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I have to apologize...

No (planned) random process in this talk!

But there will be lozenge tilings...
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I. ASMs, DPPs and TSSCPPs
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How many?

Alternating sign matrices = ASMSs

Square matrix with entries in {0,4+1} such

O O that in each row and each column
1 O
-1 1 e the non—zero entries appear with alter-
O O nating signs, and
1 O
e the sum of entries is 1.
n 1 2 3 4
O 1 O
(1) (é ?)(? é) 34+ |1 —1 1] |42
O 1 O




T he number of n x n ASMS

Theorem (Zeilberger, Kuperberg 1996). The number of n x n
alternating sign matrices is

114171 ... (3n — 2)! _”H1(3z'+1)!
nl(n4+ 1) (2n—1)! 4 (n4i)!

Conjectured by Mills, Robbins and Rumsey in the 1980s.



Plane partitions

A plane partition in an a x b X ¢ box is a subset
PP C{1,2,...,a} x{1,2,...,b} x{1,2,...,¢}
with
(i,5,k) € PP = (i',5/,K'Y e PP V(' i K) < (,5,k).




Cyclically symmetric plane partitions = CSPPs

An n X n X n plane partition PP is cyclically symmetric if

(i,5,k) € PP = (j,k,i) € PP.
In 1979, George Andrews proved that the number of n x n x n cyclically
symmetric plane partitons is
”ﬁl (3i 4 2)(3i)!
o (n4+dr




A determinant in Andrews’ proof

In his proof, Andrews shows that the number of CSPPs of order n is
given by the following determinant

deto<; j<n—1 (52',9' + (Z + ]>>

(/
and then proves that

. . n—1 /. .
detoss jn 1 <5z‘,j n <7, +])> =TI (37 + 2)(31)!.

i — (n+id)!

Then he also considered the following more general determinant:
E+i1+4y

1

deto<i j<n_1 (5i,j + ( )) = Dp(k)



Dy (k) for small values of n
2

k+5
(k+4)(k+5)

(k420 + 9k + 11)

— (k + 4)20k + 6)( + 9)(k + 11)7

(k+4)2(k+6)?(k+11)?(k 4+ 13)(k+ 15)(k 4 17)
8640
(k+4)2(k+6)%(k 4+ 8)(k + 10)(k + 11)(k + 13)(k + 15)2(k 4 17)?2
518400
(k4 4)2(k+6)%(k+ 8)2(k 4+ 10)?(k + 15)2(k + 17)3(k 4+ 19)(k 4+ 21)(k + 23)
870912000

Surprise:

n—1(3i 4+ 1)!
Pn(2) = Z'l;[o (n+1)!
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Combinatorial interpretation for D, (2)

Christian Krattenthaler (2003):

(=)

—

NAVAVANNA VAV
NAN L/ /S

L LN NN NN
L INN NN

Cyclically symmetric lozenge tilings of a hexagon with side lengths n42,n,n+2,n,n+
2, n with a central hole of size 2.

To obtain the combinatorial interpretation for any k, replace 2 by k!
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Column strict shifted plane partitions of a fixed class aka DPPs

e With each strict partition (= partition with distinct parts), we associate a shifted Ferrers diagram.
The shifted Ferrers diagram of (5,4,2,1) is

e A column strict shifted plane partition is a filling of a shifted Ferrers diagram with positive integers
such that the rows are weakly decreasing and the columns are strictly decreasing.

Example.

OO
N OO
=W

e A column strict shifted plane partition is of class k if the first part of each row exceeds the length
of the row by precisely k. (Mills, Robbins and Rumsey 1987; Andrews 1979) The example is of class
2.

e T here is a simple bijection between column strict shifted plane partitions of class k where the length
of the top row does not exceed n and cyclically symmetric rhombus tilings of a hexagon with side
lengths n 4+ k,n,n + k,n,n + k,n with a central triangular whole of size k.
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The number

Equal to its complement in the 2n x 2n x 2n box
of TSSCPPs in a 2n x 2n x 2n box is (also)

(i,5,k) € PP = o(i,7,k) € PP Vo € S3
(MacMahon 1899, 1915/16)

(Mills, Robbins and Rumsey 1986)
Theorem (Andrews 1994).

e Totally symmetric:
e Self-complementary:
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Totally symmetric self-complementary plane partitions

A
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Figure by Di Francesco / Zinn-

Justin
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III. Alternating sign triangles
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Alternating sign triangles —= ASTSs

An AST of order n is a triangular array of 1's, —1’s and 0's with n centered rows

such that

(1) the non-zero entries alternate in each row and each column,

(2) all row sums are 1, and

(3) the topmost non-zero entry of each column is 1 (if such an entry exists).

