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Hausdorff dimension of metric spaces definable in o-minimal
expansions of the real field

by

Jana Maříková (Wien) and Erik Walsberg (Irvine, CA)

Abstract. Let R be an o-minimal expansion of the real field and (X, d) an R-definable
metric space. We show that the Hausdorff dimension of (X, d) is an R-definable function
of its defining parameters, an element of the field of powers of R, and is equal to the
packing dimension of (X, d). The proof uses a basic topological dichotomy for definable
metric spaces due to the second author, and the work of Shiota and the first author on
measure theory over nonarchimedean o-minimal structures.

1. Introduction. Throughout, we let R be an o-minimal expansion of
the real field R = (R, <,+,×). By “definable” we shall mean “definable in
R” (possibly with parameters), unless stated otherwise. If M is an expansion
of an ordered abelian group, then we write M> instead of M>0, and M≥

instead of M≥0. We let Λ be the field of powers of R, i.e. the set of r ∈ R
such that tr is a definable function of t ∈ R. Given a definable set A we
let dim(A) be the o-minimal dimension of A. A definable metric space is a
definable set X equipped with a definable metric d : X2 → R≥. Some basic
facts about definable metric spaces were established in [16].

See Section 2 for definitions and comments on Hausdorff and packing di-
mensions. The Hausdorff, packing, and topological dimensions of a definable
set agree. In fact, the following was shown in [5]:

Theorem 1.1. Let M be an expansion of the real field which does not
define the set of integers and let X ⊆ Rn be a closed M-definable set. Then
the Hausdorff, packing, and topological dimensions of X agree and equal the
largest m for which there is a coordinate projection Rn → Rm which maps
X onto a set with nonempty interior.

2020 Mathematics Subject Classification: Primary 03C64; Secondary 54E35, 28A75.
Key words and phrases: o-minimal, Hausdorff dimension, metric space.
Received 27 July 2017; revised 13 May 2024.
Published online *.

DOI: 10.4064/fm170727-14-5 [1] © Instytut Matematyczny PAN, ***



2 J. Maříková and E. Walsberg

Thus the Hausdorff dimension of a closed M-definable set A is a natural
number and a definable function of the defining parameters of A. It also
follows that the Hausdorff dimensions of the elements of an M-definable
family of closed sets take only finitely many values. In contrast, there are
R-definable metric spaces whose Hausdorff dimension exceeds topological
dimension. The simplest example is given by letting 0 < r < 1 be in Λ and
dr be the definable metric on [0, 1] given by

dr(x, y) = |x− y|r for all x, y ∈ [0, 1].

Then ([0, 1], dr) has topological dimension 1 and Hausdorff dimension 1/r.
Note that {(X, dr) : 0 < r < 1} is an Rexp-definable family of metric spaces
whose elements have infinitely many distinct Hausdorff dimensions. Other
examples are given by certain semialgebraic left-invarient metrics on certain
nilpotent Lie groups, known as Carnot groups. These metrics are well known
in geometry. The simplest example is the Heisenberg group

H :=


1 x z

0 1 y

0 0 1

 : x, y, z ∈ R

 .

We equip H with a norm ∥ ∥H by declaring the norm of the matrix above
to be [x4 + y4 + z2]1/4 and define a left-invarient metric dH by declaring
dH(A,B) = ∥A−1B∥H for all A,B ∈ H. Then (H, dH) has topological di-
mension 3 and Hausdorff dimension 4. Subriemannian metrics give other ex-
amples of Ran-definable metric spaces whose Hausdorff dimension is strictly
larger than topological dimension [16, 5.9].

In this paper we prove the following:

Theorem 1.2. Let X = {(Xα, dα) : α ∈ Rl} be a definable family of met-
ric spaces. Then the Hausdorff dimension of (Xα, dα) is a definable function
of α taking values in Λ∪{∞}. If R is polynomially bounded, then the Haus-
dorff dimension of the elements of X takes only finitely many values. The
Hausdorff dimension and packing dimension of each (Xα, dα) agree.

Theorem 1.2 implies that the Hausdorff dimension of an Ran-definable
metric space is a rational number. By a result of Howroyd [6] the coincidence
of Hausdorff and packing dimensions implies:

Corollary 1.3. The Hausdorff dimension of the product of two defin-
able metric spaces (X, d), (X ′, d′) is dimH(X, d) + dimH(X ′, d′).

Here is an outline of the proof of Theorem 1.2. In Section 2 we recall nec-
essary definitions and results from metric geometry. The crucial metric result
we use is the following easy corollary to well known results (Proposition 2.5
below).
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Proposition 1.4. Let (X, d) be a metric space and µ be a finite Borel
measure on X which gives every nonempty open set positive measure. For
p ∈ X and t ∈ R>, let B(p, t) ⊆ X be the closed ball of radius t centered
at p. Suppose

ϕ(p) := lim
t→0+

log[µB(p, t)]

log(t)
∈ R∞ exists for all p ∈ X,

and ϕ : X → R ∪ {∞} is continuous. Then

dimH(X, d) = dimP (X, d) = sup {ϕ(p) : p ∈ X}.

Let (X, d) be a definable metric space. To apply the previous proposi-
tion we need a measure µ. If the metric topology on (X, d) agrees with the
usual topology on X then we take µ to be the dim(X)-dimensional Lebesgue
measure. The following theorem allows us to make this assumption:

Theorem 1.5 ([16, 9.0.1]). Let (X, d) be a definable metric space. One
of the following holds:

(1) There is an infinite definable subset A ⊆ X such that (A, d) is discrete.
(2) There is a definable homeomorphism between (X, d) and a definable set

equipped with its euclidean topology.

