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On definable matchings in o-minimal bipartite graphs

by

Jana Maříková (Wien)

Abstract. We consider bipartite graphs definable in o-minimal structures, in which
the edge relation G is a finite union of graphs of certain measure-preserving maps.

We establish the existence of definable matchings with few short augmenting paths.
Under the additional assumptions of G ⊆ [0, 1]n and 2-regularity, this yields the existence
of definable matchings covering all vertices outside of a set of arbitrarily small positive
measure (Lebesgue measure of the standard part). As an application we obtain an ap-
proximate 2-cancellation result for the semigroup of definable subsets of [0, 1]n modulo an
equivalence relation induced by measure-preserving maps.

1. Introduction. This paper is a first step towards understanding defin-
able matchings in definable bipartite graphs in o-minimal structures. Match-
ings play an important role in many areas of mathematics, such as the the-
ory of equidecompositions, which is in turn closely related to the existence
of measures. In the o-minimal setting, equidecompositions constitute a pos-
sible approach to a long-standing open question on the existence of certain
invariant measures on definable sets (see for instance p. 576 in Hrushovski,
Peterzil, and Pillay [6] for a possible formulation of this question).

We shall assume knowledge of the basics of o-minimality. A standard
reference is van den Dries [3]. A reference for graph theory is for instance
Diestel [2], though knowledge of Appendix C in Tomkowicz and Wagon [12]
should largely suffice.

Here, a graph consists of a nonempty set of vertices V and a symmetric,
antireflexive relation E ⊆ V 2 whose elements are called edges. So graphs
have no loops, no multiple edges, and edges are not oriented. A bipartite
graph is a graph whose set of vertices can be partitioned into two disjoint
sets A and B so that each edge has one vertex in A and the other in B.
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A matching in a bipartite graph (A ∪̇ B,E) is a subset of E which is the
graph of a bijection between a subset of A and a subset of B. A matching is
perfect if it covers all vertices, i.e., if it is a bijection of A onto B.

Throughout, we let R be an o-minimal expansion of an ordered field.
Definable shall mean definable in R. A graph (V,E) is definable if both
V ⊆ Rn and E ⊆ R2n are definable. A definable bipartite graph (A ∪̇B,E) is
a definable graph with a definable bipartition, i.e., bothA andB are definable.

What is the situation like for perfect matchings in bipartite graphs with-
out any definability assumptions? In the finite case, we have König’s Theo-
rem [7], which ensures the existence of a perfect matching under the addi-
tional assumption of k-regularity (that is, every vertex has degree k). This
is a special case of the (finite) Hall–Rado Theorem (also known as the Mar-
riage Theorem; a proof can be found for instance in [2]), according to which
a graph admits a perfect matching if for each k, every k-element set has
at least k neighbors (this is the so-called finite marriage condition). Both
these theorems have infinite counterparts. In particular, the infinite two-sided
Hall–Rado–Hall Theorem says that a locally finite bipartite graph admits a
perfect matching if it satisfies the marriage condition for finite sets in ei-
ther part – see Hall [5] for the original proof, or [12] for a quick proof using
Tikhonov’s Theorem.

However, the definable versions of these theorems for infinite graphs fail,
as evidenced by an example by Laczkovich [8]. Laczkovich defines a semilin-
ear graph whose edge relation E is a closed subset of the unit square and
which consists of finitely many line segments with slopes ±1 (in fact, E is just
the unit circle, when considered as a space with normalized linear measure,
up to a measure-preserving homeomorphism). While E contains a perfect
matching by König’s Theorem, Laczkovich shows that it does not contain a
Borel matching nor a Lebesgue measurable matching. This is roughly due
to the fact that, while the normalized linear measure of a matching M in
E would be 1/2, M would also have to be fixed by a certain map which is
essentially an irrational rotation of the circle, hence ergodic. Given that E
is in particular definable in an o-minimal structure, this dashes the hope of
a definable analogue of König or Hall–Rado–Hall.

One way around this, in the presence of a measure, is to relax the require-
ment of the matching being perfect to being perfect only outside of a small
set. This has been done in the Borel case by Lyons and Nazarov [9, p. 8,
Remark 2.6] (for a detailed exposition of the proof see Wang [13]). Before
stating their theorem, we introduce a couple definitions. A set of vertices is
independent if no two vertices in it are neighbors, i.e., no two vertices are
incident with the same edge. For a set of vertices Y and edge relation G, we
set

NG(Y ) = {x : ∃y ∈ Y (x, y) ∈ G}.
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Finally, a locally finite Borel graph (X,G) on a standard Borel space with
Borel probability measure ν is ν-preserving if for every Borel automorphism
f : X → X whose graph is a subset ofG, νY = νf−1(Y ) for every measurable
Y ⊆ X.

Theorem 1.1 ([9]). Let G = (X,G) be a Borel graph on a standard Borel
space with a Borel probability measure ν, which is locally finite, ν-preserving,
bipartite, and satisfies the following expansion condition:

∃c > 1 : for all independent Y ⊆ X, νNG(Y ) ≥ c · νY.

Then G has a Borel perfect matching ν-a.e.

We prove an approximate version of Theorem 1.1 (as Theorem 1.2 be-
low), when the measure under consideration is the Lebesgue measure of the
standard part and when we restrict ourselves to 2-regular graphs. The as-
sumption of 2-regularity replaces the expansion condition in Theorem 1.1,
which is never satisfied in the bounded definable setting, given that the
bipartition of a definable bipartite graph is assumed to be definable. The
condition of being µ-preserving corresponds, in our setting, to the edge re-
lation being a finite union of graphs of isomorphisms (roughly, definable
C1-diffeomorphisms with Jacobian determinant equal to ±1).

