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Let Q C C” be an open subset and let f : Q — C be a C!-function. We
write z; = x; + iy; and consider for P € 2 the differential

" [ of of
j=1
We use the complex differentials
dzj = dx; +idy; , dz; = dx; — idy;

and the derivatives

9 _1/0 .0 o _1
82j_2 0x; dy; ’8?j_2

and rewrite the differential dfp in the form

[ Of of _ -
dfp = Z <8ZJ(P) dZ_, + 8721(/3) de) = Ofp + Ofp.

Jj=1
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A general differential form is given by

w = E ,aijdZJ/\de,
[JI=p,|K|=q

where ZIJI —p,|K|= gdenotes the sum taken only over all increasing
multiindices J = (j1,...,Jp), K = (ki,...,kq) and

dZJ:del/\"'/\dep , dedekl/\-“/\dfkq.

We call w a (p, g)-form and we write w € C(p q)(Q) if wis a (p, q)-form
with coefficients belonging to C¥(Q).
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The derivative dw of w is defined by

dw = Z’ dajk Ndzy Ndzkg = Z' (0ayk + 0ay k) Adzy A dzk,
|=p,|K|=q |J|=p,|K|=q
and we set

Ow = Z,anJ(/\dZJ/\de and Jw = 2,53_17;(/\(12_//\0’2}(.
|J|=p,|K|=q [J1=p,|K|=q

We have d =  + 0 and since d? = 0 it follows that
0=(0+0)0(0+d)w=(000)w+(00d+ dod)w+ (Jod)w,

which implies 32 =0, 8 =0 and 9o+ o d = 0, by comparing the
types of the differential forms involved.
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Let Q C C" be open. A function f : Q — C is called holomorphic on Q if
f € C1(Q) and f satisfies the system of partial differential equations
of .
—(2)=0 for1<j<nandzeq, (1)
82]
equivalently, if f satisfies Of = 0.
Let P = P(a,r) = {C € C:|C — ;| < rj} be a polydisc in C". Suppose
that £ € C1(P) and that f is holomorphic on P, i.e. for each z € P and
1 <j < n, the function

¢ flz1,-..,2-1,(, Zjs1, - - -, Zn)

is holomorphic on P(a, r). Then

(2) 27” [/ %Q_Zl c 4G i )

for z € P, where ;(t) = a; + rje, for t € [0,27] and j=1,...,n
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Let f € H(P(a,r)). Then the Taylor series of f at a converges to f
uniformly on all compact subsets of P(a, r), that is

f2)= 3 2F@ g 3)

al

for z € P(a,r).

In addition, we get the Cauchy estimates: for f € H(P(a,r)) and
a=(ag,...,an) eNjilet la|=a1+ - +apand ol =oq!...apl,
furthermore set r® = r"™* ... ri", then

olelf

oz a7 )| < % sup{|f(2)] : z € P(a,r)}.  (4)

|D*f(a)| =
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Let Q2 C C" be a domain and let
g=) gdz
j=1

be a (0, 1)-form with coefficients gj € C1(Q), for j = 1,...,n. We want to
find a function f € C1(2) such that
of = g, (5)

in other words

g j=1,....n
97, g.Jj=1,....n (6)

f is called a solution to the inhomogeneous CR equation Of = g.
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Since 9" = 0, a necessary condition for solvability of (5) is that the right

hand side g satisfies dg = 0. So, the (0,2)-form Og satisfies

B n n og -
8g:228721d2k/\dzj:0’
k=1 j—1

which means that 5 9
o8 _ 98k j k=1

— = —, J, n.
8Zk 821'

gy

Theorem Let n > 2 and let g = ) 7, g; dZ; be a (0, 1)-form with

coefficients g; € C(’;((C”), j=1,...,n, where 1 < k < 0o and suppose that

0g = 0. Then there exists f € C5(C") such that Of = g.

