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Abstract

We apply the GBDT version of the Bäcklund-Darboux transforma-

tion to the nonlocal NLS (focusing and defocusing cases). The matrix

case is included and solutions in the form of rectangular m1 × m2

matrix functions are dealt with. In the case of the trivial initial so-

lution, wide classes of the wave functions and multipole solutions are

constructed explicitly. Families of explicit examples are considered in

detail. Some initial results and representations for the more compli-

cated algebro-geometric solutions are obtained as well.
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1 Introduction

Nonlocal nonlinear integrable equations and, in particular, the nonlocal non-

linear Schrödinger equation (nonlocal NLS) have been actively studied dur-

ing the last years (see the important papers [3, 15, 19, 20, 38] and references
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therein), starting from the article [2] by M.J. Ablowitz and Z.H. Musslimani.

Interesting results and figures one can find also in the very recent work [27].

In our paper, we apply the GBDT and algebro-geometric approach to the

most studied (in the scalar case) nonlocal NLS. However, the explicit ex-

pression for the wave function (as well as algebro-geometric considerations)

are new even in the scalar case. Similar considerations may be successfully

applied to many other important nonlocal integrable equations.

The nonlocal nonlinear Schrödinger equation (nonlocal NLS) is a special

case of the coupled NLS:

ξt(x, t) + ijξxx(x, t) + 2ijξ(x, t)3 = 0, (1.1)

ξ :=

[
0 v1
v2 0

]
, ξt :=

∂

∂t
ξ(x, t), j :=

[
Im1 0

0 −Im2

]
; i.e., (1.2)

v1t + iv1xx + 2iv1v2v1 = 0, v2t − iv2xx − 2iv2v1v2 = 0, (1.3)

where Imk
is the mk ×mk identity matrix. Indeed, setting in (1.3)

v1(x, t) = u(x, t), v2(x, t) = −σu(−x, t)∗, σ = ∓1, (1.4)

we transform the first equation in (1.3) into the nonlocal matrix NLS:

iut(x, t)− uxx + 2σu(x, t)u(−x, t)∗u(x, t) = 0. (1.5)

Here u is an m1 × m2 matrix function. Although the scalar case of the

nonlocal NLS where m1 = m2 = 1 was considered before in the literature,

the matrix case is of interest as well (see, e.g., [5, 20]), and we deal in the

present paper with this more general situation. We note that under the

assumptions (1.4) the first and second equations in (1.3) are equivalent, and

so (1.5) is equivalent to (1.1). Although the cases σ = −1 and σ = 1 differ

in some important aspects, we often formulate the results for the nonlocal

NLS with σ = −1 and with σ = 1 simultaneously and the differences in the

corresponding formulas are restricted to the values of σ and of κ = (1−σ)/2.

The nonlocal NLS is closely related to the well-known PT-symmetric the-

ory (see, e.g., [8, 9, 14, 35, 52] and references therein). In this paper, we use

some ideas from [41], where the generalized Bäcklund-Darboux transforma-

tion (GBDT) was applied to the linear PT-symmetric Schrödinger equation,
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in order to apply GBDT to the nonlocal NLS (1.5). Bäcklund-Darboux trans-

formations and commutation methods (see, e.g., [11,12,24,26,33,34,46,50])

are well-known tools for explicitly solving integrable equations and spectral

and scattering problems. In particular, GBDT (where generalized eigenval-

ues are n×n matrices with an arbitrary Jordan structure) allows to construct

wide classes of explicit solutions and explicitly recover potentials from the

rational Weyl functions and reflection coefficients (see [16,17,25,39,40,42,46]

and references cited there).

In this article, we apply GBDT to construct a large class of explicit

solutions of the nonlocal matrix NLS and corresponding explicit expressions

for the wave functions. The construction of the wave functions is of interest in

itself and for possible further applications to spectral and scattering results.

The more complicated class of algebro-geometric solutions is both in-

teresting and important (see, e.g. [18, 21, 22, 28, 30, 36] for algebro-geometric

solutions in the context of several different nonlinear evolution equations). Its

elements can still be regarded as explicit solutions, even though their com-

plexity increases due to the underlying analysis on hyperelliptic Riemann

surfaces. Some initial results and representations of such solutions for the

nonlocal NLS in the stationary case are given here.

Section 2 contains some necessary preliminary results on the GBDT ap-

proach. In Section 3, we apply GBDT to the nonlocal NLS. Section 4 is

dedicated to the construction of explicit solutions of the nonlocal NLS, ex-

amples are considered in Section 5. A nonlocal analog of the important

algebro-geometric Theorem 3.11 from [21] is presented in Section 6. The

necessary results on algebro-geometric solutions are given in Appendix A.

As usually N, Z, R and C stand for the sets of natural, integer, real and

complex numbers, respectively. The notation diag{a1, . . . , an} stands for the

n× n diagonal matrix with the entries a1, . . . , an on the main diagonal.

2 Preliminaries

The zero curvature representation

Gt(x, t, z)− Fx(x, t, z) +G(x, t, z)F (x, t, z)− F (x, t, z)G(x, t, z) = 0 (2.1)
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is an important modification of the famous Lax pairs (see [1, 49] and more

historical remarks in [13]). System (2.1) is the compatibility condition for

the auxiliary linear systems

wx(x, t, z) = G(x, t, z)w(x, t, z), wt(x, t, z) = F (x, t, z)w(x, t, z). (2.2)

This fact is easily proved in one direction and in a more complicated way

(see [47, Ch. 12] and [44]) in the opposite direction. The coupled NLS (1.1)

admits representation (2.1) where G and F are matrix polynomials of the

first and second orders (with respect to z ∈ C):

G = −(zq1 + q0), F = −(z2Q2 + zQ1 +Q0); 2q1 ≡ −Q2 ≡ 2ij, (2.3)

2q0(x, t) = −Q1(x, t) = 2jξ(x, t), Q0(x, t) = i(jξ(x, t)2 − ξx(x, t)). (2.4)

Here j and ξ have the form (1.2). From here on in the text we consider G, F ,

{qk} and {Qk} as given by (2.3) and (2.4). The auxiliary system wx = GW is

the well-known Dirac system, also called Zakharov-Shabat or AKNS system.

Remark 2.1. Note that the so called spectral (or scattering) parameter z in

(2.1)–(2.3) is essential in the study of the scattering and Weyl-Titchmarsh

functions of the auxiliary Dirac system. The evolution of the scattering func-

tions is crucial in the Inverse Scattering Method for solving Cauchy problems

for integrable nonlinear equations (see e.g. [1,5,13,51] and various references

therein). The evolution of the Weyl-Titchmarsh functions is used in the study

of the initial-boundary value problems (see [46] and references therein).

