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Preface

We present the theory of attractors of nonlinear Hamiltonian partial differential equa-
tions in infinite space. This is new branch of the theory of attractors of PDEs since 1990.
This new theory differs significantly from the case of dissipative systems. In particular,
this theory has no analogue for finite-dimensional Hamiltonian equations contrary to the
case of dissipative PDEs.

This book is the first monographic publication in this direction. Included are results on
global attraction, to stationary states, to solitons, and to stationary orbits, together with
results on adiabatic effective dynamics of solitons and their asymptotic stability, and on
the dispersion decay for linear Hamiltonian PDEs. The obtained results are generalised in
the formulation of a new general conjecture on global attractors of G-invariant nonlinear
Hamiltonian partial differential equations.

We also describe the results of numerical simulations.
In conclusion, we discuss possible relations of this theory with the problem of mathe-

matical interpretation of Bohr’s transitions between quantum stationary states.

The book is intended
i) to graduate and postgraduate students working with partial differential equations;
ii) to lecturers in PDEs;
iii) to mathematicians working in PDEs, Mathematical Physics, and mathematical prob-
lems of Quantum Theory.

On the required knowledge

All proofs are self-contained and their overwhelming parts rely on traditional methods of
Analysis: general theory of Hilbert and Banach spaces; distributions and their Fourier
transform, Sobolev spaces and embedding theorems, elementary spectral theory of the
Schrödinger operators (all needed subjects are covered by [9] and Chapters 1–12 of [189]);
definitions of Lie group and Lie algebra and of their representations.

The key points of the proofs rely on a novel application of subtle methods of Harmonic
Analysis: the Wiener Tauberian theorem, the Titchmarsh Theorem on convolution, the
theory of quasimeasures, and others. The applications are explained with all details and
with exact references to the corresponding textbooks.

Keywords: nonlinear partial differential equations; Hamiltonian equations; wave equa-
tion; Maxwell equations; Klein–Gordon equation; limiting amplitude; limiting amplitude
principle; limiting absorption principle; attractor; stationary state; soliton; stationary
orbit; adiabatic effective dynamics; symmetry group; Lie group; Lie algebra; group rep-
resentation Schrödinger equation; quantum transitions.
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Introduction

This monograph presents theory of global attractors and of long time behaviour of
solutions of nonlinear Hamiltonian partial differential equations in infinite space. This
theory was initiated by one of the authors since 1990 and was developed in collaboration
with H. Spohn since 1995, and with A. Comech, V. Imaikin, E. Kopylova, D. Stuart and
B. Vainberg since 2005.

The theory of attractors for nonlinear PDEs began in Landau’s 1944 famous paper
[19], where he proposed the first mathematical interpretation of the onset of turbulence
as the growth of the dimension of attractors of the Navier–Stokes equations when the
Reynolds number increases.

The foundation for the corresponding mathematical theory was laid in 1951 by Hopf,
who first established the existence of global solutions of the 3D Navier–Stokes equations
[5]. He introduced the method of compactness which is a nonlinear version of Faedo-
Galerkin approximations. This method is based on a priori estimates and Sobolev em-
bedding theorems and has had an essential influence on the development of the theory of
nonlinear PDEs (see [2, 3, 12]).

The modern development of the theory of global attractors for dissipative PDEs , that
is, PDEs with friction, originated in 1975–1985 in publications by J. Ball, C. Foias, J.M.
Ghidaglia, J.K. Hale, D. Henry, R. Temam, and was developed further by M.I. Vishik,
A.V. Babin, V.V. Chepyzhov, A. Haraux, A.A. Ilyin, A. Miranville, V. Pata, E. Titi,
S. Zelik, and others. An essential part of the theory up to 2000 was covered in the
monographs [20]–[26].
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One of the central subject of research in this theory is the global attractor of all
bounded subsets of the corresponding Banach phase space. Typically this attractor is
a submanifold connecting stationary states, which is an analogue of separatrices. Each
single point also attracts to this submanifold, and eventually converges to one of stationary
states,

ψ(x, t)→ S(x), t→ +∞, (0.0.1)

where the convergence holds in appropriate norm on the Banach phase space. In par-
ticular, the relaxation to an equilibrium regime in chemical and biological reactions (the
‘saturation’) is due to energy dissipation.

The results obtained concern a wide class of nonlinear dissipative PDEs, including
fundamental equations of applied and mathematical physics: the Navier–Stokes equa-
tions, nonlinear parabolic equations, reaction-diffusion equations, wave equations with
friction, integro-differential equations, equations with delay, with memory, and so on.
The techniques of functional analysis of nonlinear PDEs were developed for the study
of the structure of different types of attractors, their smoothness and their fractal and
Hausdorff dimensions, dependence on parameters, on averaging, and so on.

The development of a similar theory for Hamiltonian PDEs seemed at first to be
unmotivated and even impossible in view of energy conservation and time reversal for these
equations. However, it turned out that such a theory is possible, and its development was
inspired by the problem of mathematical interpretation of basic postulates of Quantum
Theory. These relations to Quantum Theory are discussed in the final Chapter 8. More
details can be found in [214].

Results obtained in 1990–2020 suggest that long-time global attraction to a finite-
dimensional submanifold in the corresponding Hilbert phase space is in fact typical feature
for nonlinear Hamiltonian PDEs in infinite space. These results are presented in our
monograph.

For Hamiltonian PDEs in infinite space the theory of attractors differs significantly
from the case of dissipative systems, where the global attraction to stationary states is
caused by an energy dissipation which is due to friction. For Hamiltonian equations the
friction and energy dissipation are absent, and the global attraction is caused by radiation
which irreversibly carries energy to infinity. This peculiarity required novel tools for
analysis of nonlinear Hamiltonian equations which are presented in this monograph.

Let us note however that this theory is only at an initial stage of its development
and cannot be compared with the theory of attractors of dissipative PDEs with regard to
richness and diversity of results.

The modern development of the theory of nonlinear Hamiltonian PDEs dates back to
K. Jörgens [7], who first established the existence of global solutions for nonlinear wave
equations of the form

ψ̈(x, t) = ∆ψ(x, t) + f(ψ(x, t)), x ∈ Rn, (0.0.2)

by developing the Hopf method of compactness. The subsequent studies of the well-
posedness for nonlinear PDEs were presented by J.-L. Lions [12], and by A. Haraux and
T. Cazenave [2, 3].

The first results on long-time asymptotics for linear hyperbolic PDEs in infinite space
were established in the scattering theory by P.D. Lax, C.S. Morawetz, and R.S. Phillips
for the wave equation in the exterior of a star-shaped obstacle, [34]. This is the local
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energy decay: for any finite R > 0∫
|x|<R

[|ψ̇(x, t)|2 + |∇ψ(x, t)|2 + |ψ(x, t)|2]dx→ 0, t→ ±∞. (0.0.3)

This decay means that the energy escapes each bounded region for large times. For general
linear hyperbolic PDEs and systems similar local decay was established by B.R. Vainberg
[40]. The extension of this decay to nonlinear Hamiltonian PDEs was established first by
I. Segal , C.S. Morawetz and W. Strauss [35]–[39]. In these papers the local energy decay
(0.0.3) was proved for solutions of equations (0.0.2) with small initial data in the case of
defocusing nonlinearities similar to

f(ψ) = −m2ψ − κ|ψ|p−1ψ, (0.0.4)

where m2 ≥ 0, κ > 0, and p > 1. Moreover, in these articles the corresponding nonlinear
wave operators and scattering operators are constructed. In [80, 81] W. Strauss established
the completeness of the scattering for small solutions of more general equations.

For convenience, characteristic properties of all finite-energy solutions of an equation
will be referred to as global, in order to distinguish them from the corresponding local
properties of the solutions with initial data sufficiently close to an attractor. Note that
global attraction to a (proper) attractor is impossible for finite-dimensional Hamiltonian
systems, because of energy conservation. All the above-mentioned results [35]–[39] on
local energy decay (0.0.3) for nonlinear Hamiltonian PDEs mean that the corresponding
local attractor of solutions with small initial states consists of only the zero point.

Theory of global attractors. The first results on global attractors for nonlinear Hamil-
tonian PDEs were obtained by one of the present authors in 1991–1995 for 1D equations
[43, 44, 45], and were extended to nD equations in 1995–2020 in collaboration with A.
Comech, V.S. Buslaev, E. Kopylova, H. Spohn, D. Stuart, B.R. Vainberg, and others.

These results were derived from an analysis of the irreversible energy radiation to infin-
ity, which plays the role of dissipation. This progress was achieved by a novel application
of subtle methods of Harmonic Analysis: the Wiener Tauberian theorem, the Titchmarsh
convolution theorem, the theory of quasimeasures, the stationary scattering theory of
Agmon, Jensen and Kato, the eigenfunction expansion for nonselfadjoint Hamiltonian
operators based on M.G. Krein theory of J-selfadjoint operators, and others.

One of the key observations is that the results obtained so far indicate a certain
dependence of long-time asymptotics of solutions on the symmetry group of the equation:
for example, it may be the trivial group G = {e}, or the group of translations G = Rn, or
the unitary group G = U(1), or the orthogonal group SO(3). This observation suggests
general conjecture for nonlinear Hamiltonian autonomous PDEs of type

Ψ̇(t) = F (Ψ(t)), t ∈ R, (0.0.5)

with a Lie symmetry group G, which acts on the Hilbert or Banach phase space E of the
equation via a representation T .

Conjecture A. (On attractors) For generic nonlinear Hamiltonian PDEs (0.0.5) with
a Lie symmetry group G, any finite-energy solution admits the asymptotics

Ψ(t) ∼ eλ̂±tΨ±, t→ ±∞ (0.0.6)

in appropriate topology of the phase space E.
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Here λ̂± = T ′(e)λ±, where λ± belong to the corresponding Lie algebra g, while the
Ψ±(x) are some limiting amplitudes depending on the trajectory Ψ(x, t) considered. Both
pairs (Ψ+, λ̂+) and (Ψ−, λ̂−) are solutions of the corresponding nonlinear eigenvalue prob-
lem (3.10.4), see more details in Section 3.10.

Let us specify the asymptotics (0.0.6) for the four symmetry groups mentioned above.

I. Equations with trivial symmetry group G = {e}. For such generic equations the
conjecture (0.0.6) means global attraction to stationary states

ψ(x, t)→ S±(x), t→ ±∞ (0.0.7)

as is illustrated in Fig. 1. Here the states S±(x) depend on the trajectory ψ(x, t) under
consideration, and the convergence holds in local seminorms of type L2(|x| < R) with any
R > 0. This convergence cannot hold in global norms (that is, corresponding to R =∞)
due to energy conservation.

 

t= +

   
t =

ψ(0)

ψ )(t

8

+S

S

8

Figure 1: Convergence to stationary states

The asymptotics (0.0.7) can be symbolically written as the transitions

S− 7→ S+. (0.0.8)

These transitions can be considered as the mathematical model of the Bohr ‘quantum
jumps’.

Such attraction was proved in [43]–[55] for a variety of model equations: i) for a string
coupled to nonlinear oscillators, ii) for a three-dimensional wave equation coupled to a
charged particle and for the Maxwell–Lorentz equations, and also iii) for wave equation,
and Dirac and Klein–Gordon equations with concentrated nonlinearities.

All proofs rely on the bounds for radiation which irreversibly carries energy to infin-
ity. The proof of global attraction in [47, 48] rely on a novel application of the Wiener
Tauberian theorem [18] which provides the relaxation of the acceleration of the particle

q̈(t)→ 0, t→ ±∞. (0.0.9)

under the Wiener condition (1.5.13) on the particle charge density. These results gave
the first rigorous proof of radiation damping (0.0.9) in Classical Electrodynamics, which
has been an open problem for about 100 years.
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The results of [43]–[47] and [53] are presented with details in Chapter 1.
In all problems considered here, the convergence (0.0.7) implies by the Fatou theorem

the inequality
H(S±) ≤ H(Y (t)) ≡ const, t ∈ R, (0.0.10)

where H is the corresponding Hamiltonian (energy) functional. This inequality is an
analog of the well known property of the weak convergence in the Hilbert and Banach
spaces. Simple examples show that strong inequality in (0.0.10) is possible, that means
the irreversible scattering of energy to infinity.

Example 0.0.1. The d’Alembert waves. In particular, the asymptotics (0.0.7) and
the strong inequality (0.0.10) can easily be demonstrated for the d’Alembert equation with
general solution ψ(x, t) = f(x− t) + g(x + t). Namely, the local convergence ψ(·, t)→ 0
in L2

loc(R) obviously holds for all f, g ∈ L2(R). On the other hand, the convergence to
zero in the global norm of L2(R) obviously fails if f(x) 6≡ 0 or g(x) 6≡ 0.

Example 0.0.2. Nonlinear strong Huygens principle. Similarly, a solution of the 3D
wave equation with unit speed of propagation is concentrated in spherical layers |t|−R <
|x| < |t| + R if the initial data have support in the ball |x| ≤ R. Therefore, the solution
converges to zero in L2

loc(R3) as t→ ±∞, although its energy remains constant. This also
illustrates the strong inequality in (0.0.10). This convergence corresponds to the well-
known strong Huygens principle in Optics and Acoustics (see [1]). Thus, global attraction
to stationary states (0.0.7) is a generalisation of the strong Huygens principle to non-linear
equations. The difference is that for the linear wave equation the limit is always zero,
while for nonlinear equations the limit can be any stationary solution.

II. Equations with the symmetry group of translations G = Rn. Let us consider
for example the case of simplest representation

[T (a)ψ](x) := ψ(x− a), x ∈ Rn (0.0.11)

for a ∈ Rn. Then the asymptotics (0.0.6) means global attraction to solitons (traveling
waves)

ψ(x, t) ∼ ψ±(x− v±t), t→ ±∞, (0.0.12)

where the asymptotics holds in local seminorms of type L2(|x−v±t| < R) with any R > 0,
that is in the comoving frame of reference.

Such soliton asymptotics was proved first for integrable equations (Korteweg–de Vries
equation (KdV), etc), see [56, 62]. Moreover, for the Korteweg–de Vries equation more
accurate soliton asymptotics in global norms with several solitons were first discovered
by M. Kruskal and N.J. Zabuzhsky in 1965 by numerical simulation: it is the decay to
solitons

ψ(x, t) ∼
∑
k

ψ±(x− vk±t) + w±(x, t), t→ ±∞, (0.0.13)

where w± are some dispersion waves. A trivial example is provided by the d’Alembert
equation ψ̈(x, t) = ψ′′(x, t), for which any solution reads ψ(x, t) = f(x− t) + g(x+ t).

Later on, such asymptotics were proved by the method of inverse scattering problem
for nonlinear integrable Hamiltonian translation-invariant equations (KdV, etc.) in the
works of M.J. Ablowitz, H. Segur, W. Eckhaus, A. van Harten and others [56, 62].
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For non-integrable equations the global attraction to solitons (0.0.12) was established
for the first time in [57]–[60] for translation-invariant systems of the wave and Maxwell
equations coupled to a charged relativistic particle. The result of [58] gives the first
rigorous proof of the radiation damping for the translation-invariant system of Classical
Electrodynamics.

The proofs in [57] and [58] rely on a canonical transformation to the comoving frame
and variational properties of solitons, as well as on the relaxation of the acceleration
(0.0.9) under the Wiener condition for the particle charge density.

The multi-soliton asymptotics (0.0.13) for non-integrable equations were observed nu-
merically in [61] in the case of 1D relativistically-invariant nonlinear wave equations.

The results of [57] and [61] are presented with details in Chapters 2 and 6 respectively,

III. Equations with the unitary symmetry group G = U(1). Let us consider for
example the case of simplest representation

[T (eiθ)ψ](x) := eiθψ(x), x ∈ Rn (0.0.14)

for θ ∈ R. Then the asymptotics (0.0.6) means the single-frequency asymptotics

ψ(x, t) ∼ ψ±(x)e−iω±t, t→ ±∞, (0.0.15)

where ω± ∈ R.

Example 0.0.3. For the case of Maxwell–Schrödinger system (8.2.1) with the symmetry
group U(1) and its representation (8.2.6), the conjecture (0.0.6) reduces to the asymptotics
(8.2.9) with

λ̂± =

(
−iω± 0

0 0

)
, ω± ∈ R.

The asymptotics (0.0.15) also means the global attraction to the solitary manifold
formed by all stationary orbits which are solutions of type ψω(x)e−iωt. The asymptotics
are expected in the local seminorms L2(|x| < R) with any R > 0. The global attractor is a
smooth manifold formed by the circles which are the orbits of the action of the symmetry
group U(1) (see Fig. 2).

Such attraction in local seminorms L2(|x| < R) were proved i) in [64]–[70] for the
Klein–Gordon and Dirac equations coupled to U(1)-invariant nonlinear oscillator, ii) in
[63], for discrete in space and time difference approximations of such coupled systems, i.e.,
for the corresponding difference schemes, and iii) in [72]–[74] for the wave, Klein–Gordon,
and Dirac equations with concentrated nonlinearities. More precisely, we have proved
global attraction to the solitary manifold of all stationary orbits, though global attraction
to a particular stationary orbits, with fixed ω±, is still an open problem.

All these results were proved under the assumption that the equations are ‘strictly non-
linear’. For linear equations, the global attraction obviously fails if the discrete spectrum
consists at least of two different eigenvalues.

The proofs of all these results rely on i) a nonlinear analogue of the Kato theorem
on the absence of emerged eigenvalues, ii) new theory of multiplicators in the space of
quasimeasures and iii) novel application of the Titchmarsh Convolution Theorem.

The results of [65]–[67] are presented with details in Chapter 3.
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Figure 2: Convergence to stationary orbits .

Existence and orbital stability of stationary orbits. The existence of solutions eλ̂tΨ
(stationary G-orbits) for G-invariant nonlinear wave equations (0.0.2) in the cases G =
U(1) and G = Rn was extensively studied in the 1960s–1980s. The most general results
were obtained by W. Strauss, H. Berestycki and P.-L. Lions [27, 28, 33]. M. Esteban, V.
Georgiev, and E. Séré constructed in [30] stationary orbits for relativistically-invariant
nonlinear Maxwell–Dirac system (8.2.8) and for the Klein–Gordon–Dirac system. The
key role in these papers was played by the Lusternik–Schnirelman theory of critical points
[31, 32].

In [29] G. M. Coclite and V. Georgiev constructed stationary orbits for the nonlinear
Maxwell–Schrödinger system with the external Coulomb potential.

General theory of orbital stability of stationary G-orbits was developed by M. Grillakis,
J. Shatah, and W. Strauss in [103, 104].
IV. Equations with the orthogonal symmetry group G = SO(3). For such generic
equations the asymptotics (0.0.6) means that

ψ(x, t) ∼ e−iΩ̂±tψ±(x), t→ ±∞, (0.0.16)

where Ω̂± are suitable representations of real skew-symmetric 3× 3 matrices Ω± ∈ so(3).
This means global attraction to ‘stationary SO(3)-orbits’. Such asymptotics are proved
in [91] for the Maxwell–Lorentz equations with rotating particle.
Generic equations. Let us emphasise that, for example, we are conjecturing asymptotics
(0.0.15) for generic U(1)-invariant equations. This means that the long time behavior of
solutions may be quite different for U(1)-invariant equations of ‘positive codimension’. In
particular, for solutions of the linear Schrödinger equation

iψ̇(x, t) = −∆ψ(x, t) + V (x)ψ(x, t), x ∈ Rn

the asymptotics (0.0.15) generally fails. Namely, any finite-energy solution admits the
spectral representation

ψ(x, t) =
∑

Ckψk(x)e−iωkt +

∫ ∞
0

C(ω)ψ(ω, x)e−iωtdω,
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where ψk and ψ(ω, ·) are the corresponding eigenfunctions of the discrete and continuous
spectrum, respectively. The last integral is a dispersion wave, which decays to zero in
the norms L2(|x| < R) with any R > 0 (under appropriate conditions on the potential
V (x)). Correspondingly, the attractor is the linear span of the eigenfunctions ψk. Thus,
the long-time asymptotics does not reduce to a single term like (0.0.15), so the linear case
is degenerate in this sense. Note that all our results [64]–[70] are established for a strictly
nonlinear case (see the condition (3.1.14)), which eliminates linear equations.
Higher symmetry groups. For more sophisticated symmetry groups G = U(N), the
asymptotics (0.0.6) mean the global attraction to N -frequency trajectories, which can
be quasi-periodic. In particular, the symmetry groups SU(2), SU(3) and others were
suggested in 1961 by M. Gell-Mann and Y. Ne’eman for strong interaction of baryons
[220, 221]. This theory provides an empirical evidence for the asymptotics (0.0.6), see
Section 3.10.
On relations with Soffer’s conjectures. Note that our conjecture (0.0.6) specifies the
concept of localised solution/coherent structures from the ‘Grande Conjecture’ and the
‘Petite Conjecture’ of A. Soffer (see [161], p. 460) in the context of the Banach spaces .
The Grande Conjecture was proved in [50] for the case of a 1D wave equation coupled to
a nonlinear oscillator (1.2.1). Moreover, suitable versions of the Grande Conjecture were
also proved in [60, 91] for the 3D wave, Klein–Gordon and Maxwell equations coupled to
a relativistic particle with sufficiently small charge (2.2.1) (see Remark 2.2.1). Finally,
for any matrix symmetry group G, the asymptotics (0.0.6) corresponds to the Petite
Conjecture since then the localised solutions eg±tψ±(x) are quasi-periodic.

In this book we present available results on the global attraction (0.0.7)–(0.0.16) and
related numerical experiments. Moreover, we survey the results on asymptotic stability
of solitons and their adiabatic effective dynamics, on the dispersion decay and relations
to Quantum Mechanics.

Asymptotic stability of solitons. More precisely we should phrase ‘asymptotic stabil-
ity of solitary manifolds’ which means a local attraction, i.e. for states sufficiently close
to the manifold. There is a huge literature on this subject. In Chapter 4 we review the
results on such local attraction which were developed in a series of articles [162]–[171] by
V.S. Buslaev, G. Perelman, A. Soffer, D. Stuart, C. Sulem, T.P. Tsai, M. Weinstein, H.T.
Yau, and others.

The crucial peculiarity of this attraction is the instability of the dynamics along the
solitary manifold. This follows directly from the fact that solitons move with different
speeds and therefore run away for large times. Analytically, this instability is caused by
the presence of the eigenvalue λ = 0 in spectrum of the generator of linearised dynamics.
Namely, the tangent vectors to solitary manifold are eigenvectors and associated vectors
of the generator. They correspond to zero eigenvalue. Respectively, the Lyapunov theory
is not applicable to this case.

This is why in the articles [162]–[170] an original strategy was developed for proving
asymptotic stability of solitary manifolds. This strategy allows one to separate the un-
stable motion along the solitary manifold and the attraction in transversal directions to
this manifold.

This approach relies on i) a special projection of a trajectory onto the solitary man-
ifold, ii) modulation equations for parameters of the projection, and iii) time-decay of
transversal component. It is a far-reaching development of the Lyapunov stability theory.
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Adiabatic effective dynamics of solitons. In Chapter 5 we establish an adiabatic
effective dynamics for solitons in slowly varying external potentials, when the correspond-
ing external force is small. The existence of solitons and the global attraction to solitons
(0.0.12) are typical features of translation-invariant systems. However, if the deviation of
a system from translational invariance is in some sense small, the system can admit solu-
tions which are close forever to solitons with time-dependent parameters (velocity, etc.).
Moreover, in some cases it is possible to identify an ‘effective dynamics’ which describes
the evolution of these parameters.

We present without proofs the results of [87] and [88] on adiabatic effective dynamics
(5.1.5), (5.1.6) for the wave-particle system (1.5.1)–(1.5.2) and the Maxwell–Lorentz sys-
tem (1.6.1), respectively, in the case of slowly varying external potentials. We also discuss
the related mass-energy equivalence.

In Chapter 6 we present results of numerical simulation of soliton asymptotics and on
the corresponding effective dynamics for relativistically-invariant equations.

Dispersion decay. In Chapter 7 we give i) a brief survey of basic results on the dispersion
decay, and ii) new short and simplified proof of the fundamental results on the L1 → L∞

dispersion decay established by J.-L. Journé, A. Soffer and C.D. Sogge in [185] for the
Schrödinger equation (7.1.2) with n ≥ 3.

The dispersion decay of the corresponding linearised equations plays the key role in
all results on long-time asymptotic for nonlinear Hamiltonian PDEs. One of the first
fundamental results on the dispersion decay is the local energy decay (0.0.3) established
in [34].

Relations to Quantum Mechanics. In the final Chapter 8 we discuss possible rela-
tionships between the theory of attractors of Hamiltonian nonlinear equations and Quan-
tum Mechanics. The global attraction (0.0.15) was suggested by postulates of N. Bohr
on transitions to quantum stationary states and by E. Schrödinger’s definition of these
quantum stationary states as solutions of type ψ(x, t) = ψ(x)e−iωt (see Chapter 8 for
details). Our results confirm such attraction for generic U(1)-invariant nonlinear equa-
tions of type (3.1.1) and (3.1.18)–(3.1.20). However, for the semiclassical self-consistent
Maxwell–Schrödinger system of Quantum Mechanics this attraction is still open challeng-
ing problem.

On related surveys. In conclusion let us mention the related surveys in this area
[8, 11, 49]. The results on asymptotic stability of solitary manifolds were described in de-
tail in [124] for linear equations coupled to a particle, and in [144] for the relativistically-
invariant Ginzburg–Landau equations.
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Chapter 1

Global Attraction to Stationary States

In this chapter we present with details the results on global attraction to stationary
states (0.0.7) for nonlinear Hamiltonian PDEs in infinite space.

In Section 1.2 we present the first result of this type obtained in [43, 44] for 1D wave
equation coupled to one nonlinear oscillator (‘the Lamb system’). The second result [45]
for 1D wave equation coupled to several nonlinear oscillators is presented in Section 1.3,
and the third result - for 1D wave equation coupled to a ‘continuum of nonlinear oscilators’
- is presented in Section 1.4.

In Sections 1.5 and 1.6 are presented the results [47] and [48] which concern respectively
3D wave equation and Maxwell’s equations coupled to a charged relativistic particle.

Section 1.7 concerns the result [53] on three-dimensional wave equations with concen-
trated nonlinearity.

1.1 Free d’Alembert equation
The global attraction (0.0.7) can easily be demonstrated using the trivial (but instructive)
example of the d’Alembert equation

ψ̈(x, t) = ψ′′(x, t), x ∈ R, (1.1.1)

where ψ̇ :=
∂ψ

∂t
, ψ′ :=

∂ψ

∂x
. All derivatives here and below are understood in the sense of

distributions. This equation is formally equivalent to the Hamiltonian system

ψ̇(t) = DπH, π̇(t) = −DψH (1.1.2)

with Hamiltonian

H(ψ, π) =
1

2

∫
[|π(x)|2 + |ψ′(x)|2] dx, (ψ, π) ∈ E := H1

c (R)⊕ [L2(R)∩L1(R)], (1.1.3)

where H1
c (R) is the Hilbert space of continuous functions ψ(x) with finite norm

‖ψ‖H1
c (R) := ‖ψ′‖L2(R) + |ψ(0)|. (1.1.4)

Let us consider solutions (ψ(x, t), π(x, t)) of (1.1.2) with initial states (ψ(x, 0), π(x, 0)) =
(ψ0(x), π0(x)) ∈ E . Let us assume moreover, that

ψ0(x)→ C±, x→ ±∞. (1.1.5)

15
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For such initial data the d’Alembert formula gives

ψ(x, t) =
ψ0(x+ t) + ψ0(x− t)

2
+

1

2

∫ x+t

x−t
π0(y)dy

−−−→
t→±∞

S±(x) =
C+ + C−

2
± 1

2

∫ ∞
−∞

π0(y)dy, (1.1.6)

where the convergence is uniform on every finite interval |x| < R. Moreover,

ψ̇(x, t) =
ψ′0(x+ t)− ψ′0(x− t)

2
+
π0(x+ t) + π0(x− t)

2
→ 0, t→ ±∞, (1.1.7)

where the convergence holds in L2(−R,R) for each R > 0. Thus, the set of stationary
states (ψ(x), π(x)) = (C, 0), where C ∈ R is any constant, is an attractor. Note that for
positive and negative times the limits (1.1.6) may be different.
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1.2 A string coupled to a nonlinear oscillator
In this section we present the first results on global attraction to stationary states (0.0.7)
for nonlinear Hamiltonian PDEs obtained in [43, 44] (and developed in [50]) for the
nonlinear Lamb system with a point nonlinearity:{

ψ̈(x, t) = ψ′′(x, t), x ∈ R \ {0},

mÿ(t) = F (y(t)) + ψ′(+0, t)− ψ′(−0, t); y(t) ≡ ψ(0, t),
(1.2.1)

where m > 0. Solutions ψ(x, t) take the values in Rd with d ≥ 1. This system can
formally be written as the nonlinear wave equation

(1 +mδ(x))ψ̈(x, t) = ψ′′(x, t) + δ(x)F (ψ(0, t)), x ∈ R. (1.2.2)

The problem (1.2.1) describes small crosswise oscillations of an infinite string stretched
parallel to the x-axis; a particleof mass m > 0 is attached to the string at the point x = 0;
F (y) is an external (nonlinear) force perpendicular to the string, the force subjects the
particle(see Fig. 1.1)

T

m

0

F

y

x

T

Figure 1.1: String coupled to an oscillator.

The system (1.2.1) has been introduced originally by H. Lamb [54] in the linear case
when F (y) = −ω2y. The Lamb system with nonlinear force F (y) has been considered in
[42] where the questions of irreversibility and nonrecurrence were discussed. The system
was studied further in [43, 44, 50] where the global attraction to stationary states has
been established for the first time, and in [41] where metastable regimes were studied for
the stochastic Lamb system with a white noise.

The Lamb system (1.2.1) is a simplest nontrivial nonlinear time-reversible infinite-
dimensional Hamiltonian system allowing an effective analysis of various questions.

Our main results for this system are as follows. Here we establish the existence of a
finite-dimensional global attractor and establish the nonlinear scattering:

Each finite energy solution decays in long-time limits
to a sum of a stationary state and a dispersion wave.
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The asymptotics hold in global energy norm. Moreover, in [51, 52] we have established
the asymptotic completeness of the corresponding nonlinear scattering operators.

We consider the Cauchy problem for the system (1.2.1) with the initial conditions

ψ|t=0 = ψ0(x), ψ̇|t=0 = π0(x), ẏ|t=0 = p0. (1.2.3)

Denote Y (t) = (ψ(x, t), ψ̇(x, t), ẏ(t)). Then the Cauchy problem (1.2.1), (1.2.3) can be
written as

Ẏ (t) = F(Y (t)) for t ∈ R, Y (0) = Y0, (1.2.4)

where Y0 = (ψ0, v0, p0), and

F(Y (t)) = (ψ̇(·, t), ψ′′(x, t)|x 6=0, F (ψ(0, t)) + ψ′(+0, t)− ψ′(−0, t)).

An exact statement of the Cauchy problem will be formulated in next section.
We will establish the scattering asymptotics

Y (t) ∼ S± + W̃ (t)Ψ±, t→ ±∞ (1.2.5)

where S± are some stationary states of the system (1.2.1), W̃ (t) is the dynamical group
of the free wave equation, and Ψ± ∈ E are the corresponding scattering states. The
asymptotics (1.2.5) holds if the following limits exist:

ψ+
0 := lim

x→+∞
ψ0(x), ψ−0 := lim

x→−∞
ψ0(x), I0 :=

∫ ∞
−∞

π0(y)dy. (1.2.6)

1.2.1 Hilbert phase space and dynamics

Let us introduce a Hilbert phase space E of finite energy states for the system (1.2.1).
Denote by ‖ · ‖ resp. ‖ · ‖R the norm in the Hilbert space L2 := L2(R,Rd) resp.
L2([−R,R],Rd), and by Ec := H1

c (R) ⊗ Rd, where H1
c (R) is the Hilbert space with the

norm (1.1.4).

Definition 1.2.1. i) E is the Hilbert space of triples (ψ(x), π(x), p) ∈ Ec ⊕ L2 ⊕ Rd with
finite energy norm

‖(ψ, v, p)‖E = ‖ψ‖Ec + ‖π‖+ |p| = ‖ψ′‖R + |ψ(0)|+ ‖π‖+ |p|. (1.2.7)

ii) EF is the space E endowed with the topology defined by the local energy seminorms

‖(ψ, π, p)‖E,R ≡ ‖ψ′‖R + |ψ(0)|+ ‖π‖R + |p|, R > 0. (1.2.8)

The space EF is not complete, and convergence in EF is equivalent to convergence in
the metric

dist[Y1, Y2] =
∞∑
1

2−R
‖Y1 − Y2‖E,R

1 + ‖Y1 − Y2‖E,R
, Y1, Y2 ∈ E . (1.2.9)

We assume that

F (y) ∈ C1(Rd,Rd), F (y) = −∇V (y) (1.2.10)

V (y)→ +∞, |u| → ∞. (1.2.11)
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In this case the system (1.2.1) is formally Hamiltonian with the Hilbert phase space E
and the Hamiltonian functional

H(ψ, π, p) =
1

2

∫
[|π(x)|2 + |ψ′(x)|2]dx+m

|p|2

2
+ V (ψ(0)) (1.2.12)

for (ψ, π, p) ∈ E . We consider solutions ψ(x, t) such that Y (t) = (ψ(·, t), ψ̇(·, t), ẏ(t)) ∈
C(R, E), where y(t) := ψ(0, t).

Let us discuss definition of the Cauchy problem (1.2.1), (1.2.3) for the trajectories
Y (t) ∈ C(R, E). At first, ψ ∈ C(R2,Rd) for Y (t) ∈ C(R, E). Hence, the first equation in
(1.2.1) is equivalent to the d’Alembert decomposition

ψ(x, t) = f±(x− t) + g±(x+ t), ±x > 0, (1.2.13)

where
f±, g± ∈ C(R,Rd).

Therefore,

ψ̇(x, t) = −f ′±(x− t) + g′±(x+ t), ψ′(x, t) = f ′±(x− t) + g′±(x+ t) for ± x > 0,

where all the derivatives are understood in the sense of distributions. The assumption
Y (t) ∈ C(R, E) implies

f ′±, g
′
± ∈ L2

loc(R,Rd).

Now we explain the second equation of (1.2.1).

Definition 1.2.2. In the second equation of (1.2.1) we set

ψ′(0±, t) := f ′±(−t) + g′±(t) ∈ L2
loc(R,Rd), (1.2.14)

while the derivative ÿ(t) of y(t) ≡ ψ(0, t) ∈ C(R,Rd) is understood in the sense of distri-
butions.

Note that the functions f± and g± in (1.2.13) are unique up to an additive constant.
Hence definition (1.2.14) is unambiguous.

Proposition 1.2.3. (cf. [44]) Let the conditions (1.2.10), (1.2.11) hold, m > 0, and
Y0 ∈ E. Then
i) The Cauchy problem (1.2.4) admits a unique solution Y (t) ∈ C(R, E).
ii) The map U(t) : Y0 7→ Y (t) is continuous in E and in EF .
iii) The energy is conserved,

H(Y (t)) = const, t ∈ R. (1.2.15)

iv) The a priori bounds hold,
sup
t∈R
‖Y (t)‖E <∞.
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1.2.2 Main results

The stationary states S = (s(x), 0, 0) ∈ E for the system (1.2.1) are evidently determined:
the set S of all stationary states S ∈ E is given by

S = {Sz = (z, 0, 0) : z ∈ Z}, where Z := {z ∈ Rd : F (z) = 0}. (1.2.16)

The next theorem means that the set S is the global point attractor of the system (1.2.1)
in the space EF .
Theorem 1.2.4. (cf. [43, 44]) Let all assumptions of Proposition 1.2.3 hold and an
initial state Y0 ∈ E.Then
i) The corresponding solution Y (t) ∈ C(R, E) to the Cauchy problem (1.2.4) attracts to
the set S,

Y (t)
EF−→ S, t→ ±∞ (1.2.17)

in the metric (1.2.9). This means that

dist[Y (t),S] := inf
S∈S

dist[Y (t), S]→ 0, t→ ±∞. (1.2.18)

ii) Suppose additionally that the set Z is a discrete subset in Rd. Then any solution
Y (t) ∈ C(R, E) attracts to some stationary states S± ∈ S depending on the solution,

Y (t)
EF−→ S±, t→ ±∞. (1.2.19)

as is illustrated in Figure 1.

Remarks 1.2.5. i) The discreteness of the set Z is essential for the global attraction to
stationary states (1.2.19). For example, let us consider the nonlinearity which vanishes
on a C1-submanifold of Rd,

F (ψ) ≡ 0, ψ ∈ I. (1.2.20)
Then in the case m = 0 any smooth function ψ(x, t) with values in I is the solution to
the system (1.2.1). In particular, for d = 1 and I = [−1, 1] we can take the function

ψ(x, t) = sin log(|x− t|+ 2), (x, t) ∈ R2. (1.2.21)

In this case the function (ψ(x, t), ψ̇(x, t), ψ(0, t)) ∈ C(R, E) is the solution to equation
(1.2.4) with m = 0, and for this solution the attraction to stationary states (1.2.19)
obviously breaks down. On the other hand, (1.2.17) for this solution holds. For m > 0
similar examples also can be easily constructed, see [44].
ii) The ‘weak convergence’ (1.2.19) and (1.2.11), (1.2.12) imply (0.0.10) by the Fatou
lemma.

Further, let us denote E0 = {(ψ, v, 0) ∈ E}, and W̃ (t)(ψ, v, 0) := (W (t)(ψ, v), 0), where
W (t) is the dynamical group of free wave equation (1.1.1).

Theorem 1.2.6. ([50]) Let all assumptions of Proposition 1.2.3 hold, and additionally,
the finite limits (1.2.6) exist. Then the scattering asymptotics hold

Y (t) = S± + W̃ (t)Ψ± + r±(t) (1.2.22)

with S± ∈ S, and some asymptotic states Ψ± ∈ E0; the remainder is small in the global
energy norm (1.2.7):

‖r±(t)‖E → 0, t→ ±∞. (1.2.23)

In [51, 52] the asymptotic completeness of the corresponding nonlinear scattering
operator S : Ψ− 7→ Ψ+ has been proved for equation (1.2.1) in the case m = 0.
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1.2.3 Well-posedness

Recall briefly the proof of Proposition 1.2.3 from [44] since we need some constructions
later, in the proofs of Theorems 1.2.4 and 1.2.6.

The construction of solutions relies on the d’Alembert representation (1.2.13). For
±z > 0 the functions f±(z) and g±(z) are defined by the d’Alembert formulas

f±(z) :=
ψ0(z)

2
− 1

2

∫ z

0

v0(y) dy, g±(z) :=
ψ0(z)

2
+

1

2

∫ z

0

v0(y) dy, ±z > 0. (1.2.24)

These formulas imply that
f ′±(z), g′±(z) ∈ L2(R±,Rd) (1.2.25)

since (ψ0, v0) ∈ E . The reflected outgoing waves f+(z) for z < 0 and g−(z) for z > 0 are
given by

f+(−t) := y(t)− g+(t), g−(t) := y(t)− f−(−t), t > 0 (1.2.26)

due to the gluing conditions y(t) := ψ(0, t) = f+(−t) + g+(t) = f−(−t) + g−(t). Hence,

ψ(x, t) =


y(t− x) + g+(x+ t)− g+(t− x), 0 < x < t

y(t+ x) + f−(x− t)− f−(−x− t), − t < x < 0

∣∣∣∣∣∣ t > 0. (1.2.27)

Substituting these representations into the second equation of (1.2.1), we immediately get
the reduced equation for the oscillator,

mÿ(t) = F (y(t))− 2ẏ(t) + 2ẇin(t), t > 0; y(0) = ψ0(0); ẏ(0) = p0, (1.2.28)

where
win(t) = g+(t) + f−(−t), t > 0, (1.2.29)

is the incident wave. Multiplying equation (1.2.28) by ẏ(t) and integrating, we get the
energy balance

mẏ2(t)

2
+ U(y(t)) =

mẏ2(0)

2
+ U(y(0))− 2

∫ t

0

ẏ2(s)ds+ 2

∫ t

0

ẇin(s)ẏ(s)ds (1.2.30)

Note that
ẇin ∈ L2(R+,Rd) (1.2.31)

by (1.2.25). Hence (1.2.30) and (1.2.11) imply that the Cauchy problem (1.2.28) admits
a unique solution for all t > 0, and the a priori bound holds:

supt>0|y(t)|+ sup
t>0
|ẏ(t)|+

∫ ∞
0

|ẏ(t)|2dt ≤ B <∞, (1.2.32)

where B is bounded for bounded norm ‖(ψ0, v0, p0)‖E . These arguments imply that the
Cauchy problem (1.2.4) admits a unique solution Y (t) = (ψ(x, t), ψ̇(x, t), ẏ(t)) ∈ C(R, E)
for any Y0 ∈ E , where ψ(x, t) is defined by (1.2.13), (1.2.24), and (1.2.27) (see [44]).

The a priori bound (1.2.32) implies that y(t) ∈ C(R+). Hence y(0) exists and

f+(−0) = f+(0), g−(−0) = g−(+0) (1.2.33)
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since
f+(−0) = y(0)− g+(0) =

ψ0(0)

2
, f+(+0) =

ψ0(0)

2
(1.2.34)

and
g−(−0) =

ψ0(0)

2
, g−(+0) = y(0)− f−(−0) =

ψ0(0)

2
(1.2.35)

by (1.2.26) and (1.2.24).

Corollary 1.2.7. (1.2.32) and (1.2.26) imply that

f ′+ ∈ L2(R−,Rd), g′− ∈ L2(R+,Rd) (1.2.36)

by (1.2.25). Hence, (1.2.33) implies that

f ′+, g
′
− ∈ L2(R,Rd). (1.2.37)

The formulas (1.2.24) and (1.2.27) determine the solution ψ(x, t) uniquely, and Y (t) :=
(ψ(x, t), ψ̇(x, t), ψ(0, t)) ∈ C(R, E) due to (1.2.37). Finally, the energy conservation
(1.2.15) follows by differentiation, see [44]. Now Proposition 1.2.3 is proved.

Remark 1.2.8. In the energy balance (1.2.30) the integral 2

∫ t

0

ẏ2(s)ds is the energy

radiated by the oscillator over the time interval [0, t].

1.2.4 A relaxation for reduced equation

The following lemma on relaxation for the reduced equation plays a crucial role in the
proofs of Theorem 1.2.4 and Theorem 1.2.6. Let us denote Z = {(z, 0) ∈ Rd×Rd : z ∈ Z}.

Lemma 1.2.9. Let all assumptions of Theorem 1.2.4 hold. Then
i) For every solution y(t) of the equation (1.2.28)

(y(t), ẏ(t))→ Z, t→∞. (1.2.38)

ii) Let, additionally, Z be a discrete subset in Rd. Then there exists a point (z, 0) ∈ Z
such that

(y(t), ẏ(t))→ (z, 0), t→∞.

Proof. Obviously, ii) follows from i). Let us check that i) follows from (1.2.32). Namely,
(1.2.38) is equivalent to the system

y(t) → Z, t→∞, (1.2.39)
ẏ(t) → 0, t→∞. (1.2.40)

• First, let us prove (1.2.40). Assume the contrary, that

|ẏ(tk)| ≥ ε > 0 (1.2.41)

for a sequence tk →∞. Integrating the equation (1.2.28), we get that

m(ẏ(t)− ẏ(s)) =

∫ t

s

F (y(τ))dτ − 2

∫ t

s

ẏ(τ)dτ + 2

∫ t

s

ẇin(τ)dτ, s, t ≥ 0. (1.2.42)
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Let us estimate each of three integrals in the RHS. The first is O(|t− s|) since y(τ) is a
bounded function by (1.2.32). The second and third integrals are O(|t−s|1/2) by (1.2.32),
(1.2.31) and the Cauchy-Schwartz inequality. Hence, (1.2.42) implies that ẏ(t) is a Hölder
function of degree 1/2, i.e.

|ẏ(t)− ẏ(s)| ≤ C|t− s|1/2, s, t ≥ 0, |t− s| ≤ 1.

Therefore,
∫ ∞

0

ẏ2(t)dt =∞ by (1.2.41) which contradicts (1.2.32).

• Now we can prove (1.2.39). Again assume the contrary. Then

F (y(tk))→ F 6= 0

for a sequence tk → ∞ since y(t) is a bounded function. Moreover, (1.2.40) implies the
uniform convergence

F (y(τ))→ F , |τ − tk| ≤ T

for any T > 0. Now (1.2.42) and (1.2.40), (1.2.31) imply that

m(ẏ(tk + T )− ẏ(tk − T )) = 2TF + o(1), tk →∞,

which contradicts (1.2.40) since F 6= 0.

1.2.5 Examples

Let us illustrate Lemma 1.2.9 by an example. For simplicity let us assume that

ψ0(x) = C±, v0(x) = 0, qquad± x > r0

with some C± ∈ R and r0 ≥ 0. Then (1.2.29) implies that ẇ(t) ≡ 0 for t > r0 and (1.2.28)
is an autonomous equation for t > r0. In the phase plane (y, ẏ) the orbits of the reduced
equation (1.2.28) are determined by the following system:

ẏ(t) = v(t), mv̇(t) = F (y(t))− 2v(t), t > r0. (1.2.43)

Let us compare this system with a free oscillator which is not coupled to the string,

ẏ = v, mv̇ = F (y). (1.2.44)

There are simple relationships between phase portraits of these two systems.
A These system have the same stationary points.
B The vertical component v̇ of the phase velocity vector of (1.2.43) is less than that of
(1.2.44) if v > 0, and is greater if v < 0. The horizontal components of these vectors are
equal.
C Hence the orbits of (1.2.43) intersect those of (1.2.44) from above in the halfplane v > 0
and from below in the halfplane v < 0. Let us consider for instance a nondegenerate
potential of Ginzburg–Landau type

V (y) =
1

4
(y2 − 1)2, y ∈ R (1.2.45)

It satisfies conditions (1.2.10) and (1.2.11). Then the system (1.2.44) has the following
orbits:
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Figure 1.2: Hamiltonian system

• closed curves corresponding to periodic solutions,
• two separatrices both leaving and entering the point (0, 0),
• three stationary points: a saddle at the point (0, 0) and two centers at the points

(±1, 0), see Fig. 1.2.5. Taking into account the property C, we see that for the system
(1.2.43) with potential (1.2.45):
• the points (±1, 0) are stable foci,
• the point (0, 0) is a saddle, see Fig. 1.2.5.

Figure 1.3: System with a friction.

1.2.6 Convergence to global attractor

Now we can prove Theorem 1.2.4. It suffices to prove it for t→∞.

Lemma 1.2.10. Let all the assumptions of Theorem 1.2.4 hold. Then Y (t)
EF−→ S as

t→∞.
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Proof. It suffices to construct z(t) ∈ Z for t ≥ 0 such that

‖Y (t)− Sz(t)‖R → 0 as t→∞.

The convergence (1.2.39) means that there exists a function z(t) ∈ Z, t ≥ 0, such that

|y(t)− z(t)| → 0, t→∞. (1.2.46)

By definitions (1.2.8) and (1.2.16),

‖Y (t)− Sz(t)‖R = ‖ψ′(·, t)‖R + |ψ(0, t)− z(t)|+ ‖ψ̇(·, t)‖R + |ẏ(t)|.

Here both norms ‖...‖R → 0 due to (1.2.13), (1.2.25), (1.2.36) and (1.2.37). Therefore,
(1.2.46) and (1.2.40) complete the proof.

Now Theorem 1.2.4 i) is proved. Then Theorem 1.2.4 ii) follows since the set S,
isomorphic to Z, is discrete.

Remark 1.2.11. The bound (1.2.32) is provided by the friction term in the reduced equa-
tion (1.2.28) for the nonlinear oscillator. The friction means the energy radiation by the
oscillator, and the integral in (1.2.32) represents the energy radiated to infinity. Thus,
our proof of Theorem 1.2.4 relies on the energy radiation to infinity.

1.2.7 The transitivity of the transitions

The next lemma shows that the transitions of type (0.0.8) exist for any two stationary
states S±.

Lemma 1.2.12. Let conditions of Theorem 1.2.4 hold. Then for every two stationary
states S± ∈ S there exist solutions Y (t) ∈ C(R, E) to the system (1.7.13), intertwining
S± in the sense (1.2.19).

Proof. Let S± = (s±(x), 0, 0) with s±(x) ≡ z± ∈ Z. It is possible to provide the transition
S− 7→ S+ in different ways. We choose one of them, which is possibly most obvious.
Namely, we construct a solution Y (t) = (u(·, t), u̇(·, t), y(t)) ∈ C(R, E) to (1.7.13) such
that

y(t) := u(0, t) =

{
z− for t ≤ −1,
z+ for t ≥ 1.

(1.2.47)

We extend y(t) for t ∈ (−1, 1) arbitrarily so that y ∈ C2(R,Rd). Then we set g+(z) ≡ z−
and determine f− by (1.2.28):

mÿ(t) = F (y(t)) + 2
(
f ′−(−t)− ẏ(t)

)
, t ∈ R. (1.2.48)

Then f ′−(z) ∈ C(R,Rd). Since F (z±) = 0, we have

f ′−(−t) ≡ 0 for t ≤ −1 and for t ≥ 1. (1.2.49)

To determine f− uniquely, we may require that

f−(−t) ≡ z− for t ≤ −1. (1.2.50)

Then the reflected waves g− and f+ are determined by (1.2.26).
Since y(t), f−(−t), and g+(t) are constant for large |t|, f+(−t), g−(t) are also constant

for large |t|. Then for u(x, t) defined by (1.2.27), the function

Y (t) = (u(·, t), u̇(·, t), u̇(0, t)) ∈ C(R, E)

is a solution to (1.2.1), and (1.2.19) holds.
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Remark 1.2.13. Physically, the inequality z+ 6= z− means the capture of radiation by
the oscillator if V (z+) > V (z−), or the emission of radiation by the oscillator if V (z+) <
V (z−).

1.2.8 Divergent wave

Here we prove Theorem 1.2.6. First, let us construct the divergent wave

W̃ (t)Ψ+ = (wout(x, t), ẇout(x, t), 0), t ≥ 0.

Here wout(x, t) is a finite energy solution to the free d’Alembert equation. Let us set

wout(x, t) = C0 + f+(x− t) + g−(x+ t), (1.2.51)

where the constant C0 will be chosen below. It remains to check (1.2.22) and (1.2.23) for
t→∞ that means the representation

(ψ(x, t), ψ̇(x, t), ẏ(t)) = (s+(x), 0, 0) + (wout(x, t), ẇout(x, t), 0) + r+(t), t > 0,

where
s+(x) ≡ z+ := lim

t→+∞
y(t), (1.2.52)

and
‖r+(t)‖E → 0, t→ +∞. (1.2.53)

By definition of the norm (1.2.7), (1.2.53) is equivalent to

‖ψ′(·, t)− w′out(·, t)‖L2(R,Rd)+ |ψ(0, t)− z+ − wout(0, t)|

+ ‖ψ̇(·, t)− ẇout(·, t)‖L2(R,Rd) → 0, t→∞
(1.2.54)

since ẏ(t)→ 0 by (1.2.40).
Step i) Let us start with the second term in the LHS of (1.2.54). Since ψ(0, t) = y(t)→ z+,
it suffices to prove that

wout(0, t) = C0 + f+(−t) + g−(t)→ 0, t→ +∞. (1.2.55)

First, (1.2.6) and (1.2.24) imply that

lim
t→∞

f−(−t) =
ψ−0
2
− 1

2

∫ −∞
0

v0(y)dy, lim
t→+∞

g+(t) =
ψ+

0

2
+

1

2

∫ ∞
0

v0(y)dy. (1.2.56)

Second, we have by (1.2.26) and (1.2.52) that

lim
t→∞

f+(−t) = z+ − lim
t→+∞

g+(t); lim
t→+∞

g−(t) = z+ − lim
t→∞

f−(−t).

Substituting (1.2.56), we obtain
lim
t→∞

f+(−t) = z+ −
ψ+

0

2
− 1

2

∫ ∞
0

v0(y)dy,

lim
t→+∞

g−(t) = z+ −
ψ−0
2

+
1

2

∫ −∞
0

v0(y)dy.
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Hence, (1.2.55) holds if we choose

C0 :=
ψ+

0

2
+
ψ−0
2

+
I0

2
− 2z+, (1.2.57)

where I0 is defined in (1.2.6).

Step ii) Now, let us consider the first term in the LHS of (1.2.54). It suffices to prove for
example that

‖ψ′(·, t)− w′out(·, t)‖L2(R+,Rd) → 0, t→∞.

Using (1.2.51) and the d’Alembert representation (1.2.13) for x > 0, we get

ψ′(x, t)− w′out(x, t) = g′+(x+ t)− g′−(x+ t), x ≥ t.

Finally, (1.2.25) and (1.2.36) imply that

‖g′+(x+ t)− g′−(x+ t)‖2
L2(R+,Rd)

≤ C

∫ ∞
0

[
|g′+(x+ t)|2 + |g′−(x+ t)|2

]
dx

= C

∫ ∞
t

[
|g′+(z)|2 + |g′−(z)|2

]
dz → 0, t→∞.

