

e− �ω
kT

1 − e− �ω
kT

(1.24)

where � is the Planck constant,

� ≈ 1.05 × 10−27 erg s. (1.25)

Formula (1.24) accords remarkably well with experimental observations in the
entire observed range of frequencies. In particular, it agrees with the Wien for-
mula (1.19) (for large frequencies), and with the Rayleigh–Jeans formula (1.22)
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(for small frequencies). Both formulas (1.22) and (1.24) agree with the Wien’s dis-
placement law (1.21).

Planck’s law leads to the revolutionary quantization (discretization) of en-
ergy of the oscillators of the Maxwell field. The Planck’s ideas served as a key
tool in the creation of quantum mechanics by Einstein, Bohr, Heisenberg and
Schrödinger.

1.3.3 The Rayleigh–Jeans Law: Ultraviolet Divergence

The derivation of the Rayleigh–Jeans formula (1.22) depends on the Maxwell elec-
trodynamics and the Boltzmann thermodynamics. In the free space (when ρ(t,x) =
0 and j(t,x) = 0), the Maxwell equations (1.3) reduce to the system

⎧
⎪⎪⎨

⎪⎪⎩

div E(t,x) = 0, curl E(t,x) = −1

c
Ḃ(t,x),

divB(t,x) = 0, curl B(t,x) = 1

c
Ė(t,x).

(1.26)

The spectral density I (ω) is formally defined, for ω > 0, by

I (ω) := 1

8π
M

[
Ẽ2

ω(t,x) + B̃2
ω(t,x)

]
(in unrationalized Gaussian units) (1.27)

(see (7.76) for the correct definition). Here M means the (mathematical) expecta-
tion, Ẽω(t,x) and B̃ω(t,x) are, respectively, the Fourier components of the equilib-
rium electric and magnetic fields at temperature T . In other words,

Ẽω(t,x) = e−iωtE(ω,x) + eiωtE(−ω,x),

B̃ω(t,x) = e−iωtB(ω,x) + eiωtB(−ω,x),
(1.28)

where E(ω,x) and B(ω,x) are the Fourier amplitudes of the fields,

E(t,x) =
∫

R

e−iωtE(ω,x) dω, B(t,x) =
∫

R

e−iωtB(ω,x) dω. (1.29)

Consider the lattice


 = {
k = (

k1,k2,k3) ∈ πZ3/L : k1,k2,k3 ≥ 0
}
.

I. We will represent the free Maxwell field in the cubic cavity [0,L]3 with metal
walls as a collection of independent harmonic oscillators. Both the tangential com-
ponent of E(t,x) and the normal component of B(t,x) vanish on the conducting
boundary. The corresponding eigenmodes are harmonics of the form
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Ekα(x) = (
e1

kα cos k1x1 sin k2x2 sin k3x3, e2
kα sin k1x1 cos k2x2 sin k3x3,

e3
kα sin k1x1 sin k2x2 cos k3x3

)

Bkα(x) = (
b1

kα sin k1x1 cos k2x2 cos k3x3,b2
kα cos k1x1 sin k2x2 cos k3x3,

b3
kα cos k1x1 cos k2x2 sin k3x3

)
.

To satisfy the Maxwell equations div Ekα(x) = 0 and div Bkα(x) = 0, we choose
two orthogonal real vectors ekα := (e1

kα
, e2

kα
, e3

kα
) and bkα := (b1

kα
,b2

kα
,b3

kα
) so as

to have ekα · k = bkα · k = 0 for α = 1,2. The Maxwell field can be expanded into
a Fourier series as follows:

E(t,x) =
∑

α

∑

k∈


√
8πω(k)

L3
Ekα(x)qkα(t),

B(t,x) =
∑

α

∑

k∈


√
8πω(k)

L3
Bkα(x)pkα(t);

(1.30)

here ω(k) = |k|c. The normalization factors guarantee that the variables qkα , pkα

are canonically conjugate. Finally, the Maxwell equations (1.26) for the curl reduce
to

k × ekαqkα(t) = −1

c
bkαṗkα(t),

k × bkαpkα(t) = −1

c
ekαq̇kα(t), k ∈ 
, α = 1,2.

(1.31)

Now we choose arbitrary mutually orthogonal ‘polarization’ unit vectors ekα⊥
k ∈ R

3, α = 1,2, and set bkα := k
|k| × ekα . Then k

|k| × bkα = −ekα , and so (1.31)
reads as the Hamilton equations for harmonic oscillator

qkα(t) = − 1

ω(k)
ṗkα(t), pkα(t) = 1

ω(k)
q̇kα(t), k ∈ 
, α = 1,2. (1.32)

This means that the free Maxwell field is equivalent to the infinite collection of
independent harmonic oscillators. Finally, the total electromagnetic energy in the
finite volume [0,L]3 is as follows:

E = 1

8π

∫

[0,L]3

[
E2(t,x) + B2(t,x)

]
dx = 1

2

∑

α=1,2

∑

k∈


ω(k)
[
q2

kα(t) + p2
kα(t)

]
,

(1.33)
because of orthogonality of the eigenmodes Ekα(x) and Bkα(x), and due to the
choice of the unit vectors ekα and bkα and of the normalization factors in (1.30).

The system of oscillators (1.32) is Hamiltonian with the Hamilton function
(1.33).

II. The Boltzmann equipartition principle assigns the mean energy

Ē = kT (1.34)
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to every independent degree of freedom. Here, the bar denotes the mathematical
expectation. In particular, contribution of each oscillator (1.32) to the total energy
(1.33) is as follows:

1

2
ω(k)

[
q2

kα
(t) + p2

kα
(t)

] = kT , k ∈ 
, α = 1,2. (1.35)

Hence, the expectation of total energy (1.33) is infinite, even in the finite volume
[0,L]3!

III. Formula (1.22) follows from the geometry of the lattice 
 if we make
L → ∞. Namely, for each k ∈ 
, there are two independent oscillators correspond-
ing to the two possible polarizations ekα⊥k, the frequency of both oscillators being
|k|c; the number of wave vectors k ∈ 
 in a spherical layer r ≤ |k| ≤ r + dr is
asymptotically

N(r)dr ∼ 1

8

4πr2 dr

(π/L)3
, L → ∞. (1.36)

Hence the mean total energy of the oscillators with frequencies from ω = cr to
ω + dω = c(r + dr) is

L3I (ω)dω ∼ 2ĒN(r) dr, L → ∞. (1.37)

As a result,

I (ω) ∼ πω2

(πc)3
Ē, L → ∞. (1.38)

Now making L → ∞, this gives (1.22), since Ē = kT .
As we noted above, the Rayleigh–Jeans law gives the absurd infinite total energy

per unit volume,
∫ ∞

0
I (ω)dω = ∞; (1.39)

this is known as the ultraviolet divergence.

Remark 1.1 The equipartition principle (1.34) means that the mean total energy of
the Maxwell field is infinite, and hence, for a finite L, the mean energy density is
also infinite. The divergence in (1.39) means that this infinity of the mean energy
density retains in the limit L → ∞.

1.3.4 Planck’s Law: Quantization of Energy

Thus, by 1896, the situation was the following: the Rayleigh–Jeans distribution was
satisfactory for small frequencies, while Wien’s law works well for large frequen-
cies. Next step would be to interpolate between these two asymptotics with the main
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goal to avoid the ultraviolet divergence (1.39), providing the fast decay of the mean
energy Ē as ω → ∞.

The problem was resolved by Planck in 1900 [154, 155]. Planck’s derivation of
the spectral formula (1.24) depended on some delicate thermodynamic arguments
[172, Sect. 20]. In 1907, Einstein re-interpreted Planck’s arguments in the frame-
work of the statistical mechanics, and discovered that the same formula can be ob-
tained by a discretization of the energy distribution [57] (see also [177]).

Namely, the assignment (1.34) agrees with the universal Boltzmann–Gibbs sta-
tistical distribution for the energy E ≥ 0 (canonical ensemble),

p(E) = 1

Z
e− E

kT , Z :=
∫ ∞

0
e− E

kT dE = kT , (1.40)

since

Ē :=
∫ ∞

0
Ep(E)dE = −

[
d

dβ
log

∫ ∞

0
e−βE dE

]

β=1/kT

= kT . (1.41)

Analysing Planck’s thermodynamic arguments, Einstein suggested to substitute the
continuous Boltzmann distribution (1.40) by its discrete version

pε(E) = 1

Z

∞∑

n=0

e− E
kT δ(E − nε), Z :=

∫ ∞∑

n=0

e− E
kT δ(E − nε)dE, (1.42)

with an energy step ε > 0. This means that only the discrete energies E = nε with
integer n = 0,1,2, . . . are allowed. Now (1.41) changes to

Ē = 1

Z

∞∑

n=0

nεe− nε
kT , (1.43)

which is the Riemann sum corresponding to the integral (1.40). Calculating as in
(1.41), Einstein has arrived at the Planck’s expression for Ē:

Ē :=
∫

Epε(E)dE = −
[

d

dβ
log

∞∑

n=0

e−βnε

]

β=1/kT

=
[

d

dβ
log

(
1 − e−βε

)
]

β=1/kT

= εe− ε
kT

1 − e− ε
kT

(1.44)

(instead of (1.34)). To reconcile with the Wien’s scaling law (1.21), one should set

ε = �ω (1.45)

with a constant �> 0. Then Ē remarkably decays for large ω and tends to (1.34) as
ε → 0.
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Now, (1.38) with Ē = Ē(ω) implies the Planck’s famous formula (1.24). Finally,
we should set

� = kγ ≈ 1.05 × 10−27 erg s (1.46)

to reconcile the spectral law (1.24) with the empirical Wien formula (1.19) for large
ω/T . Moreover, (1.24) also agrees with the Rayleigh–Jeans spectral law (1.22) for
small ω/T .

Formula (1.45) was probably suggested by a comparison of the empirical Wien’s
law (1.19) with the Maxwell–Boltzmann–Gibbs probability distribution

p(E) ∼ e− E
kT , (1.47)

where E stands for the energy of a state. This comparison formally suggests the
relation

γω

T
= E

kT
, (1.48)

which implies the formula of type (1.45)

E = �ω (1.49)

with � given by (1.46).

1.3.5 Photoelectric Effect: Einstein’s Rules

A new treatment of Planck’s energy quanta (1.45) was suggested by Einstein in
1905 in his theory of the photoelectric effect [58] aimed at explaining the Lenard
experimental observations (1902), see Sect. 8.4. Einstein suggested the law

K = �ω − W (1.50)

for the (maximum) kinetic energy of the emitted electrons. He regarded this identity
as the energy conservation law, where �ω is the energy of the absorbed photon and
the constant W is the work function, which is the minimum energy needed to remove
an electron from a solid. Einstein was awarded the Nobel Prize (1921) for his theory
of the photoelectric effect.

1.3.6 Einstein and Debye: Specific Heat of Solids

In 1906, Einstein has applied Planck’s ideas to the specific heat problem [59], re-
garding a solid as a collection of independent oscillators with fixed frequency ω. He
employed formulas (1.44), (1.45) to calculate the internal energy U(T ,V ) = NĒ
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and the specific heat CV = ∂T U . The results obtained were in a satisfactory agree-
ment with experimental evidence for sufficiently large T . However, for small T , the
discrepancy was quite pronounced.

In 1912, Debye went further, representing the Hamiltonian of a solid as the sum
of energies of independent harmonic oscillators (‘phonons’) and applied formu-
las (1.44), (1.45) to each oscillator [42, 172]. His formula for specific heat provides
a much better agreement with observations for small T than Einstein’s formula.

1.4 ‘Old Quantum Mechanics’

Following the Lorentz electron theory (1895), atoms were modeled by classical os-
cillators (1.12). The theory gives the perfect description for the normal Zeemann
splitting of the spectral lines (see Sect. 14.5). In 1902, Zeeman and Lorentz were
awarded the Nobel Prize for these discoveries. However, the Lorentz theory cannot
predict the unperturbed spectral lines ωmn = ωm −ωn, and the origin of the spectral
terms ωn remained mysterious. Moreover, the model (1.12) is unstable due to the
friction term.

1.4.1 Planetary Model and Inconsistency of Classical Physics

The first ‘planetary’ model of an atom was introduced by Perrin in 1901: a positively
charged particle is surrounded by a finite number of negative electrons revolving
like ‘small planets’ around the positive charge (nucleus) [152]. Perrin suggested
that the angular velocities of the electrons motion correspond to the frequencies of
the radiation.

In 1904, Thomson proposed the plum pudding model: the atom is composed
of negative corpuscles (electrons) surrounded by the ‘soup’ of positive charges to
balance the electrons’s negative charges.

This model allowed to justify the Lorentz equation (1.12). Namely, the term
ω2

0x(t) exactly corresponds to the Coulomb force acting on the electron immersed
in the soup of positive constant charge density. This follows by the Gauss theorem.

The Thomson model was rejected after the famous Rutherford experiments
(1911) on the scattering of α-particles which showed the presence of a positively
charged ‘point’ nucleus. Then the planetary model became again popular.

However, the circling electrons move with the centripetal acceleration, thereby
losing their energy in accordance with the classical electrodynamics and eventually
falling on the nucleus (the corresponding rigorous result was established only in
1997, see [112]). Therefore, the classical planetary model contradicts the stability
of atoms. This being so, the classical physics had proved to be inconsistent in ex-
plaining the structure and stability of the matter. The problem required new robust
ideas.
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1.4.2 Bohr’s Postulates

A revolutionary ‘Columbus’s’ solution was put forward by Bohr in 1913 [15]:

I. Neglecting objections from the classical electrodynamics, Bohr postulated
(i) the existence of quantized stationary orbits |En〉, with energies En, where the
electrons do not radiate, and (ii) transitions between the orbits,

|Em〉 �→ |En〉. (1.51)

II. Bohr identified the frequency of electromagnetic wave, which is radiated (or
absorbed) in this transition:

ωmn = Em − En

�
. (1.52)

The above formula, written in the form

�ωmn = Em − En, (1.53)

expresses the energy conservation, inasmuch as �ωmn is the energy of the radiated
(or absorbed) photon in accordance with the Planck formula (1.45) and the Einstein
formula (1.50). Furthermore, a comparison with the Rydberg–Ritz’s Combination
Principle (1.1) implies that

En = �ωn + const. (1.54)

1.4.3 Debye Quantum Rules

Bohr’s postulates left open the question on the determination of energy levels En.
In 1913, Debye introduced the quantum condition for the determining the energies
En of periodic orbits of the electron in the atom:

S = 2π�n, n = 1,2,3, . . . , (1.55)

where S := ∮
p dq is the action integral over the period. The condition was sug-

gested by the Planck energy distribution (1.42) with the discrete energy levels

En = nε = n�ω. (1.56)

Namely, Planck postulated the discreteness of energies for the oscillating eigen-
modes (1.30) of the Maxwell field. In this case, (1.56) is equivalent to (1.55), since
the action is S = 2πE/ω for the harmonic oscillators (1.32). The quantum condition
was also motivated by the Ehrenfest ideas on adiabatic invariants [147].

The most convincing confirmation of (1.55) came from the Balmer formula (1.2),
written as

En = − b

n2
, n = 1,2, . . . , (1.57)
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where b = �B . We will show that (1.55) implies (1.57) with

b = me4

2�2
, (1.58)

where m and e are the rest mass and the charge of the electron in unrationalized
Gaussian units (cgs), and � is the Plank constant (1.25); their modern values (in
these units) are as follows:

e = −4.8032068 × 10−10 esu, m = 9.10938188 × 10−28 g. (1.59)

Calculating (1.58), we obtain b ≈ 21.79×10−12 erg = 21.79×10−19 J. Dividing by
the electron charge |e| = 1.602 × 10−19 C (SI), it follows from (1.57) that E1/e =
b/|e| ≈ 13.60 V, which perfectly agrees with the experimentally known ionization
energy 13.60 e V of the hydrogen.

We still need to derive (1.57) from (1.55). Let us consider the circular electron
orbit of radius R. The energy conservation and the Newton equation read, respec-
tively,

E = mv2

2
− e2

R
, mv2 = e2

R
. (1.60)

Hence, E = − e2

2R
= −mv2

2 , and so v =
√

− 2E
m

and R = − e2

2E
. Further, (1.55) now

becomes mv2πR = 2π�n; that is,

m

√

−2E

m

[

− e2

2E

]

= �n, (1.61)

which is equivalent to (1.57), (1.58). The same result also holds for the elliptic orbits
(see Sect. 14.2).

This confirmation of the quantum condition (1.55) was the great triumph of the
Bohr–Debye quantum theory. Moreover, it buried the hope that pure electromagnetic
theory of matter is possible, since the Planck constant with dimension of action can-
not be obtained from fundamental parameters of classical electrodynamics (speed
of light, the electron mass, and charge).

In 1916, Sommerfeld and Wilson extended the Debye quantum condition to pe-
riodic trajectories of multidimensional systems (cf. (14.10)):

∮

pk dqk = 2π�nk, nk = 1,2,3, . . . (1.62)

for every degree of freedom qk .

1.4.4 Boltzmann Distribution in Old Quantum Mechanics

In 1917, Einstein derived Planck’s formula (1.24) from the Bohr postulates, avoid-
ing the energy discretization (1.42) introduced by Planck. In this derivation, the
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key role is played by the Boltzmann distribution for the energies of stationary or-
bits. This distribution was introduced by Boltzmann in 1887 for a gas in thermody-
namic equilibrium at temperature T > 0; Boltzmann himself attributed this formula
to Maxwell.

Suppose that the Boltzmann characteristic energy kT is less than the ionization
energy, which is about 13.6 e V for the hydrogen atom. Taking into account 1 e V ≈
1.602 × 10−12 erg, it follows that kT � 13.6 × 1.6 × 10−12, which is equivalent to

T � 13.602 × 1.6 × 10−12

1.38 × 10−16
≈ 13.6 × 11600 K ≈ 157 × 103 K. (1.63)

Below such temperatures, the interaction between the gas and the heat bath can be
considered as a small perturbation of atoms: the atoms stay in their own quantum
stationary states, sometimes undergoing the Bohr quantum transitions. In the statis-
tical equilibrium, the mean number N of atoms and the mean energy E(T ) of the
gas should be constant:

N =
∑

Nm(T ) = const, E(T ) =
∑

EmNm(T ) = const, (1.64)

where Nm(T ) is the mean number of atoms on the Bohr orbit |Em〉. Therefore, the
equilibrium distribution of atoms is given by the Boltzmann formula

Nm(T )

N
≈ 1

Z
e− Em

kT (1.65)

where Z is the normalization factor

Z =
∑

e− Em
kT (1.66)

ensuring the first identity of (1.64). For sufficiently large N formula (1.65) follows
from Boltzmann’s classical arguments (1877) on the maximum probability (or en-
tropy) [17], [172, (29.10)].

1.4.5 Einstein Theory of Radiation: Counting Photons

In 1917, Einstein deduced the Planck formula (1.24) by equating the photons emis-
sion rate to the rate of their absorption. The Einstein theory relies on Bohr’s postu-
lates on transitions between quantum stationary states and the Boltzmann distribu-
tion (1.65). Additionally, Einstein postulated the existence of ‘photons’, as well as
certain relations for the rate of Bohr’s transitions.

Namely, let us consider gas of atoms at temperature T in statistical equilibrium
with the electromagnetic radiation. Let |Em〉 and |En〉 be two stationary orbits of
electrons with the energies Em < En. Denote by ωnm := (En −Em)/� the frequency
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of the absorbed ‘photon’, and by Nm and Nn, the number of the atoms in the state
|Em〉 and |En〉, respectively. The Boltzmann distribution (1.65) gives the relation

Nn/Nm = e− En
kT /e− Em

kT . (1.67)

Einstein had put forward the following new postulates:

I. The rate of absorption, |Em〉 → |En〉, is proportional to I (ωnm):

Zmn = NmBmnI (ωnm), (1.68)

where Zmn is the number of transitions per unit time.

II. The rate of emission, |En〉 → |Em〉, consists of two terms:

Znm = Nn

[
Am + BnmI (ωnm)

]
. (1.69)

Here Zmn is the number of transitions per unit time, Am is the rate of ‘spontaneous
emission’ (since it does not depend on the photons density I (ωmn)), BnmI (ωmn) is
the rate of the ‘induced emission’. Similarly, Zmn in (1.68) is the rate of the ‘induced
absorption’.

III. The Rayleigh–Jeans law (1.22) holds asymptotically for small
ωmn

T
; i.e.,

I (ωnm) ∼ ω2
mnkT

π2c3
as

ωmn

T
→ 0 (1.70)

Remark 1.2 The proportionality to Nm and Nn in (1.68) and (1.69) ‘stems’ from the
mutual independence of atoms. Similarly, the proportionality to spectral distribution
I (ωnm) in (1.68) and (1.69) is motivated by regarding the distribution as the density
of photons, and by the mutual independence of photons in their interaction with
atoms.

In statistical equilibrium, Zmn = Znm, that is,

e− Em
kT BmnI (ωmn) = e− En

kT
[
Anm + BnmI (ωmn)

]
, (1.71)

according to (1.67). Solving this equation, we obtain

I (ωmn) = Anm

Bmne
�ωmn

kT − Bnm

. (1.72)

To explain why Bmn = Bnm, Einstein applies the Taylor expansion in (1.72), getting

I (ωmn) = Anm

Bmn − Bnm + Bmn

�ωmn

kT

(1.73)
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for small ωmn

T
. This relation yields (1.70) as T → ∞ only if Bmn = Bnm. Hence,

Anm

Bnm

= �ω3

π2c3
, (1.74)

assuming additionally that coefficients Anm and Bnm are independent of T . Now
(1.72) implies the Planck formula (1.24).

In 1926, Dirac reproduced this formula in the framework of the Schrödinger wave
mechanics [43] (see Sect. 7.3).

1.4.6 Bohr’s Correspondence Principle

In 1913, Bohr introduced his correspondence principle and then reformulated it in
several different forms until 1924. The principle was inspired by the belief that the
quantum predictions turn into the corresponding classical ones as � → 0. For ex-
ample, Einstein’s discretization (1.42) with the step (1.45) turns into the Boltzmann
equipartition law (1.34).

One of Bohr’s formulations, dated 1920, reads: the quantum theory should re-
produce classical physics in the limit of large quantum numbers, see [16].

Example The discrete energy levels (1.57) of the hydrogen become quasicontinuous
for large n and tend to zero. This corresponds to the fact that Kepler’s bounded
orbits (ellipses) exist only for negative energy E < 0. Moreover, both quantum and
classical orbits do not exist for positive energies.

In the Schrödinger’s wave mechanics, the nonexistence of quantum orbits with
a positive energy follows from Kato’s theorem on the absence of embedded eigen-
values. Thus, Kato’s theorem can be considered as a particular realization of Bohr’s
Correspondence Principle.

The correspondence principle was applied by Ladenburg [127] to determine
the Einstein coefficient of absorption Bmn, by Kramers [121, 122], and Kramers
and Heisenberg [123], to the dispersion theory (see the Kramers–Kronig formula
(8.83)), and by many others. The correspondence principle is used, in particular,

(i) For substitution of difference quotient �F/�J with �J = n� instead of classi-
cal derivatives of the type dF/dJ .

Example Bohr’s postulate (1.52) reads ω = �E/�J , where J = S/2π , by (1.55).
This corresponds to the classical formula ω = dE/dJ , see (2.7) below;

(ii) For substitution of expressions of the type J (J + 1) instead of J 2, as in the
formulas (14.66), (14.68) for the effective gyromagnetic ratio. The classical
formula (14.66) has been deduced by Landé in 1921 from classical vector model
for spin-orbital interaction to explain the Einstein–de Haas experiment and the
anomalous Zeemann effect (Sect. 10.3).
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Bohr applied the correspondence principle to multi-electron atoms to explain the
atom radiation and the periodic law, basing his arguments on the geometric config-
uration of the orbits of different electrons in an atom, the screening effects, etc. The
most prominent application was Heisenberg’s discovery of the Matrix Quantum Me-
chanics. The detailed exposition of the correspondence principle and its applications
can be found in the Pauli’s survey [147] and in [188].



Chapter 2
Heisenberg’s Matrix Mechanics

Abstract The quantum selection rule and its generalizations are capable of predict-
ing energies of the stationary orbits; however they should be obtained in a more gen-
eral framework of a universal theory, which could provide the intensities of spectral
lines, scattering cross sections, etc.

Such a dynamical theory has been discovered first by Heisenberg in 1925 by
developing Bohr’s correspondence principle. The Heisenberg ‘matrix mechanics’
serves as a tool for extending the quantum selection rule (1.55) to arbitrary quan-
tum systems, independently of the periodicity of trajectories of the corresponding
classical models. The stationary energies appear to be the eigenvalues of the matrix
Hamiltonian.

All equations and predictions of the Heisenberg theory turn into the classical one
as � → 0; this agrees with the Bohr Correspondence Principle.

Heisenberg’s theory, as was developed immediately by Born, Jordan, Pauli and
others, is capable of producing the Hydrogen spectra, the selection rules and in-
tensities of spectral lines, the quantization of the Maxwell field, etc. Up to now,
Heisenberg’s theory serves as the ground for the quantum electrodynamics and for
modern quantum field theory.

2.1 Heisenberg’s Matrix Formalism

Heisenberg suggested a novel revolutionary treatment of classical kinematics by
combining Bohr’s postulates (1.52) with the quantum selection rule (1.55) and the
Bohr’s Correspondence Principle.

2.1.1 Classical Oscillator

In 1925, Heisenberg [82] applied the correspondence principle to the one-dimens-
ional oscillator

ẋ(t) = p(t), ṗ(t) = f
(
x(t)

)
, f (x) = −V ′(x) (2.1)

A. Komech, Quantum Mechanics: Genesis and Achievements,
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introducing a non commutative algebra of ‘quantum’ observables and the corre-
sponding dynamical equations. This is the Hamilton equation with the Hamiltonian
function

H(x,p) = p2

2
+ V (x); (2.2)

the energy is conserved,

p2(t)

2
+ V

(
x(t)

) = E, t ∈ R. (2.3)

Let us assume that the potential is confining; i.e.,

V (x) → ∞, |x| → ∞.

Then each solution is periodic in time, the period being given by

T =
∮

dt =
∫

γ

dx√
2(E − V (x))

, (2.4)

where γ is the trajectory H(x,p) = E, and dt = dx/dp. This period can be infinite
when E is a critical value of V (x). It can be written as

T = dS

dE
, (2.5)

where S = ∮
p dx is the action integral over the period; i.e.,

S =
∫

γ

√

2
(
E − V (x)

)
dx. (2.6)

Equivalently, (2.5) can be written as

ω = dE

dJ
, J := S/2π, (2.7)

where ω = 2π/T is the angular frequency. The corresponding Fourier series for the
trajectories read

x(t) =
∑

ν∈Z
xνe

iνωt , p(t) =
∑

ν∈Z
pνe

iνωt , (2.8)

where the frequencies can be expressed as follows:

νω = lim
ε→0

E(J + νε) − E(J )

ε
, ν ∈ Z. (2.9)

Thus the classical framework is capable of yielding only the frequencies νω.
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2.1.2 Quantum Oscillator

Main features of the program of Heisenberg are as follows:

I. The position and momentum of an electron in the atom are not observable, since
the Bohr postulates treat ‘stationary orbits’ rather than the electron motion. Re-
spectively, these classical dynamical variables should be reinterpreted by taking
into account the Bohr’s correspondence principle.

II. The form of all classical relations between the dynamical variables (the form
of dynamical equations, the expressions for the Hamiltonian, for the angular
momentum, for the dipole moment, etc.) should be kept.

Correspondence Principles and Quantum Observables

The quantum selection rule (1.55) gives J = n� for n = 1,2,3, . . . . On the other
hand, by the Bohr postulate (1.52),

ωmn = E(m�) − E(n�)

�
. (2.10)

The key Heisenberg’s observation was the parallelism between (2.10) and the rela-
tion (2.9), which can be written approximately as follows:

(m − n)ω ≈ E(m�) − E(n�)

�
, |m − n| � m. (2.11)

Comparing (2.11) and (2.10), Heisenberg suggested, by the Bohr’s correspon-
dence principle, that ωmn should be quantum analogues of the classical ‘obertones’
(m − n)ω. This suggestion is confirmed by the Rydberg–Ritz Combination Princi-
ple (1.1), as written in the form

ωmn = ωmk + ωkn (2.12)

which agrees with the classical ‘combination principle’

ω(m − n) = ω(m − k) + ω(k − n). (2.13)

Respectively, the classical Fourier coefficients xm−n and pm−n should be substituted
by new quantum amplitudes x̂mn and p̂mn, and the Correspondence Principle should
be treated as the asymptotics

x̂mne
iωmnt ≈ xm−ne

iω(m−n)t ,

p̂mne
iωmnt ≈ pm−ne

iω(m−n)t , |m − n| � m.
(2.14)

Hence, the quantum analogues x̂(t) and p̂(t) of the classical abservable x(t) and
p(t) should be constructed in terms of collections of all quantum amplitudes

x̂(t) = {
x̂mne

iωmnt : m,n = 1,2, . . .
}
,

p̂(t) = {
p̂mne

iωmnt : m,n = 1,2, . . .
}
,

(2.15)
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representing the system at time t . The form of the observables was intended to give
an appropriate description of Bohr’s transitions (1.51), introducing the unknown
frequencies ωmn and the corresponding amplitudes x̂mn and p̂mn, which are provi-
sionally responsible for the transitions.

Matrix Algebra

Heisenberg’s main intention was to keep all the classical relations for new ‘quan-
tum observables’ (2.15), taking the correspondence (2.14) as the ‘Ariadne’s thread’.
First, Heisenberg kept the form of dynamical equations (2.1), postulating

∂t x̂(t) = p̂(t), ∂t p̂(t) = f
(
x̂(t)

)
(2.16)

where the derivatives and the first linear equation are well defined for the quantum
observables (2.15). On the other hand, the meaning of the nonlinear function f (x̂)

should be reinterpreted for general nonlinear functions f , at least for the polynomial
functions.

For example, let us discuss the case of f (x) = −λx2 considered by Heisenberg.
The multiplication of the Fourier series (2.8) gives

x2(t) =
∑

μ,ν∈Z
xμxνe

i(μ+ν)ωt . (2.17)

Equivalently, the Fourier component of x2(t) with frequency ω(m − n) is given by

(
x2)

m−n
eiω(m−n)t =

∑

k∈Z
xm−ke

iω(m−k)t xk−ne
iω(k−n)t . (2.18)

Now the correspondence principle (2.14) suggests the definition

(
x̂2)

mn
eiωmnt :=

∑

k∈Z
x̂mk(t)e

iωmkt x̂kn(t)e
iωknt , (2.19)

which agrees with the Rydberg–Ritz Combination Principle (2.12). In other words,

(
x̂2(t)

)

mn
:=

∑

k∈Z
x̂mk(t)x̂kn(t), (2.20)

where x̂mk(t) := x̂mke
iωmkt and x̂kn(t) := x̂kne

iωknt . The rule (2.20) was recognized
as the matrix multiplication by Born, who remembered the lectures delivered by
Jakob Rosanes at the Breslau University when reading the Heisenberg manuscript.
Definition (2.20) has become the cornerstone of the matrix mechanics of Heisen-
berg—it means that a quantum abservable x̂(t) is the matrix of an operator with the
matrix entries xmn(t).



2.1 Heisenberg’s Matrix Formalism 29

It is worth noting that the classical observables (2.8) correspond to particular case
of the Töplitz matrices

x̂(t) = (
xm−ne

iω(m−n)t
)
, p̂(t) = (

pm−ne
iω(m−n)t

)
(2.21)

which are Hermitian, since the functions x(t) and p(t) are real. Respectively, the
corresponding quantum observables (2.15) are postulated to be Hermitian.

Now the quantum equations (2.16) are well-defined at least for any polynomial
function f .

Dynamical Equations

Dynamical equations for x̂(t) and p̂(t) follow by differentiating (2.15): using the
key Bohr’s relation (1.52), we obtain

∂t x̂(t) = i
Em − En

�
xmne

iωmnt , ∂t p̂(t) = i
Em − En

�
pmne

iωmnt . (2.22)

In the matrix form, the equations are known as the Heisenberg equations,

i�∂t x̂(t) = [
x̂(t), Ê

]
, i�∂t p̂(t) = [

p̂(t), Ê
]
, (2.23)

in which Ê is the diagonal matrix Emn = Emδmn. The next crucial step was the
identification

Ê = H
(
x̂(t), p̂(t)

)
. (2.24)

Now the Heisenberg equations (2.23) take the form

i�∂t x̂(t) = [
x̂(t),H

(
x̂(t), p̂(t)

)]
, i�∂t p̂(t) = [

p̂(t),H
(
x̂(t), p̂(t)

)]
. (2.25)

From these equations it follows that the dynamics of any polynomial observable
M(x̂(t), p̂(t)) should be described by the similar equation

i�∂tM
(
x̂(t), p̂(t)

) = [
M

(
x̂(t), p̂(t)

)
,H

(
x̂(t), p̂(t)

)]
(2.26)

(by the Jacobi identity for commutators). In particular,

i�∂tH
(
x̂(t), p̂(t)

) = [
H

(
x̂(t), p̂(t)

)
,H

(
x̂(t), p̂(t)

)] = 0, (2.27)

which means the conservation of quantum energy and justifies identification (2.24).

Commutation Relations

Comparing (2.25) with the postulate (2.16), it follows that

i�p̂(t) = [
x̂(t),H(x̂, p̂)

]
, i�f

(
x̂(t)

) = [
p̂(t),H(x̂, p̂)

]
. (2.28)
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Applying to a particular Hamilton function H = p2/2 + x, which corresponds to
f (x) = −1, this establishes

i�p̂(t) = [
x̂(t), p̂2(t)/2

]
, −i� = [

p̂(t), x̂(t)
]
. (2.29)

Here the first identity follows from the second one; the latter is known to be the fun-
damental commutation relation obtained first in the Born and Jordan’s paper [18]:

[
x̂(t), p̂(t)

] = i�. (2.30)

Example 2.1 The examples of linear operators in C∞
0 (R) satisfying (2.30) are as

follows:

x̂ψ(x) = xψ(x), p̂ψ(x) = −i�
d

dx
ψ(x), ψ ∈ C∞

0 (R). (2.31)

Exercise 2.2 Prove the formulas
[
x̂(t), p̂N (t)

] = i�Np̂N−1(t),
[
p̂(t), x̂N (t)

] = −i�Nx̂N−1(t) (2.32)

for any N = 1,2, . . . . Hint: Use (2.30).

2.2 Early Applications of Heisenberg Theory

Heisenberg’s theory was immediately applied in [19, 148] to atoms with the energy-
matrix

Ê = 1

2m
p̂2 + V (x̂), (2.33)

where V (x) is a nucleus potential defined for x ∈ R
3, and x̂, p̂ are subject to com-

mutation relations

[x̂j , p̂k] = i�δjk, [x̂j , x̂k] = [p̂j , p̂k] = 0, j, k = 1,2,3, (2.34)

which ‘follow’ similarly to (2.29). Next triumph of Heisenberg’s theory was the
quantization of a Maxwell field by Dirac [44], who automatically implied the
Planck’s spectral law (1.24). Up to now, Heisenberg approach’s has great value in
quantum field theory (see [13, 33, 77, 138, 158, 159, 163, 189, 195, 196]).

2.2.1 Eigenvalue Problem

The main advantage of Heisenberg’s theory was the identification of the spectral
terms En with eigenvalues of the Hermitian operator Ê. Namely, the matrix Ê

in (2.23) is diagonal by definition, and En are its eigenvalues. To obtain En, one
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should find such dynamical variables x̂ and p̂ that the commutation relations (2.34)
hold, and at the same time, the corresponding matrix (2.24) should be diagonal.

However, the dynamical variables x̂ and p̂ are not specified uniquely by (2.34).
For example, we can choose operators (2.31) and make the transformation x̂ 	→
T −1x̂T , p̂ 	→ T −1p̂T , under which the commutation relations (2.34) are invari-
ant. Then operator (2.24) transforms as follows: Ê 	→ T −1ÊT . The matrix Ê

from (2.24) is Hermitian, like p̂ and x̂. Hence, one could expect to reduce Ê to
the diagonal form:

T −1ÊT =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

· · · · · · · · · · · · · · · · · · · · ·
· · · E2 0 0 0 0 · · ·
· · · 0 E1 0 0 0 · · ·
· · · 0 0 E0 0 0 · · ·
· · · 0 0 0 E−1 0 · · ·
· · · 0 0 0 0 E−2 · · ·
· · · 0 0 0 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.35)

The existence of the transformation T was known at that time (1925) for bounded
Hermitian operators with discrete and continuous spectrum in Hilbert spaces [86,
88]. The authors [19] suggested the existence also for unbounded operators—this
was proved later by J. von Neumann [142].

Reduction (2.35) is obviously equivalent to the eigenvalue problem. In fact,
(2.35) reads

∑

n

ÊmnTnk = TmkEk, m,k = 0,±1, . . . . (2.36)

In other words, the columns ek = (Tmk : m = 0,±1, . . .) of the matrix T are the
eigenvectors of Ê:

Êek = Ekek, k = 0,±1, . . . . (2.37)

The eigenvectors can be normalized: for the discrete eigenvalues,

〈ek, el〉 = δkl, (2.38)

where 〈·, ·〉 stands for the inner product in the Hilbert space l2, and similarly for the
eigenfunctions of continuous spectrum. Then the matrix T is orthogonal.

For the Hydrogen atom with the Coulomb potential V (x), the spectrum En was
obtained in this way by Pauli [148], who had obtained the Balmer formula (1.2)
with ωn = En/�.

Example: Quantization of Harmonic Oscillator

The solution of the eigenvalue problem (2.37) for one-dimensional harmonic oscil-
lator was a cornerstown for further development of quantum mechanics and quan-
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tum field theory. In this case, the Hamilton function reads: H = 1
2p2 + 1

2ω2x2, and

Ê = 1

2
p̂2 + 1

2
ω2x̂2, [x̂, p̂] = i�. (2.39)

The following proposition will be proved in Sect. 14.8.

Proposition 2.1 Eigenvalues of Ê are given by En = �ω(n + 1
2 ), n = 0,1, . . . .

2.2.2 Intensity of Spectral Lines

The key observation in the celebrated ‘three-man paper’ [19] was that the matrix
element x̂nn′ = 〈en, x̂en′ 〉 of the transformed matrix T ∗x̂T should be responsible for
intensity of the corresponding spectral line ωnn′ = ωn − ωn′ :

Inn′ = 2e2

3c3
x̂2
nn′ω4

nn′ . (2.40)

This expression is suggested by the Hertz formula (12.127) for radiation of the
dipole with the moment

p = ex̂nn′ . (2.41)

This identification was motivated by the following facts:

(i) p = ex in the classical theory;
(ii) Formula (12.127) for radiation of a harmonic dipole p(t) = exm−n cosω(m −

n)t was used previously by Heisenberg and Kramers for calculation of the
dispersion formula [123];

(iii) The correspondence principle suggests that the Fourier coefficient xn−n′ and
the frequency ω(n − n′) of the classical dipole should be substituted by the
matrix element x̂nn′ and the frequency ωnn′ respectively.

2.2.3 The Normal Zeeman Effect

Formula (2.40) was applied in [19] for the derivation of selection rules and inten-
sity of spectral lines in the normal Zeeman effect (see (9.14)). Calculation of the
corresponding intensities (2.40) relies on the following arguments:

(i) The commutation relations

[M̂1, M̂2] = −i�M̂3 (2.42)

hold for the components of quantum angular momentum M̂ := p̂ × x̂ (cf.
(6.39)).
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(ii) Operators Ê, M̂2 and M̂3 commute and hence can be simultaneously diagonal-
ized (cf. Lemma 6.10(ii)). Therefore, the eigenvectors of Ê can be numbered

by the corresponding eigenvalues E, m and m3 of the operators Ê,
√

M̂2 and
M̂3, respectively.

The selection rules mean that the matrix elements x̂nn′ = 〈en, x̂en′ 〉 and intensi-
ties (2.40) vanish if m′

3 = m3,m3 ± �. Here, the eigenvector en corresponds to the
triple (E,m,m3), and en′ , to the triple (E′,m′,m′

3). In terms of Bohr’s postulate,
the transitions (E,m,m3) → (E′,m′,m′

3) are forbidden if m′
3 = m3,m3 ± �. In

short, the selection rule m3 → m′
3,m

′
3 ± � holds.

2.2.4 Quantization of Maxwell Field and Planck’s Law

Dirac [44] was first to quantize a Maxwell field by representing it as the system of
independent harmonic oscillators (1.32). The system is Hamiltonian with the Hamil-
ton function (1.33) and the canonical variables qkα , pkα . Therefore, the commuta-
tion relations for the corresponding Heisenberg matrices should be

{[
q̂kα(t), p̂k′α′(t)

] = i�δkα,k′α′ ,
[
q̂kα(t), q̂k′α′(t)

] = [
p̂kα(t), p̂k′α′(t)

] = 0,

∣
∣
∣
∣
∣

k,k′ ∈ �, α,α′ = 1,2, (2.43)

which is suggested by (2.34). Further, (1.33) implies that the corresponding energy
operator reads:

Ê =
∑

α=1,2

∑

k∈�

Êkα (2.44)

where Êkα = ω(k)
2 [q̂2

kα
+ p̂2

kα
]. Finally, Proposition 2.1 with ω = 1 implies that

eigenvalues of Êkα equal Ekαn = �ω(k)(n+ 1
2 ) with n = 0,1, . . . . Therefore, eigen-

values of Ê are given by finite sums of Ekα,n(kα), since Êkα all commute, and hence
can be simultaneously diagonalized. Hence, the Boltzmann distribution (1.65) im-
plies that the eigenvalues of Êkα are independent for different kα.

Application of the Boltzmann distribution (1.65) to the quantized Maxwell field
immediately implies Planck’s low (1.24). First, the probabilities (1.65) of the eigen-
values Ekαn are given by

p(Ekαn) = 1

Zkα

e− Ekαn
kT , Zkα :=

∑

n

e− Ekαn
kT . (2.45)

This means that we have a discretization of the Einstein type (1.42) for the energy
distribution of each field oscillator. Further arguments mainly repeat those of (1.43)–
(1.44) and (1.36)–(1.37). In fact, the mean value of Ekα is as follows:
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Ēkα =
∑

n

Ekαnp(Ekαn) = −
[

d

dβ
log

∞∑

n=0

e−β�ω(k)(n+ 1
2 )

]

β=1/kT

= −
[

d

dβ
log

e−β�ω(k)/2

1 − e−β�ω(k)

]

β=1/kT

= �ω(k)/2 + �ω(k)e− �ω(k)
kT

1 − e− �ω(k)
kT

; (2.46)

this coincides with (1.44) up to the additional term �ω(k)/2, which makes the total
energy infinite after summation in k. We will drop this term, since the energy is
defined up to an additive constant and should vanish at T = 0. Then we obtain
(1.44):

Ēkα = Ē
(
ω(k)

) := �ω(k)e− �ω(k)
kT

1 − e− �ω(k)
kT

. (2.47)

Therefore, repeating the arguments of (1.36)–(1.37), we arrive at (1.38) and (1.24).



Chapter 3
Schrödinger’s Wave Mechanics

Abstract In 1926, Schrödinger proposed an alternative wave theory of quantization
by developing de Broglie’s wave particle duality. The Schrödinger theory also re-
gards the Hamiltonian as an operator in a Hilbert space, and the stationary energies,
as the corresponding eigenvalues.

The Schrödinger wave equation alone cannot be justified experimentally. One
should complete the equation with the corresponding quantum observables: energy,
momentum, angular momentum, charge and current, etc. A fundamental require-
ment for the introduction of the quantum observables is their agreement with the
corresponding classical observables; this follows from the ‘quasiclassical asymp-
totics’.

Schrödinger showed that his theory is equivalent to the Heisenberg’s matrix the-
ory. Moreover, both theories turn into the classical one as � → 0: Heisenberg’s the-
ory implies this correspondence directly, while for the Schrödinger theory, this fol-
lows from the quasiclassical asymptotics.

3.1 Wave-Particle Duality: de Broglie and Schrödinger

The wave description of matter was suggested for the first time by Abraham’s theory
of electromagnetic mass (1902), see Sect. 1.2.7.

The wave treatment of the cathode rays by Hertz, Lenard, and others was restored
since 1923 in de Broglie’s and Schrödinger’s wave theory of matter relying on the
Einstein’s theory of special relativity and Planck’s theory of radiation. The wave
nature of cathode rays was confirmed by the Davisson and Germer experiments on
the electron diffraction by crystals (1924–1927), see Sect. 5.2.2.

3.1.1 De Broglie Waves of Matter

The Planck’s radiation law and Einstein’s theory of the photo-electric effect (1905)
suggested the corpuscular treatment of the light as a collection of particles (photons)
restoring the Newton corpuscular theory of light. Thus the light is thought of as
an electromagnetic wave in the Maxwell electrodynamics and as a collection of

A. Komech, Quantum Mechanics: Genesis and Achievements,
DOI 10.1007/978-94-007-5542-0_3, © Springer Science+Business Media Dordrecht 2013
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particles in the photoelectric effect. This ‘wave-particle duality’ of the light was
broadly discussed since 1905, and in particular, at the First Solvay Congress in
Brussels (1911), one of main topics of which was the Einstein theory of the specific
heat of solids.

One of scientific secretaries of the congress was Marcel de Broglie, and he was
involved in preparing the proceedings of the Congress for publication. His young
brother, Louis de Broglie, fervently studied the manuscripts, and decided “dedicate
all my life for the study of the true nature of the mysterious quants introduced by
Planck ten years earlier in theoretical physics” [27, p. 458].

In 1923, Louis de Broglie extended the wave-particle duality from the light to the
matter [24–26]. Namely, he introduced the waves of matter, assigning the wave func-
tion ψ(x, t) = Aei(kx−ωt) to homogeneous beam of particles with fixed momentum
p and energy E. He found the corresponding wave vector k and the frequency ω by
applying the Plank relation (1.45) and Einstein’s Special Relativity.

Assume for a moment that the speed of light c = 1. Then a homogeneous beam
of free relativistic particles is characterized by energy-momentum vector (E,p)

satisfying the relativistic relation (13.11)

E2 = p2 + m2 (3.1)

with rest mass m ≥ 0. Louis de Broglie postulated a correspondence between a ho-
mogeneous beam and a plane wave

free particles of energy E and momentum p ⇔ ψ(t,x) = Aei(kx−ωt), (3.2)

where the vector (ω,k) is a function of (E,p); i.e.,

(ω,k) = F(E,p). (3.3)

Second, de Broglie applied the Einstein’s special theory of relativity to show that
the vector (ω,k) is proportional to (E,p),

(E,p) = �(ω,k). (3.4)

Proof by Special Relativity Arguments The wave function (3.2) must be Lorentz
invariant, hence the Lorentz group transforms both vectors, (ω,k) and (E,p), iden-
tically, as the covariant vectors. Further, the relativistic covariance requires that the
function F commutes with the Lorentz transforms (see Sect. 12.3),

FL(E,p) = LF(E,p), L ∈ SO(3,1). (3.5)

On the other hand, relation (3.1) implies that there exists L0 ∈ SO(3,1) such that

L0(E,p) = (m,0,0,0). (3.6)

Then (3.5) with L = L0 gives that

F(E,p) = L−1
0 F(m,0,0,0). (3.7)
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Finally, it follows from (3.5) with (E,p) = (m,0,0,0) that

FL(m,0,0,0) = LF(m,0,0,0), L ∈ SO(3,1). (3.8)

Taking rotations L ∈ SO(3) ⊂ SO(3,1), this establishes

F(m,0,0,0) = LF(m,0,0,0), L ∈ SO(3), (3.9)

since the vector (m,0,0,0) is invariant under the rotations. Hence, the vector
F(m,0,0,0) is also invariant under all rotations; i.e.,

F(m,0,0,0) = (
f (m),0,0,0

)
. (3.10)

We can define �1 by

m := �1f (m), (3.11)

since f (m) �= 0. Now (3.7) reads

F(E,p) = L−1
0 F(m,0,0,0) = L−1

0

(
f (m),0,0,0

)

= 1

�1
L−1

0 (m,0,0,0) = (E,p)

�1
, (3.12)

since L−1
0 (m,0,0,0) = (E,p) by (3.6). Hence

(ω,k) = (E,p)

�1
, (3.13)

by (3.3). Finally, the Planck formula (1.45) suggests that

�1 = �. (3.14)

Then (3.13) becomes (3.4). �

In all calculations (3.1)–(3.12) it has been assumed that the speed of light is c = 1.
To restore the value of c, is suffices to substitute everywhere E/c,ω/c and mc2 for
E,ω and m, respectively.

De Broglie’s relation (3.4) was confirmed experimentally by Davisson and Ger-
mer’s observations on the diffraction of cathode rays [40]. In 1929, de Broglie was
awarded the Nobel Prize for his discovery of (3.4).

3.1.2 De Broglie Wavelength and Dispersion Relations

Identity (3.4) plays a crucial role in the entire quantum theory. In particular, it im-
plies the famous de Broglie formula for the ‘particle wavelength’ λ = 2π/|k|:

λ = 2π�/|p|. (3.15)
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It also gives the relativistic dispersion relation (i.e., the relation between the wave
vector and frequency)

�
2ω2/c2 = �

2k2 + m2c2, (3.16)

which follows from expression for Hamiltonian of relativistic particle (see (13.11)):

E2/c2 = p2 + m2c2. (3.17)

For m = 0, we have |p| = E/c = �ω/c, and hence formula (3.4) gives

λ = 2πc/ω, (3.18)

as it holds for the light. Hence, the particles of light (‘the photons’) should have zero
rest mass.

For small values of |p| � mc, the following non-relativistic approximation holds,

E =
√

p2c2 + m2c4 ≈ mc2 + p2

2m
. (3.19)

Dropping here the ‘unessential’ additive constant mc2, we arrive at the non-
relativistic dispersion relation

�ω = �
2k2

2m
. (3.20)

Exercise 3.1 Calculate the wavelength of the electron beam in a television tube
with voltage U ≈ 10 KV. Hints:

(i) Electron energy at rest is E0 := mc2 ≈ 0.51 MeV; hence the electron energy
after acceleration E = E0 + eU ≈ 0.52 MeV, provided that the electron was
initially at rest. Now (3.17) gives

p2c2 = E2 − E2
0 ≈ (

522 − 512) × 108 (e V)2 ≈ 1010 (e V)2 (3.21)

(ii) Substituting e V ≈ 1.6 × 10−12 erg, we obtain

|p|c ≈ 105 × 1.6 × 10−12 = 1.6 × 10−7. (3.22)

Taking c ≈ 3 × 1010 cm/s, it follows that |p| ≈ 0.5 × 10−17. Finally, (3.15)
with (1.25) gives

λ ≈ 6 × 10−27

0.5 × 10−17
≈ 10−9 cm = 0.1 Å (3.23)

where Å = 10−8 cm is one Ångström, which is about the size of the hydrogen
atom.
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For a comparison, the wavelengths of visible light is as follows:

λ = 3800 Å for violet light,

λ = 4200 Å for indigo light,

λ = 4400 Å for blue light,

λ = 5000 Å for cyan light,

λ = 5200 Å for green light,

λ = 5650 Å for yellow light,

λ = 5900 Å for orange light,

λ = 6250 Å for red light.

Respectively, scattering of visible light by atoms is negligible, while for the electron
beam in television tube, the scattering is significant. This difference explains high
efficiency of electron microscopes.

3.1.3 Canonical Quantization I: Free Particles

The de Broglie plane wave should be implemented into a more general context of
wave fields and wave propagation. The corresponding wave equations are provided
by the dispersion relations (3.16) and (3.20): they imply the free Klein-Gordon resp.
Schrödinger equations for the plane wave ψ(t,x) = ei(kx−ωt) = ei(px−Et)/� describ-
ing the free particles:

1

c2
[i�∂t ]2ψ(t,x) = [

(−i�∇)2 + m2c2]ψ(t,x), (3.24)

i�∂tψ(t,x) = 1

2m
[−i�∇]2ψ(t,x) (3.25)

where ∇ = (∇1,∇2,∇3), ∇k := ∂
∂xk . Formally, the equations follow from the

energy-momentum relations (3.17), (3.19) by substitution (cf. (2.31))

E �→ Ê := i�∂t , p �→ p̂ := −i�∇ (3.26)

which is called “canonical quantization”.

3.1.4 Canonical Quantization II: Bound Particles

In 1925–1926, Klein, Gordon and Schrödinger extended the wave equations (3.24)
and (3.25) to the case of a bound electron interacting with an external Maxwell field

E(t,x) = −∇φ(t,x) − Ȧ(t,x), B(t,x) = curl A(t,x), (3.27)
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where φ(t,x) and A(t,x) are, respectively, the corresponding external scalar and
vector Maxwell potentials. For example, in the hydrogen atom, φ(t,x) = −e/|x| is
the Coulombic potential of the nucleus and A(t,x) ≈ 0, provided we neglect the
magnetic field generated by the nucleus motion and magnetic moment.

For a relativistic electron in an external Maxwell field, energy E is given by
(12.93):

[
E − eφ(t,x)

]2
/c2 =

[

p − e

c
A(t,x)

]2

+ m2c2 (3.28)

where e is the charge of the electron. Applying the canonical quantization (3.26),
Klein, Gordon and Schrödinger obtained the wave equation

1

c2

[
i�∂t −eφ(t,x)

]2
ψ(t,x) =

[

−i�∇− e

c
A(t,x)

]2

ψ(t,x)+m2c2ψ(t,x). (3.29)

For a nonrelativistic electron in an external Maxwell field, the energy E is given
by (12.90):

E =H(t,x,p) = 1

2m

[

p − e

c
A(t,x)

]2

+ eφ(t,x). (3.30)

This means that Hamiltonian form of the Lorentz equation (1.6) reads

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = ∇pH(t,x,p) = 1

m

(

p − e

c
A(t,x)

)

,

ṗ(t) = −∇xH(t,x,p) = −e∇φ(t,x) + e

mc
∇

[

A(t,x) ·
(

p − e

c
A(t,x)

)]

.

(3.31)

Exercise 3.2 Prove the equivalence of (1.6) and (3.31). Hint: Calculate ẍ1(t) dif-
ferentiating the first equation of (3.31), and use the second equation together with
relations (3.27).

Applying the canonical quantization (3.26) to (3.30), Schrödinger derived the
corresponding nonrelativistic wave equation [161]

i�∂tψ(t,x) = 1

2m

[

−i�∇ − e

c
A(t,x)

]2

ψ(t,x) + eφ(t,x)ψ(t,x), (3.32)

which can be written as follows:

i�∂tψ(t,x) = H(t)ψ(t,x),

H(t) =H(t,x,−i�∇) = 1

2m

[

−i�∇ − e

c
A(t,x)

]2

+ eφ(t,x). (3.33)
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Physical Interpretation of the Wave Function relies on the Schrödinger identi-
fication for the electric charge and current densities

ρ(t,x) := e
∣
∣ψ(t,x)

∣
∣2

, j(t,x) := e

m
Re

(

ψ(t,x)

[

−i�∇ − e

c
A(t,x)

]

ψ(t,x)

)

.

(3.34)

These expressions are justified by the agreement with the classical case for short
wavelength ‘packets’ (see Sect. 3.3 below); they are related by the continuity equa-
tion for charge (1.4), which holds for any solution of the Schrödinger equation.

Respectively, the normalization
∫

∣
∣ψ(t,x)

∣
∣2

dx = 1 (3.35)

should hold for wave functions describing one electron. Modern experiments give
the following values (in unrationalized Gaussian units):

e = −4.8032068 × 10−10 esu, m = 9.10938188 × 10−28 g,

� = 1.05457266 × 10−27 erg s, c = 29979245800 cm/s.
(3.36)

3.1.5 Quantum Stationary States: Eigenvalue Problem

For static external Maxwell potentials φext(x),Aext(x), the Schrödinger equation
(3.33) reads

i�∂tψ(t,x) = Hψ(t,x),

H =H(x,−i�∇) = 1

2m

[

−i�∇ − e

c
Aext(x)

]2

+ eφext(x). (3.37)

In this case, Schrödinger identified the quantum stationary states of the energy E

with the solutions of type

ψ(t,x) = ψ(x)e−iEt/�. (3.38)

The Schrödinger equation (3.37) becomes then the eigenvalue problem

Eψ(x) = Hψ(x), (3.39)

which is equivalent to (2.37). This eigenvalue problem agrees with the quan-
tum rules (1.55) and (1.62) asymptotically for large ‘quantum numbers’ (Bohr–
Sommerfeld quantum conditions, see [5, 78]).

Moreover, for the case of free particles, identification (3.38) agrees with the
de Broglie wave function ψ(t,x) = ei(px−Et)/� = eipx/�e−iEt/�. For bound par-
ticles in an external potential, identification (3.38) reflects the fact that the space is
‘twisted’ by the external field, while the time remains ‘free’.
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So the reasons for the Schrödinger identification (3.38) seem to be rather alge-
braic. On the other hand, we suggest that the identification also has a deep dynamical
background in the framework of the nonlinear coupled Maxwell–Schrödinger equa-
tions (see (4.26) below) with static external Maxwell potentials φext(x), Aext(x):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
i�∂t − e

(
φ(t,x) + φext(x)

)]
ψ(t,x)

= 1

2m

[

−i�∇ − e

c

(
A(t,x) + Aext(x)

)
]2

ψ(t,x),

1

4π
�φ(t,x) = e

∣
∣ψ(t,x)

∣
∣2

,

1

4π
�A(t,x) = e

mc
Re

[

ψ(t,x)

[

−i�∇ − e

c

(
A(t,x) + Aext(x)

)
]

ψ(t,x)

]

.

This being so, we suggest that the solutions

ψ(t,x) = ψω(x)e−iωt , φ(t,x) = φω(x), A(t,x) = Aω(x), (3.40)

with ω ∈ R, form a global attractor for the coupled equations. In other words, for
every finite energy solution ψ(t,x), φ(t,x), A(t,x), the following long-time asymp-
totics hold,

(
ψ(t,x),φ(t,x),A(t,x)

) ∼ (
ψ±(x)e−iω±t , φ±(x),A±(x)

)
, t → ±∞, (3.41)

which give the dynamical interpretation to the Bohr’s transitions (1.51). First results
on global attraction of type (3.41) were obtained recently for some model nonlinear
Hamiltonian wave equations [100–112] (see the survey [106]). However, for the
coupled Maxwell–Schrödinger equations, the proof of transitions (3.41) is still an
open problem.

Note that attraction (3.41) does not hold for the linear Schrödinger equation
(3.37) due to the principle of superposition.

3.1.6 Stationary Perturbation Theory

In practice it is very important to have a simple formula for the correction 	E to
the eigenvalue E of the perturbed Schrödinger operator H + εH ′ with |ε| � 1; i.e.,

(E + 	E)ψ ′(x) = (
H + εH ′)ψ ′(x), x ∈ R

3. (3.42)

Let us consider the case of a simple eigenvalue E. In this case, the formula becomes
(see [11, 160])

	E ∼ 〈
ψ,εH ′ψ

〉
, ε → 0, (3.43)

where ψ is the corresponding unperturbed eigenfunction satisfying the normaliza-
tion condition (3.35), and 〈·, ·〉 is the Hermitian inner product in L2(R3).
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Let us prove the formula for the case of Hermitian operators H and H ′ in a fi-
nite dimensional complex space. The corresponding eigenvalues and eigenfunctions
being smooth functions of ε, and so we have

	E ∼O(ε) and ψ ′ = ψ + εφ +O
(
ε2), ε → 0. (3.44)

Substituting this into (3.42), this establishes

(E + 	E)
(
ψ + εφ +O

(
ε2)) = (

H + εH ′)(ψ + εφ +O
(
ε2)). (3.45)

The first order terms give

Eεφ + 	Eψ = Hεφ + εH ′ψ +O
(
ε2). (3.46)

We can assume the normalization condition ‖ψ ′‖ = 1; hence 〈ψ,φ〉 = 0. Therefore,
multiplying (3.45) by ψ , it follows that

	E〈ψ,ψ〉 = 〈
εH ′ψ +O

(
ε2),ψ

〉
, (3.47)

since 〈Hεφ,ψ〉 = 〈εφ,Hψ〉 = εE〈φ,ψ〉 = 0. Formula (3.43) herewith follows.

3.2 Quasiclassical Asymptotics

One of the mathematical justifications of the canonical quantization (3.26) relies
on the WKB (Wentzel–Kramers–Brillouin, 1926) quasiclassical asymptotics [62]:
the Planck constant � is very small, and so the ‘short wavelength solutions’ to the
Schrödinger equation (3.32) propagate along the ‘rays’, which are trajectories of
the corresponding classical dynamics (1.6) (or (3.31)). The asymptotics also play
a crucial role in the justification of definitions for quantum observables: in the next
section we will show that the quantum observables turn into the corresponding clas-
sical ones in the limit � → 0. Both these asymptotics are particular appearances of
Bohr’s Correspondence Principle.

3.2.1 Geometrical Optics

Straightline light propagation is well known from conventional observations of the
shadow. Similar property is also well known in acoustics and water waves with small
wavelength. However, its explanation by the wave interference was discovered for
the first time by Fresnel (1815) by calculating the diffraction pattern from the border
of a screen. Fresnel’s approach was developed later in short wavelength expansions
for diffraction problems by Rayleigh (1877) and Kirchhoff (1882).

A systematic theory of the short wavelength asymptotic expansions in the diffrac-
tion theory was developed by Debye in 1909. Substitution of the short wavelength
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expansions into wave equations leads to the eikonal equation for the phase func-
tion. The German term ‘Eikonal’ (from Greek εικων = image) was introduced in
1895 by H. Bruns; the reason behind this is because the equation determines the
rays forming images. By the Hamilton–Jacobi Theorem 13.7, the rays are trajecto-
ries of the corresponding Hamilton system. The rays are straight lines in the case
of homogeneous media; in a nonhomogeneous case they satisfy the Snell’s law of
refraction.

3.2.2 Application to Schrödinger Equation

In the case of the Schrödinger equation, the Debye expansion takes the form

ψ(t,x) ∼
( ∞∑

k=0

�
kak(t,x)

)

eiS(t,x)/�, � � 1. (3.48)

In particular, substituting this expansion into the Schrödinger equation (3.33), and
equating the leading terms with �

0 = 1, we arrive at the eikonal Hamilton–Jacobi
equation

−Ṡ(t,x) =H
(
x,∇S(t,x), t

)
. (3.49)

Its solution is the action functional given by integral (13.15) over classical trajec-
tories (x(t),p(t)) of the Hamilton system (3.31) according to the Hamilton–Jacobi
Theorem 13.7 (see also [4, 73, 129]). In particular,

p(t) = ∇S
(
t,x(t)

)
, (3.50)

by (13.38). The amplitudes ak(t,x) are solutions to the transport differential equa-
tions (13.36) along trajectories of classical dynamics (3.31) (see Sect. 13.2).

Integral representation (13.15) and the transport equations imply that the support
of solution (3.48) is a tube of type (13.32), which is the union of the rays that are
trajectories x(t). More precisely, for any N > 0,

ψ(t,x) ∼O
(
�

N
)

for
∣
∣x − x(t)

∣
∣ ≥ 2ε, |t | < Tε (3.51)

if ψ(0,x) = 0 for |x − x(0)| ≥ ε (see Corollary 13.10). In other words,

short wavelength solutions of the Schrödinger equation

propagate along trajectories of the Lorentz equation

This ‘wave-particle’ correspondence is called the geometrical optics, suggesting
that the cathode rays, which propagate along the trajectories of the Lorentz equation,
as observed by J.J. Thomson and W. Kauffmann, might be the short wavelength
solutions of the Schrödinger equation (3.32), see Fig. 3.1.



3.2 Quasiclassical Asymptotics 45

Fig. 3.1 Cathode rays (wavy
line) refracted by the
magnetic field. Dashed line is
the corresponding classical
trajectory (Color figure
online)

The geometrical optics partially justifies identification (3.34) of electric charge
and current densities. In fact, substituting the asymptotics (3.48) into (3.34), this
gives

j
(
t,x(t)

) ∼ e

m
Re

(

ψ

[

∇S − e

c
A

]

ψ

)

= e

m
Re

(

ψ

[

p − e

c
A

]

ψ

)

= eRe (ψ ẋψ) = e|ψ |2ẋ(t) = ρ
(
t,x(t)

)
ẋ(t), (3.52)

where we have used the first equation of (3.31).

