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Let Ω ⊆ Cn be an open subset and let f : Ω −→ C be a C1-function. We
write zj = xj + iyj and consider for P ∈ Ω the differential

dfP =
n∑

j=1

(
∂f

∂xj
(P) dxj +

∂f

∂yj
(P) dyj

)
.

We use the complex differentials

dzj = dxj + idyj , dz j = dxj − idyj

and the derivatives

∂

∂zj
=

1

2

(
∂

∂xj
− i

∂

∂yj

)
,

∂

∂z j
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
and rewrite the differential dfP in the form

dfP =
n∑

j=1

(
∂f

∂zj
(P) dzj +

∂f

∂z j
(P) dz j

)
= ∂fP + ∂fP .
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A general differential form is given by

ω =
∑

|J|=p,|K |=q

′ aJ,K dzJ ∧ dzK ,

where
∑
|J|=p,|K |=q
′ denotes the sum taken only over all increasing

multiindices J = (j1, . . . , jp), K = (k1, . . . , kq) and

dzJ = dzj1 ∧ · · · ∧ dzjp , dzK = dzk1 ∧ · · · ∧ dzkq .

We call ω a (p, q)-form and we write ω ∈ Ck(p,q)(Ω) if ω is a (p, q)-form

with coefficients belonging to Ck(Ω).
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The derivative dω of ω is defined by

dω =
∑

|J|=p,|K |=q

′ daJ,K ∧ dzJ ∧ dzK =
∑

|J|=p,|K |=q

′ (∂aJ,K + ∂aJ,K )∧ dzJ ∧ dzK ,

and we set

∂ω =
∑

|J|=p,|K |=q

′ ∂aJ,K ∧ dzJ ∧ dzK and ∂ω =
∑

|J|=p,|K |=q

′ ∂aJ,K ∧ dzJ ∧ dzK .

We have d = ∂ + ∂ and since d2 = 0 it follows that

0 = (∂ + ∂) ◦ (∂ + ∂)ω = (∂ ◦ ∂)ω + (∂ ◦ ∂ + ∂ ◦ ∂)ω + (∂ ◦ ∂)ω,

which implies ∂2 = 0 , ∂
2

= 0 and ∂ ◦ ∂ + ∂ ◦ ∂ = 0, by comparing the
types of the differential forms involved.
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Let Ω ⊆ Cn be open. A function f : Ω −→ C is called holomorphic on Ω if
f ∈ C1(Ω) and f satisfies the system of partial differential equations

∂f

∂z j
(z) = 0 for 1 ≤ j ≤ n and z ∈ Ω, (1)

equivalently, if f satisfies ∂f = 0.
Let P = P(a, r) = {ζ ∈ C : |ζ − aj | < rj} be a polydisc in Cn. Suppose
that f ∈ C1(P) and that f is holomorphic on P, i.e. for each z ∈ P and
1 ≤ j ≤ n, the function

ζ 7→ f (z1, . . . , zj−1, ζ, zj+1, . . . , zn)

is holomorphic on P(a, r). Then

f (z) =
1

(2πi)n

∫
γ1

· · ·
∫
γn

f (ζ)

(ζ1 − z1) . . . (ζn − zn)
dζ1 . . . dζn, (2)

for z ∈ P, where γj(t) = aj + rje
it , for t ∈ [0, 2π] and j = 1, . . . , n.
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Let f ∈ H(P(a, r)). Then the Taylor series of f at a converges to f
uniformly on all compact subsets of P(a, r), that is

f (z) =
∑
α∈Nn

0

Dαf (a)

α!
(z − a)α, (3)

for z ∈ P(a, r).
In addition, we get the Cauchy estimates: for f ∈ H(P(a, r)) and
α = (α1, . . . , αn) ∈ Nn

0 : let |α| = α1 + · · ·+ αn and α! = α1! . . . αn!,
furthermore set rα = rα1

1 . . . rαn
n , then

|Dαf (a)| =

∣∣∣∣∣ ∂|α|f

∂zα1
1 . . . ∂zαn

n
(a)

∣∣∣∣∣ ≤ α!

rα
sup{|f (z)| : z ∈ P(a, r)}. (4)
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Let Ω ⊆ Cn be a domain and let

g =
n∑

j=1

gj dz j

be a (0, 1)-form with coefficients gj ∈ C1(Ω), for j = 1, . . . , n. We want to
find a function f ∈ C1(Ω) such that