If (1) holds, then the Hausdorff and packing dimensions of (X, d) are
infinite, so we only consider case (2). Omitting technical details, we prove
Theorem 1.2 by applying the following proposition, a consequence of mild
extensions of results in [8], to the definable family {B(p, t) : (p, t) ∈ X×R>}
of balls in (X, d).

Proposition 1.6. Let λ be the k-dimensional Lebesgue measure. Let
X be a definable set and {Ap,t : (p, t) ∈ X × R>} a definable family of
k-dimensional sets such that limt→0+ λ(Ap,t) = 0 for all p ∈ Rl. Then

ϕ(p) := lim
t→0+

log λ(Ap,t)

log t
∈ R ∪ {∞}

is a definable function of p taking values in Λ ∪ {∞}. If R is polynomially
bounded, then ϕ takes only finitely many distinct values.

For R̄an, this is an easy consequence of the work of Comte, Lion and
Rolin [1].

Notation and conventions. By k, l,m, n we shall always denote non-
negative integers.

We let R be a big elementary extension of R. The expansion of R by
the logarithm, Rlog, is o-minimal [13]. By saturation we may view R as a
substructure of an elementary expansion of Rlog, and in this sense we take
the logarithm of elements of R.
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By O we denote the convex hull of Q in R. Then O is a convex subring
of R, hence a valuation ring. We denote its maximal ideal by m. Its residue
field is R with residue map st : O → R.

Let M be an o-minimal field, and let X,Y ⊆ Mn be definable. Then we
write X ⊆0 Y iff dim(X \ Y ) < n, and X =0 Y iff X ⊆0 Y and Y ⊆0 X.
A property holds for almost all elements of X if it holds for all elements of
X outside of a definable subset of dimension < n. By a box in Mn we mean a
definable set of the form [a1, b1]×· · ·× [an, bn] ⊆ Mn, where ai < bi for all i.
By pnm : Mn → Mm we denote the projection onto the first m coordinates.
If (X, d) is a metric space and p ∈ X, t ∈ R>, then B(p, t) ⊆ X is the closed
ball of radius t centered at p.

We shall write R∞ for R ∪ {∞}, and Λ∞ to mean Λ ∪ {∞}.

2. Dimensions. Throughout this section, (X, d) is a metric space. The
diameter of A ⊆ X is

Diam(A) = sup {d(x, y) : x, y ∈ A}.
We recall the definitions of the two metric dimensions used in this paper:
Hausdorff dimension and packing dimension. We refer to Falconer [3] for
more information about these dimensions.

We begin with Hausdorff dimension. Let A ⊆ X. Given δ > 0 and r ≥ 0
we let Hr

δ(X) be the infimum of all sums
∑∞

i=0 s
r
i for which there is a sequence

{Ai}i∈N of subsets of A covering A such that each Ai has diameter si ≤ δ.
The r-dimensional Hausdorff measure of A is

Hr(A) = lim
δ→0

Hr
δ(A) ∈ R∞.

This gives a Borel measure on X. Let 0 ≤ s < r. If Hr(A) > 0 then Hs(A)
= ∞ and if Hs(A) < ∞ then Hr(A) = 0. The Hausdorff dimension of (X, d)
is the supremum of all r ≥ 0 such that Hr(X) = ∞. We denote the Hausdorff
dimension of (X, d) by dimH(X, d).

We now define the packing dimension of (X, d). Let A ⊆ X. Given δ > 0
and r ≥ 0, let Pr

δ (A) be the supremum of all sums
∑∞

i=0 s
r
i for which there

is a sequence {Bi}i∈N of pairwise disjoint closed balls with centers in A such
that each Bi has diameter si ≤ δ. The r-dimensional packing measure of A
is

Pr(A) = lim
δ→0

Pr
δ (A) ∈ R∞.

This gives a Borel measure on X. Let 0 ≤ s < r. If Pr(A) > 0 then
Ps(A) = ∞ and if Ps(A) < ∞ then Pr(A) = 0. The packing dimension
of (X, d) is the supremum of all r ≥ 0 such that Pr(X) = ∞. We denote the
packing dimension of X by dimP (X, d). It is well-known that

dimH(X, d) ≤ dimP (X, d) for any metric space (X, d).
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The following facts follow directly from the definitions.

Fact 2.1. If {X1, . . . , Xn} is a partition of X into Borel sets then

dimH(X, d) = max {dimH(X1, d), . . . ,dimH(Xn, d)},
dimP (X, d) = max {dimP (X1, d), . . . ,dimP (Xn, d)}.

Fact 2.2. If (X, d) is not separable then dimH(X, d) = dimP (X, d) = ∞.

Let (X ′, d′) be a metric space. We equip X×X ′ with the metric d□ given
by

d□((x, x
′), (y, y′)) = max {d(x, y), d′(x′, y′)}.

See [6] for the following:

Fact 2.3. We have

dimH(X, d) + dimH(X ′, d′)

≤ dimH(X ×X ′, d□) ≤ dimP (X, d) + dimP (X
′, d′).

So if dimH(X, d) = dimP (X, d) and dimH(X ′, d′) = dimP (X
′, d′) then

dimH(X ×X ′, d□) = dimH(X, d) + dimH(X ′, d′).