Step iii) The third term in the LHS of (1.2.54) can be handled similarly. Theorem 1.2.6
is proved.
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1.3 String coupled to several nonlinear oscillators
Here we present the results [45], which extend the results of previous section 1.2 to the
case of a string with several nonlinear oscillators:

ψ̈(x, t) = ψ′′(x, t) +
N∑
1

δ(x− xk)Fk(ψ(xk, t)), x ∈ R.

This equation reduces to a system of N ordinary differential equations with delay. Its
study required new approach relying on a special analysis of a relaxation of all trajectories.

1.3.1 Introduction

Let Q = {x1, . . . , xN} be a finite set of N points xk ∈ R. We establish global attraction
to stationary states (0.0.7) for all finite energy solutions to the system of equation

ψ̈(x, t) = ψ′′(x, t), x ∈ R \Q (1.3.1)

together with the gluing conditions at the points xk ∈ Q,
ψ(xk + 0, t) = ψ(xk − 0, t)

0 = Fk(ψ(xk, t)) + ψ′(xk + 0, t)− ψ′(xk − 0, t)

∣∣∣∣∣∣ . (1.3.2)

In the case N = 1 this system coincides with the Lamb system (1.2.1) with m = 0.
The solutions ψ(x, t) take the values in Rd with d ≥ 1. Note that the system (1.3.1) is
formally equivalent to the one-dimensional nonlinear wave equation with the nonlinear
term concentrated at the set Q (cr. (1.2.2)),

ψ̈(x, t) = ψ′′(x, t) +
N∑
k=1

δ(x− xk)Fk(ψ(xk, t)), x ∈ R. (1.3.3)

Physically, the system (1.3.1), (1.3.2) describes small crosswise oscillations of a string
which is subject to constraint forces Fk at the points xk, the forces are perpendicular to
the string. For example, Fk(y) = −ω2

ky if the string is attached to a linear spring at the
point xk, see Fig. 1.4. But in general the functions Fk(y) are nonlinear.

We introduce the Hilbert phase space E of finite energy states for the system (1.3.1),
(1.3.2).

Definition 1.3.1. i) E = Ec⊕L2 is the Hilbert space of pairs (ψ(x), π(x)), with the norm

‖(ψ, π)‖E = ‖ψ‖Ec + ‖π‖. (1.3.4)

iii) EF is the space E endowed with the topology defined by the seminorms

‖(ψ, π)‖R ≡ ‖ψ′‖R + |ψ(0)|+ ‖π‖R, R > 0. (1.3.5)

We assume the following conditions,
all Fk ∈ C1(Rd,Rd), Fk(ψ) = −∇Vk(ψ)

infy∈Rd Vk(y) > −∞, ∀k = 1, . . . , N

Vk(y)→ +∞ as |y| → ∞ for some k = 1, . . . , N

∣∣∣∣∣∣∣∣∣∣
. (1.3.6)
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Figure 1.4: String coupled to nonlinear oscillators

Then the system (1.3.1), (1.3.2) is formally Hamiltonian with the Hilbert phase space
E and the Hamiltonian functional

H(ψ, π) =
1

2

∫
R
[|π(x)|2 + |ψ′(x)|2]dx+

N∑
k=1

Vk(ψ(xk)), (ψ, π) ∈ E . (1.3.7)

We consider solutions Y (t) = (ψ(·, t), ψ̇(·, t)) ∈ C(R, E) and we write the system (1.3.1),
(1.3.2) in the form

Ẏ (t) = F(Y (t)), t ∈ R. (1.3.8)

Let us discuss the definition of the Cauchy problem for the functions Y (t) ∈ C(R, E). The
first equation of (1.3.2) makes sense and holds automatically because ψ ∈ C(R2,Rd) by the
Sobolev embedding theorem due to Y (t) ∈ C(R, E). The equation (1.3.1) is understood
in the sense of distributions of (x, t) ∈ [R \ Q] × R. Hence this equation is equivalent to
the d’Alembert decompositions for every k = 1, . . . , N + 1,

ψ(x, t) = fk(x− t) + gk(x+ t), x ∈ ∆k := (xk−1, xk), t ∈ R, (1.3.9)

where fk, gk ∈ C(R,Rd) due to ψ ∈ C(R2,Rd), and we denote x0 := −∞ and xN+1 = +∞.
Hence, for all k = 1, . . . , N and (x, t) ∈ ∆k × R

ψ′(x, t) = f ′k(x− t) + g′k(x+ t), ψ̇(x, t) = −f ′k(x− t) + g′k(x+ t), (1.3.10)

where all derivatives are understood in the sense of distributions. The assumption Y (t) ∈
C(R, E) implies

f ′k(·), g′k(·) ∈ L2
loc(R,Rd), ∀k = 1, . . . , N + 1. (1.3.11)

We now explain the second equation of (1.3.2).

Definition 1.3.2. In the second equation of (1.3.2) for every k = 1, . . . , N
ψ′(xk − 0, t) := f ′k(xk − t) + g′k(xk + t) ∈ L2

loc(R,Rd)

ψ′(xk + 0, t) := f ′k+1(xk − t) + g′k+1(xk + t) ∈ L2
loc(R,Rd)

∣∣∣∣∣∣ . (1.3.12)
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Note that the functions fk and gk in (1.3.9) are unique up to an additive constant. So
the definition (1.3.12) is unambiguous.

1.3.2 Main results

We start with the existence of the dynamics.

Proposition 1.3.3. Let d ≥ 1 and assumptions (1.3.6) hold. Then
i) For every initial state Y (0) ∈ E equation (1.3.8) has a unique solution Y (t) ∈ C(R, E).

ii) The mapping W (t) : Y (0) 7→ Y (t) is continuous in E and in EF for every t ∈ R.
iii) The energy (1.3.7) is conserved,

H(Y (t)) = const, t ∈ R. (1.3.13)

This proposition will be proved in the next section.

Definition 1.3.4. S denotes the set of all stationary states S = (s(x), 0) ∈ E of the
system (1.3.8).

The next proposition gives a criterion for the set S be a nonempty discrete subset of
EF .

Proposition 1.3.5. Let conditions (1.3.6) hold, d = 1, and all functions Fk(y) with
k = 1, . . . , N be real analytic on R. Then S is a discrete subset of EF .

The main result of this section means that the set S is the global attractor of the
system (1.3.8) in the topology of the space EF .

Theorem 1.3.6. Let d ≥ 1, assumptions (1.3.6) hold and an initial state Y (0) ∈ E.
Then
i) the corresponding solution Y (t) ∈ C(R, E) of equation (1.3.8), attracts to the set S in
the sense (1.2.18)

Y (t)
EF−→ S, t→ ±∞. (1.3.14)

ii) Let, moreover, d = 1, and all functions Fk(yk) be real analytic on R. Then any solution
Y (t) ∈ C(R, E) attracts to some stationary states S± ∈ S depending on the solution,

Y (t)
EF−→ S±, t→ ±∞. (1.3.15)

Remarks 1.3.7. i) The assertion ii) of this theorem follows from i) due to Proposition
1.3.5.
ii) The convergence (1.3.15) and (1.3.7), (1.3.6) imply (0.0.10) by Fatou theorem.

1.3.3 Well-posedness and a priori estimates

Proof of Proposition 1.3.3. The solution Y (t) ∈ C(R, E) to (1.3.8) can be constructed
by the d’Alembert representations (1.3.9) similarly to the case N = 1, considered in
Section 1.2. However for N > 1 we need to find repeatedly reflected waves from all points
xk with k = 1, . . . , N . The energy conservation (1.3.13) follows by methods of [44] using
the d’Alembert representations (1.3.9). �

Let us show that the energy conservation implies the following a priori estimate which
we will need in the proof of Theorem 1.3.6.
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Proposition 1.3.8. Let the conditions (1.3.6) hold. Then for every solution Y (t) ∈ C(R,
E) of (1.3.8) all functions yk(t) := ψ(xk, t), are bounded:

sup
t∈R
|yk(t)| <∞, k = 1, . . . , N. (1.3.16)

Proof. We prove in fact a slightly stronger statement. Namely, denote yk = yk(ψ) = ψ(xk)
and y = y(ψ) = (y1, . . . , yN) for ψ ∈ Ec. Denote by U the potential energy functional:

U(ψ) ≡ H(ψ, 0) =
1

2

∫ ∞
−∞
|ψ′(x)|2 dx+

N∑
k=1

Vk(yk), ψ ∈ Ec. (1.3.17)

Then (1.3.16) follows from

U(ψ)→∞ as |y(ψ)| → ∞. (1.3.18)

To prove this it suffices to show that

sup
U(ψ)≤E

|y(ψ)| <∞ (1.3.19)

for every E ∈ R. First, all potentials Vk are bounded below by (1.3.6). Hence,

sup
U(ψ)≤E

∫ ∞
−∞
|ψ′(x)|2dx = D <∞. (1.3.20)

Second, the Cauchy-Schwartz inequality gives for every k, j = 1, . . . , N ,

sup
U(ψ)≤E

|yk − yj| = sup
U(ψ,0)≤E

|
∫ xj

xk

ψ′(x) dx| ≤ |xk − xj|1/2D1/2. (1.3.21)

Therefore, (1.3.19) follows from the last condition of (1.3.6).

1.3.4 Stationary states

In this section we prove Proposition 1.3.5. Substituting ψ(x, t) = s(x) to (1.3.1) we obtain
that s′′(x) = 0 for x ∈ R \Q. Hence,

s(x) = akx+ bk for x ∈ ∆k := (xk−1, xk), k = 1, . . . , N + 1, (1.3.22)

where x0 := −∞ and xN+1 := +∞. The condition s′ ∈ L2(R) implies

a1 = aN+1 = 0. (1.3.23)

Substituting (1.3.22) to equations (1.3.2), we obtain that
akxk + bk = yk = ak+1xk + bk+1

0 = Fk(yk) + ak+1 − ak

∣∣∣∣∣∣ , k = 1, . . . , N. (1.3.24)

Hence, equations (1.3.23) imply that the function (1.3.22) is uniquely defined by its values
yk = s(xk) at the points xk, k = 1, . . . , N :

ak =
yk − yk−1

lk
, bk = yk − akxk, k = 1, . . . , N. (1.3.25)
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Here y0 := y1, lk := xk − xk−1 for k = 2, . . . , N , and l1 := 1 (for instance). For unknown
yk, k = 1, . . . , N , the system (1.3.24) is equivalent to

Fk(yk) +
yk+1 − yk
lk+1

− yk − yk−1

lk
= 0, k = 1, . . . , N. (1.3.26)

Since s(x) ∈ C2(∆k), the variation DU(s) exists and

−DU(s) = s′′(x) +
N∑
k=1

(s′(xk + 0)− s′(xk − 0)−∇Vk(yk))δ(x− xk).

Therefore, the system (1.3.1), (1.3.2) for stationary states implies the variation equation

DU(s) = 0. (1.3.27)

Proof of Proposition 1.3.5 Let us define the function in RN

UN(y1, . . . , yN) = U(s), (1.3.28)

where s = s(x) is the stationary solution (1.3.22) with ak and bk defined by (1.3.25). Then
(1.3.17) implies

UN(y1, . . . , yN) =
1

2

N∑
k=2

∣∣∣yk − yk−1

lk

∣∣∣2lk +
N∑
k=1

Vk(yk). (1.3.29)

Now (1.3.27) gives for stationary solutions

∂UN
∂yk

(y1, . . . , yN) = 0, k = 1, . . . , N. (1.3.30)

On the other hand, (1.3.18) implies,

UN(y1, . . . , yN)→∞ as |(y1, . . . , yN)| → ∞. (1.3.31)

Hence, UN gets a minimal value at a certain point (y1, . . . , yN) ∈ RN , so S 6= ∅.

Take y0(λ) = y1(λ) = λ ∈ R. Then we can define uniquely y2(λ), . . . , yN(λ) in a
sequel according to formulas (1.3.26) with k = 1, . . . , N − 1. Therefore the continuous
map I1 : EF → Rd defined by

I1(ψ(x), π(x)) = ψ(x1)

is an isomorphism on S. Hence, Proposition 1.3.5 obviously follows from the next lemma.

Lemma 1.3.9. Z1 := I1S is a discrete subset of R.

Proof. All functions yk(λ) are real analytic on R for k = 2, . . . , N . The last equation of
(1.3.24) with k = N gives

aN+1 = aN − FN(yN) =
yN − yN−1

lN
− FN(yN). (1.3.32)
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The vector {yk(λ) : k = 1, . . . , N} defines the stationary solution sλ(x) via (1.3.25),
(1.3.22) if and only if aN+1 = 0. Thus we get the following equation for λ ∈ Z1

T (λ) :=
yN(λ)− yN−1(λ)

lN
− FN(yN(λ)) = 0. (1.3.33)

The map λ 7→ T (λ) is real analytic on λ ∈ R. Hence, the set Z1 of all solutions to (1.3.33)
is either discrete set in R or Z1 = R.

Let us show that the case Z1 = R is impossible under conditions (1.3.6) even if the
functions Fk are not real analytic. Assume the converse: Z1 = R. Then

UN(y1(λ), . . . , yN(λ)) = const, λ ∈ R. (1.3.34)

Indeed, since Fk ∈ C1(R), we have yk(λ) ∈ C1(R) for all k = 1, . . . , N . Then by (1.3.30)
we obtain:

∂λUN(y1(λ), . . . , yN(λ)) =
N∑
k=1

∂UN
∂yk

y′k(λ) = 0, λ ∈ R. (1.3.35)

On the other hand, (1.3.29) implies

UN(y1(λ), . . . , yN(λ)) =
1

2

N∑
k=2

∣∣∣yk(λ)− yk−1(λ)

lk

∣∣∣2lk +
N∑
k=1

Vk(yk(λ)). (1.3.36)

Therefore, (1.3.34) and the middle condition (1.3.6) imply that the first sum on the right
hand side of (1.3.36) is bounded for λ ∈ R. Hence,

yk(λ)→∞ as |y1(λ)| = |λ| → ∞, ∀k = 2, . . . , N. (1.3.37)

However, then the second sum in the right hand side of (1.3.29) tends to infinity as
|λ| → ∞ due to the last condition of (1.3.6). Hence,

UN(y1(λ), . . . , yN(λ))→∞ as |λ| → ∞, (1.3.38)

that contradicts to (1.3.34).

1.3.5 Examples

In this section we consider examples of systems (1.3.1) with d = 1.

Example 1.3.10. Let each potential Vk(y) be a polynomial of an even degree pk + 1 ≥ 2
with positive leading coefficient. Then all functions Fk(y) = −∇Vk(y) are polynomials
of degrees pk ≥ 1 and all conditions of Proposition 1.3.5 hold. By (1.3.26) each function
yk(λ), i ≥ 2 is a polynomial of degrees less or equals to the product p1 . . . pk−1. Hence the
equation (1.3.33) has no more than p := p1 . . . pN roots λ ∈ R, and the set S has no more
than p points.

Next examples show that if the potentials Vk do not satisfy either some of conditions
(1.3.6) or the analyticity condition, then the set S can be non-discrete.
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Figure 1.5: Stationary states

Example 1.3.11. The middle and the last conditions of (1.3.6) break down for the system
(1.3.1) with N = 2, x1 = −1, x2 = 1, and

Vk(y) = −y
2

2
, k = 1, 2. (1.3.39)

Then Fk(y) = y is the force repulsing from the equilibrium position y = 0. In this case
the system (1.3.1) has a continuum of solutions of the type (see Fig. 1.5)

sλ(x) =


λ , x ≤ −1,

−λx, −1 ≤ x ≤ 1,
−λ , x ≥ 1.

(1.3.40)

Here y1 = sλ(−1) = λ is an arbitrary real number, so Y1 = R. The potentials Vk(y) are
real-analytic.

The last condition of (1.3.6) can be formally provided by introduction of the elastic
force F3(y) = −y with the potential V3(y) = y2/2 at the point x3 = 0. Then the functions
(1.3.40) remain stationary solutions to the new system involving the three forces since
sλ(0) = 0 for all λ ∈ R. So the first and last conditions of (1.3.6) and the analyticity
condition hold, but the middle condition of (1.3.6) breaks down and the set S is not
discrete.

Example 1.3.12. The last condition (1.3.6) breaks down for the system with Vk(y) ≡ Ck
for all k. In this case

Fk(y) ≡ 0, y ∈ R.

Then sλ(x) ≡ λ for x ∈ R is the stationary solution to the system (1.3.1) for any λ ∈ R.
Thus, Y1 = R as in previous example. The first and the middle conditions of (1.3.6) and
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the analyticity condition hold, but the last condition of (1.3.6) breaks down and the set
S is not discrete.

Example 1.3.13. Now let us neglect the analyticity condition. Consider potentials Vk(y)
such that:

i) Vk(y) ∈ C2(R) satisfy all conditions (1.3.6).
ii) Vk(y)→∞ as |y| → ∞ for every k = 1, . . . , N .
iii) Vk(y) ≡ Ck for y ∈ [a, b] where a < b. Then

Fk(y) ≡ 0, y ∈ [a, b], ∀k = 1, . . . , N. (1.3.41)

It is clear that such functions Vk exist and are not analytic. Hence, the functions sλ(x) ≡ λ
are stationary solutions to the system (1.3.1), if λ ∈ [a, b]. Thus, the set S is not discrete,
though all conditions (1.3.6) hold. Let us note however, that Y1 6= R here in accordance
with Lemma 1.3.9.

Remark 1.3.14. In Examples 1.3.12 and 1.3.13 the global attraction (1.3.14) holds while
(1.3.15) breaks down. Namely, each function ψ(x, t) with values in the interval [a, b] is a
solution to the system (1.3.1). It is easy to construct such solution with (ψ, ψ̇) ∈ C(R, E).
For example, in the case a = −1 and b = 1, we can take the function (1.2.21).

1.3.6 Long-time asymptotics

In this section we prove Theorem 1.3.6.

Compact attracting set and global attraction

First, we construct a finite-dimensional attracting set A. The set consists of piece-wise
linear functions (1.3.22). Namely, for any α = {(ak, bk) ∈ R2d : k = 1, . . . , N + 1} ∈
(R2d)N+1 let us denote

ψα(x) = akx+ bk, x ∈ ∆k, k = 1 . . . , N + 1, (1.3.42)

and

AE = {α ∈ (R2d)N+1 : ψα(xk − 0) = ψα(xk + 0), k = 1, . . . , N ; a1 = aN+1 = 0}.

Then (ψα(x), 0) ∈ E for every α ∈ AE .

Definition 1.3.15. A = {Sα = (ψα(x), 0) : α ∈ AE}.

Obviously, A is a locally compact subset in EF . We prove next lemma in the following
section.

Lemma 1.3.16. Let all assumptions of Theorem 1.3.6 hold. Then

Y (t)
EF−→ A, t→∞. (1.3.43)

Let us deduce Theorem 1.3.6 from this lemma.
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Definition 1.3.17. Denote by ω(Y ) omega-set of the trajectory Y (t) in the topology of
the space EF : Y ∈ ω(Y ) if and only if

Y (tk)
EF−→ Y (1.3.44)

for some sequence tk →∞.

The following lemma implies (1.3.14).

Lemma 1.3.18. i) ω(Y ) 6= ∅ and ii) ω(Y ) ⊂ S.

Proof. i) Lemma 1.3.16 means that there exists a function α(t) ∈ C[0,∞;AE) such that
for every R > 0

‖Y (t)− Sα(t)‖R → 0 as t→ +∞. (1.3.45)

Here Sα(t) = (ψα(t), 0) and ψα(t)(x) is defined by (1.3.42) with α = α(t) = {(ak(t), bk(t)) ∈
R2d : k = 1, . . . , N + 1}.

The orbit {Sα(t) : t > 0} is precompact in EF by the bounds (1.3.16). Hence, the
limit (1.3.45) implies that the orbit {Y (t) : t > 0} with t > 0 also is precompact in EF .
Therefore, ω(Y ) 6= ∅.

ii) ω(Y ) ⊂ A by (1.3.43). Moreover, the set ω(Y ) is invariant with respect to dynamical
group W (t) due to the continuity of W (t) in EF . Hence, for every Y ∈ ω(Y ) there exists
a C1-curve t 7→ α(t) ∈ AE such that W (t)Y = Sα(t). Then Sα(t)(x) = (ψα(t)(x), 0) is a
solution to the system (1.3.8). In particular, ∂tψα(t)(x) ≡ 0. Therefore, α(t) ≡ α and
Y = Sα ∈ S.

1.3.7 Attraction to a compact set

It remains to prove Lemma 1.3.16. It suffices to construct a function α(t) ∈ C[0,∞;AE)
satisfying (1.3.45).

We may assume without loss of generality that x1 = 0. Then ψα(t)(0) = b1(t), and
(1.3.45) according to the definition of the norm (1.3.5) means that∫ R

−R
|ψ′(x, t)−ψ′α(t)(x)|2 dx+

∫ R

−R
|ψ̇(x, t)|2 dx+ |ψ(0, t)− b1(t)| → 0, t→∞. (1.3.46)

We choose b1(t) = y1(t) for t > 0. Then (1.3.46) for R > max(|x1|, |xN |) becomes∫ x1

−R
|ψ′(x, t)|2 dx+

∑
2≤i≤N

∫ xk

xk−1

|ψ′(x, t)− ak(t)|2 dx+

∫ R

XN

|ψ′(x, t)|2 dx

+

∫ R

−R
|ψ̇(x, t)|2 dx→ 0 as t→ +∞. (1.3.47)

It remains to check this convergence with appropriate ak(t).

1.3.8 Relaxation

To prove (1.3.47), we introduce an appropriate notion of relaxation. We define the Sobolev
norm ‖ · ‖R of the space H1(−R,R) as usual:

|||z|||2R ≡ ‖z′(x)‖2
R + ‖z(x)‖2

R. (1.3.48)
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Definition 1.3.19. i) A function z(x) ∈ L2
loc(R+) is called relaxing in L2 if there exists

a function z(t) such that for every R > 0

‖z(·+ t)− z(t)‖2
R → 0 as t→ +∞. (1.3.49)

We denote this by z(t)
L2

∼ z(t) as t→ +∞.
ii) A function z(t) ∈ H1

loc(R+) is called relaxing in H1 if there exists a function z(t)
such that for every R > 0

|||z(·+ t)− z(t)|||R → 0 as t→ +∞. (1.3.50)

We denote this relation by z(t)
H1

∼ z(t) as t→ +∞.

The following properties of the relaxation are evident.
R0. We may assume z(t) ≡ z(t) in (1.3.50) without loss of generality.
R1. If the function z(t) is relaxing in H1, then it is relaxing stabilizing in L2 as well.
R2. For the function z(t) be relaxing in L2 it suffices that∫ ∞

0

|z(t)|2dt <∞. (1.3.51)

In this case we may set z(t) ≡ 0, i.e. z(t)
L2

∼ 0 as t→ +∞.
R3. For the function z(t) be relaxing in H1 it suffices that∫ ∞

0

|z′(t)|2dt <∞. (1.3.52)

Indeed, (1.3.52) implies by the Cauchy-Schwartz inequality for |x| ≤ R

|z(x+ t)− z(t)| =
∣∣ ∫ x+t

t

z′(s) ds
∣∣ ≤ R1/2‖|z′(·+ t)‖1/2

R → 0 as t→ +∞. (1.3.53)

R4. If the function z(t) is relaxing in H1, then its derivative z′(t) is relaxing in L2, and
z′(t)

L2

∼ 0 as t→ +∞ according to R2.

R5. Conversely, if z(t) is relaxing in L2, then the integral y(t) ≡
∫ t+h+

t+h−

z(s) ds is relaxing

in H1 for any h± ∈ R, and we may take

y(t) ≡ (h+ − h−)z(t). (1.3.54)

R6. If z(t) ∼ z(t) as t→ +∞ in L2 (or in H1), then z(t+ h) ∼ z(t) in L2 (or in H1) for
every h ∈ R.
R7. The set of all functions z(t) relaxing in L2 (or in H1) is a vector space, and z1(t) +
z2(t) ∼ z1(t) + z2(t), if zj(t) ∼ zj(t), j = 1, 2.

R8. Let F (·) ∈ C1(R) and y(t) ∈ Cb(R+). Then y(t)
L2

∼ y(t) implies F (y(t))
L2

∼ F (y(t)).
In the next section we establish the relaxation of the Cauchy data of the solution

ψ(x, t) on the lines x = xk ± 0,

yk(t) ≡ ψ(xk, t) and z±k (t) ≡ ψ′(xk ± 0, t), t ∈ R, k = 1, . . . , N. (1.3.55)
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Lemma 1.3.20. All the functions yk(t), k = 1, . . . , N , are relaxing in H1 and all the
functions z±k (t), k = 1, . . . , N , are relaxing in L2. Moreover, y1, yN+1

H1

∼ 0 and z±1 , z
±
N+1

L2

∼
0 as t→ +∞.

Let us show that this Lemma, d’Alembert representation (1.3.9) and the properties
R0–R8 of the relaxation imply (1.3.47). We will prove (1.3.47) for k ≥ 2 (the case k = 1 is
quite similar). D’Alembert representation (1.3.9) leads to well known d’Alembert formula
for xk < x < xk+1

ψ(x, t) =
yk(t− (x− xk)) + yk(t+ (x− xk))

2
+

1

2

∫ t+(x−xk)

t−(x−xk)

z+
k (s) ds. (1.3.56)

Therefore

ψ′(x, t) =
−y′k(t− (x− xk)) + y′k(t+ (x− xk))

2

+
z+
k (t+ (x− xk)) + z+

k (t− (x− xk))
2

. (1.3.57)

Hence, Lemma 1.3.20 and R7, R6, R4 imply (1.3.47) with ak(t) = −z+
k (t).

1.3.9 Scattering of energy to infinity

Here we analyse the energy scattering to infinity which will be applied for the proof of
Lemma 1.3.20 in the next section.

Lemma 1.3.21. The following bound holds∫ ∞
0

(|ẏ1(t)|2 + |z−1 (t)|2 + |ẏN+1(t)|2 + |z+
N+1(t)|2) dt <∞. (1.3.58)

Proof. The d’Alembert representations (1.3.9) with k = 1 and k = N + 1 imply that
(1.3.58) is equivalent to∫ ∞

0

(|f ′1(x1 − t)|2 + |g′1(x1 + t)|2 + |f ′N+1(xN − t)|2 + |g′N+1(xN + t)|2) dt <∞. (1.3.59)

The integrals for the incident waves f ′1(x1 − t) and g′N+1(xN + t)′ are finite due to the
d’Alembert formulas (1.2.24)

f ′1(x) =
ψ′0(x)

2
− 1

2
π0(x), x < x1,

g′N+1(x) =
ψ′0(x)

2
+

1

2
π0(x), x > xN ,

where (ψ0, π0) := Y (0) ∈ E . To derive (1.3.59) for g′1, f ′N+1 we introduce the energy
functional for Y = (ψ(x), π(x)) ∈ E in the interval ∆ = [x1, xN ],

H∆(Y ) =
1

2

∫ xN

x1

[
|π(x)|2 + |ψ′(x)|2

]
dx+

N∑
k=1

Vk(yk), where yk = ψ(xk). (1.3.60)
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Let us calculate the energy flow from ∆: (1.3.1) and (1.3.9) with k = 1 and N + 1 imply
for initial data (ψ0, π0) ∈ E ,

d

dt
H∆(Y (t)) = ψ̇ψ′

∣∣∣x=xN+0

x=x1−0

= |f ′1(x1 − t)|2 − |g′1(x1 + t)|2 + |g′N+1(xN + t)|2 − |f ′N+1(xN − t)|2.
(1.3.61)

Integrating, we get the energy balance,

H∆(Y (t)) +

∫ t

0

(|g′1(x1 + s)|2 + |f ′N+1(xN − s)|2) ds

= H∆(Y (0)) +

∫ t

0

(|f ′1(x1 − s)|2 + |g′N+1(xN + s)|2) ds, t ∈ R. (1.3.62)

Then the bounds (1.3.59) for g′1, f ′N+1 follows from the same bounds (1.3.59) for f ′1, g′N+1

because infY ∈E H∆(Y ) > −∞ due to the middle condition of (1.3.6).

Remark 1.3.22. The integral of the right hand side of (1.3.61) over time interval [0, t]
is the energy radiated outside (cf. Remark 1.2.8).

1.3.10 Proof of relaxation

We prove Lemma 1.3.20 by induction in k.
ad k = 1 and k = N + 1. (1.3.58) implies the needed relaxation of y1(t), yN+1(t) and

of z−1 (t), z+
N+1(t) according to R3 and to R2 respectively. Then the relaxation of z+

1 (t)
and z−N+1(t) follows by R7 and R8 from the third equation of (1.3.1) with k = 1, N , that
is

z+
k (t)− z−k (t) = −Fk(yk(t)), t ∈ R, (1.3.63)

taking into account the estimates (1.3.16).
ad k = 2 Let us prove the relaxation of y2(t) and z−2 (t). First, (1.3.56) with k = 2 and

x = x2 implies

y2(t) = ψ(x2, t) =
y1(t− l2) + y1(t+ l2)

2
+

1

2

∫ t+l2

t−l2
z+

1 (s) ds, l2 := |x2 − x1|. (1.3.64)

Therefore R5 and R6 imply the relaxation of y2(t) in H1. At last we take derivatives in
(1.3.56) and get

z−2 (t) ≡ ψ′(x2 − 0, t) =
−ẏ1(t− l2) + ẏ1(t+ l2)

2
+
z+

1 (t+ l2) + z+
1 (t− l2)

2
. (1.3.65)

Therefore R2, R6 and R7 imply the relaxation of z−2 (t) in L2. The proof of Lemma
1.3.20 can be completed by induction.
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1.4 Space-localised nonlinearity
In this section we present the result [46] on global attraction to stationary states for
nonlinear wave equations with general nonlinearity

ψ̈(x, t) = ψ′′(x, t) + f(x, ψ(x, t)), x ∈ R. (1.4.1)

where f(x, ψ) = χ(x)F (ψ), F (ψ) = −∇U(ψ) for ψ ∈ Rd, and

U(ψ) ∈ C2(Rd), χ ∈ C∞0 (R), (1.4.2)

χ(x) ≥ 0, χ(x) 6≡ 0. (1.4.3)

We will consider the Cauchy problem for equation (1.4.1) with initial conditions

ψ(x, 0) = ψ0(x), ψ̇(x, 0) = π0(x), x ∈ R. (1.4.4)

The equation (1.4.1) can be written as the dynamical system

Ẏ (t) = F(Y (t)), t ∈ R. (1.4.5)

with Y (t) = (ψ(t), ψ̇(t)). This equation also can be written as the Hamiltonian system
(1.1.2) with Hamiltonian functional

H(ψ, π) =
1

2

∫
[|π(x)|2 + |ψ′(x)|2 + χ(x)U(ψ(x, t))] dx, (ψ, π) ∈ E , (1.4.6)

where the Hilbert phase space E is defined in Definition 1.3.1. We assume that the
potential U is confining, i.e.

U(ψ)→∞, |ψ| → ∞. (1.4.7)

Denote by EF the space E endowed with seminorms (1.3.5).

Proposition 1.4.1. Let d ≥ 1 and assumptions (1.4.2), (1.4.3) and (1.4.7) hold. Then
i) For every initial state Y (0) ∈ E equation (1.4.5) has a unique solution Y (t) ∈ C(R, E).

ii) The mapping W (t) : Y (0) 7→ Y (t) is continuous in E and in EF for every t ∈ R.
iii) The energy (1.4.6) is conserved,

H(Y (t)) = const, t ∈ R. (1.4.8)

Definition 1.4.2. S denotes the set of all stationary states S = (s(x), 0) ∈ E for the
equation (1.4.1).

The functions s(x) satisfy the stationary equation

s′′(x) + f(x, s(x)) = 0, x ∈ R. (1.4.9)

The next proposition gives a criterion for the set S be a nonempty discrete subset of the
space EF . Denote by U the potential energy functional:

U(ψ) := H(ψ, 0) =

∫
R
[
1

2
|ψ′(x)|2 + U(ψ(x))] dx, ψ ∈ Ec. (1.4.10)
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Proposition 1.4.3. Let conditions (1.4.2), (1.4.3) and (1.4.7) hold, and moreover, let
d = 1 and the function F (y) be real analytic on R. Then S is a discrete subset of EF .

The main result of [46] is the following theorem, which is illustrated by the Figure 1.

Theorem 1.4.4. i) Let conditions (1.4.2), (1.4.3) and (1.4.7) hold and Y (0) ∈ E. Then
the corresponding solution Y (t) = (ψ(t), π(t)) ∈ C(R, E) to equation (1.4.5) attracts to S
in the sense (1.2.18),

Y (t)
EF−→ S, t→ ±∞. (1.4.11)

ii) Suppose additionally that d = 1 and that the function F (ψ) is real-analytic for ψ ∈ R.
Then for any solution Y (t) = (ψ(t), π(t)) ∈ C(R, E) to equation (1.4.5)

Y (t)
EF−→ S± ∈ S, t→ ±∞. (1.4.12)

Remarks 1.4.5. i) The assertion ii) of this theorem follows from i) due to Proposition
1.4.3.
ii) The convergence (1.4.11) and (1.4.6), (1.4.2), (1.4.3), (1.4.7) imply (0.0.10) by Fatou
theorem.

1.4.1 Plan of the proof

It suffices to consider only the case t → ∞. Our proofs of global attraction (1.4.11) and
(1.4.12) rely on a novel method of omega-limit trajectories which is a development of the
method of omega-limit points used in [45], see previous section 1.3. Later on this method
played a central role in the theory of global attractors for U(1)-invariant PDEs [63]–[74].

By (1.4.2) we have
supp χ ⊂ ∆ := [−a, a] (1.4.13)

for some a > 0. Conditions (1.4.3) and (1.4.7) imply the finiteness of the energy radiated
from the segment ∆. Hence, similarly to (1.3.58),∫ ∞

0

[|ψ̇(−a, t)|2 + |ψ′(−a, t)|2 + |ψ̇(a, t)|2 + |ψ′(a, t)|2]dt <∞. (1.4.14)

This means, roughly, that

ψ(±a, t) ∼ C±, ψ′(±a, t) ∼ 0, t→∞. (1.4.15)

More precisely, the functions ψ(±a, t) and ψ′(±a, t) are slowly varying for large times, so
their shifts form compact families. Namely, from an arbitrary sequence sk →∞, one can
choose a subsequence sk′ →∞ such that for any T > 0 the following uniform convergence
holds,

ψ(±a, t+ sk′)→ C± for t ∈ [0, T ], k′ →∞, (1.4.16)

where the constants C± depend on the subsequence. It remains to prove that for any
T > 0

ψ(x, t+ sk′)→ S+(x) ∈ S for t ∈ [0, T ] and x ∈ [−a, a], k′ →∞, (1.4.17)

where the convergence holds in C([0, T ];H1[−a, a]). In other words, each omega-limit
trajectory is a stationary state.
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To deduce (1.4.17) from (1.4.16), we need, roughly speaking, to justify the well-
posedness of the boundary value problem for a nonlinear differential equation (1.4.1)
in the half-strip −a ≤ x ≤ a, t > 0, with the Cauchy boundary conditions (1.4.15) on the
sides x = ±a. Then the convergence (1.4.16) of boundary values implies the convergence
(1.4.17) of the solution inside the strip.

Our main idea is to use evident symmetry of the wave equation with respect to in-
terchange of variables x and t with a simultaneous change of the sign of the potential U ,
that is (1.4.1) can be written as

ψ′′(x, t) = ψ̈(x, t)− f(x, ψ(x, t)). (1.4.18)

However, in this equation with the ‘time’ x the condition (1.4.7) makes new potential −U
unbounded from below! Consequently, this dynamics with x as the time variable is not
correct on the interval |x| ≤ a.

For example, in the case U(ψ) = ψ4, the equation (1.4.1) for solutions of type ψ(x, t) =
ψ(x) is ψ′′(x) − 4ψ3(x) = 0. Solutions of this ordinary differential equation with finite
Cauchy initial data at x = −a can become infinite at any point x ∈ (−a, a). However, in
our situation local well-posedness is sufficient due to a priori bounds, which follow from
the energy conservation (1.4.8) in view of the conditions (1.4.2), (1.4.3) and (1.4.7).

Remark 1.4.6. The discreteness of the set S is essential for the asymptotics (1.4.12).
For example, convergence (1.4.12) fails for the solution ψ(x, t) = sin[log(|x − t| + 2)] in
the case when d = 1 and F (ψ) = 0 for |ψ| ≤ 1.

1.4.2 Well-posedness and a priori estimates

Proposition 1.4.1 follows by classical technique [12]. The energy conservation (1.3.13)
implies a priori estimates

sup
t∈R
‖Y (t)‖E <∞ (1.4.19)

due to the conditions (1.4.3) and (1.4.7). We need however a finer characterization of the
properties of the solutions.

Proposition 1.4.7. Let the assumptions (1.4.2), (1.4.3), and (1.4.7) hold. Then
i) The mapping W (t) is Lipshitz-continuous in EF , and for every R, T > 0

‖W (t)Y1 −W (t)Y2‖R ≤ LT‖Y1 − Y2‖R+T for |t| ≤ T, (1.4.20)

where LT is bounded for bounded norms ‖Y1‖R+T , ‖Y2‖R+T .
ii) For solutions Y (t) = (ψ(t), ψ̇(t)) ∈ C(R, E) the a priori estimate holds

|ψ(x, t)| ≤ b(x) := α + β
√
|x|, (x, t) ∈ R2, (1.4.21)

where α and β are bounded for bounded energy H(Y (0));
iii) ψ(x, ·) is a continuous function of x ∈ R with values in H1

loc(R)), and ψ′(x, ·) is a
continuous function of x ∈ R with values in L2

loc(R));
iv) For a.a. x ∈ R and any t ∈ R∫ t+1

t

(|ψ̇(x, τ)|2 + |ψ′(x, τ)|2 + |ψ(x, τ)|2)dτ ≤ e <∞. (1.4.22)
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Proof. ad i) For solutions Y (t) ∈ C(R, E) to the nonlinear equation (1.4.1) the Duhamel
representation holds (see [3])

W (t)Y (0) = W0(t)Y (0) +

∫ t

0

W0(t− s)f∗(·, s)ds, f∗(x, s) := (0, f(x, ψ(x, s))). (1.4.23)

HereW0(t) denotes the dynamical group corresponding to the linear equation (1.4.1) with
f(x, u) ≡ 0, i.e.

W0(t)(ψ(0), π(0)) = (ψ(t), ψ̇(t)),

where ψ(x, t) is given by the d’Alembert formula (1.1.6). This formula implies the Lip-
schitz continuity (1.4.20) for W0(t). Then for W (t) the same continuity follows from
(1.4.23) by (1.4.2) and (1.4.19).

ad ii) The bound (1.4.19) implies that

D := sup
t∈R

∫
|ψ′(x, t)|2dx <∞, (1.4.24)

and D is bounded for bounded energy H(Y (0)). Therefore, by the Cauchy-Schwartz
inequality

|ψ(x, t)− ψ(0, t)| =
∣∣∣ ∫ x

0

ψ′(y, t)dy
∣∣∣ ≤ √D√|x|, (x, t) ∈ R2. (1.4.25)

At last, supt∈R |u(0, t)| <∞ by the bound (1.4.19). Now (1.4.25) implies (1.4.21).
ad iii) and iv) For |x| > a the claimed properties follow similarly to (1.4.14). To

prove them for |x| < a rewrite the equation (1.4.1) as (1.4.18) and apply the integral
representation of the type (1.4.23),

Z(x) = W0(x+ a)Z(−a)−
x∫

−a

W0(x− y)f∗(y,·)dy, Z(x) := (ψ(x, ·), ψ′(x, ·)). (1.4.26)

The claimed properties for the first term on the right hand side follow from (1.4.14), and
for the integral term these properties follow from (1.4.2) and estimates (1.4.21).

1.4.3 Stationary states

We prove Proposition 1.4.3 by a suitable modification of the arguments from the proof of
Proposition 1.3.5. The stationary equation (1.4.9) and conditions (1.4.2) imply that all
stationary solutions s(x) are smooth and

s(x) = s(±a), ±x ≥ a (1.4.27)

since s′(x) ∈ L2(R). Hence, the variation DU(s) exists and

DU(s) = −s′′(x) + f(x, s(x)).

Therefore, equation (1.4.1) for stationary states implies the variational equation

DU(s) = 0. (1.4.28)

The identities (1.4.27) imply that the continuous map I : EF → R defined by

I(ψ(x), π(x)) := ψ(−a)

is a homeomorphism on S. Hence, Proposition 1.4.3 obviously follows from the next
lemma.
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Lemma 1.4.8. Z := IS is a discrete subset of R.

Proof. We should prove that Z has no limit points. Let us assume contrary, that there
exists an infinite subsequence

zk ∈ Z, zk → z ∈ Z, k →∞. (1.4.29)

All stationary states satisfy the boundary value problem
s′′λ(x) + f(x, sλ(x)) = 0 x ∈ [−a, a]

sλ(−a) = λ, s′λ(−a) = 0

∣∣∣∣∣∣ . (1.4.30)

Let us denote by Λ the set of all λ ∈ R such that the solution to (1.4.30) exists. We
extend sλ(x) to |x| > a by constants,

sλ = sλ(±a) for ± x > a. (1.4.31)

Then Sλ = (sλ, 0) ∈ E for every λ ∈ Λ, though generally Sλ 6∈ S.
Let us define the map T : Λ→ R by

T (λ) := s′λ(a− 0). (1.4.32)

Then
Z = {λ ∈ Λ : T (λ) = 0}, (1.4.33)

and (1.4.29) implies that

T (z) = T (zk) = 0, k = 1, . . . . (1.4.34)

The set Λ is an open subset of R, hence

Λ =
∞
∪
1

Λj, (1.4.35)

where Λj are open intervals. We have z ∈ Λ∗ = Λl with some l. Let us show that

Λ∗ = R. (1.4.36)

Namely, the map T is real analytic on Λ∗, and hence, (1.4.29) and (1.4.34) imply that

T (λ) ≡ 0, λ ∈ Λ∗ (1.4.37)

since Λ∗ is open and connected subset of R. Hence, definition (1.4.33) implies that

Λ∗ ⊂ Z. (1.4.38)

Now (1.4.28) implies that

∂λU(sλ) = 〈DU(sλ), ∂λsλ〉 = 0, λ ∈ Λ∗. (1.4.39)

Hence,
U(sλ) ≡ U(sz), λ ∈ Λ∗. (1.4.40)

However, this identity implies that the set S∗ := {Sλ : λ ∈ Λ∗} is bounded in E by
conditions (1.4.2) and (1.4.3). Hence, S∗ is precompact in C(R,R × R). Its closure in
C(R,R× R) obviously belongs to S, and hence,

Λ∗ ⊂ Λ∗. (1.4.41)

Now (1.4.36) follows. Moreover, now (1.4.38) implies that Z = R which contradicts to
the boundedness of S∗ in E . This contradiction completes the proof of Lemma 1.4.8.
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1.4.4 Long-time asymptotics

We prove the Theorem 1.4.4.

Compact attracting set

Let us construct a compact attracting set A for the considered trajectory Y (t). Let b > 0
denote some constant to be chosen later.

Definition 1.4.9. Ab :={Sλ=(sλ(x), 0) ∈ E : λ∈Λ, |sλ(x)| ≤ b for |x| ≤ a}.

Ab is a compact set in EF due to the equation (1.4.9). We prove the next lemma in
the following section.

Lemma 1.4.10. Let assumptions of Theorem 1.4.4 hold. Then

Y (t)
EF−→ A = Ab, t→ ±∞, (1.4.42)

if the constant b is sufficiently large.

Proof of Theorem 1.3 i)

The next lemma implies the attraction to stationary states (1.4.11).

Lemma 1.4.11. i) ω(Y ) 6= ∅ and ii) ω(Y ) ⊂ S.

Proof. i) Lemma 1.4.10 means that there exists a function λ(t) ∈ C[0,∞) such that for
every R > 0

‖Y (t)− Sλ(t)‖R → 0 as t→ +∞. (1.4.43)

Here Sλ(t) = (sλ(t), 0) where sλ(t)(x) is defined by (1.4.30) and (1.4.31).
The orbit {Sλ(t) : t > 0} is precompact in EF . Hence, the limit (1.4.43) implies that

the orbit {Y (t) : t > 0} with t > 0 also is precompact in EF . Therefore, ω(Y ) 6= ∅.
ii) ω(Y ) ⊂ A by (1.4.42). Moreover, the set ω(Y ) is invariant with respect to W (t)

due to the continuity of W (t) in EF . Hence, for every Y ∈ Ω(Y ) there exists a C1-curve
t 7→ λ(t) ∈ R such thatW (t)Y = Sλ(t). Then Sλ(t) is the solution to (1.4.5). In particular,
∂tSλ(t) ≡ 0. Therefore, λ(t) ≡ λ and Y = Sλ ∈ S.

1.4.5 Attraction to a compact set

We deduce Lemma 1.4.10 from the following lemma on ‘attraction in the mean’, which
we prove in the next section. Let us denote for b, R > 0

ρb,R(t) = inf
S∈Ab
‖Y (t)− S‖R for t ∈ R. (1.4.44)

Lemma 1.4.12. For sufficiently large b > 0 and every R > 0∫ ∞
0

ρ2
b,R(t)dt <∞. (1.4.45)
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Proof of Lemma 1.4.10. Let us fix a metric ρ(·, ·) on E , defining the topology of EF .
We prove (1.4.42) ad absurdum: let us us assume that there exist ε > 0 and a sequence
tk →∞, such that

ρ(Y (tk),A) ≥ ε for all k = 1, 2, . . . . (1.4.46)
We will show that this is impossible and this completes the proof of Lemma 1.4.10. We
may assume that tk + 1 < tk+1 for every k. Now (1.4.45) implies by Fatou theorem,∫ 1

0

σR(θ)dθ <∞, where σR(θ) =
∞∑
1

ρ2
R(tk + θ). (1.4.47)

Therefore, σR(θ) < ∞ for every θ in a subset Θ(R) ⊂ [0, 1] with
∫

Θ(R)

dx = 1. Then for

every R > 0
ρR(tk + θ)→ 0 as k →∞ for θ ∈ Θ := ∩∞R∈NΘ(R). (1.4.48)

Hence Y (tk + θ)
EF−→ A as k → ∞ for every θ ∈ Θ ⊂ [0, 1], and

∫
Θ

dx = 1. Hence for

every θ ∈ Θ the compactness of A in EF implies that for some sequence k(θ)→∞,

Y (tk(θ) + θ)
EF−→ Y (θ) ∈ A as k(θ)→∞, θ ∈ Θ. (1.4.49)

Then the continuity of maps W (−θ) in EF implies also

Y (tk(θ))
EF−→ W (−θ)Y (θ) as k(θ)→∞, θ ∈ Θ. (1.4.50)

On the other hand, the compactness of A in EF implies that there exists a sequence θj ∈ Θ
such that θj → 0 as j →∞ and

Y (θj)
EF−→ Y ∗ ∈ A as j →∞. (1.4.51)

Now the uniform Lipshitz continuity (1.4.20) ofW (−θ) with θ ∈ [0, 1] and the convergence
W (−θj)Y ∗

EF−→ Y ∗ as j →∞ imply,

W (−θj)Y (θj)
EF−→ Y ∗ as j →∞. (1.4.52)

However this convergence together with (1.4.50) for θ = θj contradict (1.4.46). �

1.4.6 Attraction in the mean

We prove Lemma 1.4.12. It suffices to construct for sufficiently large b > 0 a function
Sµ(t) = (sµ(t), 0) ∈ Ab defined for t ≥ T with sufficiently large T > 0 such that for every
R > 0, ∫ ∞

T

‖Y (t)− Sµ(t)‖2
Rdt <∞. (1.4.53)

We will establish this inequality with

µ(t) = y−(n) := ψ(−a, n), n ≤ t < n+ 1, (1.4.54)

where n = 0, 1, . . . and n ≥ T . We may change the seminorm ‖ · ‖R from (1.3.5) by an
equivalent seminorm with |ψ(−a)| instead of |ψ(0)|. Then (1.4.53) means for R > a that∫ ∞

T

( ∫
|x|<a

(|ψ′(x, t)− s′µ(t)(x)|2 + |ψ(x, t)− sµ(t)(x)|2 + |ψ̇(x, t)|2)dx

+|ψ(−a, t)− µ(t)|2 +

∫
a<|x|<R

(|ψ′(x, t)|2 + |ψ̇(x, t)|2)dx
)
dt <∞. (1.4.55)
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Energy scattering to infinity

The bound (1.4.14) can be written as∫ ∞
0

(|ẏ−(t)|2 + |z−(t)|2 + |ẏ+(t)|2 + |z+(t)|2) dt <∞, (1.4.56)

where y±(t) = ψ(±a, t) and z±(t) = ψ′(±a, t). This follows similarly to (1.3.58) from
d’Alembert representation

ψ(x, t) = f±(t− x) + g±(t+ x), ±x > a, t ∈ R, (1.4.57)

and from finiteness of the energy flow from the segment ∆ := [−a, a], differentiating the
energy functional

H∆(Y ) =

∫
∆

[
|v(x)|2

2
+
|ψ′(x)|2

2
+ V (x, ψ(x))

]
dx, Y = (ψ(x), v(x)) ∈ E . (1.4.58)

Now (1.4.56) implies that∫ ∞
0

|ψ(−a, t)−µ(t)|2dt =

∫ ∞
0

|y−(t)−y−([t])|2dt ≤
∞∑
n=0

∫ 1

0

|ẏ−(n+s)|2ds <∞. (1.4.59)

Furthermore, similarly to (1.4.56)∫ ∞
0

(|ψ̇(x, t)|2 + |ψ′(x, t)|2 dt ≤ C <∞, a < |x| < R. (1.4.60)

Hence, the last integral of (1.4.55) is finite. It remains to prove the finiteness of the first
integral of (1.4.55):∫ ∞

T

( ∫
|x|<a

(|ψ′(x, t)− s′µ(t)(x)|2 + |ψ(x, t)− sµ(t)(x)|2 + |ψ̇(x, t)|2)dx
)
dt <∞ (1.4.61)

for sufficiently large T > 0. We will deduce (1.4.61) from (1.4.56) in the next section.

Nonlinear Goursat problem

We consider the Goursat problem for the nonlinear wave equation (1.4.18) with the Cauchy
data on the lines x = const: φ′′(x, t) = φ̈(x, t)− f(x, φ(x, t)),

φ|x=r = u(t), φ′|x=r = v(t)

∣∣∣∣∣∣ , t ∈ R, x ∈ [r, r + ε], (1.4.62)

where ε > 0. Our assumptions (1.4.2), (1.4.3) provide that the Cauchy problem (1.4.1),
(1.4.4) is well posed globally in t. On the other hand, the nonlinear Goursat problem
(1.4.62) generally is not well posed globally in x ∈ R.

We will establish a Lipschitz continuity of the maps

G(r, x) : (u(·), v(·)) 7→ (φ(x, ·), φ′(x, ·)), x ∈ [r, r + ε]

in suitable norms for initial data (u(·), v(·)) close to (ψ(r, ·), ψ′(r, ·)), where ε > 0 does
not depend on r ∈ [−a, a]. This continuity holds “along” the considered global solution
ψ(x, t) due to the a priori bounds (1.4.19). Using this continuity, we will deduce (1.4.61)
from (1.4.56).

Let σ denote an arbitrary segment in R of the length |σ|.
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Definition 1.4.13. E(σ) := H1(σ) ⊕ L2(σ), is the Hilbert space of functions (u(t), v(t))
with the norm

‖(u, v)‖E(σ) = ‖u̇‖L2(σ) + ‖u‖L2(σ) + ‖v‖L2(σ) <∞. (1.4.63)

Now proposition 1.4.7 iii) and iv) imply that for any segment σ ⊂ R

Zσ(r) := (ψ(r, ·), ψ′(r, ·))|σ ∈ E(σ) for a.a. r ∈ R

and
‖Zσ(r)‖2

E(σ) ≤ Ce|σ| for a.a. r ∈ R. (1.4.64)

Let φj(x, t) with j = 1, 2 be two solutions of the nonlinear Goursat problem (1.4.62) for x ∈
[r, r+ε) where ε > 0, such that Xj(x) := (φ(x, ·), φ′(x, ·)) ∈ C(r, r+ε;H1

loc(R)⊕L2
loc(R)).

For such solutions the Goursat problem (1.4.62) is equivalent to the integral identity of
type (1.4.26),

Xj(x) = W0(x− r)Xj(r)−
∫ x

r

W0(x− y)(0, f(y, φj(y, ·))dy, x ∈ [r, r + ε]. (1.4.65)

For any segment σ = [t1, t2] and small ε > 0 denote σε := [t1 + ε, t2 − ε].