The results on the GBDT for the coupled NLS are derived in [43, Sec. 3].

Let us formulate some of them below. Each GBDT for system (1.1) is deter-

mined by the initial system itself and five parameter matrices with complex-

valued entries: n × n (n ∈ N) matrices A1, A2, and S(0, 0), and n × m

matrices Π1(0, 0), Π2(0, 0) such that

A1S(0, 0)−S(0, 0)A2 = Π1(0, 0)Π2(0, 0)∗, detS(0, 0) 6= 0, m := m1 +m2.

(2.5)

If (2.1) holds, then the following linear systems are compatible and (jointly

with the initial values S(0, 0), Π1(0, 0), and Π2(0, 0)) determine matrix func-

4



tions S(x, t), Π1(x, t), and Π2(x, t), respectively:

Π1,x =
1∑
p=0

Ap1Π1qp, Π1,t =
2∑
p=0

Ap1Π1Qp

(
Π1,x :=

∂

∂x
Π1

)
; (2.6)

Π2,x = −
1∑
p=0

(A∗2)
pΠ2q

∗
p, Π2,t = −

2∑
p=0

(A∗2)
pΠ2Q

∗
p; (2.7)

Sx = Π1q1Π
∗
2, St =

2∑
p=1

p∑
k=1

Ap−k1 Π1QpΠ
∗
2A

k−1
2 . (2.8)

Although the point x = 0, t = 0 is chosen above as the initial point, it is

easy to see that any other point may be chosen for this purpose as well.

Consider S(x, t), Π1(x, t), and Π2(x, t) in some domain D, for instance,

D = {(x, t) : −∞ ≤ a1 < x < a2 ≤ ∞, −∞ ≤ b1 < t < b2 ≤ ∞},

such that ξ is well-defined in D and satisfies (1.1) and such that (0, 0) ∈ D.

Introduce (in the points of invertibility of S(x, t) in D) matrix functions

ξ̃ =

[
0 ṽ1
ṽ2 0

]
:= ξ + i(jX0j −X0), X0 := Π∗2S

−1Π1. (2.9)

Proposition 2.2. Let ξ satisfy the coupled NLS (1.1). Then, in the points

of invertibility of S, the matrix function ξ̃ given by (2.9) satisfies the coupled

NLS as well.

Remark 2.3. Proposition 2.2 was proved as [43, Proposition 3.1] earlier and

checked recently using a program [48] developed by D.R. Popovych and based

on the NCAlgebra package.

Remark 2.4. Relations (2.5)–(2.8) imply that the matrix identity

A1S(x, t)− S(x, t)A2 = Π1(x, t)Π2(x, t)
∗ (2.10)

holds everywhere on D.

The so called Darboux matrix corresponding to the transformation ξ → ξ̃

has (at each point (x, t) of invertibility of S(x, t)) the form of the Lev

Sakhnovich’s transfer matrix function (see [46,47] and references therein):

wA(x, t, z) = Im − Π2(x, t)
∗S(x, t)−1(A1 − zIn)−1Π1(x, t). (2.11)

In other words, we have the following statement (see [43, Sectons 2, 3]).
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Proposition 2.5. Let w satisfy the auxiliary systems (2.2). Then, the func-

tion

w̃(x, t, z) = wA(x, t, z)w(x, t, z) (2.12)

satisfies the transformed system

w̃x(x, t, z) = G̃(x, t, z)w̃(x, t, z), w̃t(x, t, z) = F̃ (x, t, z)w̃(x, t, z), (2.13)

where

G̃ = −(zq̃1 + q̃0), F = −(z2Q̃2 + zQ̃1 + Q̃0); 2̃q1 ≡ −Q̃2 ≡ 2ij, (2.14)

2q̃0(x, t) = −Q̃1(x, t) = 2jξ̃(x, t), Q̃0(x, t) = i(jξ̃(x, t)2 − ξ̃x(x, t)), (2.15)

and ξ̃ is given by (2.9).

3 GBDT for nonlocal NLS

In this section, we consider the case when the condition (1.4) is valid, and so

the coupled NLS is reduced to the nonlocal NLS (1.5). In view of the first

equality in (1.2), relations (1.4) are equivalent to

ξ(−x) = −σξ(x)∗ (σ = ∓1). (3.1)

1. Consider first the case σ = −1. Then, taking into account (2.3), (2.4),

and (3.1) we have

q∗1 = −jq1j, q0(x, t)
∗ = jq0(−x, t)j; (3.2)

Q∗2 = −jQ2j, Q1(x, t)
∗ = jQ1(−x, t)j, (3.3)

ξx(−x, t) = −(ξx(x, t))
∗, Q0(x, t)

∗ = −jQ0(−x, t)j. (3.4)

Relations (2.6) and (3.2) imply that

(
Π1(−x, t)j

)
x

= −
1∑
p=0

Ap1
(
Π1(−x, t)j

)
jqp(−x, t)j

= −
1∑
p=0

(−A1)
p
(
Π1(−x, t)j

)
qp(x, t)

∗. (3.5)
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In the same way, formulas (2.6), (3.3), and (3.4) yield the equation

(
Π1(−x, t)j

)
t

= −
2∑
p=0

(−A1)
p
(
Π1(−x, t)j

)
Qp(x, t)

∗. (3.6)

Comparing (2.7) with (3.5), (3.6) we see that in the case

ξ(−x) = ξ(x)∗, A∗2 = −A1 (3.7)

we may set

Π(x, t) := Π1(x, t), Π2(x, t) = Π(−x, t)j. (3.8)

In view of (3.8), relations (2.8) take the form

Sx(x, t) = iΠ(x, t)Π(−x, t)∗, (3.9)

St(x, t) =
2∑
p=1

p∑
k=1

(−1)k−1Ap−kΠ(x, t)Qp(x, t)jΠ(−x, t)∗(A∗)k−1 (A := A1).

Thus, under condition

S(0, 0) = S(0, 0)∗ (3.10)

we have S(0, t) = S(0, t)∗, and so

S(−x, t) = S(x, t)∗. (3.11)

According to (2.9) and (3.8) we have

ξ̃(x, t) = ξ(x, t) + i
(
Π(−x, t)∗S(x, t)−1Π(x, t)j − jΠ(−x, t)∗S(x, t)−1Π(x, t)

)
.

(3.12)

From (3.7), (3.11), and (3.12), it is immediate that

ξ̃(−x, t)∗ = ξ̃(x, t). (3.13)

Recall that by virtue of Proposition 2.2 the matrix function ξ̃ satisfies the

coupled NLS. The additional property (3.13) means that the block ũ := ṽ1
of ξ̃ satisfies the nonlocal matrix NLS. In other words, we constructed a

GBDT-transformed solution of the nonlocal matrix NLS (with σ = −1).
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2. Let us formulate our result on GBDT for the nonlocal NLS for both

cases σ = ∓1.

