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Abstract. The main aim of the present work is to arrive at a mathematical

theory close to the historically original conception of generalized functions,
i.e. set theoretical functions defined on, and with values in, a suitable ring of

scalars and sharing a number of fundamental properties with smooth functions,

in particular with respect to composition and nonlinear operations. This is how
they are still used in informal calculations in Physics. We introduce a category

of generalized functions as smooth set-theoretical maps on (multidimensional)

points of a ring of scalars containing infinitesimals and infinities. This category
extends Schwartz distributions. The calculus of these generalized functions is

closely related to classical analysis, with point values, composition, non-linear

operations and the generalization of several classical theorems of calculus. Fi-
nally, we extend this category of generalized functions into a Grothendieck

topos of sheaves over a concrete site. This topos hence provides a suitable
framework for the study of spaces and functions with singularities. In this

first paper, we present the basic theory; subsequent ones will be devoted to

the resulting theory of ODE and PDE.

Contents

1. Introduction: foundations of generalized functions as set-theoretical
maps 2

2. The ring of scalars and its topologies 4

2.1. Topologies on R̃n 7
2.2. Open, closed and bounded sets generated by nets 9
3. Generalized functions as smooth set-theoretical maps 12
4. Embedding of Schwartz distributions 16
5. Differential calculus and the Fermat-Reyes theorem 27
6. Integral calculus using primitives 31
7. Some classical theorems for generalized smooth functions 34
8. Multidimensional integration and hyperlimits 40
8.1. Integration over functionally compact sets 41
8.2. Hyperfinite limits 44
8.3. Properties of multidimensional integral 46

2020 Mathematics Subject Classification. 46-XX, 46Fxx, 30Gxx, 46Txx, 46F30, 26E30, 58A03.
Key words and phrases. Generalized functions, Nonlinear functional analysis, Non-

Archimedean analysis, Topos.
P. Giordano has been supported by grants P30407, P33538, P34113, P30233, P25311, P25116

and P26859 of the Austrian Science Fund FWF.

M. Kunzinger has been supported by grant P30233 of the Austrian Science Fund FWF.
H. Vernaeve has been supported by grant 1.5.129.18N of the Research Foundation Flanders

FWO.

1



2 PAOLO GIORDANO, MICHAEL KUNZINGER, AND HANS VERNAEVE

9. Sheaf properties 49
9.1. The Lebesgue generalized number 51
9.2. The dynamic compatibility condition 52
9.3. Proof of the sheaf property 53
10. The Grothendieck topos of generalized smooth functions 56
10.1. Coverages, sheaves and sites 56
10.2. The category of glueable functions 58
10.3. Coverage of glueable functions 60
10.4. The sheaf of glueable functions 61
10.5. Concrete sites and generalized diffeological spaces 62
11. Conclusions and future perspectives 64
References 65

1. Introduction: foundations of generalized functions as
set-theoretical maps

The aim of the present work is to lay the foundations for a new approach to the
theory of generalized functions, so-called generalized smooth functions (GSF). In
developing such a theory, various objectives can be pursued, and our motivations
mainly come from applications in mathematical physics and nonlinear singular dif-
ferential equations, where the need for such a nonlinear theory is well-known (see,
e.g., [47, 110, 52, 17, 8, 91, 81, 11, 48] for applications in mathematical physics,
[106, 105, 53, 27, 50, 17] for differential equations, and references therein).

In particular, our aim is to arrive at a mathematical theory close to the histori-
cally original conception of generalized function, [20, 73, 60]: in essence, the idea of
authors such as Dirac, Cauchy, Poisson, Kirchhoff, Helmholtz, Kelvin and Heavi-
side (who informally worked with “numbers” which also comprise infinitesimals and
infinite scalars) was to view generalized functions as certain types of smooth set-
theoretical maps obtained from ordinary smooth maps by introducing a dependence
on suitable infinitesimal or infinite parameters. We call this idea the Cauchy-Dirac
approach to generalized functions. For example, the density of a Cauchy-Lorentz
distribution with an infinitesimal scale parameter was used by Cauchy to obtain
classical properties which nowadays are attributed to the Dirac delta, [60]. More
generally, in the GSF approach, generalized functions are seen as set-theoretical
functions defined on, and attaining values in, a suitable non-Archimedean ring of
scalars containing infinitesimals and infinities, as well as sharing essential proper-
ties of ordinary smooth functions. In the present work, we will develop this point
of view, and prove that it generalizes the mentioned Cauchy-Dirac approach. In
our view, the main benefits of this theory lie in a clarification of a number of
foundational issues in the theory of generalized functions, namely:

(i) GSF include all Schwartz distributions, see Thm. 25, and Colombeau gener-
alized functions, see [43].