∂f = g , (5)

in other words
∂f

∂z j
= gj , j = 1, . . . , n. (6)

f is called a solution to the inhomogeneous CR equation ∂f = g .
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Since ∂
2

= 0, a necessary condition for solvability of (5) is that the right
hand side g satisfies ∂g = 0. So, the (0, 2)-form ∂g satisfies

∂g =
n∑

k=1

n∑
j=1

∂gj
∂zk

dzk ∧ dz j = 0,

which means that
∂gj
∂zk

=
∂gk
∂z j

, j , k = 1, . . . , n.

Theorem Let n ≥ 2 and let g =
∑n

j=1 gj dz j be a (0, 1)-form with

coefficients gj ∈ Ck0 (Cn), j = 1, . . . , n, where 1 ≤ k ≤ ∞ and suppose that
∂g = 0. Then there exists f ∈ Ck0 (Cn) such that ∂f = g .

Ck0 (Cn) is the space of Ck -functions with compact support.
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For n = 1 the above theorem is false:
Suppose that

∫
C g(ζ) dλ(ζ) 6= 0 and that there is a compactly supported

solution f of the equation ∂f
∂z = g . Then there exists R > 0 such that

f (ζ) = 0 for |ζ| ≥ R. Applying Stokes’ Theorem we obtain for
γ(t) = Re it , t ∈ [0, 2π]

0 =

∫
γ
f (ζ) dζ

=

∫
DR(0)

∂f

∂ζ
dζ ∧ dζ

= 2i

∫
DR(0)

g(ζ) dλ(ζ)

6= 0,

whenever DR(0) contains the support of g . That is a contradiction.
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Distributions

Let Ω ⊆ Rn be an open subset and D(Ω) = C∞0 (Ω) the space of
C∞-functions with compact support (test functions).
A sequence (φj)j tends to 0 in D(Ω) if there exists a compact set K ⊂ Ω
such that supp(φj) ⊂ K for every j and

∂|α|φj
∂xα1

1 . . . ∂xαn
n
→ 0

uniformly on K for each α = (α1, . . . , αn).
A distribution is a linear functional u on D(Ω) such that for every compact
subset K ⊂ Ω there exists k ∈ N0 = N ∪ {0} and a constant C > 0 with

|u(φ)| ≤ C
∑
|α|≤k

sup
x∈K
| ∂|α|φ(x)

∂xα1
1 . . . ∂xαn

n
|,

for each φ ∈ D(Ω) with support in K . We denote the space of
distributions on Ω by D′(Ω).
It is easily seen that u ∈ D′(Ω) if and only if u(φj)→ 0 for every sequence
(φj)j in D(Ω) converging to 0 in D(Ω).
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Examples

Let f ∈ L1
loc(Ω), where

L1
loc(Ω) = {f : Ω −→ Cmeasurable : f |K∈ L1(K )∀K ⊂ Ω, K compact}.

The mapping Tf (φ) =
∫

Ω f (x)φ(x) dλ(x) , φ ∈ D(Ω), is a distribution.

Let a ∈ Ω and δa(φ) := φ(a), which is the point evaluation in a. The
distribution δa is called Dirac delta distribution.

Let

Dk =
∂

∂xk
and Dα =

∂|α|

∂xα1
1 . . . ∂xαn

n
,

where α = (α1, . . . , αn) is a multi-index. The partial derivative of a
distribution u ∈ D′(Ω) is defined by

(Dku)(φ) := −u(Dkφ), φ ∈ D(Ω);

higher order mixed derivatives are defined as

(Dαu)(φ) := (−1)|α| u(Dαφ), φ ∈ D(Ω).
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This definition stems from integrating by parts:∫
Ω

(Dk f )φ dλ = −
∫

Ω
f (Dkφ) dλ,

where f ∈ C1(Ω) and φ ∈ D(Ω).
Let Ω = {z ∈ Cn : r(z) < 0}, where r is a real-valued C1-function with

∇z r :=

(
∂r

∂z1
, . . . ,

∂r

∂zn

)
6= 0

on bΩ = {z : r(z) = 0}. Then r is called a defining function for Ω.
Without loss of generality we can suppose that |∇z r | = |∇r | = 1 on bΩ.
For u, v ∈ C∞(Ω) and

