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A conjecture

Symmetrizer: Sym p(x1, . . . , xn) =
∑

σ∈Sn

p(xσ(1), . . . , xσ(n))

Conjecture (F., Riegler). For integers s, t ≥ 0, consider the following

rational function in z1, . . . , zs+t−1

Ps,t =
s∏

i=1

z
2s−2i−t+1
i (1− z−1

i )i−1
s+t−1∏

i=s+1

z2i−2s−t
i (1− z−1

i )s

×
∏

1≤p<q≤s+t−1

1− zp + zpzq

zq − zp

and let Rs,t(z1, . . . , zs+t−1) := SymPs,t(z1, . . . , zs+t−1). If s ≤ t then

Rs,t(z1, . . . , zi, . . . , zs+t−1) = Rs,t(z1, . . . , zi−1, z
−1
i , zi+1, . . . , zs+t−1)

for all i ∈ {1,2, . . . , s+ t− 1}.
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Example: s = 1, t = 3

P1,3 = z−2
1 z−2

2 (z2 − 1)(z3 − 1)

×
(1− z1 + z1z2)(1− z1 + z1z3)(1− z2 + z2z3)

(z2 − z1)(z3 − z1)(z3 − z2)

=
3+ z−2

1 − 4z−1
1 + z−2

2 + . . .32 terms . . .+ z2z
3
3

(z2 − z1)(z3 − z1)(z3 − z2)

R1,3 = −3+ z1 + z−1
1 + z2 + z−1

2 + z3 + z−1
3
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Outline

• How did we come up with the conjecture: a refined enumeration

of vertically symmetric alternating sign matrices.

• Partial result: it suffices to consider the cases s = t and s+1 = t!

• Some remarks on the case s = 0.
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ASM=Alternating Sign Matrix

Quadratic 0,1,−1 matrix such that in
each row and each column

• the non–zero entries appear with al-
ternating signs and

• the sum of entries is 1, that is the
first and the last non-zero entry is a
1.




0 0 1 0 0
1 0 −1 0 1
0 0 1 0 0
0 1 −1 1 0
0 0 1 0 0




VSASM=Vertically symmetric ASM: ai,j = ai,n+1−j

VSASMs

- exist only for odd dimensions and

- the middle column is always (1,−1,1,−1, . . . ,−1,1)T .
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Enumeration of VSASMs

Theorem (Kuperberg, 2002). The number of (2n + 1) × (2n + 1)

VSASMS is
n∏

i=1

(3i− 1)(2i− 1)!(6i− 3)!

(4i− 2)!(4i− 1)!
.

Conjecture (F., 2009). The number Bn,i of (2n + 1) × (2n + 1)

VSASMs where the first 1 in the second row is in columns i is
(
2n+i−2
2n−1

)(
4n−i−1
2n−1

)

(
4n−2
2n−1

)
n−1∏

j=1

(3j − 1)(2j − 1)!(6j − 3)!

(4j − 2)!(4j − 1)!
.

1

−1

1

1 1

i
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Refined enumeration with respect to the first column

Theorem (Razumov, Stroganov, 2004). The number of (2n+1)×

(2n + 1) VSASMs where the first column’s unique 1 is located in

row i is

n−1∏

j=1

(3j − 1)(2j − 1)!(6j − 3)!

(4j − 2)!(4j − 1)!

×
i−1∑

r=1

(−1)i+r−1

(
2n+r−2
2n−1

)(
4n−r−1
2n−1

)

(
4n−2
2n−1

) =: B∗
n,i,

i = 1,2, . . . ,2n+1.

Relation: Bn,i = B∗
n,i +B∗

n,i+1, i = 1,2, . . . , n
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Bijective proof ?

=

11

1

1

1

1
1

i

i
+ i+1

−1 −1
1

−1
1

−1
1

1

1

−1
1

−1
1

−1
1

−1

−1
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Approach to attack the conjecture on the refined

enumeration of VSASMs

Alternative proof of the Refined Alternating sign matrix theorem:

An,i = # of n× n ASMs with a1,i = 1

The vector (An,i)1≤i≤n is uniquely determined by the following linear

equation system:

An,i =
n∑

j=i

(2n− i− 1

j − i

)
(−1)j+nAn,j, i = 1, . . . , n

An,i = An,n+1−i, i = 1, . . . , n
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Computer experiments suggest...

...that there is a similar linear equation system for Bn,i:

Bn,n−i+1 =
n∑

j=i

(3n− i− 1

j − i

)
(−1)j+nBn,n−j+1, −n+1 ≤ i ≤ n,

Bn,n−i+1 = Bn,n+i, −n+1 ≤ i ≤ n.

But: (Bn,n−i+1)−n+1≤i≤n = (Bn,1, . . . , Bn,n, Bn,n+1, . . . , Bn,2n)

i

2n+1

1
−1

1

−1

1
−1

1

n

1

i =position of the first 1 in the second row
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• We have extended the combinatorial interpretation of Bn,i to

i = n+1, n+2, . . . ,2n.