3.2.3 Generalizations

The Schrödinger equation was obtained by the canonical quantization (3.26) of the
Hamiltonian equations (3.31) for a nonrelativistic particle in a Maxwell field. For
a relativistic particle with the Hamiltonian (3.28), the canonical quantization (3.26)
leads to the Klein–Gordon equation (3.29). Extension of the geometrical optics to
the Klein–Gordon equation is also possible by the same Hamilton–Jacobi theory.

The geometrical optics was extended to the Dirac equation by Pauli [149], and
to general hyperbolic systems, by Lax [132]. Further developments culminated in
Maslov–Hörmander’s theory of the Fourier integral operators: the survey can be
found in [78].

3.2.4 Hamilton Optical-Mechanical Analogy

The parallelism between the wave propagation and classical mechanics is known
since Hamilton’s ‘optical-mechanical analogy’ (1834), see [4, 129]. The analogy is
the formal identification of the mechanical trajectories with the optical rays using
the Fermat principle for the rays and the Hamilton least action principle for mechan-
ical trajectories. Hamilton considered the action functional (13.15) as a wave, which
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propagates along the classical trajectories, and applied Huygens’s principle for char-
acterization of the wave front. In this way Hamilton has obtained relation (3.50)
and equation (3.49). Schrödinger’s Nobel lecture (1933) entirely concerns with this
optical-mechanical analogy, which was one of primary reasons for the introduc-
tion of equation (3.32). Apparently, the key role of the action functional and of the
Hamilton–Jacobi equation were suggested by the Debye and Sommerfeld–Wilson
quantum rules (1.55).

3.2.5 Conclusions

The quasiclassical asymptotics justifies the canonical quantization (1.6) �→(3.32) in
the limit � → 0. On the other hand, the Planck constant � takes a finite nonzero
value. Consequently, the quasiclassical asymptotics alone are not sufficient for the
introduction of the Schrödinger equation, and hence one needs the Planck and
de Broglie arguments to fix the finite value of the constant �.

3.3 Quantum Observables and Conservation Laws

We should finish up with the physical interpretation of the Schrödinger equa-
tion (3.33)

i�∂tψ(t,x) = H(t)ψ(t,x),

H(t) =H(x,−i�∇, t) = 1

2m

[

−i�∇ − e

c
A(t,x)

]2

+ eφ(t,x) (3.53)

by introducing suitable quantum observables: energy, momentum, angular momen-
tum and charge. The definitions will be justified by the agreement with the classical
observables for one-particle short wavelength solutions (3.48) under the normal-
ization (3.35). Namely, we show that the quantum observables turn into the corre-
sponding classical ones as �→ 0.

We will be concerned with the solutions ψ(t,x), which are sufficiently smooth
and which decay sufficiently fast as |x| → ∞, thereby providing the correctness of
all differentiations and partial integrations below. Given ψ1,ψ2 ∈ L2(R3), let

〈ψ1,ψ2〉 =
∫

ψ1(x)ψ2(x) dx (3.54)

be the Hermitian inner product in the complex Hilbert space L2(R3). Note that the
Schrödinger operator is Hermitian symmetric; i.e.,

〈
ψ1,H(t)ψ2

〉 = 〈
H(t)ψ1,ψ2

〉
, ψ1,ψ2 ∈ C∞

0

(
R

3,C
)
. (3.55)

We will assume the one-particle normalization condition (3.35).
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3.3.1 Quantum Observables

First we define the quantum observables.

I. Energy For quantum stationary state (3.39), the energy is identified with E; this
is confirmed by (2.37) and by the excellent agreement of Heisenberg’s theory and
experimental observations, and in particular, by Pauli’s calculation of the Balmer
formula [148]. Equation (3.39) with the normalization (3.35) gives the following
expression for the energy:

E(t) = 〈
ψ(t),Hψ(t)

〉
. (3.56)

The same expression is suggested for the mean energy at time t under normalization
(3.35).

II. Momentum and Angular Momentum Similarly, the mean momentum and
the mean angular momentum are defined by

p(t) := 〈
ψ(t,x), p̂ψ(t,x)

〉
, (3.57)

where p̂ := −i�∇ as in (3.26), and

L(t) := 〈
ψ(t,x), L̂ψ(t,x)

〉
, (3.58)

L̂ := x̂ × p̂, where x̂ is the operator of multiplication by x.

III. Charge Finally, the charge and current densities are defined by (3.34). Re-
spectively, the mean electric charge is defined by

Q(t) := e

∫
∣
∣ψ(t,x)

∣
∣2

dx. (3.59)

3.3.2 Conservation Laws

Now we state the corresponding conservation laws.

I. Energy The energy (3.56) is conserved, provided that the Maxwell potentials
are independent of time; i.e.,

φ(t,x) = φ(x), A(t,x) = A(x). (3.60)

Lemma 3.3 Under conditions (3.60),

E(t) = const, t ∈R. (3.61)
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Proof Differentiating, we obtain

Ė(t) = [〈
ψ̇(t),Hψ(t)

〉 + 〈
ψ(t),Hψ̇(t)

〉]

=
[

− i

�

〈
Hψ(t),Hψ(t)

〉 + i

�

〈
ψ(t),HHψ(t)

〉
]

= 0, (3.62)

by (3.37), since the Schrödinger operator H := H(t) is symmetric. �

II. Momentum and Angular Momentum The momentum (3.57) is conserved,
provided that the Maxwell potentials φ(t,x),A(t,x) are translation invariant, i.e.,

φ(t,x + sen) = φ(t,x) and A(t,x + sen) = Rn(θ)A(t,x), s ∈R, (3.63)

where en is the unit vector in the direction xn.

Lemma 3.4 Under condition (3.63), the corresponding component pn of the mo-
mentum is conserved:

pn(t) = const, t ∈R. (3.64)

Proof Differentiating, we obtain, by (3.53),

ṗn(t) = 〈
ψ̇(t,x), p̂nψ(t,x)

〉 + 〈
ψ(t,x), p̂nψ̇(t,x)

〉

=
[

− i

�

〈
H(t)ψ(t,x), p̂nψ(t,x)

〉 + i

�

〈
ψ(t,x), p̂nH(t)ψ(t,x)

〉
]

= − i

�

〈
ψ(t,x),

[
H(t), p̂n

]
ψ(t,x)

〉 = 0 (3.65)

since the Schrödinger operator H(t) is symmetric and since the commutator
[H(t), p̂n] := H(t)p̂n − p̂nH(t) = 0. These operators commute, in as much as the
coefficients of the differential operator H(t) do not depend on xn. �

The angular momentum (3.58) is conserved, provided that the Maxwell potentials
φ(t,x),A(t,x) are rotationally invariant; i.e.,

φ
(
t,Rn(θ)x

) = φ(t,x) and A
(
t,Rn(θ)x

) = Rn(θ)A(t,x), θ ∈ [0,2π],
(3.66)

where Rn(θ) stands for the rotations Rn(θ) around the axis xn.

Lemma 3.5 Under condition (3.66), the corresponding component Ln(t) of the
angular momentum is conserved:

Ln(t) = const, t ∈R. (3.67)

The proof is quite similar to (3.65), depending on the symmetry of the
Schrödinger operator H(t) and on its commutation with L̂n ∼ (x × ∇)n. Indeed,
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(x × ∇)n = ∂
∂θ

is a generator of the rotations Rn(θ). Hence, the Schrödinger opera-
tor H(t) commutes with (x × ∇)n, inasmuch as H(t) commutes with the rotations.

Exercise 3.6 Verify that condition (3.66) with n = 3 holds for the static uniform
magnetic field B(x) = (0,0,B) with the corresponding potentials (see (3.27))

φ(x) = 0, A(x) = 1

2
B × x = B

2
(−x2,x1,0). (3.68)

Exercise 3.7 Verify that the axial symmetry condition (3.66) implies the corre-
sponding axial symmetry of the Maxwell field:

E
(
t,Rn(θ)x

) = Rn(θ)E(t,x) and

B
(
t,Rn(θ)x

) = Rn(θ)B(t,x), θ ∈ [0,2π ]. (3.69)

Hint: Use the formulas (3.27).

III. Charge The charge (3.59) is conserved due to the Hermitian symmetry (3.55).

Lemma 3.8 The charge is conserved,

Q(t) = e

∫
∣
∣ψ(t,x)

∣
∣2

dx = const, t ∈R. (3.70)

Proof This follows by the differentiation:

Q̇ = e
[〈ψ̇,ψ〉 + 〈ψ, ψ̇〉] = e

[

− i

�

〈
H(t)ψ,ψ

〉 + i

�

〈
ψ,H(t)ψ

〉
]

= 0 (3.71)

due to the Hermitian symmetry of the Schrödinger operator H(t). �

Remark 3.9 All conservation laws (3.61), (3.64), (3.67), are particular cases of the
general Noether Theorem 13.18, as applied to the corresponding symmetry group:
the time translations for (3.61), the space translations for (3.64), the space rotations
for (3.67), and the phase rotation for (3.70), see Exercise 13.21. The Noether Theo-
rem additionally provides the fluxes of energy, momentum, angular momentum and
charge satisfying the corresponding continuity equations. The detailed calculations
will be given in Sect. 13.4.

3.3.3 Correspondence Principle

Let us show that the quantum observables turn into the corresponding classical ones
as �→ 0.
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I. Energy The definition (3.56) can be justified by the correspondence with the
classical Hamiltonian (3.30) for quasiclassical one-particle solutions (3.48) with the
normalization (3.48), provided that the potentials φ(t,x) and A(t,x) are vary slowly.
First, we rewrite (3.56) as follows:

E(t) := 〈
ψ(t),H(t)ψ(t)

〉 =
〈

ψ(t,x),

(
1

2m

[

p̂ − e

c
A(t,x)

]2

+ eφ(t,x)

)

ψ(t,x)

〉

= 1

2m

〈[

p̂ − e

c
A(t,x)

]

ψ(t,x),

[

p̂ − e

c
A(t,x)

]

ψ(t,x)

〉

+ 〈
ψ(t,x), eφ(t,x)ψ(t,x)

〉; (3.72)

here, the last identity follows by partial integration. Further, for the quasiclassical
solutions (3.48), we have, asymptotically,

−i�∇ψ(t,x) ∼ ∇S(t,x)ψ(t,x), �� 1. (3.73)

Therefore, (3.50) and (3.51) with small ε imply, for small t , that

p̂ψ(t,x) ∼ p(t)ψ(t,x), �� 1. (3.74)

Finally, substituting (3.74) into (3.72) and using by (3.35) and (3.51) with small ε,
we arrive at the asymptotics

E(t) ∼
∫ (

1

2m

[

p(t) − e

c
A(t,x)

]2∣
∣ψ(t,x)

∣
∣2 + eφ(t,x)

∣
∣ψ(t,x)

∣
∣2

)

dx

≈ 1

2m

[

p(t) − e

c
A

(
t,x(t)

)
]2

+ eφ
(
t,x(t)

)
, � � 1, (3.75)

since the potentials vary slowly.

II. Momentum and Angular Momentum The definitions (3.57) and (3.58) of
the momentum and angular momentum can be justified similarly.

III. Charge and Current The charge definition (3.59) is justified by the energy
expression (3.72), where the last term is the integral of the product ρ(t,x)φ(t,x)

with ρ(t,x) := e|ψ(t,x)|2.
Moreover, the last argument justifies the identification (3.34) for the charge den-

sity. Then, for the current density, the identification is justified by the quasiclassical
asymptotics (3.52).

3.4 Charge Continuity Equation

Let us verify that the continuity equation (1.4) holds for the charge and current
densities (3.34) corresponding to every solution of the Schrödinger equation (3.32).
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First we represent the equation and formulas in a real form. Namely, let us iden-
tify the complex numbers ψ = ψ1 + iψ2 ∈ C with the corresponding real vectors
(

ψ1
ψ2

) ∈ R
2, so that the multiplication by i will be in correspondence with the ap-

plication of the skew-symmetric matrix J = ( 0 −1
1 0

)
. Then ψ(x, t) = ψ1(x, t) +

iψ2(x, t) is identified with the R
2-valued function �(x, t) := (

ψ1(x,t)

ψ2(x,t)

)
, and the

Schrödinger equation (3.53) takes the form

�J �̇ =H(t)�, H(t) = 1

2m

[

−J�∇ − e

c
A(t,x)

]2

+ eφ(t,x). (3.76)

In the real form, the charge and current densities (3.34) read as follows:

ρ(t,x) = e
∣
∣�(t,x)

∣
∣2

, jk(t,x) = e

m
�(t,x) ·

[

−J�∇k − e

c
Ak(t,x)

]

�(t,x).

(3.77)
Now we can prove (1.4):

ρ̇(t,x) + div j(t,x) = 0. (3.78)

Indeed, differentiating ρ(t,x) = e�(t,x) ·�(t,x), and using the Schrödinger equa-
tion (3.76), it is found that

�∂tρ = 2�e� · ∂t� = −2e� · [JH(t)�
]
. (3.79)

Let us first consider the particular case φ = 0, A = 0. Then H(t) = − �
2

2m
	, and

(3.78) follows because

�∂tρ = −2e� · [JH(t)�
] = e�2

m
ψ · [J	�] = e�2

m

3∑

k=1

∇k

(
� · [J∇k�])

= −�div j. (3.80)

Consider the general case. Using (3.79) and (3.76), we have

�∂tρ = −2e� ·
[

J
1

2m

[

−J�∇ − e

c
A(t,x)

]2

+ eφ(t,x)

]

�

= e

m
� ·

[

J

[

J�∇ + e

c
A(t,x)

]2

�

]

, (3.81)

since φ is real and since � · [J�] = 0. Further, similarly to (3.80), we obtain
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�∂tρ = e

m

3∑

k=1

� ·
[

J

[

(J�∇k)
2 + J�∇k

e

c
Ak(t,x) + e

c
Ak(t,x)J�∇k

]

�

]

= e

m

3∑

k=1

�∇k

(

� ·
[[

−J�∇k − e

c
Ak(t,x)

]

�

])

− e

m

3∑

k=1

�∇k� ·
[[

−J�∇k − e

c
Ak(t,x)

]

�

]

− e

m

3∑

k=1

� ·
[
e

c
Ak(t,x)�∇k�

]

.

It remains to observe that the last two lines cancel, since the potentials Ak are real.

3.5 Equivalence of Heisenberg’s and Schrödinger’s Theories

In 1926, Schrödinger had shown the equivalence of his ‘Wave Mechanics’ to the
Heisenberg’s ‘Matrix Mechanics’ (see [162]).

3.5.1 Heisenberg Observables

All Schrödinger’s observables (3.72), (3.57), (3.58) and (3.59) are quadratic forms
on the phase space E := L2(R3),

E(t) = 〈
ψ(t), Ê(t)ψ(t)

〉
, p(t) = 〈

ψ(t), p̂ψ(t)
〉
,

L(t) = 〈
ψ(t), L̂ψ(t)

〉
, Q(t) = 〈

ψ(t), Q̂ψ(t)
〉
,

(3.82)

where 〈ψ1,ψ2〉 denotes the Hermitian scalar product (3.54), and Ê(t), p̂, L̂, Q̂ are
the corresponding operators,

Ê(t) = H(t), p̂ = −i�∇, L̂ = x̂ × p̂, Q̂ = I. (3.83)

Here x̂kψ = xkψ(x) is the quantum observable of the kth coordinate. Operators
(3.83) are called the quantum observables corresponding to the energy, momentum,
angular momentum and charge, respectively.

Exercise 3.10 Verify the commutation relations
[
p̂k, x̂n

] = −i�δn
k , [p̂k, p̂n] = [

x̂k, x̂n
] = 0, (3.84)

where [·, ·] denotes the commutator [A,B] := AB − BA.
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We note that

H(t) = H(x̂, p̂, t) := 1

2m

(

p̂ − e

c
A(t, x̂)

)2

+ eφ(t, x̂). (3.85)

Exercise 3.11 Verify the formula

L̂n = −i�
∂

∂ϕn

, (3.86)

where ϕn is the angle of rotation around the vector en in a positive direction. Hint:
Consider n = 3 and choose the polar coordinate in the plane x1,x2.

Exercise 3.12 Verify that operators p̂n, L̂n are symmetric (similarly to Ê(t) :=
H(t); see (3.55)).

Formulas (3.82) motivate the following

Definition 3.13

(i) A quantum observable is a linear symmetric operator M̂ in the Hilbert space E .
(ii) Quadratic form M(ψ) := 〈ψ,M̂ψ〉 is the mean value of the observable at the

state ψ ∈ E .

Note that if ψ is a normalized eigenvector for M̂ (i.e., M̂ψ = λψ and ‖ψ‖ = 1),
then the corresponding mean value is the eigenvalue: M(ψ) = λ.

3.5.2 Heisenberg’s Picture

Let us introduce the dynamical group U(t) of the Schrödinger equation (3.37) with
static potentials.

Definition 3.14 For t ∈ R, the operator U(t) is defined by U(t)ψ0 = ψ(t, ·), where
ψ(t, ·) is the solution of the Schrödinger equation (3.37) with initial state ψ0.

The Schrödinger equation implies that

U̇ (t) = − i

�
HU(t) = − i

�
U(t)H, (3.87)

and so formally U(t) = e− i
�
Ht . The charge conservation (3.70) means that U(t) is

a unitary operator.

Definition 3.15 The Heisenberg representation of a quantum observable M̂ is the
operator function

M̂(t) := U(−t)M̂U(t), t ∈ R. (3.88)
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Using this definition and (3.84), we have the commutation relations

[
p̂k(t), x̂n(t)

] = −i�δn
k ,

[
p̂k(t), p̂n(t)

] = [
x̂k(t), x̂n(t)

] = 0. (3.89)

Furthermore, this definition implies that

M
(
ψ(t)

) := 〈
ψ(t),M̂ψ(t)

〉 = 〈
ψ(0),M̂(t)ψ(0)

〉
, t ∈ R, (3.90)

for any solution ψ(t) := ψ(t, ·) of the Schrödinger equation (3.37).

Exercise 3.16 Verify (3.90). Hint: U(t) is a unitary operator.

Exercise 3.17 Verify the identities

Ê(t) =H
(
x̂(t), p̂(t), t

)
, L̂(t) = x̂(t) × p̂(t). (3.91)

Exercise 3.18 (cf. (2.32)) Prove the following identities: for N = 0,1,2, . . .

[
p̂k(t),

(
x̂n(t)

)N ] = −i�δn
k N

(
x̂n(t)

)N−1
,

[
x̂n(t),

(
p̂k(t)

)N ] = i�δn
k N

(
p̂k(t)

)N−1
.

(3.92)

3.5.3 Heisenberg’s Equation

The relations (3.87) imply the Heisenberg equation (2.25)

i�
˙̂M(t) = [

M̂(t),H
]
. (3.93)

Exercise 3.19 Verify (3.93).

Using equation (3.93), we obtain the following lemma.

Lemma 3.20 A quantum observable M̂ is conserved (i.e., M̂(t) ≡ M̂), provided
[M̂,H ] = 0.

Proof By (3.87),

d

dt
M̂(t) = d

dt
U(−t)M̂U(t) = −U̇(−t)M̂U(t) + U(−t)M̂U̇ (t)

= − i

�

(−U(−t)HM̂U(t) + U(−t)M̂HU(t)
)

= − i

�
U(−t)[M̂,H ]U(t) = 0. � (3.94)
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Note that our proofs of the energy, momentum, angular momentum and charge
conservations (3.61), (3.64), (3.67), (3.70) depend on the commutation of the corre-
sponding observables (3.83) with the Hamilton operator.

Example 3.21 The Heisenberg equations for the observables x̂(t) and p̂(t) are as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x(t) = 1

m

(

p̂(t) − e

c
A

(
t, x̂(t)

)
)

,

˙̂p(t) = −e∇φ
(
t, x̂(t)

) + e

2mc

{
[∇A

(
t, x̂(t)

)] ·
(

p̂(t) − e

c
A

(
t, x̂(t)

)
)

+
(

p̂(t) − e

c
A

(
t, x̂(t)

)
)

· [∇A
(
t, x̂(t)

)]
}

.

(3.95)

Exercise 3.22 Prove (3.95). Hint: Use (3.93), (3.85), and (3.92) with N = 1,2.

Note that the Heisenberg equations (3.95) are not identical to (3.31), though
(3.95) becomes (3.31) after substituting x(t) and p(t) for x̂(t) and p̂(t), respec-
tively. On the other hand, equations (2.16) are formally identical with (2.1). This
difference reflects distinct algebraic structures of the Hamiltonian functionals (3.85)
and (2.2).

3.5.4 Correspondence Between Heisenberg’s and Schrödinger’s
Pictures

Relations (3.88), (3.90) establish the equivalence of Schrödinger’s and Heisenberg’s
theories. Namely

H (i) In the Heisenberg picture, a quantum observable M̂(t) changes in time ac-
cording to the Heisenberg equation (3.93), while the state ψ is unchanged;
and

(ii) the mean value of M̂(t) is defined by the right hand side of (3.90).

S (i) In the Schrödinger picture, a quantum observable M̂ is unchanged, while the
state ψ(t) changes in time according to the Schrödinger equation (3.37); and

(ii) the mean value of M̂ is defined by the middle term of (3.90).

Both the mean values coincide, and the quantum observables are related by (3.88).



Chapter 4
Lagrangian Formalism

Abstract The Lagrangian form of the Schrödinger equation is useful in the identi-
fication of the quantum energy, momentum and angular momentum, which are the
conserved quantities suggested by the Noether’s theory of invariants.

On the other hand, the charge and current densities in classical electrodynamics
correspond to derivatives of the Lagrangian density with respect to the Maxwell
potentials. Respectively, to identify correctly the quantum charge and current, one
should introduce the Lagrangian density depending on the wave function ψ and on
the Maxwell potentials. This Lagrangian density should correspond to the coupled
Maxwell–Schrödinger equations.

4.1 Hamiltonian and Lagrangian Formalism

The Schrödinger equation can be represented in the Hamiltonian and Lagrangian
forms.

4.1.1 Hamiltonian Formalism

In view of (3.55), the Schrödinger operator H(t) is symmetric in the complex
Hilbert space L2(R3,C). Correspondingly, it follows from (3.76) that the cor-
responding real version H(t) is a symmetric operator in the real Hilbert space
L2(R3,R2). Hence,

H(t)� = DHHH(�, t), HHH(�, t) := 1

2

〈
�,H(t)�

〉

R
= 1

2

〈
ψ,H(t)ψ

〉
, (4.1)

where 〈·, ·〉R denotes the inner product on L2(R3,R2). Also, DHHH(�, t) is the
Gâteaux derivative defined as the distribution

〈
DHHH(�, t),�

〉

R
:= d

dε

∣
∣
∣
∣
ε=0

HHH(� + ε�, t), � ∈ C∞
0

(
R

3,R2). (4.2)

Now the Schrödinger equation (3.76) reads

��̇ = −JDHHH(�, t); (4.3)
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this formally coincides with the standard Hamiltonian system (13.8) if we identify
ψ1 with q and ψ2 with p. Equivalently, we can identify ψ1 with p and ψ2 with −q .

4.1.2 Lagrangian Formalism

Using the Legendre transform, the Hamiltonian equation (4.3) can be written in the
Lagrangian form

d

dt
D�̇L

(
�(t), �̇(t)

) = D�L
(
�(t), �̇(t)

)
(4.4)

with the Lagrangian functional L(�) = �〈ψ2, ψ̇1〉R −HHH(�) (cf. (13.7)). Equiva-
lently, we can take the Lagrangian functional −�〈ψ1, ψ̇2〉R −HHH(�). Therefore, we
can also take the sum

L(�, �̇) = �
[〈ψ2, ψ̇1〉R − 〈ψ1, ψ̇2〉R

] − 2HHH(�) (4.5)

for the Lagrangian, since the Lagrange equation (4.4) is linear with respect to the
Lagrangian functional. Integration by parts implies that the sum admits the integral
representation

L(�, �̇) =
∫

R3
L

(
x,�(x),∇�(x)

)
dx, (4.6)

where x = (x1,x2,x3) ∈ R
3, x = (t,x) ∈ R

4, and the corresponding Lagrangian
density L(x,�,∇�) is given by

L(x,�,∇�) = [
J�∇0� − eφ(t,x)�

] · � − 1

2m

∣
∣
∣
∣−J�∇� − e

c
A(t,x)�

∣
∣
∣
∣

2

,

∇0 := ∂t , (4.7)

since [J�∇0�] · � = �[ψ2ψ̇1 − ψ1ψ̇2], where ‘ · ’ is the real inner product on R
2.

4.1.3 Variational Principle and Euler–Lagrange Equations

Let � be any open bounded region of R4, and let S�(�) be the action functional
defined, for � ∈ C1(�,R2), by

S�(�) :=
∫

�

L
(
x,�(x),∇�(x)

)
dx. (4.8)

Denote by DS�(�) the variational Gâteaux derivative, defined as the distribution
in �

〈
DS�(�),�

〉 := d

dε

∣
∣
∣
∣
ε=0

S�(� + ε�), � ∈ C∞
0

(
�,R2). (4.9)
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Let us show that the Schrödinger equation (3.76) in � can be represented in the
four-dimensional variational Euler–Lagrange form,

DS�(�) = L�

(
x,�(x),∇�(x)

) −
3∑

α=0

∇αL∇α�

(
x,�(x),∇�(x)

) = 0,

x ∈ �, (4.10)

where all the derivatives are understood in the sense of distributions.
For regular solutions � ∈ C2(R4), the first identity in (4.10) follows by standard

integration by parts on the right of (4.9), since the test function �(x) is arbitrary. In
the general case, (4.9) implies the first identity in (4.10) in the sense of distributions.

To prove the second identity, we write the Schrödinger equation (3.76) as follows:

L�(x) := [
J�∇0 − eφ(x)

]
�(x) − 1

2m

[

−J�∇ − e

c
A(x)

]2

�(x) = 0,

x ∈ R
4, (4.11)

where L is a Hermitean symmetric operator. Integrating by parts, we obtain

S�(� + ε�) = S�(�) + 2ε〈�,L�〉 + ε2〈�,L�〉. (4.12)

Hence,

DS�(�) = 2L�

in the sense of distributions. Therefore, the second identity of (4.10) is equivalent to
the Schrödinger equation (4.11).

Remark 4.1 The general Noether Theorem 13.18 can be applied to the Schrödinger
equation (3.32) in the Lagrangian form (4.10). It implies the conservation laws
(3.61), (3.64), (3.67) and (3.70) (see Theorems 13.22, 13.23, and Corollary (13.26)).
We gave direct independent proofs in Sect. 3.3 for the convenience of the reader.

Definition 4.2 For the general Lagrangian density L(x,�,∇�) of a field �(x) ∈
R

N , the canonically conjugate fields 
ν(x) are defined by


ν = L∇ν�(x,�,∇�), ν = 0, . . . ,3. (4.13)

Example 4.3 For the Schrödinger Lagrangian density (4.7), we get


0(x) = −J��(x),


k(x) = −J�

m

[

−J�∇k − e

c
Ak(x)

]

�(x), k = 1,2,3.
(4.14)



60 4 Lagrangian Formalism

In this notation, the Euler–Lagrange equations (4.10) read:

∇ν

ν(x) = L�

(
x,�(x),∇�(x)

)
, x ∈ R

4, (4.15)

which is equivalent to the Schrödinger equation (3.76). Here and in what follows,
we will use Einstein’s convention

∇ν

ν(x) :=

3∑

ν=0

∇ν

ν(x), ∇k


k(x) :=
3∑

k=1

∇k

k(x).

4.2 Maxwell–Schrödinger Equations

The simultaneous evolution of the full system of the electron wave function and
Maxwell field is determined by the coupled semiclassical Schrödinger–Maxwell
equations (3.33), (12.50). The coupling is provided by identification (3.77) of the
charge and current densities in (12.50) via the Schrödinger wave function. The
coupled system is nonlinear, and so the approximate solutions could be calculated
through Born’s approximation and perturbation theory.

4.2.1 Lagrangian Density

Let us introduce a Lagrangian density for the coupled system. For the Schrödinger
equation (3.33) with given external Maxwell potentials, the Lagrangian density is
given by (4.7):

LS(x,ψ,∇ψ) = [
i�∂t − eφ(x)

]
ψ · ψ − 1

2m

∣
∣
∣
∣−i�∇ψ − e

c
A(x)ψ

∣
∣
∣
∣

2

, (4.16)

where complex values ψ ∈ C are identified with the corresponding real vectors
(Reψ, Imψ) ∈ R

2, and ‘ · ’ denotes the inner product on R
2.

On the other hand, for a Maxwell field in the presence of known charge and
current densities, the Lagrangian density is given by (12.56),

LM(x,A,∇A) = − 1

16π
FμνFμν −J ν(x)Aν, (x,A,∇A) ∈ R

4 ×R
4 ×R

16,

(4.17)
where Fμν := ∂μAν − ∂νAμ and Fμν := ∂μAν − ∂νAμ. We should combine the
densities in a natural way. To do so we choose the combined density as follows:

L(x,ψ,∇ψ,Aμ,∇Aμ) = [i�∂t − eφ]ψ · ψ − 1

2m

∣
∣
∣
∣−i�∇ψ − e

c
Aψ

∣
∣
∣
∣

2

− 1

16π
FμνFμν; (4.18)
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here φ =A0 and Ak = −Ak in accordance with (12.49). The choice is motivated by
the following arguments:

I. The variation (4.10) of the density (4.18) in ψ(x) provides the Schrödinger equa-
tion (3.32).

II. The introduction of the Lagrangian density (4.18) is equivalent to the identi-
fication of the interaction terms in the Lagrangian densities (4.16) and (4.17).
Similar identification holds in the classical electrodynamics (see Sect. 12.6).

These arguments suggest the Lagrangian density (4.18) for coupled Maxwell–
Schrödinger fields. However, a proper justification depends on the subsequent de-
velopment and experimentally observations, as for every axiomatic theory.

The Euler–Lagrange equations (4.15), corresponding to (4.18), are as follows:

⎧
⎪⎪⎨

⎪⎪⎩

[
i�∂t − eφ(t,x)

]
ψ(t,x) = 1

2m

[

−i�∇ − e

c
A(t,x)

]2

ψ(t,x),

1

4π
∇μFμν(t,x) = J ν(t,x), ν = 0, . . . ,3;

(4.19)

here ∇0 := ∂x0 and x0 := ct . The first (Schrödinger) equation corresponds to the
variation in ψ . The second (Maxwell) equation corresponds to the variations in
Aμ = (φ,−A): the left hand side is the (negative) of the variation of the last term
in the Lagrangian density (4.18), as in the proof of Proposition 12.15, while the 4-
currents J ν on the right is the variation (13.99) of the interaction terms containing
both ψ and A:

J ν(x) =
(

e|ψ(t,x)|2, ν = 0
e

mc
ψ(t,x) · [−J�∇ν − e

c
Aν(t,x)]ψ(t,x), ν = 1,2,3

)

. (4.20)

Obviously, this 4-current is identical to (ρ,
j
c
), where ρ and j are given by (3.34).

This identity is a particular case of relations (13.103), which hold by Lemma 13.28,
because the Lagrangian density (4.18) is gauge invariant.

The system (4.19) describes the dynamics of the wave field ψ in its ‘own’ in-
duced Maxwell potentials φ(t,x),A(t,x) generated by the charges and currents
of the wave field. Now let us introduce external potentials φext(t,x), Aext(t,x) of
a Maxwell field generated by some external sources. The introduction is formalized
by the Lagrangian density

L = [
i�∂t − e

(
φ(x) + φext(x)

)]
ψ · ψ − 1

2m

∣
∣
∣
∣−i�∇ψ − e

c

(
A(x) + Aext(x)

)
ψ

∣
∣
∣
∣

2

− 1

16π
FμνFμν. (4.21)
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The corresponding equations read

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
i�∂t − e

(
φ(t,x) + φext(t,x)

)]
ψ(t,x)

= 1

2m

[

−i�∇ − e

c

(
A(t,x) + Aext(t,x)

)
]2

ψ(t,x),

1

4π
∇μFμν(t,x) = J ν(t,x), ν = 0, . . . ,3,

(4.22)

where

J ν(x) =
⎛

⎝
ρ = e|ψ(t,x)|2, ν = 0

jν
c = e

mcψ(t,x) · [−i�∇ν − e
c (Aν(t,x) + Aν

ext(t,x))]ψ(t,x), ν = 1,2,3

⎞

⎠.

(4.23)

4.2.2 Gauge Invariance and Charge Continuity

Lagrangian densities (4.18) and (4.21) are invariant with respect to the phase rota-
tions (ψ,A) �→ (eiθψ,A). Therefore, the continuity equation for charge and cur-
rent holds

ρ̇(t,x) + div j(t,x) = 0, (t,x) ∈R
4; (4.24)

this follows from Corollary 13.26 and (13.97). This result can be also verified by
direct calculation (see Sect. 3.4).

4.2.3 Gauge Transformation

More general gauge transformations (12.46) do not change Maxwell fields E(t,x),
B(t,x) for any real function χ(t,x) ∈ C1(R4). Therefore, it would be natural to
expect that the solutions to the coupled equations (4.19), (4.22) also do not vary too
much under this transformation. More precisely, we can complete the transformation
of potentials (12.46) with the corresponding transformation of the wave function:

∣
∣
∣
∣
∣
∣

φ(t,x) �→ φ(t,x) + 1

c
χ̇(t,x), A(t,x) �→ A(t,x) − ∇χ(t,x),

ψ(t,x) �→ e−i e
c�

χ(t,x)ψ(t,x).

(4.25)

It is easily checked that the new functions also provide a solution of Eqs. (4.19)
and (4.22), respectively. Moreover, transformations (4.25) do not change the La-
grangian densities (4.18) and (4.21) and the electric charge and current densities
ρ(t,x) and j(t,x) of (4.23).
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An appropriate gauge transformation (4.25) provides the Lorentz gauge condition
(12.45); then the coupled equations (4.22) reads (cf. (12.47)):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
i�∂t − e

(
φ(t,x) + φext(t,x)

)]
ψ(t,x)

= 1

2m

[

−i�∇ − e

c

(
A(t,x) + Aext(t,x)

)
]2

ψ(t,x),

1

4π
�φ(t,x) = e

∣
∣ψ(t,x)

∣
∣2

,

1

4π
�A(t,x) = e

mc
ψ(t,x) ·

[

−i�∇ − e

c

(
A(t,x) + Aext(t,x)

)
]

ψ(t,x);

(4.26)

here, � := 1
c2 ∂2

t − �.

4.2.4 Perturbation Theory

The coupled Maxwell–Schrödinger equations (4.22) can be handled perturbatively
in a wide class of the problems since the Sommerfeld fine structure constant is very
small. This is a fundamental feature of quantum mechanics and quantum electrody-
namics.

The Born Approximation

Assume that the induced Maxwell field φ(t,x),A(t,x) in (4.22) is small as com-
pared to the external field. Then it can be neglected in the interaction terms of the
equations, and so we can consider the approximate linear equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
i�∂t − eφext(t,x)

]
ψ(t,x) = 1

2m

[

−i�∇ − e

c
Aext(t,x)

]2

ψ(t,x),

1

4π
�φ(t,x) = e

∣
∣ψ(t,x)

∣
∣2

,

1

4π
�A(t,x) = e

mc
ψ(t,x) ·

[

−i�∇ − e

c
Aext(t,x)

]

ψ(t,x),

(4.27)

which are called the Born approximation to (4.22).

Dimension Analysis: The Sommerfeld Fine-Structure Constant

This process of approximations can be iterated substituting the Born approxima-
tion into the interaction terms etc. To make it systematically, let us rewrite the sys-
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tem (4.22) as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

i∂ct − e2

�c

(
φ̃(t,x) + φ̃ext(t,x)

)
]

ψ(t,x)

= �

2mc

[

−i∇ − e2

�c

(
Ã(t,x) + Ãext(t,x)

)
]2

ψ(t,x)

1

4π
�φ̃(t,x) = ∣

∣ψ(t,x)
∣
∣2

,

1

4π
�Ã(t,x) = �

mc
ψ(t,x) ·

[

−i∇ − e2

�c

(
Ã(t,x) + Ãext(t,x)

)
]

ψ(t,x),

(4.28)

where φ̃(t,x) := φ(t,x)/e etc. Using (3.36), one calculate the fine structure con-
stant

α := e2

�c
≈ 1

137,036
; (4.29)

it was introduced by Sommerfeld in 1916. The crucial observation is that the fraction
is dimensionless and is quite small! This suggests to isolate the interaction terms and
treat them as a ‘small’ perturbation. Consequently, system (4.28) becomes

iẎ (t) =HY(t) + αQ
(
Y(t)

)
, Y (t) := (

ψ̃(·, t), φ̃(·, t), Ã(·, t)). (4.30)

Here, H is the linear operator, which generates the approximation of type (4.27), and
Q(Y) is the polynomial operator containing the polynomial terms (in Y ) of degree
two and three, with zero linear part. The solution of Eq. (4.30) can be expanded in
the power series

Y(t) = Y0(t) + αY1(t) + α2Y2(t) + · · · , (4.31)

in which each term Yk can be computed from the corresponding linear equation.
The expansion is known as the Dirac nonstationary perturbation theory [43] and is
widely used in many problems, though justification of the convergence for the series
is still an open problem.

4.3 Klein–Gordon Equation

Let us extend the Lagrangian formalism to the Klein–Gordon equation

LKGψ(x) :=
[

i�∇0 − e

c
φ(x)

]2

ψ(x)−
[

−i�∇ − e

c
A(x)

]2

ψ(x)− m2c2ψ(x) = 0,

(4.32)

where x0 = ct , and respectively, ∇0 = 1

c
∂t . The equation arises from the relativistic

Lorentz equations (12.76) by the canonical quantization (3.26) of the corresponding
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relativistic energy-momentum relation (12.93). In the real vector form,

LKGψ(x) :=
[

J�∇0 − e

c
φ(x)

]2

�(x) −
[

−J�∇ − e

c
A(x)

]2

�(x) + m2c2�(x)

= 0. (4.33)

This equation can be written in the variational form (4.10) with the corresponding
Lagrangian density

L(x,�,∇�) = 1

2

∣
∣
∣
∣

[

J�∇0� − e

c
φ(x)�

]∣
∣
∣
∣

2

− 1

2

∣
∣
∣
∣ − J�∇� − e

c
A(x)�

∣
∣
∣
∣

2

− 1

2
m2c2|�|2, (4.34)

where the factor 1/2 is introduced for convenience of calculations.

Exercise 4.4 Prove that the corresponding Euler–Lagrange equations (4.10) coin-
cide with the Klein–Gordon equation (4.33). Hint:

L� = −e

c
φ(x)

[

J�∇0 − e

c
φ(x)

]

�(x) + e

c
Ak(x)

[

−J�∇k − e

c
Ak(x)

]

�(x)

− m2c2�.

The canonically conjugate fields are given by


0(x) = −J�

[

J�∇0 − e

c
φ(x)

]

�(x),


k(x) = −J�

[

−J�∇k − e

c
Ak(x)

]

�(x).

(4.35)

Exercise 4.5 Write the energy, momentum, angular momentum and charge con-
servation for the Klein–Gordon equation (4.32). Hint: Use general formulas of
Sect. 13.4.

The corresponding Hamiltonian functional is given by the Legendre transform

HHH
(

0,�, t

) = 〈

0,∇0ψ

〉 −
∫

L(x,�,∇�)dx

= 1

2

〈

J�∇0� − e

c
φ(x)�,J�∇0� + e

c
φ(x)�

〉

+ 1

2

∫ [∣
∣
∣
∣ − J�∇� − e

c
A(x)�

∣
∣
∣
∣

2

+ m2c2|�|2
]

dx
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= 1

2�2

〈


0,
0 + 2�
e

c
φ(x)J�

〉

+ 1

2

∫ [∣
∣
∣
∣−J�∇� − e

c
A(x)�

∣
∣
∣
∣

2

+ m2c2|�|2
]

dx. (4.36)

Exercise 4.6 Verify that the Klein–Gordon equation (4.33) is equivalent to the
Hamilton system

∇0� = D
0HHH, ∇0

0 = −D�HHH, (4.37)

where D
0 and D� are the corresponding variational derivatives.

Remark 4.7 The middle line of (4.36) can be written as

HHH
(

0,�, t

) = �
2

2
〈∇0�,∇0�〉 − e2

2c2

〈
φ(x)�,φ(x)�

〉

+ 1

2

∫ [∣
∣
∣
∣−J�∇� − e

c
A(x)�

∣
∣
∣
∣

2

+ m2c2|�|2
]

dx. (4.38)

Hence, the energy (4.36) can be non-positive for large potentials φ(x). This is one
of issues of the known ‘Klein paradox’ [72].



Chapter 5
Wave-Particle Duality

Abstract The wave-particle duality was one of main issues for the Schrödinger
theory. Now we will dwell upon this question in framework of the Schrödinger for-
malism calculating the corresponding density of particles. However, particles cannot
be assigned any fixed position and momentum, as there are restrictions due to the
Heisenberg Uncertainty Principle.

The wave nature of electron beam was confirmed experimentally and is perfectly
explained by the Schrödinger wave theory.

However, the problem of wave-particle duality acquires new appearance as ‘re-
duction of wave packets’ in diffraction of a week electron beam. This key phe-
nomenon was discovered experimentally and suggests the Born probabilistic inter-
pretation of the wave function.

5.1 Electron Beam and Uncertainty Principle

De Broglie identified free electron beam with the plane wave (3.2)

ψ(t,x) = Aei(kx−ωt). (5.1)

Let us consider this identification in the framework of the Schrödinger theory.

5.1.1 Plane Wave as Electron Beam

The plane wave (3.2) is a solution of the free Schrödinger equation (without an
external Maxwell field). Hence, the parameters satisfy the relations

�ω = �
2

2m
k2 > 0. (5.2)

By (4.19), the corresponding charge and electric current densities are given by

ρ = e
∣
∣ψ(t,x)

∣
∣2 = e|A|2, j = e

m

[−i�∇ψ(t,x)
] · ψ(t,x) = e�k

m
|A|2. (5.3)
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Also, the electron density, velocity and momentum should be as follows:

n := ρ/e = ∣
∣ψ(t,x)

∣
∣2

, v = j/ρ = �k
m

, p = mv = �k. (5.4)

Consequently, the energy density (i.e., the integrand in (3.61)) reads as

E := 1

2m

∣
∣[−i�∇]ψ(t,x)

∣
∣2 = �

2

2m
k2|A|2= mv2

2
n. (5.5)

Correspondingly, the energy per one electron is given by

E = E
n

= mv2

2
= �

2

2m
k2 = �ω, (5.6)

in accordance with (5.2).

5.1.2 The Heisenberg Uncertainty Principle

The interpretation of a plane wave as a beam of free electrons cannot be completed
by an assignment of the coordinates to electrons, since the charge density (5.3) is
constant. For the wave function ψ(x) with good decay at infinity, the mean value of
the coordinate is defined by

x̄ := 〈ψ, x̂ψ〉 := 〈ψ,xψ〉 (5.7)

in accordance with Definition 3.13(ii). Hence the uncertainty of the mean value is
the mean square error,

�x := ∣
∣
〈
ψ, (x̂ − x̄)2ψ

〉∣
∣1/2

/‖ψ‖, (5.8)

where ‖ψ‖ is the L2-norm of ψ . Similarly, for the momentum

p̄ := 〈ψ, p̂ψ〉 := 〈ψ,−i�∇ψ〉, �p := ∣
∣
〈
ψ, (p̂ − p̄)2ψ

〉∣
∣1/2

/‖ψ‖. (5.9)

It is easy to construct a wave functions ψ so that either �x(ψ) or �p(ψ) is arbi-
trarily small. However, the errors cannot be small simultaneously, giving the exact
Uncertainty Principle, as discovered by Heisenberg [81, 145]:

�xj �pj ′ ≥ �

2
δjj ′ , j, j ′ = 1,2,3. (5.10)

Example 5.1 Consider the ‘plane wave’ ψR(x) = ζ(x/R)eikx, where ζ ∈ C∞
0 (R3),

ζ(0) 	= 0. Then �xj (ψR) → ∞ as R → ∞, while �pj (ψR) → 0.
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Proof of the Uncertainty Principle First, note that the operators α := x̂j − x̄j and
β := p̂j ′ − p̄j ′ are symmetric. Hence

�x = ‖αψ‖
‖ψ‖ , �p = ‖βψ‖

‖ψ‖ . (5.11)

Now the Cauchy–Schwarz inequality implies that

�x�p ≥ |〈αψ,βψ〉|
‖ψ‖2

= |〈(βα + αβ)ψ,ψ〉/2 + 〈(βα − αβ)ψ,ψ〉/2|
‖ψ‖2

. (5.12)

It remains to observe that the operator βα + αβ is symmetric, while βα − αβ is
antisymmetric. Then the first inner product in the last numerator is real, while the
second is purely imaginary. Since βα − αβ = −i�δjj ′ , (5.10) herewith follows. �

Remark 5.2 For an eigenfunction ψ of the operator x̂ (p̂, respectively), the uncer-
tainty of the mean vanishes: �x̂ = 0 (�p̂ = 0, respectively). Hence, the Uncertainty
Principle is related to noncommutativity of the operators p̂ and x̂, because it forbids
the existence of their common eigenfunctions.

5.2 Diffraction of Electron Beams

The wave-particle duality was suggested theoretically by de Broglie in 1924. Ex-
perimentally, the duality was observed for the first time by Davisson and Germer in
1924–1927. The diffraction pattern is perfectly explained by the Schrödinger theory.
However, the reduction of wave packets is an open problem apparently explained by
the soliton type asymptotics for solutions of the Maxwell–Schrödinger equations.

5.2.1 Experimental Observations

• Davisson and Germer examined the scattering of electron beams (cathode rays)
by the nickel crystal as the target to measure the intensity of the scattered beam
at different directions. Their intention was to extend the Thomson formula (8.28)
for the scattering cross section from the scattering by atom to the scattering by
crystal, treating an electron beam as a flux of classical particles. Accordingly,
Davisson and Germer expected to obtain a smooth slowly varying cross section
(like the Thomson formula (8.28)).

Very surprisingly, the observation showed an extraordinary peak at some di-
rections in the intensity of the reflected electron beam. This peak resembled
diffraction patterns in scattering of X-rays by crystals. This kind of diffraction
was observed first by Laue in 1911–1914, who explained it as being due to the
interference between X-rays reemitted by the crystal lattice; its merit was fitly
recognized by the award to von Laue in 1914 of the Nobel Prize for physics.
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Accordingly, Davisson and Germer treated the peak as a result of the interfer-
ence between electron waves reemitted by the crystal lattice (Davisson shared the
Nobel Prize in physics in 1937 with George Thomson).

• Similar diffraction pattern was observed in the diffraction of an electron beam by
diffraction gratings [96].

• The ‘gedanken’ double-slit experiment is considered in all textbooks starting
from 1927. However, this experiment was first performed in 1989 by Tonomura
et al. using the set-up shown in Fig. 5.3 (see [184]).

• In 1949, Ehrenberg and Siday predicted the deflection of the diffraction pattern
in experiments of Davisson and Germer under influence of a magnetic field (this
was independently rediscovered by Aharonov and Bohm in 1959). The idea be-
hind this is the Lorentz force (1.6), which should deflect electrons downwards,
since the magnetic field is directed ‘downwords’, while the electron charge is
negative (see Fig. 5.4). Chambers was first to verify this effect experimentally
(1960, see [32]).

5.2.2 The Davisson–Germer Experiment

The incident electron beam excites each atom of the crystal and generates the reemit-
ted wave of type (8.148). The diffraction pattern arises from the interference of the
reemitted waves from all atoms of the crystal. Similarly, in the diffraction of light by
gratings, the diffraction pattern arises from the interference of the secondary waves
radiated by each ‘scratch’. For the case of gratings, the Bragg rule reads

d cosα

λ
− d cosβ

λ
= n, n = 0,±1,±2, . . . , (5.13)

where d > 0 is the grating spacing, and λ = 2π/|k| is the de Broglie’s wavelength
of the incident wave (5.1), α is the angle between the crystal surface and the wave
vector k, which is the direction of the incident wave propagation (see Fig. 5.1). In
the early Davisson–Germer experiments, the de Broglie wavelength λ = 1.67 Å; this
corresponds to the electrons of energy 54 eV (cf. (3.23)).

Davisson and Germer examined the diffraction of the reflected electron beam
by crystals in the set-up shown in Fig. 5.1. The solutions β of the Bragg equation
correspond to the directions along which the amplitude of the scattered wave at-
tains its local maximum; this is because here the phases of the secondary waves
coincide modulo 2π (see Fig. 5.1). The directions of local minimum of the ampli-
tude corresponds to solutions β to the Bragg equation with (n + 1/2)λ on the right.
The corresponding Bragg rule for the crystal can be obtained similarly, taking into
account the crystal structure.

In 1927, Thomson investigated the diffraction of a transmitted electron beam
by a thin polycrystalline film in the set-up of Fig. 5.2; he observed the diffraction
pattern corresponding to this configuration, [181].
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Fig. 5.1 Diffraction of
reflected beam

Fig. 5.2 Diffraction of
transmitted beam

In all these observations, the diffraction pattern agrees with the corresponding
Bragg rules and de Broglie’s formulas for wavelength (3.15), (3.17), where the en-
ergy of electrons is determined from the voltage of the electron gun.

5.2.3 The Double-Slit Experiment

In 1989, Tonomura et al. observed the diffraction of an electron beam in a ‘two-slit’
arrangement. An electron beam emitted by the electron gun S is separated in two co-
herent beams by the electrostatic version of Fresnel’s biprism in the arrangement of
Fig. 5.3. The diffraction pattern in this case agrees with the Bragg rule of type (5.13)
with the corresponding de Broglie’s wavelength, see [184].

5.2.4 The Aharonov–Bohm Effect

The two-slit arrangement is superimposed by a magnetic field M. The shift in the
set-up of Fig. 5.4 was first observed experimentally by Chambers [32, 153].
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Fig. 5.3 Diffraction by
double-slit

Fig. 5.4 Shift in magnetic
field

5.2.5 Diffraction of Electrons via Schrödinger Theory

The diffraction of electron beams is perfectly described by the linear ‘magnetic’
Schrödinger equation (3.37),

i�∂tψ(t,x) =
(

1

2m

[

−i�∇ − e

c
A(x)

]2

+ eφ(x)

)

ψ(t,x). (5.14)

Namely, the observed wave field ψ(t,x) is a solution of the scattering problem
corresponding to the incident electron beam of type (5.1). In the arrangement of
Fig. 5.4, the corresponding external magnetic field B(x) = curl A(x) is localized in
a small region screened from the incident electron beam.

Davisson–Germer Experiment

Let ψ0(t,x) and ψ(t,x) be, respectively, the solutions of the scattering problem
describing the arrangement of Figs. 5.3 and 5.4 with two slits 1 and 2. It is crucially
important that the de Broglie’s electron wavelength is negligible with respect to the
distance d between the slits. For example,
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(a) in the Tonomura et al. experiment (1989): d = 10−4 cm = 104 Å, while λ =
0.054 Å for ‘very cold’ electrons with the energy 10 eV; see [184];

(b) in the Frabboni et al. experiment (2007): d = 0.22×104 Å, while λ = 0.0257 Å;
see [67].

In this short wavelength limit, we expect that the following ‘splitting asymptotic’
formulas hold,

ψ0(t,x) ∼ ψ0
1 (t,x) + ψ0

2 (t,x),

ψ(t,x) ∼ ψ1(t,x) + ψ2(t,x), λ/d � 1, x ∈ Z; (5.15)

here Z is the zone between the scatterer (electrostatic biprism) and the screen,
ψ0

1 (t,x) and ψ1(t,x) are the solutions to the corresponding scattering problems
(in the arrangement of Figs. 5.3 and 5.4, respectively) with the unique slit 1, and
ψ0

2 (t,x) and ψ2(t,x) are the solutions to the corresponding scattering problems
with the unique slit 2. The splitting asymptotic formulas (5.15) hold in the Huygens–
Kirchhoff diffraction approximation [5, 21, 173], which is valid, since λ/d � 1. The
first splitting gives the interference, which perfectly explains the diffraction pattern
in the Davisson–Germer experiments.

The Aharonov–Bohm Effect

A further step would be to find a relation between the solutions ψ0
j (t,x) and

ψj(t,x). For every j = 1,2, they are related by the ‘gauge transform’ (4.25)

ψj (t,x) = ψ0
j (t,x)e−i e

c�
χj (x), A(t,x) = −∇χj (x), x ∈ Z \ M, (5.16)

leaving the electrostatic potential φ(x) unchanged. These relations hold, since
the second equation admits the solution χj (x) outside the region M, in which
curl A(x) ≡ B(x) 	= 0:

χj (x) =
∫

�j (x)

A(y) dy, x ∈ Z \ M. (5.17)

The integral is taken over any path �j (x) connecting the slit j with the point x, and
does not depend on the path, inasmuch as curl A(x) = 0, see Fig. 5.4.

The solutions with j = 1,2 do not coincide, since the ‘period’ does not vanish
(by the Stokes theorem):

∫

∂M
A(x) dx = �, � :=

∫

M
B(x) dx 	= 0 (5.18)

where ∂M is oriented clockwise. Hence, χ1(x) = χ2(x) + �, and the second split-
ting (5.15) together with (5.16) give
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ψ(t,x) = ψ0
1 (t,x)e−i e

c�
χ1(x) + ψ0

2 (t,x)e−i e
c�

χ2(x)

= [
ψ0

1 (t,x) + ψ0
2 (t,x)e−i e

c�
�
]
e−i e

c�
χ2(x). (5.19)

The presence of the phase factor e−i e
c�

� exactly means a ‘shift’ of the diffraction

pattern. Indeed, we should add the phase shift δ = e

c�
� to the second term of the

Bragg equation (5.13), where α = π/2 and d is the distance between the slits 1
and 2,

−d cosβ

λ
− δ = n, n = 0,±1,±2, . . . . (5.20)

Hence, the angles βn = βn(δ) change continuously with δ, resulting in the observed
shift of the diffraction pattern.

5.3 Probabilistic Interpretation

The diffraction experiments for beams with small intensities suggest the probabilis-
tic interpretation of the wave function. We discuss possible mechanism of the parti-
cle generation.

5.3.1 Reduction of Wave Packets and Probabilistic Interpretation

As we have seen, the linear Schrödinger equation (5.14) satisfactory explains the
diffraction pattern in the electron diffraction and the shift in a magnetic field. How-
ever, the reduction of the wave packet remains a fundamental open question, which
cannot be treated with the linear Schrödinger equation.

Namely, for an incident beam of small intensity, the discrete registration of elec-
trons was observed with the counting rate corresponding to the diffraction pattern:
see the discussion in [184]. This discrete registration, known as ‘reduction of wave
packets’, cannot be explained by the linear equation (3.32). In 1927, Born suggested
to interpret |ψ(t,x)|2 as the density of probability in order to explain the electron
diffraction in the Davisson–Germer experiment. The interpretation has been con-
firmed by validity of the Rutherford formula in the scattering of electrons (see Re-
mark 8.8).

In particular, formulas (5.3) and (5.4) give the (mathematical) expectation of the
charge density, current, density of particles, velocities and momentum.

5.3.2 Soliton-Type Asymptotics

To explain dynamically the reduction of wave packets, we should suggest an in-
terpretation of elementary particles in terms of the coupled nonlinear Maxwell–
Schrödinger equations (4.22).
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For example, the elementary particles might correspond to traveling (‘solitary’)
waves, which are the solutions of the type (ψ(x − vt)ei�(v,t,x),A(x − vt)) to
the coupled nonlinear Maxwell–Schrödinger equations (4.22). Respectively, the de
Broglie’s wave-particle duality should be treated as the soliton asymptotics

(
ψ(t,x),A(t,x)

) ∼
∑

k

(
ψk±

(
x − vk±t

)
ei�(vk±,t,x),Ak±

(
x − vk±t

))
, t → ±∞.

(5.21)
The asymptotics should hold in the zone near the screen lying sufficiently far from
the scatterer (crystal, grating or the electrostatic biprism), where the solitons proba-
bly cannot nucleate due to interaction with the scatterer.

Asymptotics (5.21) near the screen might be treated as the electron field decay to
the collection of the electrons represented by bullets in Figs. 5.1–5.4. This treatment
suggests that the density of the counted electrons should decrease with increasing
distance from the screen.

5.3.3 Solitons and Reduction of Wave Packets

The diffraction pattern in the diffraction experiments agrees with the corresponding
Bragg rules, which determine the location of maximum values of the charge density
on the screen. This fact has led to the Born probabilistic interpretation for the charge
density.

The soliton-like asymptotics (5.21) also agree with the Bragg rule for small wave-
length. Namely, we suggest that the zone Z between the scatterer and the screen is
divided into two zones:

• The ‘wave zone’ Zw near the scatterer, where the wave field ψ(t,x) admits the
quasiclassical asymptotics (3.52), and

• The ‘particle zone’ Zp near the screen, where the wave field ψ(t,x) admits the
soliton-type asymptotics (5.21).

The counting rate of solitons in the zone Zp should be proportional to the abso-
lute value of the electric current in the adjacent cell of the wave zone by the charge
continuity if the phases of the solitons are random and the random process is er-
godic.

It remains to explain why the maxima of the current density in the wave zone
correspond to the maxima of the charge density for small wavelength. This follows
from the quasiclassical asymptotics (3.52), since ∇S should vary slowly in the wave
zone.

This correspondence explains why the counting rate is greatest when the wave
function assumes its maximum. This seems to explain the correspondence between
the counting rate of solitons and the diffraction pattern. Finally, the random nature
of the process is provided by the microscopic fluctuations and uncontrolled imper-
fections of the scatterer and of the slits.
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Remark 5.3 Note, however, that for large wavelength, the quasiclassical asymp-
totics (3.52) might break down. Respectively, the diffraction pattern in general
should correspond to the maxima of the current density (instead of the charge den-
sity).

5.3.4 The Aharonov–Bohm Paradox

The Aharonov–Bohm effect looks paradoxical from the classical point of view,
because the ‘deviated particles’ do not go through the region in which the mag-
netic field is present. This paradox can be removed by the above treatment, since
the magnetic field is located in the wave zone Zw and interacts with the nonlocal
Schrödinger wave field, while the particles (= solitons) arise in the ‘particle zone’
near the screen which is far from the magnet.

5.3.5 The Known Results on Soliton Asymptotics

At the present time, soliton asymptotics (5.21) are proved for some model non-
linear hyperbolic partial differential equations. First results in this direction were
established for the KdV equation and other completely integrable equations. For the
KdV equation, any solution with sufficiently smooth and rapidly decaying initial
data converges to a finite sum of soliton solutions moving to the right, and a disper-
sive wave moving to the left. A complete survey and proofs can be found in [54].

For nonintegrable equations, an analogue of soliton asymptotics (5.21) was ob-
tained first by Soffer and Weinstein in the context of U(1)-invariant Schrödinger
equation [166–170]. The asymptotics for translation invariant equations were ob-
tained by Buslaev and Perelman [28–30] for the 1D Schrödinger equation, and by
Miller, Pego and Weinstein, for the 1D modified KdV and RLW equations (see [140,
150, 151]). Recently the results were extended to the coupled Maxwell–Lorentz
equations and relativistic nonlinear Ginzburg–Landau equations [8, 117, 118]. In
all these papers, the asymptotics are proved for solutions sufficiently close to one
soliton, and the sum in (5.21) contains only one term.

The soliton asymptotics (5.21) with one soliton for all finite energy solutions of
nonintegrable equations were proved first in [110] for the Abraham type model of
the extended particle coupled to wave equation. The result has been extended in [91]
to Maxwell–Lorentz equations with extended charge.

Numerical experiments [115] demonstrate that soliton asymptotics (5.21) hold
for general 1D relativistic-invariant equations, however the proof is still an open
problem. The existence of solitons and the relativistic Einstein mass-energy identity
for them are proved, respectively, in [9] and [53], for general relativistic nonlinear
Klein–Gordon equations.
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On the other hand, for the coupled Maxwell–Schrödinger and Maxwell–Dirac
equations, the justification of the asymptotics is still an open question. For the cou-
pled equations it is proved only the existence of solutions (see [22, 80]), and for the
Maxwell–Dirac equations, the existence of solitons (see [61]).

5.3.6 Particle-Like Behavior of Solitons

In [120], adiabatic effective dynamics is established for solitons of a 3D wave equa-
tion coupled to a classical particle subject to a slowly varying external potential. The
effective dynamics justifies the identification of solitons with particles, and explains
the increment of the mass of the particle caused by its interaction with the field.
The effective dynamics is extended in [68] to solitons of the nonlinear Schrödinger
and Hartree equations. The first extension to relativistic-invariant equations is ob-
tained in [135] for the nonlinear Klein–Gordon–Maxwell system with an external
potential.



Chapter 6
The Eigenvalue Problem

Abstract The eigenvalue problem for the Hydrogen atom was solved by Schrödin-
ger in 1926.

The solution relies on the separation of variables which is possible due to the
spherical symmetry of the Schrödinger equation. The angular functions are chosen
to be the spherical functions which are the eigenfunctions of the spherical Laplacian.
The spherical functions are constructed by an analysis of the Lie algebra of the ro-
tation group SO(3). The radial functions are obtained solving the radial differential
equation applying the Sommerfeld method of factorization.

6.1 The Hydrogen Spectrum

Quantum stationary states for the hydrogen atom were obtained by separation of
variables in the Schrödinger equation. The key role in the calculation is played by
decomposing the space L2(S2) into a sum of orthogonal eigenspaces of the spherical
Laplacian (which we will construct in next section) and by solving the correspond-
ing radial equation.

6.1.1 The Eigenvalue Problem

Ions of the hydrogen atom have a positive charge −e, being of valency one. Re-
spectively, the atom has precisely one electron of negative charge e due to neutral-
ity of the substance. Hence the normalization condition (3.35) should hold, and so
ψ ∈ E := L2(R3).

The Rutherford experiments demonstrate that the positive charge |e| of the ions
is concentrated in a relatively small region called ‘nucleus’, so its Maxwell potential
is Coulombic φ = −e/|x|. The magnetic potential of the nucleus is assumed to be
zero: A(t,x) = 0. Then the Schrödinger equation (3.37) for the hydrogen atom reads

i�∂tψ(t,x) = Hψ(t,x) := − �
2

2m
�ψ(t,x) − e2

|x|ψ(t,x). (6.1)
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In our model, the hydrogen nucleus is considered as fixed. This corresponds to
the fact that the nucleus is heavy with respect to the electron with the mass ratio
about 1836. Respectively, the nucleus potential is assumed to be static. The corre-
sponding stationary states ψ(t,x) = ψ(x)e−iE/�t satisfy the stationary Schrödinger
equation

Eψ(x) = Hψ(x). (6.2)

Theorem 6.1 The energies of quantum stationary states of the hydrogen atom are
given by

En = −2π�cR/n2, n = 1,2, . . . , (6.3)

where R := me4

4π�3c
is the Rydberg constant.

We will prove Theorem 6.1 in this lecture relying on spectral resolution of spher-
ical Laplacian which we prove in next lecture.

Substituting values (3.36), we obtain R ≈ 108 × 105 cm−1 (with e = −4.803 ×
10−10 esu). Modern recommended value of the Rydberg constant:1

R = 109 737.315 685 27 (73) cm−1. (6.4)

Formula (6.3) agrees with the Balmer empirical terms (1.2) with B = 2πcR ≈
104.058 × 1030 s−1. Moreover, the lowest energy level E1 should be the (negative)
ionization energy of the Hydrogen atom which is known experimentally to be about
−13.6 eV. Using the data of (3.36) for �, c and (6.4) for R, it is found that

E1 = −2π�cR ≈ −21.79 × 10−12 erg = −21.79 × 10−19 J. (6.5)

Dividing by the electron charge e = −1.602 × 10−19 C (SI), we obtain E1/e =
13.60 V.