CE(C™) is the space of CX-functions with compact support.
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For n =1 the above theorem is false:
Suppose that [ g(¢) dA(¢) # 0 and that there is a compactly supported
solution f of the equation % = g. Then there exists R > 0 such that
f(¢) =0 for || > R. Applying Stokes' Theorem we obtain for
7(t) = Re't, t € [0,27]
0 [ fc)d¢
.

of —
/DR(O) ac 2N

_py /D PREGIAE
40,

whenever Dg(0) contains the support of g. That is a contradiction.
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Distributions

Let 2 C R” be an open subset and D(Q2) = C5°(Q2) the space of
C°°-functions with compact support (test functions).

A sequence (¢;); tends to 0 in D(Q) if there exists a compact set K C
such that supp(¢;) C K for every j and

ololg;

Oxyt ... Oxp"
uniformly on K for each a = (aq, ..., ap).
A distribution is a linear functional u on D() such that for every compact
subset K C Q there exists k € Ng = NU {0} and a constant C > 0 with

0%¢(x)
lu(@) < C > sup ’m|»

|a\§kXEK

— 0

for each ¢ € D(Q) with support in K. We denote the space of
distributions on Q by D'(Q).

It is easily seen that u € D'(Q) if and only if u(¢;) — 0 for every sequence
¢;); in D(QQ) converging to 0 in D(Q).
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Let f € L} (), where
L () = {f : Q — Cmeasurable : f |[xc [}(K)VK C Q, K compact}.
The mapping T¢(¢) = [ F(x)d(x) dA(x) , ¢ € D(Q), is a distribution.

Let a € Q and d,(¢ ) := ¢(a), which is the point evaluation in a. The
distribution ¢, is called Dirac delta distribution.

Let o
0 o\«
Dy=— and D=~
k OXy Ox{™t ... oxp"
where o = (aq, ..., p) is a multi-index. The partial derivative of a

distribution u € D'(Q) is defined by
(Du)(¢) := —u(Dk¢), ¢ € D(Q);

higher order mixed derivatives are defined as

(D°u)(¢) == (-1l u(D"¢), ¢ € D(Q).
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This definition stems from integrating by parts:

[@:frsar=— [ F(Dw)dn,

Q

where f € C1(Q2) and ¢ € D(Q).
Let Q ={z € C" : r(z) <0}, where r is a real-valued C*-function with

or or
Vzr.— (821”82”> #O

on b2 = {z : r(z) =0}. Then r is called a defining function for Q.
Without loss of generality we can suppose that |V, r| = |Vr| =1 on bQ.

For u,v € C*(R2) and

(u,v) = /Q u(z)v(z) dA\(2)
we have
(g v) = — (11 vg) + /b @) (@) i (2) do2)

where do is the surface measure on b2.
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This follows from the GauB—Green Theorem: for w C R” we have
[V FR ) = [ (FG.00) do)
w bw

where v(x) = Vr(x) is the normal to bw at x, and F is a C! vector field
on w, and

V.F(x)= 0F;

ox;
=1

For k=1 and F = (uv,0,...,0) one gets

(g V) = — (1 %) + /,, u2)v(2) 1 (2) doz).

similarly one obtains
ou ov —— Or
(pov) == (v )+ | ue)v@ jo@doa). @)
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Let
L%01)(Q) {U—ZUJC/ZJ Ly € L2(Q), 'zl,...,n}
j=1
be the space of (0, 1)-forms with coefficients in L?(Q). For u,v € L(o 1)(Q)
we define the inner product by

n

(U, V) = Z(u_h V_/)
j=1
In this way L(0 1)(Q) becomes a Hilbert space. (0, 1)-forms with compactly
supported C* coefficients are dense in L%o 1)(Q).
Let f € C3°(2) and set

= of
of .= 82 dz;,
j=1
then
Coo () — L%o,l)(Q)-
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9, with C§°(£2) as domain, is a densely defined unbounded operator on

12(Q).