(ii) They allow nonlinear operations on generalized functions, Sec. 3, and to com-
pose them unrestrictedly, Thm. 28.

(iii) GSF are simpler than standard approaches as they allow us to treat general-
ized functions more closely to classical smooth functions. In particular, they
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allow us to prove a number of analogues of fundamental theorems of classi-
cal analysis: e.g., mean value theorem, intermediate value theorem, extreme
value theorem, Taylor’s theorem, see Sec. 7, local and global inverse function
theorem, [42], integrals via primitives, Sec. 6, multidimensional integrals,
Sec. 8, theory of compactly supported functions, [41]. Therefore, this ap-
proach to generalized functions results in a flexible and rich framework which
allows both the formalization of calculations appearing in physics and the
development of new applications in mathematics and mathematical physics.

(iv) Several results of the classical theory of calculus of variations can be de-
veloped for GSF: the fundamental lemma, second variation and minimizers,
higher order Euler-Lagrange equations, D’Alembert principle in differential
form, a weak form of the Pontryagin maximum principle, necessary Legendre
condition, Jacobi fields, conjugate points and Jacobi’s theorem, Noether’s
theorem, see [75, 28].

(v) The closure with respect to composition leads to a solution concept of differ-
ential equations close to the classical one. In the second and third article of
this series, we will introduce a non-Archimedean version of the Banach fixed
point theorem that is well suited for spaces of GSF, a Picard-Lindelöf theorem
for both ODE and PDE, results about the maximal set of existence, Gron-
wall theorem, flux properties, continuous dependence on initial conditions,
full compatibility with classical smooth solutions, etc., see [77, 44].

Moreover, we think that a satisfactory theory of generalized functions as used in
mathematical physics should also provide an extension to function spaces, possibly
in a Cartesian closed category or, better, in a topos. The use of a Cartesian closed
category as a useful framework for mathematics and mathematical physics can be
motivated in several ways:

(i) It is well known that a non trivial problem of the category Man of smooth
manifolds is the absence of closure properties with respect to interesting cat-
egorical operations such as the construction of function spaces Man(M,N),
subspaces, equalizers, etc., see [7, 9, 14, 30, 37, 38, 58, 72, 62, 74, 82, 107,
108, 109]. The search for a Cartesian closed category embedding Man is the
most widespread approach to solving this problem.

(ii) In physics, the necessity to use infinite-dimensional spaces frequently appears.
A classical example is the space Man(M,N) of all smooth mappings between
two smooth manifolds M and N , or some of its subspaces, e.g. the space of
all the diffeomorphisms of a smooth manifold. Typically, we are interested
in infinite dimensional Lie groups, because they appear, e.g., in the study of
both compressible and incompressible fluids, in magnetohydrodynamics, in
plasma-dynamics or in electrodynamics (see e.g. [2] and references therein).
It is also well established (see e.g. [30, 37, 34]) that Cartesian closedness is a
desirable condition in the calculus of variations.

(iii) The convenient setting, [72, 30], is the most advanced theory of smooth spaces
extending the theory of Banach manifolds. Some applications of this notion to
classical field theory can be found in [1]. In addition, several other approaches
to a new notion of smooth space have been motivated by problems of physics.
For example, the notion of diffeological space has been used in [107, 108, 109],
starting also from a variant of [14], to study quantization of coadjoint orbits
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in infinite dimensional groups of diffeomorphisms. Diffeological spaces form
a Cartesian closed, complete, co-complete quasi-topos, [58, 7, 64].

For these reasons, we close this work by embedding our category of generalized
functions into a Grothendieck topos, see Sec. 10.

