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ASM=AIlternating Sign Matrix

Square matrix with entries in {0,1,—1} such
that in each row and each column

e the non—zero entries appear with alter-
nating signs, and
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e the sum of entries is 1.

ASM counting is fascinating because it pushes the limits of
counting tools!



Origin of ASMs:

A-determinant and square ice



The origin of ASMs: A—determinant and square ice

The Desnanot—Jacobi identity:

det(M)det(Mllj;j) et (det(M]l) det(Mn)>

det(M1) det(MM)

Notation: For a matrix M, let Mjll’ ;{Z denote the matrix that

remains when the rows i1,...,7m and the columns j1,...,9n Of M
are deleted.

Charles L. Dodgson (Lewis Carroll) used this to devise an al-
gorithm for calculating determinants that required only 2 x 2
determinants. (Condensation of determinants, 1866)
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3 x 3 determinants are expressible in terms of 2 x 2
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nants...and so are 4 x 4 determinants!
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Robbins and Rumsey in the 1980s: What happens if we gener-
alize the definition of a 2 x 2 determinant to

a a
dety [ 11 ™12 ) = ay1a00 + Aajoang
as1 a»o

and, furthermore, use the previous observations to generalize the
n X n determinant?

Theorem (Robbins and Rumsey). Let M be an n x n matrix with
entries a; ;, An the set of n x n alternating sign matrices, Z(B)
the inversion number of B and N(B) the number of —1's in B,
then

dety(M) = Y M@ 42N T o,
BEA, i=1



ASMs appear independently in statistical physics
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Square ice



Symmetry classes of ASMs

ast case: DASASMs
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ASM-Theorem (Zeilberger, 1995)

114171 ... (3n — 2)! _nﬁl( ;
nl(n+ 1) (2n —1)! _j_o (29')

The number of nxn ASMS is

In the 1980s, Richard Stanley suggested the systematical study
of symmetry classes of ASMs which led David Robbins to conjec-
ture nice product formulas for many symmetry classes of ASMSs.
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Symmetry classes of ASMs

e Vertically symmetric ASMs: a; j = a; p4+1—;
n odd: Kuperberg (2002)

e Half-turn symmetric ASMs: a; ; = ap41—5n+1—j
n even: Kuperberg (2002)
n odd: Razumov/Stroganov (2005)

e Diagonally symmetric ASMs: a;; =a
no formula 7

750

e Quarter-turn symmetric ASMs: a; ; = a; 41—
n even: Kuperberg (2002)
n odd: Razumov/Stroganov (2005)
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Symmetry classes of ASMs (Part 2)

e Horizontally and vertically symmetric ASMs: a; ; = a; n4-1—5 =

An+1—i,j5
n odd: Okada (2004)

e Diagonally and antidiagonally symmetric ASMs: a; ; = a;; =

K
An+1—jn+1—:
n odd: Conjecture by Robbins (1980s)

e All symmetries: Qj 5 = Qji = Qjnt1—j
no formula 7

Half of the cases were dealt with in a famous Annals paper by
Kuperberg (2002):

“Symmetry classes of alternating sign matrices under one roof”
13



Diagonally and antidiagonally symmetric ASMs=DASASMSs

Example:
(00 1 0 0 0 0
0 1 -1 0 1 0 0
1 -1 0 1 -1 1 0
00 1 -1 1 0 0
01 -1 1 0 -1 1
00 1 0 -1 1 0
\0o 0 0 0 1 0 0

d(n) = number of n x n DASASMSs

n 3i
Conjecture (Robbins, 1980s): d(2n+ 1) = [] (2(2-1'_)1)
1=1 i

Sequence starts as follows: 1,3,15,126,1782,42471,1706562..
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(Sketch of) Proof of the
DASASM-conjecture
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DASASM-triangles

e DASASM = fundamental triangle (DASASM-triangle)
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Translation into six-vertex model:

e DASASM-triangle = orientations of triangular graph

Orient edges such that
e all degree 4 vertices are “balanced”, and
e all top edges are oriented upward.

1-1 correspondence with fundamental domains of DASASMs
17
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degree 4 vertices

Dictionary

1 -1 0 0 0
left boundary h ty fy L

1 -1 0 0
right boundary J 4&

1 -1 0
bottom vertex f

1 -1
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Why does this work?