Example:

15



ASTs of order 3

1 0000}]0O0O01O0 0O0O0O0T1 1 0 0 0O
1 0 O 1 0O 1 0 O O 01
1 1 1 1
010000000100 1 0O
O 0 1 O 0 1 1 -1 1
1 1 1

Theorem (Ayyer, Behrend, and F., 2016). There is the same
number of n x n ASMs as there is of ASTs with n rows.
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Number of —1°'s in ASMSs and ASTs

Let A be an ASM or an AST. Then we define
w(A) = # of —1's in A.
Obviously
{A € ASM(n) | u(A) =0} = n! = [{A € AST(n) | u(A) = 0}.

Generalization of our theorem: Let m,n be non-negative integers.
Then

{A € ASM(n) | u(A) = m}| = [{A € AST(n) | u(A) = m}|.
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Inversion numbers

Let # = (m1,...,7m™) be a permutation and A be the permutation matrix
of m, that is m; is the column of the unique 1 in row 7. Then
iﬂV(A) — Z al-/jaij/

1</ <1<n, 1</ <j<n
iIs the number of inversions in . We use this to define the inversion
number of ASMs.
Let A = (ai,j)lgign,iSjSQn—i be an AST. We define
inV(A) — Z a’i/ja’ij/'

' <i,5'<j
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Generalization of the generalization of our theorem: Let m,n,:
be non-negative integers. Then

{A € ASM(n) | u(A) = m,inv(A) = i}
= |{A € AST(n) | u(A) = m,inv(A) = i}|.
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The case n = 3
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Refined ASM-Theorem

Observation: There is a unique 1 in the top row of an ASM.

Theorem (Zeilberger, 1996): The number of n x n ASMs with a 1
in the top row and column r is

n4r—2(2n —r —1)1"=2 (35 4+ 1)! B
( > (n—T)! ]1;[() (n—l—])l - n,r-

n—1

Find a statistic on ASTs that has the same distribution as the column
of the 1 in the top row of an ASM!
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Equivalent statistic on ASTs

In an AST, the elements of a column add up to O or 1. We say that
a column is a 1-column if they add up to 1.

Let T" be an AST with n rows. Define

p(T) = (#1-columns in the left half of T' that have a 0 at the bottom)
+ (#1-columns in the right half of T' that have a 1 at the bottom) + 1.

Theorem (F. 2019). The number of ASTs T with n rows and p(T) =
r is equal to Apr.
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The case n =3
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III. Alternating sign trapezoids
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Back to Andrews’ determinant

Dn(k) = deto< j<n—1 (5@9' T <k +§ ' ]>>

Recall:

e D,(2) is the number of n x n ASMs as well as the number of ASTs
with n rows.

e Dy(k) is the number of cyclically symmetric lozenge tilings of a
hexagon with central triangular hole of size k.

Is there a combinatorial realization of D,(k) in terms of
ASM-like objects 7
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Alternating sign trapezoids

Forn>1,1> , an (n,l)-alternating sign trapezoid is an array of 1's, —1's and 0’'s
with n centered rows and [ elements in the bottom row, arranged as follows

such that the following conditions are satisfied.

(1) In each row and column, the non-zero entries alternate.
(2) All row sums are 1.

(3) The topmost non-zero entry in each column is 1.

(4) The column sums are 0 for the middle [ — 2 columns.

“Can be extended to [ = 1.

26



Example

A (5,4)-alternating sign trapezoid.

co0ooo0oo o o0 1 0 00O
O o000 1 0 -1 1 0O
c10 -1 0 1 —-11

oo o 1 -1 1
1 0 -1 1

ASTs with n rows are equivalent to (n — 1,3)-alternating sign trape-
zoids. (Delete the bottom row of the AST.)

27



Alternating sign trapezoids and cyclically symmetric rhombus
tilings of a holey hexagon

Theorem (Behrend, F. 2018). There is the same number of (n,[)-alternating sign
trapezoids as there is of cyclically symmetric rhombus tilings of a hexagon with side
lengths n4+1—-1,n,n+1—1,n,n+1— 1,n that has a central triangular hole of size
[— 1.

N\ 7T

ST 77NN

AV
O
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Product formula

Corollary. The number of (n,l)-alternating sign trapezoids is

n—1 '
2" T ¢ 1,
1=0

where
( (1430) (24-14-31) (4+1430) ,
(I4+20) (2+1+27) (4+47) 1 even,
gi(1) = « 2(—3+1+31) (3+1+30) (3+1+3)
' - - , odd.
\ (420 2+1+20) (I +7) , !
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T hree statistics on alternating sign trapezoids
e A 1-column is a column with sum 1.
e A 10-column is a 1-column whose bottom element is O.
Simple fact: An (n,l)-alternating sign trapezoid has n 1-columns

The statistics on (n,l)-alternating sign trapezoids T

p(T) = # of 10-columns among the n leftmost columns,
a(T) = # of 10-columns among the n rightmost columns,
r(T) = # of 1-columns among the n leftmost columns.