Finally, a theory of generalized functions for mathematical physics frequently
appears coupled with a theory of actual infinitesimals and infinities (see e.g. [56,
64, 63, 50]). This is natural, since informal descriptions of these functions used in
many calculations in physics employ a language including infinitesimals or infinities.
Historically, it has turned out that approaches requiring a substantial background
knowledge in mathematical logic are only reluctantly accepted by some physicists
and mathematicians. Therefore, even if sometimes they appear less powerful, the-
ories that do not need such knowledge ([35, 101, 15]) are more easily accepted. In
the following section, we introduce the non-Archimedean ring of scalars in a very
natural way, without requiring any notions from mathematical logic or ultrafilter
set theory.

The structure of the paper is as follows: we first introduce the new ring of scalars
and its natural topology in Sec. 2; in Sec. 3 we define the notion of GSF and prove
that GSF are always continuous; we present the embedding of Schwartz distribu-
tions and prove the closure of GSF with respect to composition (e.g. we study and
graphically represent δ ◦ δ); in Sec. 5, 6, 7 we study the differential calculus, the (1-
dimensional) integral calculus, and several related classical theorems. In Sec. 8, we
introduce multidimensional integration, with related convergence theorems. Sheaf
properties for GSF defined on different types of domains are proved in Sec. 9: they
e.g. allow one to glue GSF defined on infinitesimal domains to get a global GSF de-
fined on a finite or even on an unbounded domain. Finally, in Sec. 10 we construct
the Grothendieck topos of generalized functions, including a full introduction of
all the necessary preliminaries. Throughout the paper, several theorems will treat
the connections of notions related to GSF to the corresponding classical notions, in
case the latter can at least be formulated. Even if other papers about GSF already
appeared in the literature (see [43, 42, 75]), this is the first one where all these basic
results (and several others) are presented with the related proofs.

The paper is completely self-contained: only a basic knowledge of Schwartz dis-
tribution theory and the concepts of category, functor and natural transformation
are needed.

2. The ring of scalars and its topologies

Exactly as real numbers can be seen as equivalence classes of sequences (qn)n∈N

of rationals1, it is very natural to consider a non-Archimedean extension of R defined
by a quotient ring R/ ∼, where R ⊆ RI . Here R is a subalgebra of nets (xε)ε∈I ∈
RI defined on a directed set (I,≤), and with pointwise algebraic operations. For
simplicity and for historical reasons, instead of I = N, we consider I := (0, 1],
corresponding to ε → 0+, ε ∈ I, but any other directed set can be used instead of
I. In this work, we will denote ε-dependent nets simply by (xε) := (xε)ε∈I , and
the corresponding equivalence class simply by [xε] := [(xε)]∼ ∈ R/ ∼. We aim

at constructing the quotient ring R̃ := R/ ∼ so that it contains infinitesimals and
infinities. The following observation points to a natural way of achieving this goal.

1In the naturals N = {0, 1, 2, . . .} we include zero.
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Let us assume that [zε] = 0 ∈ R̃ and [Jε] ∈ R̃ is generated by an infinite net (Jε),
i.e. such that limε→0+ |Jε| = +∞. Then we would have

[zε] · [Jε] = 0 · [Jε] = 0

= [zε · Jε]. (2.1)

Finally, let us assume that

∀[wε] ∈ R̃ : [wε] = 0 ⇒ lim
ε→0+

wε = 0. (2.2)

Under these assumptions, (2.1) yields limε→0+ zε · Jε = 0, and hence

∃ε0 ∈ I ∀ε ∈ (0, ε0] : |zε| ≤
∣∣J−1
ε

∣∣ . (2.3)

Consequently, the nets (zε) representing 0, i.e. such that (zε) ∼ 0, must be domi-

nated by the reciprocals of every infinite number [Jε] ∈ R̃. It is not hard to prove
that if every infinite net (Jε) is in the subalgebra R, then (2.3) implies that the
equivalence relation ∼ must be trivial:

∃ε0 ∈ I ∀ε ∈ (0, ε0] : zε = 0. (2.4)

This situation corresponds to the Schmieden-Laugwitz model, [104].
If we do not want to have the trivial model (2.4), we can hence either negate the

natural property (2.2) (this is the case of nonstandard analysis; see [18] for more

details) or to restrict the class of all the nets (Jε) generating infinite numbers in R̃.
Since we want to start from a subalgebra R ⊆ RI , a first natural idea is to consider
the following class of infinite nets