Theorem 1.2. Let G = (A ∪̇ B,G) be a definable bipartite µ-preserving
graph which is 2-regular and such that A,B ⊆ [0, 1]n. Then for every ϵ ∈ R>0

there is a definable matching M ⊆ G covering all vertices of G outside of a
set of µ-measure < ϵ.

Theorem 1.2 is Corollary 4.3 below, which is a special case of the slightly
more general Theorem 4.2. The proof follows the general outline of the proof
in [13]. In particular, we first prove the existence of matchings with few
short augmenting paths, adapting an argument by Elek and Lippner [4]. We
start with the archimedean case. This is Proposition 2.6 – the measure under
consideration is Lebesgue measure and there is no need to use 2-regularity.
The general case (Theorem 3.6) is then derived using results from Maříková
[10, 11] concerning the structure induced on the residue field by the standard
part map. Theorem 1.2 is then derived by an argument similar to the one
in [13], but with 2-regularity yielding an expansion condition.

We remark that Theorem 1.2 cannot be improved to yield a definable
matching µ-a.e. due to the example in [8].

We use Theorem 1.2 to obtain a cancellation result for certain semi-
groups. Here is some context. Let B[n] be the lattice of bounded definable
subsets of Rn, and let ∼ be the equivalence relation induced on B[n] by
isomorphisms (see Definition 5.1). Then Tn = B[n]/∼ is a semigroup with
addition given by disjoint union. Tarski’s Theorem (see [12, p. 194]) links
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Tn to the above-mentioned open question about the existence of invariant
measures on definable sets in o-minimal structures:

Theorem 1.3. Let (T ,+, 0, ϵ) be a commutative semigroup with iden-
tity 0 and a specified element ϵ. Then the following are equivalent:

(1) For all n ∈ N, (n+ 1)ϵ ̸≤ nϵ.
(2) There is a homomorphism of semigroups µ : T → [0,∞] such that µ(ϵ) =

1 and µ(α+ β) = µα+ µβ.

Questions about Tn often boil down to questions about the existence of
definable matchings in definable bipartite graphs whose edge relation is a
finite union of graphs of isomorphisms. For instance, if we knew that Tn has
cancellation, then in order to verify Condition 1, it would suffice to verify the
case n = 1. And cancellation is proved – at least in the non-definable setting
– by finding a perfect matching in a bipartite graph whose edge relation is
a finite union of graphs of isomorphisms.

We use Theorem 1.2 to prove an approximate cancellation result for the
semigroup of bounded definable sets modulo the equivalence relation induced
by isomorphisms. More precisely, let

SB[n] = {X ∈ B[n] : X ⊆ [−m,m]n for some m ∈ N}
be the lattice of strongly bounded definable subsets of Rn. For X,Y ∈ SB[n]
and ϵ ∈ R>0, we write X =ϵ Y iff µ(X△Y ) < ϵ, where µ is the standard
part map composed with Lebesgue measure, and △ is symmetric difference.
We write X =a Y iff X =ϵ Y for all ϵ ∈ R>0. For α, β ∈ Tn, we write α =a β
iff there are X ∈ α, Y ∈ β such that X,Y ∈ SB[n] and X =a Y . Then
Theorem 1.2 yields what is Theorem 5.2 below:

Theorem 1.4. Suppose α, β ∈ Tn have representatives in SB[n]. Then
2α =a 2β implies α =a β.

Some further conventions and definitions. We let O be the convex
hull of Q in R. Then O is a valuation ring in R with maximal ideal m and
residue map st : O → k, where k = O/m is the ordered residue field. The
residue map extends coordinate-wise to st : On → kn. If R is sufficiently
saturated, then O/m = R and the residue map is called the standard part
map. In this case, we denote by Rind the structure on R which is generated
by the standard part map, i.e., the ordered field R expanded by the relations
stX, where X ∈ Defn(R) and stX := st(X ∩On), for all n. It was observed
in [6] that it follows from a theorem by Baisalov and Poizat [1] that the
structure Rind is o-minimal.

If S is the underlying set of a structure and 1 ≤ m ≤ n, then we denote by
πnm : Sn → Sm the projection onto the first m coordinates. If f is a function,
then Γf denotes its graph.
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Definition 1.5. A measure on SB[n] is a finitely additive map

µ : SB[n] → R≥0,

with addition on SB[n] being given by disjoint union, such that µ(∅) = 0.

Definition 1.6.

(1) An n-isomorphism is a definable C1-diffeomorphism f : U → f(U),
where U ⊆ Rn is definable and open, and |Jf(x)| = 1 for all x ∈ U .

(2) A measure µ on SB[n] is invariant if µ(X) = µ(f(X)) whenever X and
f(X) are in SB[n] and f is an n-isomorphism.

(3) Let µ be an invariant measure on SB[n]. We say that a definable graph
G = (V,G) is µ-preserving if V ⊆ On, and there is a partition of V into
cells such that for each open cell C in this partition, G ∩ (C ×Rn) is a
finite union of graphs of n-isomorphisms.

For R sufficiently saturated, we define an invariant measure µ on SB[n]
by assigning to X ∈ SB[n] the n-dimensional Lebesgue measure of its stan-
dard part (see [10, p. 18, proof of Lemma 6.4] for a proof of invariance).

Remark 1.7. It will be easy to see that Theorem 3.6, Corollary 4.3,
and Theorem 5.2 remain valid if we replace Definition 1.6 by the following,
perhaps more natural, definition.

Definition 1.8.

(1) An n-isomorphism is a definable C1-diffeomorphism f : Rn → Rn with
|Jf(x)| = 1 for all x ∈ Rn.