(u, v) =

∫
Ω
u(z)v(z) dλ(z)

we have

(uxk , v) = −(u, vxk ) +

∫
bΩ

u(z)v(z) rxk (z) dσ(z),

where dσ is the surface measure on bΩ.
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This follows from the Gauß–Green Theorem: for ω ⊆ Rn we have∫
ω
∇ .F (x) dλ(x) =

∫
bω

(F (x), ν(x)) dσ(x),

where ν(x) = ∇r(x) is the normal to bω at x , and F is a C1 vector field
on ω, and

∇ .F (x) =
n∑

j=1

∂Fj
∂xj

.

For k = 1 and F = (uv , 0, . . . , 0) one gets

(ux1 , v) = −(u, vx1) +

∫
bΩ

u(z)v(z) rx1(z) dσ(z),

similarly one obtains(
∂u

∂zk
, v

)
= −

(
u,

∂v

∂zk

)
+

∫
bΩ

u(z) v(z)
∂r

∂zk
(z) dσ(z). (7)
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Let

L2
(0,1)(Ω) :=

{
u =

n∑
j=1

uj dz j : uj ∈ L2(Ω), j = 1, . . . , n

}
be the space of (0, 1)-forms with coefficients in L2(Ω). For u, v ∈ L2

(0,1)(Ω)
we define the inner product by

(u, v) =
n∑

j=1

(uj , vj).

In this way L2
(0,1)(Ω) becomes a Hilbert space. (0, 1)-forms with compactly

supported C∞ coefficients are dense in L2
(0,1)(Ω).

Let f ∈ C∞0 (Ω) and set

∂f :=
n∑

j=1

∂f

∂z j
dz j ,

then
∂ : C∞0 (Ω) −→ L2

(0,1)(Ω).
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∂, with C∞0 (Ω) as domain, is a densely defined unbounded operator on
L2(Ω).

We have to extend the domain to get a densely defined unbounded
operator ∂ with closed graph: the domain dom(∂) of ∂ consists of all
functions f ∈ L2(Ω) such that ∂f , in the sense of distributions, belongs to
L2

(0,1)(Ω), i.e. ∂f = g =
∑n

j=1 gj dz j , and for each φ ∈ C∞0 (Ω) we have∫
Ω
f

(
∂φ

∂zj

)−
dλ = −

∫
Ω
gj φ dλ, j = 1, . . . , n. (8)

For fk ∈ dom(∂) and fk → f in L2(Ω) and ∂fk → g in L2
(0,1)(Ω), we have

to show that f ∈ dom(∂) and ∂f = g .
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By Cauchy-Schwarz we have

|
∫

Ω
(f − fk)

(
∂φ

∂zj

)−
dλ| ≤ ‖f − fk‖2 ‖

(
∂φ

∂zj

)−
‖2, (9)

which implies that

∫
Ω
f

(
∂φ

∂zj

)−
dλ = lim

k→∞

∫
Ω
fk

(
∂φ

∂zj

)−
dλ = lim

k→∞
(−1)

∫
Ω

∂fk
∂z j

φ dλ

= (−1)

∫
Ω
gjφ dλ,

which gives f ∈ dom(∂) and from (9) we have ∂fk → ∂f in L2
(0,1)(Ω), so

we have finally ∂f = g .
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Unbounded operators

Let H1,H2 be Hilbert spaces and T : dom(T ) −→ H2 be a densely defined
linear operator, i.e. dom(T ) is a dense linear subspace of H1. Let
dom(T ∗) be the space of all y ∈ H2 such that x 7→ (Tx , y)2 defines a
continuous linear functional on dom(T ). Since dom(T ) is dense in H1

there exists a uniquely determined element T ∗y ∈ H1 such that
(Tx , y)2 = (x ,T ∗y)1 . The map y 7→ T ∗y is linear and
T ∗ : dom(T ∗) −→ H1 is the adjoint operator to T .
T is called a closed operator, if the graph

G(T ) = {(f ,Tf ) ∈ H1 × H2 : f ∈ dom(T )}

is a closed subspace of H1 × H2.
The inner product in H1 × H2 is

((x , y), (u, v)) = (x , u)1 + (y , v)2.