We have to extend the domain to get a densely defined unbounded
operator d with closed graph: the domain dom(d) of @ consists of all
functions f € L2(Q) such that Of, in the sense of distributions, belongs to
L1y(Q), i-e. 9f = g =37, g dZ;, and for each ¢ € C3°(Q2) we have

0P\ — .
fl=— d\=— i dA =1,...,n
L (52) [goar j=1...n ©

For fx € dom(9) and f;1—> f irLL2(Q) and 9fx — g in L%o,l)(Q)7 we have
to show that f € dom(0) and Of = g.
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By Cauchy-Schwarz we have

00\ 00\
-6 (a) A < IF — il | (a) O
which implies that
6\~ . 96 0f;
/Qf<azj) d)\_kl|_>moo/ﬂfk (az) dA = fim (- 1)/¢d)\

- (—1)/ gdd,

which gives f € dom(9) and from (9) we have 9f, — Of in L(0 (), so
we have finally 0f = g
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Unbounded operators

Let Hi, Ha be Hilbert spaces and T : dom(T) — Ha be a densely defined
linear operator, i.e. dom(T) is a dense linear subspace of Hj. Let
dom(T*) be the space of all y € H» such that x — (Tx, y)2 defines a
continuous linear functional on dom(T). Since dom(T) is dense in H;
there exists a uniquely determined element T*y € H; such that

(Tx,¥)2 = (x, T*y)1 . The map y — T*y is linear and

T* :dom(T*) — Hj is the adjoint operator to T.

T is called a closed operator, if the graph

G(T)={(f, TfF) e Hi x Hy : f €dom(T)}

is a closed subspace of Hy x Hs.
The inner product in H; x Hs is

((va)v (U, V)) = (Xv u)l + (yv V)2~

If V is a linear subspace of Hi which contains dom(T) and Tx = Tx for
all x € dom(T) then we say that T is an extension of T.
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Some basic results:
Let T : dom(T) — H, be a densely defined linear operator and define
V : Hi x Hy — Hy x Hy by V((x,y)) = (¥, —x). Then

G(T*) = [V(G(T))]* = V(G(T)):
in particular T* is always closed.

Let T : dom(T) — Ha be a densely defined, closed linear operator. Then
dom(T*) is dense in Hy and T** = T.

Let T : dom(T) — H, be a densely defined linear operator. Then
ker T* = (imT)*, which means that ker T* is closed.

Let T :dom(T) — Ha be a densely defined, closed linear operator. Then
kerT is a closed linear subspace of H;.

For our applications to the O-equation it will be important to know
whether the differential operators involved have closed range or are even
surjective.
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Let T : Hi — H» be a bounded linear operator. T(Hy) is closed if and
only if Tl 7L is bounded from below, i.e.

| TF|| > C||f|| , VFf € (kerT)= .

Let T : Hi — H> be a densely defined closed operator. imT is closed in
Hy if and only if Tqon(7)n(ker)L is bounded from below, i.e.

| TF|| > C|If|| , Vf € dom(T)N (kerT)".

Let T : Hi — H> be a densely defined closed operator. imT is closed if
and only if imT* is closed.

Let T : Hi —> H> be a densely defined closed operator and G a closed
subspace of H, with G D imT. Suppose that T*|dom( T)NG is bounded
from below, i.e. ||f|| < C|| T*f|| for all f € dom(T*)N G, where C >0 is
a constant. Then G =imT.
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In the following we introduce the fundamental concept of an unbounded
self-adjoint operator, which will be crucial for both spectral theory and its
applications to complex analysis.

Let T :dom(T) — H be a densely defined linear operator. T is
symmetric if (Tx,y) = (x, Ty) for all x,y € dom(T). We say that T is
self-adjoint if T is symmetric and dom(T) = dom(T*). This is equivalent
to requiring that T = T* and implies that T is closed.

Let T be a densely defined, symmetric operator.

(i) If dom(T) = H, then T is self-adjoint and T is bounded.

(ii) If T is self-adjoint and injective, then im(T) is dense in H, and T~1is
self-adjoint.

(iii) If im(T) is dense in H, then T is injective.