6.1.2 Spherical Symmetry and Separation of Variables

The Rotation Invariance

The basic issue in solving the eigenvalue problem (6.2) is its spherical symmetry,
which implies the angular momentum conservation. Namely, the Schrödinger op-
erator H is invariant with respect to all rotations of the space R

3. This means the
commutation

HR̂k(ϕ) = R̂k(ϕ)H, ϕ ∈ R, k = 1,2,3, (6.6)

1CODATA: http://www.physicstoday.org/guide/fundconst.pdf.

http://www.physicstoday.org/guide/fundconst.pdf
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where (R̂k(ϕ)ψ)(x) := ψ(Rk(ϕ)x) and Rk(ϕ) is the space rotation around the unit
vector ek by angle ϕ (in radians) in the positive direction, e1 = (1,0,0), etc. The
commutations hold by (6.2), since the Laplacian � and the Coulomb potential are
invariant under all rotations. Differentiating (6.6) in ϕ, we obtain

[H,∇ϕk
] = 0, k = 1, 2, 3 (6.7)

where

∇ϕk
:= d

dϕ

∣
∣
∣
∣
ϕ=0

R̂k(ϕ). (6.8)

It follows that H also commutes with Hk := −i∇ϕk
and angular momentum opera-

tors L̂k = �Hk

[H,Hk] = 0, [H, L̂k] = 0, k = 1,2,3, (6.9)

by (3.86). Hence the angular momenta Lk(t) := 〈ψ(t), L̂kψ(t)〉 are conserved. The
conservation of the corresponding classical angular momentum played a crucial role
in determination of the hydrogen spectrum in the Bohr–Sommerfeld ‘old quantum
theory’ (Sect. 14.2).

Spherical Harmonics

Now we proceed to explain our general strategy of the proof of Theorem 6.1. Com-
mutation (6.7) suggests solving the spectral problem (6.2) by separation of variables.
More precisely, the strategy depends on the following three general arguments:

I. Commutation (6.9) obviously implies that the operator H2 := H2
1 + H2

2 + H2
3

commutes with H :
[
H,H2] = 0. (6.10)

Hence, any eigenspace of the Schrödinger operator H is invariant with respect to H2

and any of the operators Hk . Moreover, H2 also commutes with each operator Hk :

[
H2,Hk

] = 0, k = 1, 2, 3. (6.11)

Exercise 6.2 Verify (6.11). Hint: First, prove the commutation relations [Hk,Hj ] =
−i�εkjlHl , where εkjl is a totally antisymmetric tensor.

Since the operators Hk with k = 1,2,3 do not commute, they cannot be diag-
onalized simultaneously. On the other hand, operators H , H2, and Hk with any
fixed k mutually commute. Hence, we could expect that there is a basis of common
eigenfunctions.
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II. We will diagonalize simultaneously H3 and H2. By (6.8), both these operators
act only on the angular variables in spherical coordinates. Hence, these operators
act in the Hilbert space E1 := L2(S), where S denotes the two-dimensional sphere
|x| = 1.

Theorem 6.3

(i) For E1, there exist an orthonormal basis of spherical harmonics Ym
l (θ,ϕ),

which are common eigenfunctions of H3 and H2:

H3Y
m
l = mYm

l , H2Ym
l = l(l + 1)Ym

l , m = −l,−l + 1, . . . , l; (6.12)

here l = 0,1,2, . . . .
(ii) Ym

l (θ,ϕ) = Fm
l (θ)eimϕ , where Fm

l (θ) are real functions.

We will prove this theorem in next section. It is important that each space of the
common eigenfunctions is one-dimensional, since eigenvalues depend on l and m.
This suggests constructing eigenfunctions of the Schrödinger operator H in the form

ψ(x) = R(r)Ym
l (θ,ϕ). (6.13)

Each solution of the spectral problem (6.2) is a sum (or a series) of the solutions
of the particular form (6.13) since the spherical functions Ym

l form the basis in E1.
We will see that solution of the spectral problem (6.12) relies on an investigation
of commutation relations for the operators Hk , k = 1,2,3; i.e., on the Lie algebra
generated by them.

6.1.3 Spherical Coordinates

To determine the radial functions in (6.13), let us express the Laplace operator � in
spherical coordinates r, θ,ϕ; by definition,

x3 = r cos θ, x1 = r sin θ cosϕ, x2 = r sin θ sinϕ. (6.14)

The operator � is symmetric in the Hilbert space L2(R3). Hence, it is defined
uniquely by its quadratic form (�ψ,ψ), defined for ψ ∈ D := {ψ ∈ L2(R3) :
ψ(α) ∈ L2(R3) ∩ C(R3), |α| ≤ 2}. In spherical coordinates

(�ψ,ψ) = −(∇ψ,∇ψ) = −
∫ ∞

0
dr

∫ π

0
dθ

∫ 2π

0
dϕ

∣
∣∇ψ(r, θ,ϕ)

∣
∣2

r2 sin θ.

(6.15)
Geometrically, it is evident that

∇ψ(r, θ,ϕ) = er∇rψ + eθ

∇θψ

r
+ eϕ

∇ϕψ

r sin θ
, (6.16)
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where er , eθ , eϕ are the orthogonal unit vectors proportional to ∇r , ∇θ , ∇ϕ , respec-
tively. Therefore, (6.15) becomes

(�ψ,ψ) = −
∫ ∞

0
dr

∫ π

0
dθ

∫ 2π

0
dϕ

(

|∇rψ |2 +
∣
∣
∣
∣
∇θψ

r

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∇ϕψ

r sin θ

∣
∣
∣
∣

2)

r2 sin θ

(6.17)
Integrating by parts,

(�ψ,ψ)

=
∫ ∞

0
dr

∫ π

0
dθ

∫ 2π

0
dϕ

(

r−2∇r r
2∇rψ + ∇θ sin θ∇θψ

r2 sin θ
+ ∇2

ϕψ

r2 sin2 θ

)

ψ̄r2 sin θ

=
(

r−2∇r r
2∇rψ + ∇θ sin θ∇θψ

r2 sin θ
+ ∇2

ϕψ

r2 sin2 θ
,ψ

)

. (6.18)

Therefore, the Laplace operator in spherical coordinates reads as follows:

�ψ = r−2∇r r
2∇rψ + ∇θ sin θ∇θψ

r2 sin θ
+ ∇2

ϕψ

r2 sin2 θ
= r−2∇r r

2∇rψ + r−2�ψ;
(6.19)

here � is the differential operator on the sphere S in coordinates θ,ϕ:

� = ∇θ sin θ∇θ

sin θ
+ ∇2

ϕ

sin2 θ
. (6.20)

Exercise 6.4 Verify the integration by parts in (6.18).

The operator � is called the spherical Laplace operator.

Exercise 6.5 Verify the identity

� = −H2. (6.21)

Hint: Both sides are second order spherically symmetric elliptic operators.

6.1.4 The Radial Equation

Here we deduce Theorem 6.1 from Theorem 6.3 by substituting (6.13) into (6.2),
taking into account (6.19), (6.21), (6.12) and applying the Sommerfeld method of
factorization. Further, omitting Ym

l (θ,ϕ), and multiplying by −2m/�2, we arrive at
the radial equation

−2mE

�2
R(r) = r−2∇r r

2∇rR(r) − l(l + 1)

r2
R(r) + 2me2

�2r
R(r), r > 0. (6.22)
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Making r → ∞, this equation becomes

−2mE

�2
R(r) ∼ R′′

l (r). (6.23)

This suggests that E < 0 and that the asymptotics R(r) ∼ e−γ r should hold as
r → ∞, where

γ = √−2mE/� > 0. (6.24)

Respectively, we factorize R(r) = e−γ rF (r). Substituting into (6.22), this gives

F ′′ +
[

2

r
− 2γ

]

F ′ +
[
d

r
− l(l + 1)

r2

]

F = 0, r > 0, (6.25)

where d = b − 2γ with b = 2me2/�2. Finally, we introduce the new variable ρ =
2γ r . Hence (6.25) becomes

f ′′ +
[

2

ρ
− 1

]

f ′ +
[
λ − 1

ρ
− l(l + 1)

ρ2

]

f = 0, ρ > 0, (6.26)

where f (ρ) = F(r) and λ = b/(2γ ). Now let us seek for f in the form

f (ρ) = ρs
(
a0 + a1ρ + a2ρ

2 + · · · ) ≡ ρsL(ρ), (6.27)

where a0 �= 0. Substituting (6.27) into (6.26), we get

ρ2L′′ +
[

2sρ +
[

2

ρ
− 1

]

ρ2
]

L′

+
[

s(s − 1) +
[

2

ρ
− 1

]

sρ +
[
λ − 1

r
− l(l + 1)

ρ2

]

ρ2
]

L = 0 (6.28)

for ρ > 0. Evaluating, this gives

ρ2L′′ + ρ
[
2(s + 1) − ρ

]
L′ + [

ρ(λ − 1 − s) + s(s + 1) − l(l + 1)
]
L = 0,

ρ > 0. (6.29)

Setting ρ = 0, it is found that s(s + 1) − l(l + 1) = 0. Hence, either s = l or s =
−l − 1. For s = l, Eq. (6.29) becomes

ρL′′ + [
2(l + 1) − ρ

]
L′ + [λ − 1 − l]L = 0, ρ > 0. (6.30)

The case s = −l − 1 is forbidden since the corresponding eigenfunction
ψ(x) is not a function of finite energy because then ∇ψ(x) �∈ L2(R3) and∫

φ(x)|ψ(x)|2 dx = ∞.



6.1 The Hydrogen Spectrum 85

Putting L(ρ) = a0 +a1ρ+a2ρ
2 +· · · and equating the coefficients with identical

powers of ρ,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ0: 2(l + 1)a1 + (λ − 1 − l)a0 = 0,

ρ1: 2a2 + 2(l + 1)2a2 − a1 + (λ − 1 − l)a1 = 0,

ρ2: 3 · 2a3 + 2(l + 1)3a3 − 2a2 + (λ − 1 − l)a2 = 0,

. . .

ρk: (k + 1)kak+1 + 2(l + 1)(k + 1)ak+1 − kak + (λ − 1 − l)ak = 0
. . .

(6.31)

we obtain the recursive relation

ak+1 = k − (λ − 1 − l)

(k + 1)(k + 2l + 2)
ak. (6.32)

This shows that ak+1/ak ∼ 1/k, provided all ak �= 0. Consequently, |L(ρ)| ≥ Ceρ =
Ce2γ r , where C > 0. Hence, R(r) = F(r)e−γ r → ∞ as r → ∞. This, however,
contradicts the finite energy of a quantum stationary state. Therefore, ak+1 = 0 and
ak �= 0 for some k = 0,1,2, . . . . Hence, k − (λ − 1 − l) = 0, and so

λ = b

2γ
= k + l + 1 = n = 1,2, . . . . (6.33)

Putting b = 2me2/�2 and γ = √−2mE/�, we finally get

E = En := −2π�R1

n2
, n = 1,2, . . . , (6.34)

where R1 := me4/(4π�3). This proves (6.3).

6.1.5 Eigenfunctions and Quantum Numbers

From (6.13) and Theorem 6.3 we obtain eigenfunctions ψ with eigenvalues En.
Indeed, in spherical coordinates

ψlmn := Ce−r/rnPnl(r)F
m
l (θ)eimϕ,

n = 1,2, . . . , 0 ≤ l ≤ n − 1, m = −l, . . . , l. (6.35)

Here

rn := 1/γ = �/
√−2mEn = �

2n/
(
me2) (6.36)

and Pnl(r) = ρlL(ρ) is a polynomial function of degree k+ l = n−1 ≥ l, according
to (6.33).

The numbers l, m, n are called the azimuthal quantum number, the magnetic
quantum number, and the principal quantum number of the stationary state, respec-
tively.
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Exercise 6.6 Calculate the multiplicity of eigenvalues En. Hint: Calculate∑
0≤l≤n−1(2l + 1).

Note that, by (6.32), the signs of the coefficients ak alternate (if ak ∈ R), since
k ≤ k = λ − 1 − l. Hence, L(ρ) = ρl(a0 + · · · + akρ

k) does not vanish for ρ < 0,
and n− 1 = k + l is the number of zeros of the radial function Pnl(r) for ρ ≥ 0 (one
may prove that all the roots are real).

Groundstate ψ1 is defined as the eigenfunction with the lowest energy E1 =
−2π�cR = −me4/(2�2):

ψ1(x) = ψ001 = C1e
−|x|/r1 , r1 = �

2

me2
. (6.37)

It is spherically symmetric, and concentrated in a very small region of ‘Bohr radius’
r1 ∼ 1 Å = 10−8 cm.

6.2 The Spherical Spectral Problem

Proof of Theorem 6.3 depends on the rotational invariance of the Schrödinger oper-
ator and classification of irreducible representations of the Lie algebra of SO(3).

6.2.1 Hilbert–Schmidt Argument

We start with diagonalization of the operator H2.

Lemma 6.7 The operator H2 := H2
1 + H2

2 + H2
3 in E1 := L2(S) is selfadjoint and

admits the spectral resolution

E = ⊕∞
l=0L(l), (6.38)

where L(l) ⊂ C∞(S) are finite-dimensional orthogonal subspaces of E, and
H2|L(l) = λl as λl → ∞ with l → ∞.

Proof Step (i) Each operator Hk := −i∇ϕk
is selfadjoint on E1. Indeed, the rotations

R̂k(ϕ) form a unitary group in E1, and hence its generators ∇ϕk
are skew-symmetric

(see (6.8)). Therefore, H2 is a selfadjoint nonnegative operator on E1.
Step (ii) The operator H2 is a nonnegative elliptic second-order operator on S.

This follows from (6.21) and (6.20). Hence, the operator H2 + 1 : H 2(S) → H 0(S)

is invertible, where Hk(S) denotes the Sobolev space on S (see [164]). Respectively,
the operator (H2 + 1)−1 : H 0(S) → H 2(S) is selfadjoint and compact on H 0(S) =
L2(S), by the Sobolev embedding theorem. Hence, resolution (6.38) holds by the
Hilbert–Schmidt theorem for the operator (H2 + 1)−1. �
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We can assume that λl �= λl′ for l �= l′. Then all the spaces L(l) are invariant with
respect to rotations of the sphere, since H2 commutes with rotations. Similarly, we
obtain

Corollary 6.8 All spaces L(l) are invariant with respect to Hk , k = 1,2,3.

6.2.2 Lie Algebra of Angular Momenta

The linear span of H1, H2 and H3 is a Lie algebra, because

[H1,H2] = iH3, [H2,H3] = iH1, [H3,H1] = iH2. (6.39)

Exercise 6.9 Verify the commutation relations. Hint: Hk = −i(x × ∇)k .

Lemma 6.10 For each k = 1,2,3,

(i) All spaces L(l) are invariant with respect to Hk .
(ii) [Hk,H2] = 0.

Proof (i) The invariance holds by Corollary 6.8(ii). The commutations hold
by (6.11). �

Let us denote H± = H1 ± iH2.

Lemma 6.11 All spaces L(l) are invariant with respect to H±. Also,

[H3,H±] = ±H±, (6.40)

H2 = H+H− + H3(H3 − 1) = H−H+ + H3(H3 + 1), (6.41)

H2 = 1

2
(H+H− + H−H+) + H2

3. (6.42)

Proof The invariance follows from Lemma 6.10(i); further, (6.40) and (6.41) follow
from (6.39), and (6.42) is a consequence of (6.41). �

6.2.3 Irreducible Representations

Here we give complete classification of all possible triples of Hermitian operators
satisfying commutation relations (6.39).

Proposition 6.12 (see [145]) Let E be a nonzero finite-dimensional complex linear
space with a Hermitian inner product. Suppose that
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(i) Linear Hermitian operators Hk , acting on E, k = 1,2,3, satisfy commutation
relations (6.39),

(ii) H2 := H2
1 + H2

2 + H2
3 is a scalar: H2 = α ≥ 0,

(iii) The space E is irreducible; i.e., it does not contain any nontrivial subspace
that is invariant under all Hk .

Then there exists a spin number J = 0, 1
2 ,1, 3

2 ,2, . . . and an orthonormal basis
for E, {em : m = −J,−J + 1, . . . , J − 1, J }, such that α = J (J + 1), and

H1em = s+
Jm

2 em+1 + s−
Jm

2
em−1, H2em = s+

Jm

2i
em+1 − s−

Jm

2i
em−1,

H3em = mem,

(6.43)

where

s±
Jm = √

(J ∓ m)(J ± m + 1). (6.44)

Proof We set H± := H1 ± iH2 as before. Then all relations (6.40)–(6.42) hold
by (6.39), as in Lemma 6.10. Since H3 is a Hermitian operator, there exists at
least one eigenvectors eM , and so we have H3eM = MeM with a real eigenvalue
M ∈ R. �

Lemma 6.13 Let em be an eigenvector of H3 with eigenvalue m. Then either e± :=
H±em = 0 or e± is an eigenvector of H3 with eigenvalue m ± 1.

Proof (6.40) implies that H3e± = H3H±em = H±H3em ± H±em = me± ± e±. �

By this lemma, each vector eM−k := Hk−eM with k = 0,1, . . . , is either zero or
an eigenvector of H3 with eigenvalue M − k. Similarly, each vector eM+k := Hk+eM

with k = 0,1, . . . , is either an eigenvector of H3 with eigenvalue M + k or zero.
Since E is finite dimensional, both sequences of the eigenvectors should termi-

nate by zero: eM− �= 0, but eM = 0 for M < M−, and similarly, eM+ �= 0, but eM = 0
for M > M+.

Let us show that M− coincides with the unique nonpositive solution of the equa-
tion α = M(M − 1), and similarly, M+ coincides with the unique nonnegative so-
lution of the equation α = M(M + 1).

Namely, identities (6.41) imply that H∗−H− = α − H3(H3 − 1) and H∗+H+ =
α − H3(H3 + 1). Hence, for any m = M−,M− + 1, . . . ,M ,

0 ≤ ‖H−em‖2 = 〈
em,H∗−H−em

〉 = 〈
em,

(
α − H3(H3 − 1)

)
em

〉

= [
α − m(m − 1)

]‖em‖2 (6.45)

and similarly, for any m = M,M + 1, . . . ,M+
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0 ≤ ‖H+em‖2 = 〈
em,H∗+H+em

〉 = 〈
em,

(
α − H3(H3 + 1)

)
em

〉

= [
α − m(m + 1)

]‖em‖2. (6.46)

As a result, the function α − m(m − 1) is nonnegative for m = M−, . . . ,M , and
vanishes at M−, since eM−−1 := H−eM− = 0. Similarly, the function α − m(m + 1)

is nonnegative for m = M, . . . ,M+, and vanishes at M+.
Therefore, M+ = −M− =: J , where 2J = 1,2, . . . , since m runs in the unit step

from −J to J . The vectors em, m = −J,−J + 1, . . . , J − 1, J , constitute the basis
for the space E, since E is irreducible.

Further, α − J (J + 1) = 0, and so (6.45) and (6.46) imply that

‖H−em‖2 = [
J (J + 1) − m(m − 1)

]‖em‖2,

‖H+em‖2 = [
J (J + 1) − m(m + 1)

]‖em‖2.
(6.47)

Therefore,

H+em = s+
Jmem+1, H−em = s−

Jmem−1. (6.48)

for normalized vectors em. Now formulas (6.43) follow.

Corollary 6.14 We set Z+
Jm = s+

J,−J · · · s+
J, m−1. Then the vectors Ym

J :=
HJ+m+ e−J /Z+

Jm, m = −J, . . . , J , constitute an orthonormal basis for E.

Definition 6.15 For J = 0, 1
2 ,1, 3

2 ,2, . . . , let D(J ) be the irreducible space E of
Proposition 6.12 (with the operators Hk defined by (6.43)).

Example 6.16 For J = 1
2 , the operators Hk are represented by the matrices ŝk :=

1
2σk in the orthonormal basis (Y

−1/2
1/2 , Y

1/2
1/2 ), where σk are the Pauli matrices:

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i

i 0

)

, σ3 =
(

1 0
0 −1

)

. (6.49)

Exercise 6.17 Deduce (6.49) from (6.43).

6.2.4 Spherical Harmonics

Now we can prove Theorem 6.3. We may assume that λl are distinct for distinct l.
Then Proposition 6.12 implies that each eigenspace L(l) is isomorphic to a direct
sum of M(l, J ) spaces D(J ) with the same values of J = J (l) = 0, 1

2 ,1, 3
2 ,2, . . . .

Indeed, distinct values of J are impossible, since the eigenvalue of H2 in D(J )

(which is equal to J (J + 1)) is a strictly increasing function of J ≥ 0. Hence, The-
orem 6.3(i) will follow from the next lemma.
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Lemma 6.18

(i) M(n,J ) = 0 for each n if J is half-integer.
(ii) For every integer J = 1,2,3, . . . , there exists a unique l = l(J ) such that

M(l, J ) = 1.

Proof (i) Each eigenspace L(l) is a direct sum of subspaces D(J ). Let us consider
one of these subspaces. By (6.8) and (6.43),

H3em(θ,ϕ) = −i∇ϕem(θ,ϕ) = mem(θ,ϕ) (6.50)

for each eigenvector em ∈ D(J ) of H3. Therefore, em(θ,ϕ) = Fm
J (θ)eimϕ , an so m

is an integer number, because the function em(θ,ϕ) should be single-valued. Hence
J is also integer.

(ii) Let us consider the lowest eigenvalue m = −J in the subspace D(J ). We
have H−e−J (θ,ϕ) = 0 by Lemma 6.13. We will show below that, in spherical co-
ordinates,

H− = −e−iϕ[∇θ − i cot θ∇ϕ], H+ = eiϕ[∇θ + i cot θ ∇ϕ]. (6.51)

Taking into account that e−J (θ,ϕ) = F−J
J (θ)e−iJϕ and since H−e−J (θ,ϕ) = 0, we

arrive at the differential equation (∇θ − J cot θ)F−J
J = 0. Hence, F−J

J = C sinJ θ .
This means that −J is a simple eigenvalue. Hence, M(l, J ) ≤ 1 for all l.

It remains to verify that M(l, J ) �= 0 for some l. This is equivalent to the exis-
tence of an eigenvector of H2 with eigenvalue J (J +1). However, this is the case of
the function e−J (θ,ϕ) = C sinJ θe−iJϕ constructed above. Indeed, (6.41) implies
that

H2e−J = H+H−e−J + H3(H3 − 1)e−J = J (J + 1)e−J ,

since H−e−J = 0, and H3e−J = −Je−J , because H3 = −i∇ϕ . �

Now Theorem 6.3(i) is proved, inasmuch as the functions

Ym
l (θ,ϕ) := Hl+m+ e−l/Z

+
lm, m = −l, . . . , l (6.52)

form an orthonormal basis for the space D(l) by Corollary 6.14. Theorem 6.3(ii)
also follows from (6.52), because

Hl+m+ e−l = (
eiϕ[∇θ + i cot θ ∇ϕ])l+m(

sinl θe−ilϕ
) = Gm

l (θ)eimϕ, (6.53)

where Gm
l (θ) is a real function. The latter follows from (6.53) by complex conjuga-

tion and the substitution ϕ �→ −ϕ.
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6.2.5 Angular Momenta in Spherical Coordinates

Let us prove (6.51). First, we rewrite (6.16) as follows:

∇ψ(r, θ,ϕ) = er∇rψ +eθ

∇θψ

r
+eϕ

∇ϕψ

r sin θ
= e1∇1ψ +e3∇3ψ +e3∇3ψ; (6.54)

here e1 := (1,0,0), etc. It is geometrically evident that
⎧
⎪⎨

⎪⎩

er = (e1 cosϕ + e2 sinϕ) sin θ + e3 cos θ,

eθ = (e1 cosϕ + e2 sinϕ) cos θ − e3 sin θ,

eϕ = e2 cosϕ − e1 sinϕ.

(6.55)

Substituting into (6.54), this establishes
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇1 = sin θ cosϕ∇r + cos θ cosϕ
∇θ

r
− sinϕ

∇ϕ

r sin θ
,

∇2 = sin θ sinϕ∇r + cos θ sinϕ
∇θ

r
+ cosϕ

∇ϕ

r sin θ
,

∇3 = cos θ∇r − sinϕ
∇θ

r
.

(6.56)

Finally, substituting (6.56) and (6.14) into Hk = −i(x × ∇)k , we get
⎧
⎪⎪⎨

⎪⎪⎩

H1 = i(sinϕ∇θ + cot θ cosϕ∇ϕ),

H2 = i(− cosϕ∇θ + cot θ sinϕ∇ϕ),

H3 = −i∇ϕ.

(6.57)

Now, (6.51) follows from the first two formulas.



Chapter 7
Atom Radiation

Abstract A stationary atom radiation should be maintained by an external source,
which provides the corresponding statistical equilibrium. The spectrum of the corre-
sponding atom radiation can be calculated from the Maxwell equations. The calcu-
lation justifies the Rydberg–Ritz Combination Principle (1.1), and gives the inten-
sity of spectral lines, and the selection rules in the case of a static uniform external
magnetic field.

The formula for the intensities implies spectral distribution of the limit stationary
Maxwell field (‘black-body radiation’).

7.1 Atom in Thermodynamical Equilibrium

Radiation obviously reduces the atom energy. Hence a stationary radiation should
be maintained by an external source like electric discharge or heat bath, X-rays, etc.
The corresponding equilibrium correlations for the wave function should agree with
the Maxwell–Boltzmann–Gibbs distribution.

7.1.1 Relaxation to Equilibrium Distribution

Heat bath or X-rays source can be modeled by a random incident wave (φin(t,x),

Ain(t,x)) in the coupled Maxwell–Schrödinger equations (4.22). The number of
atoms is of order 1023, the atoms are identical and independent if we neglect their
interactions. Respectively, the atoms of gas should be described by a random solu-
tion of the coupled equations with a static external Maxwell field and the random
incident wave:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
i�∂t − eφtot(t,x)ψ(t,x)

] = 1

2m

[

−i�∇ − e

c
Atot(t,x)

]2

ψ(t,x),

1

4π
�φ = e

∣
∣ψ(t,x)

∣
∣2

,

1

4π
�A = e

mc
ψ(t,x) ·

[

−i�∇ − e

c
Atot(t,x)

]

ψ(t,x).

(7.1)
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Here the total field is defined as

φtot := φext(x) + φin(t,x) + φ(t,x), Atot := Aext(x) + Ain(t,x) + A(t,x).

(7.2)
The static external potentials (φext(x),Aext(x)) include the Coulombic potential of
the hydrogen nucleus. The incident random wave (φin(t,x),Ain(t,x)) should be a
stationary random process. Respectively, we suggest that the solution of equations
(7.1) converges as t → ∞ to the corresponding stationary random process, which
does not depend on the initial state. This convergence is provisionally due to the
radiation of energy to infinity.

Remark 7.1

(i) The convergence to a stationary random process for equations with random
stationary coefficients is still an open problem.

(ii) The convergence was established for a number of linear hyperbolic equations
with non random coefficients, and with initial measure satisfying the mixing
Rosenblatt or Ibragimov–Linnik condition. Then the limit stationary measures
are Gaussian (see e.g. [47–52]).

(iii) For nonlinear hyperbolic equations, the first (and unique) result on the con-
vergence is obtained in [94]. In this case, the limit stationary measure is the
canonical equilibrium Boltzmann–Gibbs distribution.

7.1.2 Perturbation Theory

Let us write the Schrödinger equation from (7.1) as

i∂tψ = Hψ + H ′(t)ψ, (7.3)

where H is the ‘unperturbed’ Schrödinger operator

H = 1

2m

[

−i�∇ − e

c
Aext(x)

]2

+ eφext(x) (7.4)

and H ′(t) is the perturbation:

H ′(t) = e

mc
A∗(t,x) ·

[

i�∇ + e

c
Aext(x)

]

+ ie�

2mc

[∇ · A∗(t,x)
]

+ 1

2m

[
e

c
A∗(t,x)

]2

+ eφ∗(t,x), (7.5)

where

A∗(t,x) := A(t,x) + Ain(t,x), φ∗(t,x) := φ(t,x) + φin(t,x). (7.6)
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Equation (7.3) satisfies the charge conservation law
∥
∥ψ(t)

∥
∥ = 1 (7.7)

in spite of the fact that a Maxwell field may depend on time. The normalization (7.7)
means that the total charge of the hydrogen atom vanishes.

7.1.3 The Dirac ‘Interaction Picture’

In many practical cases, the potentials A∗(t,x) and φ∗(t,x) are small with re-
spect to Aext(t,x) and φext(t,x). Hence, it is natural to expand the random solu-
tion of the Schrödinger equation (7.3) in terms of eigenfunctions of the unperturbed
Schrödinger operator H :

ψ(t,x) =
∑

cn(t)ψn(x) +
∫ ∞

0
c(ω, t)ψ(ω,x) dω. (7.8)

Here ψn(x) (ψ(ω,x), respectively) are the normalized eigenfunctions of the dis-
crete (continuous) spectrum of H ,

{
Hψn = �ωnψn, Hψ(ω, ·) = �ωψ(ω, ·),
〈ψn,ψn′ 〉 = δnn′ ,

〈
ψ(ω, ·),ψ(

ω′, ·)〉 = δ
(
ω − ω′).

(7.9)

The coefficients cn(t) and c(ω, t) also should be stationary random processes, since
we suggest that for large time the solution is a stationary random processes.

If we neglect the potentials φ∗(t,x) and A∗(t,x), we obtain

cn(t) = ane
−iωnt , c(ω, t) = a(ω)e−iωt . (7.10)

Hence it is natural to write, in general case,

cn(t) = an(t)e
−iωnt , cω(t) = a(ω, t)e−iωt . (7.11)

Respectively, (7.12) reads

ψ(t,x) =
∑

an(t)e
−iωntψn(x) +

∫ ∞

0
a(ω, t)e−iωtψ(ω,x) dω. (7.12)

Here the amplitudes ak(t) and a(ω, t) satisfy the following equations

i�ȧn(t)e
−iωnt = 〈

H ′(t)ψ(t),ψn

〉
, i�ȧ(ω, t)e−iωt = 〈

H ′(t)ψ(t),ψ(ω, ·)〉,
(7.13)

which are referred to Dirac’s ‘interaction picture’ of the Schrödinger equation (7.3).
Therefore, the amplitudes an(t) and a(ω, t) vary slowly, since H ′(t) is a small per-
turbation.
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7.1.4 Thermodynamical Equilibrium in Schrödinger Theory

For calculation of the atom radiation in thermal equilibrium we need a suitable pos-
tulate for the corresponding equilibrium distribution. The Boltzmann distribution
(1.65) from the ‘old quantum mechanics’ means that the electron occupies exactly
one stationary orbit at every moment of time with probability

pn = 1

Z
e− �ωn

kT , Z =
∑

e− �ωn
kT , (7.14)

since, by (1.54), En = �ωn. An implementation of this distribution into the Schrö-
dinger theory is not straightforward. For the orbit |Em〉 corresponding to the wave
function ψm(x)e−ωmt , we have

∣
∣am(t)

∣
∣2 = 1, and an(t) = 0 for n �= m. (7.15)

S1. Equilibrium Correlations One possible option in the Schrödinger theory is
to identify the correlation functions

M
∣
∣an(t)

∣
∣2 = 1

Z
e− �ωn

kT , (7.16)

where M denotes the mathematical expectation. This postulate agrees with the
Boltzmann distribution (7.14), since, by (7.15),

M
∣
∣an(t)

∣
∣2 = pn · 1 + (1 − pn) · 0 = pn (7.17)

which coincides with (7.16).

S2. Phase Incoherence For calculation of intensity of spectral lines below we
need the following orthogonality relations

M
[
an(t) ⊗ an′(t)

] = 0,

M
[
an(t) ⊗ an′(t) ⊗ an′′(t) ⊗ an′′′(t)

] = 0 if n �= n′, n′′, n′′′,
(7.18)

where ⊗ is the tensor product of real vectors of R2 corresponding to the complex
numbers. The relations express the ‘phase incoherence’. These identities also corre-
spond to the spirit of the old quantum mechanics, since the atoms are independent,
while their amplitudes should be oscillatory with independent phases and zero mean,
as in the following example.

Example 7.2 Let us consider the potentials

φin(t,x) = �p sinνt, Ain(t,x) ≡ 0, Aext(t,x) ≡ 0, (7.19)
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where p and ν �= 0 are real. Then H ′(t) = eφin(t,x), in the Born approximation, ne-
glecting the contribution of the potential A(t,x). Hence, for the discrete component
of (7.8),

iċn(t) = [ωn + ep sinνt]cn(t). (7.20)

Integrating, this establishes, for ν �= 0,

cn(t) = Cne
−iωnt+ir cosνt , r = ep

ν
. (7.21)

Further, let us choose random initial state cn(0) = bne
iαn with some fixed ampli-

tudes bn ∈ R and uniformly distributed phases αn ∈ [0,2π], which are independent
for different n. Then Cn = bne

i(αn−r). Finally, cn(t) are independent stationary ran-
dom processes, which can be written in the form

cn(t) = an(t)e
−iωnt , an(t) = bne

iθn(t), (7.22)

where the random phases θn(t) = αn − r + r cosνt are independent for different n,
and each θn(t)mod 2π is uniformly distributed over [0,2π]. Hence relation (7.18)
obviously holds.

Remark 7.3 Suppose that the source potentials (7.19) is small: |ep| ∼ ε  1. Then
the amplitudes an(t) are slowly varying, since

|ȧn(t)|
|an(t)| = ∣

∣θ̇n(t)
∣
∣ ≤ |rν| = |ep| ∼ ε. (7.23)

Hence,

an(t) ≈ an(0), |t | ≤ ε−1. (7.24)

7.2 Atom Radiation

The Maxwell equations determine the radiation of a gas in a statistical equilibrium
maintained by an external source. For large times, the Maxwell field coincides with
the retarded potentials, which imply the Rydberg–Ritz combination rule and the
intensity of spectral lines, thereby justifying the correspondence principle and the
selection rules in an external Maxwell field with cylindrical symmetry.

7.2.1 Radiated Maxwell Field

The total Maxwell field (7.2) splits into three terms. The incident wave is absorbed
by the heated cavity, which models the ‘black-body’ and does not contribute to the
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radiation. The external potentials are static, and their contribution to the radiation
vanishes (see Remark 7.6(ii) below).

Finally, we will calculate the last term of (7.2) from the Maxwell equations
in (7.1). We consider the Born approximation (i.e., we neglect the interaction terms
containing A∗(t,x) in the right-hand side of last equation (7.1)),

1

4π
�φ(t,x) = e

∣
∣ψ(t,x)

∣
∣2

,

1

4π
�A(t,x) = e

mc
ψ(t,x) ·

[

−i�∇ψ(t,x) − e

c
Aext(x)

]

ψ(t,x).

(7.25)

Long time asymptotics of the Maxwell potentials for bounded |x| are given by the
retarded potentials (12.160):

⎧
⎪⎪⎨

⎪⎪⎩

φ(t,x) ∼ φret(t,x) :=
∫

ρ(t − |x − y|/c,y)

|x − y| dy,

A(t,x) ∼ Aret(t,x) := 1

c

∫
j(t − |x − y|/c,y)

|x − y| dy,

∣
∣
∣
∣
∣
∣
∣
∣

t → ∞, |x| ≤ R. (7.26)

We may assume that an atom is in the groundstate (6.37), which is located at the
point y = 0. Then the corresponding charge and current densities decay rapidly:

ρ(t,y), j(t,y) =O
(
e−2|y|/r1

); (7.27)

here r1 = �
2

me2 > 0 is the atom radius, r1 ∼ 1 Å = 10−8 cm.
The densities are localized in the ball |y| ≤ r1  1, hence any macroscopic ob-

servation at a distance |x| ∼ 1 agrees with high precision with the approximations

⎧
⎪⎪⎨

⎪⎪⎩

φ(t,x) ∼ 1

|x|
∫

|y|≤r1

ρ
(
t − |x − y|/c,y

)
dy,

A(t,x) ∼ 1

c|x|
∫

|y|≤r1

j
(
t − |x − y|/c,y

)
dy,

∣
∣
∣
∣
∣
∣
∣
∣

|x| ∼ 1. (7.28)

7.2.2 The Rydberg–Ritz Combination Principle

Let us calculate the charge-current densities from (7.25),

⎧
⎪⎨

⎪⎩

ρ(t,y) = eψ(t,y)ψ(t,y),

j(t,y) = e

m
Re

[

ψ(t,y)

[

−i�∇ − e

c
Aext(y)

]

ψ(t,y)

]

,
(7.29)

by substituting expansion (7.12). The integral over the continuous spectrum in the
RHS of (7.12) contributes only to the continuous spectrum of radiation. Hence,
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the discrete spectrum is completely determined by the sum over discrete eigen-
values. Substituting the sum into (7.29), we get the components of the charge
and current densities, which are responsible for the discrete spectrum. Writing
ck(t) = ak(t)e

−iωkt , we obtain the components in the form,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρd

(
t − |x − y|/c,y

) := e
∑

nn′
an(t)an′(t)ei(ωn−ωn′ )(t−|x−y|/c)ψn(y)ψn′(y),

jd
(
t − |x − y|/c,y

)

:= e

m
Re

∑

nn′
an(t)an′(t)ei(ωn−ωn′ )tψn(y)e−iωn|x−y|/c

[

−i�∇y − e

c
Aext(y)

]

× [
ψn′(y)eiωn′ |x−y|/c].

(7.30)
Substituting into (7.28), we get the following approximation for the discrete com-
ponent of radiation:

⎧
⎪⎪⎨

⎪⎪⎩

φd(t,x) ∼ 1

|x|
∑

φnn′(t,x)eiωnn′ t ,

Ad(t,x) ∼ 1

c|x|Re
∑

Ann′(t,x)eiωnn′ t ,

∣
∣
∣
∣
∣
∣
∣
∣

|x| ∼ 1 (7.31)

where ωnn′ := ωn − ωn′ , and

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φnn′(t,x) = ean(t)an′(t)
∫

|y|≤r1

e−iωnn′ |x−y|/cψn(y)ψn′(y) dy,

Ann′(t,x) ≈ e

m
an(t)an′(t)

∫

|y|≤r1

e−iωnn′ |x−y|/cψn(y)

×
[

−i�∇ − e

c
Aext(y)

]

ψn′(y) dy.

(7.32)

The last formula holds with an error proportional to �ωn′/c, arising from the com-
mutation of eiωn′ |x−y|/c with differentiations. The error is negligible if

�|ωn′ |  e
∣
∣Aext(y)

∣
∣, |y| ≤ r1. (7.33)

Corollary 7.4 Let an(t) be slowly varying functions as in (7.24). Then the Rydberg–
Ritz Combination Principle holds by (7.31): the discrete spectrum of radiation is
contained in the set {ωnn′ = ωn − ωn′ }.

7.2.3 The Dipole Approximation

We will assume (7.24) and (7.33), and also that

|ωnn′ |r1/c  2π (7.34)
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for all terms in (7.12); this means that λnn′ := 2πc/|ωnn′ | � r1 for the correspond-
ing wavelengths. Then the exponential function in integrands (7.32) can be replaced
by exp(−iωnn′ |x|/c), so (7.32) becomes

⎧
⎪⎪⎨

⎪⎪⎩

φnn′(t,x) ≈ ean(t)an′(t)e−iωnn′ |x|/c
∫

ψn(y)ψn′(y) dy,

Ann′(t,x) ≈ e

m
an(t)an′(t)e−iωnn′ |x|/c

∫

ψn(y)

[

−i�∇ − e

c
Aext(y)

]

ψn′(y) dy.

(7.35)
The first formula implies that φnn′(t,x) = 0 for ωnn′ �= 0, by the orthogonality of
different eigenfunctions. On the other hand, for ωnn′ = 0, the first formula shows
that φnn′(t,x) does not depend on x, hence the electrostatic potential φd(t,x) ∼
C/|x| as |x| → ∞, by (7.31). Therefore,

∣
∣∇φd(t,x)

∣
∣ =O

(|x|−2), |x| → ∞. (7.36)

Hence, the potential does not contribute to the energy radiation of the discrete com-
ponent through the large sphere. Similarly, the external potential φext of the atomic
nucleus does not contribute to the energy radiation through the large sphere. Conse-
quently, the radiation is totally due to the magnetic potential

Ad(t,x) = 1

c|x|
∑

Re
[
an(t)an′(t)eiωnn′ (t−|x|/c)Jnn′

]
, t → ∞, (7.37)

where Jnn′ stands for the last integral in (7.35) up to a factor,

Jnn′ = e

m

∫

ψn(y)

[

−i�∇ − e

c
Aext(y)

]

ψn′(y) dy. (7.38)

We set

pnn′(t) = Im

[
an(t)an′(t)

ωnn′
eiωnn′ tJnn′

]

. (7.39)

With this notation, the magnetic potential (7.37) reads

Ad(t,x) = 1

c|x|
∑

nn′
ṗnn′

(
t − |x|/c), (7.40)

since the coefficients an(t), an′(t) are slowly varying in time. Comparing with the
Hertzian dipole radiation (12.120), it is found that the term nn′ of the radiated field
is identical to radiation of the dipole with momentum (7.39). We will show that the
radiated energy is the sum of the dipoles radiation under condition (7.18).

Remark 7.5 Definition (7.39) implies that pn′n(t) = pnn′(t), since Jn′n(t) = Jnn′(t)
by (7.38).
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7.2.4 Energy Flow at Infinity

Magnetic field can be calculated similarly to the case of Hertzian dipole, as in
Sect. 12.10: if r := |x| → ∞, we obtain

B(t,x) = ∇ × Ad(t,x) ≈ 1

c
∇ ×

∑ ṗnn′(t − r/c)

r

= 1

c

∑
ṗnn′(t − r/c) × x

r3
+ 1

cr
∇(t − r/c) ×

∑
p̈nn′(t − r/c)

∼ 1

c2

∑ p̈nn′(t − r/c) × x
r2

+O
(
r−2).

In a similar fashion, for the electric field, we have

E(t,x) = −1

c
Ȧd(t,x) − ∇φ(t,x) ∼ − 1

c2

∑ p̈nn′(t − r/c)

r
+O

(|x|−2), (7.41)

by (7.36). Now for energy flow (Poynting vector) we find

S(t,x) = c

4π
E × B ∼ 1

4πc3r3

∑
p̈n1n

′
1
(t − r/c) × [

p̈n2n
′
2
(t − r/c) × x

]
,

|x| � r1. (7.42)

7.2.5 Intensity of Spectral Lines

The power of radiation is the integral of energy flow (7.42) over the sphere of a large
radius R > 0,

PR(t) :=
∫

|x|=R

S(t,x) · ndx

∼ 1

4πc3R4

∑∫

|x|=R

[
p̈n1n

′
1
(t − R/c) × x

] · [p̈n2n
′
2
(t − R/c) × x

]
dx,

(7.43)

where n := x/|x|. By (7.39) and (7.24),

p̈nn′(t) ≈ Re
[
an(t)an′(t)ωnn′e−iωnn′ tJnn′

] = −ω2
nn′pnn′(t). (7.44)

Hence, (7.18) implies, in this approximation,

M
[
p̈n1n

′
1
(t − R/c) × x

] · [p̈n2n
′
2
(t − R/c) × x

] = 0, (7.45)

provided (n1, n
′
1) �= (n2, n

′
2) and (n1, n

′
1) �= (n′

2, n2), where M stands for the math-
ematical expectation. Moreover, contributions to (7.43) of the terms with (n1, n

′
1) =
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(n2, n
′
2) and (n1, n

′
1) = (n′

2, n2) coincide when averaged over time. Therefore, ap-
plying M and averaging in time in (7.43), we obtain, for large R, the mean power
of radiation

MPR(t) ∼ 1

4πc3
2
∑

M

∫

|n|=1

[
p̈nn′(t − R/c) × n

]2
dn

= 1

2πc3

∑
Mp̈2

nn′(t − R/c)

∫

|n|=1
sin2 χ dn

= 1

2πc3

∑
Mp̈2

nn′(t − R/c)
8π

3

= 4

3c3

∑
Mp̈2

nn′(t − R/c) ≈ 4

3c3

∑
ω4

nn′Mp2
nn′(t − R/c), (7.46)

by (7.44). Here χ denotes the angle between p̈nn′(t −R/c) and n, and the bar stands
for the averaging in time. The averaging is justified, since we consider a stationary
process. Finally, substituting (7.39), we obtain

MPR ≈ 4

3c3

∑
p2

nn′ω4
nn′ = 2

3c3

∑
ω2

nn′ |Jnn′ |2M[|an|2|an′ |2], R → ∞,

(7.47)
where p2

nn′ is the time average of p2
nn′(t).

Remark 7.6

(i) The external static magnetic potential Aext(x) does not contribute to electric
field (7.41), and hence its contribution to the radiation vanishes when averaged
over time.

(ii) The last formula means that the energy flow per unit time is positive, constant,
and (asymptotically) is independent of the radius of the sphere, meaning the
energy flow to infinity.

(iii) We suggest that this energy radiation to infinity is responsible for the global
attraction (3.41) to quantum stationary states and for the convergence of the
solution of (7.1) to the stationary random process.

Formula (7.47) gives the total mean power of radiation to infinity though its
angular distribution is not necessarily isotropic. The energy radiation is isotropic if
so is the random source field. Then formula (7.47) is the (constant) angular density
of the mean power of radiation multiplied by 4π .

Furthermore, it is possible to experimentally separate the radiation components
with each fixed wavelength λ = 2πc/ω and measure the corresponding angular den-
sity of the mean energy flow per unit time in each component. The density is given
by the sum (7.47) over nn′ with |ωn − ωn′ | = ω.

Exercise 7.7 Verify the last identity in (7.47).

Corollary 7.8 The intensity of a spectral line ω = ωn − ωn′ is given by
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(i) By formula (cf. [160, (36.22)]),

Ir (ωnn′) = 8

3c3
p2

nn′ω4
nn′ = 4

3c3
ω2

nn′ |Jnn′ |2M[|an|2|an′ |2] (7.48)

for simple eigenvalues ωn and ωn′ .
(ii) By the formula

Ir (ω) = 2

3c3

∑

|ωn−ωn′ |=ω

ω2
nn′ |Jnn′ |2M[|an|2|an′ |2] (7.49)

for multiple eigenvalues.

Remark 7.9

(i) Formula (7.48) contains the factor M[|an|2|an′ |2]; this is in contrast to [160,
(36.13)], where the factor is set to one.

(ii) Each term in (7.49) and multiplicities of the corresponding eigenvalues can be
defined experimentally from splitting of the spectral lines in a weak magnetic
field (see [171]).

7.2.6 The Correspondence Principle

As we pointed out above, the radiation field (7.40) is identical to the sum of the
Hertzian dipole radiation fields of type (12.120) corresponding to dipole moments
(7.39). Let us show that the double expression (7.39) coincides with the dipole mo-
ment of the corresponding atomic charge distribution.

Proposition 7.10 For each n,n′,

2pnn′(t) = e

∫

x
∣
∣ψnn′(t,x)

∣
∣2

dx, (7.50)

ψnn′(t,x) := an(t)e
−iωntψn(x) + an′(t)e−iωn′ tψn′(x). (7.51)

Proof (i) First let us prove that

Jnn′ = ieωnn′ 〈x〉nn′ , 〈x〉nn′ :=
∫

xψn(x)ψn′(x) dx. (7.52)

for each n,n′. Indeed, the commutation relations (3.92) imply that [(p̂ −
e
c
A(t, x̂))2, x̂] = −2i�(p̂ − e

c
A(t, x̂)). Hence, [H, x̂] = − i�

m (p̂ − e
c
A(t, x̂)), where

H is the Schrödinger operator (7.4). Now definition (7.38) implies that
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Jnn′ = e

m

〈(

p̂ − e

c
A(t, x̂)

)

ψn′ ,ψn

〉

= e

m

〈
im

�
[H, x̂]ψn′ ,ψn

〉

= ie

�
〈x̂ψn′ ,Hψn〉 − 〈x̂Hψn′ ,ψn〉. (7.53)

Hence, (7.52) follows, because Hψn = �ωnψn and Hψn′ = �ωn′ψn′ , by (7.9).
(ii) Formula (7.52) allows one to rewrite (7.39) as

pnn′(t) = eRe
[
an(t)an′(t)eiωnn′ t 〈xnn′ 〉]. (7.54)

It remains to obtain the double expression for the integral in (7.50). Substituting
ψnn′(t,x) from (7.51), we obtain

e

∫

x
∣
∣ψnn′(t,x)

∣
∣2

dx = 2eRe

[

an(t)an′(t)eiωnn′ t
∫

xψn(x)ψn′(x) dx
]

, (7.55)

since
∫

x
∣
∣ψn(t,x)

∣
∣2

dx =
∫

x
∣
∣ψn′(t,x)

∣
∣2

dx = 0. (7.56)

The last identities hold for eigenfunctions (6.35). Moreover, these identities hold
for any radial potential with an appropriate choice of eigenfunctions. Indeed, the
corresponding Schrödinger operator commutes with the reflection x �→ −x, and so
eigenfunctions can be chosen to be either even or odd. This proves (7.50). �

Exercise 7.11 Verify (7.56) for eigenfunctions (6.35). Hint: Use formulas (6.52)
and (6.53).

Corollary 7.12

(i) Using (7.52), formula (7.48) can be written as follows:

Ir(ωnn′) = 4

3c3
ω4

nn′ |xnn′ |2M[|an|2|an′ |2] (7.57)

(ii) Using (7.50), formula (7.57) can be written similarly to (2.40):

Ir (ωnn′) = 2

3c3
(2pnn′)2ω4

nn′ ; (7.58)

this is the intensity of the classical Hertzian dipole radiation (12.127) with the
dipole moment (7.50). This identity confirms the Bohr correspondence princi-
ple used in identification (2.40). The factor 2 in (7.50) is due to the fact that
sum (7.40) contains two identical terms pn′n(t) = pnn′(t), by Remark 7.5. The
correspondence principle applies, since condition (7.34) holds for large quan-
tum numbers n,n′, by (6.3).
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7.2.7 Selection Rules

A number of summands in (7.47) may vanish due to some symmetry conditions.
Then, generally, the spectrum of atom radiation is a proper subset of the set of all
differences {ωnn′ := ωn − ωn′ } predicted by the Rydberg–Ritz Combination Princi-
ple.

For example, let us consider the case of the radial electrostatic potential
φext(x) = φext(|x|) and of the static uniform magnetic field B = (0,0,B). Then
Aext(x) = B × x/2, and the eigenfunctions are given by (6.35) (see Sect. 9.1.1).

Let us consider a fixed spectral line ωkk′ = ωk − ωk′ , corresponding to some
frequencies ωk and ωk′ and eigenfunctions

ψk = Rnl(r)F
m
l (θ)eimϕ, ψk′ = Rn′l′(r)F

m′
l′ (θ)eim′ϕ, (7.59)

where k := (l,m,n) and k′ := (l′,m′, n′).

Lemma 7.13 Assume that condition (7.34) hold. Let φext(x) = φext(|x|), and
Aext(x) = B × x/2. Then

Jkk′ = 0 if either l′ �= l ± 1 or m′ �= m, m ± 1. (7.60)

Proof It suffices to prove that

∫

xψk(x)ψk′(x) dx = 0, t ∈R (7.61)

if either l′ �= l ± 1 or m′ �= m,m ± 1. For l′ �= l ± 1 the identity is proved [20, 191].
Here we check the case m′ �= m,m ± 1. Let us rewrite the last integral in spherical
coordinates. Then, by (7.59),

∫

xψk(x)ψk′(x) dx =
∫ ∞

0
Rnl(r)Rn′l′(r)r

3 dr

×
∫ π

0

[∫ 2π

0

x
r
Fm

l (θ)eimϕFm′
l′ (θ)eim′ϕdϕ

]

sin θ dθ. (7.62)

Finally, the inner integral vanishes if m′ �= m,m ± 1, because

x
r

= (cos θ cosϕ, cos θ sinϕ, sin θ). �

Formula (7.48) implies that the intensity of the spectral line ωkk′ vanishes under
conditions (7.60), so this line is not presented in the spectrum in the Born approxi-
mation.
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7.3 Black Body Radiation

The Kirchhoff–Planck radiation law,

I (ω) = �ω3

π2c3

e− �ω
kT

1 − e− �ω
kT

, (7.63)

was a starting point in the genesis of quantum mechanics, leading to the discov-
ery of the Heisenberg and Schrödinger dynamical equations and their coupling to
the Maxwell field. However, afterwords one should justify the radiation law as an
inherent property of the dynamical equations.

In 1916, Einstein [60] derived the Planck formula (1.24) without explicit usage
of the discretization hypothesis (1.42), see Sect. 1.4.5.

Dirac implemented the Einstein ideas into the context of coupled Maxwell–
Schrödinger equations [43]. The calculation involved relied on the Dirac nonstation-
ary perturbation theory and the Boltzmann–Gibbs distribution (7.16). Namely, slow
evolution of coefficients an(t) from (7.10) is governed by Eqs. (7.13), which de-
scribe the corresponding energy exchange between different eigenmodes in (7.12).
The exchange is provided by perturbation (7.5), which we will approximate by the
first term,

H ′(t) ≈ e

mc
A∗(t,x) ·

[

i�∇ + e

c
Aext(x)

]

; (7.64)

this results in the relaxation to equilibrium distribution (7.63). The distribution is
provisionally an approximation to the correlation function of a random stationary
solution of the dynamical equations (7.13).

7.3.1 Correlations of the Radiation Field

According to (7.6), the ‘radiation field’ is defined by A∗(t,x) = A(t,x) + Ain(t,x),
where Ain(t,x) is the ‘incident wave’ while A(t,x) is the ‘outgoing wave’. The
radiation field is a stationary random process which is a solution of homogeneous
Maxwell equation with zero charge and current densities for |x| � r1, where r1 is
the atom size which is about 1 Å = 10−8 cm. Hence, the field admits the Fourier
expansion

A∗(t,x) ∼
∑

±

∫

ei(kx/c±|k|t)Â±∗ (k) dk, |x| � r1. (7.65)

For the sake of concreteness, let us consider fields of the type

A∗(t,x) ∼ 2
∫

cos
(
kx/c − |k|t)Â(k) dk, |x| � r1, (7.66)
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with translation invariant and isotropic correlations

MÂi (k) ⊗ Âj

(
k′) = δijQ∗(k)δ

(
k − k′), i, j = 1,2,3. (7.67)

Here the matrix Q∗(k) ≥ 0 is independent of time, since the radiation field is sta-
tionary.

7.3.2 The Dipole Approximation

We consider ‘long wave’ fields A∗(t,x) with the wave vectors k satisfying the con-
dition

|k|r1

c
 2π, (7.68)

which is similar to (7.34). The condition means that the wavelength λ = 2πc/|k| is
much greater than r1. For example, in all measurements of the spectral density up to
the year 1900, the wavelength was λ > 0.4 μm = 0.4 × 10−4 cm, while r1 ≈ 1 Å =
10−8 cm.

Under condition (7.68), equations (7.13) read as

i�ȧn(t)e
−iωnt = e

mc
A∗(t,0) ·

〈[

i�∇ + e

c
Aext(x)

]

ψ(t,x),ψn(x)

〉

, (7.69)

since the wave function ψ(t,x) is concentrated near x = 0. Substituting expansion
(7.12) with cn(t) = an(t)e

−iωnt , we obtain the equations

i�ȧn(t) = e

mc
A∗(t,0) ·

∑

n′
e−iωnn′ t an′(t)

〈[

i�∇ + e

c
Aext(x)

]

ψn′(x, t),ψn(x)

〉

= − ie

c
A∗(t,0) ·

∑

n′
ωnn′ 〈x〉nn′eiωnn′ t an′(t) (7.70)

in accordance with (7.38) and (7.52), where the sum should include the correspond-
ing integral over the continuous spectrum. The system can be written in vector form
as follows:

ȧ(t) = K(t)a(t), a(t) = {
an(t) : n = 1,2, . . .

}
. (7.71)

The operator K(t) is skew-symmetric in l2, since

Knn′(t) = − e

�c
ωnn′A∗(t,0) · 〈x〉nn′eiωnn′ t , (7.72)

where ωnn′ = −ωn′n and 〈x〉nn′ = 〈x〉n′n by (7.52). This skewsymmetry reflects the
charge conservation

∑ |an(t)|2 = const, where the sum includes the corresponding
integral over the continuous spectrum.
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7.3.3 Equilibrium Correlations and Spectral Density

To find spectral function (7.63), we calculate below the mean energy of the electron
field

ME(t) := M
〈
ψ(t),Hψ(t)

〉 =
∑

n

�ωM
∣
∣an(t)

∣
∣2

, (7.73)

where M stands for the mathematical expectation. Expression (7.73) involves the
equilibrium correlation function (7.67) which we will express in the spectral den-
sity (1.27). First, the Fourier integral (7.66) can be written as follows:

A∗(t,0) = 2
∫ ∞

0
cosωtÃ(ω)dω, Ã(ω) =

∫

|k|=ω

Â(k) dk, (7.74)

where

MÃi (ω)Ãj

(
ω′) = δij q∗(ω)δ

(
ω − ω′), q∗(ω) =

∫

|k|=ω

Q∗(k) dk. (7.75)

On the other hand, we can relate the correlations with the equilibrium spectral den-
sity I (ω) defined by

1

8π
M

[
Ẽω(t,x) · Ẽω′(t,x) + B̃ω(t,x) · B̃ω′(t,x)

] = I (ω)δ
(
ω − ω′) (7.76)

(cf. (1.27)), where Ẽω(t,x) and B̃ω(t,x) are the Fourier components (1.28) of the
electric and magnetic field, corresponding to the potential A∗. The Maxwell fields
are given by

B(t,x) = curl A∗(t,x), E(t,x) = −1

c
Ȧ∗(t,x). (7.77)

Hence, for the components of (1.28), we have

Ẽω(t,x) = −2

c

∫

|k|=ω

|k| sin
(
kx/c − |k|t)Â(k) dk

B̃ω(t,x) = B̃ω(t,x) = −2

c

∫

|k|=ω

sin
(
kx/c − |k|t)k × Â(k) dk,

where the bar now denotes the complex conjugation. Hence taking into account
(7.76), (7.67) and (7.75), we obtain

I (ω) = 3ω2

2πc2

∫

|k|=ω

Q∗(k) dk = 3ω2

2πc2
q∗(ω), (7.78)
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because k⊥Ac(k) and since the time average sin2 |k|t = 1/2. The averaging is jus-
tified, since we are dealing with a stationary process. Finally, the equilibrium corre-
lation functions are given by

q∗(ω) = 2πc2

3ω2
I (ω). (7.79)

7.3.4 Nonstationary Perturbation Theory

It remains to calculate q∗(ω). Then I (ω) is given by (7.78). We will obtain q∗(ω)

calculating the correlation functions

qnn(t) := M
∣
∣an(t)

∣
∣2

, (7.80)

where {an(t) : n = 1,2, . . .} is the solution to the system (7.71). The system can be
solved by successive approximations

ȧ(N)
n (t) =

∑

n′
Knn′(t)a(N−1)

n′ (t), a(N)
n (0) = an(0), N = 1,2, . . . (7.81)

with a
(0)

n′ (t) ≡ a
(0)

n′ (0). The first approximation reads

a(1)
n (t) = an(0) +

∫ t

0

∑

n1

Knn1(t1)an1(0) ds. (7.82)

Similarly, the second approximation is as follows

a(2)
n (t) = an(0) +

∫ t

0

∑

n1

Knn1(t1)a
(1)
n1

(t1) dt1

= an(0) +
∫ t

0

∑

n1

Knn1(t1)

[

an1(0) +
∫ t1

0

∑

n2

Kn1n2(t2)an2(0) dt2

]

dt1.

(7.83)

In all these formulas the sum should include integral over continuous spectrum.

7.3.5 Correlations in First Approximation

Using (7.82) and the first orthogonality condition (7.18) at t = 0, we obtain the first
approximation to the correlation functions (7.80):
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q(1)
nn (t) = M

〈

an(0) +
∫ t

0

∑

n′
1

Knn′
1

(
t ′1

)
an′

1
(0) dt ′1,

an(0) +
∫ t

0

∑

n′′
1

Knn′′
1

(
t ′′1

)
an′′

1
(0) dt ′′1

〉

= qnn(0) + 2qnn(0)MRe

{∫ t

0
Knn

(
t ′
)
dt ′

}

+
∑

n1

qn1n1(0)M

∣
∣
∣
∣

∫ t

0
Knn1(t1) dt1

∣
∣
∣
∣

2

, (7.84)

where we assume that an(0) are independent of the potential A∗(t,0) from ex-
pressions (7.72) for Knn(t). Further, the integral in curly brackets vanishes, since
Knn(t

′) ≡ 0. Hence, substituting formula (7.72) for matrix elements Knn1(t), it is
found that

q(1)
nn (t) = qnn(0) + e2

(�c)2

∑

n1

ω2
nn1

qn1n1(0)M

∣
∣
∣
∣

∫ t

0
A∗(t1,0) · 〈x〉nn1e

iωnn1 t1 dt1

∣
∣
∣
∣

2

.

(7.85)
Finally, substituting the Fourier integral representations (7.74) for Maxwell poten-
tials, this gives

q(1)
nn (t) = qnn(0) + 4e2

(�c)2

∑

n1

ω2
nn1

qn1n1(0)
∣
∣〈x〉nn1

∣
∣2

×
∫ ∞

0
q∗(ω)

∣
∣
∣
∣

∫ t

0
cos(ωt1)e

iωnn1 t1 dt1

∣
∣
∣
∣

2

dω

= qnn(0) + e2

(�c)2

∑

n1

ω2
nn1

qn1n1(0)
∣
∣〈x〉nn1

∣
∣2

×
∫ ∞

0
q∗(ω)t2

∣
∣Dnn1(ω, t)

∣
∣2

dω, (7.86)

by (7.75), where

Dnn1(ω, t) := D
(
(ωnn1 + ω)t

) + D
(
(ωnn1 − ω)t

)
, D(z) = eiz − 1

iz
. (7.87)

Now the key observation is that

t
∣
∣Dnn1(ω, t)

∣
∣2 → 2π

[
δ(ωnn1 + ω) + δ(ωnn1 − ω)

]
, t → ∞, (7.88)
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since
∫

∣
∣D(z)

∣
∣2

dz = 4
∫

sin2 z
2

z2
dz = 2π. (7.89)

Hence, (7.86) can be written as follows:

q(1)
nn (t) ≈ qnn(0) + 2πe2t

(�c)2

∑

n1

ω2
nn1

qn1n1(0)
∣
∣〈x〉nn1

∣
∣2

q∗
(|ωnn1 |

)
, t � 1. (7.90)

7.3.6 The Dirac–Einstein Theory of Transitions

In 1926, Dirac employed the nonstationary perturbation theory [43] to fitted the
Einstein theory of radiation into the context of the Schrödinger theory.

We further consider the case of an atom with two quantum stationary states ψ1

and ψ2 and corresponding eigenvalues ω1 < ω2. Then the sum in (7.90) contains
only one term, since Jnn = 0 by (7.52). Hence, asymptotics (7.90) reads

q
(1)
11 (t) ≈ q11(0) + t

2πe2

(�c)2
ω2

12q22(0)q∗
(|ω12|

)∣
∣〈x〉12

∣
∣2

,

q
(1)
22 (t) ≈ q22(0) + t

2πe2

(�c)2
ω2

12q11(0)q∗
(|ω12|

)∣
∣〈x〉12

∣
∣2

,

∣
∣
∣
∣
∣
∣
∣
∣
∣

t � 1. (7.91)

Spontaneous and Induced Transitions

The Einstein theory is based on Bohr’s postulates on transitions between quantum
stationary states ψ1 and ψ2 with energies �ω1 < �ω2 and the Einstein hypothesis
on photons.

I. Spontaneous Emission Formula (7.57) for the intensity of spectral line ω21 is
treated as follows: the coefficient

A2→1 := 4e2

3c3
ω4

21

∣
∣〈x〉12

∣
∣2

/�ω21 = 4e2

3c3�
ω3

21

∣
∣〈x〉12

∣
∣2 (7.92)

is the rate of spontaneous emission of photons in transitions ψ2 �→ ψ1. Here �ω21

is the photon energy according to the Einstein theory of photoelectric effect. ‘Spon-
taneous’ means that this emission process is independent of the radiation field A∗.