Lemma 1.4.14. Let assumptions (1.4.2), (1.4.3) hold, and

max
x∈[r,r+ε],t∈R

|φj(x, t)| ≤ B <∞, j = 1, 2. (1.4.66)

Then for any segment σ ⊂ R with |σ| > 2ε

‖X1(x)−X2(x)‖E(σ|x−r|) ≤ L(B)‖X1(r)−X2(r)‖E(σ), x ∈ [r, r + ε), (1.4.67)

where the Lipshitz constant L(B) does not depend on the segment σ.

Proof. By conditions (1.4.2)

M(B) := max
x∈R,|ψ|≤B

|∇ψf(x, ψ)| <∞. (1.4.68)

Hence,

‖f(y, φ1(y, ·))−f(y, φ2(y, ·))‖L2(σy−r) ≤M(B)‖X1(y)−X2(y)‖E(σ), y ∈ [r, r + ε). (1.4.69)

Moreover, the dynamical group W0(y) admits classical estimate

‖W0(z)X‖E(σz) ≤ ‖X‖E(σ), z ∈ [0, |σ|/2), X ∈ E(σ).

Now the integral equation (1.4.65) implies the integral inequality

m(x) ≤ m(r) +M(B)

∫ x

r

m(y)dy, x ∈ [r, r + ε), (1.4.70)

where
m(x) := ‖X1(x)−X2(x)‖E(σ|x−r|).

Hence, the bounds (1.4.67) follow by the Gronwall inequality.

Now we can prove the existence of solutions of (1.4.30).
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Lemma 1.4.15. For sufficiently large t > 0 the problem (1.4.30) with λ = y−(t) admits
a unique solution sλ(x).

Proof. First, the solution exists for x ∈ [−a,−a + ε] with sufficiently small ε > 0 which
depends on t. This local solution can be extended to all x ∈ [−a, a] if the a priori bounds
hold

|sλ(x)| ≤ C, x ∈ [−a, a]. (1.4.71)

This bounds follow for λ = λ(t) := y−(t) with large t by application of Lemma 1.4.14
to the following two solutions φj(x, t) of the nonlinear Goursat problem (1.4.62) with
r = −a:

φ1(x, t) := ψ(x, t), φ2(x, t) := sλ(x).

We will prove the bounds (1.4.71) with any C > B0, where

B0 := max
x∈[−a,a],t∈R

|ψ(x, t)| (1.4.72)

The key fact is the following convergence of the Cauchy data of these two solutions

‖(ψ(−a, t+ ·), ψ′(−a, t+ ·))− (sλ(t)(−a), 0)‖E(σ) → 0, t→∞. (1.4.73)

for any segment σ ⊂ R. This convergence follows from (1.4.56). Now Lemma 1.4.14
implies that

‖(ψ(−a+ ε, t+ ·), ψ′(−a, t+ ·))− (sλ(t)(−a+ ε), s′λ(t)(−a+ ε))‖E(σε) → 0, t→∞

if we take |σ| > 2ε. Hence, by the Sobolev embedding theorem,

‖ψ(−a+ ε, t+ ·)− sλ(t)(−a+ ε)‖C(σε) → 0, t→∞. (1.4.74)

Therefore, the a priori bounds (1.4.71) hold.

Proof of the attraction in the mean

Now (1.4.61) follows by the same arguments. Namely, Lemma 1.4.14 implies that for any
ε ∈ [0, 2a]

‖(ψ(−a+ ε, t+ ·), ψ′(−a+ ε, t+ ·))− (sµ(t)(−a+ ε), s′µ(t)(−a+ ε))‖E(σε)

≤ L(C)‖(ψ(−a, t+ ·), ψ′(−a, t+ ·))− (sµ(t)(−a), 0)‖E(σ), t ≥ T

for sufficiently large T > 0 and µ(t) defined by (1.4.54). Hence,

‖(ψ(−a+ ε, t+ ·)− sµ(t)(−a+ ε)‖2
H1(σε)

+ ‖ψ′(−a+ ε, t+ ·)− s′µ(t)(−a+ ε)‖2
L2(σε)

≤ L(C)[‖ψ(−a, t+ ·)− sµ(t)(−a)‖2
H1(σ) + ‖ψ′(−a, t+ ·)‖2

L2(σ)], t ≥ T (1.4.75)

Choosing here t = n, σε = [0, 1] and summing up over n ≥ N ≥ T , we obtain∫ ∞
N

(|ψ̇(x, t)|2 + |ψ(x, t)−sµ(t)(x)|2 + |ψ′(x, t)−s′µ(t)(x)|2)dt <∞, x ∈ [−a, a] (1.4.76)

since the sum of the right hand sides is finite by (1.4.56). Moreover, this last sum is
bounded, and hence, integrating over x ∈ [−a, a], we obtain (1.4.61).

Now Lemma 1.4.12 is proved.
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1.5 Wave-particle system
In [47], the first result on global attraction to stationary states (0.0.7) is obtained for
three-dimensional real scalar wave field coupled to a relativistic particle. The scalar field
satisfies 3D wave equation

ψ̈(x, t) = ∆ψ(x, t)− ρ(x− q(t)), x ∈ R3, (1.5.1)

where ρ ∈ C∞0 (R3) is a fixed function representing the charge density of the particle, and
q(t) ∈ R3 is the particleposition. The particle motion obeys the Hamiltonian equation
with relativistic kinetic energy

√
1 + p2:

q̇(t) =
p(t)√

1 + p2(t)
, ṗ(t) = −∇V (q(t))−

∫
∇ψ(x, t)ρ(x− q(t)) dx. (1.5.2)

Here −∇V (q) is external force corresponding to real potential V (q), and the integral term
is a self-force. Thus, wave function ψ is generated by charged particle, and plays the role
of a potential acting on the particle, along with the external potential V (q).

The system (1.5.1)–(1.5.2) was introduced by H. Spohn, see [55] for discussion of
physical relevance of this model. This system can formally be represented in Hamiltonian
form

ψ̇ = DπH, π̇ = −DψH, q̇(t) = DpH, ṗ = −DqH (1.5.3)

with Hamiltonian (energy)

H(ψ, π, q, p) =
1

2

∫
[|π(x)|2 + |∇ψ(x)|2] dx+

∫
ψ(x)ρ(x−q) dx+

√
1 + p2 +V (q). (1.5.4)

By ‖ · ‖ we denote the norm in the Hilbert space L2 := L2(R3), and ‖ · ‖R denotes the
norm in L2(BR), where BR being the ball |x| ≤ R. Let H̊1 := H̊1(R3) be the completion
of the space C∞0 (R3) in the norm ‖∇ψ(x)‖.

Definition 1.5.1. i) E := H̊1⊕L2⊕R3⊕R3 is the Hilbert phase space of tetrads (ψ, π, q, p)
with finite norm

‖(ψ, π, q, p)‖E = ‖∇ψ‖+ ‖π‖+ |q|+ |p|.
ii) Eσ for σ ∈ R is the space of Y = (ψ, π, q, p) ∈ E with ψ ∈ C2(R3) and π ∈ C1(R3)
satisfying the estimate

|∇ψ(x)|+ |π(x)|+ |x|(|∇∇ψ(x)|+ |∇π(x)|) = O(|x|−σ), |x| → ∞. (1.5.5)

iii) EF is the space E with metric of type (1.2.9), where the corresponding seminorms are
defined as

‖(ψ, π, q, p)‖E,R = ‖∇ψ‖R + ‖ψ‖R + ‖π‖R + |q|+ |p|. (1.5.6)

Obviously, the energy (1.5.4) is a continuous functional on E , and Eσ ⊂ E for σ > 3/2.
The convergence in EF is equivalent to the convergence in every seminorm (1.5.6). We
assume the external potential be confining:

V (q)→∞, |q| → ∞. (1.5.7)

In this case the Hamiltonian (1.5.4) is bounded below:

inf
Y ∈E
H(Y ) = V0 +

1

2
(ρ,∆−1ρ), (1.5.8)
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where
V0 := inf

q∈R3
V (q) > −∞. (1.5.9)

The following lemma is proved in [47, Lemma 2.1].

Lemma 1.5.2. Let V (q) ∈ C2(R3) satisfies the condition (1.5.9). Then for any initial
state Y (0) ∈ E there exists a unique finite energy solution Y (t) = (ψ(t), π(t), q(t), p(t)) ∈
C(R, E), and
i) for every t ∈ R the map W (t) : Y0 7→ Y (t) is continuous both on E and on EF ;
ii) the energy H(Y (t)) is conserved, i.e.

H(Y (t)) = H(Y0) for t ∈ R; (1.5.10)

iii) a priori estimates hold

sup
t∈R

[‖∇ψ(t)‖+ ‖π(t)‖] <∞, sup
t∈R
|q̇(t)| = v < 1; (1.5.11)

iv) if (1.5.7) holds, then also

sup
t∈R
|q(t)| = q0 <∞. (1.5.12)

Remark 1.5.3. In the case of point particleρ(x) = δ(x), the system (1.5.1)–(1.5.2) is
incorrect, since in this case any solution of the wave equation (1.5.1) is singular at the
point x = q(t), and, accordingly, the integral in (1.5.2) is not defined. Energy functional
(1.5.4) in this case is not bounded from below, because the last term in (1.5.8) equals
−∞. Indeed, in the Fourier transform, this term has the form

(ρ,∆−1ρ) = −
∫
|ρ̂(k)|2

k2
dk,

where ρ̂(k) ≡ 1. This is the famous ‘ultraviolet divergence.’ Thus, the self-energy of
point charge is infinite, that suggested Abraham to introduce the model of an ‘extended
electron’ with a continuous charge density ρ(x) [203, 204].

Denote Z = {q ∈ R3 : ∇V (q) = 0}. It is easy to verify that stationary states of the
system (1.5.1)–(1.5.2) have the form Sq = (ψq, 0, q, 0), where q ∈ Z and ∆ψq(x) = ρ(x−q).
Therefore, ψq(x) is the Coulomb potential

ψq(x) := − 1

4π

∫
ρ(y − q) dy
|x− y|

Respectively, the set of all stationary states of this system is

S := {Sq : q ∈ Z}.

If the set Z is discrete in R3, then the set S is also discrete in E and in EF . Finally,
assume that the “form-factor” ρ satisfies the Wiener condition

ρ̂(k) :=

∫
eikxρ(x) dx 6= 0, k ∈ R3. (1.5.13)



52 CHAPTER 1. GLOBAL ATTRACTION TO STATIONARY STATES

Remark 1.5.4. The Wiener condition means a strong coupling of scalar wave field ψ(x)
to the particle. It is a suitable version of the ‘Fermi Golden Rule" for the system (1.5.1)–
(1.5.2): the perturbation ρ(x − q) is not orthogonal to all eigenfunctions of continuous
spectrum of the Laplacian ∆.

For simplicity of the exposition we assume that

ρ ∈ C∞0 (R3), ρ(x) = 0 for |x| ≥ Rρ, ρ(x) = ρr(|x|). (1.5.14)

The main result of [47] is as follows.

Theorem 1.5.5. i) Let the conditions (1.5.7) and (1.5.13) hold, and σ > 3/2. Then
for any initial state Y (0) = (ψ0, π0, q0, p0) ∈ Eσ the corresponding solution Y (t) =
(ψ(t), π(t), q(t), p(t)) ∈ C(R, E) to the system (1.5.1)–(1.5.2) attracts to the set of sta-
tionary states:

Y (t)
EF−→ S, t→ ±∞, (1.5.15)

where attraction holds in the metric (1.2.9) defined with the seminorms(1.5.6).

ii) Let, additionally, the set Z be discrete in R3. Then

Y (t)
EF−→ S± ∈ S, t→ ±∞. (1.5.16)

The key point in the proof of this theorem is the relaxation of the acceleration

q̈(t)→ 0, t→ ±∞. (1.5.17)

This relaxation has long been known in Classical Electrodynamics as ‘radiation damping’.
Namely, the Liénard–Wiechert formulas for retarded potentials suggest that a particlewith
a non-zero acceleration radiates energy to infinity. This radiation cannot last forever,
because the total energy of the solution is finite. These arguments result in the conclusion
(1.5.17) that can be found in any textbook on Classical Electrodynamics.

However, rigorous proof is not so obvious and it was done for the first time in [47]. The
proof relies on calculation of total energy amount radiated to infinity using the Liénard–
Wiechert formulas. The central point is the representation of this amount in the form of
a convolution and subsequent application of the Wiener Tauberian theorem.

Below we give a streamlined version of this proof.

Remark 1.5.6. i) The condition (1.5.7) is not necessary for relaxation (1.5.17). The
relaxation also takes place under the condition (1.5.9) (see Remark 1.5.9).

ii) The Wiener condition (1.5.13) also is not necessary for relaxation (1.5.17). For
example, (1.5.17) obviously holds in the case when V (x) ≡ 0 and ρ(x) ≡ 0. More
generally, such relaxation also holds when V (x) ≡ 0 and the norm ‖ρ‖ is sufficiently
small, see (2.2.1).

1.5.1 Liénard–Wiechert asymptotics

Let us recall long range asymptotics of the Liénard–Wiechert potentials established in
[47, 48]. Denote by ψr(x, t) the retarded potential

ψr(x, t) = − 1

4π

∫
d3y θ(t− |x− y|)

|x− y|
ρ(y − q(t− |x− y|)), (1.5.18)

and set πr(x, t) = ψ̇r(x, t). Denote Tr := q0 +Rρ.
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Lemma 1.5.7. The following asymptotics hold
πr(x, |x|+ t) = π(ω(x), t)|x|−1 +O(|x|−2)

∇ψr(x, |x|+ t) = −ω(x)π(ω(x), t)|x|−1 +O(|x|−2)

∣∣∣∣∣∣ , |x| → ∞ (1.5.19)

uniformly in t ∈ [Tr, T ] for any T > Tr. Here ω(x) = x/|x|, and π(ω(x), t) is given in
(1.5.21).

Proof. The integrand of (1.5.18) vanishes for |y| > Tr. Then |x− y| ≤ t for t− |x| > Tr,
and (1.5.18) implies

∇ψr(x, t) =

∫
d3y

4π|x− y|
n∇ρ(y − q(t− |x− y|)) · q̇(t− |x− y|) +O(|x|−2)

= −ω(x)πr(x, t) +O(|x|−2), t− |x| > Tr,

because n =
x− y
|x− y|

= ω(x) + O(|x|−1) for bounded |y|. Hence, it suffices to prove

asymptotics (1.5.19) for πr only. We have

πr(x, t) = −
∫
d3y

1

4π|x− y|
∇ρ(y − q(τ)) · q̇(τ), τ := t− |x− y|. (1.5.20)

Replacing t by |x|+ t in definition of τ , we obtain

τ = |x|+ t− |x− y| = t+ ω(x) · y +O(|x|−1) = τ +O(|x|−1), τ = t+ ω · y,

since

|x| − |x− y| = |x| −
√
|x|2 − 2x · y + |y|2 ∼ |x|

(x · y
|x|2
− |y|

2

2|x|2
)

= ω(x) · y +O(|x|−1).

Hence (1.5.20) implies (1.5.19) with

π(ω, t) := − 1

4π

∫
d3y ∇ρ(y − q(τ)) · q̇(τ). (1.5.21)

1.5.2 Free wave equation

Consider now the solution ψK(x, t) of free wave equation with initial conditions

ψK(x, 0) = ψ0(x), ψ̇K(x, 0) = π0(x), x ∈ R3. (1.5.22)

The Kirchhoff formula gives

ψK(x, t) =
1

4πt

∫
St(x)

d2y π0(y) +
∂

∂t

( 1

4πt

∫
St(x)

d2y ψ0(y)
)
. (1.5.23)

Here St(x) is the sphere {y : |y − x| = t}. Denote πK(x, t) = ψ̇K(x, t).

Lemma 1.5.8. Let Y0 ∈ Eσ. Then for any R > 0 and any T2 > T1 ≥ 0∫ R+T2

R+T1

dt

∫
∂BR

d2x
(
|πK(x, t)|2 + |∇ψK(x, t)|2

)
≤ I0 <∞. (1.5.24)
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Proof. Formula (1.5.23) implies

∇ψK(x, t)=
t

4π

∫
S1

d2z ∇π0(x+ tz)+
1

4π

∫
S1

d2z ∇ψ0(x+ tz)+
t

4π

∫
S1

d2z ∇x(∇ψ0(x+ tz) ·z).

Here S1 := S1(0). From (1.5.5) it follows that

|∇ψK(x, t)| ≤ C
1∑
s=0

ts
∫
S1

d2z |x+ tz|−σ−1−s

= C

1∑
s=0

2πts−1

(σ + s− 1)|x|

(
(t− |x|)−σ−s+1 − (t+ |x|)−σ−s+1

)
.

Therefore,

R+T2∫
R+T1

dt

∫
∂BR

d2x|∇ψk(x, t)|2 ≤ C

R+T2∫
R+T1

[(t+R)2−2σ + (t−R)2−2σ

t2
+ (t−R)−2σ

]
dt

≤ C1

R+T2∫
R+T1

dt
[(

1+
R

t

)2

+
(

1−R
t

)2

+1
]
(t−R)−2σ≤I0<∞.

The integral with ∇πK(x, t) can be estimated similarly.

1.5.3 Scattering of energy to infinity

Now we obtain a bound on the total energy radiated to infinity which we will represent
as a ‘radiation integral’.

This integral has to be bounded a priori by (1.5.11). Indeed, the energy HR(t) at time
t ∈ R in the ball BR is defined by

HR(t)=
1

2

∫
BR

d3x
(
|π(x, t)|2+|∇ψ(x, t)|2

)
+
√

1 + p2(t)+V (q(t))+

∫
d3xψ(x, t)ρ(x−q(t)).

Consider the energy IR(T1, T2) radiated from the ball BR during the time interval [T1, T2]
with T2 > T1 > 0:

IR(T1, T2) = HR(T1)−HR(T2).

This energy is bounded a priori, because by (1.5.11) the energy HR(T1) is bounded from
above, while HR(T2) is bounded from below. Thus,

IR(T1, T2) ≤ I <∞, (1.5.25)

where I does not depend on T1, T2 and R. Further, one has

d

dt
HR(t) =

∫
∂BR

d2x ω(x) · π(x, t)∇ψ(x, t), t > R.

Hence, (1.5.25) implies∫ R+T2

R+T1

dt

∫
∂BR

d2x ω(x) · π(x, t)∇ψ(x, t) ≤ I.
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The solution admits the splitting π = πr + πK , ψ = ψr + ψK , and hence,∫ R+T2

R+T1

dt

∫
∂BR

d2x ω(x) · (πr∇ψr + πK∇ψr + πr∇ψK + πK∇ψK) ≤ I.

Lemmas 1.5.7 and 1.5.8 together with the Cauchy-Schwarz inequality imply∫ T

Tr

dt

∫
S1

d2ω |π(ω, t)|2 ≤ I1 + TO(R−1), T > Tr,

where I1 <∞ does not depend on T and R. Taking the limit R→∞ and then T →∞
we obtain the finiteness of the energy radiated to infinity:∫ ∞

0

dt

∫
S1

d2ω|π(ω, t)|2 <∞. (1.5.26)

1.5.4 Convolution representation and relaxation of acceleration

Applying a partial integration in (1.5.21), we obtain

π(ω, t) =

∫
d3y ∇ρ(y − q(τ)) · q̇(τ) =

∫
d3y ∇yρ(y − q(τ)) · q̇(τ)

1

1− ω · q̇(τ)

= −
∫
d3y ρ(y − q(τ))

∂

∂yα

q̇α(τ)

1− ω · q̇(τ)
=

1

4π

∫
d3y ρ(y − q(τ))

ω · q̈(τ)

(1− ω · q̇(τ))2
.(1.5.27)

The function π(ω, t) is globally Lipschitz continuous in ω and t due to (1.5.11) Hence,
(1.5.26) implies

lim
t→∞

π(ω, t) = 0 (1.5.28)

uniformly in ω ∈ S1. Denote r(t) = ω · q(t), s = ω · y, ρ̃(q3) =

∫
dq1dq2ρ(q1, q2, q3) and

decompose the y-integration in (1.5.27) along and transversal to ω. Then we obtain the
convolution

π(ω, t) =

∫
ds ρ̃(s− r(t+ s))

r̈(t+ s)

(1− ṙ(t+ s))2

=

∫
dτ ρ̃(t− (τ − r(τ)))

r̈(τ)

(1− ṙ(τ))2 =

∫
dθ ρ̃(t− θ)gω(θ) = ρ̃ ∗ gω(t).

Here θ = θ(τ) = τ − r(τ) is a nondegenerate diffeomorphism of R since ṙ ≤ r < 1 due to
(1.5.11), and

gω(θ) =
r̈(τ(θ))

(1− ṙ(τ(θ)))3
. (1.5.29)

Let us extend q(t) = 0 for t < 0. Then ρ̃ ∗ gω (t) is defined for all t, and coincides with
π(ω, t) for sufficiently large t. Hence, (1.5.28) reads as a convolution limit

lim
t→∞

ρ̃ ∗ gω(t) = 0. (1.5.30)

Moreover, g′ω(θ) is bounded by (1.5.11). Therefore, (1.5.30) and the Wiener condition
(1.5.13) imply

lim
θ→∞

gω(θ) = 0, ω ∈ S1 (1.5.31)
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by Pitt’s extension of the Wiener Tauberian theorem, cf. [18, Thm. 9.7(b)]. Hence, (1.5.29)
implies

lim
t→∞

q̈(t) = 0. (1.5.32)

since θ(t)→∞ as t→∞. Finally,

lim
t→∞

q̇(t) = 0, (1.5.33)

since |q(t)| ≤ q0 due to (1.5.11).

Remark 1.5.9. (i) We have used condition (1.5.7) in the proof of (1.5.25). However,
(1.5.9) at this point is also sufficient. Hence, the relaxation (1.5.32) holds also under
condition (1.5.9).
(ii) For point charge ρ(x) = δ(x), (1.5.30) implies (1.5.31) directly.
(iii) Condition (1.5.13) is necessary for the implication (1.5.31)⇒(1.5.32). Indeed, if
(1.5.13) is violated, then ρ̂a(ξ) = 0 for some ξ ∈ R, and with the choice g(θ) = exp(iξθ)
we have ρa ∗ g(t) ≡ 0 whereas g does not decay to zero.

1.5.5 A compact attracting set

Here we show that the set

A = {Sq : q ∈ R3, |q| ≤ q0} (1.5.34)

is an attracting subset. It is compact in EF since A is homeomorphic to a closed ball in
R3.

Lemma 1.5.10. The following attraction holds,

Y (t)
EF−→ A, t −→ ±∞. (1.5.35)

Proof. We need to check that for every R > 0

distR(Y (t),A) = |p(t)|+ ‖π(t)‖R

+ inf
Sq∈A

(
|q(t)− q|+ ‖ψ(t)− ψq‖R + ‖∇(ψ(t)− ψq)‖R

)
→ 0 (1.5.36)

as t→ +∞ We estimate each summand separately.
i) |p(t)| → 0 as t→∞ by (1.5.32).
ii) inf
|q|≤q0

|q(t)− q| = 0 for any t ∈ R by (1.5.11).

iii) (1.5.18) implies for t > R + Tr and |x| < R

|πr(x, t)| ≤ C max
t−R−Tr≤τ≤t

|q̇(τ)|
∫
|y|<Tr

d3y
1

|x− y|
|∇ρ(y − q(t− |x− y|))| .

The integral in the RHS is bounded uniformly in t > R + Tr and x ∈ BR. Hence,
‖πr(t)‖R → 0 as t→∞ by (1.5.33). Then also ‖π(t)‖R → 0.
iv) We can replace q with q(t) in the last line of (1.5.36). Then for t > R+Tr and |x| < R,
one has

ψr(x, t)− ψq(t)(x) = −
∫
|y|<Tr

d3y
1

4π|x− y|

(
ρ(y − q(t− |x− y|))− ρ(y − q(t))

)
by (1.5.18). Moreover, ρ(y−q(t−|x−y|))−ρ(y−q(t))→ 0 as t→∞ uniformly in x ∈ BR

due to (1.5.33). Hence, ‖ψr(t) − ψq(t)‖R → 0 as t → ∞. Then also ‖ψ(t) − ψq(t)‖R → 0.
Finally, ‖∇(ψ(t)− ψq(t))‖R can be estimated in a similar way.
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1.5.6 Global attraction to stationary states

Now we complete the proof of Theorem 1.5.5.
i) Let Y (t) ∈ C(R, E) be any finite energy solution to the system (1.5.1)–(1.5.2). If the
attraction (1.5.15) does not hold, there is a sequence tk →∞ for which

dist(Y (tk),S) ≥ δ > 0, k = 1, 2, . . . (1.5.37)

Since A is a compact set in EF , (1.5.35) implies that

Y (tk′)
EF−→ Y ∈ A, k′ →∞ (1.5.38)

for some subsequence k′ →∞. It remains to check that Y = Sq∗ ∈ S with some q∗ ∈ Z,
since this contradicts (1.5.37).

First, Y = Sq with some |q| ≤ q0 by the definition (1.5.34). Similarly, by the
continuity of the map W (t) in EF ,

W (t)Y (tk′) = Y (tk′ + t)
EF−→ W (t)Y = SQ(t), k′ →∞, (1.5.39)

where Q(·) ∈ C2(R, E), since W (t)Y ∈ C(R, E) is a solution to the system (1.5.1)–(1.5.2).
Finally, for SQ(t) to be a solution to the system (1.5.1)–(1.5.2), there must be Q̇(t) ≡ 0.
Therefore, Q(t) ≡ q∗ ∈ Z and Y = Sq∗ ∈ S.

ii) If the set Z is discrete in R3, then solitary manifold S is discrete in EF . �
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1.6 Maxwell–Lorentz equations: radiation damping
In [48] global attraction to stationary states similar to (1.5.15), (1.5.16) was established
for the Maxwell–Lorentz equations with charged relativistic particle:

Ė(x, t) = rotB(x, t)− q̇ρ(x− q), Ḃ(x, t) = −rotE(x, t)

divE(x, t) = ρ(x− q), divB(x, t) = 0, q̇(t)=
p(t)√

1+ p2(t)

ṗ(t)=

∫
[E(x, t)+ Eext(x, t)+ q̇(t) ∧ (B(x, t)+Bext(x, t))]ρ(x− q(t)) dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.6.1)

Here ρ(x − q) is the particle charge density, q̇ρ(x − q) is the corresponding current den-
sity, and Eext = −∇φext(x) and Bext = −rotAext(x) are external static Maxwell fields.
Similarly to (1.5.7), we assume that effective scalar potential is confining:

V (q) :=

∫
φext(x)ρ(x− q) dx→∞, |q| → ∞. (1.6.2)

This system describes Classical Electrodynamics with‘extended electron’ introduced by
M. Abraham [203, 204]. In the case of a point electron, when ρ(x) = δ(x), such system
is not well defined. Indeed, in this case, any solutions E(x, t) and B(x, t) of the Maxwell
equations (the first line of (1.6.1)) are singular for x = q(t), and, accordingly, the integral
in the last equation (1.6.1) does not exist.

This system may be formally presented in Hamiltonian form, if the fields are expressed
in terms of potentials E(x, t) = −∇φ(x, t) − Ȧ(x, t), B(x, t) = −rotA(x, t). The corre-
sponding Hamiltonian functional reads

H =
1

2
[〈E,E〉+ 〈B,B〉] + V (q) +

√
1 + p2

=
1

2

∫
[E2(x) +B2(x)] dx+ V (q) +

√
1 + p2. (1.6.3)

The Hilbert phase space of finite energy states is defined as E := L2 ⊕ L2 ⊕ R3 ⊕ R3.
Under the condition (1.6.2) a solution Y (t) = (E(x, t), B(x, t), q(t), p(t)) ∈ C(R, E) of
finite energy exists and is unique for any initial state Y (0) ∈ E .

The Hamiltonian (1.6.3) is conserved along solutions, what provides a priori estimates,
which play an important role in proving global attraction of the type (1.5.15), (1.5.16)
in [48]. The key role in the proof is played again by relaxation of acceleration (1.5.17),
which is derived by a suitable generalisation of our methods [47]: the expression of energy
radiated to infinity via Liénard–Wiechert retarded potentials, its representation in the
form of a convolution and the use of the Wiener Tauberian theorem.

In Classical Electrodynamics the radiation damping (1.5.17) is traditionally derived
from the Larmor and Liénard formulas for radiation power of a point particle (see formulas
(14.22) and (14.24) of [212]), but this approach ignores field feedback although it plays
the key role in the relaxation of the acceleration. The main problem is that this reverse
field reaction for point particles is infinite. A rigorous sense of these classical calculations
was first found in [47, 48] for the Abraham model of ‘extended electron’ under the Wiener
condition (1.5.13). A detailed discussion can be found in [55].
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1.7 Wave equations with concentrated nonlinearities
Here we prove the result of [53] on global attraction to to stationary states for 3D wave
equation with point coupling to an U(1)-invariant nonlinear oscillator. This goal is in-
spired by fundamental mathematical problem of an interaction of point particles with the
fields.

Point interaction models were considered since 1930 in the papers of E. Wigner, H.
Bethe and R. Peierls, E. Fermiand others (see [93] for a detailed survey) and of Dirac [96].
Rigorous mathematical results were obtained since 1960 by Ya. B. Zeldovich, F. Berezin,
L. Faddeev, F.H.J. Cornish, D. Yafaev, E. Zeidler and others [94, 95, 97, 99, 101], and
since 2000 by D. Noja, A. Posilicano, and others [98, 100, 92].

We consider real wave field ψ(x, t) coupled to a nonlinear oscillator
ψ̈(x, t) = ∆ψ(x, t) + ζ(t)δ(x)

lim
x→0

(ψ(x, t)− ζ(t)G(x)) = F (ζ(t))

∣∣∣∣∣∣∣ x ∈ R3, t ∈ R, (1.7.1)

where G(x) =
1

4π|x|
is the Green function of the operator −∆ in R3. Nonlinear function

F (ζ) admits a potential:

F (ζ) = U ′(ζ), ζ ∈ R, U ∈ C2(R). (1.7.2)

We assume that the potential is confining, i.e.,

U(ζ)→∞, ζ → ±∞. (1.7.3)

The system (1.7.1) admits stationary solutions ψq = qG(x) ∈ L2
loc(R3), where q ∈ Q :=

{q ∈ R : F (q) = 0}. We assume that the set Q is nonempty and does not contain intervals,
i.e.,

[a, b] 6⊂ Q (1.7.4)

for any a < b.
As before, ‖ ·‖ and ‖ ·‖R denote the norms in L2 = L2(R3) and in L2(BR) respectively,

and H̊1 = H̊1(R3) is the completion of the space C∞0 (R3) in the norm ‖∇ψ(x)‖. Denote

H̊2 = H̊2(R3) := {f ∈ H̊1, ∆f ∈ L2}, t ∈ R.

We define the function sets

D = {ψ ∈ L2 : ψ(x) = ψreg(x) + ζG(x), ψreg ∈ H̊2, ζ ∈ R, lim
x→0

ψreg(x) = F (ζ)}

and
Ḋ = {π ∈ L2(R3) : π(x) = πreg(x) + ηG(x), πreg ∈ H̊1, η ∈ R}.

Obviously, D ⊂ Ḋ.

Definition 1.7.1. D is the Hilbert manifold of states Ψ = (ψ, π) ∈ D × Ḋ.

First, we prove global well-posedness for the system (1.7.1) established in [98].

Theorem 1.7.2. Let conditions (1.7.2) and (1.7.3) hold. Then
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(i) For every initial data Ψ0 = (ψ0, π0) ∈ D the system (1.7.1) has a unique solution
Ψ(t) = (ψ(t), ψ̇(t)) ∈ C(R,D).

(ii) The energy is conserved:

H(Ψ(t)) :=
1

2

(
‖ψ̇(t)‖2 + ‖∇ψreg(t)‖2

)
+ U(ζ(t)) = const, t ∈ R. (1.7.5)

(iii) The following a priori bound holds

|ζ(t)| ≤ C(Ψ0), t ∈ R. (1.7.6)

Proof. It suffices to prove the theorem for t ≥ 0.
Step i) First we consider free wave equation with initial data from D:

ψ̈f (x, t) = ∆ψf (x, t), (ψf (0), ψ̇f (0)) = (ψ0, π0) = (ψ0,reg, π0,reg) + (ζ0G, η0G) ∈ D,
(1.7.7)

where (ψ0,reg, π0,reg) ∈ H̊2 ⊕ H̊1.

Lemma 1.7.3. There exists a unique solution ψf (t) ∈ C([0;∞), L2
loc(R3)) to (1.7.7).

Moreover, for any t > 0 there exists the limit

λ(t) := lim
x→0

ψf (x, t) ∈ C[0,∞),

and
λ̇(t) ∈ L2

loc[0,∞). (1.7.8)

Proof. We split ψf (x, t) as

ψf (x, t) = ψf,reg(x, t) + g(x, t),

where ψf,reg and g are solutions to free wave equation with initial data (ψ0,reg, π0,reg) and
(ζ0G, η0G), respectively. First, ψf,reg ∈ C([0,∞), H̊2) by the energy conservation. Hence,
lim
x→0

ψf,reg(x, t) exists for any t ≥ 0 since H̊2(R3) ⊂ C(R3).
Let us obtain an explicit formula for g. Note, that the function h(x, t) = g(x, t) −

(ζ0 + η0t)G(x) satisfies

ḧ(x, t) = ∆h(x, t)− (ζ0 + η0t)δ(x), h(x, 0) = 0, ḣ(x, 0) = 0. (1.7.9)

The unique solution to (1.7.9) is spherical wave :

h(x, t) = −θ(t− |x|)
4π|x|

(ζ0 + η0(t− |x|)), t ≥ 0. (1.7.10)

Here θ is the Heaviside function. Hence,

g(x, t) = h(x, t) + (ζ0 + η0t)G(x)

= −θ(t− |x|)(ζ0 + η0(t− |x|))
4π|x|

+
ζ0 + η0t

4π|x|
∈ C([0,∞), L2

loc(R3)),

and then
lim
x→0

g(x, t) =
η0

4π
, t > 0.

Finally, ψ̇f,reg(0, t) ∈ L2
loc([0,∞)) by [53, Lemma 3.4]. Hence, (1.7.8) follows.
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Step ii) Now we prove local well-posedness. We modify the nonlinearity F so that it
becomes Lipschitz-continuous. Define

Λ(Ψ0) = sup{|ζ| : ζ ∈ R, U(ζ) ≤ H(Ψ0)}.

We may pick a modified potential function Ũ(ζ) ∈ C2(R), so that
Ũ(ζ) = U(ζ), |ζ| ≤ Λ(Ψ0),

Ũ(ζ) > H(Ψ0), |ζ| > Λ(Ψ0),

(1.7.11)

and the function F̃ (ζ) = Ũ ′(ζ) is Lipschitz-continuous:

|F̃ (ζ1)− F̃ (ζ2)| ≤ C|ζ1 − ζ2|, ζ1, ζ2 ∈ R.

The following lemma is trivial.

Lemma 1.7.4. For small τ > 0 the Cauchy problem

1

4π
ζ̇(t) + F̃ (ζ(t)) = λ(t), ζ(0) = ζ0 (1.7.12)

has a unique solution ζ ∈ C1[0, τ ].

Denote
ψS(t, x) :=

θ(t− |x|)
4π|x|

ζ(t− |x|), t ∈ [0, τ ],

with ζ from Lemma 1.7.4.

Lemma 1.7.5. The function ψ(x, t) := ψf (x, t) + ψS(x, t) is a unique solution to the
system 

ψ̈(x, t) = ∆ψ(x, t) + ζ(t)δ(x)

lim
x→0

(ψ(x, t)− ζ(t)G(x)) = F̃ (ζ(t))

ψ(x, 0) = ψ0(x), ψ̇(x, 0) = π0(x)

∣∣∣∣∣∣∣∣∣∣∣
x ∈ R3, t ∈ [0, τ ], (1.7.13)

satisfying the condition
(ψ(t), ψ̇(t)) ∈ D, t ∈ [0, τ ]. (1.7.14)

Proof. Initial conditions of (1.7.13) follow from (1.7.7). Further,

lim
x→0

(ψ(t, x)− ζ(t)G(x))=λ(t)+lim
x→0

(θ(t−|x|)ζ(t−|x|)
4π|x|

− ζ(t)

4π|x|

)
=λ(t)− 1

4π
ζ̇(t)= F̃ (ζ(t)).

Thus, the second equation of (1.7.13) is satisfied. At last,

ψ̈ = ψ̈f + ψ̈S = ∆ψf + ∆ψS + ζδ = ∆ψ + ζδ

and ψ solves the first equation of (1.7.13) then.
It remains to check (1.7.14). Note, that the function ϕreg(x, t) = ψ(x, t)−ζ(t)G1(x) =

ψreg(x, t) + ζ(t)(G(x)−G1(x)), where G1(x) = G(x)e−|x|, satisfies

ϕ̈reg(x, t) = ∆ϕreg(x, t) + (ζ(t)− ζ̈(t))G1(x)
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with initial data from H2 ⊕H1. Moreover, (1.7.8) and (1.7.12) imply that ζ̈ ∈ L2([0, τ ]).
Hence,

(ϕreg(x, t), ϕ̇reg(x, t)) ∈ H2 ⊕H1, t ∈ [0, τ ]

by [53, Lemma 3.2]. Therefore,

ψreg(x, t) = ψ(x, t)− ζ(t)G(x) = ϕreg(x, t) + ζ(t)(G1(x)−G(x))

satisfies (ψreg(t), ψ̇reg(t)) ∈ H̊2 ⊕ H̊1, t ∈ [0, τ ], and (1.7.14) holds then.
It remains to prove the uniqueness. Suppose now that there exists another solution ψ̃ =

ψ̃reg+ζ̃G to the system (1.7.13), with (ψ̃, ˙̃ψ) ∈ D. Then, by reversing the above argument,
the second equation of (1.7.13) implies that ζ̃ solves the Cauchy problem (1.7.12). The
uniqueness of the solution of (1.7.12) implies that ζ̃ = ζ. Then, defining

ψS(t, x) :=
θ(t− |x|)

4π|x|
ζ(t− |x|), t ∈ [0, τ ],

for ψ̃f = ψ̃ − ψS one obtains

¨̃ψf = ¨̃ψ − ψ̈S = ∆ψ̃reg − (∆ψS + ζδ) = ∆(ψ̃reg − (ψS − ζG)) = ∆ψ̃f ,

i.e. ψ̃f solves the Cauchy problem (1.7.7). Hence, ψ̃f = ψf by the uniqueness of the
solution to (1.7.7), and hence, ψ̃ = ψ.

According to [53, Lemma 3.7]

HF̃ (Ψ(t)) = ‖ψ̇(t)‖2 + ‖∇ψreg(t)‖2 + Ũ(ζ(t)) = const, t ∈ [0, τ ]. (1.7.15)

Now we are able to prove Theorem 1.7.2 on the global well-posedness. First, note that

Ũ(ζ(t)) = U(ζ(t)), t ∈ [0, τ ]. (1.7.16)

Indeed, HF (Ψ0) ≥ U(ζ0) by the definition of energy in (1.7.5). Therefore, |ζ0| ≤ Λ(Ψ0),
and then Ũ(ζ0) = U(ζ0), HF̃ (Ψ0) = HF (Ψ0). Further,

HF (Ψ0) = HF̃ (Ψ(t)) ≥ Ũ(ζ(t)), t ∈ [0, τ ],

and (1.7.11) implies that
|ζ(t)| ≤ Λ(Ψ0), t ∈ [0, τ ]. (1.7.17)

Now we can replace F̃ by F in Lemma 1.7.5 and in (1.7.15). The solution Ψ(t) =
(ψ(t), ψ̇(t)) ∈ D constructed in Lemma 1.7.5 exists for 0 ≤ t ≤ τ , where the time span τ
in Lemma 1.7.4 depends only on Λ(Ψ0). Hence, the bound (1.7.17) at t = τ allows us to
extend the solution Ψ to the time interval [τ, 2τ ]. We proceed by induction to obtain the
solution for all t ≥ 0. Theorem 1.7.2 is proved.

The main result of [53] is as follows.

Theorem 1.7.6. Let Ψ(x, t) = (ψ(x, t), ψ̇(x, t)) be a solution to (1.7.1) with initial data
from D. Then

Ψ(x, t)→ (ψq± , 0), t→ ±∞,

where q± ∈ Q and the convergence holds in L2
loc(R3)⊕ L2

loc(R3).
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Proof. It suffices to prove this theorem for t → +∞ only. By Lemma 1.7.5, the solution
ψ(x, t) to (1.7.1) with initial data (ψ0, π0) ∈ D, can be represented as the sum

ψ(x, t) := ψf (x, t) + ψS(x, t), t ≥ 0, (1.7.18)

where dispersive component ψf (x, t) is a unique solution to (1.7.7), and singular component
ψS(x, t) is a unique solution to the following Cauchy problem

ψ̈S(x, t) = ∆ψS(x, t) + ζ(t)δ(x), ψS(x, 0) = 0, ψ̇S(x, 0) = 0. (1.7.19)

Here ζ(t) ∈ C1
b ([0,∞)) is a unique solution to

1

4π
ζ̇(t) + F (ζ(t)) = λ(t), ζ(0) = ζ0. (1.7.20)

Now we can prove local decay of ψf (x, t).

Lemma 1.7.7. For any R > 0, the following convergence holds∥∥∥(ψf (t), ψ̇f (t))
∥∥∥
H2(BR)⊕H1(BR)

→ 0, t→∞. (1.7.21)

Here BR is the ball of radius R.

Proof. We represent the initial data (ψ0, π0) = (ψ0,reg, π0,reg) + (ζ0G, η0G) ∈ D as

(ψ0, π0) = (ϕ0, p0) + (ζ0χG, η0χG),

where a cut-of function χ ∈ C∞0 (R3) satisfies

χ(x) =

{
1, |x| ≤ 1,
0, |x| ≥ 2.

(1.7.22)

Let us show that
(ϕ0, p0) ∈ H2 ⊕H1.

Indeed,
(ϕ0, p0) = (ψ0 − ζ0χG, π0 − η0χG) ∈ L2 ⊕ L2.

On the other hand,

(ϕ0, p0) = (ψ0,reg + ζ0(1− χ)G, π0,reg + η0(1− χ)G) ∈ H̊2 ⊕ H̊1.

Now we split the dispersion component ψf (x, t) as

ψf (x, t) = ϕ(x, t) + ϕG(x, t), t ≥ 0,

where ϕ and ϕG are defined as solutions to the free wave equation with initial data (ϕ0, p0)
and (ζ0χG, η0χG), respectively, and study the decay properties of ϕG and ϕ.

First, by the strong Huygens principle

ϕG(x, t) = 0 for |x| ≤ t− 2.

Indeed, ϕG(x, t) = ζ0ψ̇G(x, t) + η0ψG(x, t), where ψG(x, t) is the solution to the free wave
equation with initial data (0, χG) ∈ H1 ⊕ L2, and ψG(x, t) satisfies the strong Huygens
principle by Theorem XI.87 of [16], v. III.
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It remains to check that

‖(ϕ(t), ϕ̇(t))‖H2(BR)⊕H1(BR) → 0, t→∞, ∀R > 0, (1.7.23)

For r ≥ 1 denote χr = χ(x/r), where χ(x) is a cut-off function (1.7.22). Denote φ0 =
(ϕ0, π0). Let ur(t) and vr(t) be solutions to free wave equations with the initial data χrφ0

and (1−χr)φ0, respectively, so that ϕ(t) = ur(t)+vr(t). By the strong Huygens principle

ur(x, t) = 0 for t ≥ |x|+ 2r.

To conclude (1.7.23), it remains to note that

‖(vr(t), v̇r(t))‖H2(BR)⊕H1(BR) ≤ C(R)‖(vr(t), v̇r(t))‖H̊2⊕H1 = C(R)‖(1− χr)φ0‖H̊2⊕H1

≤ C(R)‖(1− χr)φ0‖H2⊕H1 (1.7.24)

by the energy conservation for the free wave equation. We also use the Sobolev embedding
theorem H̊1(R3) ⊂ L6(R3). The right-hand side of (1.7.24) could be made arbitrarily small
if r ≥ 1 is sufficiently large.

Due to (1.7.18) and (1.7.21), for the proof of Theorem 1.7.6 it suffices to verify the
convergence of ψS(x, t) to stationary states:

Lemma 1.7.8. Let ψS(x, t) and ζ(t) be solutions to (1.7.19) and (1.7.20), respectively.
Then

(ψS(t), ψ̇S(t))→ (ψq± , 0), t→∞,
where q± ∈ Q and the convergence holds in L2

loc(R3)⊕ L2
loc(R3).

Proof. The unique solution to (1.7.19) is the spherical wave

ψS(x, t) =
θ(t− |x|)

4π|x|
ζ(t− |x|), t ≥ 0, (1.7.25)

cf. (1.7.9)–(1.7.10). Then a priori bound (1.7.6) and equation (1.7.20) imply that

(ψS(t), ψ̇S(t)) ∈ L2(BR)⊕ L2(BR), 0 ≤ R < t.

First, we prove the convergence of ζ(t). From (1.7.6) it follows that ζ(t) has the upper
and lower limits:

limt→∞ζ(t) = a, limt→∞ζ(t) = b. (1.7.26)

Suppose that a < b. Then the trajectory ζ(t) oscillates between a and b. Assumption
(1.7.4) implies that F (ζ0) 6= 0 for some ζ0 ∈ (a, b). For the concreteness, let us assume
that F (ζ0) > 0. The convergence (1.7.21) implies that

λ(t) = ψf (0, t)→ 0, t→∞. (1.7.27)

Hence, for sufficiently large T we have

−F (ζ0) + λ(t) < 0, t ≥ T.

Then for t ≥ T the transition of the trajectory from left to right through the point ζ0 is
impossible by (1.7.20). Therefore, a = b = q+, where q+ ∈ Q since F (q+) = 0 by (1.7.20).
Hence (1.7.26) implies

ζ(t)→ q+, t→∞, (1.7.28)
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Further,
θ(t− |x|)→ 1, t→∞ (1.7.29)

uniformly in |x| ≤ R. Then (1.7.25) and (1.7.28) imply that

ψS(t)→ q+G, t→∞,

where the convergence holds in L2
loc(R3). It remains to verify the convergence of ψ̇S(t).

We have
ψ̇S(x, t) =

θ(t− |x|)
4π|x|

ζ̇(t− |x|), |x| < t.

From (1.7.20), (1.7.27) and (1.7.28) it follows that ζ̇(t)→ 0 as t→∞. Then

ψ̇S(t)→ 0, t→∞

in L2
loc(R3) by (1.7.29).

This completes the proof of Theorem 1.7.6.
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1.8 Comparison with dissipative systems
All above results on global attraction to stationary states refer to ‘generic’ systems with
a trivial symmetry group. These systems are characterized by a suitable discreteness of
attractors, by Wiener condition, etc.

Global attraction to stationary states (0.0.7) resembles similar asymptotics (0.0.1) for
dissipative systems. However, there are a number of fundamental differences:

I. In dissipative systems
• the (point) global attractor always consists of stationary states;
• the global attraction (0.0.7) to stationary states is due to the energy absorption;
• the global attraction (0.0.1) holds only as t→ +∞;
• this attraction can hold in bounded and unbounded domains;
• this attraction is due to the absorption of energy and holds mainly in suitable global
norms;
• such global attraction to stationary states also holds for all finite-dimensional dissipative
systems.

II. On the other hand, in Hamiltonian systems
• the global attractor may differ from the set of stationary states, as will be seen below;
• the global attraction (0.0.7) to stationary states is due to the radiation of energy to
infinity, which plays the role of energy absorption;
• this attraction takes place both as t→∞, and as t→ −∞;
• this attraction holds only in unbounded domains;
• the attraction holds only in local seminorms;
• the attraction to a proper subset cannot hold for finite-dimensional Hamiltonian systems
due to energy conservation.



Chapter 2

Global Attraction to Solitons

In this chapter we present the first results [57, 60] on global attraction to solitons (0.0.12)
for the scalar wave field coupled to the charged relativistic particle. This result was
extended in [58, 59] to similar system with the Maxwell field.

67
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2.1 Translation-invariant wave-particle system
In [57] the system (1.5.1)–(1.5.2) was considered in the case of zero potential V (x) ≡ 0:

ψ̈(x, t) = ∆ψ(x, t)− ρ(x− q(t)), x ∈ R3

q̇(t) =
p(t)√

1 + p2(t)
, ṗ(t) = −

∫
∇ψ(x, t)ρ(x− q(t)) dx

∣∣∣∣∣∣∣∣ , (2.1.1)

which can be written in the Hamiltonianform (1.5.3). The Hamiltonian of this system
is given by (1.5.4) with V = 0, and it is conserved along trajectories. By Lemma 1.5.2
with V (x) ≡ 0, global solutions exist for all initial data Y (0) ∈ E , and a priori estimates
(1.5.11) hold.

This system is translation-invariant, so the corresponding full momentum

P = p−
∫
π(x)∇ψ(x) dx (2.1.2)

is also conserved. Respectively, the system (2.1.1) admits traveling-wave type solutions
(solitons)

ψv(x− a− vt), q(t) = a+ vt, pv = v/
√

1− v2, (2.1.3)

where v, a ∈ R3, and |v| < 1. The solitons are easily determined: for |v| < 1 there is a
unique function ψv which makes (2.1.3) a solution to (2.1.1),

ψv(x) = −
∫
d3y(4π |(y − x)‖ + λ(y − x)⊥|)−1ρ(y), (2.1.4)

where we set λ =
√

1− v2 and x = x‖ + x⊥, where x‖‖v and x⊥⊥v for x ∈ R3. Indeed,
substituting (2.1.3) into the wave equation of (2.1.1), we get the stationary equation

(v · ∇)2ψv(x) = ∆ψv(x)− ρ(x). (2.1.5)

Through the Fourier transform

ψ̂v(k) = −ρ̂(k)/(k2 − (v · k)2), (2.1.6)

which implies (2.1.4). The set of all solitons forms 6-dimensional solitary manifold in the
Hilbert phase space E :

S = {Sv,a = (ψv(x− a), πv(x− a), a, pv) : v, a ∈ R3, |v| < 1}, (2.1.7)

where πv := −v∇ψv. Recall that the spaces E and Eσ and the corresponding norms were
introduced in Definition 1.5.1. The following theorem is the main result of [57].

Theorem 2.1.1. Let the Wiener condition (1.5.13) hold and σ > 3/2. Then for any
initial state Y (0) ∈ Eσ, the corresponding solution Y (t) = (ψ(t), π(t), q(t), p(t)) of the
system (2.1.1) converges to the solitary manifold S in the following sense:

q̈(t)→ 0, q̇(t)→ v±, t→ ±∞, (2.1.8)

(ψ(x, t), ψ̇(x, t)) = (ψv±(x− q(t)), πv±(x− q(t))) + (r±(x, t), s±(x, t)), (2.1.9)

where the remainder decreases locally in the comoving frame: for each R > 0

‖∇r±(q(t) +x, t)‖R + ‖r±(q(t) +x, t)‖R + ‖s±(q(t) +x, t)‖R → 0, t→ ±∞. (2.1.10)
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The theorem means that, in particular,

ψ(x, t) ∼ ψv(x− v±t+ θ±(t)), where θ̇±(t)→ 0, t→ ±∞. (2.1.11)

The proof [57] relies on a) relaxation of acceleration (1.5.17) in the case V = 0 (see
Remark 1.5.9 i)), and b) on the canonical change of variables to the comoving frame.
The key role is played by the fact that the soliton Sv,a minimises the Hamiltonian (1.5.4)
(in the case V = 0) with a fixed total momentum (2.1.2), which implies orbital stability
of solitons, see [103, 104]. In addition, the proof essentially relies on the strong Huygens
principle for the three-dimensional wave equation.

Before entering into more precise and technical discussion, it may be useful to give
general idea of our strategy. As was mentioned above, the total momentum (2.1.2) is
conserved because of translation invariance.

We transform the system (2.1.1) to new variables (Ψ(x),Π(x), Q, P ) = (ψ(q+x), π(q+
x), q, P (ψ, q, π, p)). The key role in our strategy is played by the fact that this transforma-
tion is canonical, which is proved in Section 2.1.4. Through this canonical transformation
one obtains the new Hamiltonian

HP (Ψ,Π) = H(ψ, π, q, p)

=

∫
d3x

(1

2
|Π(x)|2 +

1

2
|∇Ψ(x)|2 + Ψ(x)ρ(x)

)
+
[
1 +

(
P +

∫
d3xΠ(x)∇Ψ(x)

)2 ]1/2

.

Since Q is the cyclic coordinate (i.e., the Hamiltonian HP does not depend on Q), we
may regard P as a fixed parameter and consider the reduced system for (Ψ,Π) only. Let
us define

πv(x)=−v · ∇ψv(x), P (v)=pv +

∫
d3x v · ∇ψv(x)∇ψv(x), pv = v/(1−v2)1/2. (2.1.12)

We will prove that (ψv, πv) is the unique critical point and moreover, global minimum of
HP (v) . Thus, if initial data is close to (ψv, πv), then corresponding solution must remain
close forever by conservation of energy, which translates into the orbital stability of the
solitons. Here we follow the ideas of the D. Bambusi and L. Galgani paper [102], were
the orbital stability of solitons for the Maxwell–Lorentz equations was proved for the first
time. For a general class of nonlinear wave equations with symmetries such approach to
orbital stability of the solitons was developed in [103, 104].