In the example above, we have p(T) =1,a(T) = 0,r(T) = 2.
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Column strict shifted plane partitions of a fixed class aka DPPs

e With each strict partition (= partition with distinct parts), we associate a shifted Ferrers diagram.
The shifted Ferrers diagram of (5,4,2,1) is

e A column strict shifted plane partition is a filling of a shifted Ferrers diagram with positive integers
such that the rows are weakly decreasing and the columns are strictly decreasing.

Example.

OO
N OO
=W

e A column strict shifted plane partition is of class k if the first part of each row exceeds the length
of the row by precisely k. (Mills, Robbins and Rumsey 1987; Andrews 1979) The example is of class
2.

e T here is a simple bijection between column strict shifted plane partitions of class k where the length
of the top row does not exceed n and cyclically symmetric rhombus tilings of a hexagon with side
lengths n 4+ k,n,n + k,n,n + k,n with a central triangular whole of size k.
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Three statistics on column strict shifted plane

partitions

For d e {1,...,k} and a column strict shifted plane partition C of class k, we define
ps(C) = # of parts j — i+ d where 7 is the row and j is the column,
a(C) = # of 1's,
r(C) = # of rows.

In the example above, we have p;(C) =1,q(C) =1,r(C) = 3.
Theorem (F. 2019). The number of (n,l)-alternating sign trapezoids T with

p(T) = p,a(T) = q,r(T) = r is equal to the number of column strict shifted plane

partitions of class I — 1 with p;(C) = p,a(C) = q,r(C) = r, where the length of the
first row does not exceed n.

Recently, Hongesberg could add another statistic (number of —1's on the alternating
sign trapezoid side).
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The case n =2,l =4

Alternating sign trapezoids:
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Column strict shifted plane partitions:

(0,0,2)

(0,0,1)

(0,0,1) | (0,0,1) [ (0,0,2) .

(1,0,1)

(0,0,1)

(1,0,1) [ €(0,0,1) | €(0,0,1) | (0,0,2)

(0,0,1)

(1,0,1)
(0,0,1)
(0,0,1)

(0,1,1)
(0,1,1)
(0,1,1)

(0,0,0) | (0,0,1)

(0,0,0) | (0,0,1)

(0,0,0) [ (0,0,1)

d=1

d=72

d=3
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IVV. Proofs
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Monotone triangles

Triangular arrays of integers with monotonicity requirements:

v N\
=

O 1 0 0 O 0O 1 0 0 O 2

1 -1 0 1 O 1 0 0 1 O 1 4

o 10 -1 1 |=]1 1 0 0 1 |= 1 2 5
0O 0 1 0 O 1 1 1 0 1 1 2 3

O 0 0 1 0O 1 1 1 1 1 1 2 3 4

Monotone triangles with bottom row 1,2,....,n < n x n ASMSs
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Formula for the number of monotone triangles with

prescribed bottom row

Antisymmetrizer:

ASmeh...,Y,IF(Yla S 7Y;L) — Z sgn O-F(Ya(l)a R Ya(n))

ocs,

Define

n

ASymy, v |[[(A+Y)™ [ (QA+Y;+YiY))

i=1 1<i<j<n

[ V;=Y) |

1<i<j<n

where CTy. y denotes the constant term in Yi,...,Y,.

.....

Theorem (F., 2006). The number of monotone triangles with bottom row b1.,....0,
is M, (b1,...,b,).
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Truncated monotone triangles: (s,t)-trees

es — (s51,s0,...,5) weakly decreasing sequence: prescribes the number
of entries deleted at the bottom of the ~-diagonals.

o t = (tn_r_|_1, ..., tn) weakly increasing sequence: prescribes the num-
ber of entries deleted at the bottom of the \,-diagonals.

37



The number of (s,t)-trees

Forward difference operator: Azp(z) =p(z+1) — p(z)
Backward difference operator: A;p(z) = p(x) —p(x — 1)

The evaluation of

A A tn—r
(—Ag, )t (_AIZ)SZA%_Till . -A%Mn(X)

at x = (by,...,bn) is the number of (s,t)-trees of order n with the
following properties:

e The bottom entry of the i:-th ~“-diagonal is b; for 1 <:<n —r.

e The bottom entry of the i-th \,diagonal is b; for n —r+ 1 <i < n.
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From alternating sign triangles to truncated
monotone triangles

co0oo0o 1 0 0 0 0 0O02O0
10 -10 O O 1 0O
O 0 0 1 0 -1 1

O 1 -1 0 1
O 0 1
1

1-column = a column with sum 1.
e An AST with n rows has precisely n 1-columns.