Theorem 3.1. Let an m1 ×m2 matrix function u(x, t) satisfy the nonlocal

NLS (1.5), and assume that a triple of matrices {A, S(0, 0),Π(0, 0)} with

complex-valued entries, such that

AS(0, 0) + S(0, 0)A∗ = Π(0, 0)jκΠ(0, 0)∗ (κ := (1− σ)/2), (3.14)

is given, where A and S(0, 0) = S(0, 0)∗ are n× n matrices, detS(0, 0) 6= 0,

and Π(0, 0) is an n×m matrix.

Introduce the matrix function ξ(x, t) by the first equality in (1.2) and by

the relations (1.4), and determine Π(x, t) and S(x, t) by their values Π(0, 0)

and S(0, 0), respectively, at (x, t) = (0, 0) and by the equations

Πx(x, t) =
1∑
p=0

ApΠ(x, t)qp(x, t), Πt(x, t) =
2∑
p=0

ApΠ(x, t)Qp(x, t); (3.15)

Sx(x, t) = iΠ(x, t)jκ+1Π(−x, t)∗, (3.16)

St(x, t) =
2∑
p=1

p∑
k=1

(−1)k−1Ap−kΠ(x, t)Qp(x, t)j
κΠ(−x, t)∗(A∗)k−1, (3.17)

where the coefficients {qp} and {Qp} are defined (via ξ) in (2.3) and (2.4).

Then, the matrix function

ũ(x, t) = u(x, t)− 2i
[
Im1 0

]
Π(−x, t)∗S(x, t)−1Π(x, t)

[
0

Im2

]
(3.18)

also satisfies (in the points of invertibility of S(x, t)) the nonlocal NLS. That

is, the equality

iũt(x, t)− ũxx + 2σũ(x, t)ũ(−x, t)∗ũ(x, t) = 0 (3.19)

holds.

Proof. It is immediate that the right-hand side of (3.18) coincides with ṽ1,

and so for σ = −1 the statement of the theorem is already proved in para-

graph 1 above.
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Now, we assume that σ = 1 and prove our theorem in a similar way as

for the case σ = −1. Namely, in view of the equality ξ(x)∗ = −ξ(−x) we

have

q∗1 = −q1, q0(x, t)
∗ = q0(−x, t); (3.20)

Q∗2 = −Q2, Q1(x, t)
∗ = Q1(−x, t), Q0(x, t)

∗ = −Q0(−x, t) (3.21)

(instead of the equalities (3.2)–(3.4) in the case σ = −1). Hence, relations

(3.5) and (3.6) are substituted with

(
Π1(−x, t)

)
x

= −
1∑
p=0

(−A1)
p
(
Π1(−x, t)

)
qp(x, t)

∗, (3.22)

(
Π1(−x, t)

)
t

= −
2∑
p=0

(−A1)
p
(
Π1(−x, t)

)
Qp(x, t)

∗. (3.23)

Thus, we may set

A := A1, A2 = −A∗, Π(x, t) := Π1(x, t), Π2(x, t) = Π(−x, t), (3.24)

and formulas (2.8) take the form

Sx(x, t) = iΠ(x, t)jΠ(−x, t)∗, (3.25)

St(x, t) =
2∑
p=1

p∑
k=1

(−1)k−1Ap−kΠ(x, t)Qp(x, t)Π(−x, t)∗(A∗)k−1. (3.26)

In particular, under assumption (3.10) relations (3.25) and (3.26) yield the

equality S(0, t) = S(0, t)∗ and (3.11). Finally, taking into account (2.9),

(3.11), and (3.24) we derive

ξ̃(−x, t)∗ = −ξ̃(x, t), (3.27)

and so the block ũ := ṽ1 of the solution ξ̃ of (1.1) satisfies the nonlocal matrix

NLS (1.5) with σ = 1.

The following corollary is immediate from the theorem’s proof.
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Corollary 3.2. Under the conditions of Theorem 3.1, the identity (2.10)

takes the form

AS(x, t) + S(x, t)A∗ = Π(x, t)jκΠ(−x, t)∗, (3.28)

and the equality (3.11) always holds.

Remark 3.3. According to (2.11), (3.8), and (3.24), the Darboux matrix for

the nonlocal NLS has the form

wA(x, t, z) = Im − jκΠ(−x, t)∗S(x, t)−1(A− zIn)−1Π(x, t). (3.29)

Moreover, in case of the nonlocal NLS, the inverse matrix function wA(z)−1

admits (see, e.g., general formulas (1.75) and (1.76) in [46]) the reduction

wB(x, t, z) := wA(x, t, z)−1 = Im − jκΠ(−x, t)∗(A∗ + zIn)−1S(x, t)−1Π(x, t)

= jκwA(−x, t,−z)∗jκ. (3.30)

Taking into account Proposition 2.5, we see that the wave function (i.e., the

fundamental solution) w̃ of the transformed system (2.13), where G̃ and F̃

are given by (2.14) and (2.15) with

ξ̃(x, t) =

[
0 ũ(x, t)

−σũ(−x, t)∗

]
, (3.31)

has the form

w̃(x, t, z) = wA(x, t, z)w(x, t, z).

Here wA is given in (3.29) and w is the fundamental solution of the initial

system (2.2).

4 Explicit solutions

For some special choices of the initial solution u of the nonlocal NLS, The-

orem 3.1 allows us to construct wide families of other explicit solutions of

the nonlocal NLS. Clearly, the trivial initial solution u ≡ 0 is the most pop-

ular choice in the construction of explicit solutions via Bäcklund-Darboux
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transformations. In particular, in the case u ≡ 0 the fundamental solution

(wave function) w̃ of the transformed systems (2.13) considered in Remark

3.3 takes the form

w̃(x, t, z) = wA(x, t, z)e−i(zx−2z
2t)j. (4.1)

Choosing u ≡ 0, one may set D = R2, that is, investigate ũ(x, t) at all real

values of x and t. In Sections 4 and 5, we assume u ≡ 0 and study this case

in greater detail.

Remark 4.1. Below we find explicit expressions for Π(x, t) and S(x, t) (see

formulas (4.4), (4.8) and (4.15)). In view of (4.1) and (3.29), it means

that we have explicit expressions for the wave function w̃(x, t, z). The wave

function is of independent interest and it is also important in the study of

the scattering and Weyl-Titchmarsh functions of the auxiliary system (see

Remark 2.1). Clearly, the examples of A, Π(x, t) and S(x, t) in Section 5

provide examples of the wave functions as well (see Remark 5.6).