However, the orbital stability by itself is not enough. It only ensures that initial
states, close to a soliton, remain so, but does not yield the convergence of q̇(t) in (2.1.8),
and even less the asymptotics (2.1.9), (2.1.10). Thus we need an additional, not quite
obvious argument which combines the relaxation (1.5.17) with the orbital stability in
order to establish the soliton-like asymptotics (2.1.8), (2.1.9), (2.1.10). As one essential
input we will use the strong Huygens principle for wave equation.

2.1.1 Canonical transformation and reduced system

Since the total momentum is conserved, it is natural to use P as a new coordinate. To
maintain the symplectic structure we have to complete this coordinate to a canonical
transformation of the Hilbert phase space E .
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Definition 2.1.2. Let the transform T : E → E be defined by

T : Y = (ψ, π, q, p) 7→ Y T = (Ψ(x),Π(x), Q, P ) = (ψ(q + x), π(q + x), q, P (ψ, q, π, p)) ,
(2.1.13)

where P (ψ, q, π, p) is the total momentum (2.1.2).

Remarks 2.1.3. i) The map T is continuous on E and Fréchet-differentiable at points
Y=(ψ, q, π, p) with sufficiently smooth ψ(x), π(x), but it is not everywhere differentiable.
ii) In the T -coordinates the solitons Yv,a(t) = (ψv(x−a−vt), πv(x−a−vt), q = a+vt, pv)
become stationary except for the coordinate Q,

TYv,a(t) = (ψv(x), πv(x), a+ vt, P (v)) (2.1.14)

with the total momentum P (v) of the soliton defined in (2.1.12).

Denote HT (Y ) = H(T−1Y ) for Y = (Ψ,Π, Q, P ) ∈ E . Then

HT (Ψ,Π, Q, P ) = HP (Ψ,Π) = H(Ψ(x−Q),Π(x−Q), Q, P +

∫
d3xΠ(x)∇Ψ(x))

=

∫
d3x

[1
2
|Π(x)|2 +

1

2
|∇Ψ(x)|2 + Ψ(x)ρ(x)

]
+
(

1 +
[
P +

∫
d3xΠ(x)∇Ψ(x)

]2)1/2

.

The functionals HT and H are Fréchet-differentiable on the Hilbert phase space E .

Proposition 2.1.4. Let Y (t) ∈ C(R, E) be a solution to the system (2.1.1). Then

Y T (t) := TY (t) = (Ψ(t),Π(t), q(t), p(t)) ∈ C(R, E)

is a solution to the Hamiltonian system{
Ψ̇ = DΠHT , Π̇ = −DΨHT

Q̇ = DPHT , Ṗ = −DQHT

∣∣∣∣ . (2.1.15)

Proof. The equations for Ψ̇, Π̇ and Q̇ can be checked by direct computation, while the
one for Ṗ follows from conservation of the total momentum (2.1.2) since the Hamiltonian
HT does not depend on Q.

Remark 2.1.5. Formally, Proposition 2.1.4 follows from the fact that T is a canonical
transform, see Section 2.1.4.

Recall that Q is a cyclic coordinate. Hence, the system (2.1.15) is equivalent to a
reduced Hamiltonian system for Ψ and Π only, which can be written as

Ψ̇ = DΠHP , Π̇ = −DΨHP . (2.1.16)

Due to (2.1.14), the soliton (ψv, πv) is a stationary solution to (2.1.16) with P = P (v).
Moreover, for every fixed P ∈ R3, the functional HP is Fréchet-differentiable on the
Hilbert phase space F = H̊1 ⊕ L2 . Hence, (2.1.16) implies that the soliton is a critical
point of HP (v) on F . The next lemma demonstrates that (ψv, πv) is a global minimum of
HP (v) on F .
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Lemma 2.1.6. i) For every v ∈ R3 with |v| < 1 the functional HP (v) has the lower bound

HP (v)(Ψ,Π)−HP (v)(ψv, πv) ≥
1− |v|

2

(
‖∇(Ψ−ψv)‖2+‖Π−πv‖2

)
, (Ψ,Π) ∈ F . (2.1.17)

ii) HP (v) has no other critical points on F except the point (ψv, πv).

Proof. i) Denoting Ψ− ψv = ψ and Π− πv = π, we have

HP (v)(ψv+ψ, πv+π)−HP (v)(ψv, πv) =

∫
d3x(πv(x)π(x)+∇ψv(x) · ∇ψ(x)+ρ(x)ψ(x))

+
1

2

∫
d3x (|∇ψ(x)|2 + |π(x)|2) + (1 + (pv +m)2)1/2 − (1 + p2

v)
1/2, (2.1.18)

where pv = P (v) +

∫
d3x πv(x)∇ψv(x), and

m =

∫
d3x (π(x)∇ψv(x) + πv(x)∇ψ(x) + π(x)∇ψ(x)).

Taking into account that v = (1 + p2
v)
−1/2pv, we obtain

HP (v)(ψv + ψ, πv + π)−HP (v)(ψv, πv)

=
1

2

∫
d3x (|π(x)|2 + |∇ψ(x)|2) + (1 + p2

v)
−1/2

∫
d3x π(x) pv · ∇ψ(x)

−(1 + p2
v)
−1/2pv ·m+ (1 + (pv +m)2)1/2 − (1 + p2

v)
1/2 .

It is easy to check that the expression in the third line is nonnegative. Then the lower
bound (2.1.17) follows by using |(1 + p2

v)
−1/2pv| = |v| .

ii) If (Ψ,Π) ∈ F is a critical point for HP (v), then it satisfies

0 = Π(x) + (1 + p̃2)−1/2p̃ · ∇Ψ(x) , 0 = −∆Ψ(x) + ρ(x)− (1 + p̃2)−1/2p̃ · ∇Π(x) ,

where p̃ = P (v) +

∫
d3xΠ(x)∇Φ(x) . This system is equivalent to equation (2.1.5) for

solitons in the case of the velocity ṽ = (1 + p̃2)−1/2p̃ . Hence, Ψ = ψṽ , Π = πṽ and
P (ṽ) = P (v) .

It remains to check that ṽ = v. Indeed, for the total momentum P (v) of the soliton
solution (2.1.3), the Parseval identity and (2.1.6) imply

P (v) = pv +

∫
d3x v · ∇ψv(x)∇ψv(x) =

v√
1− v2

+ (2π)−3

∫
d3k

(v · k)ρ̂(k)kρ̂(k)

(k2 − (v · k)2)2
.

Hence, P (v) = κ(|v|)v with κ(|v|) ≥ 0, and for v 6= 0 one has

|P (v)| = |v|√
1− v2

+
1

(2π)3|v|

∫
d3k

|(v · k)ρ̂(k)|2

(k2 − (v · k)2)2
.

Since |P (v)| = κ(|v|)|v| is a monotone increasing function of |v| ∈ [0, 1), we conclude that
v = ṽ.

Remark 2.1.7. Proposition 2.1.4 is not really needed for the proof of Theorem 2.1.1.
However, the Proposition together with (2.1.14) and (2.1.16) show that (ψv, πv) is a critical
point and suggest an investigation of the stability through a lower bound as in (2.1.17). In
Section 2.1.4 we sketch the derivation of Proposition 2.1.4 for sufficiently smooth solutions
based only on the invariance of symplectic structure. We expect that a similar proposition
holds for other translation invariant systems similar to (2.1.1).
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2.1.2 Orbital stability of solitons

We follow [102] deducing orbital stability from the conservation of the Hamiltonian HP

together with its lower bound (2.1.17). For |v| < 1 denote

δ = δ(v) = ‖ψ0(x)− ψv(x− q0)‖+ ‖π0(x)− πv(x− q0)‖+ |p0 − pv| . (2.1.19)

Lemma 2.1.8. Let Y (t) = (ψ(t), π(t), q(t), p(t)) ∈ C(R, E) be a solution to (2.1.1) with
an initial state Y (0) = Y 0 = (ψ0, π0, q0, p0) ∈ E.Then for every ε > 0 there exists a δε > 0
such that

‖ψ(q(t) + x, t)− ψv(x)‖+ ‖π(q(t) + x, t)− πv(x)‖+ |p(t)− pv| ≤ ε, t ∈ R (2.1.20)

provided δ ≤ δε.

Proof. Denote by P 0 the total momentum of the considered solution Y (t). There exists a
soliton solution (2.1.3) corresponding to some velocity ṽ with the same total momentum
P (ṽ) = P 0 . Then (2.1.19) implies that |P 0 − P (v)| = |P (ṽ)− P (v)| = O(δ). Hence also
|ṽ − v| = O(δ) and

‖ψ0(x)− ψṽ(x− q0)‖+ ‖π0(x)− πṽ(x− q0)‖+ |p0 − pṽ| = O(δ) .

Therefore, denoting (Ψ0, Q0,Π0, P 0) = TY 0, we have

HP (ṽ)(Ψ
0 ,Π0)−HP (ṽ)(ψṽ , pṽ) = O(δ2) . (2.1.21)

Total momentum and energy conservation imply that for (Ψ(t), Q(t),Π(t), P 0) = TY (t)

HP (ṽ)(Ψ(t), Π(t)) = H(TY (t)) = HP (ṽ)(Ψ
0 ,Π0) for t ∈ R .

Hence (2.1.21) and (2.1.17) with ṽ instead of v imply

‖Ψ(t)− ψṽ‖+ ‖Π(t)− πṽ‖ = O(δ) (2.1.22)

uniformly in t ∈ R . On the other hand, total momentum conservation implies

p(t) = P (ṽ) + 〈Π(t),∇Ψ(t)〉 for t ∈ R .

Therefore (2.1.22) leads to
|p(t)− pṽ| = O(δ) (2.1.23)

uniformly in t ∈ R . Finally (2.1.22), (2.1.23) together imply (2.1.20) because |ṽ − v| =
O(δ) .

2.1.3 Strong Huygens principle and soliton asymptotics

We combine the relaxation of the acceleration and orbital stability with the Strong Huy-
gens principle to prove Theorem 2.1.1.

Proposition 2.1.9. Let the assumptions of Theorem 2.1.1 be fulfilled. Then for every
δ > 0 there exist a t∗ = t∗(δ) and a solution Y∗(t) = (ψ∗(x, t), π∗(x, t), q∗(t), p∗(t)) ∈
C([t∗,∞), E) to the system (2.1.1) such that
i) Y∗(t) coincides with Y (t) in the future cone,

q∗(t) = q(t) for t ≥ t∗ , (2.1.24)
ψ∗(x, t) = ψ(x, t) for |x− q(t∗)| < t− t∗ . (2.1.25)

ii) Y∗(t∗) is close to a soliton Yv,a with some v and a,

‖Y∗(t∗)− Yv,a‖E ≤ δ . (2.1.26)
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Proof. The Kirchhoff formula gives

ψ(x, t) = ψr(x, t) + ψ0(x, t), x ∈ R3, t > 0,

where

ψr(x, t) = −
∫

d3y

4π|x− y|
ρ(y − q(t− |x− y|)) , (2.1.27)

ψ0(x, t) =
1

4πt

∫
St(x)

d2y π(y, 0) +
∂

∂t

(
1

4πt

∫
St(x)

d2y ψ(y, 0)

)
. (2.1.28)

Here St(x) denotes the sphere |y − x| = t. Let us assume for simplicity that initial fields
vanish. General case can be easily reduced to this situation using the strong Huygens
principle. We will comment on this reduction at the end of the proof.

In the case of zero initial data the solution reduces to the retarded potential:

ψ(x, t) = ψr(x, t), x ∈ R3, t > 0.

We construct the solution Y∗(t) as a modification of Y (t). First, we modify the trajectory
q(t). The relaxation of acceleration (2.1.8) means that for any ε > 0 there exist tε > 0
such that

|q̈(t)| ≤ ε, t ≥ tε.

Hence, the trajectory for large times locally tends to a straight line, i.e., for any fixed
T > 0

q(t) = q(tε) + (t− tε)q̇(tε) + r(tε, t), where max
t∈[tε,tε+T ]

|r(tε, t)| → 0, tε →∞.

Denote λε(t) := q(tε) + q̇(tε)(t− tε) and define modified trajectory as

q∗(t) =

{
λε(t), t ≤ tε

q(t), t ≥ tε

∣∣∣∣∣ , (2.1.29)

Then

q̈∗(t) =

{
0, t < tε

q̈(t), t > tε

∣∣∣∣∣ .
The next step we define the modified field as retarded potential of type (2.1.27)

ψ∗(x, t) = −
∫

d3y

4π|x− y|
ρ(y − q∗(t− |x− y|)), x ∈ R3, t ∈ R. (2.1.30)

Lemma 2.1.10. The right hand side of (2.1.30) depends on the trajectory q∗(τ) only from
a bounded interval of time τ ∈ [t− T (x, t), t], where

T (x, t) :=
Rρ + |x− q(t)|

1− v
. (2.1.31)

Here v = sup
t∈R
|q̇(t)| < 1 by (1.5.11).



74 CHAPTER 2. GLOBAL ATTRACTION TO SOLITONS

Proof. This lemma is obvious geometrically, and its formal proof also is easy. The inegrand
of (2.1.30) vanishes for |y − q∗(t − |x − y|)| ≥ Rρ by (1.5.14). Therefore, the integral is
spreaded over the region |y− q∗(t−|x− y|)| ≤ Rρ, which implies |y− q∗(t) + q∗(t)− q∗(t−
|x− y|)| ≤ Rρ. Hence,

|y − q∗(t)| ≤ Rρ + v|x− y|.

On the other hand, |x− y| ≤ |x− q∗(t)|+ |y − q∗(t)|, and hence,

|y − q∗(t)| ≥ −|x− q∗(t)|+ |x− y|.

Therefore,
−|x− q∗(t)|+ |x− y| ≤ Rρ + v|x− y|,

which implies

|x− y| ≤ Rρ + |x− q∗(t)|
1− v

.

Now the lemma is proved.

The potential (2.1.30) satisfies the wave equation

ψ̈∗(x, t) = ∆ψ∗(x, t)− ρ(x− q∗(t)), x ∈ R3, t ∈ R.

We should still prove equations for the trajectory q∗(t):

q̇∗(t) =
p∗(t)√

1 + p2
∗(t)

, ṗ∗(t) = −
∫
∇ψ∗(x, t)ρ(x− q∗(t)) dx, t > t∗ (2.1.32)

with sufficiently large t∗ ≥ tε. Let us note that the integral here is spreaded over the ball
|x− q∗(t)| ≤ Rρ. Now Lemma 2.1.10 implies that ψ∗(x, t) depends on the trajectory q∗(τ)
only from a bounded interval τ ∈ [t− T , t], where

T :=
2Rρ

1− v
.

Let us define t∗ := tε + T . Then by Lemma 2.1.10

ψ∗(x, t) = ψ(x, t), t > t∗, |x− q∗(t)| ≤ Rρ

since q∗(t) ≡ q(t) for t > t∗ − T = tε by (2.1.29). Hence, equations (2.1.32) hold for q∗(t)
as well as for q(t).

It remains to prove (2.1.26). The key observation is that outside the cone Kε :=
{(x, t) ∈ R4 : |x−q(tε)| < t− tε} the retarded potential (2.1.30) coincides with the soliton
ψv,a(x, t), where v = q̇(tε) and a = q(tε) by our definition (2.1.29). In particular,

ψ(x, t∗) = ψv,a(x− a− vt∗), |x− q(tε)| > t∗ − tε = T .

In the ball |x − q(t∗)| < T the coincidence generally does not hold, but the difference
of the left hand side with the right hand side converges to zero as ε → 0 uniformly for
|x − q(t∗)| < T , and such uniform convergence holds for the gradient of the difference.
This follows from the integral representation (2.1.30) by Lemma 2.1.10 since

max
t∈(t∗−T (x,t∗),t∗)

[|q∗(t)− λε(t)|+ |q̇∗(t)− λ̇ε(t)|]→ 0, ε→ 0
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by the relaxation of acceleration (2.1.8). It is important that T (x, t∗) is bounded for
|x− q(t∗)| < T by (2.1.31). This proves Proposition 2.1.9 in the case of zero initial data.

The next step is the proof for initial data with bounded support:

ψ(x, 0) = π(x, 0) = 0, |x| > R0.

Now we apply the strong Huygens principle: in this case the potential (2.1.28) vanishes
in a future cone,

ψ0(x, t) = 0, |x| < t−R0.

However, the estimate |q̇(t)| ≤ v < 1 implies that the trajectory (q(t), t) lies in this cone
for all t > t0. Hence, the solution for t > t0 again reduces to the retarded potential and
the needed conclusion follows.

Finally, arbitrary finite energy initial data admits a splitting in two summands: the
first vanishing for |x| > R0 and the second vanishing for |x| < R0 − 1. The energy of the
second summand is arbitrarily small for large R0, and the energy of the corresponding
potential (2.1.28) is conserved in time since it is a solution to free wave equation. Hence,
its role is negligible for sufficiently large R0.

Now we can prove our main result.
Proof of Theorem 2.1.1 For every ε > 0 there exists δ > 0 such that (2.1.26) implies
by Lemma 2.1.8,

‖ψ∗(q∗(t) + x, t)− ψv(x)‖+ ‖π∗(q∗(t) + x, t)− πv(x)‖+ |q̇∗(t)− v| ≤ ε for t > t∗ .

Therefore, (2.1.24) and (2.1.25) imply that for every R > 0 and t > t∗ +
R

1− v

‖ψ(q(t) + x, t)− ψv(x)‖R + ‖π(q(t) + x, t)− πv(x)‖R + |q̇(t)− v|
= ‖ψ∗(q∗(t) + x, t)− ψv(x)‖R + ‖π∗(q∗(t) + x, t)− πv(x)‖R + |q̇∗(t)− v| ≤ ε.

Since ε > 0 is arbitrary, we conclude (2.1.10). Theorem 2.1.1 is proved.

2.1.4 Invariance of symplectic structure

The canonical equivalence of the Hamiltoniansystems (2.1.1) and (2.1.15) can be seen
from the Lagrangian viewpoint. We remain at the formal level. For a complete mathe-
matical justification we would have to develop some theory of infinite dimensional Hamil-
toniansystems which is beyond the scope of this book.

By definition we have HT (Ψ,Π, Q, P ) = H(ψ, π, q, p) with the arguments related
through the transformation T . To each Hamiltonian we associate a Lagrangian through
the Legendre transformation

L(ψ, ψ̇, q, q̇) = 〈π, ψ̇〉+ p · q̇ −H(ψ, π, q, p) , ψ̇ = DπH , q̇ = DpH ,

LT (Ψ, Φ̇, Q, Q̇) = 〈Π, Ψ̇〉+ P · Q̇−HT (Ψ,Π, Q, P ) , Ψ̇ = DΠHT , Q̇ = DPHT .

These Legendre transforms are well defined because the Hamiltonian functionals are con-
vex in the momenta.

Lemma 2.1.11. The following indentity holds,

LT (Ψ, Ψ̇, Q, Q̇) = L(ψ, ψ̇, q, q̇).
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Proof. Clearly we have to check the invariance of the canonical form,

〈Π, Ψ̇〉+ P · Q̇ = 〈π, ψ̇〉+ p · q̇ . (2.1.33)

For this purpose we substitute Π(x) = π(q + x), Ψ̇(x) = ψ̇(q + x) + q̇ · ∇ψ(q + x)

P = p−
∫
ψ̇ · ∇ψ dx, Q̇ = q̇

∣∣∣∣∣∣
Then the left hand side of (2.1.33) becomes

〈π(q + x), ψ̇(q + x) + q̇ · ∇ψ(q + x)〉+ (p− 〈π(x),∇ψ(x)〉) · q̇ = 〈π, ψ̇〉+ p · q̇ .

The lemma is proved.

This lemma implies that he corresponding action functionals are identical when trans-
formed by T . Hence, finally, the two Hamiltonian systems (2.1.1) and (2.1.15) are equiva-
lent since dynamical trajectories are stationary points of the respective action functionals.

2.1.5 Translation-invariant Maxwell-Lorentz system

In [58] asymptotics of type (2.1.8)–(2.1.10) were extended to the Maxwell-Lorentz transla-
tion-invariant system (1.6.1) without external fields. In this case, the Hamiltonian coin-
cides with (1.6.3) where V (x) ≡ 0. The extension of methods [57] to this case required a
new detailed analysis of the corresponding Hamiltonian structure which is necessary for
the canonical transformation. Now the key role in applying strong Huygens principle is
played by new estimates of long-time decay for oscillations of energy and total momentum
for solutions of perturbed Maxwell-Lorentz system (estimates (4.24)–(4.25) in [58]).
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2.2 The case of weak coupling
In [60] the soliton asymptotic of type (2.1.8)–(2.1.10) for the system (1.5.1)–(1.5.2) was
proved in a stronger form for the case of a weak coupling

‖ρ‖L2(R3) � 1. (2.2.1)

Namely, in [60] initial fields are considered with decay |x|−5/2−ε, where ε > 0 (condition
(2.2) in [60]) provided that ∇V (q) = 0 for |q| > const. Under these assumptions, more
strong decay holds,

|q̈(t)| ≤ C(1 + |t|)−1−ε, t ∈ R (2.2.2)

for ‘outgoing solutions’ that satisfy the condition

|q(t)| → ∞, t→ ±∞. (2.2.3)

With these assumptions asymptotics (2.1.8)–(2.1.10) can be significantly strengthen: now

q̇(t)→ v±, (ψ(x, t), π(x, t))=(ψv±(x−q(t)), πv±(x−q(t)))+W (t)Φ±+(r±(x, t), s±(x, t)),

where ‘dispersion waves’ W (t)Φ± are solutions of a free wave equation shown on Fig.
2.1.

Figure 2.1: Soliton and dispersion waves

Now the remainder converges to zero in global energy norm:

‖∇r±(q(t), t)‖+ ‖r±(q(t), t)‖+ ‖s±(q(t), t)‖ → 0, t→ ±∞.

This progress compared with local decay (2.1.10) is due to the fact that we identified a
dispersion wave W (t)Φ± under the condition of smallness (2.2.1). This identification is
possible due to the rapid decay (2.2.2), in difference with (1.5.17).

All solitons propagate with velocities v < 1, and therefore they are spatially separated
for large time from the dispersion wavesW (t)Φ±, which propagate with unit velocity (Fig.
2.1).

The proofs rely on integral Duhamel representation and on rapid dispersion decay
of solutions to free wave equation. Similar results were obtained in [126] for a system
of type (1.5.1)–(1.5.2) with the Klein–Gordon equation, and in [59] for the Maxwell–
Lorentz equations (1.6.1) with the same smallness condition (2.2.3) under assumption
that Eext(x) = Bext(x) = 0 for |x| > const. In [91], this result was extended to the
Maxwell–Lorentz equations of type (1.6.1) with a rotating charge.
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Remark 2.2.1. The results of [60, 91] imply A. Soffer’s ‘Grand Conjecture’ [161, p. 460]
in a moving frame for translation -invariant systems under the condition of smallness
(2.2.1).

Open problem. Global attraction to solitons for the relativistically-invariant nonlinear
wave equations

ψ̈(x, t) = −∆ψ(x, t) + f(ψ(x, t)), x ∈ Rn (2.2.4)

is still an open problem. Numerical simulations [61] for the case n = 1 confirm the
asymptotics (0.0.13) for a broad class of the nonlinearities, see Chapter 6.



Chapter 3

Global Attraction to Stationary Orbits

In this chapter we present with details the first results on global attraction to stationary
orbits (0.0.15) obtained in [65]–[67]. The results concern the global attraction for 1D
Klein–Gordon equation coupled to a nonlinear oscillator.

Besides the formal proof, we give in Section 3.9 an informal explanation of the non-
linear radiation mechanism.

In conclusion, we specify the general conjecture (0.0.6) which summarises all results
on global attractors of Chapters 1, 2 and 3 (see Section 3.10).

79
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3.1 Nonlinear Klein–Gordon equation
The first results on global attraction to stationary orbits (0.0.15) were established in
[65]–[67] for the Klein–Gordon equation coupled to nonlinear oscillator

ψ̈(x, t) = ψ′′(x, t)−m2ψ(x, t) + δ(x)F (ψ(0, t)), x ∈ R. (3.1.1)

Asymptotics (0.0.6) for this equation means the single-frequency asymptotics (0.0.15),

ψ(x, t) ∼ ψ±(x)e−iω±t, t→ ±∞. (3.1.2)

We consider complex solutions, identifying complex values ψ ∈ C with the real vectors
(ψ1, ψ2) ∈ R2, where ψ1 = Re ψ and ψ2 = Im ψ. Suppose that F ∈ C1(R2,R2) and

F (ψ) = −∇U(ψ), ψ ∈ C, (3.1.3)

where U is a real function and ∇ := (∂1, ∂2). In this case the equation (3.1.1) is formally
equivalent to the Hamiltonian system (1.1.2) in the Hilbert phase space E := H1(R) ⊕
L2(R). The Hamiltonian functional is

H(ψ, π) =
1

2

∫ [
|π(x)|2 + |ψ′(x)|2 +m2|ψ(x)|2

]
dx+ U(ψ(0)), (ψ, π) ∈ E . (3.1.4)

Let us write (3.1.1) in the vector form as

Ẏ (t) = F(Y (t)), t ∈ R, (3.1.5)

where Y (t) = (ψ(t), ψ̇(t)). We assume that

inf
ψ∈C

U(ψ) > −∞. (3.1.6)

In this case, a finite energy solution Y (t) ∈ C(R, E) exists and is unique for any initial
state Y (0) ∈ E . The a priori bound

sup
t∈R

[‖ψ̇(t)‖L2(R) + ‖ψ(t)‖H1(R)] <∞ (3.1.7)

holds due to conservation of the energy (3.1.4). Note that the confining condition of type
(1.5.7) is no longer necessary, since conservation of energy (3.1.4) with m > 0 ensures the
boundedness of solutions.

Further, we assume the U(1)-invariance of the potential:

U(ψ) = u(|ψ|), ψ ∈ C. (3.1.8)

Then the differentiation in (3.1.3) gives us that

F (ψ) = a(|ψ|)ψ, ψ ∈ C, (3.1.9)

and therefore
F (eiθψ) = eiθF (ψ), θ ∈ R. (3.1.10)

By ‘stationary orbits’ we mean solutions of the form

ψ(x, t) = ψω(x)e−iωt (3.1.11)
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with ω ∈ R and ψω ∈ H1(R). Each stationary orbit corresponds to some solution of the
equation

− ω2ψω(x) = ψ′′ω(x)−m2ψω(x) + δ(x)F (ψω(0)), x ∈ R, (3.1.12)

which is the nonlinear eigenvalue problem . Solutions ψω ∈ H1(R) of this equation have
the form

ψω(x)=Ce−κ|x|, κ :=
√
m2−ω2>0,

and the constant C satisfies the nonlinear algebraic equation 2κC = F (C). Hence, the
solutions ψω exist for ω in some subset Ω ⊂ R lying in the spectral gap [−m,m]. We
denote the corresponding solitary manifold by S:

S = {(eiθψω,−iωeiθψω) ∈ E : ω ∈ Ω, θ ∈ [0, 2π]}. (3.1.13)

Finally, suppose that the equation (3.1.1) is strictly nonlinear:

U(ψ) = u(|ψ|2) =
N∑
0

uj|ψ|2j, uN > 0, N ≥ 2. (3.1.14)

For example, the well-known Ginzburg–Landau potential U(ψ) = a|ψ| − b|ψ| satisfies all
the conditions (3.1.6), (3.1.8), and (3.1.14) for all a, b > 0.

Definition 3.1.1. i) EF ⊂ H1
loc(R3)⊕L2

loc(R3) is the space E endowed with the seminorms

‖Y ‖E,R := ‖Y ‖H1(−R,R) + ‖Y ‖L2(−R,R), R = 1, 2, . . . (3.1.15)

ii) Convergence in EF is equivalent to convergence in every seminorm (3.1.15).

It is important that convergence in EF is equivalent to convergence in the metric of
type (1.2.9),

dist[Y1, Y2] =
∞∑
R=1

2−R
‖Y1 − Y2‖E,R

1 + ‖Y1 − Y2‖E,R
, Y1, Y2 ∈ E . (3.1.16)

Theorem 3.1.2. Let the conditions (3.1.3), (3.1.6), (3.1.8) and (3.1.14) hold. Then any
finite energy solution Y (t) = (ψ(t), ψ̇(t)) ∈ C(R, E) of (3.1.5) is attracted to the solitary
manifold (see Fig. 2):

Y (t)
EF−→ S, t→ ±∞, (3.1.17)

where the attraction is in the sense of (1.2.18).

Generalizations and open questions

Generalizations: The global attraction to stationary orbits (3.1.17) was extended in
[68] to the 1D Klein–Gordon equation coupled to N nonlinear oscillators

ψ̈(x, t) = ψ′′(x, t)−m2ψ +
N∑
k=1

δ(x− xk)Fk(ψ(xk, t)), x ∈ R, (3.1.18)
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and in [64, 69, 70] it was extended to the nonlinear Klein–Gordon and Dirac equations
with a non-local interaction in Rn with n ≥ 3

ψ̈(x, t) = ∆ψ(x, t)−m2ψ +
N∑
k=1

ρ(x−xk)Fk(〈ψ(·, t), ρ(· − xk)〉), (3.1.19)

iψ̇(x, t) =
(
− iα · ∇+ βm

)
ψ + ρ(x)F (〈ψ(·, t), ρ〉), (3.1.20)

under the Wiener condition (1.5.13). Here α = (α1, . . . , αn) and β = α0 are Dirac
matrices.

Recently, the global attraction to stationary orbits (3.1.17) was extended in [72, 53, 73]
to the 3D wave and Klein–Gordon equations with concentrated nonlinearities, and in [74]
it was extended to the 1D Dirac equation coupled to a nonlinear oscillator.

In addition, the global attraction to stationary orbits (3.1.17) was extended in [63]
to nonlinear space-time discrete Hamiltonian equations that are discrete approximations
of equations of type (3.1.19), that is, they are the corresponding difference schemes.
The proof relies on a new version in [71] of the Titchmarsh convolution theorem for
distributions on a circle.

Open questions:

I. Global attraction (3.1.2) to stationary orbits with fixed frequencies ω± has not yet been
proved.

II. Global attraction to stationary orbits for nonlinear Schrödinger equations has also not
been proved. In particular, such global attraction is not proved for the 1D Schrödinger
equation coupled to a nonlinear oscillator

iψ̇(x, t) = −ψ′′(x, t) + δ(x)F (ψ(0, t)), x ∈ R. (3.1.21)

The main difficulty is the infinite ‘spectral gap’ (−∞, 0) (see Remark 3.8.2).

III. Global attraction to stationary orbits is still an open problem for the relativistically-
invariant nonlinear Klein–Gordon equations (2.2.4) in the case when f(ψ) = −∇U(ψ)
with U(1)-invariant potential U(ψ) ≡ u(|ψ|).
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3.2 Omega-limit trajectories
The proof of Theorem 3.1.2 is based on the general strategy of omega-limit trajectories
first introduced in [65], and developed further in [66]–[74] and [63, 64].

Definition 3.2.1. An omega-limit trajectory for a given function Y (t) ∈ C(R, E) is any
limit function Z(t) such that

Y (t+ sj)
EF−→ Z(t), t ∈ R, (3.2.1)

as sj →∞.

Definition 3.2.2. A function Y (t) ∈ C(R, E) is omega-compact if for any sequence sj →
∞ there exists a subsequence sj′ →∞ such that (3.2.1) holds.

These concepts are useful in view of the following lemma, which lies at the basis of
our approach.

Lemma 3.2.3. Suppose that any solution Y (t) ∈ C(R, E) of (3.1.5) is omega-compact,
and any omega-limit trajectory is a stationary orbit:

Z(x, t) = (ψω(x)e−iωt,−iωψω(x)e−iωt), (3.2.2)

where ω ∈ R. Then the attraction (3.1.17) holds for each solution Y (t) ∈ C(R, E) of
(3.1.5).

Proof. We need to show that

lim
t→∞

dist(Y (t),S) = 0.

Assume by contradiction that there exists a sequence sj →∞ such that

dist(Y (sj),S) ≥ δ > 0 ∀j ∈ N. (3.2.3)

According to the omega-compactness of the solution Y , the convergence (3.2.1) holds for
some subsequence sj′ →∞ and some stationary orbit (3.2.2):

Y (t+ sj)
EF−→ Z(t), t ∈ R. (3.2.4)

But this convergence with t = 0 contradicts (3.2.3), since Z(0) ∈ S by definition (3.1.13).

For the proof of Theorem 3.1.2 it now suffices to check the conditions of Lemma 3.2.3:

I. Each solution Y (t) ∈ C(R, E) of (3.1.5) is omega-compact.

II. Any omega-limit trajectory is a stationary orbit (3.2.2).

We check these conditions by analyzing the Fourier transform of solutions with respect
to time. The main steps of the proof are as follows:

(1) Spectral representation for solutions of the nonlinear equation (3.1.1):

ψ(t) =
1

2π

∫
e−iωtψ̃(ω)dω.
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By the spectrum of a solution ψ(t) := ψ(·, t) we mean the support of its spectral density
ψ̃(·), which is a tempered distribution of ω ∈ R with values in H1.
(2) The absolute continuity of the spectral density ψ̃(ω) on the continuous spectrum
(−∞,−m) ∪ (m,∞) of the free Klein–Gordon equation. This is a nonlinear analogue
of the Kato theorem on the absence of embedded eigenvalues.
(3) The omega-compactness of each solution.
(4) The reduction of the spectrum of each omega-limit trajectory to a subset of the spectral
gap [−m,m].
(5) Reduction of this spectrum to a single point using the Titchmarsh convolution theorem.

Below we follow this program, referring at some points to the papers [65] and [67] for
technically important properties of quasimeasures.
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3.3 The limiting absorption principle
It suffices to prove the global attraction to stationary orbits (3.1.17) only for positive times.
For simplicity we consider only the solution ψ(x, t) to equation (3.1.1) corresponding to
zero initial data:

ψ(x, 0) = 0, ψ̇(x, 0) = 0. (3.3.1)

The general case of non-zero initial data can be reduced to this case by a trivial subtraction
of the dispersion wave which is solution of the free Klein–Gordon equation with given
initial data [65, 67]. We extend ψ(x, t) and f(t) := F (ψ(0, t)) by zero for t < 0

ψ+(x, t) :=

{
ψ(x, t), t > 0,
0, t < 0,

f+(t) :=

{
f(t), t > 0,
0, t < 0.

(3.3.2)

From (3.1.1) and (3.3.1) it follows that these functions satisfy the equation

ψ̈+(x, t) = ψ′′+(x, t)−m2ψ+(x, t) + δ(x)f+(t), (x, t) ∈ R2 (3.3.3)

in the distribution sense.

The Fourier–Laplace transform with respect to time. For tempered distributions
g(t), we let g̃(ω) denote their Fourier transform, which is defined for g ∈ C∞0 (R) by

g̃(ω) =

∫
R
eiωtg(t) dt, ω ∈ R.

The a priori estimates (3.1.7) imply that ψ+(x, t) and f+(t) are bounded functions of t ∈ R
with values in the Sobolev space H1(R) and in C, respectively. Therefore, their Fourier
transforms are (by definition) quasimeasures with values in H1(R) and in C, respectively
[4]. Moreover, these Fourier transforms can be extended from the real axis to analytic
functions in the upper complex half-plane C+ := {ω ∈ C : Im ω > 0} with values in
H1(R) and in C respectively:

ψ̃+(x, ω) =

∫ ∞
0

eiωtψ(x, t) dt, f̃+(ω) =

∫ ∞
0

eiωtf(t) dt, ω ∈ C+.

Further, we have the following convergence of tempered distributions with values in H1

and C, respectively:

e−εtψ+(x, t)→ ψ+(x, t), e−εtf+(t)→ f+(t), ε→ 0 + .

Hence, their Fourier transforms also converge in the same sense:

ψ̃+(x, ω + iε)→ ψ̃+(x, ω), f̃+(ω + iε)→ f̃+(ω), ε→ 0 + . (3.3.4)

The analytic functions ψ̃+(x, ω) and f̃(ω) grow (in norm) no faster than |Im ω|−1 as
Im ω → 0+ in view of (3.1.7). Hence, their boundary values at ω ∈ R are tempered
distributions of small singularity: they are the second-order derivatives of continuous
functions, as in the case of f̃+(ω) = i/(ω − ω0) with ω0 ∈ R, which corresponds to
f+(t) = θ(t)e−iω0t.

The limiting absorption principle. By (3.3.1), in terms of the Fourier transform the
equation (3.3.3) becomes the stationary Helmholtz equation

− ω2ψ̃+(x, ω) = ψ̃′′+(x, ω)−m2ψ̃+(x, ω) + δ(x)f̃+(ω), x ∈ R. (3.3.5)
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This equation has two linearly independent solutions, but only one of them admits an
analytic continuation to the upper complex half-plane Im ω > 0 with values in H1(R):

ψ̃+(x, ω) = −f̃+(ω)
eik(ω)|x|

2ik(ω)
, Im ω > 0. (3.3.6)

Here k(ω) :=
√
ω2 −m2, where the branch has a positive imaginary part for Im ω > 0.

For the other branch this function grows exponentially as |x| → ∞. Such an argument
in the selection of solutions of stationary Helmholtz equations is known as the limiting
absorption principle in diffraction theory [189, 10].

Spectral representation. We rewrite (3.3.6) in the form

ψ̃+(x, ω) = α̃(ω)eik(ω)|x|, Im ω > 0, where α(t) := ψ+(0, t). (3.3.7)

It is a non-trivial fact that the identity (3.3.7) between analytic functions keeps its struc-
ture for their restrictions to the real axis, which are tempered distributions:

ψ̃+(x, ω + i0) = α̃(ω + i0)eik(ω+i0)|x|, ω ∈ R, (3.3.8)

where ψ̃+(·, ω + i0) and α̃(ω + i0) are the corresponding quasimeasures with values in
H1(R) and C, respectively. The problem is that the factor Mx(ω) := eik(ω+i0)|x| is not
smooth with respect to ω at the points ω = ±m. Correspondingly, the identity (3.3.8)
must be justified, based on quasimeasure theory [67].

Finally, the inversion of the Fourier transform can be written as

ψ+(x, t) =
1

2π
〈ψ̃+(x, ω + i0), e−iωt〉 =

1

2π
〈α̃(ω + i0)eik(ω+i0)|x|, e−iωt〉, x, t ∈ R, (3.3.9)

where 〈 ·, ·〉 is a bilinear duality between distributions and smooth bounded functions.
The right-hand side exists by Theorem 3.4.1, see below.
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3.4 A non-linear analogue of Kato’s theorem

It turns out that the properties of the quasimeasures α̃(ω + i0) with |ω| < m and that
with |ω| > m differ significantly. This is because the set {iω : |ω| ≥ m} is the continuous
spectrum of the generator

A =

(
0 1

d2

dx2
−m2 0

)
,

which is the generator of the free Klein–Gordon equation. The following theorem plays
a key role in the proof of our main Theorem 3.1.2. It is a nonlinear analogue of Kato’s
theorem on the absence of embedded eigenvalues in the continuous spectrum (see Remark
3.4.4 below). Let Σ := {ω ∈ R : |ω| > m}. Below we will also write α̃(ω) and k(ω)
instead of α̃(ω + i0) and k(ω + i0) for ω ∈ R.

Theorem 3.4.1. (see [67, Proposition 3.2]). Let the conditions (3.1.3), (3.1.6), and
(3.1.8) hold, and let Y (t) ∈ C(R, E) be any finite-energy solution of (3.1.5). Then the
corresponding tempered distribution α̃(ω) is absolutely continuous on Σ. Moreover, α ∈
L1(Σ) and ∫

Σ

|α̃(ω)|2 |ωk(ω)|dω <∞. (3.4.1)

Proof. We first explain the main idea of the proof. By (3.3.9), the function ψ+(x, t) is
formally a ‘linear combination’ of the functions eik|x| with the amplitudes ẑ(ω):

ψ+(x, t) =
1

2π

∫
R
ẑ(ω)eik(ω)|x|e−iωt dω, x ∈ R.

For ω ∈ Σ the functions eik(ω)|x| have an infinite L2(R)-norm, while ψ+(·, t) has a finite
L2(R)-norm. This is possible only if the amplitude is absolutely continuous on Σ. This

idea is suggested by the Fourier integral f(x) =

∫
R
e−ikxg(k)dk, which belongs to L2(R)

if and only if g ∈ L2(R). For example, if one took ẑ(ω) = δ(ω − ω0) with ω0 ∈ Σ, then
ψ+(·, t) would have infinite L2-norm.

The rigorous proof relies on estimates of Paley–Wiener type. Namely, the Parseval
identity and (3.1.7) imply that

∫
R

‖ψ̃+(·, ω + iε)‖2
H1(R) dω = 2π

∞∫
0

e−2εt‖ψ+(·, t)‖2
H1(R) dt ≤

const

ε
, ε > 0. (3.4.2)

On the other hand, we can estimate exactly the integral on the left-hand side of (3.4.2).
Indeed, according to (3.3.9),

ψ̃+(·, ω + iε) = α̃(ω + iε)eik(ω+iε)|x|.

Consequently, (3.4.2) gives us that

ε

∫
R
|α̃(ω + iε)|2‖eik(ω+iε)|x|‖2

H1(R) dω ≤ const, ε > 0. (3.4.3)

Here is a crucial observation about the asymptotics of the norm of eik(ω+iε)|x| as ε→ 0+.
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Lemma 3.4.2. i) For ω ∈ R,

lim
ε→0+

ε‖eik(ω+iε)|x|‖2
H1(R) = n(ω) :=

{
ωk(ω), |ω| > m
0, |ω| < m

, (3.4.4)

where the norm in H1(R) is chosen to be ‖ψH1(R)‖ =
(
‖ψ′L2‖2 +m2‖ψ‖2

L2(R)

)1/2

.

ii) For any δ > 0 there exists an εδ > 0 such that for |ω| > m+ δ and ε ∈ (0, εδ),

ε‖eik(ω+iε)|x|‖2
H1(R) ≥

n(ω)

2
. (3.4.5)

Proof. Let us compute the H1(R)-norm using the Fourier representation. Namely, setting
kε = k(ω+ iε) so that Im kε > 0, we get Fx→k

[
eikε|x|

]
= 2ikε/(k

2
ε − k2) for k ∈ R. Hence,

by the Parseval identity and the Cauchy theorem on residues

‖eikε|x|‖2
H1(R) =

2|kε|2

π

∫
R

(k2 +m2)dk

|k2
ε − k2|2

= −4 Im

[
(k2
ε +m2)k̄ε

k2
ε − k̄ε

2

]
.

Substituting here k2
ε = (ω + iε)2 −m2, we get that

‖eik(ω+iε)|x|‖2
H1(R) =

1

ε
Re

[
(ω + iε)2k(ω + iε)

ω

]
, ε > 0, ω ∈ R, ω 6= 0.

The limits (3.4.4) now follow, since the function k(ω) is real for |ω| > m but is purely
imaginary for |ω| < m. Therefore, the second assertion of the lemma also follows, since
n(ω) > 0 for |ω| > m, and n(ω) ∼ |ω|2 for |ω| → ∞.

Remark 3.4.3. Clearly, n(ω) ≡ 0 for |ω| < m without any calculations, since in that case
the function eik(ω)|x| decays exponentially in x, and hence, the H1(R)-norm of eik(ω+iε)|x|

remains finite as ε→ 0+.

Substituting (3.4.5) into (3.4.3), we get that∫
Σδ

|α̃(ω + iε)|2ωk(ω) dω ≤ 2C, 0 < ε < εδ, (3.4.6)

with the same C as in (3.4.3), and with the region Σδ := {ω ∈ R : |ω| > m + δ}. We
conclude that for each δ > 0 the set of functions

gε(ω) = α̃(ω + iε)|ωk(ω)|1/2, ε ∈ (0, εδ),

is bounded in the Hilbert space L2(Σδ), so by the Banach Theorem it is weakly compact.
Hence, convergence of the distributions (3.3.4) implies weak convergence in L2(Σδ):

gε ⇀ g, ε→ 0+,

where the limit function g(ω) coincides with the distribution ẑ(ω)|ωk(ω)|1/2 restricted to
Σδ. It remains to note that the norms of g in L2(Σδ) with all δ > 0 are bounded in view of
(3.4.6), and this implies (3.4.1). Finally, α̃(ω) ∈ L1(Σ̄) by (3.4.1) and the Cauchy-Schwarz
inequality.

Remark 3.4.4. Theorem 3.4.1 is a nonlinear analogue of the Kato theorem on the absence
of embedded eigenvalues in the continuous spectrum. Indeed, solutions of type ψ∗(x)e−iω∗t

become ψ∗(x)[πiδ(ω − ω∗) + v.p. 1
i(ω−ω∗) ] in the Fourier–Laplace transform, and this is

forbidden for |ω∗| > m by Theorem 3.4.1.
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3.5 Splitting into dispersion and bound components
Theorem 3.4.1 presupposes a splitting of the solutions (3.3.9) into a ‘dispersion component’
and a ‘bound component’:

ψ+(x, t) =
1

2π

∫
Σ

(1− ζ(ω))α̃(ω)eik(ω)|x|e−iωtdω +
1

2π
〈ζ(ω)α̃(ω)eik(ω)|x|, e−iωt〉

= ψd(x, t) + ψb(x, t), t > 0, x ∈ R, (3.5.1)

where
ζ(ω) ∈ C∞0 (R), and ζ(ω) = 1 for ω ∈ [−m− 1,m+ 1].

Note that ψd(x, t) is a dispersion wave, because

ψd(x, t) :=
1

2π

∫
Σ

(1− ζ(ω))e−iωtα̃(ω)eik(ω)|x|dω → 0, t→∞

according to the Riemann–Lebesgue theorem, since α ∈ L1(Σ) by Theorem 3.4.1. More-
over, it is easy to prove that

(ψd(·, t), ψ̇d(·, t))→ 0, t→∞ (3.5.2)

in the metric (3.1.16). Therefore, it remains to prove the attraction (3.1.17) for Yb(t) :=
(ψb(·, t), ψ̇b(·, t)) instead of Y (t):

Yb(t)
EF−→ S, t→∞. (3.5.3)
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3.6 Omega-compactness
Here we establish the omega-compactness of the trajectory Yb(t), which is necessary for
the application of Lemma 3.2.3. First, we note that the bound component ψb(x, t) is a
smooth function for x 6= 0, and

∂jx∂
l
tψb(x, t) =

1

2π
〈ζ(ω)(ik(ω) sgn x)jα̃(ω)eik(ω)|x|, (−iω)le−iωt〉, t > 0, x 6= 0 (3.6.1)

for any j, l = 0, 1, . . . . These formulas must be justified, since the function k(ω) is not
smooth at the points ω = ±m. The needed justification is done in [65, 67] by a suitable
development of the theory of quasimeasures. These formulae imply the boundedness of
each derivative.

Lemma 3.6.1. (see [67, Proposition 4.1]). For all j, l = 0, 1, 2, . . .

sup
x 6=0

sup
t∈R
|∂jx∂ltψb(x, t)| <∞. (3.6.2)

Proof. Note that in general the distribution α̃(ω) is not a finite measure, since we only
know that α(t) := ψ+(0, t) is a bounded function by (3.3.7) and (3.1.7). To prove the
lemma, it suffices to check that

ζ(ω)(ik(ω) sgn x)jeik(ω)|x|(−iω)l = g̃x(ω),

where the function gx(·) belongs to a bounded subset of L1(R) for x 6= 0 and t ∈ R.
This implies the lemma, since by the Parseval identity the right-hand side of (3.6.1) is the
convolution

〈α(t− s), gx(s)〉,

where α(t) is a bounded function.

Remark 3.6.2. All the properties of quasimeasures used are justified in [65, 67] by similar
arguments relying on the Parseval identity.

By the Ascoli–Arzelà theorem, for any sequence sj →∞ there is a subsequence sj′ →
∞ such that

∂jx∂
l
tψb(x, sj′ + t)→ ∂jx∂

l
tβ(x, t), x 6= 0, t ∈ R (3.6.3)

for any j, l = 0, . . . , and this convergence is uniform on |x|+ |t| ≤ R with any R > 0. The
estimates (3.6.2) imply that

sup
(x,t)∈R2

|∂jx∂ltβ(x, t)| <∞. (3.6.4)

Corollary 3.6.3. Each solution Y (t) ∈ C(R, E) to (3.1.5) is omega-compact. This follows
from (3.5.1), (3.5.2), and (3.6.3).
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3.7 Reduction of spectrum to the spectral gap
The convergence of the functions (3.6.3) implies the convergence of their Fourier trans-
forms:

ψ̃b(x, ω)e−iωsj′ → β̃(x, ω), ∀x ∈ R (3.7.1)

in the sense of tempered distributions of ω ∈ R.

Lemma 3.7.1. For any x ∈ R

β̃(x, ω) = 0, |ω| > m. (3.7.2)

Proof. The convergence (3.7.1) and the representation (3.6.1) with j = l = 0 imply that

ζ(ω)α̃(ω)eik(ω)|x|e−iωsj′ → β̃(x, ω), ∀x ∈ R (3.7.3)

in the sense of tempered distributions of ω ∈ R. Moreover, this convergence takes place
in the stronger Ascoli–Arzelà topology in the space of quasimeasures [67]. In addition,
the function e−ik(ω)|x| is a multiplier in the space of quasimeasures with this topology by
Lemma B.3 of [67]). Therefore, (3.7.3) implies that

ζ(ω)α̃(ω)e−iωsj′ → γ̃(ω) := β̃(x, ω)e−ik(ω)|x|, ∀x ∈ R (3.7.4)

in the same topology of quasimeasures. Applying the same lemma again, we obtain

β(x, t) =
1

2π
〈γ̃(ω)eik(ω)|x|, e−iωt〉, (x, t) ∈ R2. (3.7.5)

Note that
β(0, t) = γ(t). (3.7.6)

Finally, the key observation is that (3.7.4) and Theorem 3.4.1 imply that

supp γ̃ ⊂ [−m,m] (3.7.7)

by the Riemann–Lebesgue theorem.
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3.8 Reduction of spectrum to a single point
The question arises of the available means for verifying the representation (3.2.2) for
omega-limit trajectories. We have no formulae for solutions of equation (3.1.1), and so
the only hope is to use the nonlinear equation itself.

Equation for omega-limit trajectories and spectral inclusion

The key observation, albeit simple, is that β(x, t) is a solution of the original nonlinear
equation (3.1.1) for all t ∈ R, despite the fact that ψ+(x, t) is a solution of the equation
(3.1.1) only for t > 0, due to (3.3.2).

Lemma 3.8.1. The function β(x, t) satisfies the equation (3.1.1):

β̈(x, t) = β′(x, t)−m2β(x, t) + δ(x)F (β(0, t)), (x, t) ∈ R2. (3.8.1)

Proof. This lemma follows by (3.5.2) and (3.6.3) in the limit as sj′ →∞ in the equation
(3.1.1) for ψ+(x, sj′ + t) = ψd(x, sj′ + t) + ψb(x, sj′ + t) with sj′ + t > 0.

Applying the Fourier transform to the equation (3.8.1), we now get the corresponding
stationary nonlinear Helmholtz equation

− ω2β̃(x, ω) = β̃′′(x, ω)−m2β̃(x, ω) + δ(x)f̃(ω), (x, ω) ∈ R2, (3.8.2)

where we define f(t) := F (β(0, t)) = F (γ(t)) in accordance with (3.7.6). From (3.1.9),
we get that

f(t) = a(|γ(t)|)γ(t) = A(t)γ(t), A(t) := a(|γ(t)|), t ∈ R.

Finally, in the Fourier transform we get the convolution f̃ = Ã∗ γ̃, which exists by (3.7.7).
Respectively, (3.8.2) is now

−ω2β̃(x, ω) = β̃′′(x, ω)−m2β̃(x, ω) + δ(x)[Ã ∗ γ̃](ω), (x, ω) ∈ R2.

This identity implies the key spectral inclusion

supp Ã ∗ γ̃ ⊂ supp γ̃, (3.8.3)

because supp β̃(x, ·) ⊂ supp γ̃ and supp β̃′(x, ·) ⊂ supp γ̃ in view of the representation
(3.7.5).

We will derive below (3.2.2) from this inclusion, using a fundamental result of Har-
monic Analysis – the Titchmarsh convolution theorem .

Titchmarsh convolution theorem

In 1926 E.C. Titchmarsh proved a theorem on the distribution of zeros of entire functions
(see [82] and [76, p. 119]), which implies, in particular, the following corollary (see [6,
Theorem 4.3.3]):
Theorem. Let f(ω) and g(ω) be distributions of ω ∈ R with bounded supports. Then

[supp f ∗g] = [supp f ] + [supp g],

where [X] denotes the convex hull of a set X ⊂ R.
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Note that in our situation, supp γ̃ is bounded by (3.7.7). Consequently, supp Ã is also
bounded, since A(t) := a(|γ(t)|) is a polynomial in |γ(t)|2 according to (3.1.14). Now the
spectral inclusion (3.8.3) and Titchmarsh theorem imply that

[supp Ã] + [supp γ̃] ⊂ [supp γ̃],

whence it immediately follows in turn that [supp Ã] = {0}. Besides, A(t) := a(|γ(t)|) is
a bounded function due to (3.6.4), because γ(t) = β(0, t). Therefore, Ã(ω) = Cδ(ω), and
hence

a(|γ(t)|) = C1, t ∈ R.