(2) A measure µ on SB[n] is invariant if µ(X) = µ(f(X)) whenever X and
f(X) are in SB[n] and f is an n-isomorphism.

(3) Let µ be an invariant measure on SB[n]. We say that a definable graph
G = (V,G) with V ⊆ On is µ-preserving if there is a partition of V into
cells such that for each open cell C in this partition, G ∩ (C ×Rn) is a
finite union of graphs of n-isomorphisms restricted to C.

For x, y ∈ Rn and definable, bounded X ⊆ Rn, we let d(x, y) be the
Euclidean distance between x and y, and we set

d(X, y) = inf {d(x, y) : x ∈ X}.

For x ∈ Rn and r > 0, we denote by Br(x) the open ball of radius r centered
at x, i.e., the set {y ∈ Rn : d(x, y) < r}.

2. The archimedean case. In this section, we assume that the un-
derlying set of R is R. Then SB[n] = B[n] and Lebesgue measure λ is an
invariant measure on B[n].
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2.1. Colorings

Definition 2.1. Let G = (V,G) be a definable graph. We say that a
definable map c : V → X is a definable coloring of G if X is a finite set, and
whenever (v, w) ∈ G, then c(v) ̸= c(w).

Lemma 2.2. Let G = (V,G) with V ∈ B[n] be a definable graph such that
every vertex has finite degree. Then there is a definable coloring of G outside
of a definable subset of V of arbitrarily small positive λ-measure, i.e., for
every ϵ > 0 there is a definable V ′ ⊆ V with λ(V \ V ′) < ϵ and a definable
coloring of G′ := (V ′, G ∩ (V ′)2).

Proof. Let C be a decomposition of R2n into cells partitioning G, and let

D = {π2nn C : C ∈ C&C ⊆ G&dimC = n}.
Then, because every vertex of G has finite degree, we may assume that for
each D ∈ D, G ∩ (D × Rn) is a finite disjoint union of graphs of definable,
continuous functions. Let FD be the collection of these functions.

Claim. Let ϵ > 0, D∈D and f ∈ FD. Denote by Gf the graph (D∪f(D),
Γf). Then there is a definable coloring of Gf outside of a definable subset of
D ∪ f(D) of λ-measure < ϵ.

Proof of Claim. We set

Dδ := {x ∈ D : d(x, ∂D) ≥ δ},
where ∂D := cl(D) \ int(D), and δ > 0 is such that λ(D \ Dδ) < ϵ/2 and
λ(f(D \Dδ)) < ϵ/2 (the existence of such a δ follows from the boundedness
of the vertex set). Define

F : Dδ → R≥0 : x 7→ d(x, f(x)).

Then, because Γf |Dδ
⊆ G, G is antireflexive, f is continuous, and Dδ is

closed and bounded, F is bounded away from 0, say by r > 0. Since Dδ is
compact, we can find a finite covering B of Dδ by open balls of radius r/2.
For x ∈ Dδ, define c(x) = i, where i is the smallest index of a ball from B
containing x. If x, y ∈ Dδ are such that c(x) = c(y), then x, y ∈ B for some
B ∈ B, so d(x, y) < r and x, y cannot be neighbors. Claim

Let ϵ > 0. We shall now define V ′ ⊆ V with λ(V ′ \ V ) < ϵ, and find a
definable coloring of the graph (V ′, G ∩ (V ′)2).

Let |D| = N , and let M be an upper bound for the degrees of the
vertices of G. Note that M exists by cell decomposition and the assumption
that all degrees are finite. Since vertices of degree 0 may be colored by any
color, we may assume that FD ̸= ∅ for each D ∈ D. For every D ∈ D and
every f ∈ FD, use the claim to find a definable coloring cf of Gf outside of a
definable Sf ⊆ D∪f(D) of λ-measure < ϵ

MN . Set V ′ := V \
⋃

D∈D
⋃

f∈FD
Sf .
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Note that
λ
( ⋃
D∈D

⋃
f∈FD

Sf

)
< M ·N · ϵ

MN
= ϵ.

Define a map c with domain(c) = V ′ and range the power set of
⋃̇
rng(cf ),

where the union is taken over allD ∈ D and all f ∈ FD as follows. For x ∈ V ′

let c(x) consist of all the cf (x) with x ∈ domain(cf ). Suppose x, y ∈ V ′ and
(x, y) ∈ G ∩ (V ′)2. Then f(x) = y for some f ∈ FD with x ∈ D. Hence
cf (x) ̸= cf (y), and so c(x) ̸= c(y). It follows that c is as required.

Given a definable graph G = (V,G) and a measure on V , we shall say
that G is definably almost-colorable if for every ϵ ∈ R>0, there is Vϵ ⊆ V with
measure of V \ Vϵ less than ϵ, and a definable coloring of (Vϵ, G ∩ (Vϵ)

2).

Remark 2.3. Lemma 2.2 fails for R non-archimedean: Let ϵ be a positive
infinitesimal in R, and consider the graph G = ([0, 1], G), where (x, y) ∈ G
iff y = x+ ϵ and 0 ≤ x ≤ 1− ϵ. Then G is not definably almost-colorable.

2.2. Matchings with few short augmenting paths. In the case of
a finite graph, to enlarge the set of vertices covered by a matching M ,
one considers augmenting paths (or “augmenting paths for M ”, when the
matching is not clear from the context). Those are paths (a0, a1, . . . , an) of
odd length such that a0, an are not covered by M , (a2k, a2k+1) ̸∈ M for
k ∈

{
0, . . . , n−1

2

}
, and (a2k+1, a2k+2) ∈M for k ∈

{
0, . . . , n−3

2

}
. By flipping

an augmenting path, i.e., by removing the edges (a2k+1, a2k+2) from M and
placing the edges of the form (a2k, a2k+1) into M , one obtains a new match-
ing that covers a strictly larger number of vertices. We want to use this idea
in our setting, but we will need to handle infinitely many augmenting paths
at the same time.