We now suppose µ is a Borel measure on (X, d) which assigns positive
measure to every nonempty open subset of X. We define the upper and
lower dimensions of (X, d) at a point p ∈ X, which depend on µ. The upper
dimension at p is

dimloc(p) = lim sup
t→0+

logµB(p, t)

log(t)
∈ R∞,

and the lower dimension at p is

dimloc(p) = lim inf
t→0+

logµB(p, t)

log(t)
∈ R∞.

See Falconer [3, Proposition 2.2] for Proposition 2.4 below. The proof in [3]
is given for subsets of Euclidean space but is easily seen to go through in
general.

Proposition 2.4. Let r ∈ R.

(1) If dimloc(p) ≥ r for all p ∈ X then dimP (X, d) ≥ r.
(2) If dimloc(p) ≤ r for all p ∈ X then dimP (X, d) ≤ r.
(3) If dimloc(p) ≥ r for all p ∈ X then dimH(X, d) ≥ r.
(4) If dimloc(p) ≤ r for all p ∈ X then dimH(X, d) ≤ r.

We now prove

Proposition 2.5. Suppose

ϕ(p) := lim
t→0+

log[µB(p, t)]

log(t)
∈ R∞ exists for all p ∈ X,
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and ϕ : X → R∞ is continuous. Then

dimH(X, d) = dimP (X, d) = sup {ϕ(p) : p ∈ X}.

Proof. Note that

dimloc(p) = ϕ(p) = dimloc(p) for all p ∈ X.

Let s be the supremum of the range of ϕ. As ϕ(p) ≤ s for all p ∈ X, we
have dimH(X, d), dimP (X, d) ≤ s by Proposition 2.4. Let ϵ > 0. As ϕ is
continuous there is an open U ⊆ X such that ϕ(p) > s − ϵ for all p ∈ U .
Applying Proposition 2.4 to (U, d) and the restriction of µ to U we have
dimH(U, d), dimP (U, d) ≥ s− ϵ. So

s− ϵ ≤ dimH(X, d),dimP (X, d) ≤ s for all ϵ > 0.

3. A consequence of Miller’s dichotomy. We prove

Proposition 3.1. If f : Rn × R> → R> is definable, then

F (p) := lim
t→0+

log f(p, t)

log(t)
∈ R∞

is a definable function of p taking values in Λ∞. If R is polynomially bounded,
then F takes only finitely many distinct values.

Proposition 3.1 is a corollary of two results of Miller. The first is the
fundamental dichotomy [9]:

Theorem 3.2. If R is not polynomially bounded, then the exponential
function is definable.

The second is a slight variation of [10, Proposition 5.2, p. 92].

Fact 3.3. Suppose R is polynomially bounded, and f : Rn×R> → R> is
definable. Then there are r1, . . . , rk ∈ Λ, a partition {B1, . . . , Bk} of Rn into
definable sets, and a definable c : Rn → R> such that

lim
t→∞

f(p, t)

tri
= c(p) for all p ∈ Bi.

Proof of Proposition 3.1. Suppose the exponential function is definable,
in which case Λ = R. Then the function

F0(p, t) :=
log f(p, t)

log(t)

is definable. It follows from the o-minimalmonotonicity theorem that for any p,
limt→0+ F0(p, t) exists in R∞. Now suppose R is polynomially bounded. Let
r1, . . . , rk, {B1, . . . , Bk}, and c be as in Fact 3.3 above. Fix p in Bi and let
ϵ > 0 be such that c(p)− ϵ > 0. Then

[c(p)− ϵ]tri ≤ f(p, t) ≤ [c(p) + ϵ]tri for sufficiently small t > 0.
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Taking logs and dividing through by log(t), we have

log[c(p)−ϵ]

log(t)
+ri ≤

log f(p, t)

log(t)
≤ log[c(p)+ϵ]

log(t)
+ri for sufficiently small t>0.

Letting t → 0+ we have
log f(p, t)

log(t)
= ri for all p ∈ Bi.

Thus F (p) = ri when p ∈ Bi. The proposition follows.

4. Measures on definable sets. In this section we prove Proposi-
tion 4.16. We shall use the following terminology. We say that a definable
X ⊆ On is d-thin if dim(X) ≤ d and int(st(πX)) = ∅ for all orthogonal
projections π : Rn → Rd. In the terminology of Valette [15] a thin set is
“O-thin”. If a definable X ⊆ On is not d-thin then we say that it is d-fat.
Note that a definable subset of On is n-fat if and only if int(stX) ̸= ∅.

In [8], the authors define a finitely additive measure ν (see Definition 4.2)
on the definable subsets of On which takes values in an ordered semiring
(a quotient of O≥) and agrees with the Lebesgue measure of stX in the
case when X is n-fat. When X is n-thin, the measure of an open cell X
agrees with the supremum of the measure of all boxes inscribed in a cer-
tain isomorphic image of X (an isomorphism X → ϕX here is, roughly,
a C1-diffeomorphism ϕ such that |det Jϕ(x)| = 1 for almost all x ∈ X).
We first extend the definitions in [8] to d-dimensional measure. We note
that while we assume for simplicity that R is sufficiently saturated, this as-
sumption is not needed for the definition of ν in [8], nor is it needed for
its d-dimensional version. The only adjustment one needs to make when
dropping the saturation assumption is to replace Õ in Definition 4.2 by its
Dedekind completion.