Now, the strict nonlinearity condition (3.1.14) implies that

|γ(t)| = C2, t ∈ R.

This immediately gives us that supp γ̃ = {ω+} by the same Titchmarsh theorem for the
convolution γ̃ ∗ γ̃ = C3δ(ω). Therefore, γ̃(ω) = C4 δ(ω−ω+), and now (3.2.2) follows from
(3.7.5).

Remark 3.8.2. In the case of the nonlinear Schrödinger equation (3.1.21), the Titch-
marsh theorem does not work. The fact is that the continuous spectrum of the operator
−d2/dx2 is the half-line [0,∞), so now the role of the ‘spectral gap’ is played by the
unbounded interval (−∞, 0). Respectively, in this case the spectral inclusion (3.9.1) gives
only that supp β̃(x, ·) ⊂ (−∞, 0), while the Titchmarsh theorem applies only to distribu-
tions with bounded supports.
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3.9 On nonlinear radiation mechanism

Let us explain the informal arguments for global attraction to stationary orbits behind
the formal proof of our main Theorem 3.1.2. The main part of the proof involves the
study of the spectrum of omega-limit trajectories

β(x, t) = lim
sj′→∞

ψ(x, sj′ + t).

Theorem 3.4.1 implies the spectral inclusion (3.7.7), which leads to

supp β̃(x, ·) ⊂ [−m,m], x ∈ R. (3.9.1)

The Titchmarsh theorem then let us conclude that

supp β̃(x, ·) = {ω+}. (3.9.2)

These two inclusions are suggested by the following two informal arguments.

A. Dispersion radiation in the continuous spectrum.

B. Nonlinear inflation of the spectrum and energy transfer from lower to higher harmonics.

A. Dispersion radiation in the continuous spectrum. The inclusion (3.9.1) is due
to the dispersion mechanism, which can be illustrated by the example of energy radiation
in a wave field of a harmonic source with a frequency lying in the continuous spectrum.
Namely, let us consider a one-dimensional linear Klein–Gordon equation with a harmonic
source

ψ̈(x, t) = ψ′′(x, t)−m2ψ(x, t) + b(x)e−iω0t, x ∈ R, (3.9.3)

where the amplitude b ∈ L2(R) and the real frequency ω0 is different from ±m. In this
case the limiting amplitude principle holds [189, 75, 78]:

ψ(x, t) ∼ a(x)e−iω0t, t→∞. (3.9.4)

For the equation (3.9.3), this follows directly by the Fourier–Laplace transform in time

ψ̃(ω, t) =

∫ ∞
0

eiωtψ(x, t)dt, x ∈ R, Im ω > 0. (3.9.5)

Namely, applying this transform to equation (3.9.3), we get that

−ω2ψ̃(x, ω) = ψ̃′′(x, ω)−m2ψ̃(x, ω) +
b(x)

i(ω − ω0)
, x ∈ R, Im ω > 0,

where for the simplicity we assume zero initial data. Hence,

ψ̃(·, ω) =
R(ω)b

i(ω − ω0)
=
R(ω0 + i0)b

i(ω − ω0)
+
R(ω)b−R(ω0 + i0)b

i(ω − ω0)
, Im ω > 0, (3.9.6)

where
R(ω) := (H − ω2)−1
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is the resolvent of the Schrödinger operator H := −d2/dx2 + m2. This resolvent is a
convolution operator with fundamental solution

−e
ik(ω)|x|

2ik(ω)
, k(ω) :=

√
ω2 −m2 ∈ C+ for ω ∈ C+,

as in (3.3.6). The last quotient of (3.9.6) is regular at ω = ω0, and therefore its contribution
is a dispersion wave, which decays like (3.5.2) in local energy seminorms. Consequently,
the long-time asymptotics of ψ(x, t) is determined by the middle quotient in (3.9.6).
Therefore, (3.9.4) holds with the limiting amplitude a(x) = R(ω0 + i0)b. The Fourier
transform of this limiting amplitude is equal to

â(k) = − b̂(k)

k2 +m2 − (ω0 + i0)2
, k ∈ R.

This formula shows that the properties of the limiting amplitude differ significantly in the
cases |ω0| < m and |ω0| ≥ m: a(x) ∈ H2(R) for |ω0| < m, however,

a(x) 6∈ L2(R) for |ω0| ≥ m, (3.9.7)

if |b̂(k)| ≥ ε > 0 in a neighborhood of the ‘sphere’ |k|2 + m2 = ω2
0 (which consists of two

points in the 1D case). This means the following.
I. In the case |ω0| ≥ m the energy of the solution ψ(x, t) tends to infinity for large

times according to (3.9.4) and (3.9.7). This means that energy is transmitted from the
harmonic source to the wave field!

II. Contrary, for |ω0| < m the energy of the solution remains bounded, so there is
no radiation.
It is this radiation in the case of |ω0| ≥ m that prohibits the presence of harmonics
with such frequencies in omega-limit trajectories. Indeed, any omega-limit trajectory
cannot radiate at all, since total energy is finite and bounded from below, and hence
the radiation cannot last forever. These physical arguments make the inclusion (3.9.1)
plausible, although a rigorous proof of it, as was seen above, requires special arguments.

Recall that the set iΣ := {iω0 ∈ R, |ω0| ≥ m} coincides with the continuous spectrum
of the generator of the free Klein–Gordon equation. Radiation in the continuous spectrum
is well known in the theory of waveguides. Namely, a waveguide can transmit only signals
with a frequency |ω0| > µ, where µ is a threshold frequency, which is an edge point of the
continuous spectrum [77]. In our case, the waveguide occupies the ‘entire space’ x ∈ R and
is described by the nonlinear Klein–Gordon equation (3.1.1) with the threshold frequency
m.

B. Non-linear inflation of spectrum and energy transfer from lower to higher
harmonics. Let us show that the single-frequency spectrum (3.9.2) is due to inflation
of the spectrum by nonlinear functions. For example, consider the potential U(ψ) = |ψ|4.
Correspondingly, F (ψ) = −∇ψU(ψ) = −4|ψ|2ψ. We consider the sumψ(t) = eiω1t + eiω2t

of two harmonics, whose spectrum is shown in Fig. 3.1:
We substitute this sum into the nonlinearity:

F (ψ(t)) ∼ ψ(t)ψ(t)ψ(t) = eiω2te−iω1teiω2t + . . . = ei(ω2+∆)t + . . . , ∆ := ω2 − ω1.

The spectrum of this expression contains harmonics with the new frequencies ω1−∆ and
ω2 + ∆. As a result, all the frequencies ω1−∆, ω1−2∆, . . . and ω2 + ∆, ω2 + 2∆, . . . also
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Figure 3.1: Two-point spectrum.
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Figure 3.2: Non-linear inflation of spectrum.

will appear in the nonlinear dynamics described by (3.1.1) (see Fig. 3.2). Consequently,
these frequencies will appear also in the nonlinear δ-function term which plays the role of
a source.

As we already know, these frequencies lying in the continuous spectrum |ω| > m will
surely cause energy radiation. This dispersion radiation will continue until the spectrum
of the solution contains at least two different frequencies. It is this fact that prohibits the
presence of two different frequencies in omega-limit trajectories, because total energy is
finite, and thus the radiation cannot continue forever.

However, we underscore that
i) the precise meaning of the arguments "... until the spectrum of the solution contains at
least two different frequencies." is established by our method of omega-limit trajectories;
ii) the inflation of the spectrum by a nonlinearity is justified by the Titchmarsh convolution
theorem.

Nonlinear radiation mechanism. The above arguments physically mean the following
binary nonlinear radiation mechanism:
I. The nonlinearity inflates the spectrum, which means energy transfer from lower to
higher harmonics.
II. The dispersion radiation carries energy to infinity.

We have for the first time rigorously justified such a nonlinear radiation mechanism
for the nonlinear U(1)-invariant Klein–Gordon and Dirac equations (3.1.1) and (3.1.18)–
(3.1.20). Our numerical experiments demonstrate an analogous radiation mechanism for
relativistically-invariant nonlinear wave equations (see Remark 6.1.1), however a rigorous
proof is still missing.
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3.10 Conjecture on attractors of G-invariant PDEs
Let us specify the conjecture (0.0.6) for generic Hamiltonian G-invariant PDEs in Rn

of type (0.0.5) with a Lie symmetry group G acting on suitable Hilbert or Banach phase
space E via a representation T . The Hamiltonian structure means that

F (Ψ) = JDH(Ψ), J∗ = −J, (3.10.1)

whereH denotes the corresponding Hamiltonian functional. The G-invariance means that

F (T (g)Ψ) = T (g)F (Ψ), Ψ ∈ E (3.10.2)

for all g ∈ G. In this case, for any solution Ψ(t) to equations (0.0.5) the trajectory
T (g)Ψ(t) is also a solution.

Let us note that the theory of elementary particles deals systematically with the
symmetry groups SU(2), SU(3), SU(5), SO(10) and others, and with the group SU(4)×
SU(2)× SU(2) which is the symmetry group of ‘Grand Unification’, see [222].

The conjecture (0.0.6) means that all solutions of type eλ̂tΨ with λ ∈ g and Ψ ∈ E form
a global attractor for generic G-invariant Hamiltonian nonlinear PDEs of type (0.0.5).

We still should specify the term generic G-invariant equation in Conjecture (0.0.6)
(and in all results of Chapters 1, 2 and 3). Namely, this conjecture means that the
asymptotics (0.0.6) hold for all solutions to an open dense set of G-invariant equations.
In particular, all asymptotics (0.0.7), (0.0.12), (0.0.15) and (0.0.16) hold under appropriate
conditions, which define some ‘open dense subset’ of G-invariant equations with three
types of the symmetry group G. The asymptotics can break down if these conditions fail—
this corresponds to some ‘exceptional equations’: for example, global attraction (3.1.2)
breaks down for the linear Schrödinger equations with at least two different eigenvalues.
The general situation is as follows. Let a Lie group G1 be a (proper) subgroup of some
larger Lie group G2. So, the G2-invariant equations form an ‘exceptional subset’ among
all G1-invariant equations, and the corresponding asymptotics (0.0.6) may be completely
different. For example, the trivial group {e} is a subgroup in U(1) and in Rn, while the
asymptotics (0.0.12) and (0.0.15) may differ significantly from (0.0.7).

Conjecture (0.0.6) is confirmed by all rigorous results [43]–[74] presented in previous
sections of this book. The results concern a list of model equations of type (0.0.5) with the
following four basic symmetry groups: the trivial group {e}, the group of translations Rn,
the unitary group U(1), and the orthogonal group SO(3). In these cases, the asymptotics
(0.0.6) read as (0.0.7), (0.0.12), (0.0.15), and (0.0.16), respectively.

Conjecture (0.0.6) suggests to define stationary G-orbits for equations (0.0.5) as solu-
tions of type

Ψ(t) = eλ̂tΨ, t ∈ R, (3.10.3)

where λ ∈ g. This definition leads to the corresponding nonlinear eigenvalue problem

F (Ψ) = λ̂Ψ. (3.10.4)

In particular, for the case of unitary symmetry group U(1) the Lie algebra is g = R, and
λ is a real number. On the other hand, for the symmetry group G = SU(3), the generator
λ is a skew-Hermitian 3× 3-matrix.
Empirical evidence. The conjecture (0.0.6) agrees with the Gell-Mann–Ne’eman theory
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of baryons [220, 221]. Namely, in 1961 Gell-Mann and Ne’eman suggested the symmetry
group SU(3) and other ones for the strong interaction of baryons relying on the discovered
parallelism between empirical data for the baryons, and the ‘Dynkin scheme’ of the Lie
algebra g = su(3) with 8 generators (the famous ‘eightfold way’).

This theory resulted in the scheme of quarks and in the development of Quantum
Chromodynamics [222], and in the prediction of a new baryon with prescribed values of
its mass and decay products. This particle (the Ω−-hyperon) was promptly discovered
experimentally [223].

The elementary particles seem to describe long-time asymptotics of quantum fields.
Hence, this empirical correspondence between the baryons and generators of the Lie al-
gebra of the symmetry group presumably gives an evidence in favour of our general con-
jecture on attractors (0.0.6).



Chapter 4

Asymptotic Stability of Solitons

More precisely we should phrase ‘asymptotic stability of solitary manifolds’ which means
a local attraction, i.e. for states sufficiently close to such manifold.

In Sections 4.1 and 4.2 we describe general strategies introduced by A. Soffer and M.
Weinstein, and by V.S. Buslaev and G. Perelman for proving such local attraction,

In Sections 4.3 and 4.4 we give a brief survey of related results.
In final Section 4.5 we give a concise and streamlined proof of the result [113] illus-

trating general strategy of V.S. Buslaev and G. Perelman in the case of 1D Schrödinger
equation coupled to a nonlinear oscillator.

99
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4.1 Orthogonal projection
This strategy arose in 1985–1992 in the pioneering work of A. Soffer and M.Weinstein [162,
163, 171], see the review [161]. The results concern nonlinear U(1)-invariant Schrödinger
equations with real potential V (x)

iψ̇(x, t) = −∆ψ(x, t) + V (x)ψ(x, t) + λ|ψ(x, t)|pψ(x, t), x ∈ Rn, (4.1.1)

where λ ∈ R, p = 3 or 4, n = 2 or n = 3, and ψ(x, t) ∈ C. The corresponding Hamiltonian
functional reads

H =

∫ [1
2
|∇ψ|2 +

1

2
V (x)|ψ(x)|2 +

λ

p
|ψ(x)|p

]
dx.

For λ = 0, the equation (4.1.1) is linear. It is assumed that the discrete spectrum of the
short range Schrödinger operator H := −∆ +V (x) is a single point ω∗ < 0, and the point
zero is neither an eigenvalue nor a resonance for H. Let φ∗(x) denote the corresponding
ground state:

Hφ∗(x) = ω∗φ∗(x). (4.1.2)

Then Cφ∗(x)e−iω∗t are periodic solutions for all complex constants C. Corresponding
phase curves are circles, filling the complex plane.

For nonlinear equations (4.1.1) with a small real λ 6= 0, it turns out that a wonderful
bifurcation occurs: small neighborhood of the zero of the complex plane turns into an
analytic invariant solitary manifold S which is still filled with invariant circles which are
trajectories of stationary orbits of type (3.1.11),

ψ(x, t) = ψω(x)e−iωt (4.1.3)

whose frequencies ω are close to ω∗.

Remark 4.1.1. Now all these solutions ψω(x)e−iωt are called as ground states.

The main result of [162, 163] (see also [155]) is long-time attraction to one of these
ground states for any solution of equation (4.1.1) with sufficiently small λ > 0 in the case
of small initial data:

ψ(x, t) = ψ±(x)e−iω±t + r±(x, t), (4.1.4)

where the remainder decay in weighted norms: for σ > 2

‖〈x〉−σr±(·, t)‖L2(Rn) → 0, t→ ±∞,

where 〈x〉 := (1 + |x|)1/2. The proof relies on linearisation of the dynamics and decompo-
sition of solutions into two components

ψ(t) = e−iΘ(t)(ψω(t) + φ(t)),

with the orthogonality condition [162, (3.2) and (3.4)]:

〈ψω(t), φ(t)〉 = 0. (4.1.5)

This orthogonality and dynamics (4.1.1) imply the modulation equations for ω(t) and γ(t),

where γ(t) := Θ(t) −
∫ t

0

ω(s)ds (see (3.2) and (3.9a)–(3.9b) from [162]). The orthogo-

nality (4.1.5) implies that the component φ(t) lies in the continuous spectral space of the
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Schrödinger operator H(ω0) := −∆ + V + λ|ψω0|p, which leads to time-decay of φ(t) (see
[162, (4.2a) and (4.2b)]). Finally, this decay implies the convergence ω(t) → ω± and the
asymptotics (4.1.4).

These results and methods were further developed in numerous works for nonlinear
Schrödinger, wave and Klein–Gordon equations with potentials under various spectral
assumptions on linearised dynamics, see [108, 113, 141, 155, 164, 165, 171].
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4.2 Symplectic projection
Genuine breakthrough in the theory of asymptotic stability was achieved in 1990-2003 by
V.S. Buslaev, G. Perelman and C. Sulem [110, 111, 112], who first extended asymptotics
of type (4.1.4) to 1D translation-invariant Schrödinger equation

iψ̇(x, t) = −ψ′′(x, t)− F (ψ(x, t)), x ∈ R (4.2.1)

without smallness conditions on the nonlinearity and initial data.
The equation is assumed to be U(1)-invariant. The latter means that the nonlin-

ear function F (ψ) = −∇ψU(ψ) satisfies identities (3.1.8)–(3.1.10). Also the following
condition is assumed

U(ψ) = O(|ψ|10), ψ → 0, (4.2.2)

which is required probably by a failure of suitable technique. Under some simple additional
conditions on the potential U (see below), there exist stationary orbits which are finite
energy solutions of the form

ψ(x, t) = ψ0(x)eiω0t, (4.2.3)

with ω0 > 0. The amplitude ψ0(x) satisfies the corresponding stationary equation

− ω0ψ0(x) = −ψ′′0(x)− F (ψ0(x)), x ∈ R, (4.2.4)

which implies the ‘energy conservation’

|ψ′0(x)|2

2
+ Ue(ψ0(x)) = E, (4.2.5)

where the ‘effective potential’ Ue(ψ) = U(ψ) + ω0
|ψ|2

2
∼ ω0

|ψ|2
2

as ψ → 0 by (4.2.2). For
the existence of finite energy solution (4.2.3), the graph of the effective potential Ue(ψ)
should be similar to Fig. 4.1. The finite energy solution is defined by (4.2.5) with the
constant E = Ue(0) since for other E the solutions to (4.2.5) do not converge to zero as
|x| → ∞. This equation with E = Ue(0) implies that

|ψ′0(x)|2

2
= Ue(0)− Ue(ψ0(x)) ∼ ω0

2
ψ2

0(x). (4.2.6)

Hence, for finite energy solutions

ψ0(x) ∼ e−
√
ω0|x|, |x| → ∞. (4.2.7)

It is easy to verify that the following functions are also solutions, (moving solitons)

ψω,v,a,θ(x, t) = ψω(x− vt− a)ei(ωt+kx+θ), ω = ω0 − v2/4, k = v/2. (4.2.8)

The set of all such solitons with parameters ω, v, a, θ forms a 4-dimensional smooth sub-
manifold S in the Hilbert phase space X := L2(R). Moving solitons (4.2.8) are obtained
from standing soliton (4.2.3) by the Galilean transformation

G(a, v, θ) : ψ(x, t) 7→ ϕ(x, t) = ψ(x− vt− a, t)ei(−
v2

4
t+ v

2
x+θ). (4.2.9)

It is easy to verify that the Schrödinger equation (4.2.1) is invariant with respect to this
symmetry group.
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Figure 4.1: Reduced potential and soliton.

Linearisation of the Schrödinger equation (4.2.1) on the stationary orbit (4.2.3) is
obtained by substitution ψ(x, t) = (ψ0(x) + χ(x))e−iω0t and retaining terms of the first
order in χ. This linearised equation contains χ and χ, and hence, it is not linear over the
field of complex numbers. This follows from the fact that the nonlinearity of F (ψ) is not
complex-analytic due to the U(1)-invariance (3.1.8). Complexification of this linearised
equation reads

Ψ̇(x, t) = C0Ψ(x, t), C0 = −jH0, (4.2.10)

where j is a real 2 × 2 matrix, representing the multiplier i, Ψ(x, t) ∈ C2, and H0 =
−d2/dx2 +ω0 +V (x), where V (x) is a real matrix potential, which decreases exponentially
as |x| → ∞ due to (4.2.7).

Note that the operator C0 = Cω0,0,0,0 corresponds to the linearisation on the soliton
(4.2.8) which is one of the solitons (4.2.8) corresponding to parameters ω = ω0, and
a = v = θ = 0. Similar operators Cω,a,v,θ, corresponding to linearisation at solitons
(4.2.8) with various parameters ω, a, v, θ, are connected with C0 via the differential of the
Galilean transformation (4.2.9). Therefore, their spectral properties completely coincide.
In particular, their continuous spectrum coincides with (−i∞,−iω0] ∪ [iω0, i∞).

Main results of [110, 111, 112] are asymptotics of type (4.1.4) for solutions with initial
data close to the solitary manifold S:

ψ(x, t) = ψ±(x− v±t)e−i(ω±t+k±x) +W (t)Φ± + r±(x, t), ±t > 0, (4.2.11)

where W (t) is the dynamical group of the free Schrödinger equation, Φ± are some scat-
tering states of finite energy, and r± are remainder terms which decay to zero in a global
norm:

‖r±(·, t)‖L2(R) → 0, t→ ±∞. (4.2.12)

These asymptotics were obtained under following assumptions on the spectrum of the
generator B0:

U1. The discrete spectrum of the operator C0 consists of exactly three eigenvalues 0
and ±iλ, and

λ < ω0 < 2λ. (4.2.13)

This condition means that the discrete mode can interact with the continuous spectrum
already in the first order of perturbation theory.



104 CHAPTER 4. ASYMPTOTIC STABILITY OF SOLITONS

U2. The edge points ±iω0 of the continuous spectrum are neither eigenvalues, nor
resonances of C0.

U3. Furthermore, it is assumed the condition [112, (1.0.12)], which means a strong
coupling of discrete and continuous spectral components, providing energy radiation, sim-
ilarly to the Wiener condition (1.5.13). The condition [112, (1.0.12)] ensures that the
interaction of discrete component with continuous spectrum does not vanish in the first
order of perturbation theory. This condition is a nonlinear version of the Fermi Golden
Rule [158], which was introduced by I.M. Sigal in the context of nonlinear PDEs [79].

Examples of potentials satisfying all these conditions are constructed in [139].
In 2001, Cuccagna extended results of [110, 111, 112] to nD translation-invariant

Schrödinger equations in the dimensions n ≥ 2, [114].

Method of symplectic projection in the Hilbert phase space. Novel approach
[110, 111, 112] relies on symplectic projection of solutions onto the solitary manifold. This
means that

Z := ψ − S is symplectic-orthogonal to the tangent space T := TSS

for the projection S := Pψ. This projection is correctly defined in a small neighborhood
of S because S is a symplectic manifold, i.e. the corresponding symplectic form is non-
degenerate on the tangent spaces TSS.

Thus a solution ψ(t) for each t > 0 decomposes as ψ(t) = S(t) + Z(t), where
S(t) := Pψ(t), and the dynamics is linearised on the soliton S(t). Similarly, for each
t ∈ R the total Hilbert phase space X := L2(R) is splitted as X = T (t) ⊕ Z(t), where
Z(t) is symplectic-orthogonal complement to the tangent space T (t) := TS(t)S. The
corresponding equation for the transversal component Z(t) reads

Ż(t) = A(t)Z(t) +N(t),

where A(t)Z(t) is the linear part, and N(t) = O(‖Z(t)‖2) is the corresponding nonlinear
part.

The main difficulties in studying this equation are as follows: i) it is non-autonomous,
and ii) the generators A(t) are not self-adjoint (see Appendix in [137]). It is important
that A(t) are Hamiltonian operators, for which the existence of spectral decomposition is
provided by the Krein–Langer theory of J -selfadjoint operators [145, 148]. In [137, 138] we
have developed a special version of this theory providing the corresponding eigenfunction
expansion which is necessary for the justification of the approach [110, 111, 112]. The
main steps of this strategy are as follows.
• modulation equations. The parameters of the soliton S(t) satisfy modulation
equations: for example, for the speed v(t) we have

v̇(t) = M(ψ(t)),

where M(ψ) = O(‖Z‖2) for small norms ‖Z‖. This means that the parameters change
‘superslowly’ near the solitary manifold, like adiabatic invariants.
• Tangent and transversal components. The transversal component Z(t) in the
splitting ψ(t) = S(t) + Z(t) belongs to the transversal subspace Z(t). The tangent space
T (t) is the root space of the generator A(t) and corresponds to the ‘unstable spectral
point’ λ = 0. The key observation is that
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i) the transversal subspace Z(t) is invariant with respect to the generator A(t), since
the subspace T (t) is invariant, and A(t) is the Hamiltonian operator;

ii) moreover, the transversal subspace Z(t) does not contain the tangent vectors cor-
responding to the unstable eigenvalue λ = 0.
• Continuous and discrete components. The transversal component allows further
splitting Z(t) = z(t) + f(t), where z(t) and f(t) belong, respectively, to discrete and
continuous spectral subspaces Zd(t) and Zc(t) of A(t) in the space Z(t) = Zd(t) +Zc(t).
• Poincare normal forms and Fermi Golden Rule. The component z(t) satisfies a
nonlinear equation, which is reduced to Poincare normal form up to higher order terms
[112, Equations (4.3.20)]. The normal form allowed to obtain some ‘conditional decay’
for z(t) using the Fermi Golden Rule [112, (1.0.12)]. For the relativistically-invariant
Ginzburg–Landau equation, a similar reduction was done in [136, Equations (5.18)].
• Method of majorants. A skillfull combination of the conditional decay for z(t)
with the superslow evolution of the soliton parameters allows one to prove the decay for
f(t) and z(t) by the method of majorants. Finally, this decay implies the asymptotics
(4.2.11)–(4.2.12).

Remark 4.2.1. i) The role of the symplectic projection in the theory of V.S. Buslaev, G.
Perelman and C. Sulem [110, 111, 112] probably was suggested by the theory of orbital
stability of M. Grillakis, J. Shatah and W. Strauss [103, 104] which extends to Hamilto-
nian PDEs the stability theory of finite-dimensional Hamiltonian systems with symmetry
groups, see [13, 14]. The last theory, in its own turn, is dating back to H. Poincaré who
established the theory of stability of the fixed points of the reduced dynamics, which he
called relative equilibria, [15].
ii) The difference of the theory [110, 111, 112] with [103, 104] is as follows.
i) The linearised dynamics in [103, 104] is stable in the transversal directions because the
positive spectrum is away from zero and hence, the conserved Hamiltonian serves as the
Lyapunov function in these directions.
ii) On the other hand, in [110, 111, 112] the positive spectrum of this transversal dy-
namics is not away from zero. However, the asymptotic stability holds since the positive
spectrum is absolute continuous.
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4.3 Generalisations and аpplications
N-soliton solutions. The methods and results of [112] were developed in [149, 150, 151,
152, 153, 156, 157, 159, 160] for N -soliton solutions for translation-invariant nonlinear
Schrödinger equations.
Multiphoton radiation. In [116] Cuccagna and Mizumachi extended methods and
results of [112] to the case when the inequality (4.2.13) is changed to

Nλ < ω0 < (N + 1)λ,

with some natural N > 1, and the corresponding analogue of condition U3 holds. It
means, that the interaction of discrete modes with a continuous spectrum occurs only in
the N -th order of perturbation theory. The decay rate of the remainder term (4.2.12)
worsens with growing N .
Linear equations coupled to nonlinear oscillators and particles. The methods
and results of [112] were extended i) in [113, 141] to the Schrödinger equation coupled to
a nonlinear U(1)-invariant oscillator, ii) in [125, 127] to systems (2.1.1) and (1.6.1) with
zero external fields, and iii) in [126, 134, 140] to similar translation-invariant systems of
the Klein–Gordon, Schrödinger and Dirac equations coupled to a particle. The survey of
these results can be found in [124].

For example, article [127] concerns solutions to the system (2.1.1) with initial data
close to a solitary manifold (2.1.3) in weighted norm

‖ψ‖2
σ =

∫
〈x〉2σ|ψ(x)|2dx

with sufficiently large σ > 0. Namely, the initial state is close to soliton (2.1.3) with some
parameters v0, a0:

‖∇ψ(x, 0)−∇ψv0(x− a0)‖σ + ‖ψ(x, 0)− ψv0(x− a0)‖σ + ‖π(x, 0)− πv0(x− a0)‖σ
+|q(0)− a0|+ |q̇(0)− v0| ≤ ε,

where σ > 5, and ε > 0 is sufficiently small. Moreover, the Wiener condition (1.5.13) is
assumed for k 6= 0. Additionally, let

∂αρ̂(0) = 0, |α| ≤ 5,

that is equivalent to equalities∫
xαρ(x) dx = 0, |α| ≤ 5.

Under these conditions, the main results of [127] are the asymptotics

q̈(t)→ 0, q̇(t)→ v±, q(t) ∼ v±t+ a±, t→ ±∞

(cf. (2.1.8) and (2.1.11)) and the attraction to solitons (2.1.9), where the remainder now
decays in global weighted norms in the comoving frame (cf. (2.1.10)):

‖∇r±(q(t) + x, t)‖−σ + ‖r±(q(t) + x, t)‖−σ + ‖s±(q(t) + x, t)‖−σ → 0, t→ ±∞.

Relativistically-invariant equations. In [107, 109, 144, 135, 136] the asymptotic sta-
bility of solitary manifolds was established for the first time for relativistically-invariant
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nonlinear equations. Namely, in [107] and [144, 135, 136] asymptotics of the type (4.2.11)
were obtained for 1D relativistically-invariant nonlinear wave equations (2.2.4) with po-
tentials of the Ginzburg–Landau type, and in [109] for relativistically-invariant nonlinear
Dirac equations. In [139] we have constructed examples of potentials providing all spectral
properties of the linearised dynamics imposed in [144, 135, 136].

In [137, 138] we have justified the eigenfunction expansions for nonselfadjoint Hamilto-
nian operators which were used in [144, 135, 136]. For the justification we have developed
a special version of the Krein–Langer theory of J-selfadjoint operators [145, 148].

Cherenkov radiation. The article [122] concerns a system of type (2.1.1) with the
Schrödinger equation instead of the wave equation (system (1.9)–(1.10) in [122]). This
system is considered as a model of the Cherenkov radiation. The main result of [122] is
long-time convergence to a soliton with the sonic speed for initial solitons with a supersonic
speed in the case of a weak interaction (the ‘Bogolyubov limit’) and small initial field.
The asymptotic stability of solitary manifolds for very close system with the Schrödinger
equation was established in [134].
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4.4 Further generalisations
The results on asymptotic stability of solitary manifolds were developed in different di-
rections.
Systems with several bound states. Articles [106, 115, 168, 169, 170] concern asymp-
totic stability of stationary orbits (4.1.3) for the nonlinear Schrödinger, Klein–Gordon and
wave equations in the case of several simple eigenvalues of the linearisation. The typical
assumptions are as follows:

i) the endpoint of continuous spectrum is neither an eigenvalue nor a resonance for
linearised equation;

ii) the eigenvalues of the linearised equation satisfy several non-resonance conditions;
iii) a new version of the Fermi Golden Rule.
One typical difficulty is possible long stay of solutions near metastable tori which

correspond to approximate resonances. Great efforts are being made to show that the
role of metastable tori decreases like t−1/2 as t → ∞. The typical result is the long-time
asymptotics ‘ground state + dispersion wave’ in the norm H1(R3) for solutions close to
the ground state.
General Theory of Relativity. The article [123] concerns so-called ‘kink instability’
of self-similar and spherically symmetric solutions of the equations of the General Theory
of Relativity with a scalar field, as well as with a ‘hard fluid’ as sources. The authors
constructed examples of self-similar solutions that are unstable to the kink perturbations.

The article [117] examines linear stability of slowly rotating Kerr solutions for the
Einstein equations in vacuum. In [167] a pointwise damping of solutions to the wave
equation is investigated for the case of stationary asymptotically flat space-time in the
three-dimensional case.

In [105] the Maxwell equations are considered outside slowly rotating Kerr black hole.
The main results are: i) boundedness of a positive definite energy on each hypersurface
t = const and ii) convergence of each solution to a stationary Coulomb field.

In [118] the pointwise decay was proved for linear waves against the Schwarzschild
black hole.
Method of concentration compactness. In [130] the concentration compactness
method was used for the first time to prove global well-posedness, scattering and blow-up
of solutions to critical focusing nonlinear Schrödinger equation

iψ̇(x, t) = −∆ψ(x, t)− |ψ(x, t)|
4

n−2ψ(x, t), x ∈ Rn

in the radial case. Later on, these methods were extended in [119, 121, 131, 146] to general
non-radial solutions and to nonlinear wave equations of the type

ψ̈(x, t) = ∆ψ(x, t) + |ψ(x, t)|
4

n−2ψ(x, t), x ∈ Rn.

One of the main results is splitting of the set of initial states, close to the critical energy
level, into three subsets with certain long-term asymptotics: either a blow-up in a finite
time, or an asymptotically free wave, or the sum of the ground state and an asymptotically
free wave. All three alternatives are possible; all nine combinations with t→ ±∞ are also
possible. Lectures [154] give excellent introduction to this area. The articles [120, 132]
concern super-critical nonlinear wave equations.

Recently, these methods and results were extended to critical wave mappings [129,
128, 146, 147]. The ‘decay onto solitons’ is proved: every 1-equivariant finite-energy wave
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mapping of exterior of a ball with Dirichlet boundary conditions into three-dimensional
sphere exists globally in time and dissipates into a single stationary solution of its own
topological class.
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4.5 The Schrödinger equation coupled to an oscillator
In this section we illustrate the strategy of V.S. Buslaev and G. Perelman [110, 111]
(which was also used in [112] and in many works cited in Sections 4.2, 4.3 and 4.4) by
application to 1D Schrödinger equation coupled to a nonlinear oscillator, see [113]. The
coupled system is invariant with respect to the phase rotation group U(1). For initial
states close to a stationary orbit, the solution converges to a sum of another stationary
orbit and dispersive wave which is a solution to the free Schrödinger equation. The proofs
are complete and rely on the strategy of [110, 111]: the linearisation of the dynamics on
the solitary manifold, the symplectic orthogonal projection and method of majorants.

4.5.1 Introduction

Our main goal is the study of asymptotic stability of ‘quantum stationary states’ for a
model U(1)-invariant nonlinear Schrödinger equation

iψ̇(x, t) = −ψ′′(x, t)− δ(x)F (ψ(0, t)), x ∈ R. (4.5.1)

Here ψ(x, t) is a continuous complex-valued wave function and F is a continuous function,
the dots stand for the derivatives in t and the primes in x. All derivatives and the equation
are understood in the distribution sense. Physically, equation (4.5.1) describes the system
of the free Schrödinger equation coupled to a nonlinear oscillator located at the point
x = 0; F is a nonlinear ‘oscillator force’.

We assume that F (ψ) = −∇U(ψ) where U(ψ) = u(|ψ|). Then (4.5.1) defines a U(1)-
invariant Hamiltoniansystem and admits finite energy solutions of type ψω(x)eiωt called
stationary orbits which are nonlinear eigenfunctions. The stationary orbits constitute a
two-dimensional solitary manifold in the Hilbert phase space of finite energy states of the
equation. We prove the asymptotics of type

ψ(·, t) ∼ ψω±e
iω±t +W (t)Φ±, t→ ±∞, (4.5.2)

where W (t) is the dynamical group of the free Schrödinger equation, Φ± ∈ Cb(R)∩L2(R)
are the corresponding asymptotic scattering states, and the remainder converges to zero
as O(|t|−1/2) in the global norm of Cb(R) ∩ L2(R). Here Cb(R) is the space of bounded
continuous functions R → C. The asymptotics hold for the solutions with initial states
close to the stable part of the solitary manifold, extending the methods and results of
[110, 111, 112] to the equation (4.5.1).

Let us note that we impose conditions which are more general than the standard ones
in the following respects:
i) We do not hypothesize any spectral properties of the linearised equation, and do not
require any smallness condition on the initial state (only closeness to the solitary mani-
fold).
ii) The stable part of the solitary manifold is characterised by a condition on the non-
linearity (4.5.17). The relation of this to the standard criterion for orbital stability

∂ω

∫
|ψω(x)|2dx > 0 (see [103, 104] and references therein) will be discussed below.

This progress is possible on account of the simplicity of our model which allows an exact
analysis of all spectral properties of the linearisation.

Let us note the following two main novelties in our approach to the uniform decay
of the dynamics in transversal directions to the solitary manifold. First, we calculate
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exactly all needed spectral properties of corresponding generator. Second, we do not use
a spectral representation of the generator. Instead, we develop the Jensen–Kato approach
applying directly the Zygmund type Lemma 6.1 (cf. [184, Lemma 10.2]) to the Laplace
integral of the resolvent. We expect that the development would be promising for more
general problems.

This section is organized as follows. In Section 4.5.2 some notation and definitions are
given. In Section 4.5.3 we describe all nonzero stationary orbits and formulate the main
theorem. The linearisation on a stationary orbit is carried out in Section 4.5.4. In Sections
4.5.5 and 4.5.6, we construct the spectral representation for the linearised equation. In
Section 4.5.7 we establish the time decay for the linearised equation in the continuous
spectrum. In Section 4.5.9 the modulation equations for the parameters of the soliton
are displayed. The decay of the transversal component is proved in Sections 4.5.10 and
4.5.11. In Section 4.5.12 we obtain the soliton asymptotics (4.5.2). In Appendix we study
the resolvent of linearised equation.

In conclusion, we expect that the asymptotics (4.5.2) holds for any finite energy solu-
tion of the equation (4.5.1), however this is still open problem.

4.5.2 Notation and definitions

We identify a complex number ψ = ψ1 + iψ2 with the real two-dimensional vector
(ψ1, ψ2) ∈ R2 and assume that the vector version F of the oscillator force F admits a
real-valued potential,

F(ψ) = −∇U(ψ), ψ ∈ R2, U ∈ C2(R2). (4.5.3)

Then (4.5.1) is formally a Hamiltonian system with Hamiltonian

H(ψ) =
1

2

∫
|ψ′|2dx+ U(ψ(0)). (4.5.4)

which is conserved for sufficiently regular finite energy solutions. We assume that the
potential U(ψ) satisfies the inequality

U(z) ≥ A−B|z|2 with some A ∈ R, B > 0. (4.5.5)

Our key assumption concerns the U(1)-invariance of the oscillator, where U(1) stands for
the rotation group eiθ, θ ∈ [0, 2π] acting by phase rotation ψ 7→ eiθψ. Namely, we assume
that

U(ψ) = u(|ψ|2), u ∈ C2(R) (4.5.6)

(cf. [27, 28]). In this case

F (ψ) = a(|ψ|2)ψ, ψ ∈ C , a ∈ C1(R). (4.5.7)

Therefore,
F (eiθψ) = eiθF (ψ), θ ∈ [0, 2π], (4.5.8)

and F (0) = 0. This rotation symmetry implies that eiθψ(x, t) is a solution to (4.5.1)
if ψ(x, t) is. The equation is U(1)-invariant in the sense of [103, 104], and the Nöther
theorem implies the charge conservation:

Q(ψ) =

∫
|ψ|2dx = const. (4.5.9)
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The main subject of this section is an analysis of asymptotic stability of ‘quantum station-
ary orbits’, or solitary waves in the sense of [103, 104], which are finite energy solutions
of the form

ψ(x, t) = ψω(x)eiωt, ω ∈ R. (4.5.10)

The frequency ω and the amplitude ψω(x) solve the following nonlinear eigenvalue prob-
lem:

− ωψω(x) = −ψ′′ω(x)− δ(x)F (ψω(0)), x ∈ R. (4.5.11)

which follows directly from (4.5.1) and (4.5.7) since ω ∈ R.

Definition 4.5.1. S denotes the set of all nonzero solutions ψω(x) ∈ H1(R) to (4.5.11)
with all possible ω ∈ R.

Here H1(R) = H1 denotes the Sobolev space of complex valued measurable functions

with
∫

(|ψ′|2 + |ψ|2
)
dx <∞. We give below in section 4.5.3 a complete analysis of the set

S of all nonzero stationary orbits ψω(x) by an explicit calculation: it consists of functions
C(ω)e−

√
ω|x|+iθ with C > 0, ω = ω(C) > 0 and any θ ∈ [0, 2π], and C restricted to lie in

a set which, in the case of polynomial F , is a finite union of one-dimensional intervals.
Notice that C = 0 corresponds to the zero function ψ(x) = 0 which is always a solitary
wave as F (0) = 0, and for ω ≤ 0 only the zero stationary orbit exists.

Our main results describe the large time bechavior of the global solutions whose exis-
tence is guaranteed by the following theorem, which is proved in [133].

Theorem 4.5.2. i) Let conditions (4.5.3) and (4.5.5) hold. Then for any initial state
ψ(0) ∈ H1 there exist a unique solution ψ(·) ∈ Cb(R, H1) to the equation (4.5.1).
ii) The following a priori bound holds:

sup
t∈R
‖ψ(t)‖H1 <∞. (4.5.12)

The functional spaces we are going to consider are the weighted Banach spaces Lpβ,
p ∈ [1,∞), β ∈ R of complex valued measurable functions with the norm

‖u‖Lpβ = ‖(1 + |x|)βu(x)‖Lp . (4.5.13)

4.5.3 Solitary waves and the main theorem

Lemma 4.5.3. The set of all nonzero stationary orbits is given by

S =
{
ψωe

iθ = Ceiθ−
√
ω|x| : ω > 0, C > 0,

√
ω = a(C2)/2 > 0, θ ∈ [0, 2π]

}
.

Proof. Let us calculate all stationary orbits (4.5.10). The equation (4.5.11) implies
ψ′′(x) = ωψ(x), x 6= 0, hence the formula ψ(x) = C±e

√
ωx gives two linearly indepen-

dent solutions in each of the two regions ±x > 0 depending on which branch of
√
ω

is chosen. Since ψ(x) ∈ L2 it is necessary that ω > 0 and the branch is chosen with
±
√
ω > 0 for ±x < 0. Furthermore, since ψ′(x) ∈ L2, the function ψ(x) is continuous,

hence C− = C+ = C and the solutions are of the form

ψ(x) = Ce−κ|x|, κ =
√
ω > 0, ω > 0. (4.5.14)
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Finally we get an algebraic equation for the constant C equating the coefficients of δ(x)
in both sides of (4.5.11):

0 = ψ′(0+)− ψ′(0−) + F (ψ(0)). (4.5.15)

This implies 0 = −2κC + F (C), or equivalently,

κ =
F (C)

2C
=
a(C2)

2
. (4.5.16)

Corollary 4.5.4. The set S is a smooth manifold with co-ordinates θ ∈ R mod 2π and
C > 0 such that a(C2) > 0.

Remark 4.5.5. We will analyse only the stationary orbits with a′(C) 6= 0. On the man-
ifold S we have ω = κ2 with κ = a(C2)/2 according to (4.5.16). Hence, the parameters
θ, ω locally also are smooth coordinates on S at the points with a′ = a′(C) 6= 0 since
ω′ = 2κκ′ = aa′C 6= 0 then, see Fig. 2.

The stationary orbits is a trajectory ψω(t)(x)eiθ(t) = Ce−
√
ω(t)|x|eiθ(t), where the param-

eters satisfy the equation θ̇ = ω, ω̇ = 0. The stationary orbit t 7→ eiωtψω(x) maps out in
time an orbit θ 7→ eiθψω(x) of the U(1) symmetry group. This group acts on the Hilbert
phase space H1(R) preserving the Hamiltonian (4.5.4) and the symplectic form (4.5.40);
in other words the stationary orbits (4.5.10) are relative equilibria of the corresponding
Hamiltonian system.

Let us denote N(C) = Q(ψω(x)) with ω = κ2, and κ = a(C2)/2 according to (4.5.16).
It is easy to compute that N(C) = C2/κ. We now differentiate:

N ′(C) =
2C

κ
− C2κ′

κ2
.

Differentiating the identity (4.5.16), we obtain κ′ = a′C. Thus, again by (4.5.16),

N ′(C) =
2C

κ
(1− a′C2

a
) 6= 0

if C > 0, a > 0 and a′ 6= a/C2. Therefore noticing that N ′(C) = ω′(C)∂ωQ(ψω) with
ω′(C) = 2κκ′ = aa′C, we obtain the following result

Lemma 4.5.6. For C > 0, a > 0 we have

∂ωQ(ψω) < 0 if a′ ∈ (−∞, 0) ∪ (a/C2,+∞),

and
∂ωQ(ψω) > 0 if 0 < a′ < a/C2.

Remark 4.5.7. (i) Orbital stability of stationary orbits is a much studied subject (see
[103, 104] for very general theorems in this area, and [166] for an approach more similar
to that taken in this section). The standard condition for orbital stability ([103, 104])
for the present problem would read ∂ωQ(ψω) > 0; this is expected to be a necessary and
sufficient condition for orbital stability when the Hessian of the augmented Hamiltonian
([166]) has a single negative eigenvalue. In the present problem it can be easily calculated
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that this Hessian is non-negative when a′ < 0 and thus the standard condition is not
necessarily relevant if a′ < 0. Indeed Theorem 4.5.9 asserts stability in the case a′ < 0.
Restricting to a′ > 0, in which case the Hessian does have a single negative eigenvalue,
the calculation above shows that orbital stability is expected to hold when a′ < a/C2.
In this section we will work under the spectral condition (4.5.18) which, for a′ > 0, is
slightly stricter: it is imposed to ensure that the linearisation has no discrete spectrum
except zero (which is always present on account of the circular symmetry of the problem).
If a/

√
2C2 < a′ < a/C2 there are two purely imaginary eigenvalues of the linearised

operator. It is intended to treat this case in a later publication thus extending our proof
of asymptotic stability to the entire range

−∞ < a′ < a/C2. (4.5.17)

For a′ > a/C2 the linearised operator has a positive eigenvalue and the stationary orbit
is linearly unstable.

(ii) It is explained at the end of Section 4.5.4 that (4.5.6) can be interpreted as saying
the restriction of the symplectic form (4.5.40) to the tangent space to S is non-degenerate
(i.e. S satisfies the condition to be a symplectic submanifold).

Definition 4.5.8. We say the stationary orbit ψω(x)eiθ = Ce−
√
ω|x|+iθ, C > 0 satisfies

the spectral condition if ω > 0 and (cf. Remark 4.5.5)

a′(C2) ∈ (−∞, 0) ∪ (0, a(C2)/(
√

2C2)). (4.5.18)

Let us denote byW (t) the dynamical group of the free Schrödinger equation: W (t)f is
defined by the Fourier representation for all tempered distributions f . Our main theorem
is the following:

Theorem 4.5.9. Let conditions (4.5.3), (4.5.5) and (4.5.6) hold, β ≥ 2 and ψ(x, t) ∈
C(R, H1) be the solution to the equation (4.5.1) with initial state ψ(0) ∈ H1 ∩ L1

β which
is close to a stationary orbit ψω0e

iθ0 = C0e
−√ω0|x|+iθ0 with C0 > 0 and ω0 > 0:

d := ‖ψ(0)− ψω0e
iθ0‖H1∩L1

β
� 1. (4.5.19)

Assume further that the spectral condition (4.5.18) holds for the stationary orbit with
C = C0. Then for sufficiently small d > 0 the solution admits the following asymptotics:

ψ(·, t) = ψω±e
iω±t +W (t)Φ± + r±(t), t→ ±∞, (4.5.20)

where Φ± ∈ Cb(R) ∩ L2(R) are the corresponding asymptotic scattering states, and

‖r±(t)‖Cb(R)∩L2(R) = O(|t|−1/2), t→ ±∞. (4.5.21)

Remark 4.5.10. It is possible to derive further information about the structure of Φ±
and r±(t) as discussed towards the end of section 10.

4.5.4 Linearisation on the stationary orbit

As the first step in the proof of main theorem, let us linearise the nonlinear Schrödinger
equation (4.5.1) on a stationary orbit ei(ωt+θ)ψω(x), with ψω(x) = Ce−κ|x| where κ =√
ω > 0 and C > 0. Substituting

ψ(x, t) = ei(ωt+θ)(ψω(x) + χ(x, t)) (4.5.22)
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to (4.5.1), we obtain,

− ωχ(x, t) + iχ̇(x, t) = −χ′′(x, t)− δ(x)[F (C + χ(0, t))− F (C)] (4.5.23)

Use the representation (4.5.7) to write

F (C + χ)− F (C) = a(|C + χ|2)(C + χ)− a(|C|2)C

= a((C + χ)(C + χ))(C + χ)− a(|C|2)C

= a(|C|2)χ+ a′(|C|2)C(Cχ+ Cχ) +O(|χ|2)

= a(C2)χ+ a′(C2)C2(χ+ χ) +O(|χ|2) (4.5.24)

since C ≥ 0. Hence, the first order part of (4.5.23) is given by

iχ̇(x, t) = −χ′′(x, t) + ωχ(x, t)

−δ(x)[a(C2)χ(0, t) + a′(C2)C22Re χ(0, t)]. (4.5.25)

Now it is evident that the first order part is not linear over the complex field. On the
other hand, it is linear over the real field. Hence, it would be useful to rewrite (4.5.25) in
the real form. Namely, identify χ = χ1 + iχ2 ∈ C with the real vector (χ1, χ2) ∈ R2 and
denote it again by χ. Then (4.5.25) becomes the system

jχ̇(x, t) = −χ′′(x, t) + ωχ(x, t)

−δ(x)[a(C2)E + 2a′(C2)C2P1]χ(0, t), (4.5.26)

where E is the unit 2× 2-matrix, P1 is the projector in R2 acting as
(
χ1

χ2

)
7→
(
χ1

0

)
and j is the 2× 2 matrix

j =

(
0 −1
1 0

)
. (4.5.27)

Respectively, we also rewrite (4.5.1) in the real form

jψ̇(x, t) = −ψ′′(x, t)− δ(x)F(ψ(0, t)), (4.5.28)

as an equation for R2-valued function ψ(x, t) with F(ψ) ∈ R2 which is the real vector
version of F (ψ) ∈ C. Then the linearisation (4.5.26) reads as the system

jχ̇(x, t) = −χ′′(x, t) + ωχ(x, t)− δ(x)F′((C, 0))χ(0, t), (4.5.29)

where F′ is the differential of the map F : R2 → R2,

F′((C, 0)) = aE + bP1, a := a(C2), b := 2a′(C2)C2. (4.5.30)

In order to apply the Laplace transform the next step is to complexify the sys-
tem (4.5.29) i.e. to consider it as a system of equations for the complex functions
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χ1(x, t), χ2(x, t), so χ(x, t) ∈ C 2 for any fixed (x, t). This gives a system which is linear
over the complex field allowing application of the Laplace transform. To write this system
more concisely let us denote the linear operator

B := − d2

dx2
+ ω − δ(x)F′((C, 0)) =

(
D1 0
0 D2

)
,

where

D1 = − d2

dx2
+ ω − δ(x)[a+ b],

D2 = − d2

dx2
+ ω − δ(x)a.

(4.5.31)

The system (4.5.29) then reads as

χ̇(x, t) = Cχ(x, t), C := j−1B =

(
0 D2

−D1 0

)
. (4.5.32)

Theorem 4.5.2 generalises to the equation (4.5.32): the equation admits unique solution
χ(x, t) ∈ Cb(R, H1) for every initial function χ(x, 0) = χ0 ∈ H1. Denote by eCt the
dynamical group of equation (4.5.32) acting in the space H1.

4.5.5 Laplace transform

Equation (4.5.32) can be solved by the Laplace transform χ̃(x, ω) :=

∫ ∞
0

e−λtχ(x, t)dt.

The Laplace transform is analytic function in the complex halfplane Re λ > 0 with the
values in H1 since the solution is bounded in H1. This implies that the resolvent R(λ) :=
(C− λ)−1 is also analytic for Re λ > 0, with values in the space of bounded operators on
H1. From the inversion of the Laplace transform we obtain

eCt = − 1

2πi

i∞∫
−i∞

eλtR(λ+ ε) dλ, t > 0, (4.5.33)

for any ε > 0, where the integral converges in the sense of distributions of t ∈ R.
We assume that the spectral condition (4.5.18) holds from now on. Then the resolvent

admits analytic continuation from Re λ > 0 to the complex plain with the cuts C+ =
[iω, i∞), C− = (−i∞,−iω], and with the pole of order two at λ = 0 as detailed in Section
4.5.13. Furthermore, for λ ∈ C+ ∪ C−, the resolvent R(λ ± ε) has right and left limits
R(λ± 0) as ε→ 0. Then (4.5.33) implies that for any r ∈ (0, ω)

eCt = − 1

2πi

∫
|λ|=r

eλtR(λ) dλ− 1

2πi

∫
C+∪C−

eλt(R
(
λ+ 0)−R(λ− 0)

)
dλ (4.5.34)

by the Cauchy theorem. Setting t = 0, we obtain that

1 = − 1

2πi

∫
|λ|=r

R(λ) dλ− 1

2πi

∫
C+∪C−

(R
(
λ+ 0)−R(λ− 0)

)
dλ = P0 + Pc, (4.5.35)
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where P0 and Pc stands for the corresponding Riesz projections (see [17]) onto, respec-
tively, the generalised null space of C , and onto the continuous spectral subspace. We
will show in the next section that P0 is the symplectic projection, and therefore, Pc is also
the symplectic projection. The projectors P0, Pc commute with C and with the group
eCt. Let us note that

P0eCt = − 1
2πi

∫
|λ|=r

eλtR(λ) dλ,

PceCt = − 1
2πi

∫
C+∪C−

eλt(R
(
λ+ 0)−R(λ− 0)

)
dλ

∣∣∣∣∣∣∣∣∣∣∣∣
. (4.5.36)

The first equation holds since both sides are one-parameter groups of operators , and their
derivatives at t = 0 coincide. The second equation follows from (4.5.34) and the fact that
1 = P0 + Pc by (4.5.35). Therefore, (4.5.34) becomes

eCt = P0eCt + PceCt. (4.5.37)

4.5.6 Invariant subspace of discrete spectrum

Here we prove that P0 is the symplectic projection onto the tangent space of the solitary
manifold S at the stationary orbit ejθψω. The real form of the stationary orbit is ejθΦω

where Φω = (ψω(x), 0). The tangent space to S at the point ejθΦω with parameters ω, θ
is the linear span of the derivatives with respect to θ and ω cf. Remark 4.5.5) i.e.