1. First, partition Π into n×m1 and n×m2 blocks and set:

u(x, t) ≡ 0, Π(x, t) =
[
Λ1(x, t) Λ2(x, t)

]
, Π(0, 0) =

[
ϑ1 ϑ2

]
. (4.2)

In view of (1.4), (2.4), and the first equality in (4.2), we have

q0 = Q1 = Q0 = 0,

and equations (3.15) take a simple form

Πx = iAΠj, Πt = −2iA2Πj. (4.3)

Using partition (4.2) and relations (4.3), write down Π in an explicit form

Π(x, t) =
[
ei(xA−2tA

2)ϑ1 e−i(xA−2tA
2)ϑ2

]
. (4.4)
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Hence, relations (3.16) and (3.17) take the form

Sx(x, t) = i
(

ei(xA−2tA
2)ϑ1ϑ

∗
1 ei(xA

∗+2t(A∗)2)

+ (−1)κ+1e−i(xA−2tA
2)ϑ2ϑ

∗
2 e−i(xA

∗+2t(A∗)2)
)
, (4.5)

St(x, t) = 2i
(
Π(x, t)jκ+1Π(−x, t)∗A∗ − AΠ(x, t)jκ+1Π(−x, t)∗

)
= 2i

(
ei(xA−2tA

2)
(
ϑ1ϑ

∗
1A
∗ − Aϑ1ϑ

∗
1

)
ei(xA

∗+2t(A∗)2) (4.6)

+ (−1)κ+1e−i(xA−2tA
2)
(
ϑ2ϑ

∗
2A
∗ − Aϑ2ϑ

∗
2

)
e−i(xA

∗+2t(A∗)2)
)
.

Now, we see that the following corollary of Theorem 3.1 is valid.

Corollary 4.2. To each triple of matrices {A, S(0, 0),Π(0, 0)}, such that

A and S(0, 0) = S(0, 0)∗ are n × n matrices, detS(0, 0) 6= 0, Π(0, 0) is an

n×m matrix and (3.14) holds, corresponds an explicit solution of the nonlocal

matrix NLS (1.5) (with σ = ∓1).

This solution has the form

ũ(x, t) = −2iϑ∗1 ei(xA
∗+2t(A∗)2)S(x, t)−1e−i(xA−2tA

2)ϑ2, (4.7)

where ϑ1 and ϑ2 are the blocks of Π(0, 0) (see (4.2)) and the derivatives of

S(x, t) are given explicitly by (4.5) and (4.6). Thus, the matrix function

S(x, t) is recovered, for instance, by

S(x, t) = S(0, 0) +

∫ t

0

St(0, r)dr +

∫ x

0

Sx(r, t)dr. (4.8)

In terms of the blocks ϑ1 and ϑ2 of Π(0, 0), the identity (3.14) may be

rewritten in the form

AS(0, 0) + S(0, 0)A∗ = ϑ1ϑ
∗
1 + (−1)κϑ2ϑ

∗
2 (κ := (1− σ)/2). (4.9)

Remark 4.3. Doubly periodic (i.e., both time and spatially periodic) solu-

tions are of interest. Such solutions for the local NLS have been studied in the

important papers [6,31,32]. Doubly periodic solutions appear also in the case

of the nonlocal NLS. Indeed, let the conditions of Corollary 4.2 hold. Assume

additionally that A is a diagonal matrix with the real commensurable entries

on the main diagonal. More precisely, assume that

A = diag{a1, . . . , an}, ai + ak 6= 0 (1 ≤ i, k ≤ n), (4.10)
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and for some c we have

c ai ∈ Z (c > 0, 1 ≤ i ≤ n). (4.11)

Then ũ(x, t) given by (4.7) is periodic with respect to x (with a period 2πc) if

only S(x, t) is periodic with this period. Moreover, in view of (4.10) S(x, t)

is uniquely recovered from (3.28) using formula (4.4) for Π(x, t). Thus,

S(x, t) is periodic with the period 2πc because Π(x, t) given by (4.4) as well

as Π(−x, t) are periodic with the period 2πc.

In the same way one can show that under assumptions (4.10) and (4.11)

ũ(x, t) given by (4.7) is periodic with respect to t (with a period πc2). The

simplest doubly periodic solutions have the form (5.4).

2. Let us introduce several block matrices: P =
[
In In

]
,

A =

[
A 0

0 −A

]
, B =

[
A2 0

0 −A2

]
, ϑ =

[
ϑ1 0

0 ϑ2

]
. (4.12)

Using (4.12), formula (4.4) may be rewritten in the form

Π(x, t) = Pe−2itBeixAϑ. (4.13)

Hence, taking into account (3.16), one can further simplify the procedure of

constructing S(x, t).

Proposition 4.4. Assume that S satisfies the identity

AS + SA∗ = ϑjκ+1ϑ∗. (4.14)

Then, we have

S(x, t) = C(t) + Pe−2itBeixASeixA
∗
e2itB

∗P∗, (4.15)

where C(t) = S(0, t)− Pe−2itBSe2itB
∗P∗.

Proof. Clearly, the right-hand side of (4.15) equals S(0, t) at x = 0. More-

over, in view of (3.16), (4.13), and (4.14) the derivative of the right-hand

side of (4.15) (with respect to x) equals Sx(x, t). Thus, the proposition’s

statement is immediate.
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5 Examples

1. When σ(A) ∩ σ(−A∗) = ∅ (where σ(A) stands for the spectrum of A)

the matrix function S(x, t) is uniquely recovered from the identity (3.28). It

is a convenient way to calculate some examples.

Example 5.1. Assume that m1 = m2 = 1 and that n = 1, that is, A, ϑ1,

and ϑ2 are scalars, and S(x, t) and ũ(x, t) are scalar matrix functions. We

set A = a and fix a, ϑ1, and ϑ2 such that

a+ a 6= 0, ϑ1 6= 0, ϑ2 6= 0. (5.1)

Then, (3.28) and (4.4) yield

S(x, t) =
1

a+ a

(
exp

{
i
(
(a+ a)x− 2(a2 − a2)t

)}
|ϑ1|2

+ (−1)κ exp
{
− i
(
(a+ a)x− 2(a2 − a2)t

)}
|ϑ2|2

)
. (5.2)

Thus, formula (4.7) for the solutions ũ of the nonlocal NLS (3.19) takes in

Figure 1: Sequence of time shots of real (black) and imaginary (dashed) part of

solution (5.3) for (a, ϑ1, ϑ2) = (4 + i, 2− i, 1 + i) in the defocusing case (κ = 0).
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our case the form

ũ(x, t) =
−2i

S(x, t)
exp

{
i
(
(a− a)x+ 2(a2 + a2)t

)}
ϑ1ϑ2

=− 2i(a+ a) exp
{
− 2ia(x− 2at)

}
ϑ1ϑ2 (5.3)

×
(
|ϑ1|2 + (−1)κ exp

{
− 2i

(
(a+ a)x− 2(a2 − a2)t

)}
|ϑ2|2

)−1
,

where S(x, t) is given in (5.2). Solutions given in (5.3) are determined by

four real valued parameters: Re(a), Im(a), |ϑ1/ϑ2| and arg(ϑ1/ϑ2).