Definitions 4.1 and 4.2 below are from [8] (stated in slightly weaker form).
Lemma 4.13 is a consequence of results from [8]. It will yield the desired result
on limits of families of open sets (Corollary 4.15), which will in turn imply
the result in full generality.

We shall use the following convention. Suppose M is an o-minimal field
and X ⊆ Mn is an open cell with pnkX = (fk, gk) for k = 1, . . . , n. Let x ∈ X
and t ∈ (0, 1)n be such that

xi = (1− ti)fi(x1, . . . , xi−1) + tigi(x1, . . . , xi−1).

Then τX : X → τXX ⊆ Mn is the map τX(x) = y, where

yi = ti(gi(x1, . . . , xi−1)− fi(x1, . . . , xi−1)).

We define an equivalence relation ∼ on O≥:



8 J. Maříková and E. Walsberg

Definition 4.1. Let x, y ∈ m≥. Then x ∼ y iff yq ≤ x ≤ yp for all
p, q ∈ Q> such that p < 1 < q. If x, y > m, then x ∼ y iff stx = st y. We let
Õ be the quotient O≥/∼.

Note that R ⊆ Õ by the saturation assumption on R. The quotient Õ
can be made into an ordered semiring, where the ordering is induced by the
ordering on O, and x̃+ỹ = max {x̃, ỹ} if x ∈ m> or y ∈ m

> , and x̃+ỹ = x̃+ y
otherwise. For x, y ∈ O≥, we set x̃ · ỹ = x̃ · y.

For the remainder of this section, λX is the n-dimensional Lebesgue
measure of X ⊆ Rn, and λkX, k < n, is the k-dimensional Lebesgue measure
of X ⊆ Rn.

Definition 4.2.

(a) Let X ⊆ On be a cell. If X is n-fat, then νX = λ st(X). If X is n-thin,
then νX = ã, where

a = max
{ n∏

i=1

(yi − xi) : [x1, y1]× · · · × [xn, yn] ⊆ cl(τXX)
}
.

(b) Suppose X ⊆ On is a definable set. Then νX =
∑d

i=1 νCi, where {Ci}
is a finite partition of X into cells.

It is shown in [8] that the above definition is independent of the decom-
position of X into cells, and that νX > 0 iff the interior of X in Rn is
nonempty.

We now define a d-dimensional measure νd on the d-thin definable subsets
of On such that νdX > 0 whenever dimX ≥ d. On d-fat sets one can define
a d-dimensional measure as Fornasiero and Vasquez do in [4]. While the
proofs in [4] work only in a sufficiently saturated o-minimal expansion of a
real closed field, using [2, Theorem 3.3, p. 244], the results from [4] can be
transferred to the general case.

We use the following definitions and theorem of Pawłucki [12] (with
slightly modified terminology). We state these for R, but they hold equally
well for R (and we shall use the same terminology for subsets of Rn as for
subsets of Rn).

Definition 4.3. Let f : X → R, where X ⊆ Rn is open, be R-definable
and C1, and let L ∈ R>. Then we say that f is L-controlled if

∣∣ ∂f
∂xi

(a)
∣∣ ≤ L

for all i ∈ {1, . . . , n} and almost all a ∈ X.

Definition 4.4. An open cell C = (f, g) ⊆ Rn will be called a standard
L-cell if it is an open interval in the case n = 1 and, for n > 1, if pnn−1C is
a standard L-cell and whenever f or g is finite, then it is L-controlled.
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Theorem 4.5. Let X ⊆ Rn be open and definable. Then we can find
S1, . . . , Sk ⊆ Rn such that

X =0 S1 ∪̇ · · · ∪̇ Sk,

where each Si is a standard L-cell after a permutation of coordinates and
L ∈ R> depends only on n.

It is an exercise left to the reader to derive the following version of the
above theorem for definable subsets of dimension < n:

Corollary 4.6. Let X ⊆ Rn be definable of dimension d < n. Then
there are S1, . . . , Sk ⊆ Rn such that X =0 S1 ∪̇ · · · ∪̇ Sk, and there are
permutations of coordinates τ1, . . . , τk : Rn → Rn such that each τiSi is an
(i1, . . . , in)-cell with ij = 1 when j ≤ d and ij = 0 when j > d, and each
pndτiSi is a standard L-cell, and each pnmτiSi with m > d is the graph of an
L-controlled function. Furthermore, L ∈ O> depends only on n.

From now on we shall always assume that L ∈ O>. We will refer to
(i1, . . . , in)-cells C such that ij = 1 for all j ≤ d and ij = 0 for j > d and
such that pndC is a standard L-cell and each pnmC with m > d is the graph of
an L-function, as L-cells of dimension d. For definable X,Si ⊆ Rn (or Rn)
we say that {Si} is an almost partition of X if {Si} is finite and X =0

⋃̇
i Si.

Definition 4.7. LetX ⊆ On beR-definable and d-thin. Let {S1, . . . , Sk}
be an almost partition of X and let τ1, . . . , τk : Rn → Rn be permutations
of coordinates such that each τiSi is an L-cell. Then we set

νdX := max {νpndτiSi : 1 ≤ i ≤ k}.

To show that the definition of νd makes sense, we must show that it
does not depend on the choice of Si and τi. Note that if dim(X) < d then
νd(X) = 0.

Below, det Jϕ(x) is the Jacobian determinant of ϕ at x.