(iv) If im(T) = H, then T is self-adjoint, and T~ is bounded.
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Let T be a densely defined closed operator, dom(T) C H; and
T :dom(T) — Hy. Then B= (I + T*T)Yand C=T(I +T*T)" ! are

everywhere defined and bounded, ||B|| <1, | C|| <1, in addition B is
self-adjoint and positive, i.e. (Bu,u) >0, for all u € Hj.
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Now we consider the 9-complex

El F]
2(9) 25 By @ LoD 12 @) Lo, (10)

where L(o )(Q) denotes the space of (0, g)-forms on Q with coefficients in
L2(£2). The d-operator on (0, q)-forms is given by

8(2/3_1612_1) ZZ, @dzj/\dZJ, (11)

J j=1 J

where Z/ means that the sum is only taken over strictly increasing
multi-indices J = (j1,...,Jjq)-

The derivatives are taken in the sense of distributions, and the domain of
0 consists of those (0, q)-forms for which the right hand side belongs to

L%O qul)(Q) So O is a densely defined closed operator, and therefore has

an adjoint operator from L(0 +1)(Q) into L%o )(Q) denoted by 8.
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We consider the J-complex

E] E]
L0 0o1)(Q) =5 10 (@) -2 12 11)(Q), (12)
5* 5*

(O7q_1 (07q+1
forl1<g<n-—1.

Theorem

The complex Laplacian [1 = 89" + 0" 9, defined on the domain

dom(0) = {u € L2 )(Q) - u € dom(d) N dom(9"),du € dom(8"), 8" u €

= (0,9
dom(0)} acts as an unbounded, densely defined, closed and self-adjoint
operator on L%O q)(Q), for 1 < g < n, which means that O = [0* and

dom(O) = dom(J*).
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We demonstrate the method for the 9-Neumann problem first in its finite
dimensional analog: let E, F, G denote finite dimensional vector spaces
over C with inner product. We consider an exact sequence of linear maps

NN

which means that imS = kerT, hence TS = 0.

Given f € imS = kerT, we want to solve Su = f with u L kerS, then u
will be called the canonical solution.

For this purpose we investigate

S T
E—F—G
[PoR

and observe that kerT = (imT*)* and ker T* = (imT)*. We claim that
the operator SS* + T*T : F — F is bijective. Let N = (SS* + T*T)~L.
Then

u=S*Nf

is the canonical solution to Su = f.
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We return to the [J-operator on (0, g)-forms and suppose now that Q is a
smoothly bounded pseudoconvex domain in C". It will be shown that

19ul? + 18" ul* > c|lul?, (13)

for each u € dom(d) Ndom(d"), ¢ > 0, (basic estimate).

Aet Q C C" be a smoothly bounded pseudoconvex domain. Then O and
9" have closed range.
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Theorem

Let Q C C" be a smoothly bounded pseudoconvex domain. Then
O: dom(d) — L%o () is bijective and has a bounded inverse

N : Ly (Q) — dom(DJ).
N is called -Neumann*operator. In addition

1
IVull <~ flull (14)
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We consider the embedding
j + dom(d) Ndom(9") — LF (),
where dom(9) N dom(d") is endowed with the graph-norm
u = (|0ul* + |19 u)])/2.
The graph-norm stems from the inner product
Q(u,v) = (u,v)g = (du,v) = (Ju, dv) + (" u, 8" v).

The basic estimates (13) imply that j is a bounded operator with operator
norm

. 1 o
il S\% and N =joj"
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Finally we give a few examples of the so-called Kohn calculus:
The operators

N : L35 () — L{g4:1)(Q) and 0N = Ly (Q) — L 4 1y(Q)

are both bounded.

Let Ny denote the d-Neumann operator on L%qu)(Q). Then

Ng110 = ON,, (15)

on dom(3d) and -
Ng_18" =3 N, (16)

on dom(d").
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The main results are the following

Let a € L%O,q)(Q), with Do = 0. Then ug = & Nya is the canonical

solution of du = o, this means Oug = « and ug L kerd, and

10" Ngar|| < ¢™*/2 et (17)

Theorem

Let P, : L%O q)(Q) — kerd denote the orthogonal projection, which is the
Bergman projection for ¢ = 0. Then
Pg =1~ 8 Ng10, (18)

on dom(0).
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