I :=
{

(ε−a) | a ∈ R>0

}
. (2.5)

and hence to consider the subalgebra R ⊆ RI containing nets (bε) ∈ RI bounded
by some (Jε) ∈ I. This idea is generalized in the following definition, where we
take exactly (2.3) as the widest possible definition of (zε) ∼ 0:

Definition 1. Let ρ = (ρε) ∈ (0, 1]I be a net such that (ρε) → 0 as ε→ 0+ (in the
following, such a net will be called a gauge). Then

(i) I(ρ) := {(ρ−aε ) | a ∈ R>0} is called the asymptotic gauge generated by ρ.
(ii) If P(ε) is a property of ε ∈ I, we use the notation ∀0ε : P(ε) to denote

∃ε0 ∈ I ∀ε ∈ (0, ε0] : P(ε). We can read ∀0ε as “for ε small”.
(iii) We say that a net (xε) ∈ RI is ρ-moderate, and we write (xε) ∈ Rρ if

∃(Jε) ∈ I(ρ) : xε = O(Jε) as ε→ 0+,

i.e., if

∃N ∈ N ∀0ε : |xε| ≤ ρ−Nε .

(iv) Let (xε), (yε) ∈ RI . Then we say that (xε) ∼ρ (yε) if

∀(Jε) ∈ I(ρ) : xε = yε +O(J−1
ε ) as ε→ 0+,

that is if

∀n ∈ N ∀0ε : |xε − yε| ≤ ρnε .

This is a congruence relation on the ring Rρ of moderate nets with respect to
pointwise operations, and we can hence define

ρR̃ := Rρ/ ∼ρ,
which we call Robinson-Colombeau ring of generalized numbers, [93, 15].
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(v) In particular, if the gauge ρ = (ρε) is non-decreasing, then we say that ρ is a
monotonic gauge. Clearly, considering a monotonic gauge narrows the class
of moderate nets: e.g. if limε→ 1

k
xε = +∞ for all k ∈ N>0, then (xε) /∈ Rρ for

any monotonic gauge ρ.

In the following, ρ will always denote a net as in Def. 1, even if we will sometimes
omit the dependence on the infinitesimal ρ, when this is clear from the context. We
will see below that we can choose ρ e.g. depending on the class of differential
equations we need to solve for the generalized functions we are going to introduce.

We can also define an order relation on ρR̃ by writing [xε] ≤ [yε] if there exists
(zε) ∈ RI such that (zε) ∼ρ 0 (we then say that (zε) is ρ-negligible) and xε ≤ yε+zε
for ε small. Equivalently, we have that x ≤ y if and only if there exist representatives
[xε] = x and [yε] = y such that xε ≤ yε for all ε. The following result follows directly
from the previous definitions:

Theorem 2. ρR̃ is a partially ordered ring. The real numbers r ∈ R are embedded

in ρR̃ by viewing them as constant nets [r] ∈ ρR̃.

Although the order ≤ is not total, we still have the possibility to define the
infimum [xε] ∧ [yε] := [min(xε, yε)], and analogously the supremum function [xε] ∨
[yε] := [max(xε, yε)] and the absolute value |[xε]| := [|xε|] ∈ ρR̃. Henceforth, we will

also use the customary notation ρR̃∗ for the set of invertible generalized numbers.
As in every non-Archimedean ring, we have the following

Definition 3. Let x ∈ ρR̃ be a generalized number. Then

(i) x is infinitesimal if |x| ≤ r for all r ∈ R>0. If x = [xε], this is equivalent
to limε→0+ xε = 0. We write x ≈ y if x − y is infinitesimal, and D∞ :={
h ∈ ρR̃ | h ≈ 0

}
for the set of all infinitesimals.

(ii) x is infinite if |x| ≥ r for all r ∈ R>0. If x = [xε], this is equivalent to
limε→0+ |xε| = +∞.

(iii) x is finite if |x| ≤ r for some r ∈ R>0.

For example, setting dρ := [ρε] ∈ ρR̃, we have that dρn ∈ ρR̃, n ∈ N>0, is an
invertible infinitesimal, whose reciprocal is dρ−n = [ρ−nε ], which is necessarily a

positive infinite number. Of course, in the ring ρR̃ there exist generalized numbers
which are not in any of the three classes of Def. 3, like e.g. xε = 1

ε sin
(
1
ε

)
.