e First goal: Constant term formula for the number of ASTs with
prescribed positions of the 1-columns.
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O 0 0 O O0O0O

1
-1 0 0 O

O 0O
O 10

O 0 O

1

—1 1 0 O
1

0

1

000 0 O

O 0O

1 -1 0
O 00 O 0 O

O 0 0 O

O O 0 O

1

1 0 O 0 0O

O 00 O O

O 0010O0O0 O0O0O0O

01 00O0O0O0 1 O0O0O0

01 0001O0 0 100

01 0010O01 100

01001011100

01001111100
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-5 -4 -3 -2 -1 O 1 2 3 4 5
0 0 0 1 o) 0 o) o) 0 0 0
0 1 0 0 o) 0 o) 1 0 0 o)
O 1 0 o) o) 1 O o) 1 O 0
0 1 O 0 1 O o) 1 1 O O
0 1 0 o) 1 0 1 1 1 0 O
0 1 0 o) 1 1 1 1 1 0 o)

U
—2
—4 2
—4 0 3
—4 —1 2 3
—4 —1 1 2 3
—4 —1 0 1 2 3

e Orange entries are redundant. Delete them in order to obtain an (s,t)-tree.

e Number of deleted entries in a fixed diagonal equals the absolute value of the
bottom entry in the truncated diagonal.
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The number of ASTs with prescribed positions of

the 1-columns

Using the formula for the number of (s,t)-tree, we can deduce the
following (after a few pages of calculations).

Theorem (F. 2019). The number of ASTs with n rows that have
the 1-columns in positions j1,72,...,9n—1, Where we count from the
left starting with O and disregard the central column, is the coefficient

of X1 X2 ... X/ in

n—1
1_11(1 +X) [T O+ X+ XXX — X)),

1<i<j<n—1
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Total number of ASTS

The number of ASTs with n rows is the constant term of

n—1
>, Jla+xhx) I G+x7 + X7 - XD

0<j1<jo< .. <1 1=1 1<i<j<n-—1
n—1 )
[T+ X)X 1 Q4 X+ XX)(X - X;)
i=1 1<i<j<n—1

i (x-x)

“Trick:” Apply the symmetrizer in Xq,...,Xy,. The constant term is
then multiplied by n!.

“Magic:” The symmetrizer can actually be computed!
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End of the proof

Lemma. Let n>1. Then

—1

ASymy, v | ] (+X+XX) H xHi-11%
1=1

1<i<y<n

T . (14 Xi + X,)(X; — X))
_g(l—X@) | (= %) |

1<i<i<n

After some further steps, one can see that the number is the constant term of

D) 3T deticiye (14 X)X,

O§b1<b2<<bn 1

and this leads directly to an expression that gives the number of totally symmetric
self-complementary plane partitions in a 2nx2n x2n box (Lindstrom-Gessel-Viennot).
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The number of alternating sign trapezoids with

prescribed positions of the 1-columns

Theorem (Aigner). The number of (n,l)-alternating sign trapezoids
with the 1-columns in positions 0 < j1 < jo < ... < jn < 2n — 1 where
we index the columns from left to right starting with O and disregard
the | — 2 central columns is the coefficient of X{lX%Q X" in

[Ta+x) [ X,'"TPa+x)72 [ (X;-X)Q+ X+ X:X)),
1=1

i=m+1 1<i<j<n

where m is maximal such that 5, <n — 1.

Only for I = 3 (ASTs!), there is no dependency on m.
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Crucial step in the enumeration of AS-trapezoids

Definition.

Subsets,, F'(Y1,...,Yy)
— Z F(Y0(1)7""Ya(n))

oc€ESn
oc(l)<o(2)<..<o(m),c(m+1)<oc(m+2)<...<o(n)

The number is the constant term of

n

n n B m 1 1
2 Subsets,, [| A+ ] o545 1 1035

" =mad i,j=1 i,j=m+1
X ﬁ ﬁ 14+Y;+YiY;
i=1 j=m+1 Y, - YA +Y:+Y)(1-YY;)

46



Using the Cauchy determinant, it follows that

H (1+Y)Z1H1—|—Y—|—Y :1;[ 1—YY

i=m-+1 1,7=1 ,J
14+Y, 4+ VY,
XH H Y, —Y) (1 + Y, + V) (1 - viY))

=1 j=m+1
]_ .
— 1<m
1+Y,+Y;’ —
deti<ij<n ({ et )

v,y 1T >1m

[ (v —-Y)?

1<i<j<n

Applying Subsets,,, and summing over all m then gives

1 }/; -1
deti<ij<n (1_|_y1;—|-Y,- T (:Yi%”f )
[T (v;—Y)?
1<i<j<n

After some further manipulations we obtain Andrews generalization of the determi-
nant for the number of cyclically symmetric plane partitions.
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T hank you!
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