• In fact, we have two combinatorial extensions.

• If the conjecture on the symmetrized rational functions were true

then we would know that the number of objects is the same for

the two different combinatorial extensions...

• ...and this would conclude our proof of the refined enumeration

of VSASMs.
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First half of the linear equation system

Theorem (F., Riegler).

C
(d)
n,i = # of partial montone triangles of the following shape:

i
ro
w
s
cu
t
o
ff

2d 3d · · · (n−1)d nd

·
·
·

·
·
·

d+1 · · ·

·
·
·

·
·
·

Then

C
(d)
n,i+1 =

n∑

j=i

((d+1)n− i− 1

j − i

)
(−1)j+nC

(d)
n,j+1, i = 1,2, . . . , n.
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Partial result

Recall the conjecture: Ps,t(z1, . . . , zs+t−1) rational function, Rs,t =
SymPs,t then

Rs,t(z1, . . . , zi, . . . , zs+t−1) = Rs,t(z1, . . . , z
−1
i , . . . , zs+t−1)

if 0 ≤ s ≤ t.

However, to prove the formula for the refined enumeration of VSASMs,
it suffices to show

Rs,t(z1, . . . , zs+t−1) = Rs,t(z
−1
1 , . . . , z−1

s+t−1) if 1 ≤ s ≤ t.

We sketch the proof of the following result:

If the latter identity is true for t = s and t = s+1 then it is true
for all s, t with s ≤ t.
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Two rational functions:

Ss,t(z; z1, . . . , zs+t−2) := z2s−t−1
s+t−2∏

i=1

(1− z + ziz)(1− z−1
i )

(zi − z)
,

Ts,t(z; z1, . . . , zs+t−2) := (1− z−1)szt−2
s+t−2∏

i=1

1− zi + ziz

(z − zi)zi
.

Two operators PSs,t, PTs,t on functions f in s+ t− 2 variables:

PSs,t[f ] := Ss,t(z1; z2, . . . , zs+t−1) · f(z2, . . . , zs+t−1),

PTs,t[f ] := Ts,t(zs+t−1; z1, . . . , zs+t−2) · f(z1, . . . , zs+t−2).

Recursions:

Ps,t = PSs,t[Ps−1,t] and Ps,t = PTs,t[Ps,t−1].
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Two related operators on functions in s+ t− 2 variables:

QSs,t[f ] := Ss,t(z
−1
s+t−1; z

−1
s+t−2, z

−1
s+t−3, . . . , z

−1
1 ) · f(z1, . . . , zs+t−2),

QTs,t[f ] := Ts,t(z
−1
1 ; z−1

s+t−1, z
−1
s+t−2, . . . , z

−1
2 ) · f(z2, . . . , zs+t−1).

We set Qs,t(z1, . . . , zs+t−1) = Ps,t(z
−1
s+t−1, . . . , z

−1
1 ). The recursions

from the previous transparency immediately imply

Qs,t = QSs,t[Qs−1,t] and Qs,t = QTs,t[Qs,t−1].

We have to show

SymPs,t(z1, . . . , zs+t−1) = SymQs,t(z1, . . . , zs+t−1).
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Consider words w over the “operator-alphabet” A = {PS, PT,QS,QT}

and depict them as labelled lattice paths with starting point in (1,1),

step set {(1,0), (0,1)} and labels P,Q.

Example: w = (PT, PS,QT, PT,QS,QT)

P

(1,1)

(3,5)

S

T

P

Q

P

Q

Q

The letters PS,QS correspond to (1,0) steps, while the letters

PT,QT correspond to (0,1) steps.
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The endpoint of the path is (|w|S, |w|T ), where

|w|S = # of occurrences of PS,QS +1,

|w|T = # of occurrences of PT,QT +1.

Def. To a word w of length n, we assign a function Fw(z1, . . . , zn+1)

as follows: For instance, if

w = (PT, PS,QT, PT,QS,QT)

then

Fw(z1, . . . , z7) = QT3,5 ◦QS3,4 ◦ PT2,4 ◦QT2,3 ◦ PS2,2 ◦ PT1,2[1],

i.e. apply the operators in reverse order; the indices are the integer

points of the lattice path (except for the starting point).

Remark.

• If w is a word over {PS, PT} then Fw = P|w|S,|w|T
.

• If w is a word over {QS,QT} then Fw = Q|w|S,|w|T
.
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Swapping letters

Key Lemma.

1. Fw1 = Fw2 if w1 = wL PS PTwR and w2 = wL PT PSwR.

2. Fw1 = Fw2 if w1 = wLQSQTwR and w2 = wLQT QSwR.

3. Fw1 = Fw2 if w1 = wL PT QTwR and w2 = wLQT PTwR.

3.

P

P

Q

Q

P

PQ

QP P Q Q

1. 2.
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We prove the following more general statement: suppose w1, w2 are
two words whose labelled paths have the same endpoint and are
both prefixes of (rotated) Dyck paths. Then

SymFw1 = SymFw2.

Induction with respect to the length of the word; nothing to prove
for the empty word.