If Ṽ is a linear subspace of H1 which contains dom(T ) and T̃ x = Tx for
all x ∈ dom(T ) then we say that T̃ is an extension of T .
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Some basic results:
Let T : dom(T ) −→ H2 be a densely defined linear operator and define
V : H1 × H2 −→ H2 × H1 by V ((x , y)) = (y ,−x). Then

G(T ∗) = [V (G(T ))]⊥ = V (G(T )⊥);

in particular T ∗ is always closed.

Let T : dom(T ) −→ H2 be a densely defined, closed linear operator. Then
dom(T ∗) is dense in H2 and T ∗∗ = T .

Let T : dom(T ) −→ H2 be a densely defined linear operator. Then
kerT ∗ = (imT )⊥, which means that kerT ∗ is closed.

Let T : dom(T ) −→ H2 be a densely defined, closed linear operator. Then
kerT is a closed linear subspace of H1.

For our applications to the ∂-equation it will be important to know
whether the differential operators involved have closed range or are even
surjective.
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Let T : H1 −→ H2 be a bounded linear operator. T (H1) is closed if and
only if T |(kerT )⊥ is bounded from below, i.e.

‖Tf ‖ ≥ C‖f ‖ , ∀f ∈ (kerT )⊥.

Let T : H1 −→ H2 be a densely defined closed operator. imT is closed in
H2 if and only if T |dom(T )∩(kerT )⊥ is bounded from below, i.e.

‖Tf ‖ ≥ C‖f ‖ , ∀f ∈ dom(T ) ∩ (kerT )⊥.

Let T : H1 −→ H2 be a densely defined closed operator. imT is closed if
and only if imT ∗ is closed.

Let T : H1 −→ H2 be a densely defined closed operator and G a closed
subspace of H2 with G ⊇ imT . Suppose that T ∗|dom(T∗)∩G is bounded
from below, i.e. ‖f ‖ ≤ C‖T ∗f ‖ for all f ∈ dom(T ∗) ∩ G , where C > 0 is
a constant. Then G = imT .
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In the following we introduce the fundamental concept of an unbounded
self-adjoint operator, which will be crucial for both spectral theory and its
applications to complex analysis.

Let T : dom(T ) −→ H be a densely defined linear operator. T is
symmetric if (Tx , y) = (x ,Ty) for all x , y ∈ dom(T ). We say that T is
self-adjoint if T is symmetric and dom(T ) = dom(T ∗). This is equivalent
to requiring that T = T ∗ and implies that T is closed.

Let T be a densely defined, symmetric operator.
(i) If dom(T ) = H, then T is self-adjoint and T is bounded.
(ii) If T is self-adjoint and injective, then im(T ) is dense in H, and T−1 is
self-adjoint.
(iii) If im(T ) is dense in H, then T is injective.
(iv) If im(T ) = H, then T is self-adjoint, and T−1 is bounded.
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Theorem

Let T be a densely defined closed operator, dom(T ) ⊆ H1 and
T : dom(T ) −→ H2. Then B = (I + T ∗T )−1 and C = T (I + T ∗T )−1 are
everywhere defined and bounded, ‖B‖ ≤ 1, ‖C‖ ≤ 1; in addition B is
self-adjoint and positive, i.e. (Bu, u) > 0, for all u ∈ H1.
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Now we consider the ∂-complex

L2(Ω)
∂−→ L2

(0,1)(Ω)
∂−→ . . .

∂−→ L2
(0,n)(Ω)

∂−→ 0 , (10)

where L2
(0,q)(Ω) denotes the space of (0, q)-forms on Ω with coefficients in

L2(Ω). The ∂-operator on (0, q)-forms is given by

∂

(∑
J

′
aJ dzJ

)
=

n∑
j=1

∑
J

′ ∂aJ
∂z j

dz j ∧ dzJ , (11)

where
∑′

means that the sum is only taken over strictly increasing
multi-indices J = (j1, . . . , jq).
The derivatives are taken in the sense of distributions, and the domain of
∂ consists of those (0, q)-forms for which the right hand side belongs to
L2

(0,q+1)(Ω). So ∂ is a densely defined closed operator, and therefore has

an adjoint operator from L2
(0,q+1)(Ω) into L2

(0,q)(Ω) denoted by ∂
∗
.
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We consider the ∂-complex

L2
(0,q−1)(Ω)

∂−→
←−
∂
∗

L2
(0,q)(Ω)

∂−→
←−
∂
∗

L2
(0,q+1)(Ω), (12)

for 1 ≤ q ≤ n − 1.