II. Induced Emission The coefficient of t in the first formula of (7.91) is treated
as the rate of transitions ψ2 �→ ψ1 induced by harmonic waves with frequency ω21.



112 7 Atom Radiation

Then the atomic energy decreases by �ω2 − �ω1 = �ω21 with every such a transi-
tion; hence the transition is induced by the emission of the photon. Thus, rate of the
induced emission of photons is given by

B2→1 = 2πe2

(�c)2
ω2

12q22(0)q∗
(|ω12|

)∣
∣〈x〉12

∣
∣2

. (7.93)

III. Induced Absorption Similarly, the coefficient in the second formula (7.91)
is treated as the rate of the induced absorption of photons

C1→2 = 2πe2

(�c)2
ω2

12q11(0)q∗
(|ω12|

)∣
∣〈x〉12

∣
∣2

. (7.94)

Statistical Equilibrium

The balance of the emitted and absorbed photons should hold,

p2A2→1 + B2→1 = C1→2, (7.95)

where p2 is the probability of the state ψ2, since A2→1 is the ‘conditional’ rate
of transitions from ψ2. Substituting here the expressions for the coefficients, and
setting p2 = q22(0), we have, by (7.14) and (7.16),

4e2

3c3�
ω3

21

∣
∣〈x〉12

∣
∣2

q22(0) = 2πe2

(�c)2
ω2

12q∗(ω21)
∣
∣〈x〉12

∣
∣2[

q11(0) − q22(0)
]
. (7.96)

Substituting further qnn(0) = 1
Z

e− �ωn
kT from (7.16), we obtain

1

Z
e− �ω2

kT
4

3c3�
ω21 = 2π

(�c)2
q∗(ω21)

[
1

Z
e− �ω1

kT − 1

Z
e− �ω2

kT

]

. (7.97)

Hence,

q∗(ω21) = 2�

3πc
ω21

e− �ω2
kT

e− �ω1
kT − e− �ω2

kT

. (7.98)

Finally, substituting expression (7.79), we arrive at the Planck formula (1.24)

I (ω21) = �ω3
21

π2c3

1

e
�ω21
kT − 1

. (7.99)

Remark 7.14 Formula (7.99) implies that the equilibrium spectral density does not
depend on the substance which confirms the Kirchhoff radiation law.
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Second Order Approximation

The stationarity should imply the identity

q
(1)
11 (t) + q

(1)
22 (t) = const, (7.100)

which expresses the charge conservation. Unfortunately, the left hand side grows
linearly like t by (7.91). So we should compensate this error, which is due to per-
turbation theory. The Einstein interpretation of the expressions (7.93) and (7.94)
suggests introducing the ‘counterterms’, which take into account the ‘inverse transi-
tions’: namely, the transitions 1 → 2 in the first equation, and 2 → 1, in the second
one. Then we obtain the corrected asymptotic formulas

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q
(c)
11 (t) ≈ q11(0) + t

2πe2

(�c)2
ω2

12q∗(ω21)
∣
∣〈x〉12

∣
∣2[

q22(0) − q11(0)
]
,

q
(c)
22 (t) ≈ q22(0) + t

2πe2

(�c)2
ω2

12q∗(ω21)
∣
∣〈x〉12

∣
∣2[

q11(0) − q22(0)
]
,

(7.101)

which satisfy the charge conservation law (7.100).
Let us justify the corrected asymptotics (7.101) by the second approximation

(7.83). Using (7.83) and the first orthogonality condition (7.18) at t = 0, we have,
similarly to (7.84),

q(2)
nn (t) = M

〈

an(0) +
∫ t

0

∑

n′
1

Knn′
1

(
t ′1

)
[

an′
1
(0) +

∫ t ′1

0

∑

n′
2

Kn′
1n

′
2

(
t ′2

)
an′

2
(0) dt ′2

]

dt ′1,

an(0) +
∫ t

0

∑

n′′
1

Knn′′
1

(
t ′′1

)
[

an′′
1
(0) +

∫ t ′′1

0

∑

n′′
2

Kn′′
1n′′

2

(
t ′′2

)
an′′

2
(0)dt ′′2

]

dt ′′1
〉

= qnn(0) + 2qnn(0)Re

{

M

∫ t

0

∑

n

Knn(t1) dt1

+ M

∫ t

0

∑

n1

Knn1(t1)

[∫ t1

0
Kn1n(t2) dt2

]

dt1

}

+
∑

n1

qn1n1(0)M

∣
∣
∣
∣

∫ t

0
Knn1

(
t ′1

)
dt ′1

∣
∣
∣
∣

2

, (7.102)

up to terms of second order, where we assume that an(0) are independent of the
potential A(t,0) from expressions (7.72) for Knn′(t). Let us calculate the expres-
sion B(t) in curly brackets: by substituting formula (7.72) for the matrix elements
Knn′(t), we obtain, similarly to (7.85),
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B(t) = − e2

(�c)2
M

∑

n1

ω2
nn1

∫ t

0
A∗(t1,0) · 〈x〉nn1e

iωnn1 t1

×
[∫ t1

0
A∗(t2,0) · 〈x〉n1ne

iωn1nt2 dt2

]

dt1, (7.103)

because Knn(t1) = 0. Substituting the Fourier integral representations (7.74) for
Maxwell potentials, we obtain, similarly to (7.86),

B(t) = − 4e2

(�c)2

∑

n1

ω2
nn1

∣
∣〈x〉nn1

∣
∣2

∫ ∞

0
q∗(ω)

∫ t

0
cosωt1e

iωnn1 t1

×
[∫ t1

0
cosωt2e

iωn1nt2 dt2

]

dt1 dω, (7.104)

by (7.75). Let us calculate the integral in t1, t2. Changing variables r = t1 − t2 and
s = t1 + t2, this gives

I (t) :=
∫ t

0
cosωt1e

iωnn1 t1

[∫ t1

0
cosωt2e

iωn1nt2 dt2

]

dt1

= 1

4

∫ 2t

0

{∫ t

0
[cosωr + cosωs]eiωnn1 r dr

}

ds

= 1

4

{

2t

[
ei(ω+ωnn1 )t − 1

2i(ω + ωnn1)
+ ei(ω−ωnn1 )t − 1

2i(ω − ωnn1)

]

+ sin 2ωt

ω

eiωnn1 t

iωnn1

}

. (7.105)

Now the key observation is that

eiωt − 1

iω
→ πδ(ω), t → ∞ (7.106)

since
∫

sin z

z
= π. (7.107)

Hence, the following asymptotics hold

I (t) ∼ πt

4

[
δ(ω + ωnn1) + δ(ω − ωnn1)

]
, t → ∞. (7.108)

Therefore, (7.104) implies the asymptotics

B(t) ∼ − πe2t

(�c)2

∑

n1

ω2
nn1

∣
∣〈x〉nn1

∣
∣2

q∗
(|ωnn1 |

)
. (7.109)
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Hence, taking into account (7.90), it is found from (7.102) that

q(2)
nn (t) ≈ qnn(0) + t

2πe2

(�c)2

∑

n1

ω2
nn1

∣
∣〈x〉nn1

∣
∣2

q∗
(|ωnn1 |

)[
qn1n1(0)| − qnn(0)

]
,

t � 1, (7.110)

instead of (7.91). Asymptotics (7.110) satisfies the charge conservation (7.100), and
coincide with the corrected system (7.101) in the case of a two-level atom.



Chapter 8
Scattering of Light and Particles

Abstract Scattering of light and electron beam by Hydrogen atom should be de-
scribed by the coupled Maxwell–Schrödinger equations. However, the coupled
equations are nonlinear, and so the calculations can be done only by perturbation
procedure neglecting the self action; i.e., in the Born approximation. This approx-
imation leads to some inconsistency breaking the charge conservation law, which
should be fixed in a true nonlinear approach.

The corresponding scattering cross sections are similar to the classical ones given
by the Thomson and Rutherford formulas respectively.

The calculation of the scattering of light relies on the limiting amplitude principle
and the limiting absorption principle, which allow to explain the Einstein’s rules for
the photoelectric effect.

8.1 The Classical Scattering of Light

Scattering of light by matter is well known from everyday observations. It is well
explained by interaction of the electromagnetic wave with atomic electrons. The
scattering by nucleus is negligible, since it is relatively heavy. Incident electromag-
netic wave is modeled as a plane wave satisfying the free Maxwell equations, and
a matter, as classical, point-like particle obeying the Lorentz equation. Inconsistency
inherent to the concept of point-like charged particles is circumvented by neglecting
the self-interaction. Application of the Hertzian dipole radiation formula gives the
Thomson differential cross-section.

8.1.1 The Incident Plane Wave

In 1861, Maxwell identified light with electromagnetic waves. For the sake of con-
creteness, we choose the incident plane wave in the form

φ0(t,x) = 0, A0(t,x) = A�
(
ct − x1) sin k

(
x1 − ct

)
e3, (8.1)

where � is the Heaviside function, k is the wave number, and e3 = (0,0,1) is the
polarization. The incident wave is a solution of the Maxwell equations in the free
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space with ρ(t,x) = 0 and j(t,x) = 0:

�φ0(t,x) = 0, �A0(t,x) = 0, (t,x) ∈ R
4. (8.2)

According to (12.44), the corresponding Maxwell fields are expressed through the
potentials:

E0(t,x) = −∇φ0(t,x) − 1

c
Ȧ0(t,x), B0(t,x) = curl A0(t,x). (8.3)

For potentials (8.1),

E0(t,x) = kA�
(
ct − x1

)
cosk

(
x1 − ct

)
e3,

B0(t,x) = −kA�
(
ct − x1

)
cosk

(
x1 − ct

)
e2.

(8.4)

We will consider the scattering of wave (8.4) by a classical electron. The corre-
sponding energy flux (i.e., the Poynting vector) is as follows:

S0(t,x) = c

4π
E0(t,x) × B0(t,x) = cE2

0

4π
�

(
ct − x1) cos2 k

(
x1 − ct

)
e1; (8.5)

here E0 := kAe3. The energy flux is directed along e1 and its intensity is given by

I0 := lim
T →∞

1

T

∣
∣
∣
∣

∫ T

0
S0(t,x) dt

∣
∣
∣
∣ = cE2

0

8π
, x ∈R

3. (8.6)

8.1.2 The Scattering Problem

The scattering is described by the Maxwell equations for the fields

⎧
⎪⎪⎨

⎪⎪⎩

divE(t,x) = 4πeδ
(
x − x(t)

)
, curl E(t,x) = −1

c
Ḃ(t,x),

divB(t,x) = 0, curl B(t,x) = 1

c
Ė(t,x) + 4π

c
eẋδ

(
x − x(t)

)
(8.7)

coupled to the Lorentz equation for the electron trajectory

mẍ(t) = e

[

E
(
t,x(t)

) + 1

c
ẋ(t) × B

(
t,x(t)

)
]

, t ∈R. (8.8)

Initial condition for the electron does not matter. For example,

x(t) = 0, ẋ(t) = 0, t < 0. (8.9)
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Initial condition for the fields depends on the incident wave (8.1), since for t < 0

E(t,x) = �
(
ct − x1

)
E0(t,x) − e

x
|x|2 ,

B(t,x) = �
(
ct − x1

)
B0(t,x),

(8.10)

where −ex/|x|2 is the static Coulomb field generated by the electron with posi-
tion (8.9). Functions (8.10), together with the electron trajectory (8.9), give solution
of the nonlinear system of equations (8.7), (8.8) for t < 0, since the RHS of (8.8) is
identically zero for t < 0.

8.1.3 Neglecting Self-Action

Let us split the solution of (8.7) like
{

E(t,x) = �
(
ct − x1

)
E0(t,x) + Er (t,x)

B(t,x) = �
(
ct − x1

)
B0(t,x) + Br (t,x)

∣
∣
∣
∣
∣

t ∈R, (8.11)

where Er (t,x),Br (t,x) are the radiated fields. Then the Maxwell equations (8.7)
read

⎧
⎪⎪⎨

⎪⎪⎩

divEr (t,x) = 4πeδ
(
x − x(t)

)
, curl Er (t,x) = −1

c
Ḃr (t,x),

divBr (t,x) = 0, curl Br (t,x) = 1

c
Ėr (t,x) + 4π

c
eẋδ

(
x − x(t)

)
(8.12)

because the incident wave (8.4) is a solution of the homogeneous Maxwell equa-
tions. From the initial conditions (8.10), it follows that

Er (t,x) = −e
x

|x|2 , Br (t,x) = 0, t < 0. (8.13)

The Lorentz equation (8.8) now reads

mẍ(t) = e

[

�
(
ct − x1(t)

)
E0

(
t,x(t)

) + Er

(
t,x(t)

)

+ 1

c
ẋ(t) × (

�
(
ct − x1(t)

)
B0

(
t,x(t)

) + Br

(
t,x(t)

))
]

, t ∈R. (8.14)

Unfortunately, the problem (8.12), (8.14) is not well posed. Namely, it is clear from
(8.12) and (8.13) that the solutions Er (t,x),Br (t,x) of (8.12) are infinite at (t,x(t)).
Therefore, the RHS of Eq. (8.14) is not well defined.

To make the problem well posed it is necessary to replace the point-like electron
by the extended electron, as suggested by M. Abraham [2]. For this model, the
well-posedness is proved in [111].
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Here we employ another traditional approach to make the problem well posed;
this approach is similar to the Born approximation. Namely, omitting the radiation
fields at the RHS of (8.14), we write

mẍ(t) = e

[

�
(
ct − x1(t)

)
E0

(
t,x(t)

) + 1

c
ẋ(t) × �

(
ct − x1(t)

)
B0

(
t,x(t)

)
]

,

t ∈R. (8.15)

Then we substitute the solution x(t) obtained into the RHS of the Maxwell equations
(8.12) to calculate the radiated fields Er (t,x),Br (t,x).

Let us assume that the electron velocities are small compared to the speed of
light:

β := max
t∈R

∣
∣ẋ(t)

∣
∣/c � 1. (8.16)

Then we can neglect the contribution of the magnetic field to the RHS of (8.15).
Hence we obtain the equation

mẍ(t) = eE0
(
t,x(t)

) = kA�
(
ct − x1(t)

)
cosk

(
x1(t) − ct

)
e3, t > 0. (8.17)

Consequently, x1(t) ≡ x2(t) ≡ 0, by the initial conditions (8.9), and so the equation
becomes

mẍ(t) = kA coskct e3, t > 0. (8.18)

Now the initial conditions (8.9) define the trajectory x(t) uniquely:

x(t) = eA

mkc2
(1 − coskct)e3. (8.19)

Note that condition (8.16) is equivalent to

|e|A
mc2

� 1. (8.20)

This relation means that amplitude of oscillations |e|A
mkc2 is small compared to wave-

length λ = 2π/k of incident wave.

8.1.4 The Dipole Approximation: The Thomson Formula

We still should solve the Maxwell equations (8.12) to determine the radiation fields
Er (t,x),Br (t,x). Our goal is to calculate the energy flux at infinity, i.e., to find the
Poynting vector Sr (t,x) := (c/4π)Er (t,x) × Br (t,x) as |x| → ∞. We will use the
traditional dipole approximation for calculation of the radiation fields (Sect. 12.10);
this leads to the well-known Thomson formula.
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For this purpose, let us expand the charge density in the Maxwell equations (8.12)
in formal Taylor series:

eδ
(
x − x(t)

) = eδ(x) + ex(t) · ∇δ(x) + 1

2
e
(
x(t) · ∇)2

δ(x) + · · · , t > 0. (8.21)

Here, the first term is static, and the corresponding radial Maxwell field does not
contribute to the energy flux. The second term corresponds to the Hertzian dipole
with the dipole moment p(t) := ex(t). The subsequent terms give small contribu-
tions to energy radiation to infinity, because |x(t)| is small by (8.20) (k = 2π/λ � 1
for visible light with λ ∼ 10−4 cm).

Hence we can use the Hertz formula (12.124) for the dipole radiation:

Sr (t,x) ∼ n
sin2 χ

4πc3|x|2 p̈2(t − |x|/c), |x| → ∞, (8.22)

where χ is the angle between p̈(t − |x|/c) ∼ e3 and n := x/|x|. By (8.18),

p̈(t) = eẍ(t) = e2

m
E0 coskct, E0 = kAe3. (8.23)

Hence,

p̈2(t) =
(

e2

m

)2

E2
0 cos2 kct. (8.24)

Let θ be the angle between n and e1 and let ϕ e the azimuthal angle between
e3 and the plane (n, e1). Then cosχ = cosϕ sin θ and sin2 χ = 1 − cos2 ϕ sin2 θ .
Therefore,

Sr (t,x) ∼ n
1 − cos2 ϕ sin2 θ

4πc3|x|2
(

e2

m

)2

E2
0 cos2 kc

(
t − |x|/c), |x| → ∞. (8.25)

Hence, the corresponding mean in time intensity is obtained replacing cos2 kc(t −
|x|/c) by 1/2:

Ir (x) := lim
T →∞

1

T

∣
∣
∣
∣

∫ T

0
Sr (t,x) dt

∣
∣
∣
∣ ≈ 1 − cos2 ϕ sin2 θ

8π |x|2
(

e2

mc2

)2

E2
0

=
(

e2

mc2

)2 sin2 χ

|x|2 I0, (8.26)

where I0 is the intensity (8.6) of the incident wave. Therefore, the mean intensity
per unit angle Ir = lim|x|→∞ Ir (x)|x|2 is given by

Ir (ϕ, θ) ≈
(

e2

mc2

)2 (
1 − cos2 ϕ sin2 θ

)
I0. (8.27)
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Finally, the differential cross-section is as follows:

D(ϕ, θ) := Ir (ϕ, θ)

I0
≈

(
e2

mc2

)2 (
1 − cos2 ϕ sin2 θ

); (8.28)

this is the Thomson formula.
Depending on ϕ, the differential cross-section (8.28) is not invariant with re-

spect to rotations around e1. This reflects the fact that an incident wave is linearly
polarized. If we consider light with random polarization, then the differential cross-
section is given by (8.28) with 1/2 instead of cos2 ϕ.

Finally, for the total cross-section, we have the following expression:

T :=
∫

Ir (ϕ, θ) d�/I0 =
∫

D(ϕ, θ) d� ≈
(

e2

mc2

)2 ∫

sin2 χ d� =
(

e2

mc2

)2 8π

3
.

(8.29)

Remark 8.1 Now it is clear why we can neglect scattering of the light by the nu-
cleus: mass of the nucleus is about 1836 electron mass (see (1.10)), so its classical
scattering cross section (8.28), (8.29) should be about 1836−2 of the corresponding
electron cross section.

8.2 Quantum Scattering of Light

Quantum scattering of light by Hydrogen atom is well described by interaction of
the electromagnetic wave with the Schrödinger wave field, because the scattering
by the nucleus is negligible, as explained above.

We will calculate the energy flux for the radiated Maxwell field, and find the
corresponding differential cross-section in the first order approximation for small
amplitude of the incident wave.

8.2.1 The Scattering Problem

We want to describe the scattering of the plane wave (8.4) by the Hydrogen
atom in its ground state. By (6.3) and (6.37), the hydrogen ground state en-
ergy is E1 = −2π�cR = −me4/(2�2), and the corresponding wave function is
ψ1(x) = C1e

−|x|/r1 (we assume that the atom is situated at the origin). Then the
corresponding solution of the Schrödinger equation is as follows:

ψ1(t,x) = C1e
−|x|/r1e−iω1t , ω1 = E1

�
= −me4

2�3
, r1 = �

2

me2
. (8.30)
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The scattering is described by the coupled Maxwell–Schrödinger equations in the
Born approximation (4.27):

[
i�∂t − eφn(x)

]
ψ(t,x) = 1

2m

[

−i�∇ − e

c
A0(t,x)

]2

ψ(t,x) (8.31)

⎧
⎪⎪⎨

⎪⎪⎩

1

4π
�φ(t,x) = ρ(t,x) = e

∣
∣ψ(t,x)

∣
∣2

,

1

4π
�A(t,x) = j(t,x)

c
= e

mc

[

−i�∇ − e

c
A0(t,x)

]

ψ(t,x) · ψ(t,x),

(8.32)

where φn(x) = −e/|x| is the Coulomb potential of the nucleus, and A0 is the inci-
dent wave (8.1):

A0(t,x) = A�
(
ct − x1) sin k

(
x1 − ct

)
e3. (8.33)

In our model (8.31), (8.32), the hydrogen nucleus is considered as fixed. This
corresponds to the fact that nucleus is heavy with respect to the electron. Respec-
tively, the nucleus potential φn(x) is static, radial, and does not contribute to the
scattered energy flux (cf. Remark 8.1).

8.2.2 The Atomic Form Factor

We consider the incident Maxwell wave with small amplitudes |A| � 1, and sup-
pose that the atom was in its groundstate (cf. (8.9)):

ψ(t,x) = ψ1(t,x), t < 0. (8.34)

In the zero order approximation (in A), the wave function is unperturbed,

ψ(t,x) = ψ1(t,x), t ∈R. (8.35)

Hence, the corresponding approximation to the radiation field is given by solutions
of the Maxwell equations (8.32) with ψ(t,x) = ψ1(t,x). Then the charge density
ρ(t,x) is static and radial. Hence, the corresponding Maxwell field also is static and
radial, and also does not contribute to the scattered energy flux.

Therefore, it suffices to solve the equation for A with the current

j(t,x)

c
= e

mc

[

−i�∇ψ1(t,x) · ψ1(t,x) − e

c
A0(t,x)ψ1(t,x) · ψ1(t,x)

]

. (8.36)

Here, the first term on the RHS is zero, since the corresponding eigenfunction
e−|x|/r1 is real:
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i�∇ψ1(t,x) · ψ1(t,x)

:= Re
(
i�∇ψ1(t,x)ψ1(t,x)

) = |C1|2Re
(
i�

(∇e−|x|/r1
)
e−|x|/r1

) = 0. (8.37)

Therefore, the current reduces to

j(t,x)

c
= − e2

mc2
A0(t,x)

∣
∣ψ1(x)

∣
∣2

. (8.38)

Let us split the solution as

A(t,x) = A0(t,x) + Ar (t,x), (8.39)

where Ar (t,x) is the radiated field in the first order approximation in A. Then (8.32)
becomes

�Ar (t,x) = −4π
e2

mc2
A�

(
ct − x1) sin k

(
x1 − ct

)∣
∣ψ1(x)

∣
∣2e3

= −4π
e2

mc2
ImA�

(
ct − x1)eik(x1−ct)

∣
∣ψ1(x)

∣
∣2e3 =: f (t,x), (8.40)

because A0 is a solution of the homogeneous equation.
The radiation field can be characterized uniquely by an initial condition. In our

setting, the radiation field is of finite energy; i.e.,

Er(t) :=
∫

R3

(∣
∣Ȧr (t,x)

∣
∣2 + ∣

∣∇Ar (t,x)
∣
∣2)

dx < ∞, t ∈R. (8.41)

Then the long time asymptotics of the radiation field does not depend on initial
condition. Namely, in view of Theorem 12.23, condition (8.41) at t = 0 implies that
the radiated field is asymptotically given by the retarded potential,

Ar (t,x) ∼
∫

f (t − |x − y|/c,y) dy
4π |x − y| , t → ∞. (8.42)

Hence, the limiting amplitude principle of type (13.113) holds

Ar (t,x) ∼ Im
[
ar(x)e−ikct

]
, t → ∞. (8.43)

This follows from (8.42), because

∫
f (t − |x − y|/c,y) dy

4π |x − y| = − e2

mc2
A Im

[∫
eik(y1−c(t−|x−y|/c))|ψ1(y)|2 dy

|x − y|
]

e3

= − e2

mc2
A Im

[

e−ikct

∫
eik(y1+|x−y|)|ψ1(y)|2 dy

|x − y|
]

e3

(8.44)
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for large t . Let us find asymptotics of the integral as |x| → ∞. For any fixed y ∈R
3,

|x − y| = |x| − y · n + o(1), |x| → ∞ (8.45)

where n = n(x) = x/|x|. Writing y1 = y · e1, we get

Ar (t,x) ∼ − e2

mc2
A Im

[

e−ikct e
ik|x|

|x|
∫

eiky·(e1−n)
∣
∣ψ1(y)

∣
∣2

dy
]

e3, |x| → ∞.

(8.46)
Next, we evaluate the last integral. We set K := k|e1 − n| and denote by θ the angle
between n and e1. Then

K = K(k, θ) = k

√

(1 − n1)2 + n2
2 + n2

3 = k

√

2
(
1 − n1

)

= k
√

2(1 − cos θ) = 2k sin
θ

2
. (8.47)

Let α be the angle between y and e1 − n, and let ϕ be the azimuthal angle round
e1 − n. Finally, let us take into account that the ground state ψ1(y) = ψr

1 (|y|) is
spherically symmetric. Then integral (8.46) becomes

∫ ∞

0
|y|2d|y|

∫ π

0
sinα dα

∫ 2π

0
dϕ eiK cosα|y|∣∣ψ1(y)

∣
∣2

= 4π

∫ ∞

0

sinK|y|
K|y|

∣
∣ψr

1

(|y|)∣∣2|y|2 d|y| =: Fa(k, θ), (8.48)

which is called the atomic form factor corresponding to the ground state ψ1(x) =
C1e

−|x|/r1 . Since Fa(k, θ) is real, asymptotics (8.46) becomes

Ar (t,x) ∼ − e2

mc2
A

sin k(|x| − ct)

|x| Fa(k, θ)e3, |x| → ∞. (8.49)

Exercise 8.2 Calculate integral (8.48).

8.2.3 The Energy Flux

We still have to calculate the Maxwell field and the Poynting vector correspond-
ing to last vector potential. It suffices to compare expression (8.49) with the vector
potential of the Hertzian dipole (formula (12.120) of Sect. 12.10):

A(t,x) = 1

c

ṗ(t − r/c)

r
. (8.50)

It is identical to (8.49) with Fa(k, θ) = 1 if

p(t) := − e2

mc2k
A coskcte3. (8.51)
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Therefore, the energy flux S(t,x) corresponding to (8.49) is given, up to O(|x|−3),
by the Hertz formula (8.22), with additional factor |Fa(θ)|2. This follows from the
fact that angle θ is zero order homogeneous function of x, hence any differentiation
of the form factor Fa(θ) in x gives an additional factor with decay O(|x|−1). Finally,
for function (8.51), p̈(t) coincides with (8.23). In our case, (8.25) gives

S(t,x) ∼ n
∣
∣Fa(θ)

∣
∣2 1 − cos2 ϕ sin2 θ

4πc3|x|2
(

e2

m

)2

E2
0 cos2 kc

(
t − |x|/c), |x| → ∞.

(8.52)
Hence, the intensity per unit angle and the differential cross-section also contain the
additional factor |Fa(θ)|2. Finally, the differential cross-section coincides with the
Thomson formula (8.28) up to the atomic form factor:

D(k,ϕ, θ) = ∣
∣Fa(k, θ)

∣
∣2

(
e2

mc2

)2(
1 − cos2 ϕ sin2 θ

)
. (8.53)

8.3 Polarization and Dispersion

In the previous section, we were concerned with the scattering of light of small
amplitude A by the Hydrogen atom, solving the Maxwell equations with the unper-
turbed ground state.

Now we analyze the change of the ground state in the first order in A, solving
the Schrödinger equation. For small light frequencies, this change results in the
corresponding modification of atomic charges and currents; this means polarization
and magnetization of the atom. Thus we obtain the corresponding permittivity and
electric susceptibility, and the refraction coefficient.

8.3.1 The First Order Approximation

To calculate the first order correction to the ground state, we expand the solution
of (8.31) for small amplitudes:

ψ(t,x) = ψ1(t,x) + Aw(t,x) +O
(
A2), |A| � 1; (8.54)

here ψ1(t,x) is the ground state (8.30). Now condition (8.34) implies that

w(t,x) = 0, t < 0. (8.55)

Substituting (8.54) into (8.31), we obtain, in the first order in A,

A
[
i�∂t − eφn(x)

]
w(t,x) = A

1

2m
[−i�∇]2w(t,x) + i�e

mc
A0(t,x) · ∇ψ1(t,x),

(8.56)
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since ψ1(t,x) is a solution of Eq. (8.31) with A0 = 0. By (8.1) and (8.30), we have
the following splitting for the source term in the RHS of (8.56),

i�e

mc
A0(t,x) · ∇ψ1(t,x) = i�e

mc
A sink

(
x1 − ct

)
e3 · ∇ψ1(x)e−iω1t

= A�e

2mc

[
eik(x1−ct) − e−ik(x1−ct)

]
e−iω1t∇3ψ1(x)

= ψ+(x)e−i(ω1+ω)t − ψ−(x)e−i(ω1−ω)t , t > x1 − c,

(8.57)

where ω := kc. Now we apply the limiting amplitude principle (13.113):

w(t,x) = w+(x)e−i(ω1+ω)t − w−(x)e−i(ω1−ω)t +
∑

l

Clψl(x)e−iωl t + r(t,x),

(8.58)
where w±(x) are the limiting amplitudes, and r(t, ·) → 0 as t → ∞, in an ap-
propriate norm. Here ψl(x) denote eigenfunctions of the discrete spectrum of the
Schrödinger operator

H = 1

2m
[−i�∇]2 + eφn(x). (8.59)

The asymptotics (8.58) hold, provided ω1 ± ω 
= ωl for all l. The sum over the
discrete spectrum on the RHS of (8.58) vanishes by (8.55) and Lemma 13.30(iii)
(see also Remark 13.31(i)). Hence, in the first order approximation,

w(t,x) ∼ w+(x)e−i(ω1+ω)t − w−(x)e−i(ω1−ω)t , t → +∞. (8.60)

For w±, we get equations of type (13.108)

[

ω1 ± ω + e2

�|x|
]

w±(x) + �

2m
�w±(x) = ψ±(x)

�A
= e

2mc
e±ikx1∇3ψ1(x). (8.61)

Here we consider the incident light of small frequencies:

|ω| < |ω1|. (8.62)

For the Hydrogen atom, we have |ω1| = me4

2�3 ≈ 20.5 × 1015 s−1, by (8.30) with the
data of (3.36). Hence, bound (8.62) holds for wave numbers |k| < k1 := |ω1|/c ≈
68 × 107 m−1 or wavelengths

λ > 2π/k1 = 0.91176 × 10−5 cm = 911.76 Å. (8.63)

The frequency bound implies that ω1 ± ω < 0; hence the values �(ω1 ± ω) do not
belong to the continuous spectrum of the stationary Schrödinger equation (8.59).
Therefore, Eq. (8.61) implies that

w± ∈ L2(
R

3). (8.64)
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This means a decay of the limiting amplitudes w±(x) at infinity. Actually, the am-
plitudes decay exponentially,

∣
∣w±(x)

∣
∣ ≤ Ce−ε±|x|, (8.65)

where ε± > 0. In fact, we can neglect the term with e2

�|x| in Eq. (8.61), since it is
relatively small and decays at infinity. Then we obtain

[� + z±]w±(x) = f±(x), x ∈ R
3, (8.66)

where z± = 2m(ω1 ± ω)/� < 0 and |f±(x)| ≤ Ce−ε|x| with ε = −1/r1 > 0.
Hence, w± = E± ∗ f±, where E±(x) is the fundamental solution E±(x) =
−e−κ±|x|/(4π |x|) with κ± := √−z± > 0:

w±(x) = −
∫

e−κ±|x−y|

4π |x − y|f±(y) dy. (8.67)

As a result, decay (8.65) holds with ε± = min(ε, κ±) > 0.

8.3.2 The Modified Ground State

Further, let us calculate the modified ground state using the spectral resolution of
the Schrödinger operator in Eq. (8.61). First, expanding the RHS, we have

e

2mc
e±ikx1∇3ψ1(x) =

∑

l
a±
l ψl(x), (8.68)

where
∑

l includes the sum over the discrete spectrum and the integral over the
continuous spectrum of the Schrödinger operator (8.59). Hence, the solutions w±
are of the form

w±(x) =
∑

l

a±
l ψl(x)

ω1 ± ω − ωl

. (8.69)

Therefore, (8.60) becomes

w(t,x) ∼
∑

l

a+
l ψl(x)

ω1 + ω − ωl

e−i(ω1+ω)t −
∑

l

a−
l ψl(x)

ω1 − ω − ωl

e−i(ω1−ω)t , t → ∞.

(8.70)
Let us calculate the coefficients a±

l . Formally,

a±
l = e

2mc

∫

ψl(x)e±ikx1∇3ψ1(x) dx (8.71)

if the eigenfunctions of the discrete spectrum are orthogonal and normalized, and
the eigenfunctions of the continuous spectrum obey ‘delta function normalization’.
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We assume that kr1 � 1. Then we can substitute e±ikx1 = 1. Hence, a±
l are

approximately identical, and so

a±
l ≈ i

1

2c�
J3
l1 (8.72)

according to definition (7.38). Using formula (7.52), we get

a±
l ≈ al := −eωl1

2c�

∫

x3ψl(x)ψ1(x) dx = eω1l

2c�
x3
l1, (8.73)

where ω1l := ω1 − ωl , and x3
l1 := ∫

x3ψ1(x)ψl(x) dx. Finally, (8.70) becomes,

w(t,x) ∼
∑

l
alψl(x)

(
e−iωt

ω1l + ω
− eiωt

ω1l − ω

)

e−iω1t , t → ∞, (8.74)

and so the expansion (8.54) for large times reads

ψ(t,x) =
[

ψ1(x) + A
∑

l
alψl(x)

(
e−iωt

ω1l + ω
− eiωt

ω1l − ω

)]

e−iω1t +O
(
A2)

= [
ψ1(x) + A�(t,x)

]
e−iω1t +O

(
A2). (8.75)

8.3.3 The Kramers–Kronig Formula

Let us calculate the corresponding electric dipole moment. First, the charge density
is given by

ρ(t,x) = eψ(t,x)ψ(t,x) = e
(
ψ1(x) + A�(t,x)

)(
ψ1(x) + A�(t,x)

) +O
(
A2)

= e
∣
∣ψ1(t,x)

∣
∣2 + eA

[
�+eiωt + �−e−iωt

] +O
(
A2), (8.76)

where

�+ =
∑

l

(
ψ1alψl

ω1l + ω
− alψlψ1

ω1l − ω

)

, �− = �+. (8.77)

Therefore, the electric dipole moment is as follows:

p(t) :=
∫

xρ(t,x) dx = p11 + P(t) +O
(
A2); (8.78)

here p11 := ∫
xe|ψ1(t,x)|2 dx = 0 by spherical symmetry, and

P(t) = eA

[∑

l

(
alxl1

ω1l − ω
− al x̄l1

ω1l + ω

)

eiωt +
∑

l

(
al x̄l1

ω1l − ω
− alxl1

ω1l + ω

)

e−iωt

]

,

(8.79)
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where xl1 := ∫
xψ1ψl dx. By symmetry arguments, the vector P(t) is directed along

e3. Indeed, the invariance of P(t) with respect to the reflection x2 �→ −x2 is obvious.
The invariance with respect to the reflection x1 �→ −x1 follows from (8.68)–(8.70),
since we finally set k = 0. Therefore, substituting al from (8.73), and projecting xl1
onto e3, we get

P(t) ≈ Ae3
2ωe2

c�

∑

l

ω1l |x3
l1|2

ω2
1l − ω2

cosωt. (8.80)

At last, averaging (8.78) with respect to all orientations of the atom, we obtain, in
the first order approximation,

p̄(t) := Ae3
2ke2

�

∑

l

ω1l |x3
l1|2

ω2
1l − ω2

cosωt, (8.81)

since p11 = 0 and ω = kc.
Now we can express permittivity (12.203) of the hydrogen in its ground state

ψ1. Let E(t) be the electric field at position x = 0 of the atom. By (8.4), we have
E(t) = kA cosωt e3. Hence, (8.81) can be written as

p̄(t) := 2e2

3�

∑

l

ω1l |x3
l1|2

ω2
1l − ω2

E(t). (8.82)

Therefore, the permittivity of atomic hydrogen in its ground state is given by the
Kramers–Kronig formula,

χe(ω) = N
∣
∣p̄(t)

∣
∣/

∣
∣E(t)

∣
∣ = N

2e2

3�

∑

l

ω1l |x3
l1|2

ω2
1l − ω2

, (8.83)

where N is number of atoms per unit volume. It is worth noting that formula (8.83)
has the same analytic structure as its analogue (14.37) established first in the frame-
work of ‘Old Quantum Mechanics’ by Kramers and Heisenberg [121–123].

More precisely, the formula should be rewritten as the sum over the discrete
spectrum and the integral over the continuous spectrum

χe(ω) = N
2e2

3�

[
L∑

l=1

ω1l |x3
l1|2

ω2
1l − (ω + i0)2

+
∫ ∞

0

ω1ν |x3
ν1|2

(ω1 − ν)2 − (ω + i0)2
dν

]

, (8.84)

where the supplement i0 is necessary by the limiting absorption principle (13.117).
This famous formula implies many important conclusions which agree with ex-

perimental observations (see details in [7]):

I. It allows to express the electric susceptibility ε = 1 + 4πχe (see (12.204)) and
hence the refraction coefficient n = √

εμ ∼ √
ε by (12.206) in case of the mag-

netic susceptibility μ ∼ 1.
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II. It implies the singularity of ε(ω) at the resonances ωk , which is in a good agree-
ment with experimental observations.

III. It explains the anomalous dispersion near the eigenfrequencies ωk , i.e. weaker
polarizability coefficient ε(ω) for higher frequencies |ω| near ωk .

IV. The function (8.84) is holomorphic in the upper complex half plane Imω > 0.
This fact implies the integral dispersion relations between real and imaginary
parts of χe(ω) and ε(ω) discovered by Kramers and Kronig [124–126]. This
theory was developed later in the framework of Quantum Field Theory, see the
survey in [156, v. III].

8.4 Photoelectric Effect

Now we consider the incident light of high frequency in case when the condition
(8.62) fails. In this case, the electron cloud of an atom is not modified, but rather it
is completely destroyed, and the atom is ionized. The emitted electrons produce the
photocurrent with specific angular distribution.

This ionization was observed first by Hertz in 1887 and studied experimentally
by Lenard in 1902–1905. First theoretical explanation has been provided by Ein-
stein in 1905, who suggested the corpuscular theory of light, by introducing the
‘photons’, which are particles of light. In the framework of the Schrödinger theory,
this effect has been described first by Wentzel, who calculated the angular distribu-
tion of photocurrent. The calculation relies on the perturbation procedure applied to
the coupled Maxwell–Schrödinger equations.

Hertz discovered the discharge of negatively charged electroscope under the elec-
tromagnetic radiation of very short wavelength (like visible or ultraviolet light). This
discharge was treated as an emission of electrons from metals due to their absorption
of energy from electromagnetic radiation.

Lenard systematically studied the behavior of ‘photoelectrons’, (i.e., emitted
electrons) in external electric and magnetic fields. His conclusions were the fol-
lowing:

L1. The saturation photocurrent is proportional to the intensity of incident light.
L2. The photocurrent is not zero only for sufficiently small wavelength; i.e., for

high frequencies:

|ω| > ωred, (8.85)

where ωred is called the red bound of the photoelectric effect, which depends
on the substance, but is independent of the intensity of light.

L3. The photocurrent vanishes if the stopping voltage Ustop is applied; the mini-
mal Ustop also depends on the substance, but is independent of the intensity of
light. Moreover, the minimal Ustop increases for decreasing wavelength of the
incident light.
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This independence of ωred and minimal Ustop of the intensity of light was the
main difficulty in theoretical explanation of the Lenard observations. This indepen-
dence seemed to constitute a new mysterious phenomenon, which newer occurred
in classical physics.

In 1905, Einstein proposed a revolutionary interpretation, by developing the dis-
cretization (1.42) for the energy of the Maxwell field oscillators with steps �ω.
Namely, he suggested that the matter absorbs the light energy also by the discrete
portions �ω. This corresponds to the treatment of light with frequency ω as a beam
of particles, called ‘photons’, with energy �ω. Einstein’s rules for the photoelectric
effect are the following:

E1. The flux of photons is proportional to the intensity of the incident light.
E2. The maximum energy of photoelectrons is given by

mv2
max

2
= �ω − W, (8.86)

where W is the work function of the substance. Hence, the emission of electron
is possible only if �ω − W > 0; consequently, the redbound ωred = W/� is
independent of the intensity of light—this agrees with Lenard’s observations!

E3. Respectively, the stopping voltage should satisfy the inequality

−eUstop > �ω − W, (8.87)

where e < 0. Thus the minimal Ustop is also independent of the intensity of
light.

Formula (8.86) formally represents the energy conservation in the absorption of
photon by electron. However, let us stress that (8.86) is a theoretical interpretation
of formula (8.87), which is verified experimentally and gives the minimum stop-
ping voltage −(�ω −W)/e. Moreover, formula (8.87) allows to measure the Planck
constant � with high precision.

Thus the ‘Einstein rules’ E1–E3 give the complete explanation of Lenard’s ob-
servations. In 1922, Einstein was awarded the 1921 Nobel Prize in Physics for his
theory of the photoelectric effect, relying on the revolutionary corpuscular theory
of light.

In 1927 G. Wentzel calculated angular distribution of the photocurrent applying
the first order perturbation approach to the coupled Maxwell–Schrödinger equa-
tions. Wentzel’s calculations [171, Vol. II] and Einstein’s rules for the photoelectric
effect are justified by the limiting amplitude principle.

Namely, the photoelectric effect is caused by slow decay of the limiting ampli-
tude at infinity for |ω| > |ω1|. The slow decay results in a nonvanishing current to
infinity; this means the photoelectric effect. Thus, ωred = |ω1|. Moreover, the pho-
toelectron energy is given by (8.86), and the stopping voltage satisfies (8.87).

Unfortunately, the perturbation approach is not selfconsistent and should be con-
sidered, rather, as a hint for explaining the atomic ionization. The corresponding
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rigorous theory of ionization was developed recently [35–38, 157]. However, this
theory implies the atomic ionization for any light frequency ω 
= 0.

For second quantized models a perturbation treatment of the atomic ionization
and of relation (8.86) were given in [6, 76, 197].

This being so, a dynamical nonperturbation explanation of Einstein’s rules for
photoelectric effect remains an open challenging problem.

8.4.1 Radiation in Continuous Spectrum

Now we apply the perturbation approach (8.54) to the problem of scattering of light
with large frequencies:

|ω| > |ω1|, (8.88)

in contrast to (8.62). Let us recall that for the Hydrogen atom this condition means
that the light wavelenght λ < 911.76 Å, see (8.63).

For simplicity of notation, we assume that ω > 0. Hence ω1 − ω < 0, but

ω1 + ω = ω − |ω1| > 0 (8.89)

by (8.88). Consequently, �(ω1 + ω) belongs to the continuous spectrum of the sta-
tionary Schrödinger equation (8.59). Therefore, the solution w+(x) 
∈ L2, as distinct
from (8.64). This means a slow decay of the limiting amplitude:

∣
∣w+(x)

∣
∣ ∼ a(n(x))

|x| , |x| → ∞,

where n(x) := x/|x|. We will calculate the amplitude a(n) and obtain the main term
of the radiation in the form

Aw+(x)e−i(ω1+ω)t ∼ A
a(ϕ, θ)

|x| ei[kr |x|−(ω+ω1)t], |x| → ∞. (8.90)

On the other hand, �(ω1 − ω) < 0 does not belong to the continuous spectrum of
the Schrödinger equation. Hence, w−(x) decays exponentially, similarly to (8.65):

∣
∣w−(x)

∣
∣ ≤ Ce−ε−|x|, x ∈R, (8.91)

where ε− > 0.
We will deduce from (8.90) and (8.91) the following asymptotics for the limiting

stationary electric current at infinity,

j(t,x) ∼ A2 e�kr

m

a2(ϕ, θ)

|x|2 n(x), |x| → ∞. (8.92)

The formula was obtained by Wentzel in 1927 (see [190]) with amplitude

a(ϕ, θ) = C sin θ cosϕ, (8.93)
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where C 
= 0. Hence, formula (8.92) describes a non-zero electric current from the
atom to infinity. Indeed, asymptotics (8.92) imply that total electric current to infin-
ity does not vanish, i.e.,

J∞ := lim
R→∞

∫

|x|=R

j(t,x) dS(x) 
= 0. (8.94)

8.4.2 The Limiting Amplitude

Let us calculate the limiting amplitude w+(x). First, we rewrite Eq. (8.61) as follows

[∇2 + k2
r (ω)

]
w+(x) = e

�c
eikx1∇3ψ1(x) − 2e2m

�2|x| w+(x), (8.95)

where kr(ω) := √
2m(ω1 + ω)/� > 0. In the first approximation, we can neglect

the last term on the RHS, because it is small and decays at infinity. Then we get the
Helmholtz equation of type (8.66),

[
� + k2

r (ω)
]
w+(x) = f+(x) := e

�c
eikx1∇3ψ1(x). (8.96)

Hence the exponential decay (8.91) does not hold for w+(x). This is obvious in the
Fourier space, where (8.96) becomes

ŵ+(k) = f̂+(k)

−k2 + k2
r (ω)

. (8.97)

The denominator vanishes on the sphere |k| = kr(ω), while f̂+(k) ∼ k3ψ̂1(k1 +
k,k2,k3) is zero only for k3 = 0.

Exercise 8.3 Verify that f̂+(k) 
= 0 for k3 
= 0. Hint: Calculate ψ̂1(k) in the spher-
ical coordinates.

Hence w+(x) cannot decay exponentially. Now the solution is given by convolu-
tion with fundamental solution (13.111)

w+(x) = −
∫

eikr (ω)|x−y|

4π |x − y| f+(y) dy. (8.98)

This follows from the limiting absorption principle (13.117), because the fun-

damental solution eikr (ω+iε)|x|
4π |x| is a tempered distribution for small ε > 0, since

Im kr(ω + iε) > 0 for the fixed branch kr(ω) > 0.
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Now we can calculate asymptotics (8.90). To do so we substitute expression
(8.96) for f+ into (8.98). By partial integration, we obtain

w+(x) = − e

�c

∫

∇y3

eikr |x−y|

4π |x − y|e
iky1

ψ1(y) dy

= ikre

�c

∫
eikr |x−y|(x3 − y3)

4π |x − y|2 eiky1
ψ1(y) dy +O

(|x − y|−2). (8.99)

Recall that θ denotes the angle between n := x/|x| and e1, and ϕ stands for the az-
imuthal angle between e3 and the plane (n, e1). Then x3 = sin θ cosϕ|x|. Hence,
(8.99) implies (8.90) with angular distribution (8.93), because the ground state
ψ1(y) decays rapidly at infinity. The constant C in (8.93) is given by

C = C(k) = ikre

4π�c

∫

eiky1
ψ1(y) dy. (8.100)

It does not vanish for the ground state (8.30).

8.4.3 Angular Distribution: The Wentzel Formula

Our aim here is to derive (8.92). Equations (8.32) imply that, in the first approxima-
tion, the current is given by

j := − e

m

[
i�∇ψ(t,x)

] · ψ(t,x). (8.101)

Further, w−(x) decays exponentially at infinity by (8.91), as well as the eigenfunc-
tion ψ1(x). Therefore, (8.54) and (8.60) imply the asymptotics

ψ(t,x) ∼ Aw+(x)e−i(ω1+ω)t , |x| → ∞. (8.102)

Substituting into (8.101), and using asymptotics (8.90), we obtain the Wentzel for-
mula (8.92) with amplitude (8.93).

8.4.4 Derivation of Einstein’s Rules

Now we can explain Lenard’s observations and Einstein’s rules for the photoelectric
effect:

E1. By (8.92), the saturation photocurrent is proportional to A2, which in turn is
proportional to the intensity of incident light, by (14.31) and (14.26), (14.27).
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E2. Asymptotics (8.90) imply that the energy per one photoelectron is given by the
Einstein formula (8.86). Indeed, for large |x|, the radiated wave (8.90) is locally
close to the plane wave (5.1) with ω − |ω1| instead of ω. Hence, formula (5.6)
implies that the energy per one photoelectron is given by E = �(ω − |ω1|),
which is equivalent to (8.86) with

W = �ω1. (8.103)

E3. Application of stopping voltage is equivalent to the corresponding modification
of the scalar potential in the Schrödinger equation (8.31): φn(x) �→ φ̃(x) =
φn(x) + φstop(x), where φstop(x) is a slowly varying potential, and φstop(x) =
Ustop > 0 in a macroscopic region containing the atom. Therefore, the ground
state energy �ω1 changes to �ω̃1, and �ω̃1 ≈ �ω1 + eUstop with high precision.
Indeed, by the Courant minimax principle,

�ω1 = min‖ψ‖=1
(ψ,Hψ). (8.104)

We can assume that 0 ≤ φstop(x) ≤ Ustop for x ∈ R
3. Then

�ω̃1 = min‖ψ‖=1

(
ψ,

[
H + eφstop(x)

]
ψ

) ≥ �ω1 + eUstop (8.105)

since e < 0. On the other hand, the unperturbed ground state ψ1(x) is localized
in a very small region of the size about 1 Å = 10−8 cm, where eφstop(x) = Ustop.
Hence,

(
ψ1,

[
H + eφstop(x)

]
ψ1

) ≈ �ω1 + eUstop. (8.106)

Therefore,

�ω̃1 ≈ �ω1 + eUstop. (8.107)

For the eigenstates with highest numbers, the localization gets progressively
worse, and the eigenfunctions of the continuous spectrum are not localized at
all. Respectively, the shift of the highest eigenvalues is smaller and smaller,
and the continuous spectrum of the modified Schrödinger operator remains un-
changed.
Finally, the potential prevents the photoelectric effect if the spectral condi-
tion (8.88) fails for the modified ground state; i.e., 0 < ω < |ω̃1| or

�ω < |�ω1 + eUstop| = �|ω1| − eUstop, (8.108)

since ω1 < 0, while e < 0 and we define Ustop > 0. In other words,

−eUstop > �ω − �|ω1|, (8.109)

which is equivalent to (8.87) by (8.103).
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8.4.5 Further Improvements

The Wentzel calculation takes into account the interaction of the Maxwell and
Schrödinger fields in the first order of approximation. The second order correction
was obtained by Sommerfeld and Shur [174]. The corresponding corrected formula
reads as follows (see [171, Vol. II]):

j(t,x) ∼ sin2 θ cos2 ϕ(1 + 4β cos θ)

|x|2 n(x), |x| → ∞. (8.110)

Here β = v
c

, where v is the velocity of photoelectrons. The formula means an in-
crement of the scattering amplitude for angles 0 < θ < π

2 and a decrement of the
scattering amplitude for angles π

2 < θ < π . This means a forwardshift of scattering
due to pressure of the incident light upon the outgoing photocurrent, as predicted
by Wentzel [190].

Fisher and Sauter obtained the formula which holds in each order (see [171,
Vol. II]):

j(t,x) ∼ sin2 θ cos2 ϕ

(1 − β cos θ)4|x|2 n(x), |x| → ∞. (8.111)

8.4.6 Atomic Ionization and Photoelectric Effect

Unfortunately, the perturbation theory of the photoelectric effect is not selfconsistent
in contrast to the case (8.62). The difference is caused by the fact that for small
frequencies ω the limit stationary regime is close to the ground state, while for (8.88)
the limit regime is quite different.

For instance, the stationary nonvanishing photocurrent (8.94) contradicts the
charge conservation law, because the atomic charge is finite. The contradiction
is provided by the perturbation strategy, which leaves unchanged ψ1 on the right
of (8.56), while it should be substituted by the solution of (8.31), (8.32). This ‘self-
action’ should result in a decay of the photocurrent until the negative atomic charge
will be exhausted, i.e.,

∫

|x|<R

∣
∣ψ(t,x)

∣
∣2

dx → 0, t → ∞ (8.112)

for all R > 0. Thus, formula (8.94) does not justify the photoelectric effect, but it
rather suggests the atomic ionization (8.112), as established in [35–38].

On the other hand, a self-consistent justification of the photoelectric effect should
rely on the stationary photocurrent, since the stopping voltage is concerned exactly
the stationary picture. To maintain the stationary photocurrent, one needs either an
external source (galvanic element, etc.) to reimburse the charge decay, or a different
model with infinite charge (e.g., crystal).
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Finally, the ionization occurs at any nonzero light frequency ω, according to the
results of [35–38]. Thus, a satisfactory nonperturbation explanation of the Einstein
rules of the photoelectric effect still remains an open problem.

8.5 The Classical Scattering of Charged Particles

In 1911, Rutherford experimentally studied the scattering of beams of alpha parti-
cles using a very thin gold foil. The results proved to be very surprising, testifying
a concentration of positive charge in a point nucleus. Rutherford calculated the cor-
responding differential cross section, which was found to be in agreement with the
experimental data.

8.5.1 The Rutherford Scattering

Homogeneous beam of classical particles with charge Q and mass M falls onto
a heavy nucleus with charge |e|Z > 0. The Rutherford formula holds both in the
repulsive case, when Q > 0, and in the attractive case, when Q < 0. The repulsive
case corresponds, for example, to the scattering of α-particles with Q = 2|e|, and
the attractive case corresponds, for example, to the scattering of electrons with Q =
e < 0.

The mass of the nucleus being much larger than M , we may assume that the
nucleus is fixed at the origin. For an incident particle moving along the trajectory
x = x(t), −∞ < t < ∞, we assume that particle comes from infinity with nonzero
velocity; i.e.,

lim
t→−∞

∣
∣x(t)

∣
∣ = ∞, lim

t→−∞
∣
∣ẋ(t)

∣
∣ = v > 0. (8.113)

This trajectory is known to be a hyperbola (see Sect. 14.1). Let us choose coordi-
nates in space in such a way that x3(t) ≡ 0, and

lim
t→−∞ ẋ(t) = (v,0,0), lim

t→−∞ x1(t) = −∞, lim
t→−∞ x2(t) = b, (8.114)

where b is the impact parameter. Let us further use the conventional polar coordi-
nates in the plane x3 = 0,

x1 = r cos θ, x2 = r sin θ (8.115)

and denote by r(t), θ(t) the trajectory of a particle in these coordinates. From the
initial scattering conditions (8.114) we have

lim
t→−∞ θ(t) = π, lim

t→−∞ r(t) sin θ(t) = b. (8.116)
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8.5.2 The Angle of Scattering

Let us calculate the final scattering angle

θ := lim
t→∞ θ(t). (8.117)

Lemma 8.4 The final scattering angle satisfies the equation

cot
θ

2
= Mbv2

Q|e|Z . (8.118)

Proof First, according to the law of conservation of the angular momentum and
energy,

r2(t)θ̇ (t) = bv,
M

2

(
ṙ2(t) + r2(t)θ̇2(t)

) + Q|e|Z
r(t)

= M

2
v2. (8.119)

If we substitute here

ṙ(t) := dr

dt
= dr

dθ

dθ

dt
= r ′θ̇ , (8.120)

then the energy conservation becomes

M

2
θ̇2(t)

(∣
∣r ′(θ(t)

)∣
∣2 + r2(t)

) + Q|e|Z
r(t)

= M

2
v2. (8.121)

Now let us introduce the Clairaut substitution r = 1/ρ. Then r ′ = −ρ′/ρ2 and
momentum conservation gives θ̇ (t) = vbρ2. Therefore, (8.121) reads

M

2
b2v2(∣∣ρ′∣∣2 + ρ2) + Q|e|Zρ = M

2
v2. (8.122)

Let us differentiate this expression in θ . Dividing by ρ′, we arrive at the Clairaut
equation

ρ′′ + ρ = C := −Q|e|Z
Mbv2

. (8.123)

The general solution of this equation is as follows:

ρ(θ) = A cos θ + B sin θ + C. (8.124)

Now the initial scattering conditions (8.116) give,

lim
θ→π

ρ(θ) = 0, lim
θ→π

ρ(θ)

sin θ
= 1

b
. (8.125)

If we substitute here (8.124), we obtain −A + C = 0 and B = 1/b, and hence

ρ(θ) = C(1 + cos θ) + 1

b
sin θ. (8.126)
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At last, for the final scattering angle, it follows from (8.117) that ρ(θ) = 0. Hence,

C(1 + cos θ) + 1

b
sin θ = 0. (8.127)

This implies (8.118). �

Remark 8.5 The solution θ ∈ (−π,π) of Eq. (8.118) exists and is unique. For b > 0,
the repulsive case corresponds to Q > 0 and θ ∈ (0,π), while the attractive case
corresponds to Q < 0 and θ ∈ (−π,0).

8.5.3 Differential Cross Section: Rutherford Formula

Now let us assume that the incident particles constitute a beam with flux density
of n particles per cm2s in the direction e1. Let N = N(b,b + db) be the number of
incident particles per second with the impact parameter within the interval [b, b +
db]. By the axial symmetry, we have, for infinitesimal db,

N(b,b + db) = n2πb db. (8.128)

The particles are scattered into the spatial angle d� = 2π sin θ dθ .

Definition 8.6 The differential cross section of the scattering is defined by

D(θ) := N/d�

n
= bdb

sin θ dθ
. (8.129)

Let us calculate the cross section. Rewriting (8.118) as

b2 =
(

Q|e|Z
Mv2

)2

cot2
θ

2
(8.130)

and differentiating, it is found that

2bdb =
(

Q|e|Z
Mv2

)2

2 cot
θ

2

1

sin2 θ
2

dθ

2
. (8.131)

Substituting this into (8.129), we arrive at the Rutherford formula

D(θ) = (
Q|e|Z
Mv2 )2

4 sin4 θ
2

. (8.132)
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8.6 The Quantum Scattering of Electrons

A quantum analogue of the Rutherford scattering is the scattering of an electron
beam by the hydrogen atom in its ground state ψ1(t,x), as given by (8.30). The
incident electron beam is described by the plane wave of type (5.1):

ψin(t,x) = Aei(kx−ωt), k = (k,0,0) 
= 0, (8.133)

moving in the direction e1 (if k > 0). The wave is a solution of the free Schrödinger
equation. Hence (see (5.2)),

�ω = �
2

2m
k2 > 0. (8.134)

The corresponding stationary electric current density is given by (5.3):

jin := e

m

[−i�∇ψin(t,x)
] · ψin(t,x) = e�k

m
|A|2. (8.135)

We will assume that the incident plane wave is a small perturbation of the ground
state; i.e.,

|A| � C1 (8.136)

(see (8.30)). Hence, the total wave field, is approximately a solution of the
Schrödinger equation (8.31) with A0 = 0,

[
i�∂t − eφn(x)

]
ψ(t,x) = 1

2m
[−i�∇]2ψ(t,x). (8.137)

Here φn(x) = −e/|x| is the nucleus potential; its decay at infinity is rather slow,
resulting in the divergence in intermediate calculations. Let us modify φn(x) as
follow:

φε(x) = − e

|x|e
−ε|x|; (8.138)

here ε > 0. Later we will make ε → 0.

8.6.1 The Radiated Wave

Let us decompose the total wave field into three terms,

ψ(t,x) = ψin(t,x) + ψ1(t,x) + ψr(t,x), (8.139)

where ψr(t,x) is a small radiated wave. Substituting (8.139) into the Schrödinger
equation (8.137), this gives

[
i�∂t −eφε(x)

][
ψin(t,x)+ψr(t,x)

] = 1

2m
[−i�∇]2[ψin(t,x)+ψr(t,x)

]
, (8.140)
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since ψ1(t,x) is an exact solution. We rewrite this equation as follows:
(

i�∂t − eφε(x) − 1

2m
[−i�∇]2

)

ψr(t,x) = eφε(x)ψin(t,x) = eφε(x)Aei(kx−ωt).

(8.141)
Since ω > 0, it follows by (8.134) that the frequency ω lies in the continuous

spectrum of the Schrödinger operator. Now we apply the limiting amplitude princi-
ple (13.113) to obtain the long-time asymptotics for ψr(t,x):

ψr(t,x) ∼ ψr(x)e−iωt , t → ∞; (8.142)

here the contribution of the discrete spectrum is neglected, since the eigenfunctions
decay rapidly at infinity, as distinct from ψr(x).

Substituting these asymptotics into equation (8.141), we obtain the stationary
equation for the limiting amplitude

(

�ω − eφε(x) − 1

2m
[−i�∇]2

)

ψr(x) = eAφε(x)eikx. (8.143)

Neglecting eφε(x) in the LHS, we finally get the Helmholtz equation

(
� + k2)ψr(x) = 2meA

�2
φε(x)eikx, (8.144)

because k2 = 2mω
�

by (8.134). This is an equation of type (8.96). Therefore, the
solution is given by a convolution similar to (8.98),

ψr(x) = −2meA

�2

∫
eik|x−y|

4π |x − y|φε(y)eiky dy. (8.145)

Convolution (8.145) is similar to the last integral (8.44). Evaluating it by method
(8.45)–(8.48), we obtain

ψr(x) ∼ −A
eik|x|

|x| f (k, θ), |x| → ∞, (8.146)

where θ is the polar angle between x and e1, and

f (k, θ) = 2me

�2

∫ ∞

0

sinK|y|
K|y| φ(y)|y|2 d|y|, K := 2k sin

θ

2
. (8.147)

Now (8.142) becomes, for large |x|,

ψr(t,x) ∼ −A
eik|x|

|x| f (k, θ)e−iωt , t → ∞. (8.148)

The limiting amplitude ψr decays slowly at infinity, its L2 norm being infinite. This
corresponds to the fact that the frequency ω > 0 lies in the continuous spectrum.
Physically, this means that the electron flux goes off to infinity, as we shall see
below.
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8.6.2 The Differential Cross Section

The stationary electric current, corresponding to radiated wave ψr(t,x) for large t

and |x|, is given by (8.148),

jr(x) := e

m

[−i�∇ψr(t,x)
] · ψr(t,x) ∼ e�kn(x)

m

|f (k, θ)|2
|x|2 |A|2,

n(x) := x
|x| , (8.149)

similarly to (8.135). The angular density of the stationary current of radiation is
defined by

ja
r (n) := lim

R→∞ jr(Rn) · nR2, n ∈R
3, |n| = 1. (8.150)

The current (8.149) is radial at infinity, hence the corresponding angular density is
given by

ja
r (n) = e�k

m

∣
∣f (k, θ)

∣
∣2|A|2. (8.151)

In the quantum case, Definition 8.6 should be modified as follows.

Definition 8.7 The differential cross section of the quantum scattering is defined by

D(n) := ja
r (n)

|jin| , n ∈R
3, |n| = 1. (8.152)

Formulas (8.151) and (8.135) imply that

D(n) = ∣
∣f (k, θ)

∣
∣2

. (8.153)

Finally, substituting (8.138) into (8.147), we get

f (k, θ) = 2me2

K�2

∫ ∞

0
sinK|y|e−ε|y| d|y| = 2me2

�2(K2 + ε2)
. (8.154)

Here K = 2k sin θ
2 
= 0 if θ 
= 0 and k 
= 0. Then we can drop ε2 as ε → 0, to obtain

f (k, θ) = 2me2

�2K2
= me2

2�2k2 sin2 θ
2

. (8.155)

We rewrite this expression using (5.4):

f (k, θ) = e2

2mv2 sin2 θ
2

. (8.156)
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Now (8.153) reads

D(n) = ( e2

mv2 )2

4 sin4 θ
2

, (8.157)

which coincides with the classical Rutherford formula (8.132) with Q = e and
Z = 1.

Remark 8.8 The agreement of (8.157) with the classical formula (8.132) was con-
sidered by Born as a crucial confirmation of probabilistic interpretation of quantum
mechanics [20]: |ψ(t,x)|2 is the density of probability for the particle registra-
tion, and the current (8.149) is the flux of the probability multiplied by e.



Chapter 9
Atom in Magnetic Field

Abstract Energy levels of the Hydrogen atom in a uniform magnetic field de-
pend on the magnetic quantum number, while the eigenfunctions keep their form
in a special basis. This dependence perfectly explains the (normal) Zeeman splitting
of spectral lines.

The magnetic moment of the Hydrogen atom in a stationary state expresses as an
integral of the corresponding electric current. The integral splits in two summands,
of which one is responsible for diamagnetism resulting in the Langevin formula for
diamagnetic susceptibility, and the second one is responsible for paramagnetism.