In this section, we let G = (A ∪̇ B,G) be a definable, λ-preserving, bi-
partite graph with A,B ∈ B[n], and M ⊆ G a definable matching. We fix
K ≥ 0.

We say that a finite set of subsets of a definable X ⊆ Rn is an open
partition of X if each of its members is an open cell contained in X, and its
union covers X outside of a set of λ-measure 0. We say that an open partition
{Xi} of X partitions a definable Y ⊆ X if a subset of {Xi} constitutes an
open partition of Y . An open partition {Yj} of X is a refinement of another
open partition {Xi} of X if {Yj} partitions each Xi.

Generating sequences of paths. Since the edge relation G is a finite
union of graphs of functions, every path in G is determined by its starting
vertex and a finite sequence of functions. The following construction serves
the purpose of assigning a unique such sequence to every path of bounded
length. Essentially, starting with a decomposition C of R2n into cells, which
partitions G and M , we shall eliminate all vertices that do not lie in an
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n-dimensional cell π2nn C ⊆ π2nn G, where C ∈ C (i.e., all vertices in A \
⋃
A0,

where A0 is defined below), along with all vertices that lie on paths of length
≤ 2K + 2 and originate in a vertex in A \

⋃
A0.

We shall define a sequence

A0,A2, . . . ,A2K+2

of open partitions of A, and a sequence

B1,B3, . . . ,B2K+1

of open partitions of B. In each sequence, every open partition will be a
refinement of its predecessor.

Let C be a decomposition of R2n into cells which partitions bothG andM .
Set

A0 = {π2nn C : C ∈ C&dimπ2nn C = n&π2nn C ⊆ A}.
Since G is λ-preserving, we may assume that for each A0,i ∈ A0,

G|A0,i
:= G ∩ (A0,i × Rn)

is a finite union of graphs of n-isomorphisms. We denote the set of these
isomorphisms by F0,i. Note that for each f ∈ F0,i, the set A0,i ∈ A0 consists
of the starting vertices x of paths of length 1 with edge (x, f(x)).

Assuming that for each A2m,i ∈ A2m, where 0 ≤ m ≤ K, A2m and F2m,i

have already been defined, we let B2m+1 be an open partition of B parti-
tioning f(A2m,i), for each f ∈ F2m,i and each A2m,i ∈ A2m. For B2m+1,j ∈
B2m+1, let F2m+1,j be the set of all f−1|B2m+1,j with f ∈

⋃
iF2m,i, where

the union is taken over all i such that A2m,i ∈ A2m, and B2m+1,j ⊆ rng(f).
To define A2m+2, where 0 ≤ m ≤ K, assume that B2m+1 and F2m+1

have been defined. Let A2m+2 be an open partition of A which partitions
f−1(B2m+1,j) for each f−1 ∈ F2m+1,j and each B2m+1,j ∈ B2m+1.

Now set

Ci =

{
Ai if i is even,
Bi if i is odd.

Let P be the set of paths p in G of length l ≤ 2K + 1 such that if p0 ∈ A,
then pi ∈

⋃
Ci for each i = 0, . . . , l, and if p0 ∈ B, then pi ∈

⋃
Ci+1 for each

i = 0, . . . , l.

Definition 2.4. Given a path p ∈ P of length l ≤ 2K+1, the generating
sequence of p is the unique sequence (g0, . . . , gl−1) of isomorphisms such that

(1) if p0 ∈
⋃
A0, then each gi is in Fi,j for some j,

(2) if p0 ∈
⋃
B1, then each gi is in Fi+1,j for some j,

(3) pi+1 = gi(pi) for all i ∈ {0, . . . , l − 1}.
Let s be the generating sequence of a path p ∈ P. We denote by Ss the

set of all possible starting vertices of paths in P with generating sequence s.



Matchings in o-minimal bipartite graphs 9

Note that Ss ⊆ A0,j or Ss ⊆ B1,j for some j, and that we may identify P
with

⋃̇
s Ss, where the disjoint union is taken over all generating sequences

s of paths in P.
We now define a measure ν on the definable subsets P ′ of P. We have

P ′ =
⋃̇

s S ′
s, where S ′

s ⊆ Ss and s ranges over the generating sequences of
paths in P. We set

ν(P ′) :=
∑
s

λS ′
s,

so ν is just Lebesgue measure on
⋃̇

s Ss.
Let H = (P, H) be the definable graph with vertex set P and (p, q) ∈ H

iff p ̸= q and pk = ql for some 0 ≤ k, l ≤ 2K + 1. Since every vertex of H
has finite degree, by Lemma 2.2 we obtain the following.

Lemma 2.5. The graph H is definably almost-colorable (with respect to ν).

Augmenting paths. Our aim now is to define a matching M ′ which
covers the vertices covered by M , but which has only few “short” augmenting
paths.

Proposition 2.6. Let δ ∈ R>0. There is a definable matching M ′ ⊆ G
covering the vertices covered by M , and not having any augmenting paths of
length ≤ 2K + 1 outside of a definable subset of P of ν-measure < δ.

Proof. Since G is λ-preserving, dimA = dimB, and we may assume
that dimA = n. By Lemma 2.5, we can find a definable P ′ ⊆ P such that
ν(P \ P ′) < δ/2 and a definable coloring c of the graph (P ′, H ∩ P ′2) with
rng(c) = {0, 1, . . . , C − 1} for some C ∈ N. Let a = (ak) be the sequence of
remainders ak of k modulo C.