Definition 4.8. Let X,Y be n-dimensional definable subsets of Rn.
We say that a map ϕ is a weak isomorphism X → Y if ϕ : U → V , where
U, V ⊆ Rn are open, is a definable C1-diffeomorphism, X ⊆0 U , Y ⊆0 V ,
ϕ(X ∩ U) =0 Y , and 1/L ≤ |det Jϕ(x)| ≤ L for almost all x ∈ U , where
L ∈ O>. We say that X and Y are weakly isomorphic if there is a definable
weak isomorphism X → Y .

We now show that ν is invariant under weak isomorphisms on thin sets.
The proof is a slight variant of the proof of [8, Theorem 5.4]. For the sake of
completeness we outline the argument here; see [8] for more details.

Lemma 4.9. Suppose C,D ⊆ Rn are definable, n-dimensional and n-thin.
If C and D are weakly isomorphic, then ν(C) = ν(D).
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Proof. Let ϕ : C → D be a weak isomorphism. We assume towards a
contradiction that νC > νD. Let a ∈ m> be such that νD < ã < νC. We
first reduce to the case when D is an open cell and C = ϕ−1(D). The next
reduction is to the case when C is a cell and τD ◦ ϕ(C) ⊆ B, where B is a
box with νB < ã. Next, we find a box P ⊆ τCC with νP > ã. We define

Φ = τD ◦ ϕ ◦ τ−1
C |P : P → Φ(P ) ⊆ B.

For some L ∈ O>, 1/L ≤ |det JΦ(x)| ≤ L for almost all x ∈ P .
Let θ : (0, 1)n → int(P ) be a C1-diffeomorphism with det Jθ(x) = b for

all x ∈ (0, 1)n, where b̃ = νP . Let θ̂ : B → P ′ be a C1-diffeomorphism onto
a box P ′ such that det Jθ̂(x) = 1/b for all x ∈ B. Then

θ̂ ◦ Φ ◦ θ : (0, 1)n → θ̂ ◦ Φ ◦ θ(0, 1)n ⊆ P ′

is such that
1/L ≤ |det(J(θ̂ ◦ Φ ◦ θ)(x))| ≤ L

for almost all x ∈ [0, 1]n. By [7, Corollary 6.2, p. 17], θ̂ ◦ Φ ◦ θ induces
a C1-diffeomorphism st [0, 1]n → stP ′ outside of a subset of st [0, 1]n of
dimension < n with Jacobian determinant bounded between 1/stL and stL.
But int(stP ′) = ∅, which is impossible.

We now show that νd is well-defined.

Lemma 4.10. Let X ⊆ On be definable and d-thin. Let {Xi} and {Yj} be
almost partitions of X, and let τi, τ

′
j : Rn → Rn be permutations of coordi-

nates such that all τiXi and τ ′jYj are L-cells. Then

max
i

νpndτiXi = max
j

νpndτ
′
jYj .

Proof. Let Z = {Z1, . . . , Zm} be an almost partition of X containing an
almost partition of each Xi and Yj . For each i we have

νpndτiXi = max {νpndτiZj : j ∈ {1, . . . ,m} and Zj ⊆ Xi}.
Hence

max
i

νpndτiXi = max {νpndτiZj : 1 ≤ j ≤ m}

and it suffices to see that for Zk ⊆ Xi∩Yj of dimension d, νpndτiZk = νpndτ
′
jZk.

But this follows from the map ϕ : pndτiZk → pndτ
′
jZk given by pndτi(x) 7→

pndτ
′
j(x), where x ∈ Zk, being a weak isomorphism and from Lemma 4.9.

Definition 4.11. Let M be an o-minimal field and X a definable subset
of Mn. Let B = {B1, . . . , Bk} be a collection of pairwise disjoint boxes in Mn.
We say that B is an inner approximation of X if Bi ⊆ X for each i. We say
that B is an outer approximation of X if X ⊆0

⋃k
i=1Bi. The volume of B is∑k

i=1 νBi.
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The lemma below is [7, Lemma 4.1]:

Lemma 4.12. Let X ⊆ On be definable and n-fat. Then there is a box

[a1, b1]× · · · × [an, bn] ⊆ cl(X)

with a1, b1, . . . , an, bn ∈ Q.

When dealing with R-definable families, we shall not make a notational
distinction between their realization in R and in R, as which one is meant
will always be clear from the context.

Lemma 4.13. Let {At : t ∈ R>} be a definable family of open subsets
of Rn such that λ(At) → 0 as t → 0+.

(a) There is a definable function h : (0, a)R → R>, where a ∈ R>, such that
each h(t) is the volume of an inner approximation of At and h̃(t) = ν(At)
for all t ∈ m>.

(b) If G : R → R is definable such that νAt < G̃(t) when t ∈ m>, then there
is a definable function H : (0, a)R → R>, where a ∈ R>, such that each
H(t) is the volume of an outer approximation of At and

ν(At) ≤ H̃(t) < G̃(t) for all t ∈ m>.

