bplist00Ñ_WebMainResourceÕ _WebResourceData_WebResourceMIMEType_WebResourceFrameName^WebResourceURL_WebResourceTextEncodingNameOX0



Books:


The d-bar Neumann problem and Schrödinger operators 


(additional informations, errata)


De Gruyter Expositions in Mathematics 59, Walter de Gruyter, Berlin Boston,  2014.

2nd enhanced edition, 2023.

Complex Analysis , a functional analytic approach

De Gruyter Graduate, Walter de Gruyter, Berlin Boston, 2018


Papers:

 Funktoren auf Kategorien von nuklearen Räumen, thesis, Universität Wien, 1974.

 Funktoren auf Kategorien von nuklearen Räumen, Bull. l'Acad. Polon., Ser. des sciences math., astr. et phys. 24 (1976), 51-55.

 Quasibasen und nukleare (F)-Räume, Sitzungsber. Österr. Akad., Math.-naturwiss. Klasse 184 (1975), 333-338.

 Complete biorthogonal systems in nuclear (F)-spaces, Math. Nachr. 83 (1978), 305-310.

 On Newton's interpolation polynomials, J. Approx. Theory 22 (1978), 352-355.

 Basen in Räumen von holomorphen Funktionen, Anzeiger d. ÖAW, Math-naturwiss. Klasse 12 (1977), 212-216.

 Abel-Goncarov polynomial expansions in spaces of holomorphic functions, J. London Math. Soc. (2) 21 (1980), 487-495.

 Generalized Abel-Goncarov bases in spaces of holomorphic functions, J. Approx. Theory 27 (1979), 297-308.

 A dual relationship between generalized Abel-Goncarov bases and certain Pincherle bases, Pacific J. Math. 84 (1979), 79-90.

 On the geometry in linear spaces with Hilbert norms, Revue Roum. Math. Pures et Appl. 25 (1980), 1517-1522.

 On the geometry in projective limits of Hilbert spaces, J. Math. Anal. and Appl. 80 (1981), 433-460.

 Polynomial expansions and expansions by Pincherle sequences in spaces of holomorphic functions, Colloquia Mathematica, Janos Bolyai Society 35 (1980), 595-610.

 On some new bases in spaces of holomorphic functions, 5th Romanian-Finnish Seminar on Complex Analysis 1981, Lect. Notes in Math. 1013, Springer-Verlag, Berlin, New York, 266-283, 1983.

 Gel'fond -Leont'ev differential operators, Operator Theory: Advances and Applications 11, Birkhäuser-Verlag, Basel, 163-177, 1983.

 (with M. Meyer), Abel-Goncarov approximation and interpolation, J. Math. Anal. and Appl. 110 (1985), 340-363.

 Weighted spaces of entire functions, Linear and Complex Analysis, Problem Book, V.P.Havin, S.V.Hruscev and N.K.Nikolskii (eds.) Lect. Notes in Math. 1043, Springer-Verlag, Berlin, New York, 1984.

 Newton'sche Interpolationspolynome und Gleichverteilung, Zahlentheoretische Analysis, Lect. Notes in Math. 1114, Springer-Verlag, Berlin, New York, 16-18, 1985.

 Weighted spaces of entire functions, Indiana Univ. Math. J. 35 (1986), 193-208.

 (with M. Smejkal), Representation and duality in weighted Frechet spaces of entire functions, Proceedings of a Conference, Univ. of Maryland Lect. Notes in Math. 1275, Springer-Verlag, Berlin, New York, 168-196, 1987.

 The Bergman kernel and duality in weighted spaces of entire functions, Center for Pure and applied Mathematics, Univ. of California, Berkeley, PAM-310, 24 pp., 1986.

 Convolution equations and the problem of division in spaces of entire functions with nonradial weights, Center for Pure and applied Mathematics, Univ. of California, Berkeley, PAM-327, 34 pp., 1986.

 Convolution equations in spaces of entire functions and related properties of conformal mappings, Complex Analysis and Generalized Functions 1991, Publishing House of the Bulgarian Academy of Sciences, Sofia, 98-116, 1993.

 Szegoe kernels for certain unbounded domains in C2, Revue Roum. Math. Pures et Appl. 39 (1994), 939-950.

 Singularities of the Szegoe kernel for certain weakly pseudoconvex domains in C2, J. of Functional Analysis 129 (1995), 406-427.

 Hardy spaces on model domains, Erwin Schroedinger Institut, Vienna, Preprint ESI 232 , 6 pp., 1995.

 Bergman and Hardy spaces on model domains, Illinois J. of Math. 42 (1998), 458-469.

 The Bergman kernel and a generalized Fourier-Borel transform, in : Reproducing Kernels and their Applications, ISAAC Vol.3, Kluwer Academic Publishers, 97-108, 1999.

 The Bergman kernel functions for certain unbounded domains in C2, Annales Polonici Mathematici 70 (1998), 109-115. .

 Bergman and Szegoe kernels for certain unbounded domains in C2, Proceedings of the Hayama Symposium on Several Complex Variables (1998), 36-44.

 The d-bar equation and Bergman spaces, ESI-preprint, Nr. 799 (1999).

 Properties of the canonical solution operator to d-bar, ESI-preprint, Nr. 798 (1999).