Tω,θS ≡ linear span
{
jejθΦω(x), ejθ∂ωΦω(x)

}
.

Notice that the operator C corresponds to θ = 0 since we have extracted the phase factors
eiθ from the solution in the process of linearisation (4.5.22). The tangent space to S at
the point Φω with parameters (ω, 0) is spanned by the vectors

T0(ω) := jΦω, T1(ω) := ∂ωΦω. (4.5.38)

Observe that (4.5.11) and its derivative in ω give the following identities:

D2ψω = 0 D1(∂ωψω) = −ψω. (4.5.39)

These formulae imply that the vectors T0 and T1 lie in the generalised null space of the
non-self-adjoint operator C defined in (4.5.32) and in fact Theorem 4.5.38 ii) implies:

Lemma 4.5.11. Let the spectral condition (4.5.18) hold. Then the generalised null space
of C is two dimensional, is spanned by T0, T1, and

CT0 = 0 CT1 = T0.

We also introduce the symplectic form Ω for the real vectors ψ and η by the integral

Ω(ψ, η) =

∫
〈jψ, η〉dx =

∫ (
ψ1η2 − ψ2η1

)
dx, (4.5.40)



118 CHAPTER 4. ASYMPTOTIC STABILITY OF SOLITONS

where 〈·, ·, 〉 stands for the scalar product in R2. Since a′ 6= a/C2 then by Lemma 4.5.6

µω = −Ω(T0, T1) =
1

2
∂ω

∫
|ψω|2dx 6= 0. (4.5.41)

Hence, the symplectic form Ω is nondegenerate on the tangent space Tω,0S, i.e. Tω,0S is a
symplectic subspace. Therefore, there exists a symplectic projection operator from L2(R)
onto Tω,0S.

Lemma 4.5.12. The operator P0, defined in (4.5.35), is precisely the symplectic projec-
tion from L2(R) onto Tω,0S, and, furthermore, it may be represented by the formula

P0ψ = b0T0 + b1T1 with − µωb0 = Ω(ψ, T1), µωb1 = Ω(ψ, T0). (4.5.42)

Proof. The coincidence of both definition (4.5.35) and (4.5.42) of operator P0 follows by
the Cauchy residue theorem from the formulas (4.5.45)-(4.5.47) for the resolvent.

Corollary 4.5.13. Pc = 1−P0 is also symplectic projection.

Remark 4.5.14. Since T0(ω), T1(ω) lie in H1(R) the operator P0 extends uniquely to de-
fine a continuous linear map H−1(R)→ Tω,0S, which is still designated P0. In particular
this operator can be applied to the Dirac measure δ(x).

Using the Taylor expansion for the eλt at λ = 0 and the identity λR(λ) = CR(λ)− 1,
we obtain by (4.5.36)

P0eCt = (1 + Ct)P0 (4.5.43)

Remark 4.5.15. On the generalised null space itself C2 = 0 by Lemma 4.5.11 and so
the group etC reduces to 1 + Ct as usual for the exponential of the nilpotent part of an
operator.

4.5.7 Time decay in continuous spectrum

From formulas (4.5.37, (4.5.43) we see that the solutions χ(t) = eCtχ0 of the linearised
equation (4.5.32) do not decay as t → ∞ if P0χ0 6= 0. On the other hand, we do expect
time decay of Pcχ(t), as a consequence of the Laplace representation (4.5.36) for PceCt:

PceCt = − 1

2πi

∫
C+∪C−

eλt(R
(
λ+ 0)−R(λ− 0)

)
dλ. (4.5.44)

The decay for the oscillatory integral is obtained from the analytic properties of R(λ)
for λ ∈ C+ ∪ C−. The resolvent R(λ) is an integral operator with matrix-valued integral
kernel

R(λ, x, y) = Γ(λ, x, y) + P (λ, x, y), (4.5.45)

where the columns of matrices Γ and P are given in (4.5.134), (4.5.135), (4.5.137),
(4.5.138):

Γ(λ, x, y)=


1

4k+

− 1

4k−
i

4k+

i

4k−


eik+|x−y|−eik+(|x|+|y|) −i(eik+|x−y|−eik+(|x|+|y|))

eik−|x−y|−eik−(|x|+|y|) i(eik−|x−y|−eik−(|x|+|y|))

, (4.5.46)
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P (λ, x, y)=
1

2D

(
eik+|x| eik−|x|

ieik+|x| −ieik−|x|
)(

iα−2k− iβ
−iβ −iα+2k+

)(
eik+|y| −ieik+|y|
eik−|y| ieik−|y|

)
. (4.5.47)

Here k±(λ) =
√
−ω ∓ iλ is the square root defined with cuts in the complex λ plane so

that k±(λ) is an analytic function on C \ C± and Imk±(λ) > 0 for λ ∈ C \ C±. The
constants α, β and D = D(λ) are given by the formulas

α = a+ b/2, β = b/2, D = 2iα(k+ + k−)− 4k+k− + α2 − β2.

Recall from Section 4.5.13 that D(λ) 6= 0 for λ ∈ C+ ∪C−. Clearly in order to understand
the decay of PcetC, it is crucial to study the behaviour of R(λ, x, y) near the branch points
λ = ±iω (where k± vanish).

We deduce time decay for the group PcetC by means of the following version of Lemma
10.2 from [184], which is itself based on Zygmund’s lemma [192, p.45].

Let F : [0,∞)→ B be a C2 function with values in a Banach space B. Let us define
the B-valued function

I(t) =

∞∫
0

e−itζF(ζ) dζ.

Lemma 4.5.16. Suppose that F(0) = 0, and for some δ > 0

F ′′ ∈ L1(δ,∞;B), (4.5.48)

and
F ′′(ζ) = O(ζp−2), ζ ↓ 0 (4.5.49)

in the norm of B for some p ∈ (0, 1). Then I(t) ∈ Cb(ε,∞;B) for any ε > 0, and

I(t) = O(t−1−p) as t→∞

in the norm of B.

For β ≥ 2 let us introduce a Banach space Mβ, which is the subset of distributions
which are linear combinations of L1

β functions and multiples of the Dirac distribution at
the origin with the norm:

‖ψ + Cδ(x)‖Mβ
:= ‖ψ‖L1

β
+ |C|. (4.5.50)

We will apply Lemma 4.5.16 to the function F(λ) = R(λ+ 0)−R(λ− 0) with values in
the Banach space B = B(Mβ, L

∞
−β) , the space of continuous linear mapsMβ → L∞−β for

any β ≥ 2.

Theorem 4.5.17. Assume that the spectral condition (4.5.18) holds so that λ = 0 is the
only point in the discrete spectrum of the operator C = C(ω). Then for β ≥ 2

‖PceCt‖B = O(t−3/2), t→∞. (4.5.51)

First we use the formulas (4.5.44) and (4.5.45) to obtain

−2πiPceCt=

∫
C+∪C−

eλt(Γ(λ+0)−Γ(λ−0))dλ+

∫
C+∪C−

eλt(P (λ+0)−P (λ−0))dλ. (4.5.52)

Next we apply Lemma 4.5.16 to each summand in the RHS of (4.5.52) separately. Then
Theorem 4.5.17 immediately follows from the two lemmas below.
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Lemma 4.5.18. If the assumption of Theorem 4.5.17 hold then∫
C+∪C−

eλt(Γ(λ+ 0)− Γ(λ− 0)) dλ = O(t−3/2), t→∞ (4.5.53)

in the norm B.

Proof. We consider only the integral over C+ since the integral over C− can be handled
in the same way. The point λ = iω is the branch point for k+, therefore, if λ ∈ C+ then
since k− is continuous across C+

Γ(λ+ 0)− Γ(λ− 0) = Γ+(λ+ 0)− Γ+(λ− 0),

where Γ+ is the sum of those terms in Γ which involve k+. Let us consider, for example,
Γ+

11. The expression (4.5.46) implies for y > 0 that

Γ+
11(λ, x, y) =



0, x ≤ 0,

eik+y(e−ik+x − eik+x)
4k+

, 0 ≤ x ≤ y,

eik+x(e−ik+y − eik+y)
4k+

, x ≥ y.

For λ ∈ C+, the root k+ =
√
−ω − iλ is real, and k+(λ + 0) = −k+(λ − 0). Then, for

y > 0,

Γ+
11(λ+ 0, x, y)− Γ+

11(λ− 0, x, y) = −Θ(x)
sin(
√
ζ|x|) sin(

√
ζ|y|)√

ζ
, (4.5.54)

where ζ = −ω− iλ, and Θ(x) = 1 for x > 0 and zero otherwise. The second derivative of

the function f(ζ) =
sin(
√
ζ|x|) sin(

√
ζ|y|)√

ζ
satisfies

|f ′′(ζ)| = | − sin(
√
ζ|x|) sin(

√
ζ|y|)(|x|2 + |y|2)

4ζ
√
ζ

+
2 cos(

√
ζ|x|) cos(

√
ζ|y|)|x||y|

4ζ
√
ζ

−sin(
√
ζ|x|) cos(

√
ζ|y|)|y|+ cos(

√
ζ|x|) sin(

√
ζ|y|)|x|

2ζ2
| ≤ C(1 + |x|2)(1 + |y|2)

ζ
√
ζ

.

For y < 0 an identical calculation leads to the same bound. Therefore the operator valued
function F(ζ) = Γ+

11(λ + 0) − Γ+
11(λ − 0) satisfies the conditions (4.5.48) and (4.5.49) of

Lemma 4.5.16 with ζ = −ω − iλ, p = 1/2 and B = B.

Next we consider the second summand on the RHS of (4.5.52).

Lemma 4.5.19. In the situation of Theorem 4.5.17∫
C+∪C−

eλt(P (λ+ 0)− P (λ− 0)) dλ = O(t−3/2), (4.5.55)

in the norm B.
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Proof. We consider only the integral over C+ and one component of the matrix P , for
example, P11:

P11(λ, x, y)=
(iα−2k−)eik+(|x|+|y|)+(−iα+2k+)eik−(|x|+|y|)+iβ(eik−|y|+ik+|x|−eik+|y|+ik−|x|)

2iα(k+ + k−)− 4k+k− + α2 − β2
.

Denote ζ = −ω − iλ, then k+ =
√
ζ, k− =

√
−2ω − ζ. A Taylor expansion in

√
ζ as

ζ → 0, Im ζ ≥ 0 implies

P11(λ, x, y) = P0 + P1(x, y)ζ1/2 + P2(x, y)O(ζ),

where |Pj(x, y)| ≤ Cj(1 + |x|j)(1 + |y|j), j = 1, 2. Therefore, if λ ∈ C+ then

F(ζ) = P11(λ+ 0)− P11(λ− 0) = O(ζ1/2), ζ → 0

in the norm of B. Similarly, differentiating two times the function P11(λ, x, y) in λ, we
obtain that

F ′′(ζ) = −P ′′11(λ+ 0) + P ′′11(λ− 0) = O(ζ−3/2), i, j = 1, 2, ζ → 0

in the norm of B. Moreover, F ′′(ζ) ∼ ζ−3/2 as ζ → ∞. Therefore, the function F(ζ)
satisfies the conditions (4.5.48) and (4.5.49) of Lemma 4.5.16 with p = 1/2 andB = B.

4.5.8 Bounds for small times

As a starting point for the method of majorants in Section 4.5.10 we will need also
some estimates on the dynamical group eCt for small t. First note that the function
eCtχ0 belongs to Cb(R, H1). This follows from a theorem analogous to Theorem 4.5.2
for solutions eCtχ0 of the linearised equation (4.5.32), with initial condition χ0 ∈ H1.
Moreover, energy and charge conservation imply that

‖eCtχ0‖H1 ≤ c‖χ0‖H1 , t ∈ R. (4.5.56)

For a further application in section 4.5.11 we need a bound for the action of eCt on the
Dirac distribution δ = δ(x).

Thus let χδ(x, t) be the solution to the linearised equation (4.5.25) with χδ(x, 0) =
δ(x) and eCtδ its real vector version. Note that, by Theorem 4.5.17, we have eCtδ ∈
Cb(ε,∞;L∞−β), for every ε > 0, and β ≥ 2. The next lemma gives the small t behaviour:

Lemma 4.5.20. The following bound holds

‖eCtδ‖L∞ = O(t−1/2), t→ 0. (4.5.57)

Proof. By the Duhamel representation for the solution to (4.5.25), we obtain

χδ(x, t) = Wω(t)δ −
t∫

0

ds
(
aχδ(0, s) + bRe (χδ(0, s)

)
Wω(t− s)δ (4.5.58)

where a and b are defined by (4.5.30), and Wω(t) is the dynamical group of the modified
Schrödinger equation

iχ̇(x, t) = −χ′′(x, t) + ωχ(x, t). (4.5.59)
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Note that
Wω(t)δ =

1√
4πit

ei
x2

4t
−iωt (4.5.60)

Therefore (4.5.58) becomes

χδ(x, t) =
1√
4πit

ei
x2

4t
−iωt

−
t∫

0

1√
4πi(t− s)

ei
x2

4(t−s)−iω(t−s)
(
aχδ(0, s) + bRe (χδ(0, s)

)
ds. (4.5.61)

Denote ς(x, t) =
√
t χδ(x, t). Then

ς(x, t) =
1√
4πi

ei
x2

4t
−iωt

−
√
t

t∫
0

1√
4πi(t− s)s

ei
x2

4(t−s)−iω(t−s)
(
aς(0, s) + bRe (ς(0, s)

)
ds. (4.5.62)

Therefore,

‖ς(t)‖L∞ ≤
1

2
√
π

+
1

2

√
πt(|a|+ |b|)

t∫
0

1

π
√

(t− s)s
‖ς(s)‖L∞ds, t > 0. (4.5.63)

Since
∫ t

0

ds

π
√

(t− s)s
= 1, we obtain the bound

‖ς(t)‖L∞ ≤
1

2
√
π

1

1− 1
2

√
πt(|a|+ |b|)

if t is sufficiently small.

4.5.9 Modulation equations

In this section we present the modulation equations which allow a construction of solutions
ψ(x, t) of the equation (4.5.1) close at each time t to a soliton i.e. to one of the functions

Ceiθ−
√
ω|x|, C = C(ω) > 0

in the set S described in section 4.5.3 with time varying (‘modulating’) parameters (ω, θ) =
(ω(t), θ(t)). It will be assumed that ψ(x, t) is a given weak solution of (4.5.1) as provided
by Theorem 4.5.2, so that the map t→ ψ( · , t) is continuous into H1(R). The modulation
equations follow from the ansatz for the solution which is explained next. Recall that we
defined

Φω(x) ≡
(
Ce−

√
ω|x|, 0

)
=
(
ψω, 0

)
(4.5.64)

so that ψ(x, t) = ejθ(t)Φω(t)(x) is a solution of (4.5.28) if and only if θ̇ = ω and ω̇ = 0.
Here it is to be understood that C = C(ω(t)) is determined from ω(t) via (4.5.16). We
look for a solution to (4.5.28) in the form

ψ(x, t) = ejθ(t)
(
Φω(t)(x) + χ(x, t)

)
= ejθ(t)Ψ(x, t), Ψ(x, t) = Φω(t)(x) + χ(x, t). (4.5.65)



4.5. THE SCHRÖDINGER EQUATION COUPLED TO AN OSCILLATOR 123

Since this is a solution of (4.5.28) as long as χ ≡ 0 and θ̇ = ω and ω̇ = 0 it is natural to
look for solutions in which χ is small and

θ(t) =

∫ t

0

ω(s)ds+ γ(t)

with γ treated perturbatively. Observe that so far this representation is underdetermined
since for any

(
ω(t), θ(t)

)
it just amounts to a definition of χ; it is made unique by re-

stricting χ(t) to lie in the image of the projection operator onto the continuous spectrum
Pc
t = Pc(ω(t)) or equivalently that

P0
tχ(t) = 0, P0

t = P0(ω(t)) = I −Pc(ω(t)) (4.5.66)

(The projection operators are as defined in (4.5.35) and (4.5.42)). An equivalent formu-
lation of (4.5.66) is to say that ejθχ is required to lie in the symplectic normal space
Nω(t),θ(t)S. This is equivalent to imposition of the following orthogonality conditions (at
each time t):

Ω(χ(t), T0(ω(t)) = 0 = Ω(χ(t), T1(ω(t)), (4.5.67)

where Ω is the symplectic form introduced previously. Writing χ(t) = (χ1(t), χ2(t)) the
orthogonality conditions reduce to∫

χ1(x, t)Ce−
√
ω|x| dx = 0, and

∫
χ2(x, t)∂ω(Ce−

√
ω|x|) dx = 0. (4.5.68)

Now we give a system of modulation equations for ω(t), γ(t) which ensure the condi-
tions (4.5.68) are preserved by the time evolution.

Lemma 4.5.21. (i) Assume given a solution of (4.5.28) with regularity as described
in theorem 4.5.2, which can be written in the form (4.5.65)–(4.5.66) with continuously
differentiable ω(t), θ(t). Then

χ̇ = Cχ− ω̇∂ωΦω + γ̇j−1(Φω + χ) + Q (4.5.69)

where Q(χ, ω) = −δ(x)j−1
(
F(Φω + χ)− F(Φω)− F′(Φω)χ

)
, and

ω̇ =
〈P0Q,Ψ〉

〈∂ωΦω − ∂ωP0χ,Ψ〉
(4.5.70)

γ̇ =
〈jP0(∂ωΦω − ∂ωP0χ),P0Q〉
〈∂ωΦω − ∂ωP0χ,Ψ〉

, . (4.5.71)

where P0 = P0(ω(t)) is the projection operator defined in (4.5.42) and ∂ωP0 = ∂ωP
0(ω)

evaluated at ω = ω(t).
(ii) Conversely given ψ a solution of (4.5.28) as in theorem 4.5.2 and continuously dif-

ferentiable functions ω(t), θ(t) which satisfy (4.5.70)–(4.5.71) then χ defined by (4.5.65)
satisfies (4.5.69) and the condition (4.5.66) holds at all times if it holds initially.

Proof. This can be proved as in [112, Prop.2.2].

It remains to show, for appropriate initial data close to a soliton, that there exist
solutions to (4.5.70)–(4.5.71), at least locally. To achieve this observe that if the spectral
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condition (4.5.18) holds then by Lemma 4.5.6 the denominator appearing on the right
hand side of (4.5.70) and (4.5.71) does not vanish for small ‖χ‖L1

β
. This is because

〈∂ωψs, ψs〉 =
1

2
∂ω

∫
|ψω|2dx 6= 0 (4.5.72)

as discussed in section 4.5.3. This has the consequence that the orthogonality conditions
really can be satisfied for small χ because they are equivalent to a locally well posed set
of ordinary differential equations for t→ (θ(t), ω(t)). This implies the following corollary:

Corollary 4.5.22. (i) In the situation of (i) in the previous lemma assume that (4.5.72)
holds. If ‖χ‖Lpβ is sufficiently small for some p, β the right hand sides of (4.5.70) and
(4.5.71) are smooth in θ, ω and there exists continuous R = R(ω, χ) such that

|γ̇(t)| ≤ R|χ(0, t)|2, |ω̇(t)| ≤ R|χ(0, t)|2.

(ii) Assume given ψ, a solution of (4.5.28) as in Theorem 4.5.2. If ω0 satisfies (4.5.72)
and χ(x, 0) = e−jθ0ψ(x, 0)−Φω0(x) is small in some Lpβ norm and satisfies (4.5.66) there is
a time interval on which there exist C1 functions t 7→

(
ω(t), γ(t)

)
which satisfy (4.5.70)–

(4.5.71).

4.5.10 Time decay for the transversal dynamics

In this section we state our Theorem 4.5.24 on the time decay of the transversal component
χ(t) in the nonlinear setting, leaving the proof to the next section. Theorem 4.5.24 will
be used to prove the main theorem in Section 4.5.12. First we represent the initial data
ψ0 in a convenient form for application of the modulation equations: the next Lemma
will allow us to assume that (4.5.66) holds initially without loss of generality.

Lemma 4.5.23. In the situation of Theorem 4.5.9 there exists a stationary orbit ψω̃0 =
C̃0e

−
√
ω̃0|x| satisfying the spectral condition (4.5.18) such that in vector form

ψ0(x) = ejθ̃0(Φω̃0(x) + χ0(x)), Φω̃0 = (ψω̃0 , 0),

and for χ0(x) we have
P0(ω̃0)(χ0) = 0, (4.5.73)

and
‖χ0‖L1

β∩H1 = d̃ = O(d) as d→ 0.

Proof. By (4.5.67), the condition (4.5.73) is equivalent to the pair of equations

Ω(e−jθ̃0ψ0 − Φω̃0 , T0(ω̃0)) = 0, Ω(e−jθ̃0ψ0 − Φω̃0 , T1(ω̃0)) = 0,

where T0(ω) = jΦω, T1(ω) = ∂ωΦω. For ψ0 sufficiently close (in L1
β) to ejθ0Φω0 the

existence of θ̃0, ω̃0 follows by a standard application of the implicit function theorem if we
show that the Jacobian matrix(

∂ωΩ(e−jθψ0 − Φω, jΦω) ∂ωΩ(e−jθψ0 − Φω, ∂ωΦω)
∂θΩ(e−jθψ0 − Φω, jΦω) ∂θΩ(e−jθψ0 − Φω, ∂ωΦω)

)
, (4.5.74)
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with ψ0 = ejθ0Φω0 , is non-degenerate at ω = ω0 and θ = θ0. But this is equivalent to the
non-degeneracy of the matrix(

Ω(∂ωΦω0 , jΦω0) 0
0 Ω(jΦω0 , ∂ωΦω0)

)
(4.5.75)

which holds by (4.5.72).

In Section 4.5.12 we will show that our main Theorem 4.5.9 can be derived from the
following time decay of the transversal component χ(t):

Theorem 4.5.24. Let all the assumptions of Theorem 4.5.9 hold. For d sufficiently small
there exist C1 functions t 7→

(
ω(t), γ(t)

)
defined for t ≥ 0 such that the solution ψ(x, t)

of (4.5.28) can be written as in (4.5.65-4.5.66) with (4.5.70-4.5.71) satisfied, and there
exists a number M > 0, depending only on the initial data, such that

M(T ) = sup
0≤t≤T

[(1 + t)3/2‖χ(t)‖L∞−β + (1 + t)3
(
|γ̇|+ |ω̇|

)
|] ≤M, (4.5.76)

uniformly in T > 0, and M = O(d) as d→ 0.

Remarks 4.5.25. (0) This theorem will be deduced from Proposition 4.5.26 in the next
section.

(i) Theorem 4.5.2 implies that the norms in the definition of M are continuous func-
tions of time (and so M is also).

(ii) The result holds also for negative time with appropriate changes since ψ(x, t) solves
(4.5.1) if and only if ψ(x,−t) does.

(iii) The result implies in particular that t3|θ̇−ω|+t3|ω̇| ≤ C, hence ω(t) and θ(t)−tω+

should converge as t→∞ while ψ(x, t)− ejθ(t)Φω(t)(x) have limit zero in L∞−β(R).
(iv) The notation χ(t) indicates the function x 7→ χ(x, t) as usual.

4.5.11 Decay in transversal directions

In this section we prove Theorem 4.5.24. Let us write the initial data in the form

ψ0(x) = ejθ0(Φω0(x) + χ0(x)). (4.5.77)

with d = ‖χ0‖L1
β∩H1 sufficiently small. By Lemma 4.5.23 we can assume thatP0(ω0)(χ0) =

0 without loss of generality. Then the local existence asserted in Corollary 4.5.22 implies
the existence of an interval [0, t1] on which are defined C1 functions t 7→

(
ω(t), γ(t)

)
satisfying (4.5.70)-(4.5.71) and such that M(t1) = ρ for some t1 > 0 and ρ > 0. By
continuity we can make ρ as small as we like by making d and t1 small.

Proposition 4.5.26. In the situation of Theorem 4.5.24 let M(t1) ≤ ρ for some t1 > 0
and ρ > 0. Then there exist numbers d1 and ρ1, independent of t1, such that

M(t1) ≤ ρ/2 (4.5.78)

if d = ‖χ0‖L1
β∩H1 < d1 and ρ < ρ1.

Proof of Theorem 4.5.24. Assuming the truth of Proposition 4.5.26 for now The-
orem 4.5.24 will follow from the next argument:
Consider the set T of t1 ≥ 0 such that

(
ω(t), γ(t)

)
are defined on [0, t1] and M(t1) ≤ ρ.

This set is relatively closed by continuity. On the other hand, (4.5.78) and Corollary
4.5.22 with sufficiently small ρ and d imply that this set is also relatively open, and hence
sup T = +∞, completing the proof of Theorem 4.5.24.

In the remaining part of the section we prove Proposition 4.5.26.
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Frozen linearised equation

A crucial part of the proof of Proposition 4.5.26 is the estimation of the first term in
M , for which purpose it is necessary to make use of the dispersive properties obtained in
sections 4.5.6 and 4.5.7. Rather than study directly (4.5.69), whose linear part is non-
autonomous, it is convenient (following [110, 111]) to introduce a second ansatz, a small
modification of (4.5.65), which leads to an autonomous linearised equation. This new
ansatz for the solution is

ψ(x, t) = ejθ(Φω(x)+e−j(θ−θ̃)η), where θ̃(t) = ω1t+θ0, θ0 = θ0 andω1 = ω(t1) (4.5.79)

so that, η = ej(θ−θ̃)χ and χ = e−j(θ−θ̃)η. Since

χ̇ = e−j(θ−θ̃)
(
η̇ − j(ω + γ̇ − ω1)η

)
equation (4.5.69) implies

η̇ = j−1(ω1−ω)η+ej(θ−θ̃)C
(
e−j(θ−θ̃)η

)
+ej(θ−θ̃)

(
j−1γ̇Φω−ω̇∂ωΦω+Q[e−j(θ−θ̃)η]

)
. (4.5.80)

The matrices C and ejφ, where φ = θ − θ̃, do not commute hence we need the following
lemma:

Lemma 4.5.27.

Cejφ − ejφC = δ(x)b sinφ σ, where σ =

(
1 0
0 −1

)
, b = 2a′C2. (4.5.81)

Proof.

Cejφ − ejφC =

(
0 D2

−D1 0

)(
cosφ − sinφ
sinφ cosφ

)
−
(

cosφ − sinφ
sinφ cosφ

)(
0 D2

−D1 0

)

=

(
(D2 −D1) sinφ 0

0 (D1 −D2) sinφ

)
=

(
δ(x)b sinφ 0

0 −δ(x)b sinφ

)
.

Using Lemma 4.5.27 we rewrite equation (4.5.80) as

η̇ = j−1(ω1− ω)η+Cη+ ej(θ−θ̃)
(
−δ(x)b sin(θ− θ̃)ση+ j−1γ̇Φω − ω̇∂ωΦω +Q[e−j(θ−θ̃)η]

)
.

To obtain a perturbed autonomous equation we rewrite the first two terms on the RHS
by freezing the coefficients at t = t1. Note that

j−1(ω1 − ω) + C = C1 − j−1δ(x)(V − V1),

where V = a+ bP1, V1 = V (t1), and C1 = C(t1). The equation for η now reads

η̇ = C1η − j−1δ(x)(V − V1)η

+ej(θ−θ̃)
(
−δ(x)b sin(θ − θ̃)ση + j−1γ̇Φ− ω̇∂ωΦω + Q[e−j(θ−θ̃)η]

)
(4.5.82)
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The first term is now independent of t; the idea is that if there is sufficiently rapid
convergence of ω(t) as t→∞ the other remaining terms are small uniformly with respect
to t1. Finally the equation (4.5.82) can be written in the following frozen form

η̇ = C1η + f1 (4.5.83)

where

f1 = −j−1δ(x)(V − V1)η

+ej(θ−θ̃)
(
−δ(x)b sin(θ − θ̃)ση + j−1γ̇Φ− ω̇∂ωΦω + Q[e−j(θ−θ̃)η]

)
. (4.5.84)

Remark 4.5.28. The advantage of (4.5.83) over (4.5.69) is that it can be treated as a
perturbed autonomous linear equation, so that the estimates from section 4.5.6 can be
used directly. The additional terms in f1 can be estimated as small uniformly in t1: see
lemma 4.5.29 below. This is the reason for introduction of the second ansatz (4.5.79).

Lemma 4.5.29. In the situation of Proposition 4.5.26 there exists c > 0, independent of
t1, such that for 0 ≤ t ≤ t1

|a(t)− a1|+ |b(t)− b1|+ |θ(t)− θ̃(t)| ≤ cρ.

Proof. By (4.5.76)
sup

0≤t≤t1
(1 + t3)(|γ̇(t)|+ |ω̇(t)|) ≤M(t1) = ρ. (4.5.85)

Therefore

|a(t)− a(t1)| = |
t1∫
t

ȧ(τ)dτ | ≤ c
(

sup
0≤τ≤t1

(1 + τ 2)|ω̇(τ)|
) t1∫
t

dτ

1 + τ 2
≤ cρ,

since |ȧ(τ)| ≤ c|ω̇(τ)|. The difference |b(t)− b(t1)| can be estimated similarly. Next

θ(t)− θ̃(t) =

∫ t

0

ω(τ)dτ + γ(t)− ω(t1)t− γ(0) =

∫ t

0

(ω(τ)− ω(t1))dτ +

∫ t

0

γ̇(τ)dτ

=−
∫ t

0

∫ t1

τ

ω̇(s)dsdτ +

∫ t

0

γ̇(τ)dτ. (4.5.86)

By (4.5.85) the first summand on RHS of (4.5.86) can be estimated as∫ t

0

∫ τ

t1

|ω̇(s)|ds dτ ≤
∫ t

0

∫ t1

τ

(1 + s)2+ε|ω̇(s)| 1

(1 + s)2+ε
ds dτ

≤ c sup
0≤s≤t1

(1 + s)2+ε|ω̇(s)|
∫ t

0

∫ t1

τ

1

(1 + s)2+ε
ds dτ ≤ cρ

since the last integral is bounded for t ∈ [0, t1]. Finally, for the second summand on the
RHS of (4.5.86) inequality (4.5.85) implies

|
∫ t

0

γ̇(τ)dτ | ≤ c sup
0≤τ≤t1

(1 + τ 2)|γ̇(τ)|
t1∫
t

dτ

1 + τ 2
≤ cρ
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Projection onto discrete and continuous spectral spaces

From sections 4.5.6 and 4.5.7 we have information concerning U(t) = eC1t, in particular
decay on the subspace orthogonal to the (two dimensional) generalized null space. It is
therefore necessary to introduce a further decomposition to take advantage of this. Recall,
by comparing (4.5.65) and (4.5.79) that

η = ej(θ−θ̃)χ and P0
tχ(t) = 0 (4.5.87)

Introduce the symplectic projections P0
1 = P0

t1
and Pc

1 = Pc
t1

onto the discrete and
continuous spectral subspaces defined by the operator C1 and write, at each time t ∈
[0, t1]:

η(t) = g(t) + h(t) (4.5.88)

with g(t) = P0
1η(t) and h(t) = Pc

1η(t). The following lemma shows that it is only necessary
to estimate h(t).

Lemma 4.5.30. In the situation of Proposition 4.5.26, assume

sup
0≤t≤t1

(
|ω(t)− ω1|+ |θ(t)− θ1(t)|

)
= ∆

is sufficiently small. Then for 0 ≤ t ≤ t1 there exists a linear operator Ξ(t), bounded on
L∞−β ∩H1, and c(∆, ω1) such that η(t) = Ξ(t)h(t), and

c(∆, ω1)−1|‖h‖L∞−β∩H1 ≤ ‖η‖L∞−β∩H1 ≤ c(∆, ω1)|‖h‖L∞−β∩H1 . (4.5.89)

Proof. Explicitly we write

η(t) = h(t) + g(t), g(t) = b0(t)T0(ω1) + b1(t)T1(ω1) (4.5.90)

where b0, b1 are chosen at each time t to ensure that Ω(h(t), T0(ω1)) = Ω(h(t), T1(ω1)) = 0.
Using the fact that (since P0

tχ(t) = 0)

Ω
(
e−j(θ−θ̃)η, T0(ω(t)

)
= 0 = Ω

(
e−j(θ−θ̃)η, T1(ω(t)

)
this means that b0, b1 are determined by

−µω1b0(t) = Ω
(
η(t), T1(ω1)

)
= Ω

(
η(t), T1(ω1)− ej(θ−θ̃)T1(ω(t))

)
(4.5.91)

µω1b1(t) = Ω
(
η(t), T0(ω1)

)
= Ω

(
η(t), T0(ω1)− ej(θ−θ̃)T0(ω(t))

)
. (4.5.92)

From these it follows that there exists c > 0 such that ‖g(t)‖L∞−β∩H1 ≤ c∆‖η(t)‖L∞−β∩H1

and hence (4.5.89) follows as claimed.

Proof of Proposition 4.5.26

To prove Proposition 4.5.26 we explain how to estimate both terms in M , (4.5.76), to be
≤ ρ/4, uniformly in t1.
Estimation of the second term in M . As in Corollary 4.5.22 we have

|γ̇(t)|+ |ω̇(t)| ≤ c0|χ(0, t)|2 ≤ c0
M(t)2

(1 + |t|)3
, t ≤ t1,
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since |χ(0, t)| ≤ ‖χ(t)‖L∞−β . Finally let ρ1 < 1/(4c0) to complete the estimate for the
second term in M as ≤ ρ/4.
Estimation of the first term in M . By Lemma 4.5.30 it is enough to estimate h. Let us
apply the projection Pc

1 to both sides of (4.5.83). Then the equation for h reads

ḣ = C1h+ Pc
1f1 (4.5.93)

Now to estimate h we use the Duhamel representation:

h(t) = U(t)h(0) +

∫ t

0

U(t− s)Pc
1f1(s)ds, t ≤ t1. (4.5.94)

with U(t) = eC1t the one parameter group just introduced. Recall that P0
1h(t) = 0 for

t ∈ [0, t1]. Therefore

‖U(t)h(0)‖L∞−β ≤ c(1 + t)−3/2‖h(0)‖L1
β∩H1 ≤ c(1 + t)−3/2‖η(0)‖L1

β∩H1 . (4.5.95)

by Theorem 4.5.17 and inequalities (4.5.56) and (4.5.89). Let us estimate the integrand
on the right-hand side of (4.5.94).

Lemma 4.5.31. The integrand in (4.5.94) satisfies the following bound: for 0 < s < t

‖U(t− s)Pc
1f1(s)‖L∞−β ≤ c

1

(t− s)1/2(1 + t− s)

(
‖η(s)‖2

L∞−β
+ ρ‖η(s)‖L∞−β

)
. (4.5.96)

Proof. We consider two different cases : t− s > ν, and 0 < t− s < ν, where ν = ν(a, b)
is defined in Lemma 4.5.20.
i) t − s > ν : We use the representation (4.5.84) for f1 and apply Theorem 4.5.17,
Corollary 4.5.22 and Lemma 4.5.29 to obtain that for t ≤ t1

‖U(t− s)Pc
1f1‖L∞−β ≤ c(ν)(1 + t− s)−3/2‖Pc

1(f1(t))‖Mβ

≤ c(ν)(1 + t− s)−3/2

(
|η(0, t)|2 + ρ|η(0, t)|

)
≤ c(ν)(1 + t− s)−3/2

(
‖η(t)‖2

L∞−β
+ ρ‖η(t)‖L∞−β

)
. (4.5.97)

ii) 0 < t− s < ν : We denote Q = δ(x)Q̃, and represent f1(x, s) as

f1(x, s) = p(s)δ(x) + q(s)Φω + r(s)∂ωΦω. (4.5.98)

where

p(s) = −j−1(V − V1)η(0, s) + ej(θ−θ̃)
(
b sin(θ − θ̃)ση(0, s) + Q̃[e−j(θ−θ̃)η(0, s)]

)
,

is an R2 valued function of time, and

q(s) = −e−j(θ−θ̃)jγ̇, r(s) = −e−j(θ−θ̃)ω̇

are (2×2) matrix valued functions of time. Writing ‖ · ‖ for both the standard Euclidean
and operator norms on these, we have, by Lemma 4.5.29,

‖p(s)‖ ≤ c

(
|η(0, s)|2 + ρ|η(0, s)|

)
≤ c

(
‖η(s)‖2

L∞−β
+ ρ‖η(s)‖L∞−β

)
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and by Corollary 4.5.22

‖q(s)‖, ‖r(s)‖ ≤ c|η(0, s)|2 ≤ c‖η(s)‖2
L∞−β

.

Applying projector Pc
1 to f1 we obtain

Pc
1f1(x, s) = p(s)δ(x) + q(s)Φω + r(s)∂ωΦω −P0

1f1(x, s). (4.5.99)

By Lemma 4.5.20 for sufficiently small ν we obtain

‖U(t− s)p(s)δ(x)‖L∞−β ≤ ‖U(t− s)p(s)δ(x)‖L∞ ≤ c(ν)‖p(s)‖(t− s)−1/2

≤ c(ν)(t− s)−1/2

(
‖η(s)‖2

L∞−β
+ ρ‖η(s)‖L∞−β

)
, 0 < t− s < ν. (4.5.100)

By inequality (4.5.56) we have

‖U(t− s)
(
q(s)Φω + r(s)∂ωΦω

)
‖L∞−β ≤ c‖U(t− s)

(
q(s)Φω + r(s)∂ωΦω

)
‖H1

≤ c
(
‖q(s)‖‖Φω‖H1 + (‖r(s)‖‖∂ωΦω‖H1

)
≤ c‖η(s)‖2

L∞−β
, 0 ≤ t− s < ν. (4.5.101)

The definition (4.5.42) of the projector P0
1 implies immediately that

‖P0
1f1‖H1 ≤ c

(
‖p(s)‖+ ‖q(s)‖+ ‖r(s)‖

)
Then, similarly to (4.5.101), we obtain

‖U(t− s)P0
1f1‖L∞−β ≤ c

(
‖η(s)‖2

L∞−β
+ ρ‖η(s)‖L∞−β

)
, 0 ≤ t− s < ν (4.5.102)

Finally, (4.5.99)-(4.5.102) imply

‖U(t− s)Pc
1f1‖L∞−β ≤ c(t− s)−1/2

(
‖η(s)‖2

L∞−β
+ ρ‖η(s)‖L∞−β

)
, 0 < t− s < ν. (4.5.103)

From (4.5.97) and (4.5.103) inequality (4.5.96) follows.

Now (4.5.89), (4.5.94), (4.5.95) and (4.5.96) imply

‖η(t)‖L∞−β ≤ c(1+t)−3/2‖η(0)‖L1
β∩H1 +c1

t∫
0

ds

(t− s)1/2(1 + t− s)

(
‖η(s)‖2

L∞−β
+ρ‖η(s)‖L∞−β

)

Multiply by (1 + t)3/2 to deduce

(1 + t)3/2‖η(t)‖L∞−β ≤ cd+ c1

t∫
0

(1 + t)3/2(1 + s)−3

(t− s)1/2(1 + t− s)
(1 + s)3‖η(s)‖2

L∞−β
ds (4.5.104)

+ c1ρ

t∫
0

(1 + t)3/2(1 + s)−3/2

(t− s)1/2(1 + t− s)
(1 + s)3/2‖η(s)‖L∞−βds
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since ‖η(0)‖L1
β∩H1 ≤ d. Introduce the majorant

m(t) := sup
[0,t]

(1 + s)3/2‖η(s)‖L∞−β , t ≤ t1

and hence

m(t) ≤ cd+ c1m
2(t)

t∫
0

(1 + t)3/2(1 + s)−3

(t− s)1/2(1 + t− s)
ds

+ρc1m(t)

t∫
0

(1 + t)3/2(1 + s)−3/2

(t− s)1/2(1 + t− s)
ds. (4.5.105)

It easy to see (by splitting up the integrals into s < t/2 and s ≥ t/2) that both these
integrals are bounded independent of t. Thus (4.5.105) implies that there exist c, c2, c3,
independent of t1, such that

m(t) ≤ cd+ ρc2m(t) + c3m
2(t), t ≤ t1.

Recall that m(t1) ≤ ρ ≤ ρ1 by assumption. Therefore this inequality implies that m(t) is
bounded for t ≤ t1, and moreover,

m(t) ≤ c4d, t ≤ t1

if d and ρ are sufficiently small. The constant c4 does not depend on t1. We choose d in
(4.5.19) small enough that d < ρ/(4c4). Therefore,

sup
[0,t1]

(1 + t)3/2‖η(t)‖L∞−β < ρ/4

if d and ρ are sufficiently small. This bounds the first term as < ρ/4 by (4.5.87) and
hence M(t1) < ρ/2, completing the proof of Proposition 4.5.26.

4.5.12 Soliton asymptotics

Here we prove our main Theorem 4.5.9 using the bounds (4.5.76). For the solution
ψ(x, t) to (4.5.1) let us define the accompanying soliton as s(x, t) = ψω(t)(x)eiθ(t), where
θ̇(t) = ω(t) + γ̇(t). Then for the difference z(x, t) = ψ(x, t)− s(x, t) we obtain easily from
equations (4.5.1) and (4.5.11)

iż(x, t) = −z′′(x, t) + γ̇s(x, t)− iω̇∂ωs(x, t)− δ(x)
(
F (ψ(x, t))− F (s(x, t))

)
. (4.5.106)

Then

z(t) =W (t)z(0)

+

t∫
0

W (t−τ)
[
γ̇s(τ)−iω̇∂ωs(τ)−δ(x)

(
F (ψ(0, τ))−F (s(0, τ))

)]
dτ, (4.5.107)
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where z(t) = z(·, t), s(t) = s(·, t), andW (t) is the dynamical group of the free Schrödinger
equation. Since γ(t) − γ+, ω(t) − ω+ = O(t−2), and therefore θ(t) − ω+t − γ+ = O(t−1)
for t→∞, to establish the asymptotic behaviour (4.5.20) it suffices to prove that

z(t) = W (t)Φ+ + r+(t) (4.5.108)

with some Φ+ ∈ Cb(R) ∩ L2(R) and ‖r+(t)‖Cb(R)∩L2(R) = O(t−1/2). Denote g(t) = γ̇s(t)−
iω̇∂ωs(t), h(t) = F (ψ(0, t))− F (s(0, t)) and rewrite equation (4.5.107) as

z(t) = W (t)z(0) +W (t)

t∫
0

W (−τ)g(τ)dτ −W (t)

t∫
0

W (−τ)δ(x)h(τ)dτ. (4.5.109)

Let us recall that ω̇(t), γ̇(t) ∼ t−3 as t→∞. Hence, for the second summand in RHS of
(4.5.109) we have

W (t)

t∫
0

W (−τ)g(τ)dτ = W (t)

∞∫
0

W (−τ)g(τ)dτ −W (t)

∞∫
t

W (−τ)g(τ)dτ

= W (t)φ1 + r1(t), (4.5.110)

where, from the unitarity in H1 of the dynamical group W (t) and the t−3 decay of ω̇ and

γ̇, we infer that φ1 =

∞∫
0

W (−τ)g(τ)dτ ∈ H1, and ‖r1(t)‖H1 = O(t−2), t→∞.

Consider now the last summand onn the RHS of (4.5.109). Note thatW (t)δ(x) =
eix

2/(4t)

√
4πit

,

and |h(t)| ≤ c|χ(0, t)| ≤ c(1 + t)−3/2 by (4.5.76). Therefore

W (t)

t∫
0

W (−τ)δ(x)h(τ)dτ = W (t)

∞∫
0

e−ix
2/(4τ)

√
−4πiτ

h(τ)dτ −
∞∫
t

eix
2/(4(t−τ))√

4πi(t− τ)
h(τ)dτ

= W (t)φ2 + r2(t). (4.5.111)

Evidently, φ2 =

∞∫
0

e−ix
2/(4τ)

√
−4πiτ

h(τ)dτ ∈ Cb, and ‖r2(t)‖Cb = O(t−1), t→∞.

Moreover, φ2 ∈ L2, and ‖r2(t)‖L2 = O(t−1/2), t → ∞. To see that this is indeed true
change variable to τ = 1/u in the definition to get:

φ2(x) =
1√
−4πi

∫ ∞
0

e−iux
2/4 η(u) du, η(u) = h(1/u)/u3/2. (4.5.112)

Now h(t) is bounded and it follows from the decay of h(t) that η(u) is bounded as u→ 0.
Therefore η(u) is square integrable and so by the Parseval theorem φ2 is square integrable
as a function of y = x2, and hence also as a function of x (since dy = 2xdx and φ2 is a
bounded continuous function). Next we have r2(t) = −W (t)R(t) with

R(x, t) =
1√
−4πi

∫ 1/t

0

e−iux
2/4 η(u) du =

1√
−4πi

Fu→x2/4ζt(u)η(u),
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where ζt(u) is the characteristic function of the interval (0, 1/t). The function η(u) is
bounded, hence ‖ζtη‖L2 = ct−1/2 and therefore ‖r2(t)‖L2 = O(t−1/2), t → ∞. To con-
clude, using (4.5.109), (4.5.110), and (4.5.111) we obtain (4.5.108) with φ+ = z(0)+φ1+φ2

and r+(t) = r1(t) + r2(t). The t→ −∞ case is handled in an identical way.
Now Theorem 4.5.9 is proved.

Remark 4.5.32. The expression (4.5.112) for φ2 as a Fourier transform implies imme-
diately that |φ2|, and hence |Φ+| also, tend to 0 as |x| → ∞ by the Riemann–Lebesgue
theorem. This same expression could be used with Zygmund’s lemma to obtain more
detailed decay properties of φ2 and hence of Φ+. The decay rate would be determined
essentially by the regularity of the function h(t) in addition to the decay rate of the initial
data.

4.5.13 The kernel and poles of the resolvent

In this section we calculate the resolvent and its poles.

The kernel of the resolvent

The derivation of the time decay of the solution to the linearised equation (4.5.25) in
section 4.5.6 required an analysis of the smoothness and singularities of the resolvent
R(λ) and its asymptotics as λ → ∞. Here we will construct its matrix integral kernel
explicitly

R(λ, x, y) =

(
R11(λ, x, y) R12(λ, x, y)
R21(λ, x, y) R22(λ, x, y)

)
. (4.5.113)

It is the solution to the equation

(C− λ)R(λ, x, y) = δ(x− y)

(
1 0
0 1

)
. (4.5.114)

Calculation of first column For the first column RI(λ, x, y) :=

(
R11(λ, x, y)
R21(λ, x, y)

)
of the

matrix R(λ, x, y) we obtain

(C− λ)RI(λ, x, y) = δ(x− y)

(
1
0

)
. (4.5.115)

If x 6= 0 and x 6= y, (4.5.115) takes the form (cf. (4.5.31), (4.5.32))

(
−λ D2

−D1 −λ

)
RI(λ, x, y) =

 −λ − d2

dx2
+ ω

d2

dx2
− ω −λ

RI(λ, x, y) = 0. (4.5.116)

The general solution is a linear combination of exponential solutions of type eikxv. Sub-
stituting into (4.5.116), we get(

−λ k2 + ω
−k2 − ω −λ

)
v = 0. (4.5.117)

For nonzero vectors v, the determinant of the matrix vanishes,

λ2 + (k2 + ω)2 = 0. (4.5.118)
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Then k2
± + ω = ∓iλ. Finally, we obtain four roots ±k±(λ) with

k±(λ) =
√
−ω ∓ iλ, (4.5.119)

where the square root is defined as an analytic continuation from a neighborhood of the
zero point λ = 0 taking the positive value of Im

√
−ω at λ = 0. We choose the cuts in the

complex plane λ from the branching points to infinity: the cut C+ := [iω, i∞) for k+(λ)
and the cut C− := [−iω,−i∞) for k−(λ). Then

Im k±(λ) > 0, λ ∈ C \ C±. (4.5.120)

It remains to derive the vector v = (v1, v2) which is solution to (4.5.117):

v2 = −
k2
± + ω

λ
v1 =

±iλ
λ
v1 = ±iv1.

Therefore, we have two corresponding vectors v± =

(
1
±i

)
and we get four linearly

independent exponential solutions

v+e
±ik+x =

(
1
i

)
e±ik+x, v−e

±ik−x =

(
1
−i

)
e±ik−x.

Now we can solve the equation (4.5.115). First we rewrite it using the representations
(4.5.32) and (4.5.31) for the operator C, −λ − d

2

dx2
+ ω

d2

dx2
−ω −λ

(R11(λ, x, y)
R21(λ, x, y)

)
=δ(x−y)

(
1
0

)
+δ(x)

(
0 a

−a−b 0

)(
R11(λ, 0, y)
R21(λ, 0, y)

)

Let us consider y > 0 for the concreteness. Then the RHS vanishes in the open intervals
(−∞, 0),(0, y) and (y,∞). Hence, for the parameter λ outside the cuts C±, the solution
admits the representation

RI(λ, x, y) =


A+e

−ik+xv+ + A−e
−ik−xv−, x < 0,

B−+e
−ik+xv+ +B−−e

−ik−xv− +B+
+e

ik+xv+ +B+
−e

ik−xv−, 0 < x < y,

C+e
ik+xv+ + C−e

ik−xv−, x > y

since by (4.5.120), the exponent e−ik±x decays for x→ −∞, and similarly, eik±x decays for
x → ∞. Next we need eight equations to calculate the eight constants A+, . . . , C−. We
have two continuity equations and two jump conditions for the derivatives at the points
x = 0 and x = y. These four vector equations give just eight scalar equations for the
calculation.
Continuity at x = y: RI(y − 0, y) = RI(y + 0, y), i.e.

B−−v+/e+ +B−−v−/e− +B+
+v+e+ +B+

−v−e− = C+v+e+ + C−v−e−,

where e± := eik±y. It is equivalent to
B−+/e+ +B+

+e+ = C+e+,

B−−/e− +B+
−e− = C−e−.

(4.5.121)
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Continuity at x = 0: RI(−0, y) = RI(+0, y), i.e.

A+v+ + A−v− = B−+v+ +B−−v− +B+
+v+ +B+

−v−

that is equivalent to 
A+ = B−+ +B+

+ ,

A− = B−− +B+
− .

(4.5.122)

Jump at x = y: R′I(y+0, y) = R′I(y−0, y)+

(
0
−1

)
, where prime denotes the derivative

in x. Substituting (4.5.121), we get

ik+C+v+e+ + ik−C−v−e− =

−ik+B
−
+v+/e+ − ik−B−−v−/e− + ik+B

+
+v+e+ + ik−B

+
−v−e− +

(
0
−1

)
(4.5.123)

Noting that (
0
−1

)
=
v+ − v−

2
i, (4.5.124)

we get 
ik+C+e+ = −ik+B

−
+/e+ + ik+B

+
+e+ +

i

2
,

ik−C−e− = −ik−B−−/e− + ik−B
+
−e− −

i

2
.

