Familienname:	1
Vorname:	2
Matrikelnummer:	3
Studienkennzahl:	4
	G
□ R. Steinbauer	
□ H. Schichl	

Note:

Prüfung zu Einführung in das mathematische Arbeiten (2.4.2004)

- (1) (Kurvendiskussion) Eine Polynomfunktion p vierten Grades ist symmetrisch um die y-Achse und besitzt bei W = (1,3) einen Wendepunkt. Die Steigung der Tangente in W ist $k_W = 2$.
 - (a) Bestimme die Funktionsgleichung von p. (4 Punkte)
 - (b) Ermittle alle Hoch-, Tief- und Wendepunkte von p. (2 Punkte)
 - (c) Berechne alle Nullstellen in C. (2 Punkte)
 - (d) Ermittle den Inhalt des endlichen Flächenstücks, das von p und der x-Achse eingeschlossen wird. (2 Punkte)
- (2) (a) (Analytische Geometrie) Bestimme die Lagebeziehung der drei Ebenen

$$\varepsilon_1: -12x_1 + 8x_2 + 7x_3 = -17$$

 $\varepsilon_2: 6x_1 + 7x_2 + 2x_3 = 14$
 $\varepsilon_3: 4x_1 + 4x_2 + x_3 = 9$

(5 Punkte)

(b) (Gleichung) Bestimme die Nullstellen des komplexen Polynoms

$$z^2 - (2 - 2i)z + 7 - 26i.$$

(5 Punkte)

(3) (a) (Ordnung und Schranken) Wir untersuchen ℚ mit der natürlichen Ordnungsrelation ≤. Sind die folgenden Teilmengen von ℚ nach oben, bzw. unten beschränkt? Wenn ja, gib Infimum bzw. Supremum, Maximum bzw. Minimum an, sofern sie existieren.

$$(-3, 12], \quad (-\infty, 2) \cap [3, \infty), \quad \bigcup_{n \in \mathbb{N}_+} \left[\frac{1}{\sqrt{n}}, n\right], \quad \{x \in \mathbb{Q} \mid x^2 < \sqrt{2}\}.$$

(5 Punkte)

(b) (Vollständige Induktion) Schreibe die unten angegebene Identität in Summennotation um und beweise sie mittels vollständiger Induktion.

$$-2+1+4+7+10+\cdots = \frac{(1+n)(3n-4)}{2}$$

(4 Punkte)

- (4) (a) (Abbildungen) Sei $f:A\to B$ eine Abbildung. Definiere die Begriffe injektiv, surjektiv und bijektiv. Gib eine surjektive aber nicht injektive Funktion $f_1:A_1\to B_1$ an, wobei A_1 und B_1 geeignete Teilmengen von $\mathbb R$ seien. (5 Punkte)
 - (b) (Logik) Bestimme die disjunktive Normalform der NAND-Operation. (2 Punkte)
 - (c) (Algebra) Untersuche, ob die Menge

$$K := \{a + b\sqrt{6} \mid a, b \in \mathbb{Q}\}\$$

ein Unterkörper von \mathbb{R} ist. (4 Punkte)