The functions ũ above look similar to the interesting one-soliton solu-

tions of nonlocal NLS studied in [2, 4]. However, there is also an essential

difference because the one-soliton solutions in [2,4] are periodic with respect

to t. Instead of this property, we have the periodicity of S(x, t) and of the

denominator in (5.3) with respect to x. Solutions of the form (5.3) appear,

for instance, in [10] (see also some further references therein).

Remark 5.2. When a 6= a, the singularities (or blow ups) of ũ(x, t) (i.e.,

zeros of S(x, t)) appear at one and only one value of t. Namely, they appear

when |ϑ1|2 = e4i(a
2−a2)t|ϑ2|2. For this t, the singularities appear with the

periodicity T = π/(a+ a) with respect to x, compare Fig. 2.

(a) (b)

Figure 2: Time of blow up with a = 4 + i and periodicity T = π/8 for the choice

(ϑ1, ϑ2) = (2− i, 1 + i) in (a) and (ϑ1, ϑ2) = (8+ i/2, 3−2i) in (b), defocusing case.

When a = a, the conditions (4.10) and (4.11) hold, and we obtain the

simplest doubly periodic solution, compare Fig. 3

ũ(x, t) =
4aϑ1ϑ2 exp

{
4ia2t

}
i
(
|ϑ1|2 exp{2iax}+ (−1)κ|ϑ2|2 exp{−2iax}

) . (5.4)
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(a) (b)

Figure 3: The periodic solution |ũ| of (5.4) for (a, ϑ1, ϑ2) = (1, 2− i, 1 + i) in the

(a) defocusing and (b) focusing case (κ = 1).

(a) (b)

Figure 4: Solution (5.3) plotted as |ũ| in (a) and log |ũ| in (b) for (a, ϑ1, ϑ2) =

(4 + i, 2− i, 1 + i), defocusing case.

2. When we take non-diagonalisable matrices A, factors polynomial in

x and t appear (in addition to the exponents) in the expressions for the

constructed solutions [45]. Rational solutions are also constructed in this

way [25, 42]. The so called “multipole” solutions are constructed using ma-

trices A with Jordan cells of order more than one as well (see, e.g., [25]). For

nonlocal NLS, we consider a simple particular case

A = aI2 + A0, A0 :=

[
0 1

0 0

]
, a+ a 6= 0; ϑ1 =

[
0

b

]
, ϑ2 =

[
0

c

]
. (5.5)

Example 5.3. Assume that m1 = m2 = 1, n = 2, and that A, ϑ1, and ϑ2

are given by (5.5). Here the solution ũ is again a scalar function but S(x, t)
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(a) (b)

Figure 5: Same as in Fig. 4, focusing case.

(a) (b)

Figure 6: Solution |ũ| of (5.3) with (a, ϑ1, ϑ2) = (4 + i, 3 + 5i, 2 − i) in (a) and

(a, ϑ1, ϑ2) = (3− i, 8− 5i, 0.1 + 2i) in (b), defocusing case.

is a 2 × 2 matrix function. The following relations for S = {sik}2i,k=1 are

immediate from the identity (3.28) and the representation of A in (5.5):

s22 = ω22/(a+ a), s21 = (ω21 − s22)/(a+ a),

s12 = (ω12 − s22)/(a+ a), s11 = (ω11 − s12 − s21)/(a+ a); (5.6)

ω(x, t) = {ωik(x, t)}2i,k=1 := Π(x, t)jκΠ(−x, t)∗. (5.7)

After some simple calculations, using repeatedly (5.6) we derive

detS = (a+ a)−2
(
ω11ω22 − ω12ω21 + (a+ a)−2ω2

22

)
. (5.8)
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Next, in view of (4.4) and (5.5), we see that

Π(x, t) =

[
ib(x− 4at) −ic(x− 4at)

b c

]
ei(ax−2a

2t)j. (5.9)

Here we used the equalities A2
0 = 0 and A2 = a2I2 + 2aA0. Relations (5.7)

and (5.9) imply that

detω(x, t) =(−1)κ+14|bc|2(x− 4at)(x+ 4at), (5.10)

ω22(x, t) =|b|2 exp{i
(
(a+ a)x+ 2(a2 − a2)t

)
}

+ (−1)κ|c|2 exp{−i
(
(a+ a)x+ 2(a2 − a2)t

)
}. (5.11)

Finally, (5.8), (5.10), and (5.11) yield

detS(x, t) =(a+ a)−4
(
|b|4 exp{2i

(
(a+ a)x+ 2(a2 − a2)t

)
}

+ |c|4 exp{−2i
(
(a+ a)x+ 2(a2 − a2)t

)
}+ 2(−1)κ|bc|2

+ (−1)κ+14|bc|2(a+ a)2(x− 4at)(x+ 4at)
)
. (5.12)

Note that the polynomial terms in the expression for detS(x, t) make the

study of zeros of detS(x, t) (that is, singularities of ũ) much more complicated

than in Example 5.1.

Similar to the derivation of (5.9), we rewrite (4.7) (in our case) as

ũ(x, t) =
−2i b c

detS(x, t)
exp

{
i
(
(a− a)x+ 2(a2 + a2)t)

)} [
i(x+ 4at) 1

]
×
[
s22(x, t) −s12(x, t)
−s21(x, t) s11(x, t)

] [
−i(x− 4at)

1

]
, (5.13)

where detS(x, t) is given in (5.12). The expressions for detS(x, t) and for

other terms on the right hand side of (5.13) will look more compact if we

introduce the polynomial

P (x, t) = i
(
(a+ a)x+ 2(a2 − a2)t

)
. (5.14)

Then, relations (5.12) and (5.11) may be rewritten as

detS(x, t) = (a+ a)−4
(
|b|4e2P (x,t) + |c|4e−2P (x,t) + 2(−1)κ|bc|2

+ (−1)κ+14|bc|2(a+ a)2(x− 4at)(x+ 4at)
)
. (5.15)

ω22(x, t) = |b|2eP (x,t) + (−1)κ|c|2e−P (x,t). (5.16)
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In a similar way, taking into account (5.7) and (5.9), we construct other

entries of ω :