9.1 The Normal Zeeman Effect

In 1895, Zeeman discovered the splitting of spectral lines of atoms and molecules
in a magnetic field. In the Schrödinger theory, the splitting and polarization have
the same manifestation as in the classical Zeeman model (see Sect. 14.5). Namely,
the unperturbed spectral lines, corresponding to the zero magnetic field B = 0, split
into the normal triplet for B �= 0.

The Hydrogen atom in a static external magnetic potential A(x) is described by
the Schrödinger equation of type (3.37)

i�∂tψ(t,x) = 1

2m

(

−i�∇ − e

c
A(x)

)2

ψ(t,x) − e2

|x|ψ(t,x), (t,x) ∈ R
4. (9.1)

For the static potential, the Lorentz gauge condition (12.45) is equivalent to the
Coulomb gauge condition

∇A(x) = 0. (9.2)

Hence, on evaluating, we get

i�∂tψ(t,x) = − 1

2m
�

2�ψ(t,x) + i
�e

mc
A(x) · ∇ψ(t,x)

− 1

2m
�

2A2(x)ψ(t,x) − e2

|x|ψ(t,x), x ∈R
3. (9.3)
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Let us assume that the potential A(x) is small:
∣
∣A(x)

∣
∣ � 1. (9.4)

Then we can neglect term with A2(x) in (9.8), obtaining

i�∂tψ(t,x) = − 1

2m
�

2�ψ(t,x) + i
�e

mc
A(x) · ∇ψ(t,x) − e2

|x| ψ(t,x), x ∈ R
3.

(9.5)

9.1.1 The Hydrogen Spectrum in a Magnetic Field

Now we consider the uniform static magnetic field B = (0,0,B). In this case we
have the external static Maxwell potentials (cf. (3.68))

φ(x) = − e

|x| , A(x) = 1

2
B × x = 1

2
B

(−x2,x1,0
)
, (9.6)

which are axially symmetric with respect to the rotations round e3. Therefore,
i�A(x) · ∇ = −BL̂3/2, by (9.6). Hence (9.5) reads

i�∂tψ(t,x) = Hψ(t,x) − e

2mc
BL̂3ψ(t,x), x ∈R

3, (9.7)

where H is the Schrödinger operator (6.1). Hence, the corresponding stationary
equation is as follows

Eψ(x) = Hψ(x) + ωLL̂3ψ(x), x ∈R
3; (9.8)

here ωL := −eB/(2mc) is the Larmor frequency. The key observation is that the
operators L̂3 and H commute, inasmuch as the potentials are axially symmetric.
Hence, there is a complete set of common eigenfunctions. Namely, (6.35) are com-
mon eigenfunctions, because L̂3 = −i�∂ϕ by (3.86), and

Hψlmn = (En + m�ωL)ψlmn, n = 1,2, . . . , m = −l, . . . , l, l ≤ n − 1, (9.9)

where En are given by (6.3). Therefore, the energy levels in the uniform magnetic
field are given by

Emn := −2π�cR/n2 + m�ωL, n = 1,2, . . . , m = −l, . . . , l, l ≤ n − 1 (9.10)

9.1.2 The Normal Splitting of Spectral Lines

Now the energy level splitting, the intensities and polarization of the Hydrogen ra-
diation can be computed by substituting (9.10) and (6.35) into formulas (7.48) and
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(7.52), (7.37). Namely, formula (6.35) can be written as

ψj = Ce−r/rnPnl(r)F
m
l (θ)eimϕ, j = (lmn), (9.11)

and the corresponding eigenvalues are given by (9.10),

ωj = −2πcR

n2
+ mωL. (9.12)

If B = 0, we also have ωL = 0. Hence, the unperturbed spectral lines are

ω0
jj ′ = 2πR

[
1

n′2 − 1

n2

]

, j = (lmn), j ′ = (
l′m′n′).

Next consider the case B �= 0. From (7.48) it follows that the intensity of the spectral
line ωjj ′ is proportional to |Jjj ′ |2, where

Jjj ′ ∼
∫ ∞

0
Rnl(r)Rn′l′(r)r

3 dr

∫ π

0

[∫ 2π

0

x
r
Fm

l (θ)Fm′
l′ (θ)ei(m−m′)ϕ dϕ

]

sin θ dθ.

(9.13)
by (7.52) and (7.62). According to (7.60), Jjj ′ is nonzero only if m′ = m,m± 1 and
l′ = l ± 1. Hence, the unperturbed spectral line ω0

jj ′ generates the triplet

⎧
⎪⎨

⎪⎩

m′ = m: ωjj ′ = ω0
jj ′ ,

m′ = m − 1: ωjj ′ = ω0
jj ′ + ωL,

m′ = m + 1: ωjj ′ = ω0
jj ′ − ωL;

(9.14)

this is precisely like in the Lorentz model (14.43). To find the corresponding polar-
izations, we write the vector x in the form

x = sin θ
(
e−iϕe+ + eiϕe−

) + cos θe3, e± := 1

2
(e1 ± ie2). (9.15)

Inserting this back into (9.13), it is found that for m′ = m, only the e3 component
contributes, while for m′ = m ± 1, only the e∓ component contributes. Hence, us-
ing (7.37), we obtain the radiation in the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m′ = m: Ajj ′(t,x) ∼ 1

|x| Re cj cj ′e3e
−iω0(t−|x|/c),

m′ = m − 1: Ajj ′(t,x) ∼ 1

|x| Re cj cj ′e+e−i(ω0+ωL)(t−|x|/c),

m′ = m + 1: Ajj ′(t,x) ∼ 1

|x| Re cj cj ′e−e−i(ω0−ωL)(t−|x|/c).

Note that the resulting polarizations of the radiation fields are exactly the same as in
the classical Zeemann model (see Sect. 14.5).
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The spectral lines (9.12) are independent of the orbital quantum number l. Re-
spectively, the radiations induced by pairs j = (lmn), j ′ = (l′m′n′) with fixed n,n′,
m′ = m,m ± 1 and all possible quantum numbers l, l′ contribute to the same fre-
quencies (9.14).

On the other hand, in many cases the atom spectra in a magnetic field demonstrate
multiplet structure different in significant way from the triplet structure (9.14). This
situation suggests that the eigenvalues may depend on l, l′. This anomalous Zee-
man effect cannot be explained by the Schrödinger equation (9.1). The explanation
is provided by the Pauli equation, which takes into account the electron spin (see
Sect. 10.3).

9.2 Diamagnetism and Paramagnetism

The magnetic moment of the Hydrogen atom in a uniform magnetic field B is known
to be the sum of two terms m = m′ +χmB where χm < 0; as a result, χmB describes
the diamagnetism, and m′ describes the paramagnetism of an atom. The calculation
leads to the Langevin formula for the magnetic susceptibility of the hydrogen atom
(see Lecture 12.13).

9.2.1 The Magnetic Moment

The magnetic moment of an atom in a stationary state is defined by (12.192):

m = 1

2c

∫

y × j(y) dy, (9.16)

where the electric current j is defined, in the Born approximation (8.32), as follows:

j(t,x) = e

m

[

−i�∇ − e

c
A(x)

]

ψ(t,x) · ψ(t,x). (9.17)

We choose coordinates in such a way that B = (0,0,B) with B ≥ 0. Then the cor-
responding vector potential A(x) is given by (9.6). The stationary solutions in the
uniform magnetic field are given by (9.11), (9.12):

ψ(t,x) = almn(r, θ)eimϕe−iωmnt , (9.18)

where almn is a real function by Theorem 6.3(ii).
Let us express the gradient operator and the vector potential A(x) in the spherical

coordinates:

∇ = er∇rψ + eθ

∇θ

r
+ eϕ

∇ϕ

r sin θ
,

A(x) = 1

2
B

(−x2, x1,0
) = 1

2
B|x| sin θeϕ,

(9.19)
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by (6.54) and (6.55). Using (9.17) and (9.18) this gives,

j(t,x) = er

e

m

[−i�∇ralmn(r, θ)
] · almn(r, θ) + eθ

e

m

[

−i�
∇θ

r
almn(r, θ)

]

· almn(r, θ)

+ eϕ

e

m

[

m�
1

r sin θ

]
∣
∣ψ(t,x)

∣
∣2 − eϕ

e2

2mc
B|x| sin θ

∣
∣ψ(t,x)

∣
∣2

. (9.20)

The first and second term on the RHS are zero, because the function anml(r, θ) is
real. Finally,

j(t,x) = eϕ

e

m

[

m�
1

r sin θ

]
∣
∣ψ(t,x)

∣
∣2 − eϕ

e2

2mc
B|x| sin θ

∣
∣ψ(t,x)

∣
∣2

= j′(x) + j′′(x). (9.21)

Now the magnetic moment (9.16) becomes

m = 1

2c

∫

y × j′(y) dy + 1

2c

∫

y × j′′(y) dy = m′ + m′′. (9.22)

9.2.2 The Langevin Formula

The currents j′(x), j′′(x) are obviously axially symmetric with respect to axis Ox3;
also

(y × eϕ)3 = |y|e3 sin θ. (9.23)

Hence, the direction of m′′ is opposite to B, and so m′′ describes the diamagnetism
of an atom. The corresponding diamagnetic susceptibility (per atom) is defined by
the formula m′′ = χmB; hence

χm := −m′′
3

B
= − e2

4mc2

∫

|y|2 sin2 θ |ψ |2 dy = − e2

4mc2
�3, (9.24)

where �3 denotes the moment of inertia of distribution |ψ |2 with respect to the axis
Ox3. For the spherically symmetric stationary states, we have

�3 = 2

3
�, � :=

∫

|y|2|ψ |2 dy. (9.25)

Then (9.24) becomes the Langevin formula (cf. Sect. 14.6)

χm = − e2�

6mc2
. (9.26)

For spherically non-symmetric states, this formula also holds in the mean, because
of the random orientation of atoms with respect to direction of the magnetic field
(if the field is small).
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9.2.3 Paramagnetism

The moment m′ is different from zero even in the absence of a magnetic field,

m′ = m�
e

2cm

∫
(y × eϕ)3e3

|y| sin θ

∣
∣ψ(t,y)

∣
∣2

dy

= m�e3
e

2cm

∫
∣
∣ψ(t,y)

∣
∣2

dy = e

2cm
m�e3, (9.27)

by (9.23). Hence, m′ should describe the paramagnetism of an atom for m > 0.
However, its mathematical expectation is zero, due to the random orientation of an
atom, because the probabilities of the values m and −m are identical for B = 0.
On the other hand, the probabilities are not identical, if the magnetic field does not
vanish. The corresponding statistical theory was developed by Langevin (see [7]).



Chapter 10
Electron Spin and Pauli Equation

Abstract The concept of the electron spin was developed empirically as a specific
component of the angular momentum. It was suggested by many experimental facts
and theoretical problems: the anomalous Zeeman splitting of spectra, the Einstein–
de Haas and Stern–Gerlach experiments, as well as by some open questions in the
Bohr theory of periodic table.

The electron spin was introduced in 1925 by Goudsmit and Uhlenbeck to ex-
plain the double splitting of spectral lines in the Stern–Gerlach experiments. This
concept appeared to be a realization of the mysterious two-valued degree of freedom
introduced by Pauli in 1924 to fix the Bohr theory of the periodic system.

Pauli introduced a new term into the Schrödinger equation, corresponding to the
interaction of the spin with magnetic field. This Pauli equation was further com-
pleted by the Russell–Saunders spin-orbital coupling. The completed equation im-
plies the Stern–Gerlach double splitting, and the Landé formula for the gyromag-
netic ratio, as obtained in the ‘old quantum theory’. This Landé formula perfectly
explains the Einstein–de Haas experiments and the anomalous Zeeman effect.

In 1927, Sommerfeld applied this spin concept to clarify some open questions in
the Drude theory of metals.

10.1 Concept of Electron Spin

The concept of spin was suggested by the anomalous Zeeman effect, the Einstein–
de Haas experiment, Bohr’s theory of periodic table, and the Stern–Gerlach experi-
ment. This concept allowed to clarify some questions in the Drude theory of metals.

10.1.1 The Anomalous Zeeman Effect

In 1895, Zeeman observed that, in an external magnetic field, most of the spectral
lines split into different number of lines: two, five, etc., see [20]. This anomalous
Zeeman effect contradicts the Schrödinger theory, which is known to predict only
the ‘normal’ Zeeman splitting into three lines (9.14). This contradiction suggests the
existence of an additional magnetic moment responsible for the anomalous splitting.
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10.1.2 The Einstein–de Haas Experiment

In 1915, Einstein considered an iron bar positioned vertically in the Earth’s grav-
itational field; the bar was attached to a vertical string allowing rotation about its
axis. The bar was magnetized by a vertical external weak magnetic field. The field
orients the elementary Ampère molecular currents, so that their magnetic moments
increase the total magnetic field. Therefore, the corresponding elementary angular
momenta are also oriented in the same direction, and the sum of the microscopic
angular momenta increases. On the other hand, the total angular momentum of the
bar (macroscopic+microscopic) is conserved by the axial symmetry. Hence, the bar,
as a whole, must also change its macroscopic angular momentum.

Einstein and de Haas have measured the changes in the magnetic moment and
in the macroscopic angular momentum of the bar to study their ratio. The ratio is
predicted to be e

2mc
according to the classical theory and the Schrödinger theory

as well. However, this value contradicts the experimental observations (see [20]
and [171, Vol. I]), and suggests the existence of an additional magnetic moment of
atoms, which is responsible for the anomalous ratio.

The Classical Theory

In detail, the total angular momentum and the total magnetic moment of all electrons
of the bar are given by

L :=
∑

mxk × vk, m := 1

2c

∑
exk × vk, (10.1)

where xk and vk are the electron positions and velocities. Therefore,

m = e

2mc
L. (10.2)

Initially, the magnetization of the bar is negligible, since the magnetic moments of
its atoms cancel out, due to their random orientations. The external magnetic field
reorients orbits of the atomic electrons increasing magnitude of the bar magnetiza-
tion according to the Ampère’s conjecture.

By (10.2), the magnitude of the total orbital angular momentum of the electrons
in the bar also increases. On the other hand, the total angular momentum of the
bar is conserved by the axial symmetry. Therefore, the bar acquires a macroscopic
rotation with opposite angular momentum Lb = −L.

The magnitudes of Lb
3 and m3 can be measured experimentally: Lb

3 by the tor-
sion vibration of the string, and m3, by the residual magnetism. The experiment was
performed by Einstein and de Haas in 1915. However, the result was very discour-
aging:

m3 = g
e

2mc
L3 (10.3)

with the Landé factor g ≈ 2, which contradicts (10.2).
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The Schrödinger Quantum Theory

Relation (10.2) also holds in the Schrödinger theory. Indeed, (9.16) and (9.17) imply
that

m = 1

2c

∫

y × e

m
[−i�∇]ψ(t,y) · ψ(t,y) dy

= e

2mc

∫

[−i�y × ∇]ψ(t,y) · ψ(t,y) dy = e

2mc
L. (10.4)

In particular, for the stationary state (9.18), we have the magnetization (cf. (9.27))

m3 = e

2mc
m�, (10.5)

while the corresponding energy equals const + m�ωL, according to (9.10). A week
external magnetic field causes transitions to the stationary states with lower val-
ues of the energy; this corresponds to greater values of m, since ωL < 0. Therefore,
magnetization (9.27) increases with transitions. This mechanism substitutes the Am-
père’s conjecture on reorientation of atomic orbits in the quantum approach, and in
particular, explains the magnetization of metallic needles in the Earth’s magnetic
field.

10.1.3 The Stern–Gerlach Experiment

In 1922, Stern and Gerlach sent a beam of silver atoms through a strongly inhomo-
geneous magnetic field. Later, similar experiments were performed with hydrogen
atoms. The atoms are in the ground state (8.30), which is non-degenerate, according
to the Schrödinger equation (9.7). The term L̂3ψ(t,x) in equation vanishes, by the
spherical symmetry of the ground state. Hence, the ground state also satisfies equa-
tion (9.7) with B �= 0. However, Stern and Gerlach observed splitting of a beam into
two components. This contradicts the identity of all atoms in the ground state, and
suggests the following conclusions:

(i) For B = 0, the eigenspace of lowest energy has dimension at least two.
(ii) For B �= 0, the eigenspace splits in two distinct eigenspaces.

This suggests the existence of an additional magnetic moment of the electron, which
does not vanish for the ground state.

10.1.4 Borh’s Theory of Periodic Table

In 1920–1924, Bohr put forward the theory of the Mendeleev periodic table in the
framework of the ‘old quantum mechanics’. However, the corresponding periods
were found to be two-times shorter than those required in chemistry.
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In 1924, Pauli explained the needed doubling of the periods by presence of a
new two-valued degree of freedom, which should be combined to known quantum
numbers in accordance with the Exclusion Principle.

10.1.5 The Spin Conjecture

To explain the Stern–Gerlach experiments, Goudsmit and Uhlenbeck introduced in
1925 the new conjecture, resulting from analysis of the Einstein–de Haas and Stern–
Gerlach experiments and the Pauli two-valued degree of freedom [95]:

The electron has the intrinsic spin momentum with values ±�/2 and the magnetic moment
with magnitude |e|�/2mc.

Here the term ‘intrinsic’ means that the spin angular momentum is not related to
an orbital rotation of a particle (in contrast to the angular momentum), and the spin
magnetic moment is not related to the convection current.

Let us comment on the motivations behind this conjecture.

I. One may expect a suitable modification H̃ for the Schrödinger operator H and
Ĵ = (Ĵ1, Ĵ2, Ĵ3) for the angular momentum operator L̂. The operators H̃ and Ĵ
should commute, because of the spherical symmetry of the hydrogen atom; the
commutation relations for Ĵ1, Ĵ2, Ĵ3 should be similar to (6.39). Therefore, the
two-dimensional eigenspace of lowest energy for H̃ with B = 0 should be also
an eigenspace for Ĵ2 with an eigenvalue �

2J (J + 1), where J = 0, 1/2, 1, . . .

according to Proposition 6.12.
II. The dimension of the eigenspace is 2J + 1. Hence, the Stern–Gerlach double

splitting suggests J = 1
2 . Respectively, the extremal values for each component

of the spin momentum should be ±�

2 , by the last formula of (6.43).
III. The value for magnetic moment was chosen to provide the Landé factor g = 2

suggested by the Einstein–de Haas observations (10.3).

10.1.6 The Sommerfeld Theory of Metals

In 1927, Sommerfeld extended the Pauli Exclusion Principle to the electron gas
in metals. This extension is highly nontrivial: Pauli suggested the principle for the
microscopic system of N ∼ 102 electrons in an atom, while Sommerfeld extended
the principle to a macroscopic system of electrons in a metal with N ∼ 1023. This
extension had clarified open questions on the specific heat and conductivity in the
Drude theory of metals [175]. This great success confirmed the concept of spin and
the Pauli Exclusion Principle.
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10.2 The Pauli Equation

As we have seen in previous section, the Schrödinger theory is incapable of ex-
plaining the anomalous Zeeman effect and the Einstein–de Haas and Stern–Gerlach
experiments. In 1927, Pauli introduced an additional term into the Schrödinger equa-
tion, which corresponds to energy of the spin angular momentum, as suggested by
Goudsmit and Uhlenbeck. The Pauli equation explains the Stern–Gerlach experi-
ment, but it cannot explain the anomalous Zeeman effect and the Einstein–de Haas
experiment.

10.2.1 The Additional Magnetic Moment

From (10.4) it follows that the last term in (9.7) can be written as follows:

− e

2mc
BL̂ψ(t,x) = −Bm̂ψ(t,x); (10.6)

here m̂ is the quantum observable, corresponding to the magnetic moment. This
corresponds to the fact that −Bm̂ should correspond to the energy of the magnetic
moment m̂ in the magnetic field B. The Goudsmit–Uhlenbeck conjecture means
that the additional magnetic moment corresponds to the additional spin angular
momentum ŝ of the electron involving the Landé factor 2; i.e.,

m̂ = 2
e

2mc
ŝ. (10.7)

Finally, equation (9.7) should be modified as

i�∂tψ(t,x) = − 1

2m
�

2�ψ(t,x)+ eφ
(|x|)ψ(t,x)− e

2mc
B[L̂ + 2ŝ]ψ(t,x). (10.8)

10.2.2 The Spin Momentum

We still should identify the spin angular momentum ŝ. First, let us analyze the intro-
duction of the electron orbital angular momentum L̂ for the spherically symmetric
scalar potential φ(|x|):

i�∂tψ(t,x) = Hψ(t,x) := − 1

2m
�

2�ψ(t,x) + eφ
(|x|)ψ(t,x),

x ∈ R
3. (10.9)

The orbital angular momentum is a conserved quantity, which corresponds to the
invariance of Lagrangian (4.7) with respect to the regular representation of the
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rotation group SO(3). This representation acts on the phase space E := L2(R3) by
Rgψ(x) := ψ(g−1x) for x ∈ R

3, where g ∈ SO(3) and ψ ∈ E . The proof of this
conservation relies on the commutation [H, L̂k] = 0. An alternative proof follows
from the Noether theorem.

This analysis suggests that the spin momentum should correspond to another ac-
tion of the rotation group, which is different from the regular representation. To
construct this spinor representation, we denote its generators by hk . Then, simi-
larly to (6.39), we necessarily have

[h1,h2] = ih3, [h2,h3] = ih1, [h3,h1] = ih2. (10.10)

The double splitting of the ground state in the Stern–Gerlach experiment suggests
that the dimension of the unperturbed ‘ground eigenspace’ must be two. There-
fore, the action of the group SO(3) in the unperturbed ground eigenspace is a two-
dimensional representation Sg . Such an irreducible two-dimensional representation

is given by Proposition 6.12: it corresponds to generators hk := 1

2
σk , where σk are

the Pauli matrices (see (6.49))

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i

i 0

)

, σ3 =
(

1 0
0 −1

)

. (10.11)

Exercise 10.1 Verify the commutation relations (10.10) for generators hk = 1
2σk .

Exercise 10.2 Verify the identities

σ 2
1 = σ 2

2 = σ 2
3 = 1. (10.12)

10.2.3 Uniform Magnetic Field

Further, we set ŝk = �hk , similarly to L̂k = �Hk . Then the spin angular momenta

sk = 〈ψ, ŝkψ〉, k = 1, 2, 3 (10.13)

are conserved quantities, provided that the modified Schrödinger operator com-
mutes with hk . The simplest way to make the ground eigenspace two-dimensional is
to define the modified phase space as the tensor product E⊗ := E ⊗C

2, and consider
the tensor product of the regular representation Rg in E and the spinor representa-
tion Sg in C

2. By definition of the tensor product, all generators Hk commute with
all generators hj , hence all L̂k commute with all ŝj .

With these new treatment of the wave function and the spin operators ŝ, (10.8)
becomes the Pauli equation,
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i�∂t�(t,x) = P�(t,x)

:= − 1

2m
�

2��(t,x) + eφ
(|x|)�(t,x)

− e

2mc
B[L̂ + 2ŝ]�(t,x), (10.14)

where �(t,x) = (ψ1(t,x),ψ2(t,x)) ∈ E⊗ = E ⊗C
2, ŝ = −�

2 σ .

Definition 10.3

(i) For the Pauli Equation, the total angular momentum is defined as

Ĵ = L̂ + ŝ. (10.15)

(ii) The total magnetic moment is

m̂ = e

2mc
[L̂ + 2ŝ]. (10.16)

For B = (0,0,B), equation (10.14) reads as follows:

i�∂t�(t,x) = P�(t,x)

= − 1

2m
�

2��(t,x) + eφ
(|x|)�(t,x)

− eB

2mc
[L̂3 + 2ŝ3]�(t,x). (10.17)

Remark 10.4 This so-defined operator P with B = (0,0,B) commutes with L̂2 :=
L̂2

1 + L̂2
2 + L̂2

3, L̂3, ŝ2 := ŝ2
1 + ŝ2

2 + ŝ2
3, ŝ3 and Ĵ2 := Ĵ2

1 + Ĵ2
2 + Ĵ2

3, Ĵ3. Therefore, the
corresponding mean values L2, L3, s2 = 3/4, s3 and J2, J3 = L3 +s3, are conserved.

10.2.4 General Maxwell Field

A natural extension of the Pauli equation for general external Maxwell field reads
[
i�∂t − eφ(t,x)

]
�(t,x)

= 1

2m

[

−i�∇ − e

c
A(t,x)

]2

�(t,x) − e

mc
B(t,x)ŝ(t,x)�(t,x). (10.18)

It corresponds to the Lagrangian density (cf. (4.7))

LP (x,�,∇�) = [
i�∇0 − eφ(x)

]
� · � − 1

2m

∣
∣
∣
∣

[

−i�∇ − e

c
A(x)

]

�

∣
∣
∣
∣

2

− e

mc

[
B(x)ŝ�

] · �, (10.19)
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where B(x) = curl A(x) and ‘·’ stands for the inner product on C
2 ≡ R

4. This sug-
gests the following Lagrangian density for the coupled Maxwell–Pauli equations
(cf. (4.18))

LMP = [
i�∇0 − eφ(x)

]
� · � − 1

2m

∣
∣
∣
∣

[

−i�∇ − e

c
A(x)

]

�

∣
∣
∣
∣

2

− e

mc

[
B(x)ŝ�

] · � − 1

16π
FαβFαβ, (10.20)

where Fμν := ∂μAν − ∂νAμ and Fμν := ∂μAν − ∂νAμ. The corresponding Euler–
Lagrange equations are the coupled Maxwell–Pauli equations (cf. (4.19))

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
i�∂t − eφ(t,x)

]
�(t,x) = 1

2m
[−i�∇ − e

c
A(t,x)]2�(t,x)

− e

mc
B(t,x)ŝ�(t,x),

1

4π
∇αFαβ(t,x) =

(

ρ,
j
c

)

,

(10.21)

where

ρ := e
∣
∣�(t,x)

∣
∣2

,

j
c

:= e

mc

[

−i�∇ − e

c
A(t,x)

]

�(t,x) · �(t,x) + e

mc
curl

([
ŝ�(t,x)

] · �(t,x)
)
.

(10.22)

10.2.5 The Stern–Gerlach Double Splitting

It is easy to construct quantum stationary states corresponding to the Pauli equation
(10.17) for the hydrogen atom. Namely, we introduce the vector-functions

�+
nml =

(
ψnml

0

)

,

�−
nml =

(
0

ψnml

)

, n = 1,2,3, . . . , l ≤ n − 1, m = −l, . . . , l,

(10.23)

where ψlmn are given by (6.35). They are eigenfunctions of the operator P corre-
sponding to the energies

E±
mn := −2π�R/n2 + m�ωL ± �ωL. (10.24)

In particular, the Schrödinger ground state ψ001 splits into two stationary states �±
001

with distinct energies E±
01 := −2π�R ± �ωL and distinct spin magnetic moments

± e�
2mc

. This explains the double splitting of the beam in the Stern–Gerlach experi-
ment.
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Remark 10.5 In the classical interpretation, the splitting term ±�ωL of (10.24)
means that the ‘projection of the spin magnetic moment’ to the axis Ox3 is ± e

2mc
.

The magnitude of the projection is attained ‘instantly’ with the magnetic field, which
contradicts the classical concept (assuming nonzero atomic moment of inertia). In
the quantum context, the instant reaction is not surprising, since it should be inter-
preted just as the (instant) bifurcation of quantum stationary states.

10.3 The Anomalous Zeeman Effect

Formula (10.24) shows that the Pauli equation is still incapable of explaining the
anomalous Zeeman effect. Indeed, the selection rules m �→ m, m± 1, give the split-
ting ω0 �→ ω0, ω0 ± ωL of an unperturbed spectral line ω0, as in the Schrödinger
theory. Hence, the splitting just gives the normal Zeeman triplet (9.14), as before.

This situation is related to the fact that the Pauli equation (10.14) does not take
into account the interaction between the orbital and spin angular momenta. The in-
teraction was suggested by the great success of the phenomenological Landé vector
model in the ‘old quantum mechanics’ (see Sect. 14.7). Namely, the (classical) or-
bital angular momentum is related to the orbital motion of the electron. This motion
results in the circular current, which generates the magnetic field acting on the spin
magnetic moment.

10.3.1 The Spin-Orbital Coupling

The interaction between orbital and spin angular momenta was introduced in 1926
by Thomas [180] and Frenkel [66]. This interaction appears as a correction to the
energy of a particle, which is due to the interaction of the spin with magnetic field
B∗(x∗), arising in moving frame of an electron. This magnetic field is expressed in
the electrostatic radial potential φ(|x|), by the Lorentz formulas (12.74): we have,
in the first order approximation in β = v/c,

B∗(x∗) = 1

c
E(x) × v = −1

c
∇φ

(|x|) × v = − 1

mc
φ′(|x|) x

|x| × p

= − 1

mc

φ′(|x|)
|x| L. (10.25)

The interaction of this magnetic field with the spin magnetic moment produces the

energy correction − e

mc
sB∗(x∗). Hence, this gives the correction

e

mc
ŝB∗(x∗)�(t,x) = e

m2c2

φ′(|x|)
|x| ŝL�(t,x)
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to the RHS of (10.14). However, this correction does not agree with experimental
observations, which suggest an additional factor 1/2. Thomas and Frenkel argued
for the additional factor using a sophisticated analysis of the Larmor precession
of the spin (see the details in [93]). The corresponding rigorous argument, pro-
viding the Thomas factor 1/2 (and the Landé factor g = 2 as well), is automati-
cally provided by the relativistic Dirac theory (see Sect. 11.7). Finally, the modified
Eq. (10.14) reads

i�∂t�(t,x) = P̃�(t,x)

:= − 1

2m
�

2��(t,x) + eφ
(|x|)�(t,x)

+ e

2m2c2

φ′(|x|)
|x| ŝL̂�(t,x) − e

2mc
B[L̂ + 2ŝ]�(t,x). (10.26)

The correction term with ŝL̂ received the name the Russell–Saunders spin-orbital
coupling after their papers (1925), which developed the Landé vector model for
many-electron atoms.

We will see below that stationary energies for equation (10.26) depend on the or-
bital quantum number l, in contrast to (10.24). This dependence perfectly describes
the anomalous Zeeman effect, as well as the Einstein–de Haas experiment.

For B = (0,0,B), we can write (10.26) in the form

i�∂t�(t,x) = P̃0�(t,x) − Bm̂3�(t,x), (10.27)

where P̃0 corresponds to B = 0. We will apply the perturbation theory to calculate
the spectrum of equation (10.27) for small |B|.

We shall also calculate the Landé factor for quantum stationary states of equa-
tion (10.27). The factor explains the Einstein–de Haas experiment and the anoma-
lous Zeeman effect. The magnetic moment for a state � is defined as

m = 〈�, m̂�〉. (10.28)

Finally, the Landé factor g for a state � is defined by

m3

J3
= g

e

2mc
; (10.29)

this factor (or rather its maximum value) was measured in the Einstein–de Haas
experiment.

10.3.2 Quantum Numbers

The momenta L̂3 and ŝ3 do not commute with ŝL̂ (and hence with P̃). Thus, we
cannot use the classification of type (10.23) for the stationary states by ‘quantum
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numbers’ n, l,m,±1, which correspond to eigenvalues of operators P̃, L̂2, L̂3, ŝ3.
We should choose another quantum numbers.

Exercise 10.6 Verify that the operators Pm, L̂2, Ĵ2, Ĵ3 commute with each other.
Hints:

(i) (10.26) implies that

P̃ = − 1

2m
�

2� + eφ
(|x|) + e

2m2c2

φ′(|x|)
|x| ŝL̂ − e

2mc
B[L̂3 + 2ŝ3]. (10.30)

(ii) L̂ŝ commutes with L̂2, since each L̂n and ŝn commutes with L̂2.
(iii) Ĵ2 commutes with L̂2, since Ĵ2 = L̂2 + 2ŝL̂ + ŝ2.
(iv) ŝL̂ commutes with Ĵ2 and Ĵ3, since 2ŝL̂ = Ĵ2 − L̂2 − ŝ2.

Therefore, the operators P̃, L̂2, Ĵ2, Ĵ3 in space E⊗ = E ⊗ C
2 can be simultane-

ously diagonalized. Let us recall that possible eigenvalues of these operators are,
respectively, E,�2L(L + 1),�2J (J + 1) and �M , where J = 0, 1

2 ,1, 3
2 , . . . and

M = −J, . . . , J (see Sect. 6.2).

10.3.3 The Landé Formula

Let |E,L,J,M〉 be the common eigenvector, corresponding to the eigenvalues E,
�

2L(L + 1), �2J (J + 1), �M of the operators P, L̂2, Ĵ2, Ĵ3, respectively.

Theorem 10.7 The Landé factor g = g(�), corresponding to the stationary state
� = |E,L,J,M〉, is given by

g = 3

2
+ 3/4 − L(L + 1)

2J (J + 1)
. (10.31)

Proof We have Ĵ2� = �
2J (J + 1)� and Ĵ3� = �M� . Therefore � is an element

eM of the corresponding canonical basis e−J , . . . , eJ , as constructed in Proposi-
tion 6.12, and so all basis vectors eM ′ are obtained from eM by application of the
operators Ĵ± := Ĵ1 ± iĴ2.

For a linear operator A in E⊗, let AM,M ′ = 〈AeM,eM ′ 〉 be its matrix element.
Then (10.15) and (10.16) imply that

m3 = m̂M,M
3 = e

2mc

(
ĴM,M

3 + ŝM,M
3

) = e

2mc

(
�M + ŝM,M

3

)
. (10.32)
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It remains to find the matrix element ŝM,M
3 and calculate g from definition (10.29).

Let us collect the commutators
⎧
⎪⎪⎨

⎪⎪⎩

[Ĵ1, ŝ1] = 0, [Ĵ1, ŝ2] = i�ŝ3, [Ĵ1, ŝ3] = −i�ŝ2,

[Ĵ2, ŝ2] = 0, [Ĵ2, ŝ3] = i�ŝ1, [Ĵ2, ŝ1] = −i�ŝ3,

[Ĵ3, ŝ3] = 0, [Ĵ3, ŝ1] = i�ŝ2, [Ĵ3, ŝ2] = −i�ŝ1,

(10.33)

where the second and the third line follow from the first one by cyclic permutations.
Let us use (10.33) to calculate the commutators of Ĵ± with ŝ± := ŝ1 ± i ŝ2. We have

[Ĵ−, ŝ+] = −2�ŝ3, [Ĵ+, ŝ+] = 0. (10.34)

The first formula implies the identity

ĴM,M+1
− ŝM+1,M

+ − ŝM,M−1
+ ĴM−1,M

− = −2�ŝM,M
3 , (10.35)

because all matrix elements ĴM ′,M ′′
− with M ′′ �= M ′ + 1 vanish by (6.48). The

nonzero matrix elements of Ĵ± are known from (6.48) and (6.44):

ĴM+1,M
+ = �

√
(J − M)(J + M + 1), ĴM−1,M

− = �

√
(J + M)(J − M + 1).

(10.36)
On the other hand, ŝ+ can be obtained from the second identity (10.34): taking
matrix element (·)M+1,M−1 of both sides, we get

ĴM+1,M
+ ŝM,M−1

+ − ŝM+1,M
+ ĴM,M−1

+ = 0. (10.37)

Then (10.36) implies that

ŝM+1,M
+√

(J − M)(J + M + 1)
= ŝM,M−1

+√
(J − M + 1)(J + M)

=: a. (10.38)

Substituting this into (10.35) and using (10.36) for the matrix elements of Ĵ−, it
follows that

ŝM,M
3 = aM. (10.39)

It remains to calculate a. We start with the identity

Ĵ2 = (L̂ + ŝ)2 = L̂2 + 2ŝL̂ + ŝ2 = L̂2 + 2ŝĴ − ŝ2. (10.40)

Hence

(ŝĴ)M,M = �
2 J (J + 1) − L(L + 1) + 3/4

2
, (10.41)

because ŝ2 = 3/4. On the other hand, the same matrix element can be expressed
from a different identity

2ŝĴ = ŝ+Ĵ− + ŝ−Ĵ+ + 2ŝ3Ĵ3, (10.42)
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which directly follows from the definitions of ŝ± and Ĵ± and from the commutations
[ŝk, Ĵk] = 0. Now

(ŝĴ)M,M = 1

2
ŝM,M−1
+ ĴM−1,M

− + 1

2
ŝM,M+1
− ĴM+1,M

+ + �M ŝM,M
3 . (10.43)

By (10.41), we have

�
2 J (J + 1) − L(L + 1) + 3/4

2

= 1

2
ŝM,M−1
+ ĴM−1,M

− + 1

2
ŝM,M+1
− ĴM+1,M

+ + �M ŝM,M
3 . (10.44)

At last, the matrix elements ŝM+1,M
+ and ŝM,M+1

− are complex conjugates. Therefore,
using (10.38), this establishes

ŝM+1,M
+ = a

√
(J − M)(J + M + 1) = ŝM,M+1

− , (10.45)

because the constant a is real by (10.39).
Finally, substituting (10.45), (10.39) and (10.36) into (10.44), gives an equation

for a, which implies that

a = �
J (J + 1) − L(L + 1) + 3/4

2J (J + 1)
. (10.46)

Now, from (10.39) and (10.32) we obtain

m3 = e

2mc
(�M + aM) = e

2mc
(1 + a/�)�M = e

2mc
(1 + a/�)J3. (10.47)

Substituting (10.46) for a, we get the ratio (10.29), where g coincides with
(10.31). �

Remark 10.8

(i) Our proof follows the calculations of [133].
(ii) Landé [128] was the first to obtain formula (10.31) using the phenomenological

vector model and the Bohr correspondence principle (see Sect. 14.7).

10.3.4 Applications of the Landé Formula

The Landé formula (10.31) implies the following fundamental results.
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The Einstein–de Haas Experiment

Formula (10.31) for the Landé factor in (10.29) is in excellent agreement with ex-
perimental observations of the ratio (10.29) in the Einstein–de Haas experiment (see
[12, 20, 34] and [171, Vol. I]). This agreement was one of the greatest successes of
quantum theory.

The Anomalous Zeeman Effect

Formula (10.31) allows one, inter alia, to explain the multiplet structure in the
anomalous Zeeman effect by splitting of the eigenvalues for (10.27) in the mag-
netic field (0,0,B) with small |B|. Namely, applying the perturbation theory (3.43),
we obtain the resulting correction to the frequency ω = E/� of the eigenstate
|E,L,J,M〉,

�ωL,J,M = −m̂M,M
3 B/� = −m3B/� = −g

e

2mc
MB = −gωLM (10.48)

accurate to order O(B2). Hence, the splitted spectral lines now become

ωjj ′ = ω0
jj ′ − ωL

[
g(j)M − g

(
j ′)M ′]

= ω0
jj ′ − ωLg(j)

[
M − M ′] − ωL

[
g(j) − g

(
j ′)]M ′, (10.49)

where j = (E,L,J,M), j ′ = (E′,L′, J ′,M ′) and ω0
jj ′ is the ‘unperturbed’ spectral

line corresponding to B = 0.
Finally, we should take into account the selection rules

J → J ′ = J ± 1, M → M ′ = M,M ± 1

which follow similarity to (7.60) by following two arguments:

(i) The contribution of the last term (10.22) into the second integral of (7.26) de-
cays like |x|−2.

(ii) The contribution of the first term depends only on the angular factors of the
eigenfunctions according to (7.62), while the eigenfunctions have the same
structure (7.59) with new radial functions Rnl(r),Rn′l′(r) ∈C

2.

Now, in contrast to (9.14), the magnitude of splitting depends on all quantum
numbers L,J,M,L′, J ′,M ′, by (10.31). As a result, the splitted spectral lines do
not reduce to the normal triplet (9.14).



Chapter 11
Relativistic Quantum Mechanics

Abstract In 1928, Dirac introduced the new wave equation, which was a relativistic
covariant generalization of the Schrödinger equation. In this case, the wave function
has 4 complex components and the coefficients of the equation are 4 × 4 Dirac
matrices.

Dirac calculated the first two approximations of this equation in the limit as
c → ∞. The approximation up to order 1/c coincides with the Pauli equation, while
the second approximation displays, up to order 1/c2, the Russell–Sounders spin-
orbital coupling, as well as some other effects.

The resulting equation admits the Lagrangian and Hamiltonian formulations,
which provide the corresponding conserved observables and the continuity equa-
tion for charge and current. The angular momentum automatically includes the spin
component with the factor 1/2, as predicted by Goudsmit and Uhlenbeck.

A few months later, Gordon and Darwin independently solved the Dirac spec-
tral problem for Hydrogen. Now the energies depend on the angular momentum,
in contrast to the nonrelativistic case. This dependence perfectly explains the ‘fine
structure’ of the spectrum.

The energy for the Dirac equation is not bounded from above and from below,
suggesting instability of solutions. This problem was solved in quantum electrody-
namics by imposing anticommutation relations for the electron field.

11.1 The Free Dirac Equation

It is also worth extending the Special Relativity of Einstein to the quantum me-
chanical theory. Containing the first order derivatives in time and the second order
derivatives in x, the Schrödinger equation is obviously non-invariant with respect to
the Lorentz group. One possible approach is to employ the Klein–Gordon equation

�
2

c2
∂2
t ψ(x) = �

2�ψ(x) − m2c2ψ(x), x ∈ R
4, (11.1)

which is Lorentz-invariant, like the wave equation (12.26). However, this approach
results in negative energies, a thing which is physically unsatisfactory. Namely, the
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Klein–Gordon equation follows from the relativistic energy-momentum relation

E2

c2
= p2 + m2c2 (11.2)

by the canonical quantization (3.26). In the Fourier transform,

ψ̂(t,p) :=
∫

ei
px
� ψ(t,x) dx,

the Klein–Gordon equation becomes the ordinary differential equation with the pa-
rameter p ∈R

3,

�
2∂2

0 ψ̂
(
x0,p

) = −p2ψ̂
(
x0,p

) − m2c2ψ̂
(
x0,p

)
, x0 ∈R, (11.3)

where x0 := ct and ∂0 := ∂/∂x0 . Hence, the solutions are linear combinations

of ei E
�

t , where E/c = ±√
p2 + m2c2 as in (11.2). The solutions with E/c =

−√
p2 + m2c2 seem to correspond to negative energies (unbounded from below),

and hence the physical interpretation of the Klein–Gordon equation requires an ad-
ditional argument.

This is why Dirac introduced in [45] the relativistic invariant equation of the first
order in time, like the Schrödinger equation, to avoid having negative roots. The
relativistic invariance also requires the first order in space; i.e.,

γ αPαψ(x) = mcψ(x), x ∈R
4 (11.4)

with P := (i�∂0, i�∇). The corresponding energy-momentum relation can be writ-
ten as follows

γ (p) = mc, p ∈R
4; (11.5)

here γ (p) is the linear form γ αpα and p := (E/c,−p), according to (3.26).
The last requirement is the ‘correspondence principle’: equation (11.4) should

imply the Klein–Gordon equation (11.1). Namely, applying operator γ αPα to both
sides of (11.4), we get

[
γ αPα

]2
ψ(x) = m2c2ψ(x), x ∈R

4. (11.6)

Hence, the correspondence principle is equivalent to algebraic identity

[
γ (p)

]2 = p2
0 − p2, p = (p0,p) ∈R

4 (11.7)

since (11.2) can be written as p2
0 − p2 = m2c2. Dirac’s extra idea was the choice

of the coefficients γ α in a matrix algebra since scalar coefficients do not exist. The
existence of scalar coefficients would mean that the polynomial p2

0 −p2 is reducible
which is not true.

Exercise 11.1 Verify that (11.7) is impossible with scalar coefficients γ α .
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Lemma 11.2 In 2 × 2 block form, the matrices

γ (p) =
(

p0 σ · p
−σ · p −p0

)

(11.8)

satisfy identity (11.7), where σ := (σ1, σ2, σ3) are the Pauli spin matrices.

Proof Direct multiplication of 2 × 2 block matrices shows that

γ 2(p) =
(

p2
0 − (σ · p)2 0

0 p2
0 − (σ · p)2

)

(11.9)

It remains to invoke the identity (σ · p)2 = p2. �

Now we can calculate matrices γ α = γ (eα), where e0 = (1,0,0,0), etc. From
(11.8), we get

γ 0 =
(

1 0
0 −1

)

, γ k =
(

0 σk

−σk 0

)

, k = 1,2,3. (11.10)

Lemma 11.3 Matrices γ α satisfy the relations

(
γ 0)2 = 1,

(
γ j

)2 = −1, j = 1,2,3; γ αγ β + γ βγ α = 0, α �= β.

(11.11)

Proof Rewriting (11.7) in the form

γ 2(p) = g(p) := p2
0 − p2, p ∈R

4, (11.12)

we get

γ (p)γ (q) + γ (q)γ (p) = 2g(p,q), (11.13)

where g(p,q) = p0q0 − pq is the corresponding symmetric bilinear form. In par-
ticular, for p = eα and q = eβ , we obtain

γ αγ β + γ βγ α = 2g(eα, eβ),

which implies (11.11). �

Matrices (11.10) are known as the ordinary, or standard representation (solution)
of Eqs. (11.11). It is easily checked that the matrices are not unique solutions: for
example, we can replace γ α by −γ α for certain indexes α. Below we shall prove
the Pauli Theorem: the matrices γ α are unique up to a change of the orthonormal
basis eα .

Let us rewrite the Dirac equation (11.4) in the ‘Schrödinger form’. First, it is
equivalent to

i�γ 0∂tψ(x) = c
(
mc − i�γ k∂k

)
ψ(x). (11.14)
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Second, multiplying by γ 0, we obtain

i�∂tψ(x) = γ 0(mc2 − ic�γ k∂k

)
ψ(x). (11.15)

We set

αk := γ 0γ k =
(

0 σk

σk 0

)

, k = 1,2,3; β := γ 0 =
(

1 0
0 −1

)

. (11.16)

Then (11.15) reads

i�∂tψ(x) = H 0
Dψ(x) := (

mc2β − ic�αk∂k

)
ψ(x), (11.17)

where the operator H 0
D is called the free Dirac Hamiltonian. The matrices β and αk

are Hermitian, and hence operator H 0
D is symmetric in the complex Hilbert space

L2(R3,C4).

11.2 Pauli’s Theorem

The relativistic covariance of the Dirac equation should rely on a complete descrip-
tion of all possible solutions to the commutation relations (11.11). The following
Pauli’s theorem states that all solutions of (11.11) are equivalent to standard Dirac
matrices (11.10).

Theorem 11.4 Let γ α , α = 0, . . . ,3 be operators on a finite-dimensional complex
vector space V of dimension dimV ≤ 4. Suppose that they satisfy relations (11.11).
Then dimV = 4, and the operators γ α , for a suitable choice of a basis, can be
exhibited in the matrix form (11.10).

Proof Step (i) The key idea of the proof is the following simple characterization of
basis vectors. Namely, for the standard Dirac matrices (11.10), the matrix γ 1γ 2 is
diagonal, and hence it commutes with γ 0, which is also diagonal: γ 0 and γ 1γ 2 are
block diagonal matrices:

γ 0 =
(

1 0
0 −1

)

, γ 1γ 2 =
(−iσ3 0

0 −iσ3

)

. (11.18)

Therefore, the basis vectors e0, . . . , e3 are common eigenvectors of the matrices γ 0

and γ 1γ 2 with eigenvalues 1 and −i, 1 and i, −1 and −i, −1 and i, respectively.

Step (ii) Now we apply this observation to general matrices γ α of Theorem 11.4.
Using (11.11), it follows from the anticommutation relations that the matrices γ 0

and γ 1γ 2 commute with each other:

γ 0γ 1γ 2 = γ 1γ 2γ 0. (11.19)



11.2 Pauli’s Theorem 169

Hence there exists at least one common eigenvector v1 for both of those (since V is
a complex vector space!):

γ 0v1 = αv1 and γ 1γ 2v1 = βv1, (11.20)

where α and β are suitable complex numbers.

Step (iii) We have α2 = 1, since (γ 0)2 = 1, and similarly, β2 = −1, since (γ 1γ 2)2 =
−1. Hence, α = ±1 and β = ±i. Let us check that all four combinations of the signs
are possible for suitable eigenvectors v1. Namely,

γ 0γ 3v1 = −γ 3γ 0v1 = −αγ 3v1

and

γ 1γ 2γ 3v1 = γ 3γ 1γ 2v1 = βγ 3v1.

Hence, the vector v3 := γ 3v1 is also a common eigenvector with eigenvalues −α

and β . Similarly, v2 := −γ 3γ 1v1 and v4 := −γ 1v1 are, respectively, common
eigenvectors of γ 0 and γ 1γ 2 with eigenvalues α, −β and −α, −β , respectively.
Since all four possible signs are disposed of, we may permute the four vectors to
ensure that α = 1 and β = −i.

Step (iv) The vectors v1, v2, v3, v4 are linearly independent, and hence generate V .
In the basis v1, v2, v3, v4, the operators γ 0 and γ 1γ 2 are block diagonal matrices of
form (11.18). Moreover, in this basis, the operators γ 1 and γ 3 have the form

γ 1 =
(

0 σ1
−σ1 0

)

, γ 3 =
(

0 σ3
−σ3 0

)

, (11.21)

which coincide with (11.10). Hence, γ 2 = −γ 1(γ 1γ 2) also has the desired form. �

Exercise 11.5 Verify that v1, v2, v3, v4 are linearly independent. Hint: γ 0 = 1 in
the span (v1, v2), and γ 0 = −1, in the span (v3, v4), while γ 1γ 2 = −i in the span
(v1, v3), and γ 1γ 2 = i, in the span (v2, v4).

Exercise 11.6 Check (11.21).

Corollary 11.7 For any Lorentz transformation 	 (see Sect. 12.3.1), there exists
a nondegenerate matrix 
(	) ∈ GL(4,C) such that

γ (	p) = 
(	)γ (p)
−1(	), p ∈R
4. (11.22)

Proof From (11.12) we have

γ 2(	p) = g(	p) = g(p), p ∈ R
4, (11.23)
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since 	 is a Lorentz transformation. Hence, the matrices γ (	eα) satisfy relations
(11.11), and also γ α := γ (eα). Therefore, by Pauli’s theorem,

γ (	eα) = 
(	)γ (eα)
−1(	), α = 0, . . . ,3, (11.24)

where 
(	) is an invertible operator in R
4 (which maps the vector eα into vα ,

α = 0, . . . ,3). Then (11.22) follows by linearity. �

11.3 Lorentz Covariance

The Einstein postulate (12.24) of Special Relativity extends to the quantum mechan-
ics as follows:

The laws of quantum mechanics take identical form

in all Inertial Frames. (11.25)

The next theorem ensures the existence of the corresponding transformation for
wave functions, leaving the Dirac equation invariant. Thus the Dirac equation pro-
vides relativistic invariant quantum theory.

We consider two frames of reference related by the Lorentz transformation: x′ =
	x.

Theorem 11.8 Let ψ(x) be a solution of the Dirac equation (11.4). Suppose that

ψ ′(x′) := 

(
	#)ψ(x), x ∈ R

4, (11.26)

where x′ = 	x, 	# := (	t )−1, and 	t is the transposed matrix 	. Then the function
ψ ′(x′) is also a solution of the Dirac equation.

Proof In the Fourier transform, the Dirac equation (11.4) reads

ψ̂(p) :=
∫

e
ipx
� ψ(x)dx, p ∈ R

4 (11.27)

where px := pαxα . Then (11.4) implies

γ (p)ψ̂(p) = mcψ̂(p), p ∈ R
4. (11.28)

The Fourier transform translates (11.26) into

ψ̂ ′(p′) = 

(
	#)ψ̂(p), p ∈ R

4, (11.29)

where p = 	tp′.
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Exercise 11.9 Verify (11.29). Hint: We formally have

ψ̂ ′(p′) :=
∫

e
ip′x′
� ψ ′(x′)dx′ =

∫

e
ip′	x
� 


(
	#)ψ(x)|det	|dx

= 

(
	#)

∫

e
i	t p′x

� ψ(x)dx = 

(
	#)ψ̂(p), (11.30)

because |det	| = 1 for the Lorentz transformation 	.

Now we express (11.28) in terms of the wave function ψ̂ ′(p′):

γ (p)
−1(	#)ψ̂ ′(p′) = mc
−1(	#)ψ̂ ′(p′), p′ ∈R
4. (11.31)

This identity is equivalent to the Dirac equation (11.28) if and only if



(
	#)γ (p)
−1(	#) = γ

(
p′), p′ ∈R

4. (11.32)

Finally, this equation is equivalent to (11.22) with 	# instead of 	, since p′ = 	#p.
It remains to note that (11.22) with 	# holds, inasmuch as 	# also belongs to the
Lorentz group. �

This theorem implies that transform (11.26) leaves the Dirac equation un-
changed. In other words, the Dirac equation is covariant with respect to the Lorentz
group.

Exercise 11.10 Verify that 	# is a Lorentz transformation for any 	 ∈ L.

Formal calculations in (11.30) are justified by properties of the Fourier transform
of tempered distributions. This framework is necessary, because of the charge con-
servation law (see (11.56) below), since it implies that the integrals (11.30) never
converge, for nonzero solutions.

11.4 The Angular Momentum

The conserved orbital momentum for the Schrödinger equation is defined by (3.82)
and (3.83): L = L(ψ) := 〈ψ, L̂ψ〉; here L̂ = −i�x × ∇. For solutions of the Dirac
equation, the orbital momentum is generally not conserved, because the operator L̂
does not commute with the Dirac operator H 0

D . Hence, for the Dirac equation, the
definition of the angular momentum requires a modification.

Definition 11.11 For the Dirac equation, the angular momentum is defined by J =
J(ψ) = 〈ψ, Ĵψ〉, where

Ĵ := L̂ + 1

2
��, � :=

(
σ 0
0 σ

)

. (11.33)
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Theorem 11.12 The angular momentum J is conserved for solutions of the Dirac
equation,

J
(
ψ(t, ·)) = const, t ∈R. (11.34)

Proof Differentiating, we obtain similarly to the Heisenberg equation (3.93),

d

dt
J
(
ψ(t)

) = 〈
ψ̇(t), Ĵψ(t)

〉 + 〈
ψ(t), Ĵψ̇(t)

〉

= −
〈
i

�
H 0

Dψ(t), Ĵψ(t)

〉

−
〈

ψ(t), Ĵ
i

�
H 0

Dψ(t)

〉

= − i

�

[〈
H 0

Dψ(t), Ĵψ(t)
〉 − 〈

ψ(t), ĴH 0
Dψ(t)

〉]

= − i

�

〈
ψ(t),

[
H 0

D, Ĵ
]
ψ(t)

〉
. (11.35)

It remains to verify the commutation
[
H 0

D, Ĵ
] = 0. (11.36)

First note that we already have the commutators [L̂k,pj ] = i�εkjlpl at our disposal,
where pj := i�∂j and εkjl is totally antisymmetric tensor. Therefore,

[
L̂k,H

0
D

] = −c�γ 0γ j [Lk,pj ] = −ic�γ 0γ j εkjlpl. (11.37)

This shows that H 0
D does not commute with the orbital angular momentum operators

L̂k , and hence the orbital momentum L is generally not conserved. It remains to
calculate commutators [�,H 0

D]. Note that

γ 0γ l =
(

1 0
0 −1

)(
0 σl

−σl 0

)

=
(

0 σl

σl 0

)

.

Hence,

[
�k,H

0
D

] = [
�k,mc2γ 0 − cγ 0γ lpl

] = −c

(
0 [σk, σl]

[σk, σl] 0

)

pl.

The commutation relations for the Pauli spin matrices allow us to reduce this to

−2icεklj

(
0 σj

σj 0

)

pl = −2icεklj γ
0γ jpl.

Multiplying by �/2 and adding (11.37), we get commutation (11.36) by antisym-
metry of εklj . �

This theorem justifies the Goudsmit–Uhlenbeck conjecture on electron spin as
an intrinsic property of dynamical equations. The term 1

2�� in (11.33) represents
an intrinsic spinor angular momentum of the relativistic electron.
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Moreover, we will see below that the coupling of the Dirac equation to the mag-
netic field provides the automatically correct Landé factor g = 2 for the spinor an-
gular momentum in a nonrelativistic approximation.

These facts were the great triumph of the Dirac theory, suggesting that the elec-
tron spin has a genuine relativistic nature.

11.5 Negative Energies

The Dirac equation (11.17) is a Hamiltonian system with the Hamilton functional

HHH0(ψ) := 〈
ψ(x),H 0

Dψ(x)
〉
, (11.38)

as analogous to the Schrödinger equation. It is conserved; i.e.,

HHH0(ψ(t, ·)) = const, t ∈ R, (11.39)

for solutions of (11.15).

Exercise 11.13 Verify (11.39). Hint: Differentiate (11.38) and use the Dirac equa-
tion (11.17) and the symmetry of the Dirac operator H 0

D .

Let us check that energy for the Dirac equation is not bounded from above and
from below. Namely, the quadratic form (11.38) is not positive definite. To see this
it is useful to split each Dirac spinor into a pair of two-component vectors

ψ(x) =
(

ψ+(x)

ψ−(x)

)

, (11.40)

where ψ+ := (
ψ1
ψ2

)
and ψ− := (

ψ3
ψ4

)
. Let us define the Fourier transform

ψ̂(p) =
∫

eipx/�ψ(x) dx, p ∈R
3. (11.41)

With application of the Plancherel identity the quadratic form (11.38) can be written

H0(ψ) = (2π)−3
〈

ψ̂(p), cγ 0
(

mc −σ · p
σ · p mc

)

ψ̂(p)

〉

= c(2π)−3
〈

ψ̂(p),

(
mc −σ · p

−σ · p −mc

)

ψ̂(p)

〉

= c(2π)−3[mc
〈
ψ̂+(p), ψ̂+(p)

〉 − 2
〈
ψ̂+(p), σ · pψ̂−(p)

〉

− mc
〈
ψ̂−(p), ψ̂−(p)

〉]
.
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In particular,

H0
(

ψ+(x)

0

)

= (2π)−3mc2
〈
ψ̂+(p), ψ̂+(p)

〉
,

H0
(

0
ψ−(x)

)

= −(2π)−3mc2
〈
ψ̂−(p), ψ̂−(p)

〉
.

(11.42)

The negative energy might lead to an instability of the Dirac dynamics due to a

possible transition of the solution of the states
( 0

ψ−(x)

)
, as a result of interaction via

the Maxwell field (see the next section). On the other hand, this instability has never
been proved.

Dirac suggested that the transition of all particles is forbidden by the Pauli Exclu-
sion Principle, because almost all states with negative energy were occupied long
time ago. On the other hand, by the Dirac theory, transitions for certain particles
are possible, and the ‘negative states’ can be interpreted as states with positive en-
ergy for antiparticles which are positrons (i.e., positively charged electrons) [13].
Positrons were discovered experimentally in cosmic rays by Anderson in 1932 (for
his discovery, Anderson received a half share of the 1936 Nobel Prize in physics).

The satisfactory solution of the problem of negative energies is provided by the
second quantization in Quantum Electrodynamics.

11.6 The Maxwell–Dirac Equations

Interaction of the Dirac field with an external Maxwell field is defined by analogy
with the Schrödinger equation, in order to keep the gauge invariance (4.25). We
obtain the corresponding Hamiltonian and Lagrangian formulations and the coupled
Dirac-Maxwell equations. Finally, we will obtain the charge conjugation, which
transform the Dirac equation for electrons with negative charge e < 0 into similar
equation for positrons with positive charge −e > 0.

11.6.1 The ‘Minimal Coupling’ to External Maxwell Field

The free Dirac equation (11.4) can be written as

γ (P )ψ(x) = mcψ(x), (11.43)

where the differential operator γ (P ) := γ αPα is called the Dirac operator and
Pα := i�∇α .

We recall the Schrödinger equation (3.32) with the Maxwell field:

[
i�∂t − eφ(t,x)

]
ψ(t,x) = 1

2m

[

−i�∇ − e

c
A(t,x)

]2

ψ(t,x). (11.44)
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In the notation with Pα and Aα = (φ,−A) (see (12.49)), we have

c

[

P0 − e

c
A0(t,x)

]

ψ(t,x) = 1

2m

3∑

k=1

[

Pk − e

c
Ak(t,x)

]2

ψ(t,x). (11.45)

This suggests the following generalization of the Dirac equation (11.43) for a rela-
tivistic electron in an external Maxwell field:

γ

(

P − e

c
A(x)

)

ψ(x) = mcψ(x), x ∈R
4. (11.46)

11.6.2 Gauge Transformation

We recall that the gauge transformation (see (12.16))

φ(t,x) �→ φ(t,x) + 1

c
χ̇(t,x), A(t,x) �→ A(t,x) − ∇χ(t,x), (11.47)

where χ(t,x) is an arbitrary real function, does not change the Maxwell fields cor-
responding to potentials the φ(t,x) and A(t,x). In our notation,

φ(x) �→ φ′(x) := φ(x) + 1
i�

P0χ(x),

Ak(x) �→ A′
k(x) := Ak(x) + 1

i�
Pkχ(x).

(11.48)

Theorem 11.14 Let ψ(x) be a solution of the Dirac equation (11.46) with po-
tentials A(x). Then ψ ′(x) := exp(

eχ(x)
i�c

)ψ(x) satisfies Eq. (11.46) with poten-
tials A′(x).

Proof This result follows by a direct calculation, because

P exp

(
eχ(x)

i�c

)

= exp

(
eχ(x)

i�c

)
ePχ(x)

i�c
. �

11.6.3 The Hamiltonian and Lagrangian Formalism

Similarly to (11.17), we can write (11.46) in the form

i�∂tψ(x) = [
HD(t)ψ

]
(x) :=

[

eA0(x) − cαk

[

i�∂k − e

c
Ak(x)

]

+ mc2β

]

ψ(x),

t = x0/c, (11.49)
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where the operator HD(t) is called the Dirac Hamiltonian. This operator is sym-
metric in the complex Hilbert space L2(R3,C4), as similar to the free Dirac Hamil-
tonian (11.17). Hence, (11.49) is the Hamilton equation with the Hamiltonian func-
tional

HHH
(
ψ(·), t) = 〈

ψ(x),HD(t)ψ(x)
〉
, ψ ∈ L2(

R
3,C4), (11.50)

where 〈·, ·〉 is the inner product on L2(R3,C4).
Let us find a Lagrangian density to rewrite (11.49) as the corresponding varia-

tional Euler–Lagrange equation of type (4.10). First, we write (11.49) as

LDψ(x) := i�∂tψ(x) − [
HD(t)ψ

]
(x) = 0, x ∈R

4, (11.51)

similarly to Eq. (3.32). The linear operator LD is symmetric in the complex Hilbert
space L2(R4,C4), and hence the corresponding operator LD in the real Hilbert
space L2(R4,R8) is also symmetric. Hence, we can apply the methods of Sect. 4.1.3
to determine a Lagrangian density for the Dirac equation. Namely, (11.49) is equiv-
alent to the variational equation (4.10), with action given by

S�(ψ) = 〈�,L�〉 =
∫

�

ψ(x)†LDψ(x)dx, (11.52)

where �(x) ∈ R
8 is the real form of the complex wave function ψ(x) ∈ C

4 and
ψ(x)† denotes the conjugate transpose of ψ(x). Hence, the corresponding La-
grangian density can be expressed in the complex field ψ(x) as follows:

LD(x,ψ,∇ψ)

:= Re
[
ψ†LDψ

]

= Re

[

ψ†
(

i�∂tψ − eA0(x)ψ + cαk

[

i�∂kψ − e

c
Ak(x)ψ

]

− mc2βψ

)]

= c Reψ†
[

αν

[

i�∂νψ − e

c
Aν(x)ψ

]

− mcβψ

]

= c Reψ

[

γ ν

[

i�∂νψ − e

c
Aν(x)ψ

]

− mcψ

]

, (11.53)

where α0 := I , and ψ := ψ†γ 0.

11.6.4 Charge and Current

The interaction term in the Lagrangian density (11.53) can be written in the form

−eψ†ανψAν = −eψγ νψAν = −J νAν, (11.54)



11.6 The Maxwell–Dirac Equations 177

as analogous to (12.56). This suggests the identification J ν = (ρ, j/c) where

ρ(x) = eψ†(x)ψ(x) = eψ(x)γ 0ψ(x),

jk(x) = ecψ†(x)αkψ(x) = ecψ(x)γ kψ(x)
(11.55)

which agrees with (12.59) and (13.99). Note that the charge density ρ(x) is non-
positive, because e < 0.