0 0
0 0
0 0
1 1
0 0
0 0
-1 0
0 -1
1 1
0 0-100 1-1

e Along straight lines, change orientation iff you encounter +1.
e As for turns, change orientation iff you encounter O.
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Weighted enumeration
e Principle: sometimes it is easier to prove a generalization!
e Assign to each vertex v a weight W(v).

e Weight W(C') of a configuration (=orientation of the triangular
graph Tn):

W(C) = ] W)
vel
e Generating function:
Lin = Z W(C)

C admissible orientation of order n triangular graph

e Specialization of the parameters in Z,, will give the number of
configurations, i.e. the number of (2n+1) x (2n+1) DASASMs.
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Very strange vertex weights
The weight of a vertex depends on the orientations of the sur-

rounding edges and the label of the vertex.

Notation: z=1 =z and o(z) = z — Z; w is the label and ¢ is a
global parameter.

Bulk vertices Left boundary Right boundary

V\/(%,U) = W(*%V,u) =1 W(h7 u) = W(L,u) =1 W(#, u) — VV(J, u) —1
W(*i*,u) = \N(+$>’u> — o(q?u) W(L,u) — W(ér,u) — o(qu)

o(q*) o(q)

W(%’,u) = W(<$¢7U’) — o(q>u) W(J, U) — W(J, U) — o(qu)

o(q*) o(q)

All degree 1 vertices have weight 1.

If u=1 and q = ¢7/6, all weights are 1!
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LLabel of a vertex

Each colored path is assigned a parameter u; as follows.
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Generating function: Z,(uq,...
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e A degree 4 vertex is
contained in two col-
ored paths u; and u; =
label u;u;

e All boundary vertices
have a unique path wu;
= label u;
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Yang-Baxter equation

Theorem. If zyz = ¢2 and o1, 05, ...,06 € {in,out}, then

01 01
Yy z
06 —02 06 —] 02
X ) X
05 03 05 — 03
Z Y

04 04

A diagram stands for the generating function of all orientations
of the graph such that the external edges have the prescribed
orientation oq,09,...,06, degree 4 vertices are balanced, and the
vertex weights are as given in the table, where the letter close
to a vertex indicates its label (rotate until the label is in the SW
corner).
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Left and right reflection equation

Theorem (Reflection equations). Suppose o1, 05, 03,04 € {in,out}.
If © = g%uv and y = wv, then

01 02 01 02

%
03 = 03
—— 04 L 04

v u

and if x = ¢?@v and y = 4w, then

03 04 03 04

—‘ %
02>< y "t y v
. =
01 v 01—

Uu

= Symmetry of Znp(uy,...,Uy41) iN ug,..., un.

25



U1 UD U3 Ugq UZ UD U] U1 U3 UD Ugq UZ UD U] U1 U3 UD Ugq UZ UD U]

U1 U3 UD Ug UZ UD U] U1 U3 UD Ug UZ UD U] U1 U3 UD Ug UZ UD U]

Ul U3 UD Ug UD U3 U] U1 U3 UD Ug UD U3 U]
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Zn(ug, ..., Un,Up41) @t upyq =1

Theorem (BFK 2015).
Zn(Ul, c..yUn, 1)

= S T o) (Pu)o ()
o o i=1

2001 Ner( 27577 )\ 2 24 P 4wl + a2
o H (U(q u;uj)o(q uzu])> detlgi,j§n< q q i J )

2>n

1<i<i<n o(u;u;) o(q?uu;) o(q?u;u;)
Yet another problem: If we set (uqy,...,un) = (1,...,1), then we
obtain 3.
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Schur function

Let A = (A1, Xo,..., \n) be a (weakly) decreasing sequence of
non-negative integers, then the associated Schur function is de-
fined as

Ai+n—j
deti<ij<n (%" )

S\(21,...,2p) =
ML Tn) [Ti<icj<n(xj — ;)

They are
e an important linear basis for the space of symmetric functions,

e in representation theory the characters of polynomial irreducible
representations of the general linear group,

e a generating function of semistandard tableaux.
28



Schur function expression for Z,(u1,...,un, 1) at

g = ot/ 6

Theorem (BFK 2015).