ω11(x, t) = −(x− 4at)(x+ 4at)
(
|b|2eP (x,t) + (−1)κ|c|2e−P (x,t)

)
, (5.17)

ω12(x, t) = i(x− 4at)
(
|b|2eP (x,t) + (−1)κ+1|c|2e−P (x,t)

)
, (5.18)

ω21(x, t) = i(x+ 4at)
(
|b|2eP (x,t) + (−1)κ+1|c|2e−P (x,t)

)
. (5.19)

Furthermore, relations (5.6) imply that[
s22 −s12
−s21 s11

]
=

1

a+ a

[
ω22 −ω12

−ω21 ω11

]
+

1

(a+ a)2

[
0 ω22

ω22 −ω12 − ω21

]
+

2

(a+ a)3

[
0 0

0 ω22

]
. (5.20)

In view of (5.16)–(5.20), after some simple calculations we rewrite (5.13) as

ũ(x, t) =− 2i b c(a+ a) exp
{

i
(
(a− a)x+ 2(a2 + a2)t)

)}
×
(
|b|2eP (x,t)

(
8ia(a+ a)t− 2i(a+ a)x+ 2

)
+ (−1)κ|c|2e−P (x,t)

(
8ia(a+ a)t+ 2i(a+ a)x+ 2

))
×
(
|b|4e2P (x,t) + |c|4e−2P (x,t) + 2(−1)κ|bc|2

+ (−1)κ+14|bc|2(a+ a)2(x− 4at)(x+ 4at)
)−1

. (5.21)

A related family of solutions depending on one complex parameter is also

constructed in [10].

We note that if we choose ϑ1 =

[
b

0

]
instead of ϑ1 given in (5.5), the

solutions (5.3) appear again in the case n = 2 (i.e., one should avoid the

simplest choice of ϑ1, ϑ2 in order to construct a new class of solutions).

Remark 5.4. Various cases of Examples 5.1 and 5.3 are treated in Figures

1–8. Similar to the local NLS equations, the focusing and defocusing cases

for the nonlocal NLS (1.5) are considered in the literature as well. The

focusing case corresponds to the value σ = −1 in (1.5) and the defocusing
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(a) (b)

Figure 7: The multipole solution (5.21) plotted as |ũ| in (a) and log |ũ| in (b) for

P (x, t) = 8t+ 2ix with a = b = c = 1 + i, defocusing case.

(a) (b)

Figure 8: Same as in Fig. 7, focusing case.

case corresponds to σ = 1. Equivalently, the focusing case corresponds to

κ = 1 (κ = (1 − σ)/2) and the defocusing case corresponds to κ = 0 in

the examples. However, we see that there is no great difference between the

focusing and defocusing cases for the nonlocal NLS: compare Fig. 4 with Fig.

5 or Fig. 7 with Fig. 8. The influence of other parameters is much more

essential (see Fig. 6 and Fig. 9). Both in the focusing and defocusing cases

there are doubly periodic solutions (see Fig. 3). One can also notice that the

behaviour of the singularities in the multipole (twopole) case is much more

complicated than for the one-soliton solution (compare Fig. 2–6 with Fig.

7–9).
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(a) (b)

Figure 9: Solution |ũ| of (5.21) with a = b = c = 1 − i in (a) and (a, b, c) =

(4 + i, 6− 4i, 2− i) in (b), defocusing case.

Finally, in the example below we construct the simplest family of multi-

component solutions of the nonlocal NLS.

Example 5.5. Assume that m1 = 2, m2 = 1, and n = 1. Then, the solu-

tions ũ of (3.19) are 2× 1 vector functions and S(x, t) are scalar functions.

Introduce the parameters A and Π(0, 0) =
[
ϑ1 ϑ2

]
by the equalities

A = a (a+ a 6= 0), ϑ1 =
[
b1 b2

]
, ϑ2 = c. (5.22)

Then, (3.28) and (4.4) yield

S(x, t) =
1

a+ a

(
exp

{
i
(
(a+ a)x− 2(a2 − a2)t

)}
(|b1|2 + |b2|2)

+ (−1)κ exp
{
− i
(
(a+ a)x− 2(a2 − a2)t

)}
|c|2
)
. (5.23)

Hence, using again formula (4.7) (and slightly modifying the results of Ex-

ample 5.1) we derive

ũ(x, t) =
−2i c(a+ a) exp

{
− 2ia(x− 2at)

}
|b1|2 + |b2|2 + (−1)κ exp

{
− 2i

(
(a+ a)x− 2(a2 − a2)t

)}
|c|2

[
b1

b2

]
.

Compare (5.2) and (5.23) to see that the behaviour of the singularities of

ũ from Example 5.1, which we discussed in Remark 5.2, coincides with the

behaviour of the singularities of ũ in the present example.
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Remark 5.6. We note that formulas (5.2), (5.14)–(5.20), and (5.23) provide

precise expressions for S(x, t)−1 in the Examples 5.1, 5.3, and 5.5, respec-

tively. Thus, in view of the important formulas (4.1) and (3.29) as well

as relations (4.4) and (5.9), the wave functions w̃ are constructed for these

examples as well.

6 Algebro-geometric solutions

In this section we discuss algebro-geometric solutions for the nonlocal NLS

in the scalar case m1 = m2 = 1. The coupled NLS (1.3) in the scalar case is

given by{
v1t + iv1xx + 2iv21v2 = 0

v2t − iv2xx − 2iv22v1 = 0
⇔ Gt − Fx + [G,F ] = 0, (6.1)

where the matrix polynomials G, F in (6.1) defined by (2.2)–(2.4) now read

G(z) =

[
−iz −v1
v2 iz

]
, F (z) = i

[
2z2 − v1v2 −2izv1 + v1x
2izv2 + v2x −2z2 + v1v2

]
. (6.2)

System (6.1) is also known as the AKNS system, which was introduced by

Ablowitz, Kaup, Newell, and Segur in 1974. Algebro-geometric solutions are

well known for the AKNS hierarchy, see for example Gesztesy and Holden [21]

and references therein. By definition, algebro-geometric AKNS solutions (or

potentials) are the set of solutions of the stationary AKNS system

s-AKNS1(v1, v2) =

(
i
2
v1xx − iv21v2 + c1(−v1x) + c2(−2iv1)

− i
2
v2xx + iv1v

2
2 + c1(−v2x) + c2(2iv2)

)
= 0, (6.3)

with c` ranging in C. More details can be found in Appendix A.