(4.5.125)

After substituting of C± from (4.5.121), the constants B+
± cancel and we get

B−+ =
e+

4k+

, B−− = − e−
4k−

. (4.5.126)

Jump at x = 0: R′I(+0, y) = R′I(−0, y)−
(
a+ b 0

0 a

)
RI(−0, y). Substituting (4.5.121),

we get

−ik+B
−
+v+ − ik−B−−v− + ik+B

+
+v+ + ik−B

+
−v−

= −ik+A+v+ − ik−A−v− −M(A+v+ + A−v−), (4.5.127)

where M is the matrix
(
a+ b 0

0 a

)
. Note that


Mv+ = αv+ + βv−

Mv− = αv− + βv+

, where α = a+
b

2
, β =

b

2
. (4.5.128)

Then (4.5.127) becomes
−ik+B

−
+ + ik+B

+
+ = −ik+A+ − A+α− A−β,

−ik−B−− + ik−B
+
− = −ik−A− − A+β − A−α.
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Substituting here (4.5.122), we get after cancellations,
(2ik+ + α)B+

+ + βB+
− = −αB−+ − βB−−

βB+
+ + (2ik− + α)B+

− = −βB−+ − αB−−

Hence, the solution is given by(
B+

+

B+
−

)
= − 1

D

(
2ik− + α −β
−β 2ik+ + α

)(
α β
β α

)(
B−+
B−−

)
, (4.5.129)

where D is the determinant

D := (2ik+ + α)(2ik− + α)− β2, (4.5.130)

and B−+ , B
−
− are given by (4.5.126). The formulas (4.5.126) and (4.5.129) imply

B+
+ = 1

2D

(
−2ik−α + α2 − β2

2k+

e+ + iβe−

)

B+
− = 1

2D

(
−iβe+ +

2ik+α + α2 − β2

2k−
e−

)
∣∣∣∣∣∣∣∣∣∣
. (4.5.131)

Using the identities

2ik−α + α2 − β2 = D − 2ik+α + 4k+k−, 2ik+α + α2 − β2 = D − 2ik−α + 4k+k−,

we rewrite (4.5.131) as
B+

+ = − e+

4k+

+
1

2D

(
(iα− 2k−)e+ + iβe−

)
B+
− =

e−
4k−
− 1

2D

(
iβe+ + (iα− 2k+)e−

)
∣∣∣∣∣∣∣∣∣ . (4.5.132)

Finally, the formulas (4.5.121)–(4.5.122), (4.5.126) and (4.5.132) give the first column
RI(λ, x, y) of the resolvent for y > 0:

RI(λ, x, y) = ΓI(λ, x, y) + PI(λ, x, y), (4.5.133)

where

ΓI(λ, x, y) =
1

4k+

(eik+|x−y| − eik+(|x|+|y|))v+ −
1

4k−
(eik−|x−y| − eik−(|x|+|y|))v−, (4.5.134)

and

PI(λ, x, y) =
1

2D

[(
(iα− 2k−)eik+(|x|+|y|) + iβei(k+|x|+k−|y|)

)
v+ (4.5.135)

−
(
iβei(k−|x|+k+|y|) + (iα− 2k+)eik−(|x|+|y|)

)
v−

]
Calculation of second column The second column is given by similar formulas with
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the vector
(

1
0

)
instead of

(
0
1

)
in (4.5.121). Then

(
0
−1

)
in (4.5.123) is changed by(

1
0

)
. Respectively, (4.5.124) is changed by

(
1
0

)
=
v− + v+

2
.

Hence, we have now change i/2 by 1/2 in the first equation of (4.5.125) and −i/2 by 1/2
in the second one. Respectively, (4.5.126) for the second column reads

B−+ = − ie+

4k+

, B−− = − ie−
4k−

.

Then the second column RII(λ, x, y) of the resolvent reads:

RII(λ, x, y) = ΓII(λ, x, y) + PII(λ, x, y), (4.5.136)

where

ΓII(λ, x, y) = − i

4k+

(eik+|x−y| − eik+(|x|+|y|))v+ −
i

4k−
(eik−|x−y| − eik−(|x|+|y|))v−, (4.5.137)

and

PII(λ, x, y) =
i

2D

[(
−(iα− 2k−)eik+(|x|+|y|) + iβei(k+|x|+k−|y|)

)
v+

+
(
iβei(k−|x|+k+|y|) − (iα− 2k+)eik−(|x|+|y|)

)
v−

]
(4.5.138)

Note, that if y < 0 we get the same formulas.

The poles of the resolvent

The poles of the resolvent correspond to the roots of the determinant (4.5.130),

D(λ) := α2 + 2iα(k+ + k−)− 4k+k− − β2 = 0. (4.5.139)

with k± as in (4.5.119)-(4.5.120). Thus D(λ) is an analytic function on C \ C− ∪ C+.
Since there are two possible values for the square roots in k± there is a corresponding
four-sheeted function D̃(λ) analytic on a four sheeted cover of C which is branched over
C− and C+. We call the sheet defined by (4.5.120) the physical sheet.

We will reduce the equation (4.5.139) to the solution of two successive quadratic
equations. These can be solved explicitly but the process involves squaring and thus
actually produces zeros of the function D̃(λ) rather than of D(λ). Therefore we will then
have to check whether or not the roots do actually lie on the physical sheet.
Step i)
Denote by σ = k+ + k−. Then

σ2 = 2k+k− − 2ω (4.5.140)

by (4.5.119), hence (4.5.139) gives the first quadratic equation:

α2 + 2iασ − 2(σ2 + 2ω)− β2 = 0.
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Rewrite it as
σ2 − iασ =

α2 − β2

2
− 2ω =: δ (4.5.141)

Finally,

σ =
iα

2
±
√
δ − α2

4
, (4.5.142)

where the root is choosen arbitrarily.
Further let us express the roots in ω. Since a = 2

√
ω, α = a + b/2, β = b/2 then

substituting δ from (4.5.141), we obtain

δ − α2

4
=
α2

4
− β2

2
− 2ω =

(a+ b/2)2

4
− b2

8
− a2

2
= −a

2

4
− b2

16
+
ab

4
= − 1

16
(2a− b)2 < 0.

Now (4.5.142) reads

σ =
iα

2
± i

4
(2a− b) =

i

4

[
(2a+ b)± (2a− b)

]
= iγj, j = 1, 2, (4.5.143)

where γj ∈ R, and

γ1 = a = a(C2), γ2 = b/2 = a′(C2)C2. (4.5.144)

Step ii)
It remains to calculate the corresponding spectral parameter λ. First, the quadratic
equation (4.5.140) implies by (4.5.143) that

4(k+k−)2 = (2ω + σ2)2 = (2ω − γ2
j )

2, j = 1, 2. (4.5.145)

On the other hand,
k+k− =

√
−ω + iλ

√
−ω − iλ, (4.5.146)

hence (4.5.145) gives the second quadratic equation

4(ω2 + λ2) = (2ω − γ2
j )

2.

Therefore,

λ2 =
(2ω − γ2

j )
2 − 4ω2

4
= −

γ2
j (4ω − γ2

j )

4
.

Finally, we obtain four roots
λj = i

γj
2

√
4ω − γ2

j , (4.5.147)

where j ∈ {1, 2} and the square root can takes two opposite values.

Corollary 4.5.33. The four-sheeted function D̃(λ) has the following roots (zeros):
i) j = 1 gives λ1 = 0 since 4ω = a2 = γ1.
ii) If |γ2| < 2

√
ω, then both j = 2 roots ±i|λ2| are pure imaginary.

iii) If |γ2| > 2
√
ω, then both j = 2 roots ±|λ2| are real: one positive and one negative.

Remark 4.5.34. Note that a priori we can meet the wrong sign of Im k± squaring
(4.5.146) which is why the above calculation yields roots of D̃(λ) rather than the physical
branch D(λ). Since the formulas (4.5.133)-(4.5.138) involve only D(λ) it is important to
know which of these are actually roots of D(λ) and also to know the multiplicities. This
is done in the next two sections.
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Discrete spectrum λ = 0

In order to check that the roots of D̃(λ) given in Corollary 4.5.33 are actually roots of
D(λ) it suffices to check explicitly that D(λ) vanishes (with the assumption that we are
on the physical branch defined by Im k± > 0 for λ ∈ C \ C±.

For j = 1 we have γ = γ1 = a = 2
√
ω and then λ1 = 0. For j = 2 we have

γ = γ2 = a′C2. If |γ2| = 2
√
ω ( equivalently |a′| = a/C2) or γ2 = 0 ( equivalently a′ = 0),

we have λ2 = 0.
Let us check that λ = 0 is a root of D(λ):

D(0) = α2 − β2 + 2iα2i
√
ω + 4ω = (a+ b/2)2 − b2/4− 2(a+ b/2)a+ a2 = 0

since k± = i
√
ω. Now let us compute D′(λ):

D′(λ) = iα(
i√

−ω + iλ
+

−i√
−ω − iλ

)− (
2i√
−ω + iλ

·
√
−ω − iλ+

−2i√
−ω − iλ

·
√
−ω + iλ).

Hence D′(0) = 0 and λ = 0 is the root of D(λ) of multiplicity at least 2. Further
calculation shows that the Taylor series for D near zero takes the form:

D(λ) =
( 1

ω
− b

4ω3/2

)
λ2 +O(λ4). (4.5.148)

Therefore λ = 0 is the root of D(λ) of multiplicity 4 if and only if b = 4
√
ω, i.e. a′ = a/C2,

and we have proved the following lemma:

Lemma 4.5.35. If a′ = a/C2 then λ = 0 is a root of the determinant D(λ) with multi-
plicity 4, otherwise λ = 0 is a root of the determinant D(λ) with multiplicity 2.

Nonzero discrete spectrum

Now let us check whether the roots λ = λ2 6= 0 corresponding γ = γ2 6∈ {0,±2
√
ω} lie on

the physical branch. We analyze two different cases: 0 < |γ2| < 2
√
ω and |γ2| > 2

√
ω.

I.The case 0 < |γ2| < 2
√
ω (equivalently 0 < |a′| < a/C2).

Since 4ω−γ2
2 > 0, the corresponding roots λ2 are pure imaginary by (4.5.147). Moreover,

|λ2| ≤ ω. Indeed, (4.5.147) implies

ω2 − |λ2|2 = ω2 + γ4
2/4− γ2

2ω = (ω − γ2
2/2)2 ≥ 0.

Hence −ω∓ iλ2 ≤ 0 and k± are pure imaginary with nonnegative imaginary part, that is

k+k− ≤ 0 and Im (k+ + k−) > 0. (4.5.149)

The equations (4.5.145) and (4.5.140) imply

|k+k−| =
1

4
|a2 − 2(a′)2C4|, (k+ + k−)2 = −2ω + 2k+k− = −a

2

2
+ 2k+k−. (4.5.150)

In order to obtain k+k− and k+ + k− from the last two equations we have to divide the
set 0 < |a′| < a/C2 onto three subsets:

(−a/C2, a/C2)\{0} = (−a/C2,−a/
√

2C2]∪
(

(−a/
√

2C2, a/
√

2C2)\{0}
)
∪ [

a√
2C2

,
a

C2
).
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1) First consider the case a′ ∈ [
a√
2C2

,
a

C2
). Then (4.5.149) and (4.5.150) imply

k+k− =
1

4
(a2 − 2(a′)2C4).

(k+ + k−)2 = −a
2

2
+
a2

2
− (a′)2C4 = −(a′)2C4,

k+ + k− = ia′C2,

and using (4.5.139), we obtain

D(λ2) = (a+ a′C2)2 − (a′C2)2 + 2i(a+ a′C2)(k+ + k−)− 4k+k−

= a2 + 2aa′C2 − 2(a+ a′C2)a′C2 − a2 + 2(a′)2C4 = 0.

Note that each γ2 defines two values λ2 up to factor ±1. If we replace λ2 by −λ2, k+

and k− change places and our calculation remains valid. Therefore, both values of λ2 are
roots of D(λ).

2) Further consider a′ ∈ (− a

C2
,− a√

2C2
]. In this case

k+k− =
1

4
(a2 − 2(a′)2C4), k+ + k− = −ia′C2.

Then we have

D(λ2) = a2 + 2aa′C2 + 2(a+ a′C2)a′C2 − a2 + 2(a′)2C4 = 4a′C2(a+ a′C2) 6= 0

since a′ 6= 0 and a′ 6= −a/C2. Therefore in this case both values of λ2 are not the roots
of D(λ).
3) Finally consider 0 < |a′| < a√

2C2
. Then (4.5.149)-(4.5.150 imply that

k+k− = −1

4
(a2 − 2(a′)2C4) < 0,

(k+ + k−)2 = −a2 + (a′)2C4 < 0,

k+ + k− = i
√
a2 − (a′)2C4.

Then we have

D(λ2) = a(a+ 2a′C2)− 2(a+ a′C2)
√
a2 − (a′)2C4 + a2 − 2(a′)2C4. (4.5.151)

To solve the equation D(λ2) = 0 with respect to a′, divide the RHS of (4.5.151) by C4 6= 0
and denote p = a/C2 > 0. Then we get the equation

p2 + pa′ − (a′)2 = (p+ a′)
√
p2 − (a′)2, 0 < |a′| < p/

√
2. (4.5.152)

Squaring both side of (4.5.152), we get

2(a′)4 − p2(a′)2 = 0

The equation has no solutions for 0 < |a′| < p/
√

2 and hence D(λ2) does not vanish.
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Corollary 4.5.36. i) D(λ2) = 0 if a′ ∈ [
a√
2C2

,
a

C2
).

ii) D(λ2) 6= 0 if a′ ∈ (− a

C2
,

a√
2C2

) \ {0}.

II. The case |γ2| > 2
√
ω (equivalently |a′| > a/C2).

Since 4ω − γ2
2 < 0, the corresponding roots (4.5.147) are real: λ−2 < 0 < λ+

2 , λ
−
2 = −λ+

2 .
It is easy to prove that k± take the form:

k± = ±µ+ iν, ν > 0.

Therefore
k+k− = −µ2 − ν2 < 0, k+ + k− = 2iν (4.5.153)

1) First consider the case a′ > a/C2.Then by (4.5.150) and (4.5.153)

k+k− =
1

4
(a2 − 2(a′)2C4), (k+ + k−)2 = −(a′)2C4, k+ + k− = ia′C2.

Therefore
D(λ2) = a(a+ 2a′C2) + 2i(a+ a′C2)(k+ + k−)− 4k+k− =

a(a+ 2a′C2)− 2(a+ a′C2)a′C2 − a2 + 2(a′)2C4 = 0

and then λ2 are real roots of D(λ). Hence, the case a′ > a/C2 is linearly unstable.
2) Further consider the case a′ < −a/C2. Then

k+k− =
1

4
(a2 − 2(a′)2C4) < 0, k+ + k− = −ia′C2,

D(λ2) = a2 + 2aa′C2 + 2(a+ a′C2)a′C2 − a2 + 2(a′)2C4 = 4a′C2(a+ a′C2) 6= 0

Therefore, in this case λ2 are not roots of D(λ).

Corollary 4.5.37. i) In the unstable case a′ > a/C2: both λ2 are roots of D(λ).
ii) If a′ < −a/C2 then neither of the λ2 are roots of D(λ).

Summarising, we have proved the following result

Theorem 4.5.38. i) If a′ ∈ (−∞, a/(
√

2C2)) the only root of D(λ) is λ = 0 with multi-
plicity 2.
ii) If a′ ∈ [a/

√
2C2, a/C2), there are four roots of D(λ): zero (multiplicity two) and ±i|λ2|

(pure imaginary) with λ2 as in (4.5.147).
iii) If a′ = +a/C2, the only root of D(λ) is λ = 0 multiplicity 4.
iv) If a′ ∈ (a/C2,+∞), there are four roots of D(λ): zero (multiplicity two) and ±|λ2|
with λ2 as in (4.5.147). In particular there exists a positive root (linear instability).

Remark 4.5.39. Imagine reducing a′ starting from a value greater than a/C2. Initially
there are two real roots, ±|λ2|, which approach zero as a′ → a/C2 from above, giving
rise to an increase of the multiplicity of the λ = 0 root to four when a′ = a/C2. As
a′ is reduced further below a/C2 these two roots reappear as a pair of conjugate pure
imaginary roots which move from zero to ±iω as a′ goes from a/C2 to a/

√
2C2. When

a′ = a/
√

2C2 these two roots touch the branch point (end of the continuous spectrum)
and move onto an ‘unphysical branch’ (on which the conditions (4.5.120) do not hold).
As a′ is reduced further these roots do not return to the physical branch and thus even
when their magnitude becomes zero they do not coalesce with the physical λ = 0 root
to increase its multiplicity and most importantly the spectrum is pure continuous apart
from zero for a′ < a/C2.
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Chapter 5

Adiabatic effective dynamics of solitons

In this chapter we present without proofs the results of [87] on adiabatic effective dynamics
for the wave-particle system (1.5.1)–(1.5.2) in the case of slowly varying external potential.
We also discuss the related mass-energy equivalence.
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5.1 Solitons in slowly varying external potentials
In this section we describe the first result [87] on adiabatic effective dynamics. The solitons
(2.1.3) are solutions to the system (1.5.1)–(1.5.2) with zero external potential V (x) ≡ 0.
The asymptotic stability of the corresponding solitary manifold, proved in [127], means
the soliton-like asymptotics

ψ(x, t) ≈ ψv(t)(x− q(t)), t ∈ R (5.1.1)

for any solution with initial state sufficiently close to this manifold. On the other hand,
solutions of this form may exist even for the system (1.5.1)–(1.5.2) with nonzero external
potential if this potential is slowly varying:

|∇V (q)| ≤ ε� 1. (5.1.2)

In this case, the total momentum (2.1.2) is generally not conserved, but its slow evolution
and the (fast) evolution of the parameter q(t) in (5.1.1) can be described in terms of some
finite-dimensional Hamiltonian dynamics.

Namely, denote by P = Pv the total momentum of the soliton Sv,Q in the notation
(2.1.7). It is important that the map P : v 7→ Pv is an isomorphism of the ball |v| < 1
on R3. Therefore, we can consider Q,P as global coordinates on the solitary manifold S.
We define effective Hamiltonian functional

Heff(Q,Pv) ≡ H(Sv,Q), Q, Pv ∈ R3, (5.1.3)

whereH is the total Hamiltonian (1.5.4). This functional allows the splittingHeff(Q,Π) =
E(Π)+V (Q) since the first integral in (1.5.4) does not depend on Q while the last integral
vanishes on the solitons. Hence, the corresponding Hamiltonian equations read

Q̇(t) = ∇E(Π(t)), Π̇(t) = −∇V (Q(t)). (5.1.4)

The main result of [87] is the following theorem.

Theorem 5.1.1. Let condition (5.1.2) hold, the initial state S0 = (ψ0, π0, q0, p0) ∈ S
is a soliton with total momentum P0, and ψ(x, t), π(x, t), q(t), p(t) of the system (1.5.1)–
(1.5.2). Then the following ‘adiabatic asymptotics’ holds

|q(t)−Q(t)| ≤ C0, |P (t)− Π(t)| ≤ C1ε for |t| ≤ Cε−1, (5.1.5)

sup
t∈R

[
‖∇[ψ(q(t)+x, t)−ψv(t)(x)]‖R+‖π(q(t)+x, t)−πv(t)(x)‖R

]
≤Cε, (5.1.6)

where P (t) denotes total momentum (2.1.2), v(t) = P−1(Π(t)), and (Q(t),Π(t)) is the
solution to the effective Hamiltonian equations (5.1.4) with initial conditions

Q(0) = q(0), Π(0) = P (0).

Note that such relevance of effective dynamics (5.1.4) is due to the consistency of
Hamiltonian structures:

1) The effective Hamiltonian (5.1.3) is a restriction of the Hamiltonian functional (1.5.4)
onto the soliton manifold S.
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2) As shown in [87], the canonical form of the Hamiltonian system (5.1.4) is also a re-
striction onto S of canonical form of the system (1.5.1)–(1.5.2): formally

P dQ =
[
p dq +

∫
dxπ(x) dψ(x)

]∣∣∣
S
.

Therefore, the total momentum P is canonically conjugate to the variableQ on the solitary
manifold S. This fact justifies definition (5.1.3) of the effective Hamiltonian as a function
of the total momentum Pv, and not of the particle momentum pv.

One of the important results of [87] is the following ‘effective dispersion relation’:

E(Π) ∼ Π2

2(1 +me)
+ const, |Π| � 1. (5.1.7)

It means that non-relativistic mass of a slow soliton increases due to an interaction with
the field by the amount

me = −1

3
〈ρ,∆−1ρ〉. (5.1.8)

This increment is proportional to the field energy of a soliton in rest

H(∆−1ρ, 0, 0, 0) = −1

2
〈ρ,∆−1ρ〉,

which agrees with the Einstein mass-energy equivalence principle (see below).

Remark 5.1.2. The relation (5.1.7) gives only a hint that me is an increment of the
effective mass. The true dynamical justification for such an interpretation is given by
the adiabatic asymptotics (5.1.5)–(5.1.6) which demonstrate the relevance of the effective
dynamics (5.1.4).

Generalizations. In [88], the asymptotics (5.1.5), (5.1.6) were extended to solitons of
the Maxwell–Lorentz equations (1.6.1) with small external fields.

After the papers [87, 88] suitable adiabatic effective dynamics was obtained in [85, 86]
for nonlinear Hartree and Schrödinger equations with slowly varying external potentials.
Similar effective dynamics in presence of small external fields later was constructed i) in
[84, 89, 90] - for nonlinear systems of Einstein–Dirac, Chern–Simon–Schrödinger, Klein–
Gordon–Maxwell systems, and ii) in [91] - for Maxwell–Lorentz equations with rotating
charge. Similar adiabatic effective dynamics was established in [83] for electron in second-
quantized Maxwell field in presence of a slowly varying external potential.

The results of numerical simulation [61] (see the next chapter) confirm the adiabatic
effective dynamics of solitons (5.1.6) for relativistically-invariant 1D nonlinear wave equa-
tions.
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5.2 Mass–Energy equivalence
In the case of the Maxwell–Lorentz equations [88] the increment of nonrelativistic mass
also turns out to be proportional to the energy of the static soliton’s own field.

Such equivalence of the self-energy of a particle with its mass was first discovered by
M. Abraham in 1902: he obtained by direct calculation that electromagnetic self-energy
Eown of an electron at rest adds

me =
4

3
Eown/c

2

to its non-relativistic mass (see [203, 204], and also [213, pp 216–217]). It is easy to see
that this self-energy is infinite for a point electron at the origin with a charge density
δ(x), because in this case, the Coulomb electrostatic field |E(x)| = C/|x|2 so the integral
in (1.6.3) diverges around x = 0. This means that the field mass for a point electron is
infinite, which contradicts experiment. That’s why M. Abraham introduced the model of
electrodynamics with ‘extended electron’ (1.6.1), whose self-energy is finite.

At the same time, M. Abraham conjectured that the entire mass of an electron is due
to its own electromagnetic energy; that is, m = me: “... matter disappeared, only energy
remains ... ”, see [210, pp 63, 87, 88] (smile :)).

This conjecture was justified in 1905 by A. Einstein, who discovered the famous uni-
versal relation E = m0c

2, which follows from Special Theory of Relativity [206]. The
doubtful factor 4

3
in the M. Abraham formula is due to nonrelativistic character of the

system (1.6.1). According to modern view, about 80% of the electron mass is of electro-
magnetic origin [207].



Chapter 6

Numerical Simulation of Solitons

In this chapter we describe the results of joint work with A.P. Vinnichenko (1945–2009)
on numerical simulation of i) global attraction to solitons (0.0.12) and (0.0.13), and ii)
adiabatic effective dynamics of solitons (5.1.6) for relativistically-invariant 1D nonlinear
wave equations. Additional information can be found in [61].
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6.1 Kinks of relativistically-invariant equations

First let us describe numerical simulations of solutions to relativistically-invariant 1D
nonlinear wave equations with a polynomial nonlinearity

ψ̈(x, t) = ψ′′(x, t) + F (ψ(x, t)), where F (ψ) := −ψ3 + ψ. (6.1.1)

Since F (ψ) = 0 for ψ = 0,±1, there are three stationary states: S(x) ≡ 0,+1,−1. This
equation is formally equivalent to a Hamiltonian system (1.1.2) with the Hamiltonian

H(ψ, π) =

∫
[
1

2
|π(x)|2 +

1

2
|ψ′(x)|2 + U(ψ(x))] dx (6.1.2)

where the potential is U(ψ) = ψ4

4
− ψ2

2
+ 1

4
. This Hamiltonian is finite for functions

(ψ, π) ∈ E , where E = H1
c ⊕ L2 (see (1.1.4)), for which the convergence

ψ(x)→ ±1, |x| → ∞

is sufficiently fast.
The potential U(ψ) has minima at ψ = ±1 and a maximum at ψ = 0. Correspondingly,

two finite energy solutions ψ = ±1 are stable, and the solution ψ = 0 with infinite energy
is unstable. Such potentials with two wells are called potentials of Ginzburg–Landau type.

In addition to the constant stationary solutions S(x) ≡ 0,+1,−1, there is also a non-
constant solution S(x) = tanh x/

√
2, which is called a ‘kink’. Its shifts and reflections

±S(±x− a) are also stationary solutions, as well as their Lorentz transforms

±S(γ(±x− a− vt)), γ = 1/
√

1− v2, |v| < 1.

These are uniformly moving ‘travelling waves’ (that is, solitons). The kink is strongly
compressed when the velocity v is close to ±1. This compression is known as the ‘Lorentz
contraction’.

Numerical Simulation. Our numerical experiments show a decay of finite energy solu-
tions to a finite set of kinks and dispersion waves outside the kinks, which corresponds to
the asymptotics of type (0.0.13). The result of one of the experiments is shown in Fig. 6.1:
a finite energy solution of the equation (6.1.1) decays to three kinks. The vertical line is
the time axis, and the horizontal line is the space axis. The spatial scale redoubles at t =
20 and t = 60.

The red colour corresponds to the values ψ > 1 + ε, the blue colour to the values
ψ < −1− ε, and the yellow colour to the intermediate values −1 + ε < ψ < 1− ε, where
ε > 0 is sufficiently small. Thus, the yellow stripes represent the kinks, while the blue
and red zones outside the yellow stripes are filled with dispersion waves.

For t = 0 the solution begins with a rather chaotic behaviour, when there are no visible
kinks. After 20 seconds, three separate kinks appear, which subsequently move almost
uniformly.
The Lorentz contraction. The left kink moves to the left at a low velocity v1 ≈ 0.24,
the central kink is almost standing, because its velocity v2 ≈ 0.02 is very small, and
the right kink moves very fast with velocity v3 ≈ 0.88. The Lorentz spatial contraction√

1− v2
k is clearly visible in this picture: the central kink is the widest, the left is a bit

narrower, and the right one is quite narrow.
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Figure 6.1: Decay to three kinks.
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The Einstein time-delay. The Einstein time-delay is also very pronounced. Namely,
all three kinks pulsate because of the presence of a non-zero eigenvalue in the equation
linearised on the kink. Indeed, substituting ψ(x, t) = S(x) + εϕ(x, t) in (6.1.1), we get in
the first-order approximation the linearised equation

ϕ̈(x, t) = ϕ′′(x, t)− 2ϕ(x, t)− V (x)ϕ(x, t), (6.1.3)

where the potential

V (x) = 3S2(x)− 3 = − 3

cosh2 x/
√

2

decays exponentially for large |x|. It is very fortunate that for this potential the spectrum
of the corresponding Schrödinger operator

H := − d2

dx2
+ 2 + V (x)

is well known [62]. Namely, the operator H is non-negative, and its continuous spectrum
is the interval [2,∞). It turns out that H also has a two-point discrete spectrum: the
points λ = 0 and λ = 3/2. It is this non-zero eigenvalue that is responsible for the
pulsations that we observe for the central slow kink, with frequency ω2 ≈

√
3/2 and

period T2 ≈ 2π/
√

3/2 ≈ 5. On the other hand, for the fast kinks the ripples are much
slower, that is, the corresponding period is longer. This time-delay agrees numerically
with the Lorentz formulas, which confirms the relevance of these results of numerical
simulation.
Dispersion waves. An analysis of dispersion waves provides additional confirmation.
Namely, the space outside the kinks in Fig. 6.1 is filled with dispersion waves whose values
are very close to ±1, with an accuracy of 0.01. These waves satisfy with high accuracy the
linear Klein–Gordon equation obtained by linearisation of the Ginzburg–Landau equation
(6.1.1) on the stationary solutionsψ± ≡ ±1:

ϕ̈(x, t) = ϕ′′(x, t) + 2ϕ(x, t).

The corresponding dispersion relation ω2 = k2 + 2 determines the group velocities of
high-frequency wave packets:

ω′(k) =
k√
k2 + 2

= ±
√
ω2 − 2

ω
. (6.1.4)

These wave packets are clearly visible in Fig. 6.1 as straight lines whose propagation
velocities converge to ±1. This convergence is explained by the high-frequency limit
ω′(k)→ ±1 as ω → ±∞. For example, for dispersion waves emitted by the central kink
the frequencies ω = ±nω2 → ±∞ are generated by the polynomial nonlinearity in (6.1.1)
in accordance with Fig. 3.2.

Remark 6.1.1. These observations of dispersion waves agree with the radiation mecha-
nism in Section 3.9.

The nonlinearity in (6.1.1) is chosen exactly because of the well-known spectrum of
the linearised equation (6.1.3). In numerical experiments [61], more general nonlinearities
of Ginzburg–Landau type have also been considered. The results were qualitatively the
same: for ‘any’ initial data of finite energy, the solution decays for large times to a sum of
kinks and dispersion waves. Numerically, this is clearly visible, but rigorous justification
remains an open problem.
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6.2 Numerical observation of soliton asymptotics
Besides the kinks the numerical experiments [61] also revealed soliton asymptotics of type
(0.0.13) and adiabatic effective dynamics of the form (5.1.6) for complex solutions of the
1D relativistically-invariant nonlinear wave equations (2.2.4). polynomial potentials of
the form

U(ψ) = a|ψ|2m − b|ψ|2n, (6.2.1)

were considered with a, b > 0 and m > n = 2, 3, . . . . Correspondingly,

F (ψ) = 2am|ψ|2m−2ψ − 2bn|ψ|2n−2ψ. (6.2.2)

The parameters a, b,m, n were taken as follows,

N a m b n
1 1 3 0.61 2
2 10 4 2.1 2
3 10 6 8.75 5

Various ‘smooth’ initial functions ψ(x, 0), ψ̇(x, 0) with supports on the interval [−20, 20]
were considered. The second-order difference scheme with ∆x ∼ 0.01 and ∆t ∼ 0.001 was
employed. In all cases, the asymptotics of type (0.0.13) were observed with the numbers
0, 1, 3 and 5 of solitons for t > 100.
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6.3 Adiabatic effective dynamics of relativistic solitons
In the numerical experiments [61] the adiabatic effective dynamics of the form (5.1.6) was
also observed for soliton-like solutions of type (5.1.1) of the 1D equations (2.2.4) with
a slowly varying external potential (5.1.2):

ψ̈(x, t) = ψ′′(x, t)− ψ(x, t) + F (ψ(x, t))− V (x)ψ(x, t), x ∈ R. (6.3.1)

This equation is formally equivalent to the Hamiltonian system (1.1.2) with the Hamilto-
nian

HV (ψ, π) =

∫
[
1

2
|π(x)|2 +

1

2
|ψ′(x)|2 + U(ψ(x)) +

1

2
V (x)|ψ(x)|2] dx. (6.3.2)

The soliton-like solutions are of the form (cf. (5.1.1))

ψ(x, t) ≈ eiΘ(t)φω(t)(γv(t)(x− q(t))). (6.3.3)

The numerical experiments [61] qualitatively confirm the adiabatic effective Hamiltonian
dynamics for the parameters Θ, ω, q, and v, but it has not yet been rigorously justified.

Figure 6.2 represents a solution to equation (6.3.1) with the potential (6.2.1), where
a = 10, m = 6 and b = 8.75, n = 5. The potential is V (x) = −0.2 cos(0.31x) and the
initial conditions are

ψ(x, 0) = φω0(γv0(x− q0)), ψ̇(x, 0) = 0, (6.3.4)

where v0 = 0, ω0 = 0.6 and q0 = 5.0. We note that the initial state does not belong
to the solitary manifold. The effective width (half-amplitude) of the solitons is in the
range [4.4, 5.6]. It is quite small when compared with the spatial period of the potential
2π/0.31 ∼ 20. The results of the numerical simulations are shown in Fig. 6.2.

• The blue and green colours represent a dispersion wave with values |ψ(x, t)| < 0.01,
while the red colour represents the top of a soliton with values |ψ(x, t)| ∈ [0.4, 0.8].
• The soliton trajectory (‘red snake’) corresponds to oscillations of a classical particlein
the potential V (x).
• For 0 < t < 140 the solution is rather distant from the solitary manifold, and the
radiation is rather intense.
• For 3020 < t < 3180 the solution approaches the solitary manifold, and the radiation
weakens. The oscillation amplitude of the soliton is almost unchanged over a long time,
confirming the Hamiltonian type of the effective dynamics.
• However, for 5260 < t < 5420 the amplitude of the soliton oscillation is halved. This
suggests that on a large time scale the deviation from Hamiltonian effective dynamics
becomes essential. Consequently, the effective dynamics gives a good approximation only
on an adiabatic time scale of type t ∼ ε−1.
• The deviation of the effective dynamics from being Hamiltonian is due to radiation,
which plays the role of dissipation.
• The radiation is realised as dispersion waves, which carry energy to infinity. The dis-
persion waves combine into uniformly moving wave packets with a discrete set of group
velocities, as in Fig. 6.1. The magnitude of the solution is of order ∼ 1 on the trajectory
of the soliton, while the values of the dispersion waves is less than 0.01 for t > 200, so
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Figure 6.2: Adiabatic effective dynamics of relativistic solitons.
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that their energy density does not exceed 0.0001. The amplitude of the dispersion waves
decays at large times.
• In the limit as t → ±∞ the soliton should converge to a static position corresponding
to a local minimum of the potential V (x). However, the numerical observation of this
‘ultimate stage’ is hopeless, since the rate of the convergence decays with the decrease of
the radiation.



Chapter 7

Dispersion Decay

In this chapter we give i) a brief survey of basic results on the dispersion decay (Section
7.1), and ii) new short and simplified proof of the fundamental results on the L1 → L∞

dispersion decay established by J.-L. Journé, A. Soffer and C.D. Sogge in [185] for the
Schrödinger equation (7.1.2) with n ≥ 3 (Section 7.2).

155
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7.1 The Schrödinger and Klein–Gordon equations

7.1.1 Dispersion decay in weighted Sobolev norms.

A powerful systematic approach to dispersion decay in weighted Sobolev norms for the
Schrödinger equation with potential was proposed by S. Agmon, A. Jensen and T. Kato
[172, 184]. This theory was extended by many authors to wave, Klein–Gordon and Dirac
equations and to the corresponding discrete equations, see [10, 142, 143], [173]–[183] and
[185]–[198], [199, 200] and references therein.

7.1.2 L1 − L∞ decay

‖Pcψ(t)‖L∞(Rn) ≤ Ct−n/2‖ψ(0)‖L1(Rn), t > 0 (7.1.1)

for solutions of linear Schrödinger equation

iψ̇(x, t) = Hψ(x, t) := (−∆ + V (x))ψ(x, t), x ∈ Rn (7.1.2)

with n ≥ 3 was established for the first time by J.-L. Journé, A. Soffer and C.D. Sogge
[185] provided that λ = 0 is neither an eigenvalue nor resonance for H. The potential
V (x) is sufficiently smooth and rapidly decays as |x| → ∞. Here Pc is an orthogonal
projection onto continuous spectral space of the operator H. This result was generalised
later by many authors, see below.

In [200] a decay of type (7.1.1) and Strichartz estimates were established for 3D
Schrödinger equations (7.1.2) with “rough” and time-dependent potentials V = V (x, t)
(in stationary case V (x) belongs to both the Rollnik class and the Kato class). Similar
estimates were received in [176] for 3D Schrödinger and wave equations with (stationary)
Kato class potentials.

In [180] the 4D Schrödinger equations (7.1.2) are considered for the case when there is a
resonance or an eigenvalue at zero energy. In particular, in the case of an eigenvalue at zero
energy, there is a time-dependent operator Ft of rank 1, such that ‖Ft‖L1→L∞ ≤ 1/ log t
for t > 2, and

‖eitHPc − Ft‖L1→L∞ ≤ Ct−1, t > 2.

Similar dispersion estimates were proved also for solutions to 4D wave equation with a
potential.

In [182, 183] the Schrödinger equation (7.1.2) is considered in Rn with n ≥ 5 when
there is an eigenvalue at the zero point of the spectrum. It is shown, in particular, that
there is a time-dependent rank one operator Ft such that ‖Ft‖L1→L∞ ≤ C|t|2−n/2 for
|t| > 1, and

‖eitHPc − Ft‖L1→L∞ ≤ C|t|1−n/2, |t| > 1.

With a stronger decay of the potential, the evolution admits an operator-valued expansion

eitHPc(H) = |t|2−n/2A−2 + |t|1−n/2A−1 + |t|−n/2A0,

where A−2 and A−1 are finite rank operators L1(Rn)→ L∞(Rn), while A0 maps weighted
L1 spaces to weighted L∞ spaces. Main members A−2 and A−1 equal to zero under certain
conditions of the orthogonality of the potential V to eigenfunction with zero energy.
Under the same orthogonality conditions, the remainder term |t|−n/2A0 also maps L1(Rn)
to L∞(Rn), and therefore, the group eitHPc(H) has the same dispersion decay as free
evolution, despite its eigenvalue at zero.
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7.1.3 Lp − Lq decay for the Klein–Gordon equation

Such decay was first established in [199] for solutions of the free Klein–Gordon equation
ψ̈ = ∆ψ − ψ with initial state ψ(0) = 0:

‖ψ(t)‖Lq ≤ Ct−d‖ψ̇(0)‖Lp , t > 1, (7.1.3)

where 1 ≤ p ≤ 2, 1/p + 1/q = 1, and d ≥ 0 is a piecewise-linear function of (1/p, 1/q).
The proofs use the Riesz interpolation theorem.

In [175], the estimates (7.1.3) were extended to solutions of perturbed Klein–Gordon
equation

ψ̈ = ∆ψ − ψ + V (x)ψ

with ψ(0) = 0. The authors show that (7.1.3) holds for 0 ≤ 1/p− 1/2 ≤ 1/(n + 1). The
smallest value of p and the fastest decay rate d occurs when 1/p = 1/2 + 1/(n + 1), d =
(n−1)/(n+1). The result is proved under the assumption that the potential V is smooth
and small in a suitable sense. For example, the result true when |V (x)| ≤ c(1 + |x|2)−σ,
where c > 0 is sufficiently small. Here σ > 2 for n = 3, σ > n/2 for odd n ≥ 5, and
σ > (2n2 + 3n + 3)/4(n + 1) for even n ≥ 4. The results also apply to the case when
ψ(0) 6= 0.

7.1.4 Lp − Lq decay for the Schrödinger equation

The seminal article [185] concerns Lp−Lq decay of solutions to the Schrödinger equation
(7.1.2). It is assumed that (1 + |x|2)αV (x) is a multiplier in the Sobolev spaces Hη for
some η > 0 and α > n + 4, and the Fourier transform of V belongs to L1(Rn). Under
this conditions, the main result of [185] is the following theorem: if λ = 0 is neither an
eigenvalue nor a resonance for H, then

‖Pcψ(t)‖Lq ≤ Ct−n(1/p−1/2)‖ψ(0)‖Lp , t > 1, (7.1.4)

where 1 ≤ p ≤ 2 and 1/p + 1/q = 1. Proofs are based on L1 − L∞ decay (7.1.1) and the
Riesz interpolation theorem.

In [202] estimates (7.1.4) were proved for the Schrödinger equation (7.1.2) under suit-
able conditions on the decay of V (x) i) with 1 ≤ p ≤ 2 if λ = 0 is neither an eigenvalue
nor a resonance for H, and ii) with all 3/2 < p ≤ 2 otherwise.

7.1.5 The Strichartz estimates

The Strichartz estimates were extended i) in [173] to the Schrödinger magnetic equations
in Rn with n ≥ 3, ii) in [174] - to wave equations with a magnetic potential in Rn for
n ≥ 3, and iii) in [177] - to wave equation in R3 with potentials of the Kato class.
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7.2 L1 − L∞ decay for 3D Schrödinger equation
In this section we give new short and simplified proof of the L1 − L∞ dispersion decay
(7.1.1) for the Schrödinger equation (7.1.2), first established in [185] for n ≥ 3. We restrict
ourselves by the case n = 3,

iψ̇(x, t) = −∆ψ(x, t) + V (x)ψ(x, t), x ∈ R3. (7.2.1)

Another approach to the proof of this decay in the cases n = 1 and n = 3 was suggested
by M. Goldberg and W. Schlag [181].

Our approach considerably simplifies the arguments of [185] and of [181]. We suppose
that the potential V (x) is a continuous real function, and

|V (x)| ≤ C〈x〉−β, 〈x〉 = (1 + |x|2)1/2, x ∈ R3 (7.2.2)

for some β > 3. As in [185] and [181] we consider the ‘regular case’ when the point
0 is neither eigenvalue nor resonance for the Schrödinger operator H = −∆ + V (x).
Equivalently, the truncated resolvent of the operator H is bounded at the edge point of
the continuous spectrum.

Theorem 7.2.1. Let condition (7.2.2) with β > 3 holds. Then in the regular case

‖eitHPc(H)‖L1→L∞ ≤ C|t|−
3
2 , |t| ≥ 1, (7.2.3)

where Pc(H) is the Riesz projection onto the continuous spectrum of H.

This theorem immediately implies the decay in weighted norms

‖ψ‖Lpσ = ‖〈x〉σψ‖Lp , σ ∈ R.

Corollary 7.2.2. Let (7.2.2) hold and σ > 3/2. Then in the regular case,

‖eitHPc(H)‖L2
σ→L2

−σ
≤ C(1 + |t|)−3/2, t ∈ R. (7.2.4)

Indeed, for any bounded operator K : L1 → L∞ and any f ∈ L2
σ with σ > 3/2, one

has
‖Kf‖L2

−σ
≤ C‖Kf‖L∞ ≤ C‖K‖L1→L∞‖f‖L1 ≤ C1‖K‖L1→L∞‖f‖L2

σ
.

Remark 7.2.3. For σ > 5/2 the dispersion decay of type (7.2.4) for the 3D Schrödinger
equation was established first by A. Jensen and T. Kato [184].

Our proofs follow general strategy of [172, 181, 184] which relies on the spectral Fourier
representation

eiHtPc(H) =
1

2πi

∞∫
0

e−iωt
[
R(ω + i0)−R(ω − i0)

]
dω, (7.2.5)

where R(ω) = (H − ω)−1 is the resolvent of the Schrödinger operator H.
We verify the decay (7.2.3) of the integral (7.2.5) developing a streamlined version

of the approach [181]. First note that this integral generally does not converge in the
operator norm L2

σ → L2
−σ due to the slow decay of the resolvent in this norm like ∼ ω−1/2
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by the results of S. Agmon, A. Jensen and T. Kato [172, 184]. On the other hand, this
integral converges in the sense of distributions, that is the integrals over intervals [0, L]
are tempered distributions WL(t) which converge as L → ∞. Thus, (7.2.3) will follow
from uniform in L ≥ 1 estimates

‖WL(t)‖L1→L∞ ≤ C|t|−
3
2 , |t| ≥ 1. (7.2.6)

Note that for the free Schrödinger operator the decay holds since its integral kernel is
bounded for |t| ≥ 1 and decays uniformly in space:

‖e−i∆t‖L1→L∞ = sup
x,y∈R3

∣∣∣ei|x−y|2/4t
(4πit)3/2

∣∣∣ ≤ C|t|−3/2, |t| ≥ 1. (7.2.7)

7.2.1 Properties of the resolvent

Here we collect the properties of the resolvent R(ω) = (H − ω)−1 obtained in [172, 184]
(see also [189] where the full proofs of these properties can be found). We suppose that
the condition (7.2.2) holds with some β > 1. Then
R1. R(ω) : L2 → L2 is a meromorphic function of ω ∈ C \ [0,∞); the poles of R(ω) are
located at a finite set of eigenvalues ωj < 0.
R2. For ω > 0 and σ > 1/2 there exist the limits R(ω ± i0) such that

‖R(ω ± iε)−R(ω ± i0)‖L2
σ→L2

−σ
→ 0, ε→ 0 + .

R3. Let β > 3. Then for σ > 1/2 + k

‖R(k)(ω)‖L2
σ→L2

−σ
= O(|ω|−

1+k
2 ), |ω| → ∞, ω ∈ C \ [0,∞), k = 0, 1, 2. (7.2.8)

R4. Let β > 2. Then in the regular case, R±(ω) := R(ω ± i0) are continuous operator
functions of ω ≥ 0 with the values in B(L2

σ, L
2
−σ) for any σ1, σ2 > 1/2 with σ1 + σ2 > 2.

R5. Let β > 3. Then in the regular case,

‖R±(ω)‖L2
σ1
→L2
−σ2

= O(1), ω → 0, σ1, σ2>1/2, σ1+σ2>2, (7.2.9)

‖∂kωR±(ω)‖L2
σ→L2

−σ
= O(|ω|

1
2
−k), ω → 0, σ>1/2 + k, k=1, 2. (7.2.10)

In particular, all these properties hold for the free resolvent R0(ω) = (−∆− ω)−1.

The integral kernels of R±0 (λ2) have an explicit representation

R±0 (λ2, x, y) =
e±iλ|x−y|

4π|x− y|
. (7.2.11)

The asymptotics (7.2.9)–(7.2.10) imply

Lemma 7.2.4. Let (7.2.2) hold with β > 3. Then in the regular case

‖∂kλR±(λ2)‖L2
σ1
→L2
−σ2
≤ C(1 + λ)−1, λ ≥ 0, (7.2.12)

where σ1, σ2 > 1/2, σ1 + σ2 > 2 for k = 0, and σ1, σ2 > 1/2 + k for k = 1, 2.
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Proof. First, note that

‖∂kλR±(λ2)‖L2
σ1
→L2
−σ2

= O(1), λ→ 0, (7.2.13)

where σ1, σ2 > 1/2, σ1 + σ2 > 2 for k = 0, and σ1, σ2 > 1/2 + k for k = 1, 2. Indeed,
asymptotics (7.2.13) with k = 0 follows from (7.2.9). Next we apply the formulas (see for
example [189, Formulas (17.9), (17.11)])

R′ = R′0 +RV R′0 +R′0V R +RV R′0V R,

R′′ = R′′0 +RV R′′0 +R′′0V R +RV R′′0V R + 2R′V R′0 + 2R′V R′0V R (7.2.14)

These formulas and (7.2.9), (7.2.10) imply asymptotics (7.2.13) with k = 1, 2. Similarly,
asymptotics (7.2.8) together with formulas (7.2.14) imply

‖ ∂
k

∂λk
R±(λ2)‖L2

σ1
→L2
−σ2

= O(λ−1), λ→∞, σ1, σ2 > 1/2 + k, k = 0, 1, 2. (7.2.15)

7.2.2 The Born series

The identity R(λ2)−R0(λ2) = −R(λ2)V R0(λ2) implies that

R(λ2) = (1−R(λ2)V )R0(λ2).

The iteration yields the finite Born series [181]

R± =
N∑
k=0

(R±0 V )kR±0 + (R±0 V )NR±V R±0 , N ≥ 0. (7.2.16)

Substituting the expansion with N=2 into spectral representation (7.2.5), we obtain

eitHPc(H) =
2∑
j=0

Sj(t) + Z(t),

where S0(t) = e−i∆t, and

Sj(t) =
1

2πi

∫ ∞
0

e−iωt((R+
0 (ω)V )jR+

0 (ω)− (R−0 (ω)V )jR−0 (ω))dω, j = 1, 2, (7.2.17)

Z(t) =
1

2πi

∫ ∞
0

e−iωt((R+
0 (ω)V )2R+(ω)V R+

0 (ω)−(R−0 (ω)V )2R−(ω)V R−0 (ω)).(7.2.18)

By (7.2.7),
‖S0(t)‖L1→L∞ ≤ C|t|−

3
2 , |t| ≥ 1.

It remains to prove similar decay for Sj(t), j = 1, 2 and for Z(t).
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7.2.3 The decay of S1(t) and S2(t)

Lemma 7.2.5. Let condition (7.2.2) hold with β > 3. Then for j = 1, 2

‖Sj(t)‖L1→L∞ ≤ C|t|−
3
2 , |t| ≥ 1. (7.2.19)

Proof. Similarly to (7.2.6) is suffices to prove the decay

sup
L≥1
‖Sj(t, L)‖L1→L∞ ≤ C|t|−

3
2 , |t| ≥ 1, j = 1, 2, (7.2.20)

where

Sj(t, L) =
1

πi

∫ ∞
0

e−iλ
2tχ(λ/L)[(R+

0 (λ2)V )jR+
0 (λ2)− (R−0 (λ2)V )jR−0 (λ2)]λdλ. (7.2.21)

and χ(λ) ∈ C∞0 (R) with χ(λ) = 1 for |λ| ≤ 1.
The representation (7.2.11) implies

sup
x,y∈R3

|R+
0 (λ2, x, y)−R−0 (λ2, x, y)| ≤ Cλ, λ ≥ 0. (7.2.22)

Hence,

sup
x,y∈R3

|[R+
0 V R

+
0 −R−0 V R−0 ](λ2, x, y)|

≤ sup
x,y∈R3

|[(R+
0 −R−0 )V R+

0 ](λ2, x, y)|+ sup
x,y∈R3

|[R−0 V (R+
0 −R−0 )](λ2, x, y)|

≤ Cλ sup
x,y∈R3

∫ ( |V (z)|
|x− z|

+
|V (z)|
|y − z|

)
dz ≤ C1λ, λ ≥ 0. (7.2.23)

Similarly,

sup
x,y∈R3

|[(R+
0 V )2R+

0 )−(R−0 V )2R−0 ](λ2, x, y)|

≤Cλ sup
x,y∈R3

∫∫ ( |V (x1)V (y1)|
|x1−y1||y1−y|

+
|V (x1)V (y1)|
|x−x1||x1−y1|

+
|V (x1)V (y1)|
|x−x1||y−y1|

)
dx1dy1≤Cλ.

Therefore, we can integrate by parts in (7.2.21):

Sj(t, L) =
1

2πt

∫ ∞
0

e−iλ
2t∂λ

(
χ(λ/L)[(R−0 (λ2)V )jR−0 (λ2)− (R+

0 (λ2)V )jR+
0 (λ2)](λ2)

)
dλ

=
1

2πt
(T−j (t, L)− T+

j (t, L)). (7.2.24)

It remains to prove that

sup
L≥1

sup
x,y
|T±j (t, L, x, y)| ≤ C|t|−1/2, |t| ≥ 1, j = 1, 2. (7.2.25)

We have

|T±1 (t, L, x, y)| ≤ 1

L
|
∫

V (z)

|z − y||z − x|

(∫ ∞
0

e−iψ
±
1 (λ)tχ′(λ/L)dλ

)
dz|

+|
∫
R3

( V (z)

|z − y|
+

V (z)

|z − x|
)( ∫ ∞

0

e−iψ
±
1 (λ)tχ(λ/L)dλ

)
dz|,
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|T±2 (t, L, x, y)| ≤ 1

L
|
∫∫

|V (x1)||V (y1)|
|x−x1||x1−y1||y1−y|

( ∞∫
0

e−iψ
±
2 (λ)tχ′(λ/L)dλ

)
dz|

+|
∫∫ ( V (x1)V (y1)

|x1−y1||y1−y|
+

V (x1)V (y1)

|x−x1||x1−y1|
+

V (x1)V (y1)

|x−x1||y−y1|
)( ∞∫

0

e−iψ
±
2 (λ)tχ(λ/L)dλ

)
dx1dy1|

where

ψ±1 (λ) = λ2 ∓ λ(|x−z|+ |z−y|)/t, ψ±2 (λ) = λ2 ∓ λ(|x−x1|+ |x1−y|+ |y1−y|)/t

with
∂2
λψ
±
j (λ) = 2, λ > 0, j = 1, 2

Then (7.2.25) follows by Van der Corput lemma (see [201, Chapter VIII, Proposition II
and Corollary]).

7.2.4 The decay of Z(t)

Now the proof of Theorem 7.2.1 is reduced to the proof of the following proposition

Proposition 7.2.6. Let the conditions of Theorem 7.2.1 hold. Then

‖Z(t)‖L1→L∞ ≤ C|t|−
3
2 , |t| ≥ 1. (7.2.26)

Proof. Using the definition (7.2.28), we represent Z(t) as

Z(t) =
1

πi

∫ ∞
0

e−iλ
2t
(
Λ+(λ)− Λ−(λ)

)
λdλ. (7.2.27)

Here

Λ±(λ) = (R±0 (λ2)V )2R±(λ2)V R±0 (λ2) = R±0 (λ2)VΠ±(λ)V R±0 (λ2), (7.2.28)

where we denote Π±(λ) = R±0 (λ2)V R±(λ2).
First we prove some properties of Λ±(λ). We denote by a+ any number a+ ε with an

arbitrary small, but fixed ε > 0.