We shall obtain the desired matching M ′ as a member of a sequence
M0,M1, . . . of definable matchings. We set M0 := M . To obtain Mk+1

from Mk, flip all augmenting paths for Mk that are contained in c−1(ak).
Given that we are only flipping paths with the same color, in each step
we indeed obtain a new matching. Note that each Mk+1 covers the vertices
covered by Mk. It now suffices to establish the claim below.

Claim. There is k such that Mk has no augmenting paths of length ≤
2K + 1 outside of a definable subset of P of ν-measure < δ.

Proof of Claim. First note that an edge (a, b) ∈ G belonging to Mk can
flip for only finitely many k’s: Set

Ra := {x : x is reachable from a in ≤ 2K + 1 steps}.
Then b ∈ Ra, and Ra is finite because every vertex of G has finite degree.
Every time we flip (a, b), this happens because (a, b) is part of an augmenting
path of length ≤ 2K +1 whose flipping results in an increase of the covered
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vertices ofRa. So the number of times (a, b) can flip in this process is bounded
by |Ra|. (This argument can be found in [13, p. 12].)

Since for every vertex a, |Ra| ≤ d2K+1, where d is an upper bound on
the degree in G, there is a uniform bound on the number of times an edge
can flip, say N .

It suffices to show that for i ∈ {0, . . . , C − 1} there is ki such that for
every m ≥ ki, c−1(i) contains no augmenting paths of length ≤ 2K + 1 for
Mi+mC outside of a definable subset of P of ν-measure < δ/(2C).

Let APi+mC ⊆ P be the set of augmenting paths for Mi+mC in c−1(i),
and assume to the contrary that there are arbitrarily large k such that
ν(APi+kC) ≥ ϵ. To create Mi+kC+1, the paths in APi+mC are flipped, but
because each edge flips at most N times, this can only happen at most
ν(c−1(i))

ϵ ·N times, a contradiction. Claim

Set k := max {k0, . . . , kC−1}. Then the set of augmenting paths for Mk

of length ≤ 2K + 1 has measure < δ
2 + C · δ

2C = δ.

3. Reduction to the archimedean case. In this section, we drop the
assumption that the underlying set of R is R. Instead, we assume that R
is (2ℵ0)+-saturated. We shall use the following definitions and lemmas from
[10, 11].

By a Q-ball in Rn we mean an open ball with rational radius, i.e., a ball
of the form

Br(x) = {y ∈ Rn : d(x, y) < r, x ∈ Rn, r ∈ Q>0}.
The lemma below is Lemma 4.1 in [10, p. 183] (here, we prefer to state it in
terms of Q-balls rather than Q-boxes).

Lemma 3.1 ([10]). Suppose X ⊆ Rn is definable and dim(stX) = n.
Then X contains a Q-ball.

The following definition [10, Definition 3.1, p. 179] and theorem (a slightly
weaker version of [10, Corollary 6.2, p. 191]) will be crucial. For Y ⊆ Rn, we
set Y h := st−1(Y ).

Definition 3.2 ([10]). Given functions f : X → R, X ⊆ Rn, and
F : Y → R with Y ⊆ Rn, we say that f induces F if f is definable (so
X is definable), Y h ⊆ X, f |Y h is continuous, f(Y h) ⊆ O and ΓF =
st(Γf) ∩ (Y × R).

For f : X → Rn and F : Y → Rn, where X ⊆ Rn and Y ⊆ Rn, we say
that f induces F if the coordinate functions of f induce the corresponding
coordinate functions of F .

Theorem 3.3 ([10]). If f : Y → R, where Y ⊆ Rn and Γf ⊆ On+1

is definable, then there is a decomposition C of Rn into cells that partitions
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stY and is such that if C ∈ C is open and C ⊆ stY , then f is continuously
differentiable on an open X ⊆ Y containing st−1(C) and f, ∂f

∂x1
, . . . , ∂f

∂xn
, as

functions on X, induce functions g, g1, . . . , gn : C → R such that g is C1 and
gi =

∂g
∂xi

for each i.

Part (1) of the next proposition is [11, Proposition 3.1, p. 126] and
part (2) is extracted from the proof of [11, Lemma 2.15, p. 124]. For a
definable, nonempty Z ⊆ On and ϵ ∈ R≥0 we set

Zϵ = {x ∈ Rn : d(x, Z) ≤ ϵ}.

Proposition 3.4 ([11]).

(1) If C ∈ Defn(Rind) is closed, then there is Z ∈ Defn(R) such that
stZ = C.

(2) If X,Y ∈ Defn(R) and X,Y ⊆ On, then there is ϵ > 0 such that

stX ∩ stY = st(X ∩ Y ϵ).

Here is a useful consequence of Proposition 3.4.

Lemma 3.5. Let X,Y ⊆ On be definable. If dim(stX ∩ stY ) = n, then
dim(st(X ∩ Y )) = n.

Proof. By (2) in Proposition 3.4, there is ρ ∈ m>0 such that

stX ∩ stY = st(X ∩ Y ρ).

Now Y ρ = (∂Y )ρ ∪ Y , where ∂Y = cl(Y ) \ int(Y ), so

st(X ∩ Y ρ) = st((X ∩ (∂Y )ρ) ∪ (X ∩ Y )) = st((X ∩ (∂Y )ρ) ∪ st(X ∩ Y ).

But since st(∂Y )ρ = st ∂Y and dim st ∂Y < n, dim st(X ∩ Y ) = n.

Below, ν-measure is defined just as in the case when the underlying set
of the structure is R, except using µ rather than λ.