 The canonical solution operator to d-bar restricted to Bergman spaces, Proc. AMS 129 (2001), no. 11, 3321-3329.

 The canaonical solution operator to d-bar restricted to radial symmetric Bergman spaces , ESI-preprint, Nr. 836 (2000).

 The canonical solution operator to d-bar restricted to Bergman spaces (Review article), Proceedings of the Hayama Symposium on Several Complex Variables (2000), 61-67.

 Compactness of the canonical solution operator to d-bar restricted to Bergman spaces, Functional-Analytic and Complex Methods, their Interactions, and Applications to Partial Differential Equations, Proceedings of the International Graz Workshop, World Scientific Publishing Co. (2001), 394-400.

 The canonical solution operator to d-bar restricted to Bergman spaces and spaces of entire functions , Annales de Toulouse Mathematiques  11 (2002), 57-70.

 Schroedinger operators with magnetic fields and the canonical solution operator to d-bar. , ESI-Preprint, Nr. 1175 ( 2002).

 Schroedinger operators with magnetic fields and the d-bar equation, J. Math. Kyoto Univ. 46 (2006), 249-257.


 Compactness in the d-bar Neumann problem (Review article), Proceedings of the Hayama Symposium on Several Complex Variables (2004), 1-9.


 The d-bar Neunmann operator and commutators between multiplication operators and the Bergman projection, Czechoslovak. J. of Math.  58 (2008), 1247-1256.


 (with Bernard Helffer) Compactness of the solution operator to d-bar in weighted L^ 2 - spaces, J. of Functional Analysis,  243 (2007), 679-697. 


 (with Bernhard Lamel) Spectral properties of the canonical solution operator to d-bar, J. of Functional Analysis, 255 (2008), 13-24.

 Compactness estimates for the d-bar Neumann problem in weighted L^2 - spaces, preprint, Mittag Leffler Institute, 2008.

 (with Klaus Gansberger) Compactness estimates for the d-bar Neumann problem in weighted L^2 - spaces, arXiv: 0903.1783, Proceedings of the conference on Complex Analysis 2008 in honour of Linda Rothschild, Fribourg 2008, Trends in Mathematics, Birkhäuser Verlag (2010), 159--174.

 Compactness for the d-bar - Neumann problem - a functional analysis approach, ESI -preprint 2208, arXiv:0912.4406 , 2009, Collectanea Mathematica 62 (2011), 121-129.

Compactness of the d-bar Neumann operator on weighted (0,q)-forms. ESI preprint 2291, arXiv 1012.433, Proceedings of the IWOTA Conference 2010, Operator Theory Advances and Applications 221 (2012), Birkhaeuser Verlag, 413-420.

 Spectrum of the d-bar Neumann Laplacian on the Fock space, arXiv:1301.7666, J. of Math. Anal. and Appl. 402 (2013), 739-744.

 Sobolev inequalities and the d-bar Neumann operator, arXiv, 1409.2732, J. of Geom. Analysis 26 (2016),  287-293.

(with F. Berger) On some spectral properties of the weighted d-bar Neumann problem, arXiv:1509.08741, J. Math. Kyoto Univ. 59 (2019), 441--453. 

Sobolev spaces for the weighted d-bar-Neumann operator, arXiv: 1707.05136, International Journal of Math., 28, No.9 (2017), 1740007 (12 pg.)

Pauli operators and the d-bar-Neumann problem, arXiv: 1707.05139, Ufa Mathematical Journal, 9, No.3 (2017), 1-7.


The d-complex on the Segal-Bargmann space, Ann. Polon. Mat. Online first, 2019, Ann. Polon. Mat. 123 (2019), 295-317.


(with Duong Ngoc Son) The d-complex on weighted Bergman spaces on Hermitian manifolds, arXiv:1908.04063,

J. Math. Anal. Appl. 487(1) (2020) 123994. 



(with David Kalaj, Djordjije Vujadinovic) Sharp pointwise estimates for Fock spaces, arXiv:1909.04975,

Computational methods and Function Theory 21 (2021), 343–359. 


(with Duong Ngoc Son)

The ∂-Operator and Real Holomorphic Vector Fields, Pure and Applied Mathematics
Quarterly, 18, No. 3 (2022), 793-833.


The generalized ∂-complex on the Segal-Bargmann space, Operator Theory , Functional Analysis and Applications, Proceedings of IWOTA 2019, 

Birkhäuser , M.A. Bastos, L.Castro, A.Y. Karlovich (eds.) (2021), 317--328.(arXiv:2103.07697) 


Basic estimates for the generalized ∂-complex, Pure and Applied Mathematics Quarterly, 18, No.2 (2022), 583-597.


  Unbounded Operators on the Segal-Bargmann Space, 189--224, in

 The Bergman Kernel and Related Topics, Proceedings of the Hayama Symposium on SCV XXIII, Kanagawa, Japan, July 2022, Editors Kengo Hirachi, Takeo Ohsawa, Shigeharu Takayama, Joe Kamimoto, Springer Proceedings in Mathematics and Statistics 447, 2024.


 Unbounded operators and the uncertainty principle, arXiv:2407.15803,

Proceedings AMS (to appear).












Ytext/htmlP_file:///index.htmlUutf-8 (:Pgv”XÈXÒXÓXè Xî