Proof. Without loss of generality, we may assume that At ⊆ [0, 1]n for
each t. First note that int(stAt) = ∅ for all t ∈ m>: Suppose towards a
contradiction that t ∈ m> is such that int(stAt) ̸= ∅. By Lemma 4.12 there
is a box B ⊆ At such that all vertices have rational coordinates. For all
sufficiently small s ∈ R>, B ⊆ As, in contradiction with λAt → 0 as t → 0+

and λB > 0.
We set A =

⋃
{At : t ∈ R>}. To prove (a), we let D be a decomposition

of R1+n into cells that partitions A. Let D ∈ D be such that D ⊆ A and
pn+1
1 D = (0, a) for some a ∈ R>. Let D1, . . . , Dk be the open cells in D

with Di ⊆ A and pn+1
1 Di = (0, a). Then

⋃k
i=1 (Di)t =0 At for all t ∈ m>,

and there is i ∈ {1, . . . , k} such that νAt = ν((Di)t) for all t ∈ m>: Define
hi : (0, a) → [0, 1] by

hi(t) = sup
{ n+1∏

j=2

(bj − aj) : [a2, b2]× · · · × [an+1, bn+1] ⊆ cl((τDiDi)t)
}
,

hence ν((Di)t) = h̃i(t) for all t ∈ m>. Since the functions hi : (0, a) → [0, 1]
are R-definable, if hi(t) < hj(t) for some t ∈ m> then hi(t) < hj(t) for all
t ∈ m>. It follows that for some i ∈ {1, . . . , k}, νAt = h̃i(t) for all t ∈ m>.
This finishes part (a) of the lemma.
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To prove (b), let G : [0, 1] → [0, 1] be R-definable with νAt < G̃(t) for
t ∈ m>. Without loss of generality, we assume that A is an open cell of the
form (0, f). The proof is by induction on n.

If A ⊆ R1+1, then At = (0, f(t)) ⊆ R for each t ∈ m>, so part (b)
of the lemma is obvious. Now suppose the lemma holds for n ≥ 1, and let
A ⊆ R1+(n+1). Let h be as in part (a) of the lemma. Let ϵ ∈ m>. Then
νAϵ = h̃(ϵ). Now h̃(ϵ) < G̃(ϵ) implies that for some p ∈ Q>, p < 1,

h̃(ϵ) < h̃(ϵ)
p
< G̃(ϵ).

By the proof of the subclaim in [8, proof of Theorem 4.8, Case 1.1], there is l,
depending only on p, and there are R-definable functions y0, . . . , yl : (0, a) →
[0, 1], where a ∈ R>, such that

0 = y0(t) < y1(t) < · · · < yl(t) = 1

and

h̃(t) ≤
l∑

i=1

ỹi(t) · ν(f−1
t [yi−1(t), yi(t)]) < h̃(t)

p

for all t ∈ m>. (In the notation of [8, proof of Theorem 4.8], yi(t) =
h(t)(l−i−1)q3 where i ∈ {1, . . . , l − 1}, and q3 ∈ Q> depends only on p.)

We first find, for each i, an R-definable function Hi such that

ỹi(t)νf
−1
t [yi−1, yi] ≤ H̃i(t) < h̃(t)

p

on m>, and Hi(t) is the volume of an outer approximation of

f−1
t [yi−1, yi]× [0, yi]

on (0, a), where a ∈ R>.
• Let i = l. Then for all t ∈ m>,

νf−1
t [yl−1(t), yl(t)] < h̃(t)

p
.

So, inductively, there is an R-definable function Hi : (0, a) → [0, 1], with
a ∈ R>, such that

νf−1
t [yl−1(t), yl(t)] ≤ H̃i(t) < h̃(t)

p
for all t ∈ m>,

and such that each Hi(t) is the volume of an outer approximation of
f−1
t [yl−1(t), yl(t)]. Then

ỹi(t) · νf−1
t [yi−1(t), yi(t)] ≤ ỹi(t) · H̃i(t) = H̃i(t) < h̃(t)

p
for all t ∈ m>.

Further, yi(t) ·Hi(t) is the volume of an outer approximation of f−1
t [yl−1(t),

yl(t)]× [0, yi(t)] for all t ∈ (0, a).
• Let i be such that yi(t) ∈ m> and νf−1

t [yi−1(t), yi(t)] < m̃> for some
(hence all) t ∈ m>. Then the function assigning 1 to each t ∈ (0, 1) is the
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volume of an outer approximation of f−1
t [yi−1(t), yi(t)] for all t ∈ (0, 1), and

Hi(t) = yi(t) is as required.
• Suppose yi(t) ∈ m> and νf−1

i [yi−1(t), yi(t)] ∈ m̃> for t ∈ m>. Let
q ∈ Q> be such that

ỹi(t) · νf−1
t [yi−1(t), yi(t)] < h̃q < h̃p.

We shall find an R-definable function d with

d(t) ∈ m>, νf−1
t [yi−1(t), yi(t)] < d̃(t),

ỹi(t) · νf−1
t [yi−1(t), yi(t)] ≤ ỹi(t) · d̃(t) ≤ h̃(t)

q

for all t ∈ m>.
As mentioned above, for each i ∈ {1, . . . , l − 1}, yi(t) = h(t)r for some

r ∈ Q>. Note that either h̃(t)
q−r

∈ m> for all t ∈ m>, or h̃(t)
q−r

> m̃> for
all t ∈ m>. In the first case, we may set d(t) = h(t)q−r. In the second case,
we set d(t) =

√
b(t), where b̃(t) = νf−1

t [yi−1(t), yi(t)] for all t ∈ m>.
Inductively, we now obtain Hi : (0, a) → [0, 1], an R-definable function,

such that

ỹi(t) · νf−1
t [yi−1(t), yi(t)] ≤ ỹi(t) · H̃i(t) < ỹi(t) · d̃(t) ≤ h̃(t)

p

for all t ∈ m>, and such that yi(t) ·Hi(t) is an upper approximation of

f−1
t [yi−1(t), yi(t)]× [yi−1(t), yi(t)]

for all t ∈ (0, a), where a ∈ R>.
Now H(t) =

∑l
i=1 yi(t) · Hi(t) is an upper approximation of At for all

t ∈ (0, a), where a ∈ R>, and νAt ≤ H̃(t) < G̃(t) for all t ∈ m>.