Zn(?,l,]_, .. ,Un, 1)|q:€ZTF/6 p— 3_(2)
—2

2
X Stnn—1n—1n—2m—2...1,1)UL, 87, ..,

Now we may use the formula

ANi— X+ —i
(L. D)= [ 2Nt
1<i<j<k J -t

2 -2
un? un? 1)

to conclude the proof of the DASASM (ex-)conjecture.
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(Sketch of) Proof of Stroganov’'s refined
DASASM-conjecture
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Stroganov’'s refined DASASM conjecture

Observation: The central entry of an odd order DASASM is +1.

|
 —

d_|_(2n -+ 1) = # of DASASMs (ai,j)lgi,jSQn—I—l with Ap4+1n+1 =
d_(2n -+ 1) — # of DASASMs (ai,j)lgi,jSQn—l—l with Ap+1,n+1

|
|
—

Conjecture (Stroganov, 2008).

d_(2n+1) n
dy(2n+1) n+1

Combinatorial proof?
31



Refined generating functions

Zﬁ"(ul,...,un+1) and Z, (uy,...,u,4+1) denote the generating
function, where we sum over all configurations where the corre-
sponding DASASM has 1 or —1, respectively, as central entry.

Lemma.

Zi(ug, ... Upp1) = (Zn(m, ey Upg1)

£(=1)"Zn(u1, ., tn, —tpy1))

1
2
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Explicit formula for Zn(uq,...,%,41)

Theorem (BFK 2015).

o o(g®)" ~r o (ui)o(qui)o(q;) o (qPuittn+1) 0 (¢ Usthn41)
Zn(ula-“aun—l—l) - on 4\ n? H —
o(q)*"o(q*) i—1 o (Uitln+1)
_ (2 P+ .
O'(QQ’U,Z"LL]')O'(QQ’U,Z"LLJ') o(Puw) o (Pu,)’ 1< n
< ] () deti<ij<n+1 | § upp-1 . 1
1<i<j<n gt u?—1 1 =n+
¢+ t+uitu? :
Fwuyoldmm) ST
tdeticij<ntr | § aon-1 R
o1 1=mn+1
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Schur function expression for Z,(u1,...,

g = ot/ 6

Zn(ula s 7un—|—1)|q:ei7r/6
(5) (_“nt1 > -2
—_— - n —_—
o ° <un_|_1—|—1 S(n,n—l,n—l,...,2,2,1,1)(ula UTy .-y

2

Upy1+1 S(hyn—1,n—1,...2,2,1 1)(u17u1""

This implies Stroganov’'s conjecture.

Uu

un—l—l) at

2—22)

T

n—l—l

2 2 )>
nn—l—l'
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Open problem: ASMs and ASTSs
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Permutation matrices

Binary matrices s.t. each row/column contains precisely one 1.

R OOORO
oo owr
O OOOo
©OoOoOorOo
OO mrOOo

There are n! permutation matrices of size n.

36



Permutation triangles

Triangular binary arrays with n rows such that
e each row contains precisely one 1,
e cach column contains at most one 1.

O OO

= O O O
= O OOO
O~ OO
O O+

o O

There are n! permutation triangles of size n.
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ASM=AIlternating Sign Matrix

Square matrix with entries in {0,1,—1} such
that in each row and each column

e the non—zero entries appear with alter-
nating signs, and

oNoNoN Ne
oOormkErHE
OrOoOoOo

e the sum of entries is 1.

Generalize permutation matrices!

R OKRRFO

oNoN NeoNe)
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AST = Alternating Sign Triangle

Triangular 0,1, —1 array such that

e iNn each row and column the non-zero elements alternate,
e the sum of entries in each row is 1,
e the first non-zero entry of each column is 1 (= c-sums=0,1).

o0 10 O O0O0O0O
1 -1 0 O 1 0O
OO0 1 -11
1 -1 1
1

Generalize permutation triangles!
39



This is a good generalization in the following sense:

Theorem (Ayyer, Behrend, Fischer, 2016). There is the same
number of n x n ASMs as there is of ASTs with n rows.

Refinement:

Theorem (Ayyer, Behrend, Fischer, 2016). Let n,k be non-
negative integers. There is the same number of n x n ASMs
with k£ occurrences of —1's as there is of ASTs with n rows and
k occurrences of —1's.

We have proved the theorem for kK = 0.

Open problem: Bijective proof |
40



e Behavior along diagonals and
antidiagonals of DASASMs

e Enumeration of extreme configurations

41



Behavior along diagonals and antidiagonals of
DASASMs

aec{-1,0,1}:
Na(A) = Number of o's along the diagonal and the antidiagonal
of the fundamental domain

Proposition (AFK, 2014).