Lemma 11.15 For any solution ψ(x) of the Dirac equation (11.46), the four-
current density satisfies the continuity equation

ρ̇(t,x) + div j(t,x) = 0. (11.56)

Proof This identity follows from Corollary 13.26 and Lemma 13.28, because the
Lagrangian density (11.53) is invariant under phase rotations ψ �→ eisψ and since
it is gauge invariant (see Sect. 13.4.4). �

Exercise 11.16 Prove (11.56) by direct computation. Hints:

(i) Differentiating, we obtain �∂tρ = �e[(∂tψ)†ψ +ψ†(∂tψ)] = ie[(HD(t)ψ)†ψ −
ψ†(HD(t)ψ)].

(ii) Substitute (11.49) and use that potentials Aν are real, considering that the ma-
trices β and αk are Hermitian.

11.6.5 The Coupled Equations

The arguments of Sect. 4.2.1 suggest the following Lagrangian density LMD for the
coupled Maxwell–Dirac equations,

LMD(x,ψ,∇ψ,Aμ,∇Aμ)

= Re

[

cψ†αν

[

i�∂νψ − e

c
Aνψ

]

− mc2ψ†βψ

]

− 1

16π
FμνFμν, (11.57)

where Fμν := ∂μAν − ∂νAμ and Fμν := ∂μAν − ∂νAμ. The Lagrangian density
differs from (11.53) only in the last term, which depends on the derivatives ∇Aμ,
but is independent of the potentials Aμ. Hence, formulas (11.55) for the charge
and current densities remain true. As a result, the corresponding Euler–Lagrange
equations read as follows (cf. (4.19)):

⎧
⎨

⎩

i�∂tψ(x) =
[

eA0(x) − cαk

[

i�∂k − e

c
Ak(x)

]

+ mc2β

]

ψ(x),

∇μFμν(x) = 4πeψ†(x)ανψ(x), ν = 0, . . . ,3.

(11.58)
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System (11.58) describes the dynamics of a Dirac wave field ψ in its ‘own’ induced
Maxwell potentials Aν(x) generated by charges and currents of the wave field.

Now let us introduce the external potentials Aext
ν (x) of the Maxwell field gen-

erated by some external sources. The introduction is formalized by the Lagrangian
density

LMD = Re

[

cψ†αν

(

i�∂νψ − e

c

(
Aν(x) +Aext

ν (x)
)
ψ

)

− mc2ψ†βψ

]

− 1

16π
FμνFμν. (11.59)

The corresponding equations are as follows:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i�∂tψ(x) =
[

e
(
A0(x) +Aext

0 (x)
) − cαk

[

i�∂k − e

c

(
Ak(x) +Aext

k (x)
)
]

+ mc2β

]

ψ(x)

∇μFμν(x) = 4πeψ†(x)ανψ(x), α = 0, . . . ,3.

(11.60)

11.6.6 Gauge Transformation for Coupled Equations

The gauge transformation (11.48) can be completed by the corresponding transfor-
mation of the wave function:

∣
∣
∣
∣
∣
∣

φ(t,x) �→ φ(t,x) + 1

c
χ̇(t,x), A(t,x) �→ A(t,x) − ∇χ(t,x),

ψ(t,x) �→ e−i e
c�

χ(t,x)ψ(t,x)

(11.61)

for any real function χ(t,x). It is easy to check that the new functions are also
solution of Eqs. (11.58) or (11.60), provided that so are the old ones. Moreover,
transformations (11.61) preserve the electric charge and current densities in (11.58)
and (11.60).

11.6.7 Charged Antiparticles

There exists a one-to-one correspondence between the solutions of the Dirac equa-
tions with charges e and −e, respectively. Namely, consider the Dirac equation
(11.46) with −e instead of e:

γ

(

P + e

c
A(x)

)

ψ(x) = mcψ(x), x ∈R
4. (11.62)
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This equation describes the positron wave field, corresponding to particles with pos-
itive charge −e = |e|. We will find an isomorphism between the solutions of (11.46)
and (11.62).

Definition 11.17 The charge conjugation transforms each wave function ψ(x)

with values in C
4 into ψc(x) := γ 2ψ(x).

Theorem 11.18 Let ψ satisfy the Dirac equation γ (P − e
c
A(x))ψ(x) = mcψ(x)

with mass m and charge e. Then ψc satisfies the Dirac equation (11.62) with mass
m and charge −e.

Proof Step (i) We first check that, for any vector p ∈ C
4,

γ 2γ (p)γ 2 = γ (p). (11.63)

In other words, all the matrices γ α are real, except γ 2, which is purely imaginary.
Hence

γ α =
{

γ α, α �= 2,

−γ α, α = 2.
(11.64)

On the other hand, anticommutation relations for the Dirac matrices imply

γ 2γ jγ 2 =
{

γ α, α �= 2,

−γ α, α = 2.
(11.65)

This gives (11.63).

Step (ii) Conjugating the Dirac equation for ψ , we obtain

γ 2γ

(

P − e

c
A(x)

)

γ 2ψ = mcψ. (11.66)

Here e
c
A(x) is real, while P includes the imaginary factor i. Hence, multiplying

(11.66) by γ 2, this establishes

γ

(

P + e

c
A(x)

)

ψc = mcψc, (11.67)

as claimed. �

11.7 Nonrelativistic Approximations

In the limit as c → ∞, the Lorentz transformations (12.25) become the Galilean
ones, (12.23), and the retarded potentials become the Coulomb ones. It would be
advantageous to obtain in this limit the nonrelativistic Pauli equation as a suitable
approximation to the relativistic Dirac theory.
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Dirac introduced Eq. (11.49) for the Hydrogen atom in his seminal paper [45] and
obtained the first two approximations in the limit as c → ∞: up to terms 1/c and
up to 1/c2. He discovered that, in the first approximation, stationary Dirac equation
reduces to the corresponding stationary Pauli equation, justifying the correct (max-
imum) Landé factor g = 2 for the spin. Moreover, in the next approximation, up to
terms of the order 1/c2, there is a manifestation of the Russell–Saunders spin-orbital
coupling with the correct Thomas factor 1/2, and also of some other effects. These
discoveries are regarded as a great triumph of the Dirac relativistic theory.

First, we rewrite the Dirac equation (11.49) similarly to (11.44):

(i�∂t − eφ)ψ =
(

mc2β + cα ·
[

P − e

c
A

])

ψ, (11.68)

where α := (α1, α2, α3) and P := −i�∇. Substituting for α matrices (11.16) and
considering the splitting of the wave function (11.40), the Dirac equation reduces to
coupled equations

⎧
⎪⎪⎨

⎪⎪⎩

(i�∂t − eφ)ψ+ = cσ ·
(

P − e

c
A

)

ψ− + mc2ψ+,

(i�∂t − eφ)ψ− = cσ ·
(

P − e

c
A

)

ψ+ − mc2ψ−.

(11.69)

We consider the stationary states ψ(x) = ψ(x)e−iEt/� in the case of static external
potentials φ(x) and A(x). Our goal is to find the asymptotic expansion of the energy
levels E in the nonrelativistic limit as c → ∞. We consider these levels close to the
free electron energy at rest. More precisely, we assume that

E ≈ mc2,
∣
∣eφ(x)

∣
∣  mc2. (11.70)

Substituting ψ(x) = ψ(x)e−iEt/� into (11.69), we obtain the corresponding station-
ary eigenvalue problem

⎧
⎪⎪⎨

⎪⎪⎩

(
E − eφ − mc2

)
ψ+(x) = cσ ·

(

P − e

c
A

)

ψ−(x),

(
E − eφ + mc2

)
ψ−(x) = cσ ·

(

P − e

c
A

)

ψ+(x).

(11.71)

In the last equation, the factor E − eφ + mc2 is large, by our assumption (11.70).
Hence, the component ψ+ is ‘large’ with respect to ψ− (the opposite relation holds
under the assumption E ≈ −mc2). Let us eliminate the small component ψ− from
the first equation by using the second one:

(
E − eφ − mc2)ψ+(x) = σ ·

(

P − e

c
A

)[
c2

E − eφ + mc2
σ ·

(

P − e

c
A

)]

ψ+(x).

(11.72)
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Setting E0 = E − mc2, we expand the difference E0 in powers of 1/c. First, we
expand the factor

c2

E − eφ + mc2
= c2

E0 − eφ + 2mc2
= 1

2m

2mc2

2mc2 + E0 − eφ

= 1

2m

[

1 − E0 − eφ

2mc2
+ · · ·

]

. (11.73)

11.7.1 The Order 1/c

Keeping only the leading term in (11.73), we obtain from (11.72) that

(E0 − eφ)ψ+ = 1

2m

(

σ ·
(

P − e

c
A

))2

ψ+, (11.74)

neglecting terms of order 1/c2. Let us evaluate the RHS.

Lemma 11.19 The identity

(

σ ·
(

P − e

c
A

))2

=
(

P − e

c
A

)2

+ e

c
�σ · B (11.75)

holds, where B := curl A is the magnetic field.

Proof The standard identity for the Pauli matrices reads

(

σ

(

P − e

c
A

))2

=
(

P − e

c
A

)

·
(

P − e

c
A

)

+ iσ ·
((

P − e

c
A

)

×
(

P − e

c
A

))

.

(11.76)

Note that its proof does not depend on commutation of components of the vector P−
e
c
A. On the other hand, the vector product of P − e

c
A by itself does not vanish, since

the components do not commute. For example, let us calculate the first component:
(

P2 − e

c
A2

)(

P3 − e

c
A3

)

−
(

P3 − e

c
A3

)(

P2 − e

c
A2

)

=
[

P2 − e

c
A2,P3 − e

c
A3

]

. (11.77)

The commutator obviously reduces to

−e

c

([P2,A3]+ [A2,P3]
) = i

e�

c
(∂2A3 − ∂3A2) = i

e�

c
(curlA)1 = i

e�

c
B1. (11.78)

�
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Now (11.74) becomes

E0ψ+ =
[

1

2m

(

P − e

c
A

)2

− e�

2mc
σ · B + eφ

]

ψ+, (11.79)

which is the stationary eigenvalue problem corresponding to the Pauli equa-
tion (10.18).

11.7.2 The Order 1/c2

Equation (11.79) neglects the terms of order 1/c2 in (11.72). Let us calculate the
next approximation of order 1/c2 for the case of zero magnetic potential, when
A = 0.

In this case, (11.79) becomes the electrostatic problem with an external static
potential φ(x) (for example, Coulombic potential of the hydrogen kernel). Note that
all terms of order 1/c vanish for the zero magnetic potential. We will show that E0,
up to the order 1/c2, is the eigenvalue of the problem

E0ϕ(x) =
[

P2

2m
+ eφ(x)

]

ϕ(x)

+
[

− P4

8m3c2
− e�2

8m2c2
∇ · E(x) − e�σ · (E × P)

4m2c2

]

ϕ(x). (11.80)

Comparing this with (10.26) shows that the spin-orbital coupling appears exactly in
the Russell–Saunders form, as conjectured by Frenkel and Thomas, because

−e�σ · (E × P)

4m2c2
= e

2m2c2

φ′(|x|)
|x| L̂ŝ

for the radial potential φ(|x|). This agreement with the Russell–Saunders coupling
was also a great triumph of the Dirac theory.

The remaining terms are discussed in [12, Sect. 12], [92, Sect. 2.2.4], [158,
Sect. 3-3], and [159, 160]; here we note that the term with ∇ · E is known as the
Darwin term responsible for the zitterbewegung, and term with P4 is known to give
the relativistic correction to the electron mass.

Proof of (11.80) Let us keep the second term on the right hand side of (11.73).
Then (11.72) (with A = 0) gives that

(E0 − eφ)ψ+ = 1

2m
σ · P

[

1 − E0 − eφ

2mc2

]

σ · Pψ+. (11.81)



11.7 Nonrelativistic Approximations 183

Collecting the terms involving E0, we obtain

E0

[

1 + P2

4m2c2

]

ψ+ = 1

2m
σ · P

[

1 + eφ

2mc2

]

σ · Pψ+ + eφψ+

= 1

2m

[

1 + eφ

2mc2

]

P2ψ+ + e

4m2c2
σ · Pφ σ · Pψ+ + eφψ+

= 1

2m

[

1 + eφ

2mc2

]

P2ψ+ + ie�

4m2c2
σ · Eσ · Pψ+ + eφψ+,

(11.82)

because σ · Pφ = −i�σ · E = i�σ · E, which is a consequence of the identities P =
−i�∇ and E = −∇φ. By (11.70), we may neglect the term with eφ

2mc2 . Therefore,
applying identity of type (11.76), it follows that

E0

[

1 + P2

4m2c2

]

ψ+ = 1

2m
P2ψ+ + ie�

4m2c2

[
E · Pψ+ + iσ · (E × Pψ+)

]

+ eφψ+. (11.83)

This equation has the form E0Bψ+ = Hψ+, where B := 1+P2/(4m2c2) is positive
selfadjoint operator in the Hilbert space L2(R3) ⊗ C

2. Hence, E0ϕ = H̃ϕ, where
ϕ := B1/2ψ+, and H̃ := B−1/2HB−1/2. Writing B−1/2 = 1 − P2/(8m2c2) + · · · ,
we approximate (11.83) by

E0ϕ = [
1 − P2/

(
8m2c2)]

{
1

2m

[

1 + eφ

2mc2

]

P2

+ ie�

4m2c2

[
E · P + iσ · (E × P)

] + eφ

}

× [
1 − P2/

(
8m2c2)]ϕ.

Neglecting the terms of higher orders (1/c4, . . . ), this gives

E0ϕ = H̃1ϕ

:=
[

P2

2m
+ eφ(x)

]

ϕ +
{

− P4

8m3c2
+ e�

4m2c2

[
�E · ∇ − σ · (E × P)

]
}

ϕ.

(11.84)

Finally, we should symmetrize the operator on the right. Namely, operator (11.82)
is selfadjoint, while the term E · P in (11.83) is not. All other terms in (11.83) are
selfadjoint: in particular, the term σ(E × P) is selfadjoint, because curl E(x) = 0.
The symmetry breaking arose because we neglected the term with eφ

2mc2 . Restor-

ing the term with eφ

2mc2 in (11.83), we can neglect its contribution to (11.84) again
relying on (11.70). As a result, we obtain the symmetrized version involving the
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operator [H̃1 + H̃ ∗
1 ]/2 instead of H̃1. This version coincides with (11.80), because

[E · ∇ + (E · ∇)∗]/2 = −∇ · E/2.

Remark 11.20 Both Hamiltonians (11.80) and (11.84) generate the identical
quadratic forms. Hence, they provide the identical corrections ∼ 1/c2 to energy
levels of unperturbed Pauli operator. This follows from the known formulas of per-
turbation theory (3.43).

11.8 Spinor Spherical Harmonics

Dirac introduced equation (11.68) for the Hydrogen atom in [45] and obtained two
nonrelativistic approximations from previous section. However, he did not solve the
corresponding spectral problem. A few months later, Gordon [74] and Darwin [39]
solved independently the spectral problem for the hydrogen.

The solution relies on the separation of variables and the Sommerfeld factoriza-
tion method in solving the corresponding radial equation; this method was applied
by Schrödinger in the nonrelativistic case (see Sect. 6.1.4). For the Dirac equation,
the reduction to the radial problem is more involved, requiring an application of the
Clebsch–Gordan method to develop the Lie algebras arguments from Lecture 6.2.

11.8.1 Spherical Symmetry

For the hydrogen atom, the corresponding four-potential of the nucleus is A =
(φ,0,0,0) with φ = −e/|x|. Then the corresponding Dirac equation (11.68) reads

i�∂tψ = HDψ := (
mc2β + cαP + eφ

)
ψ. (11.85)

We are going to determine all quantum stationary states that are solutions of the
form ψ(x)e−iEt/� with finite charge (11.55):

∫
∣
∣ψ(x)

∣
∣2

dx < ∞. (11.86)

Substituting ψ = ψ(x)e−iEt/� into the Dirac equation (11.85), we arrive at the cor-
responding stationary eigenvalue problem

Eψ = (
mc2β + cαP + eφ

)
ψ, (11.87)

which can be reduced to the coupled equations of type (11.71),

{(
E − mc2 − eφ

)
ψ+ = cσPψ−,

(
E + mc2 − eφ

)
ψ− = cσPψ+.

(11.88)
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The key argument for the solution is the spherical symmetry of the problem.
Namely, the nucleus potential φ(x) is spherically symmetric. Hence, the angular
momentum (11.33) is conserved, as in the free case, because

[Ĵ,HD] = 0. (11.89)

Indeed, this follows from the commutation [Ĵ, φ] = 0, since HD = H 0
D + eφ; the

commutation [Ĵ,H 0
D] = 0 is proved in (11.36).

11.8.2 Separation of Variables

It is worth pointing out that we have solved the spectral problem for the nonrel-
ativistic Schrödinger equation by employing the general strategy of separation of
variables (Sects. 6.1 and 6.2). Now we are going to develop this strategy for rela-
tivistic problem (11.87) in the similar way. In this case, the role of the orbital angu-
lar momentum L is played by the total angular momentum J, since it is conserved.
Hence, the strategy now should be modified accordingly:

I. First, (11.89) implies that the operator Ĵ2 := Ĵ2
1 + Ĵ2

2 + Ĵ2
3 commutes with HD :

[
Ĵ2,HD

] = 0. (11.90)

Second, HD also commutes with each Ĵn. Hence, each eigenspace of the Dirac
operator HD is invariant with respect to each operator Ĵn and Ĵ2. Moreover, the
operator Ĵ2 also commutes with each operator Ĵn; for example,

[
Ĵ2, Ĵ3

] = 0. (11.91)

Exercise 11.21 Verify (11.91). Hint: First, prove the commutation relations
[Ĵk, Ĵj ] = −i�εkjl Ĵl , where εkjl is the totally antisymmetric tensor. The relations
follow from the similar ones for the orbital and spinor angular momenta, and from
the commutation of momenta.

Hence, one may expect that there is a basis of common eigenfunctions for the
operators HD , Ĵ3 and Ĵ2. First, it would be helpful to simultaneously diagonalize Ĵ2

and Ĵ3.

II. Condition (11.86) means that we consider the eigenvalue problem (11.87) in
the Hilbert space E := L2(R3) ⊗ C

4. On the other hand, both operators Ĵ3 and Ĵ2

act only on spinor variables and angular variables in spherical coordinates. Hence,
the operators also act in the Hilbert space E1 := L2(S) ⊗ C

4, where S denotes the
two-dimensional sphere |x| = 1.
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We split the space E1 into the sum E1 = E+
1 ⊕ E−

1 , corresponding to the two-

component representation (11.40), where E±
1 = L2(S) ⊗C

2. Both operators Ĵ3 and

Ĵ2 are of the block form

Ĵ3 =
(

L̂3 + ŝ3 0
0 L̂3 + ŝ3

)

, Ĵ2 =
(

(L̂ + ŝ)2 0
0 (L̂ + ŝ)2

)

(11.92)

where ŝ := 1
2�σ . Hence, the action of the operators is identical in each summand E±

1 .
In next section, we will prove the following result.

Proposition 11.22

(i) In the space E±
1 , there exists an orthonormal basis of spinor spherical harmon-

ics Sjk(θ, ϕ), which are common eigenfunctions of Ĵ3 and Ĵ2:

Ĵ3Sjk(θ, ϕ) = �kSjk(θ, ϕ),

Ĵ2Sjk(θ, ϕ) = �
2j (j + 1)Sjk(θ, ϕ), k = −j,−j + 1, . . . , j,

(11.93)

where j = 1/2,3/2, . . . .
(ii) The space of solutions of (11.93) is two-dimensional for any fixed j, k, except

for the one-dimensional space corresponding to j = 1/2, k = −1/2.

III. This proposition suggests that we could construct eigenfunctions of the Dirac
operator HD by separating variables; namely, in the form

ψE =
(

ψ+
ψ−

)

=
(

R++(r)S+
jk(θ, ϕ) + R−+(r)S−

jk(θ, ϕ)

R+−(r)S+
jk(θ, ϕ) + R−−(r)S−

jk(θ, ϕ)

)

, (11.94)

where S+
jk , S−

jk are some solutions of (11.93).

IV. Each solution of the spectral problem (11.87) is a sum (or a series) of solutions
of particular form (11.94) since S±

jk form the basis in E1. The construction of solu-

tions (11.94) relies on the investigation of the commutation relations for Ĵk , L̂k and
ŝk , k = 1,2,3; i.e., on the corresponding Lie algebra. The radial functions will be
obtained by solving the corresponding radial equations via the factorization method
as in Sect. 6.1.4.

11.8.3 Clebsch–Gordan’s Theorem

We prove Proposition 11.22. In (11.93), the operators Ĵ = L̂ + ŝ act on the spaces
E±

1 = L2(S) ⊗C
2. The operator L̂ acts on L2(S), while ŝ acts on the second factor

C
2. As a result, L̂ commutes with ŝ. Hence, Ĵ2 = L̂2 + 2L̂ŝ + 3/4 is the selfadjoint
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second order elliptic operator on the sphere S. Therefore, there exists an orthonor-
mal basis of eigenfunctions for Ĵ2 in L2(S) ⊗C

2.
Moreover, Ĵ is the generator of the tensor product of the regular and spinor rep-

resentations of the rotation group SO(3). Hence, the eigenvalues of Ĵ2 are given by
Proposition 6.12. It remains to check that only halfinteger spins J are possible with
the multiplicity two for J ≥ 3/2 and one for J = 1/2.

First, we know the spectral decomposition (6.38) of the operator L̂2 in the space
L2(S):

L2(S) =
∞⊕

l=0

L(l). (11.95)

Here L(l) are finite-dimensional orthogonal eigenspaces of L̂2 corresponding to the
eigenvalues �2l(l + 1), l = 0,1, . . . . Second, we will use the structure of the spaces
L(l), as established in the proof of Proposition 6.12 and Lemma 6.18. Namely,
in L(l), there is an orthonormal basis e−l , . . . , el , where em = Ĥm+l+ e−l (here Ĥ+ :=
Ĥ1 + iĤ2 with Ĥk := �

−1L̂k) and (cf. (11.93)),

L̂3elm = �melm, L̂2elm = �
2l(l + 1)elm, m = −l, . . . , l. (11.96)

We recall that elm = Ym
l , where Ym

l are the spherical harmonics (6.12). Similarly,
in C

2, there is an orthonormal basis f−1/2, f1/2, where f1/2 = ŝ+f−1/2, and

ŝ3fs = �sfs, ŝ2fs = �
2s(s + 1)fs, s = −1/2, 1/2. (11.97)

Here f−1/2 = ( 0
1

)
and f1/2 = ( 1

0

)
. Therefore, we have

L2(S) ⊗C
2 = ⊕∞

l=0F(l), F(l) := L(l) ⊗C
2, (11.98)

and the tensor products elm ⊗ fs with m = −l, . . . , l and s = −1/2,1/2 form an
orthonormal basis in F(l). Relations (11.96), (11.97) imply that

Ĵ3elm ⊗ fs = �(m + s)elm ⊗ fs. (11.99)

So, the multiplicity of the eigenvalue is two if m+ s ≥ 3/2, and only the halfinteger
spins J are possible. However, the vectors elm ⊗ fs generally are not the eigenvec-
tors for Ĵ2. It turns out that Ĵ2 has two different eigenvalues l ± 1/2 in F(l) if l ≥ 1.
This follows from Clebsch–Gordan’s theorem [71] known as the law of ‘addition of
angular momenta’. In our particular case this theorem sounds as follows.

Lemma 11.23 For any l = 0,1, . . .

(i) Each space F(l) is an orthogonal sum of two eigenspaces F±(l) of the opera-
tor Ĵ2,

F(l) =F+(l) ⊕F−(l), Ĵ2|F±(l) = �
2j±(j± + 1), (11.100)

where j± = l ± 1/2 and dimF±(l) = 2j± + 1;
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(ii) For l ≥ 1, in space F±(l) there exists a basis of functions S±
k , k = −j±,−j± +

1, . . . , j±, satisfying (11.93) with j = j±;
(iii) For l = 0, we have F−(0) = 0, and also, for F+(0) there exists a basis {S+

k :
k = −1/2,1/2}, satisfying (11.93) with j = 1/2.

Proof Let Ĵ+ := Ĵ1 + iĴ2. Then we can choose F±(l) with the basis

S±
k = S±

j±,k := Ĵk+j±+ S±
−j± , k = −j±,−j± + 1, . . . , j±, (11.101)

where S±
−j± is the eigenvector of Ĵ3 with eigenvalue −�j±.

Obviously, S+
−j+ = e−l ⊗ f−1/2 is unique up to a factor, and so it remains to

construct the vector S−
−j− . This vector should be orthogonal to F+(l) and should lie

in the subspace F ⊂ F(l), which consists of all eigenvectors of Ĵ3 with eigenvalue
−�j− in the space F(l). We should choose a nonzero vector S−

−j− ∈ F , which is
orthogonal to F+(l). We separately consider two cases: l ≥ 1 and l = 0.

The case l ≥ 1. In this case, the eigenspace F is the two-dimensional linear span
of e−l ⊗f1/2 and e−l+1 ⊗f−1/2. The intersection F+(l)∩F is the one-dimensional
linear span of Ĵ+S+

−j+ . Hence, S−
−j− ∈ F is determined uniquely (up to a factor) as

the vector orthogonal to Ĵ+S+
−j+ .

The case l = 0. Now the space F is the one-dimensional span of e0 ⊗ f1/2, since
the vector e1 does not exist in this case. Hence, F−(0) = 0. �

Proof of Proposition 11.22 (i) Functions (11.101) are solutions of (11.93) with j =
j±; they form an orthogonal basis for E1(l). (ii) From (11.100) and (11.98) it follows
that every solution of (11.93) is a linear combination of S+

j,k and S−
j,k , provided

(j, k) �= (1/2,−1/2). Otherwise, any solution is proportional to S+
1/2,−1/2, because

the function S−
1/2,−1/2 does not exist. �

It is worth noting that F±(l) are the eigenspaces also for σL; namely, we have
the following result.

Lemma 11.24 σ L̂ takes value �l resp. −�(l + 1) on space F+(l) resp. F−(l).

Proof This follows from the second equation of (11.93) with j = j± by identity
(see (10.12))

�σ L̂ =
[

L̂ + 1

2
�σ

]2

− L̂2 − 1

4
�

2σ 2 = Ĵ2 − L̂2 − 3

4
�

2, (11.102)

since j±(j± + 1) − l(l + 1) − 3/4 equals either l or −(l + 1). �
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11.9 The Hydrogen Spectrum

The final step should consist in solving the coupled equations (11.88) for the com-
ponents ψ+, ψ− in form (11.94), eliminating one of the components. The corre-
sponding radial equation gives the energy levels by the method of Sect. 6.1.4.

Now, in contrast to nonrelativistic case, the energy levels depend on the angular
momentum. This dependence perfectly explains the ‘fine structure’ of the spectrum.

11.9.1 The Radial Equation

We will obtain the radial equations by the method of [81], substituting (11.94)
into (11.88). First, we need the expression of the operator σP of (11.88) in terms of
the orbital angular momentum and related operators.

Lemma 11.25 The following relations hold:

σP = |x|−2σx(xP + iσL), (11.103)

σx(σL + �) + (σL + �)σx = 0. (11.104)

Proof From the formulas for products of spin matrices we obtain

(σx)(σP) = xP + iσ (x × P) = xP + iσL. (11.105)

Multiplying this equation on the left by σx we arrive at (11.103). Now equation
(11.104) follows on multiplying the commutation relations [Lj ,xk] = i�εjklxl by
σjσk = 2δjk − σkσj and simplifying. �

Substituting (11.103) into (11.88) and using (11.104), this gives
⎧
⎪⎨

⎪⎩

(
E − mc2 − eφ

)
ψ+ = c|x|−2σx(xP + iσL)ψ−,

= c|x|−2
(
xP − i(σL + �)

)
σxψ−,

(
E + mc2 − eφ

)
ψ− = c|x|−2σx(xP + iσL)ψ+.

(11.106)

The last equation can be rewritten as
(
E + mc2 − eφ

)
σxψ− = c(xP + iσL)ψ+. (11.107)

Together with the first equation of (11.106), this suggests the notation �− := σx
|x| ψ−

and �+ := ψ+. Rewriting equations (11.106) in spherical coordinates, we get

⎧
⎪⎪⎨

⎪⎪⎩

(
E − mc2 − eφ

)
�+ = c

(

−i�
d

dr
− ir−1(σL + 2�)

)

�−,

(
E + mc2 − eφ

)
�− = c

(

−i�
d

dr
+ ir−1σL

)

�+.

(11.108)
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Let us construct all nonzero solutions of (11.88) in the form (11.94) for each fixed
parameters j and k. For example, we can assume that

R++(r) �≡ 0. (11.109)

We denote by π+
jk the orthogonal projection in L2(S)⊗C

2 onto the linear span of

S+
jk , and by �+

jk , the corresponding projection in L2(R3)⊗C
2. Then �+

jk commutes

with σ L̂, by Lemma 11.24. Hence, applying �+
jk to both sides of (11.108), and using

the fact that φ is spherically symmetric, it follows that

⎧
⎪⎪⎨

⎪⎪⎩

(
E − mc2 − eφ

)
�+

jk�+ = c

(

−i�
d

dr
− ir−1(�l + 2�)

)

�+
jk�−,

(
E + mc2 − eφ

)
�+

jk�− = c

(

−i�
d

dr
+ ir−1

�l

)

�+
jk�+,

(11.110)

by Lemma 11.24. Here

l = j − 1

2
, (11.111)

since S+
jk is defined by (11.101) with j+ = j , and moreover, j+ := l + 1/2. Further,

�+
jk�+ = R1(r)S+

jk(θ, ϕ), �+
jk�− = R2(r)S+

jk(θ, ϕ), (11.112)

where, by (11.109),

R1(r) ≡ R++(r) �≡ 0. (11.113)

Setting R(r) := (R1(r)R2(r)) and substituting (11.112) into (11.110), it is found
that (11.110) is equivalent to the following radial equation for the vector func-
tion R(r)

(
E − eφ − mc2σ3

)
R(r) = −ic�

[(
d

dr
+ 1

r

)

+ (l + 1)

r
σ3

]

σ1R(r), r > 0,

(11.114)
where σk are the Pauli matrices (10.11). Finally,

(
E − eφ − mc2σ3

)
R(r) = −ic�

[(
d

dr
+ 1

r

)

σ1 + i
(l + 1)

r
σ2

]

R(r), r > 0,

(11.115)
because σ3σ1 = iσ2.
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11.9.2 Spectrum

As in the nonrelativistic case, we substitute R(r) = e−κrP (r) with unknown param-
eter κ to be chosen later. Then equation (11.114) reduces to

(
E − eφ − mc2σ3

)
P(r) = −ic�

[(
d

dr
+ 1

r
− κ

)

σ1 + i
(l + 1)

r
σ2

]

P(r),

r > 0 (11.116)

or equivalently,

(
E − mc2σ3 − ic�κσ1

)
P(r) = −ic�

[(
d

dr
+ 1

r

)

σ1 + i
(l + 1)

r
σ2 + ieφ

c�

]

P(r),

r > 0. (11.117)

Consider the matrix

M := i

c�

(
E − mc2σ3 − ic�κσ1

)
, (11.118)

and rewrite the Coulombic potential as eφ = −c�α/r , where

α := e2

c�
≈ 1

137

is the dimensionless Sommerfeld fine structure constant (4.29).

Further, we suggest that P(r) will be a ‘polynomial’

P(r) = rδ

n∑

0

Pkr
k, (11.119)

where we can assume that P0 �= 0 for a nontrivial solution. We should choose κ > 0
and δ > −3/2 to ensure condition (11.86). To justify (11.119), we shall try to find
a solution in the more general form

P(r) = rδ
∞∑

0

Pkr
k. (11.120)

Substituting this into (11.117), we get the equation

∞∑

0

rk+δMPk =
∞∑

0

[
(k + δ + 1)σ1 + i(l + 1)σ2 + iα

]
rk+δ−1Pk. (11.121)

This gives the recurrence equation

MPk−1 = [
(k + δ + 1)σ1 + i(l + 1)σ2 + iα

]
rk+δ−1Pk, k = 0,1, . . . . (11.122)
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Taking k = 0, we obtain
[
(δ + 1)σ1 + i(l + 1)σ2 + iα

]
P0 = 0, (11.123)

which implies that

det
[
(δ + 1)σ1 + i(l + 1)σ2 + iα

] = 0, (11.124)

because P0 �= 0. This is equivalent to

(δ + 1)2 = (l + 1)2 − α2. (11.125)

Hence |δ + 1| ≈ l + 1, because α is small. Therefore, we should choose the positive
root for δ + 1, since, for the negative root, we get −δ ≈ l + 2 ≥ 2, while δ > −3/2.

Finally, examining the recurrence equation (11.122) it is found by condi-
tion (11.86) that the series (11.120) should terminate, as in the case of the
Schrödinger equation. Hence, we arrive at (11.119) with an n < ∞.

Further, we may assume that Pn �= 0 for a nontrivial solution. Therefore, (11.117)
implies that MPn = 0, and hence detM = 0:

det
(
E − mc2σ3 − ic�κσ1

) = 0. (11.126)

This is equivalent to

c2
�

2κ2 = m2c4 − E2 (11.127)

and so, in particular, E < mc2. Equation (11.127) alone is not capable of determin-
ing the eigenvalues E, since we have the additional unknown parameter κ . There-
fore, we need an additional equation, which we will derive from the recurrence
equation (11.122) with k = n:

MPn−1 = [
(n + δ + 1)σ1 + i(l + 1)σ2 + iα

]
rn+δ−1Pn. (11.128)

Namely, the characteristic equation for the matrix M is as follows

(M − 2iE/c�)M = 0 (11.129)

since its determinant is zero and since its trace is 2iE/c�. Therefore, multiplying
both sides of (11.122) by M − 2iE/c�, it is found that

0 = (M − 2iE/c�)
[
(n + δ + 1)σ1 + i(l + 1)σ2 + iα

]
Pn. (11.130)

Multiplying by the Pauli matrices, we arrive at

0 = [
2κ(n + δ + 1) − 2αE/c�

]
Pn. (11.131)

This gives the quantization condition

αE = c�κ(n + δ + 1). (11.132)
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Hence E > 0, and so, substituting c�κ = αE/(n + δ + 1) into (11.127), we obtain
the eigenvalues

E = Enj = mc2
√

1 + [α2/(n + δ + 1)2]
, (11.133)

where δ = δ(l) > −1 and l = j − 1/2 are given by (11.125) and (11.111), respec-
tively.

Comparison with the Nonrelativistic Case Since α is small, we can approximate
the eigenvalues by the binomial expansion:

Enj ≈ mc2 − mc2α2

2(n + δ + 1)2
. (11.134)

This approximation with δ = 0 coincides with the nonrelativistic spectrum (6.3)
of the hydrogen atom up to the (unessential) additive constant mc2. The relativis-
tic formula depends on the angular momentum j through δ = δ(l) by (11.125)
and (11.111), while the nonrelativistic formula is independent of the angular mo-
mentum. This was another triumph of the Dirac theory, because this corresponds to
the experimental observation of the fine structure of the spectrum.

Remark 11.26 The above analysis gives also the corresponding eigenfunctions

ψE =
(

ψ+
ψ−

)

= σx
|x|

(
�+
�−

)

= σx
|x|

(
R1(r)S+

jk(θ, ϕ)

R2(r)S+
jk(θ, ϕ)

)

. (11.135)



Chapter 12
Electrodynamics and Special Relativity

Abstract The classical electrodynamics is a well established field theory, starting
from formalization by Maxwell in 1855–1861 of previously known empirical facts.
It serves up to now as a safe ground and a model for all subsequent field theories.

In 1862, Maxwell put forward the electromagnetic theory of light. In 1884, Heav-
iside recasted Maxwell’s mathematical analysis from its original form to modern
vector terminology, and in the same year Poynting discovered the energy propa-
gation in a Maxwell field. In 1886, Hertz experimentally discovered electromag-
netic waves and calculated the dipole radiation. Einstein in 1905 discovered the
special relativity and the covariant electrodynamics, by postulating invariance of
the Maxwell equations in all inertial frames—this was justified by the Michelson
and Morley crucial experiments.

The next fundamental question arises on the interaction of the Maxwell field
with matter. In 1890s Lorentz introduced the electron theory of polarization and
magnetization of matter; this enabled one to avoid ‘sharp questions’, reducing the
problem of the matter reaction to constitutive equations.

Alternatively, one should consider all details of the interaction of charged parti-
cles with a Maxwell field. However, this question cannot be solved in the classical
theory, since for a point particle, the field energy is infinite—this effect is nowadays
known as the ‘ultraviolet divergence’.

To fix the situation, Abraham in 1905 introduced the model of ‘extended elec-
tron’. However, this suggestion leads to next question on the shape of electron. This
question was partially clarified after the discovery of quantum mechanics (1926);
however a complete answer is still a matter for the future.

12.1 The Maxwell Equations and Potentials

In 1855–1861, Maxwell formulated equations of the electrodynamics by system-
atizing the empirical Coulomb, Biot–Savart–Laplace, and Faraday laws. He stated
these equations in the MKS rationalized (or SI) system of units:

⎧
⎪⎨

⎪⎩

div E(t,x) = 1

ε0
ρ(t,x), curl E(t,x) = −Ḃ(t,x),

div B(t,x) = 0,
1

μ0
curl B(t,x) = j(t,x) + ε0Ė(t,x),

(12.1)
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where ρ(t,x) and j(t,x) stand for the charge and current density, and ε0 and μ0 are
the dielectric permittivity and magnetic permeability of vacuum. The values of ε0
and μ0 were measured experimentally with high accuracy. In the MKS system,

ε0 ≈ 1

4π9 × 109

A s

V m
, μ0 ≈ 4π × 10−7 V s

A m
. (12.2)

It is instructive to note that the dimension of the product ε0μ0 is s2/m2 (i.e., it is
inversely proportional to the square of velocity). This observation was of crucial
importance for the Maxwell theory of light and the Einstein’s special theory of rel-
ativity.

The Maxwell equations imply the continuity equation for charge and current

ρ̇(t,x) + div j(t,x) = 0; (12.3)

this is equivalent to the charge conservation law. Of course, this equivalence cannot
be considered as the proof of the (experimentally known) charge conservation since
it was used in derivation of the Maxwell equations.

12.1.1 Synthesis of Maxwell Equations

Maxwell deduced the first and the last equations from the Coulomb and Biot–
Savart–Laplace laws for the interaction of charges and currents. The second and the
third Maxwell equations were conjectured and experimentally verified by Faraday.

The Coulomb law gives the force of the electrostatic interaction of two charges
q1, q2 located at points x1 and x2, respectively:

F1 = 1

4πε0

q1q2(x1 − x2)

|x1 − x2|3 ; (12.4)

here F1 is the force acting onto the first elementary charge. Similarly, the Biot–
Savart–Laplace law gives the force of the ‘magnetostatic interaction’ of two ele-
mentary currents Ikdlk , k = 1,2, positioned at a distance r ;

F1 = μ0

4π

I1dl1 × [I2dl2 × (x1 − x2)]
|x1 − x2|3 (12.5)

here F1 is the force acting onto the first elementary current.

The First Equation

From the Coulomb law (12.4) it follows that the electric field of the second elemen-
tary charge, at the position of the first one, is as follows

E(x1) = 1

4πε0

q2(x1 − x2)

|x1 − x2|3 . (12.6)
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Then, for the distribution of charges, ρ(x2) dx2, it follows by the principle of super-
position,

E(x1) = 1

4πε0

∫
ρ(x2)(x1 − x2)

|x1 − x2|3 dx2. (12.7)

Differentiating, we obtain

div E(x1) = 1

ε0
ρ(x1); (12.8)

this coincides with the first equation of (1.3).

Exercise 12.1 Verify (12.8) for ρ(x) ∈ C∞
0 (R3). Hint: Verify geometrically that

divx1

x1 − x2

|x1 − x2|3 = 4πδ(x1 − x2).

Last Equation for Stationary Currents

The Biot–Savart–Laplace law (12.5) serves as the ground for definition of the mag-
netic field B(x1) at a point x1:

F1 = I1dl1 × B(x1), (12.9)

which is the Ampère law. A comparison with (12.5) shows that

B(x1) = μ0

4π

I2dl2 × (x1 − x2)

|x1 − x2|3 . (12.10)

Integrating and using the principle of superposition, we obtain

B(x1) = μ0

4π

∫
j(x2) × (x1 − x2)

|x1 − x2|3 dx2, (12.11)

where j(x2) is the current density at the point x2. Differentiating, we get

1

μ0
curl B(x1) = j(x1), (12.12)

which agrees with the last equation of (12.1) in the case of stationary currents and
fields, because Ė(t,x) = 0.

Exercise 12.2 Verify (12.12) when j(x) ∈ C∞
0 (R3). Hint: Use the continuity equa-

tion for charge and current, divj(x) ≡ 0, for stationary currents.
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Maxwell’s Displacement Current

In Maxwell’s time, the last equation of (12.1) was known in a form similar
to (12.12),

1

μ0
curl B(t,x) = j(t,x). (12.13)

The divergence of the LHS vanishes, because div curl = 0. On the other hand,
divj(t,x) generally does not vanish for nonstationary currents. This is obvious from
the identity

div j(t,x) + div ε0Ė(t,x) = 0, (12.14)

which follows from the continuity equation for charge and current (12.3) and the
first Maxwell equation. To remove this contradiction, Maxwell introduced the dis-
placement current ε0Ė(t,x) into the last equation (12.1). In this case, the divergence
of the RHS of the equation vanishes by (12.14).

12.1.2 Maxwell Potentials

Maxwell reduced the system (12.1) to the wave equations by introducing poten-
tials. Namely, divB(t,x) = 0 implies that B(t,x) = curl A(t,x). Then curl E(t,x) =
−Ḃ(t,x) implies curl [E(t,x) + Ȧ(t,x)] = 0, and hence E(t,x) + Ȧ(t,x) =
−∇φ(t,x). Finally,

B(t,x) = curl A(t,x), E(t,x) = −∇φ(t,x) − Ȧ(t,x). (12.15)

Exercise 12.3 Prove the existence of potentials (12.15). Hint: Use the Fourier
transform.

The choice of the potentials is not unique, since the gauge transformation

φ(t,x) �→ φ(t,x) + χ̇ (t,x), A(t,x) �→ A(t,x) − ∇χ(t,x) (12.16)

does not change the fields E(t,x), B(t,x) for any real function χ(t,x) ∈ C1(R4).
Therefore, it is possible to satisfy an additional gauge condition. For example, we
can provide

φ(t,x) = 0

choosing

χ(t,x) = −
∫ t

0
φ
(
t ′,x

)
dt ′ + χ0(x).
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Further we choose, the Lorentz gauge

ε0φ̇(t,x) + 1

μ0
divA(t,x) = 0. (12.17)

Let us express the Maxwell equations (12.1) in terms of potentials. Substitut-
ing (12.15) into the first Maxwell equation, this gives 4π

ε0
ρ(t,x) = divE(t,x) =

−�φ(t,x) − divȦ(t,x). Differentiating (12.17) in time, we get ε0φ̈(t,x) +
1
μ0

div Ȧ(t,x) = 0. Hence, we can eliminate divȦ(t,x), obtaining

[
ε0μ0∂

2
t − �

]
φ(t,x) = 1

ε0
ρ(t,x). (12.18)

Similarly, substituting (12.15) into the last Maxwell equation, it is found that

1

μ0
curl curl A(t,x) = j(t,x) + ε0Ė(t,x) = j(t,x) − ε0∇φ̇(t,x) − ε0Ä(t,x).

(12.19)

Exercise 12.4 Prove the identity

curl curl = −� + ∇div. (12.20)

Substituting (12.20) into (12.19) and eliminating ∇φ̇(t,x) by the application
of ∇ to (12.17), it follows that

[
ε0μ0∂

2
t − �

]
A(t,x) = μ0j(t,x). (12.21)

12.2 Maxwell’s Theory of Light, and Einstein’s Postulate

The special theory of relativity was discovered by Einstein through analysis of the
covariance of the Maxwell equations under the Lorentz transformations.

12.2.1 Maxwell’s Theory of Light

The Maxwell equations (12.1) contain the dielectric permittivity and magnetic per-
meability of vacuum, ε0 and μ0, but do not explicitly contain the speed of light c.
Maxwell deduced the wave equations (12.18) and (12.21) with the coefficient ε0μ0,
and it was known at that time that this coefficient is 1/v2, where v is the speed of
wave propagation: for instance, the dimension of ε0μ0 is s2/m2!

Maxwell calculated v = 1/
√

ε0μ0 by using values (12.2), obtaining v ≈ 3 ×
108 m/s. His crucial observation was that v coincides with the speed of light c in
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vacuum with high precision! Hence Eqs. (12.18) and (12.21) become

�φ(t,x) = 1

ε0
ρ(t,x), �A(t,x) = μ0j(t,x), (t,x) ∈R

4, (12.22)

where � := 1

c2
∂2
t −�. Furthermore, Maxwell found that electromagnetic waves are

transversal, like the light (see Sect. 14.3). This is why Maxwell identified light with
electromagnetic waves (1862).

12.2.2 ‘Luminiferous Ether’: The Michelson and Morley
Experiment

The discovery of Maxwell had led to a very dramatic situation. Namely, according
to classical physics, the wave propagation speed can be equal to c only in a unique
preferred reference frame, in which the Maxwell equations have the form (12.1),
(12.22). Such a reference frame was called the luminiferous ether frame. In all other
frames, the propagation velocity depends on the vector v of relative velocity, be-
cause the space-time is transformed by the classical Galilean transformations: for
v = (v,0,0),

⎛

⎜
⎜
⎝

t

x1

x2

x3

⎞

⎟
⎟
⎠ �→

⎛

⎜
⎜
⎜
⎝

t∗
x1∗
x2∗
x3∗

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

t

x1 − vt

x2

x3

⎞

⎟
⎟
⎠ . (12.23)

Therefore, the Maxwell equations are not invariant under Galilean transformations:
otherwise, the speed of light would be the same in any inertial reference frame;
this obviously contradicts the Galilean transformations!

This is why Michelson and Morley started around 1880 their famous experiment
to identify the preferred luminiferous ether frame with the frame, in which the Sun
is at rest. They tried to verify that the Earth moves with respect to the luminifer-
ous ether, i.e., to check that the speed of light along and against the Earth orbital
motion differs by twice speed of the Earth. More specifically, they compared the
wavelengths of light along and against the motion of the Earth around the Sun.
However, the result (1887) was negative and very discouraging: the wavelengths
were identical with high accuracy, and hence the speed of propagation was found
to be independent of the frame of reference! Astronomical observations of double
stars performed by de Sitter (1908) confirmed the negative result of Michelson and
Morley; this negative result was also confirmed by the Trouton and Noble experi-
ment.

12.2.3 Einstein’s Postulate

Various partial explanations of these negative results were put forward by Ritz,
Fitzgerald, Lorentz and others. A complete explanation was provided in 1905 by
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Einstein, who was able to culminate Maxwell’s and Lorentz’s ideas into a new com-
plete theory. The main Einstein’s postulate was the following:

The laws of electrodynamics take identical form in all inertial frames.
(12.24)

This postulate includes the invariance of the Maxwell equations, and hence the
constancy of the speed of light. The required modification of the Galilean transfor-
mations was well known after Larmor (1897) and Lorentz (1899):

⎛

⎜
⎜
⎜
⎝

ct∗
x1∗
x2∗
x3∗

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ct−βx1√
1−β2

x1−βct√
1−β2

x2

x3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

1√
1−β2

− β√
1−β2

0 0

− β√
1−β2

1√
1−β2

0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

ct

x1

x2

x3

⎞

⎟
⎟
⎠ , (12.25)

where (t, x1, x2, x3) are the time-space coordinates in the rest frame and (t∗, x1∗,

x2∗, x3∗) corresponds to the moving frame, if the relative velocity is (v,0,0) with
|v| < c, and β := v/c.

Larmor and Lorentz discovered that the Lorentz transformations (12.25), leaving
unchanged the form of the Maxwell equations (12.1) (see Sect. 12.5). This is why
Einstein suggested to regard the Lorentz formulas (12.25) as the true transformation
of space and time and rejected the Galilean transformation, because they do not
preserve the form of the Maxwell equations. This suggestion includes, in particular,
the following revolutionary claim:

Time in a moving frame is distinct from the time in the rest frame!

Exercise 12.5 Verify that the wave equation
[

1

c2
∂2
t − �

]

φ(t,x) = 0 (12.26)

is invariant with respect to the Lorentz transformations (12.25).
Hints:

(i) ∂2 = ∂∗
2 , ∂3 = ∂∗

3 , where ∂k := ∂
∂
xk

and ∂∗
k := ∂

∂
xk∗

.

(ii) Set ct = x0 and check that the 1D equation (∂2
0 −∂2

1 )φ(x0, x1) = 0 is equivalent
to

[(
∂∗

0

)2 − (
∂∗

1

)2
)
]
φ∗

(
x0∗, x1∗

) = 0,

if x0∗ = ax0 − bx1 and x1∗ = −bx0 + ax1 with a2 − b2 = 1. By the definition,
φ∗(x0∗, x1∗) = φ(x0, x1).

Exercise 12.6 Verify that the wave equation (12.26) is not invariant with respect to
the Galilean transformation (12.23). Hint: In the new variables, equation (12.26)
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takes the form
[

1

c2
(∂t∗ − v∇x1∗)

2 − �x∗

]

φ∗(t∗,x∗) = 0. (12.27)

Remark 12.7 For small velocities, |v| � c, the Galilean transformation (12.23) is
close to the Lorentz one (12.25), and the coefficients of equation (12.27) are close
to the ones of (12.26).

12.3 The Lorentz Group

The Lorentz group is the set of all transformations of the space-time, preserving the
form of the wave equation.

12.3.1 The Lorentz Transformations

Einstein’s postulate (12.24) implies the invariance of the wave equations (12.18)
and (12.21). Let us calculate all possible transformations, which leave invariant the
homogeneous wave equations. First, we introduce the new time variable x0 := ct

and rewrite the homogeneous wave equation as follows:

�φ(x) := gαβ∂α∂βφ(x) = 0; (12.28)

here gα,β = diag(1,−1,−1,−1), ∂α := ∂
∂xα , and the summation in the repeated

indexes is understood, α,β = 0,1,2,3.
We look for maps M : R4 → R

4 which are such that the equation preserves its
form in the new variables y = �x; i.e., (12.28) is equivalent to

�φ′(y) = gα′β ′
∂α′∂β ′φ′(y) = 0, (12.29)

where φ′(y) := φ(x). The space-time is homogeneous, and hence the map M should
be linear up to a translation:

yα′ := (Mx)α
′ = �α′

α xα + bα′
, α′ = 0, . . . ,3. (12.30)

Let us rewrite Eq. (12.28) in the new variables (12.30). By the chain rule,

∂α := ∂

∂xα
= ∂yα′

∂xα

∂

∂yα′ = �α′
α ∂α′ . (12.31)

Hence, the equation in new variables reads

gα,β�α′
α �

β ′
β ∂α′∂β ′φ′(y) = 0, y ∈R

4. (12.32)
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Comparing this with (12.29), we obtain the system of algebraic equations

gαβ�α′
α �

β ′
β = gα′β ′

, α′, β ′ = 0,1,2,3. (12.33)

In the matrix form, this system is equivalent to the equation

�g�t = g, (12.34)

in which �t denotes the transposed matrix of �. Such matrices are called Lorentz
transformations.

12.3.2 Properties of the Lorentz Transformations

Exercise 12.8 Verify that |det�| = 1. Hint: Take the determinant of both sides
of (12.34).

Thus � is invertible. Hence Eq. (12.34) is also equivalent to

(
�t

)−1
g�−1 = g. (12.35)

This matrix equation is equivalent to the invariance, with respect to the map �−1,
of the quadratic form

g(x, x) := (x, gx) = gαβxαxβ, x ∈ R
4, (12.36)

which is known as the Lorentz interval (here (gαβ) := (gαβ)−1 = (gαβ)). Then this
form is also invariant with respect to �, and hence

�tg� = g (12.37)

or equivalently,

gαβ�α
α′�

β

β ′ = gα′β ′ , α′, β ′ = 0,1,2,3. (12.38)

Definition 12.9 L is the set of all linear maps � :R4 → R
4 satisfying (12.37).

Exercise 12.10 Verify that the set L is a group. Hint: Use the characteriza-
tion (12.37).

Definition 12.11

(i) The Minkowski space is the space R4 equipped with the quadratic form (12.36).
(ii) L is called the Lorentz group.
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12.3.3 Examples

The simplest example of a Lorentz transform is given by a matrix

� = R̂ :=
(

1 0
0 R

)

, (12.39)

where R ∈ SO(3) is a rotation of the 3D space. The wave equation (12.26) is invari-
ant with respect to transformation x′ = R̂x, because the Laplacian � is invariant
with respect to rotations.

Exercise 12.12 Verify (12.34) for matrices (12.39).

Exercise 12.13 Construct all Lorentz transformations of the form

� =

⎛

⎜
⎜
⎝

a b 0 0
c d 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ . (12.40)

Solution: Equation (12.37) is equivalent to the matrix equation

(
a c

b d

)(
1 0
0 −1

)(
a b

c d

)

=
(

1 0
0 −1

)

, (12.41)

which means that

a2 − c2 = 1, b2 − d2 = −1, ab − cd = 0.

Equivalently,

a = ± coshϕ, c = sinhϕ, d = ± coshχ, b = sinhχ,

± coshϕ sinhχ ± sinhϕ coshχ = 0,

where the signs ± in the last formula are independent. Therefore, tanhϕ = ± tanhχ ;
i.e., ϕ = ±χ . Hence, we get four one-parametric families of matrices

�+± :=

⎛

⎜
⎜
⎝

coshϕ sinhϕ 0 0
± sinhϕ ± coshϕ 0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ,

�−± :=

⎛

⎜
⎜
⎝

− coshϕ sinhϕ 0 0
± sinhϕ ∓ coshϕ 0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ .

(12.42)
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Here
�++ are hyperbolic rotations (or boosts) by angle ϕ in the plane (x0, x1);
�+− are the hyperbolic rotations followed by reflection (x0, x1) �→ (x0,−x1);
�−+ are the hyperbolic rotations followed by reflection (x0, x1) �→ (−x0,−x1);
�−− are the hyperbolic rotations followed by reflection (x0, x1) �→ (−x0, x1).

The Lorentz formulas (12.25) correspond to matrix �++ with coshϕ = 1/
√

1 − β2

and sinhϕ = −β/
√

1 − β2, so tanhϕ = −β .

12.4 The Lagrangian Formalism for Maxwell Field

The Maxwell equations can be represented as the Euler–Lagrange equations corre-
sponding to a Lagrangian density, which is a quadratic polynomial in the potentials
and their first derivatives.

12.4.1 The Maxwell Equations in Gaussian Units

Written in unrationalized Gaussian units (cgs), the Maxwell equations (12.1) read
as

⎧
⎪⎪⎨

⎪⎪⎩

div E(t,x) = 4πρ(t,x), curl E(t,x) = −1

c
Ḃ(t,x),

div B(t,x) = 0, curl B(t,x) = 4π

c
j(t,x) + 1

c
Ė(t,x),

(12.43)

implying the same continuity equation for charge and current (12.3). Now the
Maxwell potentials are defined by (cf. (12.15))

B(t,x) = curl A(t,x), E(t,x) = −∇φ(t,x) − 1

c
Ȧ(t,x). (12.44)

The Lorentz gauge (12.17) now reads

1

c
φ̇(t,x) + div A(t,x) = 0, (t,x) ∈R

4; (12.45)

it can be satisfied by an appropriate gauge transformation of type (12.16)

φ(t,x) �→ φ(t,x) + 1

c
χ̇(t,x), A(t,x) �→ A(t,x) − ∇χ(t,x). (12.46)

Consequently, the Maxwell equations (12.43) are equivalent to the wave equations
for the potentials, similar to (12.22):

�φ(t,x) :=
[

1

c2
∂2
t − �

]

φ(t,x) = 4πρ(t,x), �A(t,x) = 4π

c
j(t,x). (12.47)
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12.4.2 4D Vector Potential

Let us introduce four-dimensional vectors and derivatives
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 = ct, xμ = (
x0, . . . , x3

)
,

∂μ = ∇μ = (∂0, ∂1, ∂2, ∂3), ∂μ := ∂

∂xμ
,

xμ := gμνx
ν = (

x0,−x1,−x2,−x3
)
,

∂μ := gμν∂ν = (∂0,−∂1,−∂2,−∂3),

(12.48)

where gμν = gμν = diag(1,−1,−1,−,1) and the four-dimensional potentials and
currents are

⎧
⎪⎨

⎪⎩

Aμ(x) = (
φ(x),A(x)

)
, Aμ(x) := gμνAν(x) = (

φ(x),−A(x)
)
,

J μ(x) =
(

ρ(x),
1

c
j(x)

)

, Jμ(x) := gμνJ ν(x) =
(

ρ(x),−1

c
j(x)

)

.

(12.49)
In this notation, the Maxwell equations (12.47) read

�Aμ(x) = 4πJ μ(x). (12.50)

Similarly, the continuity equation for charge and current (12.3), the gauge transfor-
mation (12.46) and the Lorentz gauge (12.45) are as follows:

∂μJ μ(x) = 0, Aμ(x) �→Aμ(x) + ∂μχ(x), ∂μAμ(x) = 0. (12.51)

12.4.3 Tensor Field

The Maxwell tensor is defined by

Fμν(x) = ∂μAν(x) − ∂νAμ(x). (12.52)

In the matrix form,

(
Fμν(x)

)3
μ,ν=0 =

⎛

⎜
⎜
⎝

0 −E1(x) −E2(x) −E3(x)

E1(x) 0 −B3(x) B2(x)

E2(x) B3(x) 0 −B1(x)

E3(x) −B2(x) B1(x) 0

⎞

⎟
⎟
⎠ , (12.53)

by formulas (12.44), (12.48), and (12.49).

Proposition 12.14 The Maxwell equations (12.50) are equivalent to

∂μFμν(x) = 4πJ ν(x), x ∈R
4. (12.54)
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Proof The Maxwell tensor is invariant under the gauge transformations (12.51),
since ∂μ∂νχ(x) − ∂ν∂μχ(x) = 0. Therefore, we can assume the Lorentz gau-
ge (12.45) without loss of generality. Then by (12.50),

∂μFμν(x) = ∂μ

(
∂μAν(x) − ∂νAμ(x)

) = ∂μ∂μAν(x) =�Aν(x) = 4πJ ν(x).

(12.55)
�

12.4.4 The Lagrangian Density and Current

The Lagrangian density for the Maxwell equations (12.54) with a given external
charge-current densities J ν(x) is defined by

L(x,A,∇A) = − 1

16π
FμνFμν −J ν(x)Aν,

(x,A,∇A) ∈ R
4 ×R

4 ×R
16, (12.56)

where Fμν := ∂μAν − ∂νAμ and Fμν := ∂μAν − ∂νAμ.

Proposition 12.15 The Maxwell equations (12.54) with given charge-current den-
sities J ν(x) are equivalent to the Euler–Lagrange equations (4.15) for the La-
grangian density (12.56).

Proof The conjugate fields are canonically given by

�μν := ∇∂μAν
L = − 1

8π

(
Fμν −Fνμ

) = − 1

4π
Fμν. (12.57)

Therefore,

∇μ�μν(x) = − 1

4π
∇μFμν(x). (12.58)

On the other hand,

LAν
= −J ν(x), (12.59)

and so (12.54) is equivalent to equations of type (4.15). �

In variables (φ,A), Eq. (12.59) reads

ρ(x) = −Lφ,
1

c
jk(x) = LAk , k = 1,2,3. (12.60)

We note that FμνFμν = 2(E2 − B2) by (12.53), and hence the Lagrangian density
(12.56) reads

L(x,A,∇A) = − 1

8π

(
E2 − B2) − ρφ + j · A

c
. (12.61)
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Furthermore, the interaction term J ν(x)Aν in (12.56) is a Lorentz invariant product
of four vectors J ν(x) and Aν .

12.5 Covariant Electrodynamics

We still need to complete the justification of the Einstein postulate (12.24) with the
transformation of the Maxwell field by the Lorentz group.

The four-dimensional Maxwell equations (12.50) imply that the transformations
for the potentials Aμ(x) and 4-currents J μ(x) must be identical, because � = ∂2

0 −
∂2

1 − ∂2
2 − ∂2

3 is an invariant operator with respect to the Lorentz group. We will
prove below that convection currents are transformed by the matrix � in the same
way as a 4-vector x. Hence, this suggests that the same transformation also holds
for all possible currents, and so

J ′(x′) = �J (x), A′(x′) = �A(x), x′ = �x. (12.62)

Further, as is shown in Sect. 12.4.4, the Maxwell equations are the canonical Euler–
Lagrange equations corresponding to Lagrangian density

L(x,A,∇A) = − 1

16π
FμνFμν − g

(
J (x),A

)
, (x,A,∇A) ∈R

4 ×R
4 ×R

16,

(12.63)
where Fμν := ∂μAν − ∂νAμ, Fμν := gμμ′gνν′Fμ′ν′

and

g
(
J (x),A

) := gμνJ μ(x)Aν . (12.64)

Finally, it follows that the Einstein postulate (12.24) holds, because the Lagrangian
density (12.63) is invariant under transformations (12.62).

Exercise 12.16 Verify that density (12.63) is invariant under the Lorentz transfor-
mations (12.62). Hint: Being symmetric, the bilinear form (12.64) is invariant, since
the corresponding quadratic form is invariant by the definition of the Lorentz trans-
formations.

12.5.1 Transformation of the Convection 4-Current

The transformation law (12.62) is one of basic postulates of the covariant electro-
dynamics. However, the validity of this postulate cannot be proved. Its efficiency is
supported by the fruitful development and applications. We illustrate this transfor-
mation for a convection current.

Namely, we consider an electron at rest in the frame with coordinates x. Then
the corresponding charge and current densities read

ρ0(t,x) = ρe(x), j0(t,x) = 0. (12.65)
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For a moving electron, we should take into account the Lorentz contraction. Hence

ρ(t,x) = γρe

(
γ (x1 − vt), x2, x3

)
, j(t,x) = γρe

(
γ (x1 − vt), x2, x3

)
(v,0,0),

(12.66)
where v is the speed is directed along Ox1, and γ = 1/

√
1 − β2 is the Lorentz

contraction, where β := v/c. The front factor γ provides the charge invariance

∫

ρ(t,x) dx =
∫

ρ0(t,x) dx. (12.67)

Now let us demonstrate that (12.66) agrees with the postulated transformation
law (12.62). Indeed, a moving electron is at rest in the frame with coordinates x∗, as
defined by (12.25). Hence the Einstein postulate requires the same formulas (12.65)
in the moving frame:

ρ∗(t∗,x∗) = ρe(x∗), j∗(t∗,x∗) = 0. (12.68)

It remains to note that the 4-current J (x) (that corresponds to (12.66)) is expressed
by (12.62) in terms of the 4-current J∗(x∗) (that corresponds to (12.68))):

J (x) = �−1∗ J∗(�∗x), (12.69)

where �∗ is the matrix (12.25).

12.5.2 Transformation of Maxwell Field

Formulas (12.62) imply the corresponding transformation for the Maxwell tensor
(12.52):

F ′
μ′ν′(x) = �

μ

μ′�ν
ν′Fμν(x), x′μ′ = �μ′

μ xμ. (12.70)

In the matrix form, we have

F ′(x) = �F(x)�t . (12.71)

Applying this formula to the Lorentz bust (12.25), we get the Lorentz transformation
for the Maxwell fields:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

E1∗(x∗) = E1(x), B1∗(x∗) = B1(x),

E2∗(x∗) = E2(x) − βB3(x)
√

1 − β2
, B2∗(x∗) = B2(x) + βE3(x)

√
1 − β2

,

E3∗(x∗) = E3(x) + βB2(x)
√

1 − β2
, B3∗(x∗) = B3(x) − βE2(x)

√
1 − β2

.