Proposition 4.14. Let {At : t ∈ R>} be a definable family of open sub-
sets of Rn such that λAt → 0 as t → 0+. Let h be as in Lemma 4.13(a).
Then

lim
t→0+

log λAt

log h(t)
= 1.

Proof. Let p, q ∈ Q> with p < 1 < q. Then, for t ∈ m>,

h̃(t)
q
< h̃(t) < h̃(t)

p
.

By Lemma 4.13(b), there is a definable H : (0, a) → [0, 1], where a ∈ R>,
such that, on m>,

h̃(t)
q
< h̃(t) ≤ H̃(t) < h̃(t)

p
,

and H(t) is the volume of an upper approximation of At for all t ∈ (0, a).
So, by Lemma 4.13,

h(t) ≤ λAt ≤ H(t) for all t ∈ (0, a),
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and hence

h(t)q < λAt < h(t)p for all sufficiently small t ∈ R>.

It follows that
p < lim

t→0+

log λAt

log h(t)
< q.

Corollary 4.15. Let {Ap,t : p ∈ Rl, t ∈ R>} be a definable family of
open subsets of Rn such that limt→0+ λAp,t = 0 for all p ∈ Rl. Then

F (p) := lim
t→0+

log λAp,t

log t
∈ R∞

is a definable function of p taking values in Λ∞. If R is polynomially bounded
then F takes only finitely many values.

Proof. For each p ∈ Rl, let hp be the function whose existence is guar-
anteed in Lemma 4.13(a), considered as a function R> → R>. Note that hp
is uniformly definable in p. Proposition 4.14 shows that

lim
t→0+

log λAp,t

log hp(t)
= 1 for all p ∈ Rl.

This implies

lim
t→0+

log λAp,t

log t
= lim

t→0+

log hp(t)

log t
for all p ∈ Rl.

The corollary now follows by an application of Proposition 3.1.

Proposition 4.16. Let A = {Ap,t : (p, t) ∈ Rk × R>} be a definable
family of d-dimensional subsets of Rn, where d < n and λdAp,t → 0 as
t → 0+ for each p ∈ Rk. Then

lim
t→0+

log λdAp,t

log t

is a definable function of p taking values in Λ∞. If R is polynomially bounded,
then this function takes only finitely many values.

Proof. By Proposition 3.1, it is enough to find f : Rk × R> → R, a
definable function such that

lim
t→0+

log λdAp,t

log t
= lim

t→0+

log f(p, t)

log t
for all p ∈ Rk.

Let L be the constant corresponding to n from Theorem 4.5. We shall say
that a collection of definable sets {Ci} and a collection of permutations of
coordinates {τi} of Rn are good for a definable set A ⊆ Rn if {Ci} is an
almost partition of A and each τiCi is an L-cell of dimension d.

Corollary 4.6 yields, for each (p, t) ∈ Rk+1, a collection {Ci} of definable
subsets of Rk+1+n, and a collection {τi} of permutations of coordinates of
Rn such that {Ci(p, t)} and {τi} are good for Ap,t (here, we have Ci(p, t) =



Hausdorff dimension of metric spaces 15

{x ∈ Rn : (p, t, x) ∈ Ci}). Note that being an almost partition of Ap,t as
well as being an L-cell are first-order properties. Furthermore, recall that
Corollary 4.6 holds in any o-minimal field, so in particular in a saturated one.
By model-theoretic compactness, we thus obtain finitely many collections

{C1,1, . . . , C1,l(1)}, . . . , {Cm,1, . . . , Cm,l(m)}

of finitely many families of sets Cij ⊆ Rk+1+n such that for each (p, t) ∈
Rk+1 there is i ∈ {1, . . . ,m} such that {Cij(p, t)} and some set {τj} of
permutations of coordinates of Rn are good for Ap,t.

Let {τ s} be the set of all the tuples of permutations of coordinates Rn →
Rn of length max {l(1), . . . , l(m)} (note that {τ s} is finite), and let (τs)j be
the jth coordinate of τ s. For each i ∈ {1, . . . ,m} and each s, let his : Rk+1 →
R be the definable function such that

˜his(p, t) = max
j

νpnd (τ s)jCij(p, t)

and whose existence was proved in Lemma 4.13.
Then the function f : Rk+1 → R which assigns to (p, t) the value of his

at (p, t), where is is the smallest ordered pair in the lexicographic order such
that {Cij(p, t)} and τ s are good for Ap,t, is as required.

5. Proof of Theorem 1.2. Let X = {(Xα, dα) : α ∈ Rl} be a definable
family of metric spaces. We now prove Theorem 1.2.

Theorem 5.1. The Hausdorff dimension of (Xα, dα) is a definable func-
tion of α which takes values in Λ∞. If R is polynomially bounded, then the
Hausdorff dimension of the elements of X takes only finitely many values.
Furthermore,

dimH(Xα, dα) = dimP (Xα, dα) for all α ∈ Rl.

Proof. By [16, Corollary 9.3.4] there is a partition of Rl into definable
sets A,B, a definable family {Zα : α ∈ A} of sets and a definable family
{hα : α ∈ A} of functions such that

(1) hα is a homeomorphism (Xα, dα) → (Zα, e), with e the euclidean metric,
for all α ∈ A,

(2) if β ∈ B, then there is an infinite definable A ⊆ Xβ such that (A, dβ) is
discrete.