Theorem 3.6. Let G = (A ∪̇B,G) be a definable bipartite, µ-preserving
graph, d an upper bound on the degrees of its vertices, and M ⊆ G a definable
matching. Further, let K ∈ N, δ ∈ R>0, and ϵ ∈ R>0 subject to ϵ < δ/d2K+2.
Then there is a definable matching X ⊆ G such that X covers all vertices
covered by M outside of a definable set of µ-measure < ϵ and X has no
augmenting paths of length ≤ 2K + 1 outside of a set of ν-measure < δ.

Proof. We may assume that dim(stA) = n = dim(stB). Let D be a
decomposition of R2n into cells which partitions G and M . Set

D0 = {π2nn D : D ∈ D&D ⊆ G&dimπ2nn D = n}.
We may assume that if D ∈ D0, then G ∩ (D × Rn) is the union of finitely
many cells in D of the form Γf , where each f is an n-isomorphism, and we
denote the collection of these n-isomorphisms on D by FD.



12 J. Maříková

Set

G1 = G ∩
⋃

D∈D0

(D ×Rn) and M1 =M ∩
⋃

D∈D0

(D ×Rn),

and let C be a decomposition of R2n into cells partitioning stG1 and stM1

such that {π2nn C : C ∈ C} partitions each stD where D ∈ D0. Let

C0 = {π2nn C : C ∈ C&C ⊆ stG1&dimC = n}.
Suppose D ∈ D0 and f ∈ FD, and let C ∈ C0 be such that C ⊆ stD.
Then by Theorem 3.3, we may assume that f induces an n-isomorphism
g : C → g(C). For C ∈ C0, let FC be the set of all g : C → Rn that are
induced by some f ∈ FD, where D ∈ D0 and C ⊆ stD.

We set
G′ = stG1 ∩

⋃
C∈C0

(C × Rn).

Then G′ is the edge relation of the Rind-definable, λ-preserving, bipartite
graph G′ with bipartition A′, B′, where A′ = π2nn G′ and B′ is the projection
of G′ onto the last n coordinates.

Claim. The relation M ′ = stM1 ∩G′ is a definable matching in G′.

Proof of Claim. To see thatM ′ is the graph of a function, assume towards
a contradiction that (X,Y ), (X,Y ′) ∈M ′ and Y ̸= Y ′. ThenX ∈ C for some
C ∈ C0 and C ⊆ stD for some D ∈ D. Since C is open, st−1(X) ⊆ D, and
there are x1, x2 ∈ D such that stx1 = stx2 = X, and st f(x1) = Y and
st f(x2) = Y ′ for the unique f ∈ FD with Γf ⊆ M1, contradicting that f
induces a function C → Rn.

Suppose now that (X,Y ), (X ′, Y ) ∈M ′ with X ̸= X ′. If there is C ∈ C0
such that X,X ′ ∈ C, then st−1X, st−1X ′ ⊆ D for some D ∈ D, and for
f ∈ FD with Γf ⊆ M1, we have st f(x) = st f(x′) for some x ∈ st−1X,
x′ ∈ st−1X ′, contradicting that f induces an isomorphism C → Rn.

So let X ∈ C1, X ′ ∈ C2, where C1, C2 ∈ C0, C1 ̸= C2. Assume further
that F : C1 → Rn and G : C2 → Rn are induced by f ∈ FD1 and g ∈ FD2 ,
respectively, where Γf, Γg ⊆ M1 and F (X) = Y = G(X ′). Then there
is δ > 0 such that Bδ(X) ⊆ C1 and Bδ(X

′) ⊆ C2 and, since F , G are
homeomorphisms, F (Bδ(X)), G(Bδ(X

′)) are open subsets of Rn.
Since st−1(Bδ(X)) ⊆ D1 and st−1(Bδ(X

′)) ⊆ D2, we have Bδ/2(x) ⊆ D1

and Bδ/2(x
′) ⊆ D2, where x, x′ are such that stx = X and stx′ = X ′. So

F (Bδ/2(X)) ⊆ st f(Bδ/2(x)) and G(Bδ/2(X
′)) ⊆ st g(Bδ/2(x

′)). Since

Y ∈ F (Bδ/2(X)) ∩G(Bδ/2(X
′)),

there is ϵ > 0 such that

Bϵ(Y ) ⊆ F (Bδ/2(X)) ∩G(Bδ/2(X
′)).
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Hence Bϵ(Y ) ⊆ st f(Bδ/2(x)) ∩ st g(Bδ/2(x
′)). But then, by Lemma 3.5,

dim
(
st(f(Bδ/2(x)) ∩ g(Bδ/2(x

′)))
)
= n,

so by Lemma 3.1, f(Bδ/2(x)) ∩ g(Bδ/2(x
′)) contains a Q-box, contradicting

f(Bδ/2(x)) ∩ g(Bδ/2(x
′)) = ∅. Claim

By Proposition 2.6, we can find an Rind-definable matching M ′′ ⊆ G′

such that all augmenting paths outside of a definable P ⊆ P of ν-measure
< δ/2 are of length > 2K + 1.

Let C′ be a decomposition of R2n into cells which is a refinement of C
and partitions M ′′, and let C′

0 consist of the cells π2nn C of dimension n such
that C ∈ C′ and C ⊆M ′′. Find α ∈ R>0 such that∑

C∈C′
0

λ(C \ Cα) <
δ

4 · d2K+1
<
ϵ

2
,

where
Cα = {x ∈ C : d(∂C, x) ≥ α}.

By 3.4, we can find for each C ∈ C′
0 and D ∈ D0 with C ⊆ stD a definable

DC ⊆ D such that stDC = clCα. Note that

M ′′′ :=M ′′ ∩
⋃

C∈C′
0

(Cα × Rn)

covers the same vertices as M ′′ outside of a set of measure < ϵ, hence M ′

does, too. Moreover,M ′′′ has no augmenting paths of length ≤ 2K+1 outside
of a subset of P of ν-measure less than

d2K+1 · δ

2 · d2K+1
+
δ

2
= δ.