Definition 4.

(i) If P {(xε)} is a property of (xε) ∈ Rnρ , then we also use the abbreviations:

∀[xε] ∈ X : P {(xε)} : ⇐⇒ ∀(xε) ∈ Rnρ : [xε] ∈ X ⇒ P {(xε)}
∃[xε] ∈ X : P {(xε)} : ⇐⇒ ∃(xε) ∈ Rnρ : [xε] ∈ X, P {(xε)} .

For example, if X = {x} ⊆ ρR̃n, then ∀[xε] = x : P {(xε)} means that the
property holds for all representatives of x, and ∃[xε] = x : P {(xε)} means
that the same property holds for some representative of x.

(ii) Our notations for intervals are: [a, b] := {x ∈ ρR̃ | a ≤ x ≤ b}, [a, b]R := [a, b]∩
R, and analogously for segments [x, y] := {x+ r · (y − x) | r ∈ [0, 1]} ⊆ ρR̃n

and [x, y]Rn = [x, y] ∩ Rn.
(iii) For subsets J,K ⊆ I we write K ⊆0 J if 0 is an accumulation point of K and

K ⊆ J (we read it as: K is co-final in J). For any J ⊆0 I, the constructions
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introduced so far can be repeated with nets (xε)ε∈J . We indicate this by

using the symbol ρR̃n|J . If K ⊆0 J , x ∈ ρR̃n|J and x′ ∈ ρR̃n|K , then x′

is called a subpoint of x, denoted as x′ ⊆ x, if there exist representatives
(xε)ε∈J , (x′ε)ε∈K of x, x′ such that x′ε = xε for all ε ∈ K. In this case we

write x′ = x|K , dom(x′) := K, and the restriction (−)|K : ρR̃n −→ ρR̃n|K is a

well defined operation. In general, for X ⊆ ρR̃n we set X|J := {x|J ∈ ρR̃n|J |
x ∈ X}. Finally note that(

¬∀0ε : P {xε}
)

⇐⇒ ∃J ⊆0 I ∀ε ∈ J : ¬P {xε} .

2.1. Topologies on ρR̃n. On the ρR̃-module ρR̃n we can consider the natural ex-

tension of the Euclidean norm, i.e. |[xε]| := [|xε|] ∈ ρR̃, where [xε] ∈ ρR̃n. Even if

this generalized norm takes values in ρR̃, it shares some essential properties with
classical norms:

|x| = x ∨ (−x)

|x| ≥ 0

|x| = 0 ⇒ x = 0

|y · x| = |y| · |x|
|x+ y| ≤ |x| + |y|
||x| − |y|| ≤ |x− y|.

It is therefore natural to consider on ρR̃n topologies generated by balls defined by
this generalized norm and a set of radii:

Definition 5. We say that R is a set of radii if

(i) R ⊆ ρR̃∗
≥0 is a non-empty subset of positive invertible generalized numbers.

(ii) For all r, s ∈ R the infimum r ∧ s ∈ R.
(iii) k · r ∈ R for all r ∈ R and all k ∈ R>0.

Moreover, if R is a set of radii and x, y ∈ ρR̃, then:

(iv) We write x <R y if ∃r ∈ R : r ≤ y − x.

(v) BR
r (x) :=

{
y ∈ ρR̃n | |y − x| <R r

}
for any r ∈ R.

(vi) BE
ρ (x) := {y ∈ Rn | |y − x| < ρ}, for any ρ ∈ R>0, denotes an ordinary

Euclidean ball in Rn.

For example, ρR̃∗
≥0 and R>0 are sets of radii.

Lemma 6. Let R be a set of radii and x, y, z ∈ ρR̃. Then

(i) ¬ (x <R x).
(ii) x <R y and y <R z imply x <R z.
(iii) ∀r ∈ R : 0 <R r.

Proof. (i): x <R x would imply r ≤ 0 for some r ∈ R ⊆ ρR̃∗
≥0. But then r−1r =

1 ≤ 0.
(ii): If r ≤ y − x and s ≤ z − y for r, s ∈ R, then 2(r ∧ s) ≤ r + s ≤ z − x.
(iii): In fact, we have 0 <R r if and only if s ≤ r for some s ∈ R. □

The relation <R has better topological properties as compared to the usual strict
order relation x ≤ y and x ̸= y (a relation that we will therefore never use) because
of the following result:
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Theorem 7. The set of balls
{
BR
r (x) | r ∈ R, x ∈ ρR̃n

}
generated by a set of radii

R is a base for a topology on ρR̃n.