Any infinite definable set has cardinality |R|. Thus if β ∈ B, then (Xβ, dβ)
contains a discrete subspace of cardinality |R| and is therefore not separable.
Thus Fact 2.1 implies that if β ∈ B then (Xβ, dβ) has infinite Hausdorff and
packing dimension. We therefore assume that B is empty. For all α ∈ Rl, we
let d′α be the metric on Zα given by

d′α(hα(x), hα(y)) = dα(x, y) for all x, y ∈ Xα.



16 J. Maříková and E. Walsberg

Then (Xα, dα) is isometric to (Zα, d
′
α) for all α ∈ Rl. We also note that

id : (Zα, d
′
α) → (Zα, e) is a homeomorphism for all α ∈ Rl. It suffices to prove

the theorem for the family {(Zα, d
′
α) : α ∈ Rl}. We therefore argue under the

assumption that the topologies given by dα and e agree on Xα for all α ∈ Rl.
In view of the Trivialization Theorem there are a partition {F1, . . . , Fn} of
Rl into definable sets, definable sets X1, . . . , Xn, and a definable family of
functions {gα : α ∈ Rl} such that gα : (Xα, e) → (Xi, e) is a homeomorphism
for all α ∈ Fi. For all 1 ≤ i ≤ n and α ∈ Fi we let d′α be the metric on Xi

given by
d′α(gα(x), gα(y)) = dα(x, y) for all x, y ∈ Xα.

It suffices to prove the theorem for each definable family {(Xi, d
′
α) : α ∈ Fi}

separately. So we suppose X = {(X, dα) : α ∈ Rl} for some definable set X,
and suppose the topology given by dα agrees with the usual euclidean topol-
ogy on X for all α. Let k = dim(X).

We apply induction to k. If k = 0, then X is finite and so (X, dα) has
Hausdorff and packing dimension zero for all α. Suppose k ≥ 1. Let λ be
the k-dimensional Lebesgue measure on X. We let Bα(p, t) be the open dα-
ball with center p ∈ X and radius t, and Be(p, t) be the open euclidean
ball in Rl with center p and radius t. Fix α ∈ Rl and p ∈ X. For all
δ ∈ R> there is an ϵ ∈ R> such that Bα(p, ϵ) ⊆ Be(p, δ). Thus we have
λ[Bα(p, t)] → 0 as t → 0+. Applying Proposition 4.16 we get a definable
function F : Rl ×X → R∞ such that

F (α, p) = lim
t→0+

log λ[Bα(p, t)]

log(t)
for all α ∈ Rl, p ∈ X.

Proposition 4.16 also implies that F takes values in the field of powers of R
and if R is polynomially bounded, then F takes only finitely many values.
For all α ∈ Rl we let Fα : X → R∞ be given by Fα(p) = F (α, p). We let
{Uα : α ∈ Rl} be a definable family of open subsets of X such that for all α,
the restriction of Fα to Uα is continuous, Uα ⊆0 X, and every definable open
subset of Uα has dimension k. By Fact 2.1,

dimH(Xα, dα) = max {dimH(Uα, dα), dimH(Xα \ Uα, dα)},
dimP (Xα, dα) = max {dimP (Uα, dα), dimP (Xα \ Uα, dα)} for all α.

The inductive assumption yields the theorem for {(Xα \ Uα, dα) : α ∈ Rl}.
It therefore suffices to prove the theorem for {(Uα, dα) : α ∈ Rl}. As every
definable open subset of Uα has positive λ-measure, we have λ[Bα(p, t)] > 0
for all p ∈ Uα and t ∈ R>. Thus Proposition 2.5 implies

dimH(Uα, dα) = dimP (Uα, dα) = sup {Fα(p) : p ∈ Uα} for all α ∈ Rl.

Therefore dimH(Uα, dα) is a definable function of α. If R is polynomi-
ally bounded, then F takes only finitely many values, all in Λ∞, and so
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dimH(Uα, dα) takes only finitely many values as α varies, and each value is
an element of Λ∞.

Combining Theorem 1.2 with Fact 2.3 we directly obtain:

Corollary 5.2. Suppose (X, d), (X ′, d′) are definable metric spaces.
Then

dimH(X ×X ′, d□) = dimH(X, d) + dimH(X ′, d′).

6. Bilipschitz equivalence. In [14] Valette classified definable sets
equipped with their induced euclidean metrics and proved the following.

Theorem 6.1. There are |Λ|-many definable sets up to bilipschitz equiv-
alence. If R is polynomially bounded, then a definable family of sets has only
finitely many elements up to bilipschitz equivalence.

One might speculate that the polynomially bounded case of Theorem 1.2
is a consequence of a generalization of Valette’s theorem to definable metric
spaces. This is not the case:

Fact 6.2. There is a semialgebraic family of metric spaces which contains
continuum many elements up to bilipschitz equivalence.

The collection of Carnot metrics on Rk naturally forms a semialgebraic
family of metric spaces. Pansu [11] proved that if two Carnot groups are not
isomorphic as groups, then the associated Carnot metrics are not bilipschitz
equivalent. It is known that if k ≥ 6, then there are continuum many pairwise
nonisomorphic Carnot group operations on Rk. See [16, 5.5] for details and
references.
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