Theorem

The complex Laplacian � = ∂ ∂
∗

+ ∂
∗
∂, defined on the domain

dom(�) = {u ∈ L2
(0,q)(Ω) : u ∈ dom(∂) ∩ dom(∂

∗
), ∂u ∈ dom(∂

∗
), ∂
∗
u ∈

dom(∂)} acts as an unbounded, densely defined, closed and self-adjoint
operator on L2

(0,q)(Ω), for 1 ≤ q ≤ n, which means that � = �∗ and

dom(�) = dom(�∗).
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We demonstrate the method for the ∂-Neumann problem first in its finite
dimensional analog: let E ,F ,G denote finite dimensional vector spaces
over C with inner product. We consider an exact sequence of linear maps

E
S−→ F

T−→ G ,

which means that imS = kerT , hence TS = 0.
Given f ∈ imS = kerT , we want to solve Su = f with u ⊥ kerS , then u
will be called the canonical solution.
For this purpose we investigate

E
S−→
←−
S∗

F
T−→
←−
T∗

G

and observe that kerT = (imT ∗)⊥ and kerT ∗ = (imT )⊥. We claim that
the operator SS∗ + T ∗T : F −→ F is bijective. Let N = (SS∗ + T ∗T )−1.
Then

u = S∗Nf

is the canonical solution to Su = f .
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We return to the �-operator on (0, q)-forms and suppose now that Ω is a
smoothly bounded pseudoconvex domain in Cn. It will be shown that

‖∂u‖2 + ‖∂∗u‖2 ≥ c ‖u‖2, (13)

for each u ∈ dom(∂) ∩ dom(∂
∗
), c > 0, (basic estimate).

Theorem

Let Ω ⊂ Cn be a smoothly bounded pseudoconvex domain. Then ∂ and
∂
∗

have closed range.
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Theorem

Let Ω ⊂ Cn be a smoothly bounded pseudoconvex domain. Then
� : dom(�) −→ L2

(0,q)(Ω) is bijective and has a bounded inverse

N : L2
(0,q)(Ω) −→ dom(�).

N is called ∂-Neumann1operator. In addition

‖Nu‖ ≤ 1

c
‖u‖. (14)

Several complex variables Vienna, February 2025 26 / 29



We consider the embedding

j : dom(∂) ∩ dom(∂
∗
) −→ L2

(0,q)(Ω),

where dom(∂) ∩ dom(∂
∗
) is endowed with the graph-norm

u 7→ (‖∂u‖2 + ‖∂∗u‖2)1/2.

The graph-norm stems from the inner product

Q(u, v) = (u, v)Q = (�u, v) = (∂u, ∂v) + (∂
∗
u, ∂

∗
v).

The basic estimates (13) imply that j is a bounded operator with operator
norm

‖j‖ ≤ 1√
c

and N = j ◦ j∗.
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Finally we give a few examples of the so-called Kohn calculus:
The operators

∂N : L2
(0,q)(Ω) −→ L2

(0,q+1)(Ω) and ∂
∗
N : L2

(0,q)(Ω) −→ L2
(0,q−1)(Ω)

are both bounded.

Let Nq denote the ∂-Neumann operator on L2
(0,q)(Ω). Then

Nq+1∂ = ∂Nq, (15)

on dom(∂) and
Nq−1∂

∗
= ∂

∗
Nq, (16)

on dom(∂
∗
).
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The main results are the following

Theorem

Let α ∈ L2
(0,q)(Ω), with ∂α = 0. Then u0 = ∂

∗
Nqα is the canonical

solution of ∂u = α, this means ∂u0 = α and u0⊥ ker ∂, and

‖∂∗Nqα‖ ≤ c−1/2 ‖α‖. (17)

Theorem

Let Pq : L2
(0,q)(Ω) −→ ker∂ denote the orthogonal projection, which is the

Bergman projection for q = 0. Then

Pq = I − ∂∗Nq+1∂, (18)

on dom(∂).
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