We call solutions of the stationary nonlocal NLS equation

s-nNLS±(u) =
i

2
uxx(x)∓ iu(x)2u(−x) + c̃1(−ux(x)) + c̃2(−2iu(x)) = 0

(6.4)

with c̃` ranging in R, algebro-geometric nonlocal NLS solutions. Note that

the plus sign in (6.4), denoted by s-nNLS+, corresponds to the defocusing
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case, while the minus sign in (6.4), denoted by s-nNLS−, corresponds to the

focusing case. Such solutions can be recast as a particular case of algebro-

geometric AKNS solutions by applying the following modified symmetry re-

duction to (6.3).

Lemma 6.1. Let e0 ∈ R. If u(x, t) satisfies s-nNLS±(u) = 0 with c̃1, c̃2 ∈ R,

then v1(x, t) and v2(x, t) defined by

v1(x, t) = u(x, t)eie0x, v2(x, t) = ±u(−x, t)e−ie0x (6.5)

satisfy s-AKNS1(v1, v2) = 0 with constants c1, c2 given by

c1 = c̃1 − e0, c2 = c̃2 −
1

4
e20 −

1

2
e0c1.

The converse statement is also true.

In a natural manner one can associate a hyperelliptic Riemann surface

with (6.3), as described in (A.18). The modified symmetry reduction (6.5)

now implies certain constraints on the branch points of this surface, namely,

the set of zeros {Ej} of R4(z) =
∏3

j=0(z − Ej) can either be real valued or

consists of complex conjugate pairs. This follows from inserting (6.5) into

(A.13)–(A.15) which yields

R4(z) = R4(z). (6.6)

This relation implies (either one of) the following constraints on the set of

zeros of R4(z) after possible relabeling:

(i) E0 < E1 < E2 < E3, Ej ∈ R,
(ii) E0, E0, E1, E1 ∈ C \ R,

(iii) E0 < E1, E0, E1 ∈ R, E2, E2 ∈ C \ R.

Theorem 6.2. Assume either (i), (ii), or (iii) and choose the homology ba-

sis {a1, b1} according to Theorem A.2. Moreover, assume that ∆ in (A.30)

satisfies

Re(∆) =
1

2
χ (mod Z), χ ∈ {0, 1}. (6.7)
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Then u(x) represents a stationary nonlocal NLS solution if and only if A in

(A.29) satisfies the constraint

Im(A) =
1

2
χIm(τ) (mod Z), χ ∈ {0, 1}. (6.8)

Proof. First assume (i). Given Ej, j = 0, . . . , 3, and {a1, b1}, the constants

c` and e0 are uniquely determined by (A.19) and (A.24). Define the an-

tiholomorphic involution ρ+ : (z, y) 7→ (z, y) as in [21, Example A.35 (i)].

One infers that the symmetric Riemann surface (K1, ρ+) is of dividing type

(compare [21, Def. A.33]) and hence

r = 2, ρ+(a1) = a1, ρ+(b1) = −b1,

τ = −τ, U
(2)
0 ∈ R, θ(z) = θ(z).

Thus B defined in (A.30) is purely imaginary, B = −B. So if u(x) satisfies

s-nNLS±(u) = 0, then by Lemma 6.1 and Theorem A.1, the functions v1(x)

and v2(x) admit representations (A.27) and (A.28). Applying (6.5) yields

± C2

C1

=
θ(A+Bx)θ(A−Bx−∆)

θ(A+Bx+ ∆)θ(A−Bx)
=
θ(A+Bx)θ(A+Bx−∆)

θ(A+Bx+ ∆)θ(A+Bx)
. (6.9)

Equation (6.9) is equivalent to

A = A+m1 + n1τ

for some n1 ∈ Z and arbitrary m1 ∈ Z, and hence

Im(A) =
1

2
n1Im(τ), n1 ∈ Z,

and m1 = 0. Similarly, one obtains

A+ ∆ = A−∆ +m2 + n2τ

for some n2 ∈ Z and arbitrary m2 ∈ Z, and hence

Re(∆) =
1

2
m2, m2 ∈ Z. (6.10)

Replacing A by A+m+nτ with m,n ∈ Z then yields (6.8) and (6.7). In case

(ii), (K1, ρ+) is again of dividing type and, in particular, B = −B. For (iii),

(K1, ρ+) is of nondividing type and U
(2)
0 ∈ R follows from [21, (C.37), (C.39),

(C.33)]. Hence the same arguments as before yield (6.7) and (6.8).
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Remark 6.3. Given Ej as in (i)–(iii), we do not know if we get a solution

of s-nNLS+(u) = 0 or s-nNLS−(u) = 0 by the constraints on A. This has

to be determined a priori, that is, there should be a correspondence between

the location of the Ej’s and the defocusing/focusing nNLS equation. For

comparison, the stationary nonlinear Schrödinger potentials correspond to

condition (i) in the defocusing case and to (ii) in the focusing case (see [21,

Lemmas 3.15, 3.18]).

To see that condition (6.7) for ∆ can indeed be satisfied, consider case (i),

that is, E0 < E1 < E2 < E3. Then ∆ can be rewritten in terms of elliptic

integrals (see [22, Ex. 1.27]; L is the period lattice defined in the appendix):

∆ =

∫ P∞−

P∞+

ω1 = −2

∫ P∞+

P0

ω1 = −F (`, k)

F (1, k)
(mod L),

where F (z, k) denotes the Jacobi integral of the first kind

F (z, k) =

∫ z

0

dx

((1− x2)(1− k2x2))1/2

with values

k =

(
(E2 − E1)(E3 − E0)

(E3 − E1)(E2 − E0)

)1/2

∈ (0, 1), ` =

(
E3 − E1

E3 − E0

)1/2

.

The choice E0 = 1, E1 = 2, E2 = 3, and E4 = 4 yields ∆ = −1/2 as desired.
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A Algebro-geometric AKNS solutions

Following [21], we give a brief introduction to algebro-geometric AKNS solu-

tions and their underlying Riemann surface and describe the theta function

representation of such solutions which we need for Theorem 6.2. The analog

of these formulas for the nonlinear Schrödinger equation was first published
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by Its and Kotlyarov [29]. Since then, many authors presented varying ap-

proaches to algebro-geometric solutions of the nonlinear Schrödinger and

AKNS equations, see for instance E. Belokolos and V. Enol’skii [7], Gesztesy

and Ratnaseelan [23] or Previato [37] and references therein.