We now define the desired matching X ⊆ G as a subset of⋃
C∈C′

0

(DC ×Rn) ∩G.

For each C ∈ C′
0 and D and DC as above, let fDC

be the restriction to DC of
the first function in FD which induces the function with graphM ′′∩(C×Rn).
Then

X =
⋃

C∈C′
0

ΓfDC
.

It remains to check that X satisfies the desired properties.

• X ⊆ G is a matching : The only way X can fail to be a matching is if
there are x1 ∈ DC1 and x2 ∈ DC2 with C1 ̸= C2 and (x1, y), (x2, y) ∈ X.
But then (stx1, st y), (stx2, st y) ∈ M ′′, so stx1 = stx2, a contradiction
with d(DC1 , DC2) > m.
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• The set of augmenting paths for X of length ≤ 2K + 1 has measure less
than δ: Let P be a set of augmenting paths for X of length ≤ 2K+1 and
generating sequence s. Then we may identify P with the set of starting
vertices of the paths in P . Assume that µ(P0) = ρ > 0. It suffices to show
that then P induces a set of augmenting paths for M ′′′ of length ≤ 2K+1
and a set of starting vertices of λ-measure ≥ ρ. Note that we may assume
that P is a set of paths in G1. But then it follows straightforwardly from
the definitions of G1, G′, X, M ′′′ and from Lemma 3.1 that µ-a.e. on P ,
if p = (p0, . . . , pl) ∈ P , then each st pi is a vertex of G′; st p0, st pl are
not covered by M ′′′; (st pi, st pi+1) ∈ G′; and (pi, pi+1) ∈ X if and only if
(st pi, st pi+1) ∈M ′′′.

• X covers the vertices covered by M outside of a set of µ-measure < ϵ: Let
V ⊆ A ∪̇ B be definable and covered by M but not by X, and µ(V ) ≥ ϵ.
Then V is µ-a.e. covered by M1, and hence stV is covered by M ′ outside
of a set of λ-measure 0. Since λ(stV ) > ϵ, this yields a contradiction with
stX = cl(M ′′′) and M ′′′ covering the same vertices as M ′ outside of a set
of measure < ϵ.

4. Matchings in 2-regular bipartite graphs. Let R be as in Sec-
tion 3. Unless indicated otherwise, we assume that G = (A ∪̇ B,G) is a
definable bipartite graph which is µ-preserving and such that 1 ≤ deg x ≤ 2
for all x ∈ A ∪̇B. We show that if

µ{x ∈ A ∪̇B : deg x < 2} < δ ∈ R≥0,

then there is a definable matching in G covering all vertices outside of a set
of arbitrarily small positive µ-measure > δ.

We first consider the case in which we are given a definable match-
ing without any short augmenting paths: Let K be an even integer and
let M ⊆ G be a definable matching without augmenting paths of length
≤ 2K + 1. Let Y0 ⊆ A ∪̇ B consist of the vertices not covered by M . For
Z0 ⊆ Y0 and k = 0, 1, . . . , (K−2)/2, we set Z2k+1 := NG(Z2k) and Z2k+2 :=
NM (Z2k+1).

Lemma 4.1. Let Z0 ⊆ Y0 be definable and such that
⋃K−1

i=0 Zi does not
contain any vertices of degree < 2. Then µZK = K · µZ0.

Proof. We sketch the proof; the details can be easily filled in by the
reader, using induction and the absence of short augmenting paths.

Let v ∈ Z0. We denote by Tv the following tree of depth K − 1 rooted
in v. From now on, we shall assume that l ∈ {0, 1, . . . , (K − 2)/2}. If x is a
vertex of Tv at depth 2l, then x has two children, labeled by the two vertices
incident to x in G. If x is at depth 2l + 1, then x has one child, labeled by
the vertex incident with x via an edge in M (whose existence follows from
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M not having any augmenting paths of length ≤ 2K + 1 and G not having
any odd cycles). For simplicity, we assume that for l > 0, the left child of
x at depth 2l is matched and the right child is unmatched. Furthermore, if
x is a vertex of Tv, then we denote by Tx the maximal subtree of Tv rooted
in x. We denote by Xl the set of labels of vertices in Tv at depth l, and by
depth we shall always mean depth with respect to Tv (even when talking
about a subtree). We write d(x) for the depth of a vertex x. Note that we
have |X2l+1| = |X2l+2|.

Let x1 be the left and y1 the right child of v – see the picture below.

v

x1

x2

x1

x2

x1 x3

x3

x4

x3 x5

y1

y2

y1

y2

y1 y3

y3

y4

y3 y5

Claim 1. The set of labels of Tx1 and the set of labels of Ty1 are disjoint.

Proof. Suppose xi = yj , where d(xi) ≤ d(yj), and there is no label in Tx1

appearing in Ty1 and being the label of a vertex at depth ≤ d(xi). Because
G has no odd cycles, both d(xi) and d(yj) are even or both are odd. We
may assume that both are odd. Now xi, yj are each either a matched or an
unmatched child of its respective parent, but any possible combination leads
to a contradiction with the minimality of d(xi).

Claim 2. Suppose l > 0. Then |X2l| = 2l.

Proof. Observe that in Tx1 and in Ty1 respectively, after identifying ver-
tices with same labels at each depth (so a label can only repeat at different
depths), at depth 2l + 1 there are exactly two vertices with indegree 1 (so
all other vertices have indegree 2).

The lemma now follows from the next claim.