(12.72)
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In the vector form,

E∗(x∗) = γ

[

E(x) + v
c

× B(x)

]

+ γ ′v1
〈
E(x),v1

〉
,

B∗(x∗) = γ

[

B(x) − v
c

× E(x)

]

+ γ ′v1
〈
B(x),v1

〉
(12.73)

with γ := 1/
√

1 − β2, where β := v/c, γ ′ := 1 − γ and v1 := v/|v|.

Exercise 12.17 Verify formulas (12.72) and (12.73). Hints: Formulas (12.72) fol-
low from (12.53) by (12.71) with the Lorentz matrix (12.25).

Neglecting the terms of order β2, formulas (12.73) can be written as follows:

E∗(x∗) = E(x) + v
c

× B(x), B∗(x∗) = B(x) − v
c

× E(x). (12.74)

12.6 The Lorentz Force

The Lorentz equation plays a crucial role in Quantum Mechanics, since its Hamil-
ton function (3.30) provides the Schrödinger equation (3.53) by the canonical quan-
tization (3.26). Historically, the Lorentz equation was suggested by the Coulomb
and Ampère laws for stationary currents. On the other hand, the Lorentz force au-
tomatically follows from the variational principle applied to the Lagrangian den-
sity (12.56).

12.6.1 The Lorentz Equation

A Nonrelativistic Particle The motion of a charged particle with small velocity
|ẋ(t)| � c in the Maxwell field is governed by the Lorentz equation (1.6),

mẍ(t) = e

[

E
(
t,x(t)

) + 1

c
ẋ(t) × B

(
t,x(t)

)
]

, (12.75)

where m is the mass of the particle and e is its charge.

A Relativistic Particle For large velocities |ẋ(t)| ∼ c, the Lorentz equation should
be replaced by the following one

ṗ(t) = e

[

E
(
t,x(t)

) + 1

c
ẋ(t) × B

(
t,x(t)

)
]

, (12.76)

where p(t) := mẋ(t)/
√

1 − ẋ2(t)/c2 is the momentum of the free relativistic parti-
cle (see (13.11)).
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12.6.2 The Lagrangian Formalism

The Lorentz equations (12.75) and (12.76) can be represented in the Euler–Lagrange
form as follows:

d

dt
Lẋ

(
t,x(t), ẋ(t)

) = Lx
(
t,x(t), ẋ(t)

)
(12.77)

with L = Lp + Lint, where Lp is the Lagrangian of the free particle and Lint is the
interaction term (i.e., the term depending on the Maxwell field). The Lagrangians
for a free particle are well known: Lp = mẋ2/2 for a nonrelativistic particle and
Lp = −mc2

√
1 − β2 for a relativistic one, where β := |ẋ|/c (see (13.11)).

The Interaction Term

It remains to find the interaction term Lint. It is natural to obtain Lint by identi-
fying its action with the one corresponding to the interaction term −J ν(x)Aν in
Lagrangian (12.56). The current densities J ν(t,x), which correspond to a particle
trajectory x(t), are as follows:

J 0(t,x) = eδ
(
x−x(t)

)
, J k(t,x) = e

c
ẋk(t)δ

(
x−x(t)

)
, k = 1,2,3. (12.78)

We denote � = {(t,x) ∈ R
4 : t1 < t < t2}. Substituting (12.78) into (12.56), we get

the corresponding action (4.8) in the form

S� :=
∫

�

L(x,Aμ,∇Aμ)dx = S0
�(A) −

∫ t2

t1

∫

R3
J ν(t,x)Aν(t,x) dxdt

= S0
�(A) − e

∫ t2

t1

[

φ
(
t,x(t)

) − 1

c
ẋ(t) · A

(
t,x(t)

)
]

dt, (12.79)

where S0
�(A) is action of the free Maxwell field in the absence of charged particles.

Action (12.79) suggests considering the following interaction term

Lint(t,x,v) = −eφ(t,x) + e

c
v · A(t,x). (12.80)

A Nonrelativistic Particle Let us check that the Euler–Lagrange equations corre-
sponding to the Lagrangian

L(t,x,v) = mv2

2
− eφ(t,x) + e

c
v · A(t,x) (12.81)

are equivalent to the Lorentz equations (12.75). First, we evaluate the momentum:

p(t) := Lv
(
t,x(t), ẋ(t)

) = mẋ(t) + e

c
A

(
t,x(t)

)
. (12.82)
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Now (12.77) becomes,

ṗk(t) = Lxk

(
t,x(t), ẋ(t)

) = −e∇kφ(t,x) + e

c
ẋ · ∇kA(t,x), k = 1,2,3. (12.83)

We calculate

ṗk(t) = d

dt

(

mẋk(t) + e

c
Ak

(
t,x(t)

)
)

= mẍk + e

c

[
Ȧk(t,x) + ∇j Ak(t,x)ẋj

]
.

(12.84)
Substituting this expression into (12.83), it follows that

mẍk + e

c

[
Ȧk(t,x) + ∇j Ak(t,x)ẋj

] = −e∇kφ(t,x) + e

c
ẋj∇kAj (t,x). (12.85)

Equivalently,

mẍk = e

[

−∇kφ(t,x) − 1

c
Ȧk(t,x)

]

+ e

c
ẋj [∇kAj − ∇j Ak]. (12.86)

The first square bracket on the RHS is E(t,x), by (12.44). Hence, it remains to
verify that

ẋj [∇kAj − ∇j Ak] = ẋ × curl A(t,x).

We note that ∇kAj − ∇j Ak = (curl A)lεkjl , where εkjl is the antisymmetric tensor.
Therefore,

ẋj [∇kAj − ∇j Ak] = ẋj (curl A)lεkjl = [
ẋ × curl A(t,x)

]

k
,

by the definition of vector product.

A Relativistic Particle For a relativistic particle, the interaction term (12.80)
gives the Lagrangian function

L(t,x,v) = −mc2
√

1 − β2 − eφ(t,x) + e

c
v · A(t,x), (12.87)

where β := |v|/c. Now the momentum is given by

p := Lv = mv/

√

1 − β2 + e

c
A(t,x). (12.88)

By the same calculation as above, we obtain (12.76).

12.6.3 The Hamiltonian Formalism

A Nonrelativistic Particle The Hamilton function is the Legendre transformation
of the nonrelativistic Lagrangian (12.81):
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H = pv − L = pv − mv2

2
+ eφ(t,x) − e

c
v · A(t,x)

= eφ(t,x) + v
(

p − e

c
A(t,x)

)

− mv2

2
. (12.89)

Since p − e

c
A(t,x) = mv, we obtain

H = eφ(t,x) + mv2

2
= eφ(t,x) + 1

2m

[

p − e

c
A(t,x)

]2

, (12.90)

which coincides with (3.30).

A Relativistic Particle Expression (12.88) implies that

H = pv − L = pv + mc2
√

1 − β2 + eφ(t,x) − e

c
v · A(t,x)

= eφ(t,x) + v
(

p − e

c
A(t,x)

)

+ mc2
√

1 − β2. (12.91)

Since p − e

c
A(t,x) = mv/

√

1 − β2 it follows by (12.88) that

H = eφ(t,x) + mv2
√

1 − β2
+ mc2

√

1 − β2 = eφ(t,x) + mc2
√

1 − β2

= eφ(t,x) + mc2

√

1 +
(

p − e

c
A(t,x)

)2

/(mc)2, (12.92)

which is equivalent to (3.28):

(

H/c − e

c
φ(t,x)

)2

=
[

p − e

c
A(t,x)

]2

+ m2c2. (12.93)

This derivation of the Lorentz force from the Maxwell Lagrangian density is not too
surprising, because the Maxwell equations were deduced from the Coulomb and
Biot–Savart–Laplace laws, which imply (1.5) and (1.6).

12.7 Energy of the Maxwell Field: Poynting’s Theorem

In 1884, Poynting discovered the energy flow in the Maxwell field. More precisely,
he proved that

(i) E(t,x) := 1

8π
(E2(t,x) + B2(t,x)) is the energy density of the electromagnetic

field, and
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(ii) S(t,x) := c

4π
E(t,x) × B(t,x) is the density of energy flux.

This means that, for any bounded region � ⊂ R
3 with smooth boundary � = ∂�,

d

dt

[
T�(t)+E�(t)

] = −
∫

�

S(t,x) ·n(x) d�(x), E�(t) :=
∫

�

E(t,x) dx, (12.94)

where n(x) is the unit outward normal vector to �, and d�(x) is the Lebesgue
measure on �; T�(t) denotes the kinetic of charged particles in �:

T�(t) = 1

2

∑

xk(t)∈�

mk ẋ2
k(t), (12.95)

where mk is mass of a particle and xk(t) is its position.

The corresponding charge and current densities are given by

ρ(t,x) =
∑

ekδ
(
x − xk(t)

)
, j(t,x) =

∑
ek ẋk(t)δ

(
x − xk(t)

)
, (12.96)

where ek are the charges of the particles. Further, according to the Lorentz equa-
tion (12.75), we formally obtain

Ṫ�(t) =
∑

xk(t)∈�

mk ẋk(t) · ẍk(t)

=
∑

xk(t)∈�

ẋk(t) · ek

[

E
(
xk(t), t

) + 1

c
ẋk(t) × B

(
xk(t), t

)
]

=
∑

xk(t)∈�

ek ẋk(t) · E
(
xk(t), t

) =
∫

�

j(t,x) · E(t,x) dx, (12.97)

provided that the field E(t,x) is continuous in x and if particles do not cross the
boundary � := ∂� at time t . Now we can calculate

Ė�(t) = 1

4π

∫

�

[
E(t,x) · Ė(t,x) + B(t,x) · Ḃ(t,x)

]
dx. (12.98)

Substituting Ė(t,x) and Ḃ(t,x) from the Maxwell equations (12.43), we obtain

Ė�(t) = 1

4π

∫

�

[
E · (c curl B − 4πj) − cB · curl E

]
dx

= −Ṫ�(t) + c

4π

∫

�

[
E · (∇ × B) − B · (∇ × E)

]
dx, (12.99)

according to (12.97). It remains to rewrite the last integrand as follows

(∇ · B) × E − (∇ · E) × B = −∇ · (E × B), (12.100)
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since ∇ · B = 0, by the Maxwell equations (12.43). Then (12.99) implies (12.94) by
the Stokes theorem.

Note that our proof of (12.97) is not satisfactory, because the field E(t,x) of
point particles is singular at the particle positions. A rigorous proof for the Abraham
model of extended electron [2, 111, 176] follows by the same arguments from the
Maxwell equations (12.43) with the following charge and current densities

ρ(t,x) :=
∑

ρk

(
x − xk(t)

)
, j(t,x) :=

∑
ẋk(t)ρk

(
x − xk(t)

)
(12.101)

and with the suitably modified Lorentz equation

mẍk(t) =
∫ [

E(t,x) + 1

c
ẋk(t) × B(t,x)

]

ρk

(
x − xk(t)

)
dx, t ∈ R. (12.102)

Here ρk(x) stands for sufficiently smooth extended charge density of the correspond-
ing particle. In the case of one relativistic particle, the relation of type (12.94) is
proved in [176, (2.61)].

12.8 Momentum of the Maxwell Field

The momentum density of the Maxwell field is defined by

g(t,x) := 1

c2
S(t,x).

The corresponding flux is the tensor field

Tαβ(t,x) := 1

4π

[

EαEβ + BαBβ − 1

2

(
E2 + B2)δαβ

]

.

This means that for any fixed region � ⊂R
3 with smooth boundary � = ∂�,

d

dt

[
P�(t) + G�(t)

] = −
∫

�

T(t,x) · n(x)d�(x),

G�(t) :=
∫

�

g(t,x) dx, (12.103)

where n(x) is the unit outward normal vector to �, P�(t) is the momentum of
charged particles in �,

P�(t) =
∑

xk(t)∈�

mk ẋk(t), (12.104)

and [T(t,x) · n(x)]α = ∑
Tαβ(t,x)nβ(x).
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Using the Lorentz equation (12.75) we formally obtain

Ṗ�(t) =
∑

xk(t)∈�

mk ẍk(t) =
∑

xk(t)∈�

ek

[

E
(
xk(t), t

) + 1

c
ẋk(t) × B

(
xk(t), t

)
]

=
∫

�

[

ρ(t,x)E(x, t) + 1

c
j(t,x) × B(x, t)

]

dx (12.105)

in terms of the charge and current densities (12.96). Let us express ρ(t,x) and j(t,x)

from the Maxwell equations (12.43). Then the integrand of (12.105) reads

1

4π

[

E div E +
(

curl B − 1

c
Ė

)

× B
]

= 1

4π
[E div E + curl B × B + curl E × E] − 1

4πc
∂t [E × B]

=
∑

∇βTαβ − Ṡ
c2

. (12.106)

Hence, by (12.105),

Ṗ�(t) =
∫

�

∑
∇βTαβ dx − Ġ(t). (12.107)

Now (12.103) follows from the Stokes theorem.
As above, our proof of (12.103) is not satisfactory, because the field E(t,x)

of point particles is singular at the particle positions. For the Abraham model
(12.101), (12.102) a rigorous proof follows by the methods of [111, 112, 176].

12.9 Abraham: Electromagnetic Mass

In 1902, Abraham calculated the energy and momentum of a moving ‘extended
electron’, and discovered the celebrated mass-energy equivalence. The electron is
surrounded by the comoving Maxwell field, which contributes to the electron kinetic
energy, and hence, to the electron mass.

The densities of charge and current of a moving extended electron are as fol-
lows (12.66)

ρ(t,x) = γρe

(
γ (x1 − vt), x2, x3

)
,

j(t,x) = γρe

(
γ (x1 − vt), x2, x3

)
(v,0,0).

(12.108)

Here ρe(x) is the charge density of the electron at rest, v is the speed directed along
Ox1, and γ = 1/

√
1 − β2 is the Lorentz contraction, β := v/c.
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By (12.47), the corresponding wave equations for the potentials can be written,
in the Lorentz gauge (12.45), as follows:

�φv(t,x) = 4πγρe

(
γ (x1 − vt), x2, x3

)
, (12.109)

�Av(t,x) = 4π

c
γρe

(
γ (x1 − vt), x2, x3

)
(v,0,0), (12.110)

where � = 1
c2 ∂2

t − �. Then the corresponding Maxwell fields are given by

Bv(t,x) = curl Av(t,x), Ev(t,x) = −∇φv(t,x) − 1

c
Ȧ(t,x). (12.111)

Finally, the electromagnetic energy and momentum read

E(v) = 1

8π

∫
[
E2

v(t,x) + B2
v(t,x)

]
dx, G(v) = 1

4πc

∫

Ev(t,x) × Bv(t,x) dx.

(12.112)

Exercise 12.18 Prove the Abraham relation (1.14)

G(v) = mev
√

1 − β2
with me = 4

3

E(0)

c2
. (12.113)

Solution Substituting the scalar potential of the form φv(t,x) = γφ(γ (x1 −
vt), x2, x3) into (12.109), we obtain the corresponding stationary equation
−�φ(x) = 4πρe(x). Hence, φ(x) is the spherically symmetric Coulombic potential

φ(x) =
∫

ρe(y)

|x − y| dy (12.114)

Respectively, the magnetic potential reads Av(t,x) = β(φv(t,x),0,0). Now let us
compute the Maxwell fields by substituting this potentials into (12.111). We have

Bv(t,x) = (0, γβ∇3φ,−γβ∇2φ), Ev(t,x) = −(∇1φ,γ∇2φ,γ∇3φ),

(12.115)
where all the derivatives of φ are taken at the point (γ (x1 − vt), x2, x3). Calculating
the vector product, we obtain

G(v) = 1

4πc

(
2βγ 2,0,0

)
∫

∣
∣∇1φ(x1, x2, x3)

∣
∣2 dx1

γ
dx2 dx3 (12.116)

by the spherical symmetry of φ(x). Similarly,

E(v) = 1

8π

[
1 + 2γ 2 + 2γ 2β2]

∫
∣
∣∇1φ(x1, x2, x3)

∣
∣2 dx1

γ
dx2 dx3. (12.117)

Now (12.113) follows.
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12.10 The Hertzian Dipole Radiation

In 1886 Hertz started working on his experiments on radiation and detection of
electromagnetic waves. He elaborated the corresponding mathematical theory by
solving the Maxwell equations [87] for the electric dipole and obtaining the power
of radiation in all directions, as well as its polarization. The total time-average ra-
diation is given by the famous Hertz formula

P = 1

3c3
p2ω4. (12.118)

The electric dipole at point zero with moment p(t) is defined as the charge distribu-
tion ρ(t,x) = −p(t) · ∇δ3(x). This distribution generates the electromagnetic wave
radiating energy to infinity. Formula (12.118) holds for the harmonic dipole with
p(t) = p cosωt .

The Dipole Potentials First, with the help of the continuity equation for charge
and current ρ̇+∇ ·j = 0, the corresponding dipole current density may be calculated
as follows:

j(t,x) = ṗ(t)δ3(x). (12.119)

Then retarded vector potential (12.160), as generated by this current, is

A(t,x) = 1

c

∫

ds

∫

d3y
j(s,y)

|x − y|δ
(
s + |x − y|/c − t

)

= 1

c

∫

ds ṗ(s)
1

|x|δ
(
s + |x|/c − t

) = 1

c

ṗ(t − r/c)

r
, (12.120)

where r = |x|. Similarly, the retarded scalar potential (12.160) equals

φ(t,x) =
∫

ds

∫

d3y
ρ(s,y)

|x − y| δ
(
s + |x − y|/c − t

)

=
∫

ds p(s) · ∇
[

1

|x − y|δ
(
s + |x − y|/c − t

)
]∣
∣
∣
∣
y=0

=
∫

ds p(s) ·
[

x − y
|x − y|3 δ

(
s + |x − y|/c − t

)

− 1

|x − y|δ
′(s + |x − y|/c − t)

x − y
c|x − y|

]∣
∣
∣
∣
y=0

=
[

p(t − r/c) · x
r3

+ ṗ(t − r/c) · x
cr2

]

= x · ṗ(t − r/c)

cr2
+O

(
r−2), r → ∞.



12.10 The Hertzian Dipole Radiation 219

The Dipole Fields Now we can calculate the magnetic field,

B(t,x) = ∇ × A(t,x) = 1

c
∇ × ṗ(t − r/c)

r

= 1

c
ṗ(t − r/c) × x

r3
+ 1

cr
∇(t − r/c) × p̈(t − r/c)

= p̈(t − r/c) × x
c2r2

+O
(
r−2) (12.121)

and, in a similar fashion, the electric field

E(t,x) = −1

c
Ȧ(t,x) − ∇φ(t,x) = − 1

c2

p̈
r

− ∇ x · ṗ(t − r/c)

cr2
+O

(
r−2)

= − 1

c2

p̈
r

− 1

cr2

(
ṗ + xj∇[

ṗj (t − r/c)
]) − 1

c
x · ṗ∇r−2 +O

(
r−2)

= − 1

c2

p̈
r

+ x(x · p̈)

c2r3
+O

(
r−2) = 1

c2r3

(
p̈(t − r/c) × x

) × x +O
(
r−2).

(12.122)

We observe that x ⊥ E ⊥ B; i.e., this is a radiation field.

The Dipole Radiation Now for the energy flow (the Poynting vector), we find

S(t,x) = c

4π
E × B ∼ 1

4πc3r5

[
p̈(t − r/c) × x) × x

] × (p̈ × x)

= x
4πc3r3

∣
∣
[
1 − |n〉〈n|]p̈∣

∣2
. (12.123)

Equivalently,

S(t,x) ∼ n
sin2 χ

4πc3r2
p̈2(t − r/c), r � 1, (12.124)

where n = x/r , and χ is the angle between n and p̈(t − r/c). For the fixed angle,
averaging over time, gives

S(t,x) ∼ n
sin2 χ

4πc3r2
p̈2, r � 1. (12.125)

Hence mean total energy radiation is given by

P =
∫

|x|=r

S(x) · ndx = p̈2

4πc3

∫

|x|=1
sin2 χ dx = 2

3c3
p̈2. (12.126)

Remark 12.19

(i) S behaves like r−2 for large distances, and hence the total energy flow through
a large sphere is bounded in case |p̈(t)| is bounded.

(ii) All rejected terms with rapid decay at infinity do not contribute to the total
energy flow through a large sphere.
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(iii) There is no radiation (energy flow) in the direction of the dipole (for χ = 0,π ).
In the orthogonal directions, for χ = π/2, the electric field is parallel to p(t −
r/c), while the magnetic field is orthogonal to p(t − r/c).

(iv) S is directed outwards—this means the energy radiation to infinity, which is
a characteristic property of the retarded potentials.

Application to the Harmonic Oscillator For the harmonic oscillator we have
p(t) = p cosωt with ω �= 0, and hence averaging over time p̈2 = p2ω4 and us-
ing (12.126), it is found that

P = 2

3c3
p2ω4. (12.127)

Now (12.118) follows, because p2 = p2/2. Formula (12.125) holds with 2/3 in-
stead of sin2 χ , provided that the orientation of the harmonic oscillator is random
isotropic:

S(t,x) ∼ n
p2ω4

12πc3r2
, r � 1. (12.128)

12.11 The Initial Problem for the Maxwell Equations

Solutions of the Maxwell equations (12.43) are uniquely determined by the initial
conditions

E|t=0 = E0(x), B|t=0 = B0(x), x ∈ R
3. (12.129)

By (12.103), the total energy of the Maxwell field is given by

W(t) = 1

8π

∫

R3

[
E2(t,x) + B2(t,x)

]
dx. (12.130)

Hence for finite energy solutions, we have (E(t, ·),B(t, ·)) ∈ L2 ⊕ L2 for all
t ∈ R, where L2 := L2(R3) ⊗ R

3. Therefore, it is natural to look for a solution
(E(t, ·),B(t, ·)) ∈ C(R,L2 ⊕ L2) of the initial problem (12.43), (12.129).

For the existence of such a solution it is necessary that (E0(x),B0(x)) ∈ L2 ⊕L2.
Moreover, from the Maxwell equations it follows that

divE0(x) = 4πρ(0,x), divB0(x) = 0, x ∈ R
3; (12.131)

these are necessary constraints for the existence of solutions of the overdetermined
system (12.43).

Finally, it is natural to assume that

ρ(t,x) ∈ C
(
R,L2(

R
3)), j(t,x) ∈ C

(
R,L2). (12.132)

Lemma 12.20 Let E0(x),B0(x) and ρ(t,x), j(t,x) satisfy all the above conditions.
Then
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(i) The initial problem (12.43), (12.129) has a unique solution (E(t, ·),B(t, ·)) ∈
C(R,L2 ⊕ L2);

(ii) Let j(t,x) ≡ 0. Then the corresponding field energy (12.130) is conserved:
∫

R3

[
E2(t,x) + B2(t,x)

]
dx = const, t ∈R

3. (12.133)

(iii) The convolution representation holds

(
E(t)

B(t)

)

= M(t) ∗
(

E0
B0

)

+ 4π

∫ t

0
G(t − s) ∗

(
ρ(s)
1
c
j(s)

)

ds, t ∈R,

(12.134)

where E(t) := E(t, ·), etc., and M(t) and G(t) are, respectively, the 6 × 6 and
the 6 × 4 matrix-valued distributions concentrated on the sphere |x| = |t | for
every fixed t ∈ R:

M(t)(x) = 0, G(t,x) = 0 for |x| �= |t |. (12.135)

Proof Step (i) We introduce the complex field C(t,x) = E(t,x) + iB(t,x) and
rewrite (12.43) as

1

c
Ċ(t,x) = −i curl C(t,x) − 4π

c
j(t,x), div C(t,x) = 4πρ(t,x),

(12.136)

C|t=0 = C0(x), (12.137)

where C0(x) = E0(x) + iB0(x).

Step (ii) Equations (12.136) and (12.137) in the Fourier transform Ĉ(t,k) =∫
exp(ik · x)C(t,x) dx read as

˙̂C(t,k) = cm̂(k)Ĉ(t,k) − 4π ĵ(t,k), −ik · Ĉ(t,k) = 4πρ̂(t,k), (12.138)

Ĉ|t=0 = Ĉ0(k), (12.139)

where m̂(k) denotes the 3 × 3 skew-adjoint matrix of the operator −k× in C
3.

The solution Ĉ(t,k) is defined uniquely from the first equation of (12.138) of the
overdetermined system (12.138), (12.139),

Ĉ(t,k) = exp
(
cm̂(k)t

)
Ĉ0(k) − 4π

∫ t

0
exp

(
cm̂(k)(t − s)

)
ĵ(s,k) ds. (12.140)

We still have to show that (12.140) satisfies the constraint from (12.138):

S(t,k) := 4πρ̂(t,k) + ik · Ĉ(t,k) ≡ 0. (12.141)
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Indeed, the Fourier transformed equations (12.131), (12.3) are

−ik · Ĉ0(k) = 4πρ̂(0,k), (12.142)

˙̂ρ(t,k) − ik · ĵ(t,k) = 0. (12.143)

Hence

S(0,k) = 4πρ̂(0,k) + ik · Ĉ0(k) = 0,

Ṡ(t,k) = 4π ˙̂ρ(t,k) − 4πik · ĵ(t,k) = 0,
(12.144)

where we employed the first equation of (12.138) and k · m̂(k)Ĉ(t,k) = 0.
Now (12.141) follows from (12.144). Finally, (12.140) implies that Ĉ(t, ·) ∈
C(R,L2 ⊗ C), and hence C(t, ·) ∈ C(R,L2 ⊗ C), by Plancherel’s theorem. This
proves Lemma 12.20(i).

Step (iii) From the Plancherel identity it follows that

∫

R3

[
E2(t,x) + B2(t,x)

]
dx =

∫

R3

∣
∣C(t,x)

∣
∣2

dx = (2π)−3
∫

R3

∣
∣Ĉ(t,k)

∣
∣2

dk.

(12.145)
As a result, (12.133) follows from (12.140), because j(t,k) ≡ 0 and exp(cm̂(k)t) is
a unitary matrix.

Step (iv) Finally, we need to transform (12.140) back to position space in order to
check (12.135). We have m̂ = m̂(k) = −k×, m̂2 = −k2 +|k〉〈k|, m̂3 = −|k|2m̂, . . . .
Hence,

m̂2j+1 = (−1)j |k|2j m̂ = (−1)j
m̂

|k| |k|2j+1 for j ≥ 0,

m̂2j = m̂2j−1m̂ = (−1)j−1|k|2j−2m̂2 = −(−1)j
(

m̂

|k|
)2

|k|2j , j ≥ 1,

and further, using Euler’s trick,

exp
(
m̂(k)t

) =
∞∑

0

(m̂t)n/n! =
∞∑

0

(m̂t)2j /(2j)! +
∞∑

0

(m̂t)2j+1/(2j + 1)

= 1 +
(

m̂

|k|
)2(

1 − cos |k|t) + m̂

|k| sin |k|t

= cos |k|t + m̂
sin |k|t

|k| + (
1 − cos |k|t) |k〉〈k|

|k|2 . (12.146)
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We set K̂(t,k) = sin |k|t/|k|, m̂(t,k) = ∂t K̂(t,k) + m̂K̂(t,k), and D̂(t,k) =
1 − cos |k|t . Then we finally obtain,

exp
(
cm̂(k)t

) = m̂(ct,k) + |k〉D̂(ct,k)

|k|2 〈k|. (12.147)

Inserting this into (12.140) and using (12.142) and (12.143), it follows that

Ĉ(t,k) = m̂(ct,k)Ĉ0(k) + 4πi|k〉D̂(ct,k)

|k|2 ρ̂(k,0)

− 4π

∫ t

0

[

m̂
(
c(t − s),k

)
ĵ(s,k) − i|k〉D̂(c(t − s),k)

|k|2
˙̂ρ(s,k)

]

ds.

(12.148)

Further, integrating by parts, this becomes

Ĉ(t,k) = m̂(ct,k)Ĉ0(k)

− 4π

∫ t

0

[

m̂
(
c(t − s),k

)
ĵ(s,k) − i|k〉∂t D̂(c(t − s),k)

|k|2 ρ̂(s,k)

]

ds.

(12.149)

Step (v) Using ∂t D̂(t,k) = |k| sin |k|t = |k|2K̂(t,k), this gives the inverse Fourier
transforms,

m(t,x) := F−1
k�→xm̂(t,k) = ∂tK(t,x) − i curl◦K(t,x), (12.150)

g(t,x) := F−1
k�→x

(
i|k〉K̂(t,k), −m̂(t,k)

) = (−∇K(t,x),−m(t,x)
)
, (12.151)

where K(t, x) denotes the Kirchhoff kernel

K(t,x) := F−1K̂(t,k) = 1

4πt
δ
(|x| − |t |). (12.152)

In this notation, (12.149) implies (12.134) in the ‘complex’ form

C(t) = m(ct) ∗ C0 + 4π

∫ t

0
g
(
c(t − s)

) ∗
(

cρ(s)

j(s)

)

ds, t ∈R. (12.153)

Separating into real and imaginary parts, we obtain

E(t,x) = E(r)(t,x) + E(0)(t,x), B(t,x) = B(r)(t,x) + B(0)(t,x), (12.154)

where we denote
(

E(0)(t)

B(0)(t)

)

=
(

∂tK(ct) curl◦K(ct)

− curl◦K(ct) ∂tK(ct)

)

∗
(

E0
B0

)

(12.155)
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and
(

E(r)(t)

B(r)(t)

)

= 4π

∫ t

0

(−∇K(c(t − s)) −∂tK(c(t − s))

0 curl◦K(c(t − s))

)

∗
(

cρ(s)

j(s)

)

ds.

(12.156)

Now (12.134) and (12.135) immediately follow. �

12.12 The Long Time Asymptotics: Retarded Potentials

The retarded potentials are particular solutions of the wave and Maxwell equations.
We explain the outstanding role of these potentials as regards the long time asymp-
totics.

Formula (12.156) may be rewritten as follows

E(r)(t,x) = −∇φ(r)(t,x) − 1

c
Ȧ(r)(t,x), B(r)(t,x) = curl A(r)(t,x),

(12.157)
where the potentials are given by

φ(r)(t,x) =
∫

�(tret)

|x − y|ρ(tret,y) dy, A(r)(t,x) = 1

c

∫
�(tret)

|x − y| j(tret,y) dy,

(12.158)
where tret = t − |x − y|/c. Let us assume that the charge and current densities are
continuous and localized in space,

ρ(t,x) = 0, j(t,x) = 0, |x| > R, t ∈R. (12.159)

Then potentials (12.158) for ct > R + |x| become the retarded potentials [93],

⎧
⎪⎪⎨

⎪⎪⎩

φ(r)(t,x) = φret(t,x) :=
∫

ρ(t − |x − y|/c,y)

|x − y| dy,

A(r)(t,x) = Aret(t,x) := 1

c

∫
j(t − |x − y|/c,y)

|x − y| dy,

∣
∣
∣
∣
∣
∣
∣
∣

ct > R + |x|. (12.160)

Similarly, fields (12.157) for ct > R + |x| become the retarded fields

{
E(r)(t,x) = −∇φret(t,x) − Ȧret(t,x),

B(r)(t,x) = curl Aret(t,x),

∣
∣
∣
∣
∣

ct > R + |x|. (12.161)

A distinguished role of the particular retarded solutions (12.160) of the wave equa-
tions (12.47) is justified in scattering theory. Namely, as we have proved above, the
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solutions to the wave equations (12.47) are defined uniquely by the initial conditions
at time zero:

φ|t=0 = φ0(x), φ̇|t=0 = π0(x), x ∈ R
3, (12.162)

A|t=0 = A0(x), Ȧ|t=0 = �0(x), x ∈ R
3. (12.163)

However, the long time asymptotics of solutions as t → +∞ do not depend on
the initial data for space-localized functions φ0,π0,A0,�0, and coincide with the
retarded potentials (12.160). For example, let us consider the initial functions with
compact supports.

Lemma 12.21 Let (12.159) hold and let the initial functions φ0(x),π0(x),A0(x),

�0(x) be continuous and localized in space,

φ0(x) = π0(x) = 0, A0(x) = �0(x) = 0, |x| > R0. (12.164)

Then for the large time the solutions of the initial problems (12.47), (12.162) coin-
cide with the retarded potentials (12.160):

φ(t,x) = φret(t,x), A(t,x) = Aret(t,x), ct > R0 + |x|. (12.165)

Proof Let us prove this lemma for the scalar potential φ(t,x). The Kirchhoff for-
mula for the solution reads

φ(t,x) = 1

4πct

∫

Sct (x)

π0(y) dS(y) + ∂t

(
1

4πt

∫

Sct (x)

φ0(y) dS(y)

)

+ φret(t,x),

t > 0, (12.166)

where Sct (x) denotes the sphere {y ∈ R
3 : |x − y| = ct}, and dS(y) is the Lebesgue

measure on the sphere. Now (12.165) follows from (12.164). �

Similar theorem holds for the Maxwell equations.

Lemma 12.22 Let (12.159) and the conditions of Theorem 12.20 hold, and

E0(x) = B0(x) = 0, |x| > R0. (12.167)

Then

E(t,x) = Eret(t,x), B(t,x) = Bret(t,x), ct > R0 + |x|. (12.168)

Proof (12.168) follows from (12.154) and (12.161) by (12.167), (12.155) and
(12.152) since E(0),B(0) vanish for ct > R0 + |x|. �
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Finite Energy Initial Data For the Maxwell equations with j = 0, the energy is
conserved by (12.133). For the wave equations (12.47) with ρ = 0 and j = 0, the
energy conservations read,

⎧
⎪⎪⎨

⎪⎪⎩

∫ [
1

c2

∣
∣φ̇(t,x)

∣
∣2 + ∣

∣∇φ(t,x)
∣
∣2

]

dx = const,
∫ [

1

c2

∣
∣Ȧ(t,x)

∣
∣2 + ∣

∣∇A(t,x)
∣
∣2

]

dx = const.
(12.169)

For solutions with finite initial energy, (12.165) and (12.168) hold asymptotically
as t → +∞ in the local energy semi-norms.

Lemma 12.23 Suppose that (12.159) holds. Let φ(t,x), A(t,x) and E(t,x),B(t,x),
respectively, be finite energy solutions of the wave equations (12.47) and of the
Maxwell equations (12.43). Then, for any R > 0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫

|x|<R

[∣
∣φ̇(t,x) − φ̇ret(t,x)

∣
∣2 + ∣

∣∇φ(t,x) − ∇φret(t,x)
∣
∣2]

dx → 0,

∫

|x|<R

[∣
∣Ȧ(t,x) − Ȧret(t,x)

∣
∣2 + ∣

∣∇A(t,x) − ∇Aret(t,x)
∣
∣2]

dx → 0,

∫

|x|<R

[∣
∣E(t,x) − Eret(t,x)

∣
∣2 + ∣

∣B(t,x) − Bret(t,x)
∣
∣2]

dx → 0,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

t → +∞.

(12.170)

Proof We split the initial functions in two components: the first, space-localized
component, similarly to (12.164) and (12.167), and the remainder, which is small
in the energy norm. We denote by φ′,A′,E′,B′ the solutions corresponding to the
space-localized initial states, with given charge and current densities. On the other
hand, let φ′′,A′′,E′′,B′′ be the solutions corresponding to the remainder initial
states and to zero charge and current densities.

Now asymptotics (12.170) hold for φ′,A′,E′,B′, instead of φ,A,E,B, by
(12.165) and (12.168).

Finally, the contributions of φ′′, A′′, E′′, B′′ into integrals (12.170) are uni-
formly small in time, by the energy conservation law (12.169) for φ′′ and A′′, and
by (12.133), for E′′ and B′′. �

12.13 The Lorentz Theory of Polarization and Magnetization

In 1890s, Lorentz developed a phenomenological theory of matter in the Maxwell
field in the context of his electron theory. This approach works equally well in the
classical and quantum contexts.

The state of a neutral molecule is characterized by its dipole moment and mag-
netic moment. The parameters allow one to describe with high precision the field,
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generated by the molecule, at ‘large distances’ from the molecule. Hence, the param-
eters give a complete description of the molecular field for any macroscopic obser-
vation, which can be made only at distances much larger than the size of a molecule.
Hence, it suffices to specify the influence of external fields onto these parameters by
the corresponding constitutive equations.

Suppose that a molecule is located near the origin; i.e.,

ρ(t,y) = 0, j(t,y) = 0, |x| > a, t ∈ R. (12.171)

where a > 0 denotes the size of a molecule, and ρ, j denote the corresponding
molecular charge and current densities.

12.13.1 Stationary Molecular Fields in Dipole Approximation

First, we consider the static case when densities are independent of time. In this
case, equations (12.47) become stationary Poisson equations and their solutions are
the Coulomb potentials

φ(x) =
∫

|y|≤a

ρ(y) dy
|x − y| , A(x) = 1

c

∫

|y|≤a

j(y) dy
|x − y| , x ∈ R

3. (12.172)

Expanding 1/|x − y| in a Taylor series for small |y| ≤ a and large |x| � a

1

|x − y| = 1
√

x2 + y2 − 2yx
= 1

|x| + yx
|x|3 +O

(
1

|x|3
)

, (12.173)

transforms (12.172) into
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(x) = Q

|x| + px
|x|3 +O

(
a2

|x|3
)

,

A(x) = J
c|x| + Mx

|x|3 +O
(

a2

|x|3
)

,

∣
∣
∣
∣
∣
∣
∣
∣
∣

|x| � a, (12.174)

where we set
⎧
⎪⎪⎨

⎪⎪⎩

Q =
∫

ρ(y) dy, p =
∫

yρ(y) dy,

J =
∫

j(y) dy, Mkl = 1

c

∫

jk(y)yl dy.

(12.175)

We will identify molecular fields with the first two terms in (12.174), because
|x|/a � 1 in all macroscopic observations. This corresponds to the following dipole
approximations for ρ(y) and j(y):

ρd(y) = Qδ(y) − p · ∇δ(y), jd(y) = Jδ(y) − cM∇δ(y). (12.176)
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12.13.2 Multipole Expansions of Non-Stationary Fields

Asymptotic formulas of type (12.174) can be extended to non-stationary localized
densities satisfying (12.171). In this case, the corresponding Maxwell field is repre-
sented by the retarded potentials (12.160):
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(t,x) =
∫

|y|≤a

ρ(t − |x − y|/c,y)

|x − y| dy ≈
∫

|y|≤a

ρ(t − |x|/c,y)

|x − y| dy,

A(t,x) = 1

c

∫

|y|≤a

j(t − |x − y|/c,y)

|x − y| dy ≈ 1

c

∫

|y|≤a

j(t − |x|/c,y)

|x − y| dy,

∣
∣
∣
∣
∣
∣
∣
∣
∣

|x| � a.

Continuing the Taylor expansion (12.173), we obtain a complete series of the
type (12.174), including all negative powers of |x|:

1

|x − y| = 1

|x| + yx
|x|3 +

∑

|α|≥2

yαPα(n)

|x||α|+1
, |y| ≤ a < |x|, (12.177)

where n := x/|x| and |Pα(n)| ≤ C(1 + |α|)2. The series converge, provided that
|y| < a and |x| > a. Hence, the retarded potentials may be expressed by the con-
verging series

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(t,x) = Q(t − |x|/c)
|x| + p(t − |x|/c)x

|x|3 +
∑

|α|≥2

φα(t − |x|/c)Pα(n)

|x||α|+1
,

A(t,x) = J(t − |x|/c)
c|x| + M(t − |x|/c)x

|x|3 +
∑

|α|≥2

Aα(t − |x|/c)Pα(n)

|x||α|+1
,

∣
∣
∣
∣
∣
∣
∣
∣
∣

|x| � a,

(12.178)
where in particular

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q(t) =
∫

|y|≤a

ρ(t,y) dy, p(t) =
∫

|y|≤a

yρ(t,y) dy,

J(t) =
∫

|y|≤a

j(t,y) dy, Mkl(t) = 1

c

∫

|y|≤a

jk(t,y)yl dy.

(12.179)

These series correspond to the following multipole expansions for ρ(t,y) and
j(t,y):

⎧
⎪⎪⎨

⎪⎪⎩

ρ(t,y) = Q(t)δ(y) − p(t) · ∇δ(y) +
∑

|α|≥2

ρα(t)∇αδ(y),

j(t,y) = J(t)δ(y) − cM(t)∇δ(y) +
∑

|α|≥2

jα(t)∇αδ(y),
(12.180)

where

ρα(t) =
∫

|y|≤a

(−y)α

α! ρ(t,y) dy, jα(t) =
∫

|y|≤a

(−y)α

α! j(t,y) dy, (12.181)
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by (12.171). The series (12.180) converge in the sense of distributions dual to the
space of test functions ϕ(x) with

|∇αϕ(0)|
α! ≤ Cb−|α|, 0 ≤ |α| < ∞, (12.182)

where b > a. For instance, formula (12.177) with |x| > a gives a complete set of
such test functions. In particular, the continuity equation for charge and current

ρ̇(t,y) + ∇ · j(t,y) = 0 (12.183)

holds in this sense. Substituting here the series (12.180), we obtain

Q̇(t)δ(y) − ṗ(t) · ∇δ(y) + J(t) · ∇δ(y) +
∑

|α|≥2

Cα(t)∇αδ(y) = 0, (12.184)

and hence

Q̇(t) = 0, J(t) = ṗ(t). (12.185)

12.13.3 Molecule in a Stationary State: Magnetic Moment

Let us consider a molecule in a stationary state; i.e., ρ(t,y) ≡ ρ(y) and j(t,y) ≡
j(y). Then the multipole expansions (12.180) do not depend on time,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ(t,y) ≡ ρ(y) = Qδ(y) − p · ∇δ(y) +
∑

|α|≥2

ρα∇αδ(y),

j(t,y) ≡ j(y) = Jδ(y) − cM∇δ(y) +
∑

|α|≥2

jα∇αδ(y).
(12.186)

Now the second identity of (12.185) gives that

J = 0. (12.187)

Lemma 12.24 Let the multipole charge-current densities (12.186) correspond to
a stationary state of a molecule. Then the matrix M of (12.174), (12.175) is skew-
symmetric and

M∇ = m × ∇, (12.188)

where m ∈ R
3 is the magnetic moment of the molecule.

Proof Substituting (12.186) into (12.183), it is found that

∇ · j(y) = 0. (12.189)
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Therefore, in particular

∇ · [M∇δ(y)
] = 0. (12.190)

Hence, Mkl +Mlk = 0, and so the matrix M admits the representation

M =
⎛

⎝
0 −m3 m2

m3 0 −m1
−m2 m1 0

⎞

⎠ (12.191)

with a vector m ∈ R
3. �

Further, by (12.175),

m = 1

2c

∫

y × j(y) dy, (12.192)

and so the integral is independent of the choice of the origin, because
∫

j(y) dy = 0

by (12.187).

From now on we will assume the following:

The Adiabatic Hypothesis Molecular dynamics can be described as an adiabatic
evolution of stationary states with corresponding dipole electric moment p(t) and
magnetic moment m(t).

12.13.4 The Maxwell Equations in Matter

Polarization and Magnetization Let us consider a neutral molecule, so Q = 0.
Now (12.185)–(12.188) imply, in the dipole approximation,

ρ(t,x) ≈ −p(t) · ∇δ(x), j(t,x) ≈ ṗ(t) δ(x) + c∇ × m(t)δ(x) (12.193)

for the charge and current densities of a molecule. The total molecular charge–
current densities ρmol(t,x) and jmol(t,x) in matter are sums of contributions of all
molecules. In the dipole approximation (12.193), the densities are given by

ρmol(t,x) ≈ −∇ · Pd(t,x), jmol(t,x) ≈ Ṗd(t,x) + c∇ × Md(t,x), (12.194)

where

Pd(t,x) =
∑

n

pn(t) · ∇δ(x − xn), Md(t,x) =
∑

n

mn(t)δ(x − xn). (12.195)

These singular distributions and equations (12.194) were obtained by dipole approx-
imation of molecular charge and current densities for |x| � a.
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Now we consider the limit a → 0: the corresponding limiting electric po-
larization P(t,x) and magnetization M(t,x) are the solutions to the system of
type (12.194),

ρmol(t,x) = −∇ · P(t,x), jmol(t,x) = Ṗ(t,x) + c∇ × M(t,x). (12.196)

For instance, a solution M(t,x) exists, since ∇ · [jmol − Ṗ] = ∇ · jmol + ρ̇mol = 0.
Moreover, the equations can be written as

∇ ·B(t,x) = 4πρmol, ∇ ×B(t,x) = 4π

c
jmol(t,x) + 1

c
Ė(t,x), (12.197)

where

E(t,x) := −4πP(t,x), B(t,x) := 4πM(t,x). (12.198)

Equations (12.197) coincide with the first and last Maxwell equations (12.43), cor-
responding to molecular charges and currents. However, to uniquely identify the
fields, we need two additional vector equations.

Below we will assume that E and B are proportional to E and B respectively
(see (12.200) and (12.202)). Then the field B also satisfies the third Maxwell equa-
tion. Finally, E and B also satisfy the second Maxwell equation (which is the Fara-
day induction equation), if E,B do not depend on time as well as E,B. Thus, in the
static case, E and B coincide with the electric and magnetic fields generated by the
molecular charges and currents.

The Dielectric Displacement and Magnetic Intensity Let us separate the macro-
scopic and molecular charge and current densities in the Maxwell equations (12.43):

ρ(t,x) = ρmac(t,x) + ρmol(t,x), j(t,x) = jmac(t,x) + jmol(t,x). (12.199)

Further, we introduce new fields

D(t,x) := E(t,x) − E(t,x), H(t,x) := B(t,x) −B(t,x), (12.200)

which are called the dielectric displacement and magnetic field intensity. Finally,
substituting expressions (12.199) and (12.200) into the Maxwell equations (12.43),
and using (12.197), we obtain the Maxwell equations in matter:

⎧
⎪⎪⎨

⎪⎪⎩

div D(t,x) = 4πρmac(t,x), curl E(t,x) = −1

c
Ḃ(t,x),

div B(t,x) = 0, curl H(t,x) = 1

c
Ḋ(t,x) + 4π

c
jmac(t,x).

(12.201)

The Constitutive Equations Equations (12.201) contain two additional unknown
vector fields D,H. Therefore, we need two additional vector equations to make the
theory self-consistent. For isotropic materials, the simplest hypothesis are linear
constitutive equations

D(t,x) = εE(t,x), B(t,x) = μH(t,x), (12.202)
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where ε is called the permittivity and μ is called the permeability of matter. The
constitutive equations can be rewritten also as follows

P(t,x) = χeE(t,x), M(t,x) = χmH(t,x), (12.203)

where χe is called the electric susceptibility and χm is called the magnetic suscep-
tibility of matter, and in this case

ε = 1 + 4πχe, μ = 1 + 4χm, (12.204)

by (12.200). With constitutive equations (12.202), the choice of fields P,M and
D,H is uniquely fixed. In practice, the fields are measured by observations in
the corresponding cylindrical cavities [93]. It is worth noting that Eqs. (12.196),
(12.201) were suggested by the dipole approximations (12.194).

12.13.5 The Refraction Coefficient

We use (12.202) to eliminate D and H from (12.201). Introducing potentials as in

(12.44), and using the ‘Lorentz’ gauge condition
εμ

c
φ̇(t,x) + divA(t,x) = 0, we

obtain, as in (12.47),

�macφ(t,x) = 4π

ε
ρmac(t,x), �macA(t,x) = 4πμ

c
jmac(t,x), (12.205)

where �mac := εμ

c2 ∂2
t − �.

Corollary 12.25 Let εμ > 0. Then the speed of propagation of the electromagnetic
field in matter is c/

√
εμ, and hence the refraction coefficient with respect to vacuum

is given by

n = √
εμ. (12.206)



Chapter 13
Mathematical Appendices

Abstract The Lagrangian and Hamiltonian formalism provide a unifying language
for modern field theory.

The Hamilton–Jacobi theory and geometrical optics are considered as one of the
main issues for the introduction of the Schrödinger equation and quantum observ-
ables.

We give an updated version of Noether’s theorem on currents and give its ap-
plications to the conservation laws for the Schrödinger equation and to the charge
continuity.

The limiting amplitude principle provides an explanation of the photoelectric
effect.

13.1 The Lagrangian and Hamiltonian Mechanics

13.1.1 The Lagrangian Mechanics

The Newton equations for n particles

mi ẍi (t) = −∇xi
V

(
x(t), t

)
, x(t) := (

x1(t), . . . ,xn(t)
)

(13.1)

can be represented as a Lagrangian system. The corresponding Lagrangian L(x, v, t)

is the function on the extended phase space E+ = R
3n ×R

3n ×R,

L(x, v, t) =
∑

i

miv2
i

2
− V (x, t), (x, v, t) ∈ E+, (13.2)

where v = (v1, . . . ,vn). The corresponding Euler–Lagrange equations read as

d

dt
Lv

(
x(t), ẋ(t), t

) = Lx

(
x(t), ẋ(t), t

)
, t ∈R. (13.3)

We consider more general systems with extended phase space E+ := R
N ×R

N ×R,
where N = 1,2, . . . and a Lagrangian function L(x, v, t) ∈ C2(E+). The momen-
tum and energy of the Lagrangian system are defined, respectively, by

p = Lv(x, v, t), (13.4)
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E(x, v, t) = pv − L(x, v, t). (13.5)

Then p = (p1, . . . ,pn), where pi = mivi , and

E =
∑

i

miv2
i

2
+ V (x, t). (13.6)

Lemma 13.1 Suppose that the Lagrangian functional is independent of time; i.e.,
L(x, v, t) = L(x, v). Then the energy is conserved: E(t) := E(x(t), v(t)) = const.

Proof Differentiating, we obtain Ė(t) = ṗv + pv̇ − Lxẋ − Lvv̇ = 0 by (13.4)
and (13.3). �

13.1.2 The Legendre Transformation and Hamiltonian Mechanics

The Legendre transformation can be viewed as a change of variables in the extended
phase space E+ := R

N ×R
N ×R, translating the Euler–Lagrange equations into the

Hamiltonian form.
A function f (v) on R

N defines the map of the extended phase space R
N into

itself defined by λ : v �→ p := fv(v). The Legendre transform of f (v) is the function
on R

N defined by (�f )(p) := pv − f (v) for p = λ(v), provided that the Legendre
map λ is a diffeomorphism R

N → λ(RN).
By the inverse function theorem, λ is the (local) diffeomorphism if and only

if det |fvv| �= 0 for v ∈ R
N . For example, the last inequality holds for f (v) =

∑N
1 mkv

2
k if all mk > 0.

Exercise 13.2 Calculate �v2 = p2/4, �v4 = 3v4 = 3(p/4)4/3, . . . .

Exercise 13.3 Prove that �(�f ) = f if λ : RN → λ(RN) is a diffeomorphism.

We extend the Legendre transformation to Lagrangian functions L(x, v, t) as

H(x,p, t) = pv − L(x, v, t), p := Lv(x, v, t) (13.7)

for every fixed x, t . The function H(x,p, t) coincides with the energy (13.5),
where v is expressed in p.

Lemma 13.4 Suppose that v �→ p := Lv(x, v, t) is a diffeomorphism R
N →

λ(RN) for all fixed (x, t) ∈ R
N × R. Then the Euler–Lagrange equations (13.3)

are equivalent to the Hamiltonian ones,

ẋ(t) = Hp

(
x(t),p(t), t

)
, ṗ(t) = −Hx

(
x(t),p(t), t

)
. (13.8)
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Proof The first equation of (13.8) follows by differentiation of the first iden-
tity (13.7) with fixed x, t :

Hp = v + pvp − Lvvp = v = ẋ, (13.9)

because, by definition, p = Lv . The second equation of (13.8) follows by dif-
ferentiation of the first identity (13.7) with fixed p, t : by (13.3), we have Hx =
−Lx = −ṗ. �

Exercise 13.5 Verify that H(x,p, t) = ∑
i

p2
i

2mi
+ V (x, t) for Lagrangian (13.2).

Exercise 13.6 Calculate the momentum, energy and the Hamilton function for the
Lagrangian of a relativistic particle

L(x,v) = −mc2

√

1 −
(

v
c

)2

, (x,v) ∈ R
3 ×R

3. (13.10)

Solution:

p = mv
√

1 − ( v
c
)2

, v = p
√

m2 + (
p
c
)2

,

E = mc2
√

1 − ( v
c
)2

, H = c2

√

m2 +
(

p
c

)2

.

(13.11)

13.1.3 The Hamilton–Jacobi Equation

Let L(x, v, t) be a Lagrangian function on E+ = R
N ×R

N ×R and let H(x,p, t)

be the corresponding Hamilton function. Consider the initial problem

−Ṡ(x, t) = H
(
x,∇S(x, t), t

)
, (13.12)

S(x,0) = S0(x), x ∈R
N, (13.13)

where S0(x) ∈ C1(RN) is a given function. Our aim is to describe the Hamilton–
Jacobi method for construction of the solution (see [4, 73, 129]).

Namely, consider the corresponding initial problem for the Hamilton system,
{

ẋ(t) = Hp

(
x(t),p(t), t

)
, ṗ(t) = −Hx

(
x(t),p(t), t

)

x|t=0 = x0, p|t=0 = ∇S0(x0)
(13.14)

with x0 ∈R
N . Let (x(x0, t),p(x0, t)) be the solution of this system, which is known

to exist and be C1-smooth for small |t | depending on x0. Consider the function S
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Fig. 13.1 The Lagrangian
manifold

defined by the action integral

S(x0, t) = S0(x0) +
∫ t

0
L

(
x(x0, s), ẋ(x0, s), s

)
ds (13.15)

for x0 ∈ R
N and small |t |. At last, we express x0 in terms of x(x0, t) for small

|t |: this is possible, because the Jacobian matrix ∂x(x0,t)
∂x0

= E for t = 0. We have

x0 = x0(x, t), where x0(x, t) ∈ C1(RN ×R), and so we can define, for small |t |,
S(x, t) = S

(
x0(x, t), t

)
, x ∈R

N. (13.16)

Theorem 13.7 Function (13.16) is the (unique) solution of the initial prob-
lem (13.12) for small |t |.

Proof This result follows from suitable properties of the differential 1-form ω =
pdx − Hdt known as the Poincaré–Cartan integral invariant [4].

Step (i). Consider x0, x0 +�x0 ∈R
N and small |τ |, |τ +�τ |. By Mτ we denote

the following two-dimensional submanifold of the extended phase space E+ (see
Fig. 13.1),

Mτ = {
x(x0 + s�x0, t),p

(
(x0 + s�x0, t), t

) : s ∈ [0,1], t ∈ [0, τ + s�τ ]}.
(13.17)

We have ∂Mτ = α ∪ γ1 ∪ β ∪ γ0, where
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

α := {(
x0 + s�x0,∇S0(x0 + s�x0),0

) : s ∈ [0,1]},
β := {(

x(x0 + s�x0, t + s�τ),p(x0 + s�x0, t + s�τ), t + s�τ
) : s ∈ [0,1]},

γ0 := {(
x(x0, t),p(x0, t), t

) : t ∈ [0, τ ]},
γ1 := {(

x(x0 + �x0, t),p(x0 + �x0, t)
) : t ∈ [0, τ + �τ ]}.

(13.18)
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Let us orient the intervals according to increment of parameters s, t . Then, by the
Stokes theorem,

∫

Mτ

dω =
∫

α

ω +
∫

γ1

ω −
∫

β

ω −
∫

γ0

ω. (13.19)

Step (ii). The key observation is that the restriction of dω onto Mτ vanishes,

dω|Mτ
= 0. (13.20)

In other words, Mτ is the Lagrangian manifold by the following two facts:

(i) H := (Hp,−Hx,1) is a tangent vector field to Mτ at every point, and
(ii) For every vector field V in a neighborhood O(Mτ ) of Mτ , we have

dω(H,V)|O(Mτ ) ≡ 0. (13.21)

The last identity holds by the following arguments. First,

dω = dp ∧ dx − dH ∧ dt = dp ∧ dx − (Hp dp + Hx dx) ∧ dt

is antisymmetric bilinear form with matrix

A =
⎛

⎝
0 E Hx

−E 0 Hp

−Hx −Hp 0

⎞

⎠ , (13.22)

where E is the N × N identity matrix. Second, AH ≡ 0, and hence

dω(H,V) = 〈AH,V〉 ≡ 0. (13.23)

Step (iii) Now (13.19) reads as

0 =
∫

α

∇S0(x) dx +
∫

γ 1
Ldt −

∫

β

(p dx − H dt) −
∫

γ 0
Ldt, (13.24)

because dt |α = 0, p|α = ∇S0(x) and ω|γ i = Ldt . The first term on the RHS of
(13.24) is equal to S0(x0 + �x0) − S0(x0). Therefore, by (13.15) and (13.16),

∫

β

(p dx − H dt) =
[

S0(x0 + �x0) +
∫

γ 1
Ldt

]

−
[

S0(x0) +
∫

γ 0
Ldt

]

= S(x + �x, τ + �τ) − S(x, τ ), (13.25)

where x + �x = x(x0 + �x0, τ + �τ) and x = x(x0, τ ). Finally, (13.25) implies

Ṡ(x, t) = −H(x,p, t), ∇S(x, t) = p; (13.26)

Eq. (13.12) now follows. �
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13.2 Geometrical Optics

The short wavelength solutions of the Schrödinger equation propagate along rays,
which are trajectories of the corresponding classical Lorentz equation. A mathemat-
ical approach to justification of this geometrical optics was discovered by Fresnel
in 1815, and continued by Rayleigh in 1877, Debye in 1909, Jeffreys in 1923, and
by Schrödinger, Wentzel, Kramers and Brillouin in 1926.

The Lorentz equation (1.6) for a classical particle in the Maxwell field admits the
Hamilton form (3.31),

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = ∇pH(x,p, t) = 1

m

(

p − e

c
A(t,x)

)

,

ṗ(t) = −∇xH(x,p, t) = −e∇φ(t,x) + e

mc
∇

[

A(t,x) ·
(

p − e

c
A(t,x)

)]

(13.27)
with the Hamiltonian function (3.30):

E =H(t,x,p) = 1

2m

[

p − e

c
A(t,x)

]2

+ eφ(t,x). (13.28)

Schrödinger associated the wave equation

i�∂tψ(t,x) = 1

2m

(

−i�∇ − e

c
A(t,x)

)2

ψ(t,x) + eφ(t,x)ψ(t,x) (13.29)

to the Hamilton system (13.27). We shall demonstrate that the short-wavelength
solutions to (13.29) are governed by the Hamilton equations (13.27). More precisely,
we consider the Cauchy problem for (13.29) with the initial condition

ψ |t=0 = a0(x)eiS0(x)/�, x ∈R
3, (13.30)

where S0(x) is a real function. We denote by (x(x0, t),p(x0, t)) the solution of the
Hamilton equations (13.27) with the initial condition (cf. (13.14)):

x|t=0 = x0, p|t=0 = ∇S0(x0). (13.31)

The solution exists for |t | < T (x0), where T (x0) > 0.

Definition 13.8

(i) The curve x = x(t,x0) is the ray of the Cauchy problem (13.29), (13.30) start-
ing at the point x0.

(ii) The ray tube or the ray beam emanating from the initial function (13.30) is
the set

T = {(
t,x(t,x0)

) ∈R
4 : |t | < T (x0), x0 ∈ suppa0

}
. (13.32)



13.2 Geometrical Optics 239

The following lemma means, roughly speaking, that the set T is the support of
the solution of the Cauchy problem (13.29), (13.30) if �� 1. Namely, we construct
the formal WKB–Debye expansion

ψ(t,x) ∼
( ∞∑

k=0

�
kak(t,x)

)

eiS(t,x)/�, � → 0. (13.33)

Assume that the potentials φ(t,x),A(t,x) ∈ C∞(R4) and a0, S0 ∈ C∞(R3). Then
the map x0 �→ x(x0, t) is a local C∞-diffeomorphism of R3 for small |t |.

Lemma 13.9 Suppose that the map x0 �→ x(t,x0) is a diffeomorphism of suppa0
for |t | < T . Then the formal expansion (13.33) holds for |t | < T and is identically
zero outside T ; i.e.,

ak(t,x) = 0, (t,x) /∈ T , |t | < T, k = 0,1,2, . . . . (13.34)

Proof Substituting the asymptotic expansion (13.33) into (13.29) and equating the
leading term with �

0 = 1, we obtain the Hamilton–Jacobi equation (3.49),

−Ṡ(t,x) = H
(
x,∇S(t,x), t

)
, x ∈ R

3, |t | < T, (13.35)

whose solution is integral (13.15) over the trajectories of the classical equa-
tions (13.27), according to Hamilton–Jacobi’s Theorem 13.7.

Further, substitute ψ(t,x) = a(t,x)eiS(t,x)/� into the Schrödinger equation
(13.29). Then Eq. (13.35) implies the following transport equation for the amplitude
a(t,x):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ȧ(t,x) = − 1

m

[

∇S(t,x) − e

c
A(t,x)

]

· ∇a(t,x)

+ 1

2m

[
�S(t,x) + ∇ · A(t,x)

]
a(t,x) + i�

2m
�a(t,x)

=: −Da(t,x) + M(t,x)a(t,x) + i�

2m
d(t,x), |t | < T,

a|t=0 = a0(x), x ∈R
3,

(13.36)

where D is the first order differential operator Da(t,x) := 1
m

[∇S(t,x)− e
c
A(t,x)] ·

∇a(t,x), and where we set

M(t,x) := 1

2m

[
�S(t,x) + ∇ · A(t,x)

]
, d(t,x) := �a(t,x).

The key observation is that

ȧ(t,x) + Da(t,x) = d

dt
a
(
t,x(t,x0)

)
, (13.37)
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because ẋ(t,x0) = 1
m

[p(t,x0) − e
c
A(t,x(t,x0))] by (13.27), and since

p(t,x0) = ∇S
(
t,x(t,x0)

)
, (13.38)

by (13.26). Hence (13.36) can be rewritten as

⎧
⎪⎨

⎪⎩

d

dt
ã(t,x0) = M̃(t,x0)ã(t,x0) + i�

2m
d̃(t,x0), |t | < T,

ã(0,x0) = a0(x0), x0 ∈ R
3

(13.39)

where all functions are expressed in the ray coordinates (t,x0):

ã(t,x0) := a
(
t,x(t,x0)

)
, M̃(t,x0) := M

(
t,x(t,x0)

)
,

d̃(t,x0) := d
(
t,x(t,x0)

)
.

We substitute the formal expansion ã(t,x0) ∼ ∑∞
k=0 �

kãk(t,x0) into the first
equation (13.39). Equating the terms with identical powers of �, we arrive at the
recursive transport equations

d

dt
ã0(t,x0) = M̃(t,x0)ã0(t,x0),

d

dt
ã1(t,x0) = M̃(t,x0)ã1(t,x0) + i

2m
d̃0(t,x0),

. . .

d

dt
ãk(t,x0) = M̃(t,x0)ãk(t,x0) + i

2m
d̃k−1(t,x0),

. . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

|t | < T, (13.40)

where d̃0(t,x0) is the function d0(t,x) := �a0(t,x) expressed in the ray coordi-
nates, etc. It remains to substitute the same expansion into the initial conditions
(13.39), which gives

ã0(0,x0) = a0(x0), ã1(0,x0) = 0, . . . , ak(0,x0) = 0, . . . . (13.41)

Now (13.40) and (13.41) imply that ã0(0,x) = 0, |t | < T , if x0 /∈ suppa0. Hence,
we also have d̃0(0,x) = 0 for |t | < T , if x0 /∈ suppa0. Consequently, from (13.40)
and (13.41) it follows that ã1(0,x) = 0 for |t | < T , if x0 /∈ suppa0, etc. �

Corollary 13.10 Let a0(x) = 0 for |x − x0| ≥ ε. Then, for any N > 0,

ψ(t,x) = O
(
�

N
)

for
∣
∣x − x(t,x0)

∣
∣ ≥ 2ε, |t | ≤ Tε (13.42)

with sufficiently small Tε > 0.
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Similar geometrical optics also holds for short wavelength solutions to rela-
tivistic Klein–Gordon equation. The theory was extended to the Dirac equation
by Pauli [149]. General hyperbolic systems were considered by Lax [132]. Fur-
ther development had culminated in the Maslov–Hörmander theory of the Fourier
integral operators, as developed by Duistermaat, Helffer, Sjöstrand and others
(see [78, 164, 186]). For nonlinear wave equations, the theory was developed by
Joly, Métivier, Rauch and others.