Let Abean 2n+1) x (2n+ 1) DASASM.
o n < I’lo(A) < 2n

e 0<ni(A)<n+1

o 0 < ﬂ_l(A) <n

All inequalities are sharp.
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Enumerating extreme configurations
Minimal number of zeros:

Theorem 1 (ABF 2015). The number of 2n+ 1) x (2n 4+ 1)
DASASMs A with ng(A) = n is equal to the total number of
(n+1) x (n+4+1) ASMs.

Maximal number of zeros:

Theorem 2 (ABF 2015). The number of 2n+ 1) x (2n 4+ 1)
DASASMs A with ng(A) = 2n is equal to the number of (2n+3) x
(2n+ 3) vertically and horizontally symmetric ASMs (VHASMSs).
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Cases a = +1
Maximal number of 1’'s:

Theorem 3 (ABF 2015). The number of 2n+ 1) x (2n 4+ 1)
DASASMs with ni(A) = n—+1 is equal to the number of cyclically
symmetric plane partitions (CSPP) in an n x n X n box.

Maximal number of —1's:

Theorem 4 (ABF 2015). The number of 2n+ 1) x (2n + 1)
DASASMs with n_1(A) = n is equal to the total number of n xn
ASMs.

Theorem 4 is equivalent to the theorem on ASTs!
44



Plane Partitions

A plane partition in an a X b X ¢ box is a subset
PP CH{1,2,...;a} x{1,2,...,b} x{1,2,...,c}
with

(i,5,k) € PP = (i',j, K'Yy e PP V(' j k) < (4,35,k).
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Cyclically symmetric plane partitions

An n xn xn PP is cyclically symmetric if

(i,7,k) € PP = (j,k,1) € PP.

In 1979, George Andrews proved that the number of n X n X n
cyclically symmetric plane partitons is

=1 (35 + 2)(35)!
z’l;[O (n4i4)!
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Open problem

47



Refined ASM-Theorem

Observation: There is a unique 1 in the first row of an ASM.
Theorem (Zeilberger, 1996): The number of n x n ASMs with a
1 in position (1,r) is

n+r—2 (2n—r—1)!n_2(3j—|—1)!_
( ) (n—r)! j];[O (n—|—])| — 4An,r-

n—1

Find a statistic on ASTs that has the same distribution as the
position of the 1 in the first row of an ASM!
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Conjectural statistic

The elements of a column of an AST can add up to O or 1. We
say that a column is a 1-column if it adds up to 1.

Let 7" be an AST with n rows. Define

p(T) = (#1-columns in the left half of T' that have a 1 at the bottom)
+ (#1-columns in the right half of T that have a 0 at the bottom) + 1.

Conjecture (B 2015). The number of ASTs T with n rows and
p(T) = r is equal to An .
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A constant term identity

Theorem (F 2015). Define

L —1 —1 — 1
Pu(X1,. s Xpo1) = 3 X7x52. . x It
0<11<19<...<1,,—1<2n—3

The constant term of

n—1
Po(X1,..., Xp—1) ] G+ X;) I Q+X4+XX)(X;-X;)
i=1 1<i<j<n—1

in the variables X1, Xo,...,X,,_1 IS equal to

n A~
Z An7/rt7"—1
r=1
where fln,r is the number of ASTs T with n rows and p(T) = r.
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k=1: ASTs

-10 1 >

n-1

lﬁwf;
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Notation:

a(a+1)---b ifa<y,
p(a,b) = .
1 otherwise.
A(j1,73,%1) = p(1,m)p(m, M — 1)p(M — 1,47 — 3)
B(j17j27j377:1) — p(17 min)p(mina mid _1)
X p(mid —1, max —2)p(max —2,i1 — 4)

where m = min(|j1], |73]), M = max(|j1],|73]), min = min(|j1|, |52}, |73]),
max = max(|j1l, |72, [73]), mid = [71] + |72] + |j3] — min —max.

The number of ASTs with n rows and one —1 is

> B(j1,72,J3,1)p(i1 — 1,ip — 3)p(ip,n — 1)

+ (A1, 53,%1) — B(j1,J2,73,11)) p(i1,i2 — 2)p(iz + 1,n),
where the sum is over all 51,720,793 With —n+ 1 < j1 < jo < 3 <
n — 1 and all 71,20 with max(|j1|, |j2|, |j3|) + 1< <1< n.
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Remark. There are two other classes of objects, namely
e totally symmetric self-complementary plane partitions and

e descending plane partitions
that are enumerated by the same numbers.

No bijective proofs are known — all proofs (also ours) are ‘“‘com-
putational” .

Many people consider the problem of finding explicit bijections
to be the most important open problem in this field.
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