Case 1. The last letters of w1 and w2 coincide. W.l.o.g. wi = w′
iPS,

i = 1,2. Then

SymFwi
= SymPSs,t[Fw′

i
] = SymSs,t(z1; z2, . . . , zs+t−1)Fw′

i
(z2, . . . , zs+t−1)

=

s+t−1∑

j=1

∑

σ∈Sn:σ(1)=j

Ss,t(zj; z1, . . . , ẑj, . . . , zs+t−1)Fw′
i
(zσ(2), . . . , zσ(s+t−1))

=

s+t−1∑

j=1

Ss,t(zj; z1, . . . , ẑj, . . . , zs+t−1)SymFw′
i
(z1, . . . , ẑj, . . . , zs+t−1)

and, by the induction hypothesis, SymFw′
1
= SymFw′

2
.
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Case 2. The last letters of w1 and w2 differ.

Endpoint: (|wi|S, |wi|T) =: (s, t)

t = s, s+1 : use SymPs,s = SymQs,s and SymPs,s+1 = SymQs,s+1.

20



s + 1 < t: The last letter of wi, i = 1,2, is w.l.o.g.in {PT,QT}:

Suppose wi = w′
iPS and choose w′′

i such that the path of w′′
i PT

has the same endpoint as the path of w′
i. By Case 1 and the Key

Lemma,

SymFwi

Def
= SymFw′

i PS
C.1
= SymFw′′

i PT PS
K. L.
= SymFw′′

i PS PT .

P

P

P

Q

P

T

S

P

==

S

P

T

P

Q

P

P
P

Q

P

T

S

P
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W.l.o.g. w1 = w′
1PT and w2 = w′

2QT . Choose w′′
1 such that the

path of w′′
1QT has the same endpoint as the path of w′

1. By Case 1

and the Key Lemma,

SymFw1

Def
= SymFw′

1PT
C.1
= SymFw′′

1QT PT
K.L.
= SymFw′′

1 PT QT
C.1
= SymFw2.

2

P

Q

P

Q

P

T

S

P

P

Q

P

T

S

P

P
Q

P

Q

P

T

S

P
P

Q

w1

= = =

T

S

QQ

P

P

Q

Q

w
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Some remarks on the case s = 0

P0,n+1 =
∏

1≤i<j≤n

z−1
i + zj − 1

1− ziz
−1
j

Question: Are there also other rational functions T(x, y) such that

symmetrizing
∏

1≤i<j≤n
T(zi, zj) leads to a Laurent polynomial that is

invariant under replacing zi by z−1
i ?

Computer experiments:

T(x, y) =
[a(x−1 + y) + c][b(x+ y−1) + c]

1− xy−1
+ abx−1y + d, a, b, c, d ∈ C.
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Some special cases are easy...for instance:

Sym
∏

1≤i<j≤n

z−1
i + zj

1− ziz
−1
j

= . . .

=
∏

1≤i<j≤n

(1 + zizj)
n∏

i=1

z
−n+1
i Sym

n∏
i=1

z2i−2
i

∏
1≤i<j≤n

(zj − zi)

=
∏

1≤i<j≤n

(1 + zizj)
n∏

i=1

z
−n+1
i

det
1≤i,j≤n

((z2i )
j−1)

∏
1≤i<j≤n

(zj − zi)
= . . .

=
∏

1≤i<j≤n

(1 + zizj)(zi + zj)
n∏

i=1

z
−n+1
i
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Two final theorems

R0,n+1 = Sym
∏

1≤i<j≤n

z−1
i + zj − 1

1− ziz
−1
j

=: VSASM(1; z1, . . . , zn)
n∏

i=1

z
−n+1
i

Computer experiments: R0,n+1(1,1, . . . ,1) is the number of (2n +

1)× (2n+1) VSASMs.

Theorem. Let VSASM(X; z1) = 1 and, for n > 1,

VSASM(X; z1, . . . , zn) =
n∑

j=1

z2n−2
j

∏

1≤i≤n,i 6=j

1 + zi(X − 2) + zizj

zj − zi

×VSASM(X; z1, . . . , ẑj, . . . , zn).

Then the coefficient of ziXj in VSASM(X; z,1,1, . . . ,1) is the num-

ber of (2n+1)× (2n+1) VSASMs with ai,1 = 1 and j occurrences

of −1 in the first n columns.
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Theorem. Let ASM(X; z1) = 1 and, for n > 1,

ASM(X; z1, . . . , zn) =
n∑

j=1

zn−1
j

∏

1≤i≤n,i 6=j

1 + zi(X − 2) + zizj

zj − zi

×ASM(X; z1, . . . , ẑj, . . . , zn).

Then the coefficient of ziXj in ASM(X; z,1,1, . . . ,1) is the number

of n× n ASMs with a1,i = 1 and j occurrences of −1.

To reprove the alternating sign matrix theorem, it would suffice to

show that

ASM(1; 1,1, . . . ,1) =
n−1∏

j=0

(3j +1)!

(n+ j)!
.
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Thank you!
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