13.3 The Noether Symmetry Theory

Time evolution of Lagrangian fields ψ(x) ∈R
N is governed by the Euler–Lagrange

equations (4.15)

∇απα(x) = Lψ

(
x,ψ(x),∇ψ(x)

)
, x ∈ R

4, (13.43)

where πα are the canonically conjugate fields defined by (4.13).
Assume that the corresponding Lagrangian density is invariant with respect to

a Lie symmetry group. Then it is possible to construct the Noether free divergent
4-currents and the corresponding invariants.

13.3.1 Field Symmetry

Consider the one-parametric group of transformations gs : R4 ×R
N → R

4 ×R
N of

the form

gs :
(

x

ψ

)

�→
(

ys

ψs

)

:=
(

as(x)

bs(ψ)

)

, s ∈R, (13.44)

where as and bs are some diffeomorphisms as : R4 → R
4 and bs : RN → R

N , re-
spectively. We define the corresponding transformations for the fields

ψs(ys) := bs

(
ψ(x)

)
, where ys = as(x). (13.45)

This definition implies the corresponding transformation for the derivatives: by the
chain rule,

∇ψs(ys) := Dbs

(
ψ(x)

)∇ψ(x)
∂x(ys)

∂ys

, (13.46)

where Dbs is the differential of the map bs .

Definition 13.11 The transformation group gs , s ∈ R, is a symmetry of the La-
grangian field with Lagrangian density L(x,ψ,∇ψ), provided that the following
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algebraic identity holds:

L(x,ψ, ξ) = L(ys,ψs, ξs)

∣
∣
∣
∣
∂ys(x)

∂x

∣
∣
∣
∣, x ∈R

4, ψ ∈ R
N, ξ ∈R

4N, s ∈R,

(13.47)
where ψs := bs(ψ) and ξs := Dbs(ψ)ξ

∂x(ys)
∂ys

, in accordance with (13.45)
and (13.46), respectively.

Note that algebraic identity (13.47) is equivalent to the functional identity

L
(
x,ψ(x),∇ψ(x)

) = L
(
ys,ψs(ys),∇ψs(ys)

)
∣
∣
∣
∣
∂ys(x)

∂x

∣
∣
∣
∣, x ∈R

4, s ∈ R

(13.48)
for any differentiable field ψ(x).

Example 13.12 (Time-Translations) Consider the time translation along e0 =
(1,0,0,0),

gs :
(

x

ψ

)

�→
(

ys

ψs

)

=
(

x − se0

ψ

)

, s ∈R. (13.49)

Then

ξs = ξ,

∣
∣
∣
∣
∂ys(x)

∂x

∣
∣
∣
∣ ≡ 1. (13.50)

Now (13.47) is equivalent to the independence of the Lagrangian density L(x,ψ, ξ)

on time t := x0.

Example 13.13 (Space-Translations) Consider the space-translation along e1 =
(0,1,0,0),

gs :
(

x

ψ

)

�→
(

ys

ψs

)

=
(

x − se1

ψ

)

, s ∈R. (13.51)

Then

ξs = ξ,

∣
∣
∣
∣
∂ys(x)

∂x

∣
∣
∣
∣ ≡ 1. (13.52)

Now (13.47) means that the Lagrangian density L(x,ψ, ξ) does not depend on x1.

Example 13.14 (Space-Rotations) Consider the group

gs :
(

(x0,x)

ψ

)

�→
(

ys

ψs

)

=
(

(x0,Rn(s)x)

ψ

)

, s ∈R, (13.53)
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where ψ ∈ C is a scalar complex field, and Rn(s) is rotation of R3 around en by an
angle of s radian. Then

ξs =
(

1 0
0 Rn(s)

)

ξ,

∣
∣
∣
∣
∂ys(x)

∂x

∣
∣
∣
∣ ≡ 1. (13.54)

Now (13.47) is equivalent to the identity

L(x,ψ, ξ) ≡ L(ys,ψ, ξs), s ∈ R, x ∈R
4, ψ ∈ C, ξ ∈C

4. (13.55)

Example 13.15 (Phase Rotations) For ψ ∈C
N =R

2N , we define

gs

(
x

ψ

)

�→
(

y

ψs

)

=
(

x

eisψ

)

, s ∈R. (13.56)

Then

ξs = eisξ,

∣
∣
∣
∣
∂ys(x)

∂x

∣
∣
∣
∣ ≡ 1. (13.57)

Now (13.47) is equivalent to the identity

L
(
x, eisψ, eisξ

) ≡ L(x,ψ, ξ), s ∈R, x ∈ R
4, ψ ∈C

N, ξ ∈C
4N. (13.58)

13.3.2 The Noether Current and the Continuity Equation

Definition 13.16 For a given one-parametric group gs of transformations (13.44)
and a given field ψ(x), we define the vector fields

v(x) = d

ds

∣
∣
∣
∣
s=0

as(x), w(x) = d

ds

∣
∣
∣
∣
s=0

ψs(x), x ∈R
4, (13.59)

where ψs(x) = bs(ψ(a−1
s (x))), according to definition (13.45).

Definition 13.17 The Noether 4-current corresponding to the field ψ(x) and the
symmetry group gs is the vector field

Sα(x) = πα(x) · w(x) +L
(
x,ψ(x),∇ψ(x)

)
vα(x), x ∈ R

4, α = 0, . . . ,3,

(13.60)
where πα(x) · w(x) := ∑N

1 πα
j (x) · wj(x).

Theorem 13.18 (E. Noether [146, 194]) Let gs be a one-parametric symmetry
group, and let ψ(x) ∈ C2(R4,RN) be a solution of Eqs. (13.43). Then the following
continuity equation holds,

∇αSα(x) = 0, x ∈R
4. (13.61)
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Corollary 13.19 Under the hypotheses of Theorem 13.18 assume that
Sα(t,x)|x|2 → 0 as |x| → ∞ for α = 1,2,3. Then the following conservation law
holds,

S0(t) :=
∫

R3
S0(t,x) dx = const, t := x0 ∈ R. (13.62)

Proof We have S0(t) = limR→∞ S0
R(t), where

S0
R(t) :=

∫

|x|≤R

S0(t,x) dx, t ∈R. (13.63)

Differentiating and using (13.61) and Stokes’s theorem, it follows that

Ṡ0
R(t) := −

∫

|x|≤R

∇αSα(t,x) dx = −
∫

|x|=R

nα(x)Sα(t,x) d�, t ∈R, (13.64)

where nα(x) := xα/|x| and d� is the Lebesgue measure on the sphere |x| = R.
Therefore, Ṡ0

R(t) → 0 as R → ∞. Hence (13.62) follows. �

The integral identity (13.64) means that the vector field Sα(t,x) is the current
density of the field S0(t,x).

Proof of Theorem 13.18 (cf. [70, 163, 194]) Differentiating (13.48) in s, this gives

0 = Lx

(
x,ψ(x),∇ψ(x)

) · d

ds

∣
∣
∣
∣
s=0

ys +Lψ

(
x,ψ(x),∇ψ(x)

) · d

ds

∣
∣
∣
∣
s=0

ψs(ys)

+L∇αψ

(
x,ψ(x),∇ψ(x)

) · d

ds

∣
∣
∣
∣
s=0

∇αψs(ys)

+L
(
x,ψ(x),∇ψ(x)

) d

ds

∣
∣
∣
∣
s=0

∣
∣
∣
∣
∂ys(x)

∂x

∣
∣
∣
∣. (13.65)

We calculate these four derivatives in s.

I. By definition (13.59),

d

ds

∣
∣
∣
∣
s=0

ys = v(x). (13.66)

II. From definition (13.45), the chain rule, and (13.59), it follows that

d

ds

∣
∣
∣
∣
s=0

ψs(ys) = d

ds

∣
∣
∣
∣
s=0

[
ψs(y0) + ψ0(ys)

]

= d

ds

∣
∣
∣
∣
s=0

[
ψs(x) + ψ(ys)

] = w(x) + ∇ψ(x) · v(x). (13.67)
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III. The same arguments imply that

d

ds

∣
∣
∣
∣
s=0

[∇αψs(ys)
] = d

ds

∣
∣
∣
∣
s=0

∂ψs(ys)

∂yα
s

= d

ds

∣
∣
∣
∣
s=0

[
∂ψs(y0)

∂yα
0

+ ∂ψ0(ys)

∂yα
0

+ ∂ψ0(y0)

∂yα
s

]

= ∇αw(x) + ∇α

(∇ψ(x) · v(x)
) + d

ds

∣
∣
∣
∣
s=0

∂ψ

∂yα
s

. (13.68)

To calculate the last derivative, we employ the matrix identity

∂ψ

∂y
β
s

∂y
β
s

∂xα
= ∂ψ

∂xα
. (13.69)

Differentiating in s, it follows that

d

ds

∣
∣
∣
∣
s=0

∂ψ

∂yα
s

+ ∂ψ

∂xβ

∂vβ

∂xα
= 0. (13.70)

Therefore, the last derivative in (13.68) equals −∇ψ ·∇αv. Hence, (13.68) becomes,

d

ds

∣
∣
∣
∣
s=0

∇αψs(ys) = ∇αw(x) + ∇(∇αψ(x)
) · v(x). (13.71)

IV. Finally, the derivative of the determinant | ∂ys(x)
∂x

| is the trace of the matrix deriva-
tive,

d

ds

∣
∣
∣
∣
s=0

∣
∣
∣
∣
∂ys(x)

∂x

∣
∣
∣
∣ = tr

d

ds

∣
∣
∣
∣
s=0

∂as(x)

∂x
= tr

∂v(x)

∂x
= ∇ · v(x). (13.72)

Collecting all calculations I–IV in (13.65), we obtain

Lx

(
x,ψ(x),∇ψ(x)

) · v(x) +Lψ

(
x,ψ(x),∇ψ(x)

) · (w(x) + ∇ψ(x) · v(x)
)

+ πα(x) · (∇αw(x) + ∇(∇αψ(x)
) · v(x)

)

+L
(
x,ψ(x),∇ψ(x)

)∇ · v(x) = 0. (13.73)

We rewrite it as follows:

Lψ · w(x) + πα(x) · ∇αw(x) + ∇ · [L(
x,ψ(x),∇ψ(x)

)
v(x)

] = 0. (13.74)

Finally, we substitute Lψ = ∇απα(x) from the Euler–Lagrange equations (13.43).
Then (13.74) becomes

∇α

[
πα(x) · w(x)

] + ∇α

[
L

(
x,ψ(x),∇ψ(x)

)
vα(x)

] = 0, (13.75)

which coincides with (13.61) by (13.60). �
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13.4 Application of Noether’s Theorem

Noether’s theorem implies, in particular, the four conservation laws: conservation of
total energy, momentum, angular momentum and charge. Namely, the energy con-
servation follows from the invariance under time translations, the momentum con-
servation follows from the translation invariance in space, the angular momentum
conservation follows from the rotational invariance, and the charge conservation is
a consequence of the phase invariance.

Below we assume an appropriate decay of the wave function ψ(t,x) and of its
derivatives of the first and second order for |x| → ∞, providing the convergence of
all spatial integrals defining the conservation laws.

13.4.1 The Energy, Momentum, and Angular Momentum
Conservation

We denote t = x0, and so x = (x0, x1, x2, x3) = (t,x).

Definition 13.20

(i) The energy of a Lagrangian field at time t is defined by

E(t) =
∫

R3

[
π0(x) · ∇0ψ(x) −L

(
x,ψ(x),∇ψ(x)

)]
dx, (13.76)

where π0(x) · ∇0ψ(x) := π0
j (x)∇0ψ

j(x).
(ii) The momentum of a Lagrangian field at time t is the vector

p(t) = −
∫

R3
π0(x) · ∇ψ(x)dx. (13.77)

(iii) The angular momentum of a scalar complex Lagrangian field at time t is the
vector

J(t) =
∫

Rd

π0(x) · [x × ∇ψ(x)
]
dx. (13.78)

Exercise 13.21 Verify that for Lagrangian density (4.7) of the Schrödinger equa-
tion, definitions (13.76), (13.77) and (13.78) coincide with (3.72), (3.57) and (3.58)
up to a factor. Hints:

(i) Express (13.76)–(13.78) in � and �0 instead of ψ and π0 (see (4.14) and
Sect. 3.4).

(ii) �0 = −J�� by (4.14).
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Theorem 13.22

(i) Let Lagrangian density L(x,ψ,∇ψ) be independent of time t = x0. Then, for
any solution ψ(x) of (13.43), the energy is conserved,

E(t) = const, t ∈ R. (13.79)

(ii) Let Lagrangian density L(x,ψ,∇ψ) be independent of xn. Then, for any solu-
tion ψ(x) of (13.43), the corresponding component of the momentum is con-
served,

pn(t) = const, t ∈ R. (13.80)

Proof The theorem follows from Corollary 13.19 applied to the conserved current
(13.60) corresponding to the symmetry groups of translations in time and space:

(i) The Lagrangian density satisfies identity (13.47) for the symmetry group (13.49).
Definitions (13.59) imply

v(x) = (−1,0,0,0), w(x) = ∇0ψ(x), x ∈R
4, (13.81)

because ψs(x) = ψ(x0 + s,x). Hence, the Noether 4-current (13.60) reads

S0(x) = (
π0(x)∇0ψ(x) −L

(
x,ψ(x),∇ψ(x)

)
,π1(x)∇0ψ(x),

π2(x)∇0ψ(x),π3(x)∇0ψ(x)
)
. (13.82)

Now (13.79) follows from Corollary 13.19.

(ii) The Lagrangian density satisfies identity (13.47) for the symmetry group
(13.51). Definitions (13.59) imply

v(x) = (0,−1,0,0), w(x) = ∇1ψ(x), x ∈R
4, (13.83)

because ψs(x) = ψ(x0, x1 + s, x2, x3). Hence, the Noether 4-current (13.60) reads

S1(x) = (
π0(x)∇1ψ(x),π1(x)∇1ψ(x) −L

(
x,ψ(x),∇ψ(x)

)
,

π2(x)∇1ψ(x),π3(x)∇1ψ(x)
)
. (13.84)

Now (13.80) follows from Corollary 13.19. �

Now consider Lagrangian densities for a complex scalar field ψ(x), which are
invariant with respect to rotations (13.53), (13.54).

Theorem 13.23 Let the Lagrangian density of a complex scalar field satisfy (13.55).
Then, for any solution of (13.43), the corresponding component of the angular mo-
mentum is conserved,

Jn(t) = const, t ∈ R. (13.85)
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This theorem follows from Corollary 13.19 applied to the conserved current
(13.59) corresponding to the symmetry group of space rotations. �

Exercise 13.24 Prove Theorem 13.23. Hints: (13.53) means that asx =
(x0,Rn(s)x) and bsψ = ψ . Hence, definitions (13.59) give

v(x) = (0, en × x), w(x) = d

ds

∣
∣
∣
∣
s=0

ψ
(
Rn(−s)x

)
. (13.86)

Differentiating, we obtain

w(x) = ∇ψ · [x × en] = en · [∇ψ × x] = [∇ψ × x]n. (13.87)

Now definition (13.60) gives

S0(x) = π0(x) · [∇ψ × x]n. (13.88)

Therefore, Corollary 13.19 implies (13.85).

Theorems 13.22 and 13.23 imply the conservation laws (3.61), (3.64) and (3.67)
for the case of the Schrödinger equation (see Exercise 13.21).

13.4.2 The Energy-Momentum Tensor

Suppose that the Lagrangian density L(ψ,∇ψ) is independent of x. Then the con-
tinuity equation (13.61) holds for currents (13.82) and (13.84), as well as for the
4-currents Sα

2 and Sα
3 , which are defined similarly to Sα

1 from (13.84). The four
continuity equations read

∂αSα
β (x) = 0, β = 0,1,2,3, (13.89)

where Sα
β (x) := πα(x)∇βψ(x) − δα

βL(x,ψ(x),∇ψ(x)). We recall that gαβ =
diag(1,−1,−1,−1).

Definition 13.25 Energy-momentum tensor is defined by

Tαβ(x) := gαα′Sα′
β (x) = πα(x)∇βψ(x) − gαβL

(
x,ψ(x),∇ψ(x)

)
.

Note that T00(x) = S0
0(x) is the energy density and T0k(x) = −S0

k (x) is the mo-
mentum density, according to definitions (13.76) and (13.77), respectively. Now
identities (13.89) read

∂αTαβ(x) = 0, β = 0,1,2,3, (13.90)
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where ∂α := gαα′
∂α′ = (∂0,−∂1,−∂2,−∂3), because (gαα′

) := (gαα′)−1 = (gαα′).
In the three dimensional form,

Ṫ0β(t,x) = −div Tβ(t,x), β = 0,1,2,3, (13.91)

where Tβ(t,x) := (T1β(t,x), T2β(t,x), T3β(t,x)) and now x := (x1, x2, x3) =
−(x1, x2, x3).

Let us consider the field energy and momentum located in a bounded open region
� ⊂ R

3 at time t : by definition,

E(�, t) :=
∫

�

T00(t,x) dx, pk(�, t) :=
∫

�

T0k(t,x) dx, k = 1,2,3.

(13.92)
Suppose that the boundary ∂� is smooth. Hence from identities (13.91) it follows
by Stokes’s theorem that

Ė(�, t) := −
∫

∂�

T0(t,x) · n(x) dx,

ṗk(�, t) := −
∫

∂�

Tk(t,x) · n(x) dx, k = 1,2,3,

(13.93)

where n(x) is the unit outward normal vector to the boundary ∂� at the point x. The
identities mean that T0(t,x) is the energy flux, while Tk(t,x) is the flux of the kth
component of the momentum.

13.4.3 Phase Invariance and the Charge Continuity Equation

Consider a Lagrangian field ψ ∈ C
N = R

2N with Lagrangian density L(x,ψ,∇ψ).
For phase rotations (13.56) formulas (13.59) give

v(x) = 0, w(x) = iψ(x). (13.94)

Respectively,

Sα(x) = πα(x) · [iψ(x)
]
, α = 0, . . . ,3, (13.95)

where πα(x) and ψ(x) are identified with the corresponding real vector from R
2N ,

the dot ‘·’ denotes the inner product on R
2N , and the multiplication by i is identified

with the application of the corresponding skew-symmetric matrix. Now Noether’s
theorem implies the following corollary.

Corollary 13.26 Let a Lagrangian density L(x,ψ,∇ψ) be invariant with respect
to the phase rotations (13.58). Then the continuity equation (13.61) holds for the
4-current (13.95).
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In particular, for N = 1 formula (13.95) is equivalent to

Sα(x) = Im
[
πα(x)ψ(x)

] = 1

2

[
πα(x)ψ(x) − ψ(x)πα(x)

]
. (13.96)

Application to the Schrödinger and Maxwell–Schrödinger Equations

Let us apply formula (13.96) to Lagrangian densities of the Schrödinger equation
(4.7) and Maxwell–Schrödinger equations (4.21). Both densities are invariant with
respect to the phase rotations (13.58). The canonically conjugate momenta πα(x)

for both densities are identical and given by (4.14). Substituting this into (13.96),
we obtain the electric charge and current (3.34) up to the factor e/�:

S0(x) = �

e
ρ(t,x), Sk(x) = �

e
jk(t,x), k = 1,2,3. (13.97)

Therefore, the Noether theorem (13.61) implies the charge continuity equation
(3.78) for electric 4-current (ρ, j).

13.4.4 Gauge Invariance

For a gauge invariant Lagrangian density L, the current (13.95) can be rep-
resented in terms of variational derivatives in the Maxwell potentials. Namely,
consider a field ψ ∈ C

N interacting with the Maxwell vector potential A(x) =
(A0(x),A1(x),A2(x),A3(x)) = (φ0,−A) (see (12.49)). This means that the corre-
sponding Lagrangian density L depends also on A(x) and ∇A(x). By definition, the
Lagrangian density is gauge invariant if it depends on ∇ψ and A(x) only through
combination i�∇ψ − e

c
A(x)ψ ; i.e.,

L
(
x,ψ,∇ψ,A(x),∇A(x)

) = L̃
(

x,ψ, i�∇ψ − e

c
A(x)ψ,∇A(x)

)

. (13.98)

For example, the Lagrangian densities (4.7), (4.34), (11.57) and (11.59) are gauge
invariant.

We next extend the definition of charge and current densities (12.59).

Definition 13.27 The current J α(x) is defined by

J α(x) = −LAα

(
x,ψ,∇ψ,Aμ(x),∇Aμ(x)

)
, α = 0,1,2,3. (13.99)

Lemma 13.28 Suppose that a Lagrangian density L is gauge invariant. Then the
Noether current (13.95) coincides with (13.99) up to a factor:

J α(x) = e

�c
πα(x) · [iψ(x)

]
. (13.100)
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Proof By definition (4.13),

πα(x) := ∇∇αψ

[

L̃
(

x,ψ(x), i�∇ψ(x) − e

c
A(x)ψ(x),∇A(x)

)]

, (13.101)

where ∇αψ is identified with the corresponding vector in R
2N . Secondly,

J α(x) := −∇Aα(x)

[

L̃
(

x,ψ(x), i�∇ψ(x) − e

c
A(x)ψ(x),∇A(x)

)]

, (13.102)

by definition (13.99). Hence, (13.100) follows. �

Example 13.29 For the coupled Maxwell–Schrödinger and Maxwell–Dirac equa-
tions (4.19), (4.22) and (11.58), (11.60), it follows from formulas (13.99) and (13.97)
in variables (φ,A) that

J 0 = ρ(x) = −Lφ, J k = jk(x)

c
= LAk , k = 1,2,3, (13.103)

similarly to (12.60).

13.5 The Limiting Amplitude Principle

For a finite dimensional Hamiltonian system forced by an external harmonic source,
in nonresonant case the motion reduces to a quasiperiodic regime, which is a mix-
ing of eigenmodes and particular periodic solution. In the resonant case, the forced
oscillations runaway.

A similar situation holds in the long time limit for linear wave fields that are
infinite dimensional Hamiltonian systems. However, in this case, the quasiperiodic
limit behavior holds even in the resonant case, provided the frequency belongs to the
continuous spectrum, which newer occurs for finite dimensional systems. This pe-
culiarity of wave fields is caused by the radiation of energy to infinity in continuous
spectrum. This radiation prevents the runaway behavior of the field in any bounded
region though the total energy growth linearly in time.

This limiting amplitude principle plays a crucial role in the theory of long time
behavior of wave processes. In particular, it explains wave propagation along wave
guides and justifies the quantum Kramers–Kronig dispersion theory (Sect. 8.3), and
Einstein’s rules for photoelectric effect (Sect. 8.4).

For the first time, this principle was justified mathematically in 1960s for the
wave and Klein–Gordon equations by Lax, Morawetz, Phillips, Vainberg and others.
For the Schrödinger equation, this principle was justified by Eidus [55, 56] relying
on the Agmon–Jensen–Kato spectral theory [3, 97].
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13.5.1 Harmonic Source and Spectrum

We consider the Schrödinger equation with harmonic source (cf. (8.56) and (8.57))

i�ψ̇(t,x) = Hψ(t,x) + b(x)e−iωt , (13.104)

where ω ∈ R and the amplitude b(x) decays rapidly as |x| → ∞. Here H is
the Schrödinger operator corresponding to a static Maxwell field with potentials
φ(t,x) ≡ φ(x) and A(t,x) ≡ A(x) (see (3.37)),

H := 1

2m

[

−i�∇ − e

c
A(x)

]2

+ eφ(x). (13.105)

The corresponding ‘unperturbed equation’ reads

iψ̇(t,x) = Hψ(t,x). (13.106)

We consider finite energy solutions of (13.104), (13.106). In particular, ψ(t, ·) ∈
C(R,E), by the charge conservation, where E := L2(R3). Let us denote by U(t)

the corresponding dynamical group:

ψ(t) = U(t)ψ(0), ψ(t) := ψ(t, ·). (13.107)

The charge conservation means that U(t) is a unitary operator on E.
We shall look for a solution of the type aω(x)e−iωt . Substituting into (13.104),

we get the Helmholtz stationary equation

(H − ω)aω(x) = −b(x). (13.108)

The spectrum, SpecH , is the set of all ω ∈ C at which the operator H − ω is not
invertible in E. The resolvent of H is defined by

R(ω) := (H − ω)−1, ω ∈ C \ SpecH. (13.109)

Equation (13.108) admits a unique solution aω(x) ∈ E for every b ∈ E if ω /∈
SpecH :

aω = −R(ω)b, ω ∈ C \ SpecH. (13.110)

For example, let us calculate the spectrum and the resolvent for the free
Schrödinger operator H0 = −�. In the Fourier transform operator, H0 becomes the
multiplication by Ĥ0(k) = k2 on the space Ê = L2(R3) = E, by Plancherel’s theo-
rem. Therefore, R0(ω), in the Fourier transform, is the multiplication by (k2 −ω)−1.
This operator is bounded in Ê if and only if the function (k2 − ω)−1 is bounded
in R

3. Hence, SpecH0 = R+ = {ω ∈ R : ω ≥ 0}. In the coordinate representation,
R0(ω) is the convolution with tempered fundamental solution Eω(x) of the operator
−� − ω. The tempered fundamental solution is unique,

Eω(x) = E+
ω (x) := ei

√
ω|x|

4π |x| , ω ∈C \R+, (13.111)



13.5 The Limiting Amplitude Principle 253

where we choose Im
√

ω > 0 for all ω ∈ C \ R+. Here E+
ω (x) is a tempered distri-

bution, because its Fourier transform is a bounded function. Hence, the tempered
solution of Eq. (13.108) is unique for ω ∈C \R+, and is given by

aω = −E+
ω ∗ b. (13.112)

The distribution E−
ω (x) := e−i

√
ω|x|

4π |x| is also a fundamental solution; however, for every

ω ∈C \R+, it is not tempered, inasmuch as it grows exponentially as |x| → ∞.
In the case ω > 0, both fundamental solutions E±

ω (x) are tempered; hence, the
tempered solution of (13.108) is not unique. Moreover, in this case, the space of
tempered solutions is infinite dimensional, because any distribution a(k/|k|)δ(|k|−√

ω) is a solution of the homogeneous equation
(
k2 − ω

)
a
(
k/|k|)δ(|k| − √

ω
) = 0.

A similar nonuniqueness also holds for the perturbed Schrödinger operator (13.105);
this is the well-known problem in diffraction theory. The uniqueness will be pro-
vided using either the Sommerfeld radiation conditions or the limiting absorption
principle (see below).

13.5.2 The Limiting Absorption Principle

The limiting amplitude principle yields the following long-time asymptotics
(see [55, 56]):

ψ(t,x) = aω(x)e−iωt +
∑

l

Clψl(x)e−iωl t + r(t,x), (13.113)

where aω(x) is a limiting amplitude, ψl(x) are the eigenfunctions of the discrete
spectrum of the operator H , and ‖r(t, ·)‖ → 0 as t → ∞ in an appropriate norm.

The asymptotics (13.113) hold for the initial states ψ(x,0) from the Agmon–
Sobolev weighted spaces:

H2
σ = {

ψ(x) : ‖ψ‖2,σ = ∥
∥
(
1 + |x|)σ

(1 − �)ψ
∥
∥

L2(R3)
< ∞}

. (13.114)

The asymptotics (13.113) are proved for a restricted class of potentials: for example,
if

φ(x) =O
(|x|−5−ε

)
, A(x) ≡ 0, (13.115)

where ε > 0.
The limiting amplitude aω(x) obviously satisfies the stationary Helmholtz equa-

tion (13.108). Generally, aω(x) /∈ E for ω ≥ 0, but anyhow it is a tempered dis-
tribution. Now the problem of nonuniqueness for ω > 0 becomes significant: we
should decide which of the solutions is ‘true’. The answer is given by the limiting
absorption principle.
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Lemma 13.30 Let ω ∈ R, ω �= 0 and ω �= ωl for all l. Let moreover, the potential
satisfy (13.115), and ψ(x,0), b(x) ∈ H 2

σ with σ > 5/2. Then

(i) The asymptotics (13.113) hold with

∥
∥r(t, ·)∥∥

H 2−σ
→ 0, t → ∞. (13.116)

(ii) The limiting amplitude is given by ψω = −R(ω)b, if ω < 0, and

aω = − lim
ε→0+R(ω + iε)b, if ω > 0, (13.117)

where the limit holds in the space H 2−σ with σ > 1/2.
(iii) The coefficients Cl depend on ψ(0, x) but do not depend on b(x). More pre-

cisely,
∑

l

Clψl = Pdψ(0, ·), (13.118)

where Pd is the orthogonal projection onto the discrete spectral space of H .

In particular, for the free Schrödinger operator H0 = −�,

aω = lim
ε→0+E+

ω+iε ∗ b if ω > 0. (13.119)

Formula (13.117) can be proved by an appropriate development of methods [97]
(see also [56, 116]). Let us sketch a formal proof using the results of [97]. Namely,
the Duhamel representation for solutions of the inhomogeneous equation (13.104)
reads

ψ(t) = U(t)ψ(0) − i

∫ t

0
U(t − s)be−iωs ds, (13.120)

where U(t) is the dynamical group of Eq. (13.106).
From results of [97] it follows that the first term on the RHS of (13.120) admits

the asymptotic expansion (13.113) with aω = 0 and the coefficients Cl defined by
(13.118). This is the central achievement of the scattering theory: the contribution
of the continuous spectrum to the solution U(t)ψ(0) of the homogeneous equation
vanishes as t → ∞.

It remains to examine the integral term. We can rewrite it as follows:

I (t) = −ie−iωt

∫ t

0
U(s)beiωs ds. (13.121)

Therefore, writing formally U(s) = e−iHs , we obtain

I (t) = −ie−iωt

∫ t

0
e−iHsbeiωs ds ∼ e−iωt aω, t → ∞, (13.122)
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where

aω = −i

∫ ∞

0
e−iHsbeiωs ds = −i lim

ε→0+

∫ ∞

0
e−iHsbei(ω+iε)s ds

= − lim
ε→0+(H − ω − iε)−1b, (13.123)

which coincides with (13.117). In particular, (13.122) shows that contribution of
I (t) into the coefficients Cl vanishes. The details can be found in [119].

Remark 13.31

(i) Lemma 13.30(iii) implies that the sum over the discrete spectrum on the RHS
of (13.113), does not appear if the eigenfunctions were not presented in the
initial state ψ(0, x).

(ii) Formula (13.117) is called the ‘limiting absorption principle’, because R(ω +
iε) = (H − ω − iε)−1 is the resolvent corresponding to the ‘damped’ equation

iψ̇(t,x) = Hψ(t,x) − iεψ(t,x) + b(x)e−iωt , (13.124)

where the term −iεψ(t,x) describes an absorption of energy.



Chapter 14
Exercises

Abstract Here we collect classical calculations lying in the ground of the ‘old quan-
tum mechanics’: the Kepler problem, the Bohr–Sommerfeld quantization, electro-
magnetic plane waves, the Lorentz theory of polarization and dispersion, the normal
Zeeman effect, diamagnetism and paramagnetism, and the Landé factor. Finally, we
present the Heisenberg quantization of harmonic oscillator.

14.1 The Kepler Problem

The Kepler problem is defined by the two-particle Lagrangian

L = m1

2
ẋ2

1 + m2

2
ẋ2

2 + γm1m2

|x1 − x2| .

We shall solve it through the following steps:

(a) Reduction to the one-particle problem (coordinate x) via separation of the
center-of-mass coordinate X.

(b) Reduction to the two-dimensional problem by observing that the plane spanned
by (x(0), ẋ(0)) is invariant.

(c) Reduction to the one-dimensional problem (coordinate r) by the introduction of
polar coordinates (r, ϕ). Show that Kepler’s third law holds, find the effective
potential of the one-dimensional problem, and check for energy conservation.

(d) Investigate the orbits of the one-dimensional problem.
(e) Integrate the orbit equation to find the possible orbits. Show, depending on the

values of the integration constants (angular momentum, energy), that the orbits
are ellipses, parabolas or hyperbolas.

Solution

(a) Denote by

X(t) := m1

M
x1(t) + m2

M
x2(t)

A. Komech, Quantum Mechanics: Genesis and Achievements,
DOI 10.1007/978-94-007-5542-0_14, © Springer Science+Business Media Dordrecht 2013

257

http://dx.doi.org/10.1007/978-94-007-5542-0_14


258 14 Exercises

the center of mass, where the total mass is M := m1 + m2, and x := x1 − x2.
Then

2∑

i=1

miẋ
2
i = m1m2ẋ

2(t)

M
+ MẊ2.

Hence we can rewrite the Lagrangian in the form

L = m1m2ẋ
2

2M
+ MẊ2

2
+ γm1m2

|x1 − x2| = L1(x, ẋ, Ẋ).

Applying the Euler–Lagrange equation to the coordinate X,

d

dt

∂L

∂Ẋ
− ∂L

∂X
= 0,

we get d
dt

MẊ = 0. Hence,

Ẋ = const, (14.1)

and so X(t) = at + b, where a, b are some constants.
(b) It remains to consider the Lagrangian

L ≡ L(x, ẋ) := ẋ2

2M
+ γ

|x| .

Each trajectory lies in a plane. By rotational symmetry, we may assume that the
considered trajectory lies in the plane x3 = 0. As a result, x(t) = (u(t), v(t),0)

and the Lagrangian for the variables u(t), v(t) is as follow:

L(u, v, u̇, v̇) := u̇2 + v̇2

2M
+ γ√

u2 + v2
. (14.2)

(c) In polar coordinates (r, ϕ),

u = r cosϕ, v = r sinϕ, (14.3)

we have u2 + v2 = r2, u̇2 + v̇2 = ṙ2 + r2ϕ̇2. Substituting this into the La-
grangian, this gives

L(r,ϕ, ṙ, ϕ̇) := ṙ2 + r2ϕ̇2

2M
+ γ

r
. (14.4)

Applying the Euler–Lagrange equations read

r̈ = rϕ̇2 − γM

r2
,

d

dt

[
r2ϕ̇

M

]

= 0.
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The last equation implies Kepler’s third law:

r2ϕ̇ = const =: I. (14.5)

Hence, the first equation can be written as follows:

r̈ = I 2

r3
− γM

r2
= −V ′(r), V (r) := I 2

2r2
− 2γM

r
.

Multiplying this equation by ṙ and integrating, we arrive at the reduced energy
conservation law

ṙ2 + V (r) = E. (14.6)

(d) Now we find r(ϕ). Since dr
dϕ

= ṙ
ϕ̇

, from (14.6) and (14.5) it is found that

dr

dϕ
=

±
√

− I 2

r2 + 2γM
r

+ 2E

I

r2

.

Hence
∫

I dr

r2
√

− I 2

r2 + 2γM
r

+ 2E

= ±
∫

dϕ.

Introducing the Clairaut substitution ρ := 1/r , we have dr = −ρ−2 dρ.
Hence,

∫
I dr

r2
√

− I 2

r2 + 2γM
r

+ 2E

= −
∫

I dρ
√−I 2ρ2 + 2γMρ + 2E

=
∫

I dρ
√

D − I 2(ρ − B)2
.

Here D := 2E + (γM)2I−2, B := γMI−2. Note that the constant D must be
positive for any non-empty trajectory. Further,

∫
I dρ

√
D − I 2(ρ − B)2

= arcsin

{
I (ρ − B)√

D

}

= ±ϕ + ϕ0.

Finally, we get I (ρ−B)√
D

= sin(ϕ + ϕ0). Since ρ := 1/r , it is found that

A1

r
= A2 + sin(ϕ + ϕ0), (14.7)

where

A1 := I√
D

, A2 := IB√
D

= γM
√

2EI 2 + (γM)2
. (14.8)
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Note that r is bounded away from zero by (14.7).
(e) For simplicity, we assume that ϕ0 = 0. Then (14.7) becomes

A2r = A1 − r cosϕ. (14.9)

We recall that r sinϕ = v and r = √
u2 + v2. Now we can rewrite (14.9) in the

form (u2 + v2)A2
2 = (A1 − v)2. Hence,

u2 + v2
(

1 − 1

A2
2

)

+ 2
A1

A2
2

v = A2
1

A2
2

.

Obviously, A1,A2 ≥ 0. First, consider the case A1 > 0. Then, we have an el-
lipse for A2 > 1, and a hyperbola, for A2 < 1; for A2 = 1 we have a parabola.
From (14.8) it follows that: if E < 0 we have an ellipse, if E > 0 we have a hy-
perbola, and if E = 0 we have a parabola.

Finally, in the case A1 = 0 we have I = 0. Then either r = 0 and ϕ are
arbitrary (the point mass is at the origin) or sinϕ = −A2 = const (the point
mass moves along a line through the origin).

14.2 The Bohr–Sommerfeld Quantization

Problem Use the Bohr–Sommerfeld quantization rules (1.62):
∮

pr dr = hk,

∫

pϕ dϕ = hm (14.10)

to derive the quantization of angular momentum and the Schrödinger formula (6.3)
for the energy levels of the electron in the Hydrogen atom.

Solution The Hamiltonian for an electron with charge e < 0 and mass m in the
Coulomb field of an infinitely heavy nucleus with charge |e| > 0 is

H = 1

2m

(

p2
r + p2

ϕ

r2

)

− e2

r
, pr = mṙ , pϕ = mr2ϕ̇. (14.11)

Hence, the corresponding Hamilton equations read

ϕ̇ = Hpϕ = pϕ

mr2
, ṗϕ = −Hϕ = 0, (14.12)

ṙ = Hpr = pr

m
, ṗr = −Hr = p2

ϕ

mr3
− e2

r2
. (14.13)

From (14.12), we obtain (14.5):

pϕ = J = const > 0. (14.14)
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Then, using (14.13),

ṗr = J 2

mr3
− e2

r2
. (14.15)

Since dpr

dr
= ṗr

ṙ
, it follows from (14.13) and (14.15) that

dpr

dr
=

J 2

mr3 − e2

r2

pr

m

or
pr dpr

m
=

(
J 2

mr3
− e2

r2

)

dr. (14.16)

Hence,

p2
r

2m
+ J 2

2mr2
− e2

r
= E = const . (14.17)

To have bounded orbits (ellipses), we should consider E < 0. Then

pr =
√

2m

(
e2

r
− E

)

− J 2

r2
, (14.18)

where E ≡ |E | > 0 was introduced for convenience.
Now we find the extrema of r . From Eq. (14.13) it follows that ṙ = 0 if and only

if pr = 0. From (14.18), we have

2m

(
e2

r
− E

)

− J 2

r2
= 0,

which can be rewritten as

r2 − e2r

E
+ J 2

2mE
= 0.

Therefore,

r = e2

2E
±

√

e4

4E2
− J 2

2mE
= e2

2E
± 1

2E

√

e4 − 2J 2E

m
=: r±.

Hence, rmax = r+ and rmin = r−.
Now we employ (14.10). At first, note that from (14.10) and (14.14) it follows

that
∫

pϕ dϕ =
∫

J dϕ = 2πJ = hm. (14.19)

As a result,

J = �m, m ∈ Z, m > 0. (14.20)
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Second, (14.18) implies

∫

pr dr = 2
∫ rmax

rmin

pr dr = 2
∫ rmax

rmin

√

2m

(
e2

r
− E

)

− J 2

r2
dr

= 2
∫ rmax

rmin

√
−2mEr2 + 2me2r − J 2 dr

r
. (14.21)

Applying here the formula
∫ √

ax2 + bx + c
dx

x
=

√
ax2 + bx + c − b

2
√−a

arcsin
2ax + b

b2 − 4ac

− √−c arcsin
bx + 2c

x
√

b2 − 4ac
, a < 0, c < 0

with a = −2mE < 0, b = 2me2, c = −J 2 < 0, we obtain

∫

pr dr = 2

[√

2m

(
e2

r
− E

)

− J 2

r2

∣
∣
∣
∣

rmax

rmin

− 2me2

2
√

2mE
arcsin

−4mEr + 2me2

√
4m2e4 − 8J 2mE

∣
∣
∣
∣

rmax

rmin

− J arcsin
2me2r − 2J 2

r
√

4m2e4 − 8J 2mE

∣
∣
∣
∣

rmax

rmin

]

= 2

[

0 + π
me2

√
2mE

− Jπ

]

= 2π

[
√

me4

2E
− J

]

. (14.22)

Now (14.10) gives that

2π

[
√

me4

2E
− J

]

= hk, k ∈ Z.

Applying (14.20), we get
√

me4

2E
= �(k + m).

We denote k + m = n ≥ 1, and now

me4

2E
= �

2n2, n ≥ 1.
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Hence,

E = −E = − me4

2�2n2
= −2π�cR

n2
, R := me4

4π�3c

which coincides with the Schrödinger formula (6.3).

14.3 Electromagnetic Plane Waves

Problem Find the electric and magnetic fields of a plane electromagnetic wave by
inserting the complex plane wave ansatz

E = E0 exp i(k · x − ωt), B = B0 exp i(k · x − ωt) (14.23)

into the free Maxwell equations. Find two linearly independent solutions and con-
struct a linearly and circularly polarized waves. Calculate the corresponding energy
flow per time unit.

Solution The Maxwell equations in vacuum are

∇ × B = 1

c
Ė, ∇ × E = −1

c
Ḃ, ∇ · B = 0, ∇ · E = 0.

Substituting the ansatz (14.23), we get

k × B0 = −ω

c
E0, k × E0 = ω

c
B0, k · B0 = 0, k · E0 = 0. (14.24)

A general solution is obvious: vector k ∈ R
3 is arbitrary, E0⊥k, and B0 = c

ω
k × E0,

where ω is any solution of the dispersion relation

ω2 = k2c2. (14.25)

The plane wave allows the representation (12.44)

E = −1

c
Ȧ, B = ∇ × A (14.26)

with the magnetic potential

A(x, t) = A0 exp i(k · x − ωt), A0 = c

iω
E0. (14.27)

In particular, k · A0 = 0, and hence

∇ · A = 0. (14.28)
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Here we allow for a complex notation for the plane wave field for convenience, but
one should keep in mind that only the real part of the field is physical. Splitting
E0 = E′

0 + iE′′
0 with E′

0,E′′
0 ∈ R

3, we obtain

Eph = Re
(
E0e

ik·x−iωt
) = E′

0 cos(k · x − ωt) − E′′
0 sin(k · x − ωt). (14.29)

This field is linearly polarized if E′
0‖E′′

0. Otherwise, it is ‘elliptically polarized’ (‘cir-
cularly polarized’ if E′

0⊥E′′
0 and |E′

0| = |E′′
0|).

The corresponding magnetic field is given by (14.24):

Bph = c

ω
k × Eph = B′

0 cos(k · x − ωt) + B′′
0 sin(k · x − ωt), (14.30)

where

B′
0 = c

ω
k × E′

0 = k
|k| × E′

0, B′′
0 = − c

ω
k × E′′

0 = − k
|k|E′′

0

since ω = |k|c by (14.25). Therefore, the energy flow density S = c
4π

E × B oscil-
lates in time, and points to the direction of the wave vector k. Its time average is
given by

S = c

4π
E × B = c

8π

[∣
∣E′

0

∣
∣2 + ∣

∣E′′
0

∣
∣2] k

|k| . (14.31)

14.4 Polarization and Dispersion

In many instances, a classical point-like electron in matter may be modeled by
a damped harmonic oscillator, which oscillates around a fixed, positively charged
center. In an external electromagnetic field, the corresponding equation of motion
for the position of the electron is

m
[
ẍ(t) + γ ẋ(t) + ω2

0x(t)
] = e

[

E + 1

c
ẋ × B

]

. (14.32)

Here m is the mass and e the charge of the electron, γ is a damping constant and
x is the distance vector from the center.

The model was suggested by Lorentz. The friction is introduced to provide stabil-
ity under external perturbation E = E0e

−iωt for all frequencies ω ∈ R. This friction
should model a radiation of energy to infinity by the atom.

Problem Calculate the electric dipole moment p0 = ex of the electron in an os-
cillating electric field E = E0 exp(−iωt). Discuss the frequency dependence of the
resulting polarizability.
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Solution Inserting x = p0
e

exp(−iωt) into the above equation, we get

[−ω2 − iωγ + ω2
0

]
p0 = e2

m
E0 (14.33)

or

p0 = e2

m

1

ω2
0 − ω2 − iωγ

E0 ≡ α(ω)E0. (14.34)

with the ‘atomic polarizability’ α. The absolute value of the polarizability |α(ω)| =
|E0|/|p0| equals

∣
∣α(ω)

∣
∣ = e2

m

1

[(ω2
0 − ω2)2 + ω2γ 2]1/2

. (14.35)

It has local maxima at ω = ±ω(γ ) with ω(γ ) =
√

ω2
0 + γ 2

2 and a local minimum
at ω = 0 (we assume that ω0 > 0). Hence there is anomalous dispersion (weaker
polarizability coefficient |α(ω)| for higher frequency |ω|) for values of |ω| ≥ ω(γ ).

The complex nature of polarizability means that there exists a phase difference
between E0 and p0. Away from the resonance, i.e., for |ω| − ω0 	 γ , the polariz-
ability α(ω) is approximately real.

If there are N atoms per volume and if fk denotes the fraction of electrons per
atom that oscillate with eigenfrequency ωk > 0, then the total polarization per vol-
ume is as follows:

p = χeE, χe = Ne2

m

∑

k

fk

ω2
k − ω2 − iωγ

. (14.36)

Hence, we find the electric permittivity

ε = 1 + 4πχe = 1 + 4πNe2

m

∑

k

fk

ω2
k − ω2 − iωγ

, (14.37)

which is the Drude formula for permittivity. This famous formula was established
in the framework of ‘Old Quantum Mechanics’ by Kramers and Heisenberg [121–
123]. It is similar to its quantum analogue (8.83) and implies many important con-
clusions which agree with experimental observations (cf. with the comments be-
low (8.83)). See also the detailed discussions in [7]):

I. The formula implies an important approximation to the refraction coefficient n.
Namely, for many materials μ ∼ 1, and hence n = √

εμ ∼ √
ε by (12.206) if

ε > 0 (here we should set γ = 0).
II. It implies the sharp peak of |ε(ω)| near the resonances ωk for small γ , and the

form of the peaks is in a good agreement with experimental observations.
III. It explains the anomalous dispersion near the eigenfrequencies ωk for small γ .
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IV. The poles of χe(ω) and ε(ω) lie in the low complex half plane Imω < 0 since
γ > 0. Hence, χe(ω) and ε(ω) are holomorphic in the upper complex half plane
Imω > 0. This fact implies the integral dispersion relations between real and
imaginary parts of χe(ω) and ε(ω) discovered by Kramers and Kronig [124–
126]. This theory was developed later in the framework of Quantum Field The-
ory, see the survey in [156, v. III].

14.5 The Normal Zeeman Effect

Electrons in matter are again described by spherical harmonic oscillators, which
oscillate around a fixed center (nucleus), as in Sect. 14.4. Here we assume that
the electrons are excited with their eigenfrequency by some unspecified mechanism
(e.g., heat or radiation); therefore we ignore a possible damping by assuming γ = 0
in Eq. (14.32). These harmonic oscillators are now exposed to a constant, external
magnetic field, therefore the equation of motion for the position of one electron is

m
[
ẍ(t) + ω2

0x(t)
] = e

c
ẋ × B. (14.38)

Problem

(i) Find the three eigenfrequencies and eigenmodes of this equation of motion.
(ii) Use the resulting dipole moments p = ex to calculate the dipole radiation of all

three modes and their polarization patterns, both parallel and perpendicular to
the constant, external magnetic field.

Solution We will follow Lorentz’s arguments who was awarded the Nobel Prize in
1902 for this theory. Without loss of generality we assume that the constant external
magnetic field is directed along Ox3-axis, i.e., B = Be3. Then the equations of
motion read,

ẍ1 + ω2
0x1 = 2ωLẋ2, ẍ2 + ω2

0x2 = −2ωLẋ1, (14.39)

ẍ3 + ω2
0x3 = 0, (14.40)

where ωL = eB
2mc

is the Larmor frequency. Obviously, the last (decoupled) equation
is solved by x3 = r0 sin(ω0t − φ0), where φ0 is an irrelevant integration constant,
which will be set to zero in the sequel. Therefore the parallel (to the magnetic field)
eigenmode is as follows

x‖ = r0e3 sinω0t (14.41)

with eigenfrequency ω0 (the eigenfrequency is not altered by the magnetic field).
To solve the system (14.39), we write it in the complex form. Introducing z =

x1 + ix2, we obtain

z̈ + ω2
0z = −2iωLż. (14.42)



14.5 The Normal Zeeman Effect 267

Substituting z = r0e
iωt , we arrive at the characteristic equation −ω2 + ω2

0 =
2ωLω. The solution is given by

ω± = −ωL ±
√

ω2
0 + ω2

L, (14.43)

where ω+ > 0, while ω− < 0. Therefore, we find the following two perpendicular
(to the magnetic field) eigenmodes

x± = r0(e1 cosω±t + e2 sinω±t), (14.44)

with the eigenfrequencies ω± altered by the magnetic field.
Our next aim is to calculate the dipole radiation emitted by these three eigen-

modes. Here we shall use the formulas for Hertzian dipole radiation (see Sect. 12.10)
with p = ex. From formulas (12.121), (12.122), and (12.124), it follows that for
r = |x| 	 r0 we can assume approximately

B(t,x) = e

c2r
ẍ(t − r/c) × n, (14.45)

E(t,x) = e

c2r

[−ẍ(t − r/c) + n
(
n · ẍ(t − r/c)

)] = e

c2r

[
ẍ(t − r/c) × n

] × n,

(14.46)

S = n
e2 sin2 χ

4πc3r2
ẍ2(t − r/c), (14.47)

where n := x/r , and χ is the angle between x and ẍ(t − r/c). Let us consider the
radiation of the parallel and perpendicular eigenmodes separately:

I. For the parallel eigenmode (14.41) we have ẍ‖e3, hence B(t,x)⊥e3 by (14.45).
Hence, B(t,x) is linearly polarized since it is also perpendicular to x. Therefore,
the electric field E(t,x) is also linearly polarized since it is perpendicular to
B(t,x) and x. Finally, the Poynting vector

S = n
e2ω4

0|r0|2
4πc3r2

sin2 θ sin2 ω0t
′, (14.48)

where t ′ := t − r/c, and θ is the angle between x and e3. Hence, there is no
radiation in the e3 direction. The maximal radiation is emitted in the orthogonal
directions to e3, along the ‘median’ plane x3 = 0. At the points of this median
plane we have E(t,x)‖e3 by (14.46).

II. For the perpendicular eigenmodes (14.44), the accelerations

ẍ±(t − r/c) = −r0ω
2±
(
e1 cosω±t ′ + e2 sinω±t ′

)
, (14.49)

rotate with angular velocities ω±. Hence, the directions of the radiation
fields E(t,x) and B(t,x) also rotate according to (14.45) and (14.46). Finally,
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the Poynting vector (14.47) reads

S = n
e2ω4±|r0|2

4πc3r2

[
1 − cos2 χ

] = n
e2ω4±|r0|2

4πc3r2

[
1 − sin2 θ cos2(ω±t ′ − ϕ

)]

(14.50)

since n = (sin θ cosϕ, sin θ sinϕ, cos θ), and hence

cosχ = −n · (e1 cosω±t ′ + e2 sinω±t ′
)

= − sin θ
(
cosϕ cosω±t ′ + sinϕ sinω±t ′

)
.

Now the radiation is maximal in the e3 direction, and it does not depend on time.
The radiation is minimal in the orthogonal directions to e3, along the ‘median’
plane. At the points of this median plane, we have B(t,x)‖e3 by (14.45).

14.6 Diamagnetism and Paramagnetism

The relation between the magnetic induction B, the magnetic field intensity H and
the magnetization M of matter is as follows (for isotropic matter)

B = H + 4πM, B = μH, M = χmH, μ = 1 + 4πχm.

Here, a substance is called diamagnetic if μ < 1.

Problem Find the diamagnetic behavior of electrons moving on circular orbits.

Solution Use again the harmonic oscillator model in a constant external magnetic
field (like in Sect. 14.5). Electrons moving on circular orbits have to be interpreted
as currents inducing the magnetic field.

We again assume that the external magnetic field is along the e3 direction and
B = Be3. The parallel eigenmode (14.41) does not contribute to the magnetic mo-
ment since the integral (12.192) for the corresponding current vanishes. Hence, we
are interested only in the perpendicular eigenmodes (14.44) with frequencies

ω± = −ωL ±
√

ω2
0 + ω2

L, (14.51)

according to (14.43). Without external field these are exactly two modes rotating
with the same angular velocity ω0, one (the + mode) in the counter-clockwise direc-
tion, and the other, in the clockwise direction. The two modes induce the magnetic
moments of equal strengths, but of opposite orientations. Therefore, macroscopi-
cally, their net contribution to the magnetization is zero, since the eigenmodes are
equiprobable.
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With external field, however, the additional contribution is in the same direction
in both cases, and a net contribution remains. The magnetic moment of each eigen-
mode is given by (12.192):

m± = 1

2c

∫

x × j±(t,x) d3x, (14.52)

where j±(t,x) is the corresponding current density. In our case, the electron is in
a circular orbit in the x1, x2 plane, therefore

j±(t,x) = eδ
(
x − x±(t)

)
ẋ±(t). (14.53)

By (14.44), we have

m± = 1

2c
ex±(t) × ẋ±(t) = 1

2c
eω±r2

0 e3. (14.54)

Hence, the mean magnetic moment reads

m = m+ + m−
2

= − 1

2c
eωLr2

0 e3 = −e2Br2
0

4mc2
e3 = − e2r2

0

4mc2
B (14.55)

since (ω+ + ω−)/2 = −ωL according to (14.51). Hence, the magnetic moment is
opposite to the external magnetic field which means the diamagnetism.

For general orbits of electrons, r2
0 must be replaced by the orbit average

|x1|2 + |x2|2; if the force law for the electron is spherically symmetric, as in our
case, we have |x1|2 + |x2|2 = (2/3)x2. If there are several electrons per atom with
different average orbit radii and if there are N atoms per volume, then the magneti-
zation is

M = −N
e2B

6mc2

∑

j

x2
j e3 = −N

e2

6mc2

∑

j

x2
j B, (14.56)

and the susceptibility is approximately given (if it is small) by the Langevin formula
(cf. (9.26))

χm = −N
e2

6mc2

∑

j

x2
j . (14.57)

The assumptions here were rather general (electrons orbiting around nuclei) and, in
fact, all materials are diamagnetic, but the diamagnetism may be over-compensated
by other effects with positive magnetic susceptibility (like paramagnetism).

Paramagnetism is present when the following conditions hold: (1) the atoms or
molecules of the material already have a fixed magnetic moment m0 (even without
external magnetic field), and (2) the orientations of these magnetic moments are
randomly distributed in the absence of an external magnetic field. Without external
magnetic field there is, therefore, no macroscopic magnetization of the paramagnetic
material. However, in an external magnetic field, the magnetic moments are partially



270 14 Exercises

aligned along the direction of the external field, because this aligned position is
energetically favorable. This alignment is thwarted by thermal fluctuations, and the
average magnetic moment per molecule is

m = η
|m0|2
kT

Bext, (14.58)

where η is some constant depending on the molecule type, T is the temperature,
and k is the Boltzmann constant. Both quantum mechanical and thermodynamic
considerations are needed to derive equation (14.58), which is beyond the scope of
the present discussion.

14.7 The Vector Model

The phenomenological vector model has been used in the old quantum theory by
Landé [128] for an addition of the magnetic moments in many-electron atoms and
molecules. We explain the Landé ideas in the framework of the Schrödinger–Pauli
theory (see Sect. 10.2).

14.7.1 Precession of the Angular Momentum

We consider the orbital and spin angular momenta L and s introduced in (3.58) and
(10.13) respectively.

Problem Verify that, in the uniform magnetic field B = (0,0,B), the compo-
nents L3(t) and s3(t) are conserved, while the vectors (L1(t),L2(t)) ∈ R

2 and
(s1(t), s2(t)) ∈ R

2 rotate with angular velocity ωL and 2ωL, respectively, where
ωL = − eB

2mc
is the Larmor frequency.

Solution For concreteness, we consider the orbital momentum. The conservation
of L3 follows from (3.67), because the magnetic field B = (0,0,B) is axially sym-
metric (see (3.66), (3.68)). Since L̂k = −�Hk , from (6.39) we have

[L̂1, L̂2] = i�L̂3, [L̂2, L̂3] = i�L̂1, [L̂3, L̂1] = i�L̂2. (14.59)

Therefore, (10.17) implies that

[P, L̂1] = −iωL�L̂2, [P, L̂2] = iωL�L̂1 (14.60)

since each of L̂k commutes with any of ŝj . Hence, by the Heisenberg equation
(3.93),

L̇1(t) = 〈
�(t), i�−1[PL̂1 − L̂1P]�(t)

〉 = 〈
�(t),ωLL̂2�(t)

〉 = ωLL2(t). (14.61)
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Similarly, we have L̇2(t) = −ωLL1(t), and hence

d

dt

(
L1(t) + iL2(t)

) = −iωL
(
L1(t) + iL2(t)

)
, (14.62)

as required.
The result just proved implies the precession of the vectors L(t) and s(t) with

angular velocities ωL and 2ωL, respectively, around the magnetic field B.

Remark 14.1 A similar precession can be proved for a classical system of electrons
rotating as rigid bodies in a uniform magnetic field [93].

14.7.2 The Vector Model

Let us apply the idea of precession to the addition of the orbital and spin magnetic
moments. This addition explains the Einstein–de Haas and the anomalous Zeeman
experiments.

The model explains the magnetization in the Einstein–de Haas experiment by
the classical mechanism of reorientation in a magnetic field of a total magnetic
moment m, which exists even in the absence of the magnetic field. Namely, the
total magnetic moment m is the sum of the orbital and spin magnetic moments mo

and ms :

m = mo + ms = e

2mc
L + e

mc
s, (14.63)

where the moments are defined by the orbital and spin angular momenta L and s,
respectively, with corresponding distinct gyromagnetic ratios e

2mc
and e

mc
.

In absence of an external magnetic field, the total angular momentum J = L+s is
conserved, while L and s are generally not conserved. For example, the spin angular
momentum s should precess in the magnetic field generated by the orbital angular
momentum. Similarly, the orbital angular momentum L precesses in the magnetic
field generated by the spin angular momentum. Thus the lengths of the vectors L and
s should be constant. Hence the conservation of the sum J = L + s implies that the
vectors L and s rotate around J. Then the total magnetic moment m = e

2mc
L + e

mc
s

also rotates around J. Since the angular velocity of the rotation is very high, we have
to take into account only the effective value of the magnetic moment, meff, which is
the projection of the total magnetic moment onto J. Let us calculate this projection.

The angle α between the vectors J and L is conserved, as well as the angle β

between the vectors J and s, and so

cosα = |J|2 + |L|2 − |s|2
2|J||L| , cosβ = |J|2 + |s|2 − |L|2

2|J||s| . (14.64)

Then the projection is as follows:

meff = e

2mc
|L| cosα + e

mc
|s| cosβ. (14.65)
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Now the effective gyromagnetic ratio reads

geff := meff

|J| e
2mc

= |J|2 + |L|2 − |s|2
2|J|2 + 2

|J|2 + |s|2 − |L|2
2|J|2

= 3

2
+ |s|2 − |L|2

2|J|2 , (14.66)

which is the Landé formula [128].
A final novelty arises from the Bohr Correspondence Principle (see [20]): we

redefine the lengths of the vectors J, L and s as follows:

|J|2 := 〈
�,

(
Ĵ2

1 + Ĵ2
2 + Ĵ2

3

)
�

〉
, |L|2 := 〈

�,
(
L̂2

1 + L̂2
2 + L̂2

3

)
�

〉
,

|s|2 := 〈
�,

(
ŝ2

1 + ŝ2
2 + ŝ2

3

)
�

〉
.

(14.67)

The operators Ĵ2
1 + Ĵ2

2 + Ĵ2
3, L̂2

1 + L̂2
2 + L̂2

3 and ŝ2
1 + ŝ2

2 + ŝ2
3 = 3/4 are known

to commute. Hence, the quantum stationary states can be classified by the eigen-
values of the operators that are equal to J (J + 1), L(L + 1), and 3/4, where
J,L = 0,1,2, . . . . For the states, we have |J|2 = J (J + 1), |L|2 = L(L + 1), and
|s|2 = 3/4. Substituting this into (14.66), we obtain exactly formula (10.31):

geff = 3

2
+ 3/4 − L(L + 1)

2J (J + 1)
. (14.68)

This formula is confirmed experimentally by the Einstein–de Haas and the anoma-
lous Zeeman effects.

14.8 Quantization of Harmonic Oscillator

Here we prove Proposition 2.1 on eigenvalues of the energy operator

Ê = 1

2
p̂2 + 1

2
ω2x̂2 (14.69)

corresponding to the Hamilton function of the harmonic oscillator H = 1
2p2 +

1
2ω2x2. Here x̂ and p̂ satisfy the commutation relations (2.30):

[x̂, p̂] = i�. (14.70)

We should prove that eigenvalues of Ê are given by En = �ω(n + 1
2 ), n = 0,1, . . . .

For the proof, we factorize the Hamilton function as H = 1
2 (p − iωx)(p + iωx),

and respectively,

Ê = 1

2
(p̂ + iωx̂)(p̂ − iωx̂) + 1

2
�ω (14.71)
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since [x̂, p̂] = i�. Equivalently,

Ê = �ω

(

a∗a + 1

2

)

,

a := (p̂ − iωx̂)/
√

2�ω,
[
a, a∗] = −iω[x̂, p̂] + iω[p̂, x̂]

2�ω
= 1, (14.72)

because x̂∗ = x̂ and p̂∗ = p̂.

Problem Let e be an eigenvector of Ê, i.e., Êe = Ee. Verify that

Êae = (E − �ω)ae, Êa∗e = (E + �ω)a∗e. (14.73)

Solution From the commutation relation (14.72) it follows that

Êae = �ω

(

a∗a + 1

2

)

ae = �ω

(

aa∗ − 1

2

)

ae = a�ω

(

a∗a − 1

2

)

e

= a(Ê − �ω)e = (E − �ω)ae,

Êa∗e = �ω

(

a∗a + 1

2

)

a∗e = a∗
�ω

(

aa∗ + 1

2

)

e = a∗
�ω

(

a∗a + 3

2

)

e

= a∗(Ê + �ω)e = (E + �ω)a∗e,

as required. The operators a, a∗ are called, respectively, the ‘annihilation’ and
‘creation’ ladder operators. The final crucial observation is that 1

2 Ê ≥ �ω, giving
aNe = 0 if E − N�ω < 1

2�ω. Let an+1e = 0, while ane �= 0. Hence

〈
ane, (E − n�ω)ane

〉 = 〈
ane, Êane

〉 = �ω
〈
an+1e, an+1e

〉 + 1

2
�ω

〈
ane, ane

〉

= 1

2
�ω

〈
ane, ane

〉
.

As a result, E − n�ω = 1
2�ω.

Let � be the unit eigenvector of H corresponding to the minimal eigenvalue
E0 = 1

2�ω.

Problem Verify that en := (a∗)n�√
n! is the unit eigenvector of H corresponding to

En = �ω(n + 1
2 ), n = 0,1, . . . .

Solution It suffices to check that
〈
(a∗)n�, (a∗)n�

〉 = n! (14.74)

First, we have
〈
(a∗)n�, (a∗)n�

〉 = 〈
an(a∗)n�,�

〉
. (14.75)
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Second, from the commutation relation (14.72) it follows by induction that

a(a∗)n − (a∗)na = n(a∗)n−1. (14.76)

Indeed, multiplying from the left by a, we obtain the same identity (with n + 1
instead of n). Therefore,

a(a∗)n� = n(a∗)n−1� (14.77)

because a� = 0. Hence,

〈
(a∗)n�, (a∗)n�

〉 = n
〈
(a∗)n−1�,(a∗)n−1�

〉 = · · · = n!〈�,�〉 = n!, (14.78)

as required.
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