Claim 3. Let v, v′ ∈ Z0, v ̸= v′. Then the sets of labels at depth l of the
trees Tv and Tv′ are disjoint.

Theorem 4.2. For every ϵ ∈ R>δ, G admits a definable matching cover-
ing all vertices outside of a set of measure < ϵ.
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Proof. Let ϵ ∈ R>δ, and let K ∈ N>0 be such that 1/K < (ϵ− δ)/2. Let
M be a definable matching in G whose set of augmenting paths of length
≤ 2K + 1 has measure less than (ϵ− δ)/2. Let Y0 be the set of vertices not
covered by M , and for v ∈ Y0 let Tv be the tree of depth K with root v and
such that if x is a vertex at even depth, then its children are the vertices
incident with it in G, and if x is at odd depth, then its child is the vertex
incident with it via M , if there is one. Else x is a leaf.

Claim. For distinct v, w ∈ Y0, Tv and Tw have disjoint sets of vertices
of degree 1.

Proof. In the construction of Tv and Tw, vertices appear for the first
time along a possible initial segment of an augmenting path starting in v.
Suppose i ≥ 0 is minimal such that xi is a vertex of Tv of degree 1, appearing
for the first time at depth i, and for some j ≥ i there is a vertex yj of Tw,
appearing for the first time at depth j, with xi = yj . If i = 0, then j > 0
and Tw contains an augmenting path of length ≤ K. So suppose i > 0. Then
xi−1 = yj−1, contradicting the minimality of i.

Let Y ′ ⊆ Y0 be the set of roots of trees containing a vertex of degree 1.
By the above claim, µY ′ < δ. Let Y ′′ ⊆ Y0 be the set of starting vertices of
augmenting paths of length ≤ 2K + 1, so µY ′′ < (ϵ− δ)/2. We set

Z0 = µ(Y \ (Y ′ ∪ Y ′′)).

Then by Lemma 4.1, µZ0 ≤ 1/K, so µY0 ≤ 1/K + δ + (ϵ− δ)/2 < ϵ.
Here is a special case of the theorem above.
Corollary 4.3. Let G = (A ∪̇B,G) be a definable bipartite graph which

is µ-preserving and 2-regular. Then for every ϵ ∈ R>0 there is a definable
matching M ⊆ G that covers all vertices outside of a set of measure < ϵ.

5. A cancellation result. Let R be a sufficiently saturated expansion
of a real closed field. We define an equivalence relation ∼ on B[n] as follows.

Definition 5.1. Let X,Y ∈ B[n]. Then X ∼ Y iff there are definable
open partitions of {X}k1=1, {Yi}ki=1 of X and Y respectively, and there are
n-isomorphisms f1, . . . , fk such that Yi = f(Xi) for each i.

We let B be the semigroup (B[n]/∼,+), where the binary operation +
is given by a+ b = c, with c the equivalence class of the disjoint union of A
and B, where the equivalence classes of A and B are a and b, respectively.

The proof of the next theorem is based on the proof of cancellation from
Tomkowicz and Wagon [12, p. 177]. While [12] uses the Hall–Rado Infinite
Marriage Theorem, we only have Corollary 4.3 at our disposal.

Theorem 5.2. Let α, β ∈ B have strongly bounded representatives and
suppose α+ α =a β + β in B. Then α =a β.
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Proof. Let ϵ ∈ R>0, and let A,A′ and B,B′ be two pairs of disjoint copies
of strongly bounded representatives of α and β, respectively. Let ϕ : A→ A′,
ψ : B → B′ and θ : A ∪̇ A′ → B ∪̇B′ witness A ∼ A′, B ∼ B′ and A ∪̇ A′ ∼
B ∪̇B′, respectively.

We define a bipartite graph H as follows. The bipartition consists of the
two sets

Ā = {(a, ϕ(a)) : a ∈ A)} and B̄ = {(b, ψ(b)) : b ∈ B},
and we let (a, ϕ(a)) be incident with (b, ψ(b)) iff θ(a) = b or θ(ϕ(a)) = b or
θ(a) = ψ(b) or θ(ϕ(a)) = ψ(b). Then H = (Ā ∪ B̄,H) is definable bipartite
and µ-preserving, and every vertex is of degree ≤ 2. To construct a map
witnessing α =ϵ β, it will suffice to find a definable matching M ⊆ H
covering Ā ∪ B̄ outside of a set of µ-measure < ϵ.

Let Ā0 and B̄0 be the subsets of vertices of degree 0 of Ā and B̄ respec-
tively. Note that µ(Ā0 ∪ B̄0) < ϵ/2, and replace Ā with Ā \ Ā0 and B̄ with
B̄ \ B̄0 in H.

Let Ā1 ⊆ Ā and B̄1 ⊆ B̄ be the sets of vertices of degree 1 that are
incident with another vertex of degree 1. Then H ∩ (Ā1 × B̄1) is the graph
of a bijection Ā1 → B̄1, so there is no harm in replacing H with the graph

((Ā \ Ā1) ∪̇ (B̄ \ B̄1)), H ∩ ((Ā \ Ā1)× (B̄ \ B̄1)).

Then the remaining vertices of degree 1 in Ā are (a, ϕ(a)) such that θ(a) is
undefined and θ(ϕ(a)) is defined, or vice versa, and similarly for the vertices
of degree 1 in B̄. So H is 2-regular outside of a set of measure < ϵ/2.

By Theorem 4.2, H contains a definable matching M covering all vertices
outside of a set of µ-measure < ϵ/2, hence covering all vertices of the original
H outside of a set of µ-measure < ϵ.

Acknowledgments. We thank the anonymous referee for improving the
exposition of this paper.
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