Lemma 7.2.7. Let (7.2.2) holds with some β > 3. Then in the regular case,

‖Λ+(λ)− Λ−(λ)‖L1→L∞ → 0, λ→ 0. (7.2.29)

Proof. For any f, g ∈ L1, we obtain

|〈f, (Λ+(λ)− Λ−(λ))g〉| ≤ |〈V (R−0 (λ2)−R+
0 (λ2))f,Π+(λ)V R+

0 (λ2)g〉|

+|〈V R+
0 (λ2)f, (Π+(λ)−Π−(λ))V R+

0 (λ2)g〉|

+|〈V R+
0 (λ2)f,Π−(λ)V (R+

0 (λ2)−R−0 (λ2))g〉|

≤ ‖V (R−0 (λ2)−R+
0 (λ2))f‖L2

1+
‖Π+(λ)‖L2

1+→L2
−1−
‖V R+

0 (λ2)g‖L2
1+

+‖V R+
0 (λ2)f‖L2

1+
‖(Π+(λ)−Π−(λ))‖L2

1+→L2
−1−
‖V R+

0 (λ2)g‖L2
1+

+‖V R+
0 (λ2)f‖L2

1+
‖Π−(λ)‖L2

1+→L2
−1−
‖V (R+

0 (λ2)−R−0 (λ2))g‖L2
1+
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since (R±0 )∗ = R∓0 . For any 0 ≤ σ ≤ β − 1/2, we have

‖V R±0 (λ2)f‖2
L2
σ
≤
∫
V 2(x)〈x〉2σ|

∫
R±0 (λ2, x, y)f(y)dy|2dx

≤ C

∫∫
|f(y1)||f(y2)|

(∫ 〈x〉2σ−2β

|x− y1||x− y2|
dx
)
dy1dy2 ≤ C1‖f‖2

L1 . (7.2.30)

Further, for any 0 ≤ σ ≤ β − 3/2,

‖V (R±0 (λ2)−R∓0 (λ2))f‖2
L2
σ
≤Cλ2

∫∫∫
〈x〉2σ−2β|f(y1)||f(y2)|dxdy1dy2≤C1λ

2‖f‖2
L1 (7.2.31)

by (7.2.22). Finally,

‖Π+(λ)− Π−(λ)‖L2
1+→L2

−1−
→ 0, λ→ 0. (7.2.32)

Indeed, property R4 implies

‖R+
0 (λ2)−R−0 (λ2)‖L2

1+→L2
−1−
→ 0, ‖R+(λ2)−R−(λ2)‖L2

1+→L2
−1−
→ 0, λ→ 0,

while V : L−1− → L1+ is bounded for β > 2.

Lemma 7.2.8. Let (7.2.2) hold with some β > 3. Then in the regular case,

‖∂kλΛ±(λ)‖L1→L∞ ≤ C(1 + λ)−2, λ ≥ 0, k = 0, 1. (7.2.33)

Proof. We omit the signs ± not to overburden the exposition. For example, R0(λ2) means
R+

0 (λ2) or R−0 (λ2), Π(λ) = Π±(λ), etc. First, we show that

‖Π(λ)‖L2
σ1
→L2
−σ2

+ ‖∂λΠ(λ)‖L2
3
2+
→L2

− 3
2−

+ ‖∂2
λΠ
±
N(λ)‖L2

5
2+
→L2

− 5
2−
≤ C(1 + λ)−2, λ ≥ 0,

(7.2.34)
where σ1, σ2 > 1/2, σ1 + σ2 > 2. Indeed, (7.2.12)–(7.2.15) imply

‖Π(λ)‖L2
σ1
→L2
−σ2

≤ ‖R0(λ2)‖L2
3/2+

→L2
−σ2
‖V ‖L2

−3/2−→L
2
3/2+
‖R(λ2)‖L2

σ1
→L2
−3/2−

≤ C(1 + λ)−2.

Further, (7.2.12)–(7.2.15) imply

‖∂λΠ(λ)‖L2
3
2+
→L2

− 3
2−
≤ ‖∂λR0(λ2)‖L2

3
2+
→L2

− 3
2−
‖V ‖L2

− 3
2−
→L2

3
2+
‖R(λ2)‖L2

3
2+
→L2

− 3
2−

+ ‖R0(λ2)‖L2
3
2+
→L2

− 3
2−
‖V ‖L2

− 3
2−
→L2

3
2+
‖∂λR(λ2)‖L2

3
2+
→L2

− 3
2−
≤ C(1 + λ)−2,

‖∂2
λΠ(λ)‖L2

5
2+
→L2

− 5
2−
≤ ‖∂2

λR0(λ2)‖L2
5
2+
→L2

− 5
2−
‖V ‖L2

− 1
2−
→L2

5
2+
‖R(λ2)‖L2

5
2+
→L2

− 1
2−

‖∂λR0(λ2)‖L2
3
2+
→L2

− 5
2−
‖V ‖L2

− 3
2−
→L2

3
2+
‖∂λR(λ2)‖L2

5
2+
→L2

− 3
2−

+ ‖R0(λ2)‖L2
1
2+
→L2

− 5
2−
‖V ‖L2

− 5
2−
→L2

1
2+
‖∂2

λR(λ2)‖L2
5
2+
→L2

− 5
2−
≤ C(1 + λ|−2.

Now, (7.2.30) and (7.2.34) imply for any f, g ∈ L1 and k = 0, 1

|〈f,R0(λ2)V ∂kλΠ(λ)V R0(λ2)g〉| = |〈V R∗0(λ2)f, ∂kλΠ(λ)V R0(λ2)g〉|

≤‖V R∗0(λ2)f‖L2
3
2+
‖∂kλΠ(λ)‖L2

3
2+
→L2

− 3
2−
‖V R0(λ2)g‖L2

3
2+
≤C(1 + λ)−2‖f‖L1‖g‖L1 . (7.2.35)
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Further, for any 0 ≤ σ ≤ β − 3/2, we obtain

‖V ∂λR0(λ2)f‖2
L2
σ
≤ C

∫
〈x〉2σ−2β

(∫
|f(y)|dy

)2

dx ≤ C1‖f‖2
L1 . (7.2.36)

Hence, (7.2.30) and (7.2.34) imply for any f, g ∈ L1 and λ ≥ 0

|〈f, ∂λR0(λ2)VΠ(λ)V R0(λ2)g〉| = |〈V ∂λR∗0(λ2)f,Π(λ)V R0(λ2)g〉|

≤‖V ∂λR∗0(λ2)f‖L2
1+
‖Π(λ)‖L2

1+→L2
−1−
‖V R0(λ2)g‖L2

1+
≤C‖f‖L1‖g‖L1(1 + λ)−2 (7.2.37)

Similarly,

|〈f,R0(λ2)VΠ(λ)V ∂λR0(λ2)g〉| ≤ C‖f‖L1‖g‖L1(1 + λ)−2, λ ≥ 0.

Then (7.2.33) follows by definition (7.2.28) of Λ.

Due to Lemma 7.2.8, the integrand in(7.2.27) is a differentiable operator function of
λ ≥ 0 with values in the space of bounded operators mapping L1 into L∞. Moreover, due
to Lemmas 7.2.7 and 7.2.8, we can integrate by parts,

Z(t) =
1

2πt

∫ ∞
0

e−iλ
2t∂λ

(
Λ−(λ)− Λ+(λ)

)
dλ =

1

2πt
(Q−(t)−Q+(t)).

Here

Q±(t, x, y) =

∞∫
0

(
e−iϕ1tK±1 (λ, x, y) + e−iϕ

±
2 tK±2 (λ, x, y)e−iϕ

±
3 tK±3 (λ, x, y))

)
dλ,

where we denote

ϕ1(λ) = −λ2, ϕ±2 (λ) = −λ2 ∓ λ|x|/t, ϕ±3 (λ) = −λ2 ∓ λ|y|/t,

K±1 (λ) = R±0 (λ2)V ∂λΠ
±
N−1(λ)V R±0 (λ2),

K±2 (λ) = (G∓(λ))∗VΠ±N(λ)V R±0 (λ2), K±3 (λ) = R±0 (λ2)VΠ±N(λ)V G±(λ),

and G±(λ) is the operator with the kernel

G±(λ, x, y) = ∓e
±iλ(|x−y|−|y|)

4πi
, λ ≥ 0. (7.2.38)

It remains to prove that

sup
x,y
|Q±(t, x, y)| ≤ C|t|−

1
2, |t| ≥ 1. (7.2.39)

To this end, we estimate the functions K±j , j = 1, 2, 3.

Lemma 7.2.9. Let (7.2.2) hold with some β > 3. Then for N ≥ 1, in the regular case,

‖∂kλKj(λ)‖L1→L∞ ≤ C(1 + λ)−2, λ ≥ 0, k = 0, 1, j = 1, 2, 3. (7.2.40)
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Proof. We omit the signs ± again.
1) Note that (7.2.40) for K1 is exactly (7.2.35) with k = 1. Further, estimates (7.2.34),
(7.2.30) and (7.2.36) imply

|〈f, ∂λK1(λ)g〉| ≤ ‖V ∂λR∗0(λ2)f‖L2
3
2+
‖∂λΠ(λ)‖L2

3
2+
→L2

− 3
2−
‖V R0(λ2)g‖L2

3
2+

+‖V R∗0(λ2)f‖L2
3
2+
‖∂λΠN(λ)‖L2

3
2+
→L2

− 3
2−
‖V ∂λR0(λ2)g‖L2

3
2+

+‖V R∗0(λ2)f‖L2
5
2+
‖∂2

λΠN(λ)‖L2
5
2+
→L2

− 5
2−
‖V R0(λ2)g‖L2

5
2+
≤ C(1 + λ)−2‖f‖L1‖g‖L1 ,

2) Now we estimate ∂kλK2(λ). Note that

|∂kλG(λ, x, y)| ≤ |x|k/(4π), k = 0, 1, 2, ... (7.2.41)

Then, similarly to (7.2.36), we obtain for 0 ≤ σ ≤ β − k − 3/2

‖V ∂kλG(λ)f‖L2
σ
. ‖f‖L1 , k = 0, 1. (7.2.42)

Hence, (7.2.34), (7.2.30) and (7.2.36) imply

|〈f,K2(λ)g〉| ≤ ‖V G(λ2)f‖L2
1+
‖Π(λ)‖L2

1+→L2
−1−
‖V R0(λ2)g‖L2

1+

≤ C(1 + λ)−2‖f‖L1‖g‖L1 .

|〈f, ∂λK2(λ)g〉| ≤ ‖V ∂λG(λ2)f‖L2
1
2+
‖Π(λ)‖L2

3
2+
→L2

− 1
2−
‖V R0(λ2)g‖L2

3
2+

+‖V G(λ2)f‖L2
1+
‖Π(λ)‖L2

1+→L2
−1−
‖V ∂λR0(λ2)g‖L2

1+

+‖V G(λ2)f‖L2
3
2+
‖∂λΠ(λ)‖L2

3
2+
→L2

− 3
2−
‖V R0(λ2)g‖L2

3
2+
≤C(1 + λ)−2‖f‖L1‖g‖L1 .(7.2.43)

The estimates for K3 can been obtained similarly.

Corollary 7.2.10. For k = 0, 1 the integral kernels ∂kλKj(λ, x, y) belong to L∞(R6), and

‖∂kλKj(λ, ·, ·)‖L∞(R6) ≤ C(1 + λ)−2, j = 1, 2, 3, λ ≥ 0.

Proof. The distributional kernel A(x, y) of any bounded linear operator A : L1(R3) →
L∞(R3) belongs to L∞(R6), and

‖A(·, ·)‖L∞(R6) = ‖A‖L1(R3)→L∞(R3).

This follows from the estimate |〈A, φ〉| ≤ C‖φ‖L1(R6) for φ ∈ L1(R6) and from the duality
(L1(R6))∗ = L∞(R6).

Applying Corollary 7.2.10, we obtain

sup
x,y
|Q±(t, x, y)| ≤ C|t|−

1
2

∫ ∞
0

(1 + |λ|)−2dλ ≤ C1|t|−
1
2 , |t| ≥ 1.

by Van der Corput lemma.
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Chapter 8

Attractors and Quantum Mechanics

In this chapter we discuss possible relations of the foregoing results on global attractors
of nonlinear Hamiltonian equations to some mathematical problems of Quantum Theory.

These results were suggested by fundamental postulates of quantum theory, primarily
the Bohr postulate on transitions between quantum stationary states. As a result, we
have introduced general summarising conjecture (0.0.6). Here we discuss possible rela-
tion of this conjecture to dynamical treatment of the Bohr postulates in the context of
semiclassical nonlinear Maxwell–Schrödinger and Maxwell–Dirac equations.

8.1 Bohr’s postulates

In 1913 N. Bohr suggested the following two postulates which give the ‘Columbus solution’
of the problem of stability and radiation of atoms and molecules [217]:∣∣∣∣∣∣∣

B1c. Atoms and molecules are permanently on some stationary orbits |En〉
with energies En, and sometimes make transitions between the orbits,

|En〉 7→ |En′〉.

∣∣∣∣∣∣∣ (8.1.1)

∣∣∣∣∣ B2. Such transition is followed by radiation of an electromagnetic wave
of frequency ωnn′ = ωn′ − ωn, where ωk = Ek/~

∣∣∣∣∣ (8.1.2)

Both these postulates should become theorems in discovered in 1925–1926 Quantum The-
ory of E. Schrödinger and W. Heisenberg. However, this did not happen till now, while
both postulates are still actively used in quantum theory. This lack of theoretical clarity
hinders the progress in the theory (e.g., in superconductivity and in nuclear reactions),
and in numerical simulation of many engineering processes (e.g., of laser radiation and
quantum amplifiers) since a computer can solve dynamical equations but cannot take
postulates into account.

The juxtaposition of the quantum postulates (8.1.1) and (8.1.2) with the Schrödinger
theory rises the following questions.
I. Why quantum stationary states (or quantum stationary orbits) in the Schrödinger theory
are identified with wave functions of the form (3.1.11),

ψ(x, t) = ψω(x)e−iωt ? (8.1.3)

167
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II. Whether Bohr’s transitions (8.1.1) between these quantum stationary states allow a
dynamical description?

Note that exactly the expression (8.1.3) implies that the amplitudes ψω(x) are eigen-
functions of the Schrödinger operator.

The same questions arise in each other dynamical model: Quantum Field Theory,
Chromodynamics, and so on. However, the answer is not found till now.

The theory of attractors of Hamiltonian nonlinear PDEs, presented in this book, sug-
gests that
i) the form (8.1.3) of quantum stationary states is due to the U(1)-symmetry of the
Schrödinger theory, that is of the coupled Maxwell–Schrödinger equations (8.2.1).
ii) the transitions can be interpreted as the global attraction (3.1.2) of all trajectories of
a quantum system to an attractor formed by stationary orbits of type (8.1.3).

Moreover, the amplitudes of these stationary orbits are solutions of the nonlinear
eigenvalue problem of type (3.1.12), which is approximately linear in a variety of cases due
to the smallness of the interaction constant (the Sommerfeld constant) .

We expect that other fundamental postulates of Quantum Theory also allow suitable
interpretation in the framework of the theory of attractors for nonlinear Hamiltonian
PDEs: wave-particle duality (L. de Broglie, 1924), and probabilistic interpretation (M.
Born, 1927). More details can be found in [214].

8.2 On dynamical interpretation of quantum jumps
The simplest dynamical interpretation of the postulate B1 is the global attraction to
stationary orbits (3.1.2) for all finite energy quantum trajectories ψ(t). This means that
stationary orbits form a global attractor of the corresponding quantum dynamics. How-
ever, this global attraction to stationary orbits contradicts the linear Schrödinger equation
due to the superposition principle. Thus, Bohr’s transitions B1 in the linear theory do
not exist.

It is natural to suggest that the global attraction to stationary orbits (3.1.2) holds for
a nonlinear modification of the linear Schrödinger theory. On the other hand, it turns
out that even the original Schrödinger theory is nonlinear, because it involves interaction
with the Maxwell field. The corresponding semiclassical nonlinear Maxwell–Schrödinger
system was introduced essentially in the first Schrödinger’s articles [218] (see also Sections
4.2 and 12.4.2 of [213]):
i~ψ̇(x, t) =

1

2m
[−i~∇− e

c
(A(x, t) + Aext(x, t))]2ψ + e[A0(x, t) + Aext

0 (x, t)]ψ

�Aν(x, t) = 4πJν(x, t), ν = 0, 1, 2, 3

∣∣∣∣∣∣∣ , (8.2.1)

where � is the d’Alembert wave operator
1

c2
∂2
t −∆. The Maxwell equations are written

here in the 4-dimensional form and in unrationalized Gaussian units (cgs) (or Heaviside–
Lorentz units). The physical constants in these units are approximately equal to

e = −4.8×10−10esu, m = 9.1×10−28g, ~ = 1.1×10−27erg·s, c = 3.0×1010cm/s. (8.2.2)

(see [212, p. 781] and [219, p. 221]). Further, A = (A0,A) = (A0, A1, A2, A3) denotes
4-dimensional potential of the Maxwell field in the Lorentz gauge Ȧ0/c + ∇ · A = 0,
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Aext = (Aext
0 ,Aext) is an external 4-potential, and J = (ρ, j/c) is the 4-dimensional current

density. To make these equations a closed system, we must also express the density of
charge and currents via the wave function:

J0(x, t) = |ψ(x, t)|2; Jk(x, t) = [(−i∇k + Ak(x, t) + Aext
k (x, t))ψ(x, t)] · ψ(x, t) (8.2.3)

for k = 1, 2, 3, and ‘·’ denotes the scalar product of two-dimensional real vectors cor-
responding to complex numbers. In particular, these expressions provide the continuity
equation ρ̇ + div j = 0 for any solution of the Schrödinger equation with arbitrary real
potentialss [213, Section 3.4].

System (8.2.1) is nonlinear in (ψ,A) although the Schrödinger equation is formally
linear in ψ. It can be written as (0.0.5) in the case of static external potentials

Aext(x, t) ≡ Aext(x). (8.2.4)

In this case the system (8.2.1) is G-invariant with the symmetry group G = U(1) acting
as

T (eiθ)(ψ(x), A(x)) := (ψ(x)eiθ, A(x)). (8.2.5)

The symmetry means that for any solution (ψ(x, t), A(x, t)) of (8.2.1) and any θ ∈ R the
functions

T (eiθ)(ψ(x, t), A(x, t)) := (ψ(x, t)eiθ, A(x, t)) (8.2.6)

are also solutions that can be easy verified. In particular, the 4-current (8.2.3) is invariant
under this action. Now the ‘stationary G-orbits’ (3.10.3) for the nonlinear hyperbolic
system (8.2.1) are solutions of type

(ψ(x)e−iωt, A(x)). (8.2.7)

The same remarks apply to the Maxwell—Dirac system introduced by Dirac in 1927:
3∑

ν=0

γν [i∇ν − Aν(x, t)− Aext
ν (x, t)]ψ(x, t) = mψ(x, t)

�Aν(x, t) = Jν(x, t) := ψ(x, t)γ0γνψ(x, t), ν = 0, . . . , 3

∣∣∣∣∣∣∣∣ x ∈ R3, (8.2.8)

where ∇0 := ∂t.
We suggest that the Bohr transitions B1 for the systems (8.2.1) and (8.2.8) with a

static external potentials (8.2.4) can be interpreted as the single-frequency asymptotics

(ψ(x, t), A(x, t)) ∼ (ψ±(x)e−iω±t, A±(x, t)), t→ ±∞ (8.2.9)

for every finite energy solution, where the asymptotics hold in local energy norms. These
asymptotics correspond to our general conjecture (0.0.6) with the symmetry group G =
U(1) and its representation (8.2.5).

Stationary G-orbits (8.2.7) are solutions to the nonlinear eigenvalue problem
~ωψ(x) =

1

2m
[−i~∇− e

c
(A(x) + Aext(x))]2ψ(x) + e[A0(x) + Aext

0 (x)]ψ(x)

−∆Aν(x) = 4πJν(x), ν = 0, 1, 2, 3

∣∣∣∣∣∣∣ . (8.2.10)
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The existence of these stationary G-orbits for the Maxwell–Schrödinger equations was
established by G.M. Coclite and V. Georgiev [29] for the case of Coulomb external po-
tentials

Aext
0 = −eZ

|x|
, Aext(x) ≡ 0. (8.2.11)

For the Maxwell–Dirac system the existence of stationary G-orbits was established by M.
Esteban, V. Georgiev and E. Séré in the case of zero external potentials [30].

Remark 8.2.1. The nonlinear eigenvalue problem (8.2.10) reduces to traditional linear
eigenvalue problem for the Schrödinger operator if one neglect the ‘own Maxwell poten-
tials’ A0(x) and A(x) in the first equation. The solution of this linear eigenvalue problem
with the normalisation ∫

|ψ(x)|2dx = 1 (8.2.12)

can be considered as the first approximation. Further one can apply perturbation proce-
dure solving the Poisson equations in (8.2.10) with currents (8.2.3) defined with the first
approximation, and adding their solutions to the external potentials, and so on. The con-
vergence of this procedure is not proved, though it gives satisfactory results in a variety
of cases.

Furthermore, in the case of zero external potentials Maxwell–Schrödinger system is
translation-invariant, while the Maxwell–Dirac system is relativistically-invariant. Re-
spectively, for their solutions one should expect the soliton asymptotics of type (0.0.13)
in global energy norms as t→ ±∞:

ψ(x, t) ∼
∑
k

ψk±(x− vk±t)eiΦ
k
±(x,t) + ϕ±(x, t), (8.2.13)

A(x, t) ∼
∑
k

Ak±(x− vk±t) + A±(x, t). (8.2.14)

Here Φk
±(x, t) are suitable phase functions, and each soliton (ψk±(x− vk±t)eiΦ

k
±(x,t), Ak±(x−

vk±t)) is a solution of the corresponding ‘nonlinear eigenvalue problem’, while ϕ±(x, t) and
A±(x, t) represent some dispersion waves which are solutions to the free Schrödinger and
Maxwell equations respectively.

The asymptotics (8.2.9) and (8.2.13) are not proved yet for the Maxwell–Schrödinger
and Maxwell–Dirac systems (8.2.1) and (8.2.8). One could expect that these asymp-
totics should follow by suitable modification of the arguments from Chapter 3 which
give a rigorous justification of similar arguments for U(1)-invariant equations (3.1.1) and
(3.1.18)–(3.1.20). However, a rigorous justification for the systems (8.2.1) and (8.2.8) is
still an open problem.

8.3 Bohr’s postulates by perturbation theory
The remarkable success of the Schrödinger theory was the explanation of the Bohr pos-
tulates in the case of static external potentials by perturbation theory applied to the cou-
pled Maxwell–Scrödinger equations (8.2.1). Namely, as a first approximation, the time-
dependent fields A(x, t) and A0(x, t) in the Schrödinger equation of the system (8.2.1)
can be neglected:

i~ψ̇(x, t) = Hψ(x, t) :=
1

2m
[−i~∇− e

c
Aext(x)]2ψ(x, t) + eA0

ext(x)ψ(x, t), (8.3.1)
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For ‘sufficiently good’ external potentials and initial conditions any finite energy solution
can be expanded in eigenfunctions

ψ(x, t) =
∑
n

Cnψn(x)e−iωnt + ψc(x, t), ψc(x, t) =

∫
C(ω)e−iωtdω, (8.3.2)

where integration is performed over the continuous spectrum of the Schrödinger operator
H, and for any R > 0 ∫

|x|<R
|ψc(x, t)|2dx→ 0, t→ ±∞, (8.3.3)

see, for example, [189, Theorem 21.1]. The substitution of this expansion into the expres-
sion for current density (8.2.3) gives the series

J(x, t) =
∑
nn′

Jnn′(x)e−iωnn′ t + c.c.+ Jc(x, t), (8.3.4)

where Jc(x, t) has a continuous frequency spectrum. Therefore, the currents on the right
hand side of the Maxwell equation from (8.2.1) contains, besides the continuous spectrum,
only discrete frequencies ωnn′ . Hence, the discrete spectrum of the corresponding Maxwell
field also contains only these frequencies ωnn′ . This proves the Bohr rule B2 in the first
order of perturbation theory, since this calculation ignores the inverse effect of radiation
onto the atom.

Moreover, these arguments also suggest to treat the jumps (8.1.1) as the single-
frequency asymptotics (8.2.9) for solutions to the Schrödinger equation coupled to the
Maxwell equations.

Namely, the currents (8.3.4) on the right of the Maxwell equation from (8.2.1) produce
the radiation when non-zero frequencies ωnn′ are present. This is due to the fact that R\0
is a subset of absolutely continuous spectrum of the Maxwell equations.

However, this radiation cannot last forever, since it irrevocably carries the energy to
infinity while the total energy is finite. Hence in the long-time limit only ωnn′ = 0 should
survive, which means exactly the single-frequency asymptotics (8.2.9) by (8.3.3).

Remark 8.3.1. Of course, these perturbation arguments cannot provide a rigorous justi-
fication of the long-time asymptotics (4.5.21) for the coupled Maxwell–Schrödinger equa-
tions. In [63]–[74], we have justified similar single-frequency asymptotics for a list of model
U(1)-invariant nonlinear PDEs, see Chapter 3. Nevertheless, for the coupled Maxwell–
Schrödinger equation such justification is still an open problem.

8.4 Conclusion

The discussion above suggests that N. Bohr’s postulates cannot be interpreted in the
framework of linear Schrödinger equation alone, but admit a hypothetical explanation in
the framework of the coupled Maxwell–Schrödinger equations. In [214] we also suggest a
mathematical treatment of other fundamental postulates of Quantum Theory relying on
the coupled Maxwell–Schrödinger equations: of L. de Broglie’s wave-particle duality and
of M. Born’s probabilistic interpretation.

It seems, the absence of suitable treatment of these postulates in the framework of
linear theory was the cause of heated discussions by A. Einstein with N. Bohr and other
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physicists [205]. Note that W. Heisenberg began developing a nonlinear theory of elemen-
tary particles [208, 209].

According to many expert physicists, a mathematical analysis of problems of Quantum
Mechanics is useless because its area of applicability is limited, as are its capabilities. How-
ever, the purpose of our discussions is not in improving the physical theory. Our goal is to
prepare a mathematical ground for approach to some open questions of Quantum Theory
which are not accessible with perturbation technique. For instance, to the questions of
nuclei classification and of nuclear reactions. We suppose that the nuclei are ‘quantum
stationary states’ of suitable nonlinear equations, i.e. points of the corresponding global
attractor.

Note, the second-quantized MS system is the main subject of Quantum Electrodynam-
ics [216]. Our specific attention to the semiclassical Maxwell–Schrödinger and Maxwell–
Dirac systems is due to the fact that for these systems there is an extensive empirical
material: on atomic spectra, electron diffraction, on crystals and their thermal and elec-
tric conductivity, etc. Therefore, one can try to find possible mathematical description of
these phenomena in the framework of these systems. So these semiclassical systems serve
as a testing ground for a development of the mathematical theory.

Similar questions also exist on a higher level in the Quantum Field Theory [216].
However, they obviously cannot be clarified until these questions are understood in a
simpler context of semiclassical theory.



Bibliography

[1] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York,
1989.

Differential equations and Functional Analysis

[2] T. Cazenave, Semilinear Scrödinger Equations, AMS, NY, 2003.

[3] T. Cazenave, A. Haraux, An Introduction to Semilinear Evolution Eqations, Claren-
don Press, Oxford, 1998.

[4] G.I. Gaudry, quasimeasures and operators commuting with convolution, Pacific J.
Math., 18 (1966), 461–476.
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Sup. (4) 1 (1968), 459–497.

[39] W.A. Strauss, Decay and asymptotics for �u = F (u), J. Functional Analysis 2
(1968), 409–457.

[40] B.R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon
and Breach, New York, 1989.

Global attraction to stationary states for Hamiltonian PDEs

[41] M. Freidlin, A.I. Komech, On metastable regimes in stochastic Lamb system, Journal
of Mathematical Physics 47 (2006), no. 4, 043301-1 – 043301-12.

[42] J. B. Keller, L.L. Bonilla, Irreversibility and nonrecurrence, J. Stat. Physics 42
(1986), no. 5-6, 1115–1125.

[43] A.I. Komech, On the stabilization of interaction of a string with a nonlinear oscillator,
Moscow Univ. Math. Bull. 46 (1991), no. 6, 34–39.

[44] A.I. Komech, On stabilization of string-nonlinear oscillator interaction, J. Math.
Anal. Appl., 196 (1995), 384–409.

[45] A.I. Komech, On the stabilization of string-oscillator interaction, Russian J. Math.
Phys. 3 (1995), 227–247.

[46] A.I. Komech, On transitions to stationary states in one-dimensional nonlinear wave
equations, Arch. Ration. Mech. Anal. 149 (1999), 213–228.

[47] A.I. Komech, H. Spohn, M. Kunze, Long-time asymptotics for a classical parti-
cleinteracting with a scalar wave field, Comm. Partial Differential Equations 22
(1997), 307–335.

[48] A.I. Komech, H. Spohn, Long-time asymptotics for the coupled Maxwell–Lorentz
equations, Comm. Partial Differential Equations 25 (2000), 559–584.



176 BIBLIOGRAPHY

[49] A. Komech, Attractors of non-linear Hamiltonian one-dimensional wave equations,
Russ. Math. Surv. 55 (2000), no. 1, 43–92.

[50] A.I. Komech, A. Merzon, Scattering in the nonlinear Lamb system, Phys. Lett. A
373 (2009), 1005–1010.

[51] A.I. Komech, A. Merzon, On asymptotic completeness for scattering in the nonlinear
Lamb system, J. Math. Phys. 50 (2009), 023514.

[52] A.I. Komech, A. Merzon, On asymptotic completeness of scattering in the nonlinear
Lamb system, II, J. Math. Phys. 54 (2013), 012702.

[53] E. Kopylova, On global attraction to stationary states for wave equation with con-
centrated nonlinearity, J. Dynamics and Diff. Equations 30 (2018), no. 1, 107–116.

[54] H. Lamb, On a peculiarity of the wave-system due to the free vibrations of a nucleus
in an extended medium, Proc. London Math. Soc. 32 (1900), 208–211.

[55] H. Spohn, Dynamics of Charged Particles and their Radiation Field, Cambridge
University Press, Cambridge, 2004.

Global attraction to solitons for Hamiltonian PDEs

[56] W. Eckhaus, A. van Harten, The Inverse Scattering Transformation and the Theory
of Solitons, North-Holland Publishing Co., Amsterdam–New York, 1981.

[57] A.I. Komech, H. Spohn, Soliton asymptotics for a classical particle interacting with
a scalar wave field, Nonlinear Anal. 33 (1998), 13–24.

[58] V. Imaykin, A.I. Komech, N. Mauser, Soliton-type asymptotics for the coupled
Maxwell-Lorentz equations, Ann. Henri Poincaré P (2004), 1117–1135.
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475.

[113] V. Buslaev, A.I. Komech, E. Kopylova, D. Stuart, On asymptotic stability of soli-
tary waves in Schrödinger equation coupled to nonlinear oscillator, Comm. Partial
Differential Equations 33 (2008), 669–705.

[114] S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm.
Pure Appl. Math. 54 (2001), 1110–1145.

[115] S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and
the asymptotic stability of its ground states, Comm. Math. Phys. 305 (2011), 279–
331.

[116] S. Cuccagna, T. Mizumachi, On asymptotic stability in energy space of ground
states for nonlinear Schrödinger equations, Comm. Math. Phys. 284 (2008), 51–77.

[117] M. Dafermos, I. Rodnianski, A proof of the uniform boundedness of solutions to
the wave equation on slowly rotating Kerr backgrounds, Invent. Math. 185 (2011),
467–559.

[118] R. Donninger, W. Schlag, A. Soffer, On pointwise decay of linear waves on a
Schwarzschild black hole background, Comm. Math. Phys. 309 (2012), 51–86.

[119] T. Duyckaerts, C. Kenig, F. Merle, Profiles of bounded radial solutions of the fo-
cusing, energy-critical wave equation, Geom. Funct. Anal. 22 (2012), 639–698.

[120] T. Duyckaerts, C. Kenig, F. Merle, Scattering for radial, bounded solutions of fo-
cusing supercritical wave equations, Int. Math. Res. Not. IMRN 2014 (2014), no. 1,
224–258.

[121] T. Duyckaerts, C. Kenig, F. Merle, Concentration-compactness and universal pro-
files for the non-radial energy critical wave equation, Nonlinear Anal. 138 (2016),
44–82.
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[162] A. Soffer, M.I. Weinstein, Multichannel nonlinear scattering for nonintegrable equa-
tions, Comm. Math. Phys. 133 (1990), 119–146.

[163] A. Soffer, M.I. Weinstein, Multichannel nonlinear scattering for nonintegrable equa-
tions. II. The case of anisotropic potentials and data, J. Differential Equations 98
(1992), 376–390.

[164] A. Soffer, M.I. Weinstein, Resonances, radiation damping and instability in Hamil-
tonian nonlinear wave equations, Invent. Math. 136 (1999), 9–74.

[165] A. Soffer, M.I. Weinstein, Selection of the ground state for nonlinear Schrödinger
equations, Rev. Math. Phys. 16 (2004), 977–1071.

[166] D.M.A. Stuart, Modulational approach to stability of non-topological solitons, Jour-
nal de Mathematiques Pures et Appliqu’ees 80 (2001) , no. 1, 51-83.

[167] D. Tataru, Local decay of waves on asymptotically flat stationary space-times,
Amer. J. Math. 135 (2013), 361–401.

[168] T.P. Tsai, Asymptotic dynamics of nonlinear Schrödinger equations with many
bound states, J. Differential Equations 192 (2003), 225–282.

[169] T.P. Tsai, H.T. Yau, Classification of asymptotic profiles for nonlinear Schrödinger
equations with small initial data, Adv. Theor. Math. Phys. 6 (2002), 107–139.

[170] T.P. Tsai, H.T. Yau, Asymptotic dynamics of nonlinear Schrödinger equations: res-
onance-dominated and dispersion-dominated solutions, Comm. Pure Appl. Math. 55
(2002), 153–216.

[171] M.I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger
equations, SIAM J. Math. Anal. 16 (1985), 472–491.

Dispersion decay

[172] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), 151–218.

[173] P. D’Ancona, L. Fanelli, L. Vega, N. Visciglia, Endpoint Strichartz estimates for
the magnetic Schrödinger equation, J. Funct. Anal., 258 (2010), 3227–3240.

[174] P. D’Ancona, Kato smoothing and Strichartz estimates for wave equations with
magnetic potentials, Comm. Math. Phys., 335 (2015), 1–16.

[175] M. Beals, W. Strauss, Lp estimates for the wave equation with a potential, Comm.
Partial Differential Equations, 18 (1993), 1365–1397.

[176] M. Beceanu, M. Goldberg, Schrödinger dispersive estimates for a scaling-critical
class of potentials, Comm. Math. Phys., 314 (2012), 471–481.

[177] M. Beceanu, M. Goldberg, Strichartz estimates and maximal operators for the wave
equation in R3, J. Funct. Anal., 266 (2014), 1476–1510.



184 BIBLIOGRAPHY

[178] I. Egorova, E. Kopylova, V.A. Marchenko, G. Teschl, Dispersion estimates for one-
dimensional Schrödinger and Klein–Gordon equations. Revisited. Russian Math. Sur-
veys 71 (2016), no. 3, 391–415.

[179] I. Egorova, E. Kopylova, G. Teschl, Dispersion estimates for one-dimensional dis-
crete Schrödinger and wave equations, J. Spectr. Theory 5 (2015), no. 4, 663–696.
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[210] L. Houllevigue, L’Évolution des Sciences, A. Collin, Paris, 1908.

[211] C. Itzykson, J.B. Zuber, Quantum Field Theory, McGraw-Hill, NY, 1980.



186 BIBLIOGRAPHY

[212] J.D. Jackson, Classical Electrodynamics, 3rd ed., John Wiley & Sons, New York,
1999.

[213] A.I. Komech, QuantumMechanics: Genesis and Achievements, Springer, Dordrecht,
2013.

[214] A.I. Komech, Quantum jumps and attractors of Maxwell–Schrödinger equations,
submitted to Adv. Theor. and Math. Phys., 2020. arXiv 1907.04297 math-ph.
https://arxiv.org/abs/1907.04297

[215] R. Newton, Quantum Physics, Springer, New York, 2002.

[216] J.J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley, Reading, Massachu-
sets, 1967.

[217] L.I. Schiff, Quantum Mechanics, McGraw-Hill, New York, 1955.

[218] E. Schrödinger, Quantisierung als Eigenwertproblem, Ann. d. Phys. I, II 79 (1926)
361, 489; III 80 (1926) 437; IV 81 (1926) 109. (English translation in: E. Schrödinger,
Collected Papers on Wave Mechanics, Blackie & Sohn, London, 1928.)

[219] G.K. Woodgate, Elementary Atomic Structure, Clarendon Press, Oxford, 2002.

Omega-Hyperon

[220] M. Gell-Mann, Symmetries of baryons and mesons, Phys. Rev. (2) 125 (1962),
1067–1084.

[221] Y. Ne’eman, Unified interactions in the unitary gauge theory, Nuclear Phys. 30
(1962), 347–349.

[222] F. Halzen, A. Martin, quarks and Leptons: an Introductory Course in Modern
particlePhysics, John Wiley & Sons, New York, 1984.

[223] V. E. Barnes & al., Observation of a hyperon with strangeness minus three, Phys.
Rev. Lett. 12 (1964), 204–206.

https://arxiv.org/abs/1907.04297


Index

a priori bound, 19, 21, 42, 47, 49, 60, 64, 80,
112

a priori estimate, 5, 30, 42, 51, 58, 68, 85
Abraham, 51, 58, 146, 185
absolute continuity, 84
absolutely continuous distribution, 87
adiabatic asymptotics, 144, 145
adiabatic invariant, 104
adiation damping, 8
Agmon, 7, 156, 159, 183
analytic continuation, 86, 116, 134
analytic function, 30, 32–35, 41, 44, 85, 86,

103, 116, 119, 137
analytic properties, 118
asymptotic completeness, 18, 20, 176
asymptotic stability, 105, 144
asymptotic stability of solitary manifold, 12,

13, 99, 107, 108, 179
asymptotic stability of solitons, 99
asymptotic state, 20
asymptotics, 7–12, 18, 35, 42, 45, 52, 53, 66,

69, 76, 77, 87, 95, 97, 98, 101–103,
105–108, 110, 111, 114, 133, 145,
148, 151, 159, 160, 169, 170, 175,
176, 179, 180

attracting set, 35, 45, 56
attraction, 12, 13, 52, 56, 57, 81, 83, 89, 100
attraction in the mean, 45, 46, 49
attraction to solitons, 106
attraction to stationary states, 20, 45
attractor, 2, 5–7, 12, 13, 16, 66, 167, 168,

176, 177, 186
attractor of Hamiltonian equation, 173

Bambusi, 69, 179
Banach phase space, 6
Banach phase space, 97
Banach space, 2, 9, 12, 112, 119
Banach Theorem, 88
baryon, 12, 98, 186
Berestycki, 11, 174

Berezin, 59, 178
Bethe, 59
biological reaction, 6
Bohr, 8, 168, 171, 185
Bohr postulates, 13, 167, 168, 170, 171
Bohr rule, 171
Bohr transitions, 169
Born, 168
Born probabilistic interpretation, 171
Born series, 160
bound component, 89
boundary value problem, 42, 44
Buslaev, 7, 12, 102, 110, 179, 180

canonical form, 76, 145
canonical transformation, 69, 76
Cauchy data, 37, 42, 47, 49
Cauchy problem, 18–21, 29, 40, 47, 61–63
Cauchy residue theorem, 88, 116, 118
Cazenave, 6, 173
charge conservation, 111, 121
charge density, 50, 51, 58, 146, 169
chemical reaction, 6
Cherenkov radiation, 107, 180
Chern–Simon–Schrödinger system, 145
Chromodynamics, 168
Classical Electrodynamics, 8, 52, 58, 146,

179, 186
Comech, 5, 7, 176
comoving frame, 9, 10, 68, 69, 106
complexification, 103
concentrated nonlinearity, 10, 15, 59, 82,

176–179
concentration compactness, 108, 182
confining potential, 40, 50, 58, 59, 80
conjecture on attractors of G-invariant PDEs,

2, 7, 8, 12, 97, 98, 146, 167, 169
continuous spectrum, 12, 52, 84, 87, 88, 93–

96, 100, 103, 104, 106, 108, 111, 118,
123, 128, 141, 150, 158, 171

convex hull, 92

187



188 INDEX

convolution, 52, 55, 90, 92, 93, 173, 177
convolution operator, 95
convolution representation, 55, 58
Coulomb external potential, 170
Coulomb potential, 11, 51
critical energy, 108
critical focusing nonlinear Schrödinger equa-

tion, 108
critical point, 11, 69–71
current density, 58, 169, 171

d’Alembert, 19, 27
d’Alembert equation, 9, 15, 26
d’Alembert formula, 16, 21, 38, 43
d’Alembert operator, 168
d’Alembert representation, 21, 29, 30, 38,

47
de Broglie, 168
de Broglie wave-particle duality, 171
defocusing nonlinearity, 7
delay, 6
determinant, 137
difference scheme, 10, 82, 151
Dirac, 59, 82, 169, 177–179, 181
Dirac distribution, 118, 119, 121
Dirac equation, 10, 106, 156
discrete Dirac equation, 185
discrete equation, 156
discrete Klein–Gordon equation, 176, 181,

184, 185
discrete Schrödinger equation, 181, 184, 185
discrete Schrödinger operator, 179
discrete set, 10, 20, 22, 25, 30, 32–35, 40–42,

44, 51, 52, 57, 66, 152
discrete spectrum, 10, 12, 100, 103, 114,

117, 119, 128, 139, 150, 171
dispersion component, 89
dispersion decay, 2, 13, 77, 155, 156, 158,

183, 185
dispersion radiation, 94, 96
dispersion relation, 150
dispersion wave, 12, 17, 63, 77, 85, 89, 95,

108, 148, 150, 152, 154, 170
dissipative system, 5, 6, 66
distribution, 2, 15, 19, 29, 82, 84–88, 90–93,

110, 114, 116, 119, 159, 165, 177
Duhamel representation, 43, 77, 121, 129
dynamical treatment of the Bohr postulates,

167

dynamical group, 18, 20, 43, 48, 103, 110,
114, 116, 121, 132

dynamical interpretation, 168
dynamical system, 40
dynamics, 12, 18, 30, 42, 96, 100, 110, 144,

168, 178, 179, 183
Dynkin scheme, 98

Eckhaus, 176
effective dispersion relation, 145
effective dynamics, 2, 13, 143–145, 147, 151–

153, 178
effective Hamiltonian equation, 144
effective Hamiltonian functional, 144
effective potential, 102
eigenfunction, 7, 12, 52, 156, 168, 171, 181
eigenfunction expansion, 104, 107
eigenvalue, 10, 12, 97, 100, 103, 104, 108,

113, 114, 150, 156–159, 184, 185
eightfold way, 98
Einstein, 145, 146, 171, 185
Einstein equations, 108
Einstein time-delay, 150
Einstein–Dirac system, 145
elementary particle, 97, 98, 172, 175, 185
embedded eigenvalue, 84, 87, 88
energy, 7, 9, 11, 17, 18, 26, 28, 42, 43, 50,

51, 54, 57, 58, 62, 75, 76, 80, 81, 87,
95, 96, 102, 103, 108, 110–112, 145,
146, 148, 150, 154, 156, 168, 169,
171, 177, 179–182, 184

energy dissipation, 6
energy absorption, 66
energy conservation, 6–8, 19, 22, 30, 40, 42,

51, 60, 64, 66, 69, 72, 80, 102, 121
energy dissipation, 6
energy flow, 39
energy functional, 38, 47
energy norm, 18
energy radiation, 6–9, 22, 25, 38, 39, 41, 47,

52, 54, 55, 58, 66, 94–96, 104, 152
energy space, 182
equations with delay, 28
Esteban, 11, 170, 174
example, 7, 9, 15, 20, 23, 27, 28, 33–35, 42,

52, 81, 87, 94, 95, 97, 104, 106–108,
120, 121, 150, 157, 160, 163, 171

extended electron, 51, 58, 146
external potential, 50, 144, 169, 170



INDEX 189

Faddeev, 59, 178
Fermi, 59
Fermi Golden Rule, 52, 104, 105, 108
form-factor, 51
Fourier representation, 88, 114
Fourier transform, 2, 51, 68, 83, 85, 86, 91,

92, 95, 133, 157
Fourier–Laplace transform, 85, 88, 94
free Klein–Gordon equation, 84, 85, 87, 95,

157
free Schrödinger equation, 103, 110, 114,

132, 170
free Schrödinger operator, 159
free wave equation, 18, 20, 53, 60, 63, 64,

75, 77
friction, 5, 6, 24, 25, 180
fundamental solution, 95

G-invariance, 97
G-invariant equation, 97, 169
G-invariant Hamiltonian equation, 97
G-invariant nonlinear wave equation, 11
Galgani, 69, 179
Galilean transformation, 102, 103
Gell-Mann, 12, 97, 98, 186
generator, 12, 87, 95, 97, 98, 103–105, 111
generic equations, 7, 8, 11, 13, 66, 97
generic G-invariant equation, 97
Georgiev, 11, 170, 174
Ginzburg–Landau equation, 13, 105, 150,

181
Ginzburg–Landau potential, 23, 81, 107, 148,

150
global attraction, 6, 7, 12, 13
global attraction to N -frequency trajecto-

ries, 12
global attraction to ‘stationary SO(3)-orbits’,

11
global attraction to solitary manifold, 10
global attraction to solitary waves, 97
global attraction to solitons, 2, 9, 10, 13, 67,

78, 147, 176
global attraction to stationary orbits, 2, 10,

79–82, 85, 94, 168, 176, 177
global attraction to stationary states, 2, 6,

8, 9, 15, 17, 20, 28, 35, 40, 41, 50,
57–59, 66, 175, 176

global attractor, 2, 5–7, 10, 17, 20, 24, 30,
41, 66, 97, 167, 168, 172, 174, 177

global energy norm, 18, 20, 77, 170
global minimum, 69, 70
global norm, 8, 9, 66, 103, 110
Green function, 59
Grillakis, 11, 179
Gronwall inequality, 48
ground state, 100, 108, 174, 180, 182, 183
group, 36, 113, 117–119, 129, 156
group of translations, 97
group representation, 2
group velocity, 150, 152

Hamiltonian equation, 1, 2, 5–7, 13, 15, 17,
19, 24, 29, 58, 66, 68, 70, 75, 76, 80,
113, 144, 145, 152, 175, 176, 181–
183

Hamiltonian functional, 9, 15, 19, 29, 40, 50,
51, 58, 68–70, 72, 75, 76, 80, 100,
111, 113, 144, 145, 148, 152

Hamiltonian operator, 7, 104, 105, 107, 181
Hamiltonian structure, 76, 97, 144, 180
Hamiltonian system, 70, 110, 111, 148
Haraux, 6, 173, 174
Harmonic Analysis, 92
harmonic source, 94
Heisenberg, 167, 172, 185
Hessian, 113, 114
Hilbert space, 18
Hilbert manifold, 59
Hilbert phase space, 6, 18, 19, 28, 29, 40,

50, 58, 68–70, 80, 97, 102, 104, 110,
113

Hilbert space, 2, 9, 15, 18, 28, 48, 50, 88
Hopf, 6, 173
hyperbolic PDEs, 7

Imaykin, 176, 178, 180
implicit function theorem, 124
incident wave, 21, 38
indefinite metric, 182
inflation of spectrum, 96
initial data, 7, 9, 16, 39, 42, 47, 60, 62–64,

68, 69, 73, 75, 85, 94, 100, 102, 103,
106, 123–125, 133, 150, 183

integrable Hamiltonian equation, 183
integral kernel, 133
inverse scattering problem, 176

Jörgens, 6



190 INDEX

Jacobian matrix, 124
Jensen, 7, 111, 156, 158, 159, 184

Kato, 7, 111, 158, 159, 183, 184
Kato theorem, 84, 87, 88
KdV, 182
kernel, 133
Kerr black hole, 108, 179
Kerr solutions, 108
kink, 108, 148–151, 181
Kirchhoff, 53
Kirchhoff formula, 73
Klein–Gordon equation, 2, 10, 12, 77, 80,

81, 94, 106, 150, 156, 157, 175–177,
179, 180, 184, 185

Klein–Gordon–Dirac system, 11, 174
Klein–Gordon–Maxwell system, 145
Klein-Gordon equation, 79, 177
Komech A.A., 177, 181
Komech A.I., 1, 173, 175–181, 184, 186
Kopylov, 181
Kopylova, 1, 5, 7, 173, 176, 177, 180, 181,

184, 185
Krein, 182
Krein space, 182
Krein theory, 7
Krein–Langer theory, 104, 107

Lagrangian, 75
Lagrangian functional, 75
Lamb, 17, 175, 176
Landau, 5, 174
Laplace representation, 118
Laplace transform, 115, 116
Larmor formula, 58
laser radiation, 167
Lax, 6, 175
Legendre transformation, 75
Liénard formula, 58
Liénard–Wiechert asymptotics, 52
Liénard–Wiechert formulas, 52, 58
Lie algebra, 2, 8, 98
Lie group, 2, 97
Lie symmetry group, 7, 97
limiting absorption principle, 2, 85, 86
limiting amplitude, 2, 95
limiting amplitude principle, 2, 94, 177
limiting amplitudes, 8
linear eigenvalue problem, 170

linear hyperbolic equation, 6
linear Schrödinger equation, 11, 97, 171
linearisation, 103, 108, 111, 114, 117, 150
linearised dynamics, 12, 100, 101, 104, 107,

110
linearised equation, 13, 103, 108, 110, 111,

118, 121, 126, 133, 150
linearised operator, 114
Lions J.-L., 6, 173
Lions P.-L., 11, 174
local attraction, 12, 99
local energy decay, 7
local energy norm, 169
local energy seminorm, 18, 95
local seminorm, 8, 10, 66
Lorentz contraction, 148
Lusternik, 174
Lusternik–Schnirelman theory, 11
Lyapunov, 12
Lyapunov function, 105

majorant, 105, 110, 121, 131
Marsden, 173
mass-energy equivalence, 13, 143, 145, 146
Maxwell equations, 2, 12, 58, 108, 168, 170
Maxwell potentials, 168
Maxwell–Dirac system, 11, 167, 169, 170,

172, 174
Maxwell–Lorentz equations, 58, 69, 76, 77,

145, 175
Maxwell–Lorentz equations with rotating par-

ticle, 11
Maxwell–Lorentz system, 146
Maxwell–Lorentz system with rotating charge,

145
Maxwell–Schrödinger system, 11, 13, 167,

168, 170–172, 174, 186
metastable tori, 108
method of compactness, 5, 6
metric, 18, 20, 46, 50, 52, 81, 89, 174, 184
modulation equations, 12, 100, 104, 111, 122–

124
momentum, 70–72, 76, 144, 145, 179
momentum conservation, 68–70, 72
Morawetz, 6, 7, 175, 177
multiphoton radiation, 106
multiplier, 91
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Poincaré, 105, 173
Poincare normal form, 105
point nonlinearity, 17
point particle, 58
polynomial, 33, 93, 112, 179
polynomial nonlinearity, 148, 150
polynomial potential, 151
Posilicano, 59, 179
potential, 12, 24, 31, 33–35, 42, 50, 58, 59,

61, 68, 73–75, 80, 95, 100–104, 107,
111, 148, 150, 152, 154, 156–158,
169–171, 178, 179, 181, 183, 185

potential energy, 31, 40
probabilistic interpretation, 168
projection operator, 123

quantum amplifier, 167
Quantum Chromodynamics, 98
Quantum Field Theory, 168, 172, 185
quantum jumps, 8, 168
Quantum Mechanics, 167
quantum postulate, 6, 167, 168, 171
quantum stationary orbit, 167
quantum stationary state, 2, 13, 110, 167,

168, 172
Quantum Theory, 2, 6, 168, 171, 172
quantum transitions, 2, 13, 167
quarks, 98, 186
quasi-periodic function, 12
quasimeasure, 2, 7, 84–87, 90, 91, 173

radiation, 26, 152, 154, 167, 171, 178, 183
radiation damping, 52, 58
radiation integral, 54



192 INDEX

radiation mechanism, 150
radiation power, 58
Ratiu, 173
reduced equation, 21–23, 25
Reed, 174
reflected wave, 21
relative equilibria, 105
relativistic kinetic energy, 50
relativistic particle, 10, 12, 15, 50, 58, 67
relativistically-invariant U(1)-invariant non-

linear equation, 82
relativistically-invariant nonlinear equation,

11, 13, 78, 96, 105–107, 145, 147,
148, 151, 170, 179

relativity, 180
Relativity General Theory, 108
Relativity Special Theory, 146
relaxation, 6, 22, 28, 36–39
relaxation of acceleration, 52, 55, 56, 58, 69,

72, 73, 75
resolvent, 95, 111, 116, 118, 133, 136, 137,

158, 159
resonance, 100, 104, 108, 156–158, 182, 183,

185
retarded potential, 52, 58, 74
Riemann–Lebesgue theorem, 89, 91, 133
Riesz interpolation theorem, 157
Riesz projection, 117, 158
rotation group, 110, 111
rotation symmetry, 111

Sakurai, 186
saturation, 6
scalar wave field, 67
scattering, 7, 18, 108, 175–178, 180, 181,

183
scattering asymptotics, 20
scattering operator, 20
scattering state, 18, 103, 110, 114
scattering theory, 6
Schnirelman, 174
Schrödinger, 13, 168, 183, 186
Schrödinger equation, 2, 13, 82, 99, 100,

102, 103, 106, 107, 110, 114, 121,
155–158, 168–170, 177–181, 183–185

Schrödinger operator, 2, 95, 100, 101, 150,
158, 168, 171, 184

Schrödinger theory, 167, 168, 170
Schwarzschild black hole, 108

Segal, 7, 175
self-energy, 146
seminorm, 28, 40, 46, 50, 52, 81
separatrix, 6
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