The stationary AKNS system (6.3) is equivalent to the stationary zero-

curvature equation

s-AKNS1(v1, v2) = 0 ⇔ −V2,x + [U, V2] = 0, (A.11)

where

U(z) =

[
−iz v1
v2 iz

]
, V2(z) = i

[
−G2(z) F1(z)

−H1(z) G2(z)

]
. (A.12)

The polynomials G2(z), F1(z), and H1(z) incorporate the constants c`,

G2(z) = z2 +
1

2
v1v2 + c1z + c2, (A.13)

F1(z) = −iv1z +
1

2
v1,x + c1(−iv1), (A.14)

H1(z) = iv2z +
1

2
v2,x + c1(iv2). (A.15)

The stationary zero-curvature equation in (A.11) yields that(
G2

2 − F1H1

)
x

= 0, (A.16)

and hence G2
2 − F1H1 is x-independent, implying G2

2 − F1H1 = R4, where

the integration constant R4 is a monic polynomial of degree 4. If E0, . . . , E3

denote its zeros, then

R4(z) =
3∏

m=0

(z − Em), {Em}3m=0 ⊂ C. (A.17)

In this manner we can associate a hyperelliptic curve K1 of genus 1 with (6.3)

defined by

K1 : F1(z, y) = y2 −R4(z) = 0. (A.18)

The curve K1 is compactified by joining two points at infinity, P∞± , P∞+ 6=
P∞− ; we denote the compactification again by K1. On K1 \ {P∞+ , P∞−},
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points P are represented as pairs P = (z, y), where y(·) is the meromorphic

function on K1 satisfying F1(z, y) = 0. The complex structure on K1 is then

defined in the usual way (see for example [21, App. C]). Hence K1 becomes

a two-sheeted hyperelliptic Riemann surface of genus 1. We emphasize that

by fixing the curve K1 (i.e., by fixing E0, . . . , E3), the integration constants

c1, c2 in (6.3) are uniquely determined,

c1 = −1

2
(E0 + · · ·+ E3), c2 = −c

2
1

8
+

1

2

3∑
m,n=0;m<n

EmEn. (A.19)

Let µ(x) and ν(x) denote the zeros of F1(z) and H1(z) in (A.14) and (A.15),

F1(z) = −iv1(z − µ), H1(z) = iv2(z − ν). (A.20)

We lift µ(x) and ν(x) to K1 by defining

µ̂(x) = (µ(x), G2(µ(x), x)) ∈ K1, ν̂(x) = (ν(x),−G2(ν(x), x)) ∈ K1.

Choose a homology basis {a1, b1} on K1 and denote by ω1 the corresponding

normalized holomorphic differential, that is,∫
a1

ω1 = 1,

∫
b1

ω1 = τ ∈ C. (A.21)

Note that Im(τ) > 0. Let Ξ = τ
2

+ 1
2

be the Riemann constant. The Riemann

theta function associated with K1 is given by

θ(z) =
∑
m∈Z

exp(2πimz + πim2τ). (A.22)

Without loss of generality we choose the branch point P0 = (E0, 0) as a base

point. Let ω
(2)
P∞±,0

be a normalized differential of the second kind satisfying∫
a1

ω
(2)
P∞±,0

= 0, ω
(2)
P∞±,0

= (ζ−2 +O(1))dζ as P → P∞± , (A.23)

where ζ denotes the local coordinate ζ = 1/z for P near P∞± . Then∫ P

P0

(
ω
(2)
P∞+,0

− ω(2)
P∞−,0

)
= ∓

(
ζ−1 +

e0
2

+ e1ζ +O(ζ2)
)

as P → P∞± .

(A.24)
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In addition, we denote the b1-period of this difference by

U
(2)
0 =

1

2πi

∫
b1

(
ω
(2)
P∞+,0

− ω(2)
P∞−,0

)
. (A.25)

Finally, we turn to divisors, the Jacobi variety, and the Abel map for divisors

in our setting. A divisor D on K1 is a map D : K1 → Z, where D(P ) 6= 0 for

only finitely many P ∈ K1. We define the positive divisor DQ by

DQ : K1 → N0, P 7→ DQ(P ) =

{
1 if P = Q,

0 if P 6= Q,
Q ∈ K1,

and denote the set of all divisors on K1 by Div(K1). The Jacobi variety J(K1)

of K1 is defined by J(K1) = C/L, where L is the period lattice L = {z ∈ C |
z = n+m+ τ, n,m ∈ Z}. The Abel map for divisors is then defined by

αP0 : Div(K1)→ J(K1), D 7→ αP0(D) =
∑
P∈K1

D(P )

∫ P

P0

ω1. (A.26)

With these quantities at hand, the algebro-geometric AKNS solutions admit

the following representation in terms of Riemann theta functions, compare

[21, Thm. 3.11].

Theorem A.1. Suppose that v1, v2 ∈ C∞(Ω) are nonzero and satisfy the

stationary AKNS system (6.3) on Ω. In addition, assume the affine part of

K1 to be nonsingular and let x, x0 ∈ Ω, where Ω ⊆ R is an open interval.

Then

v1(x) = C1
θ(A+Bx−∆)

θ(A+Bx)
exp(ie0x), (A.27)

v2(x) = C2
θ(A+Bx+ ∆)

θ(A+Bx)
exp(−ie0x), (A.28)

where

A = Ξ−
∫ P∞+

P0

ω1 + iU
(2)
0 x0 + αP0(Dµ̂(x0)), (A.29)

B = −iU
(2)
0 , ∆ =

∫ P∞−

P∞+

ω1. (A.30)
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The constants e0 ∈ C and ∆, B are uniquely determined by K1 (and its

homology basis), the constant A is in one-to-one correspondence with the

Dirichlet datum µ̂(x0) at the point x0. The constants C1, C2 ∈ C are given

by

C1 = v1(x0)
θ(A+Bx0)

θ(A+Bx0 −∆)
exp(−ie0x0), (A.31)

C2 =
4

v1(x0)ω2
0

θ(A+Bx0 −∆)

θ(A+Bx0)
exp(ie0x0), (A.32)

and satisfy the constraint

C1C2 =
4

ω2
0

. (A.33)

Note that the free constant v1(x0) in (A.31) cannot be determined since

the AKNS equations are invariant with respect to scale transformations,

(v1(x, t), v2(x, t)) 7→ (av1(x, t), a
−1v2(x, t)) for a ∈ C \ {0}.

We conclude this appendix with the following result used in the char-

acterization of algebro-geometric nonlocal NLS solutions. The genus g = 1

case of [21, Theorem A.36 (i)] reads

Theorem A.2. Let (K1, ρ) be a symmetric Riemann surface, i.e., let ρ be an

antiholomorphic involution on K1. There exists a canonical homology basis

{a1, b1} on K1 with intersection index a1 ◦b1 = 1 such that the 2×2 matrix S

of complex conjugation of the action of ρ on H1(K1,Z) in this basis is given

by

S =

[
1 0

0 −1

]
,

that is, [
ρ(a1) ρ(b1)

]
=
[
a1 b1

] [1 0

0 −1

]
=
[
a1 −b1

]
.
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