Proof. It suffices to consider z ∈ BR
r (x) ∩ BR

s (y) and to prove that BR
ν (z) ⊆

BR
r (x) ∩ BR

s (y) for some ν ∈ R. The proof is essentially a reformulation of the
classical proof in metric spaces. In fact, we have r̄ ≤ r− |x− z| and s̄ ≤ s− |y− z|
for some r̄, s̄ ∈ R. Set ν := r̄ ∧ s̄ ∈ R. The inequality |w − z| <R ν implies
σ ≤ ν−|w−z| for some σ ∈ R. Therefore, |w−x| ≤ |w−z|+ |z−x| ≤ ν−σ+r− r̄
and thereby σ ≤ r̄ + σ − ν ≤ r − |w − x|, i.e. |w − x| <R r. This proves that
BR
ν (z) ⊆ BR

r (x), and the other inclusion follows analogously. □

Henceforth, we will only consider the sets of radii ρR̃∗
≥0 and R>0. The topology

generated in the former case is called sharp topology, whereas the latter is called
Fermat topology. We will call sharply open set any open set in the sharp topology,
and large open set any open set in the Fermat topology; clearly, the latter is coarser

than the former. Let us note explicitly that taking an infinitesimal radius r ∈ ρR̃∗
≥0

we can consider infinitesimal neighborhoods of x ∈ ρR̃n in the sharp topology. Of
course, this is not possible in the Fermat topology. The existence of infinitesimal
neighborhoods implies that the sharp topology induces the discrete topology on
R, see [40]. The necessity to consider infinitesimal neighborhoods occurs in any
theory containing continuous generalized functions which have infinite derivatives.
Indeed, from the mean value theorem Thm. 49(i) below, we have f(x) − f(x0) =
f ′(c) · (x − x0) for some c ∈ [x, x0]. Therefore, we have f(x) ∈ Br(f(x0)), for a

given r ∈ ρR̃>0, if and only if |x − x0| · |f ′(c)| < r, which yields an infinitesimal
neighborhood of x0 in case f ′(c) is infinite; see [40, 41] for precise statements
and proofs corresponding to this intuition. By an innocuous abuse of language,
we write x < y instead of x <ρR̃∗

≥0
y and x <R y instead of x <R>0 y. For

example, ρR̃∗
≥0 = ρR̃>0. We will simply write Br(x) to denote an open ball in the

sharp topology and BF
r (x) for an open ball in the Fermat topology. Proceeding by

contradiction, it is not difficult to prove that the sharp topology on ρR̃n is Hausdorff
and that the set of all the infinitesimals D∞ is a clopen set; moreover, as will be
proved more generally in [77], this topology is also Cauchy complete.

The following result is useful in dealing with positive and invertible generalized
numbers.

Lemma 8. Let x ∈ ρR̃. Then the following are equivalent:

(i) x is invertible and x ≥ 0, i.e. x > 0.
(ii) For each representative (xε) ∈ Rρ of x we have ∀0ε : xε > 0.
(iii) For each representative (xε) ∈ Rρ of x we have ∃m ∈ N ∀0ε : xε > ρmε .
(iv) There exists a representative (xε) ∈ Rρ of x such that ∃m ∈ N ∀0ε : xε > ρmε .

Proof. (i) ⇒ (ii): Since x is positive, we can find a representative [xε] = x such that
xε ≥ 0 for all ε. But x is also invertible, so for all ε we can also write xεyε = 1 + zε,
where (zε) ∼ρ 0 is a negligible net. By contradiction, assume that xεk ≤ 0 for each
k ∈ N, where (εk)k∈N → 0+. Then xεk = 0 and hence xεkyεk = 0 = 1 + zεk → 1 for
k → +∞, which is a contradiction.
(ii) ⇒ (iii): Assume that there exists a representative [xε] = x such that xεk ≤ ρkεk
for each k ∈ N, where (εk)k∈N → 0+ monotonically. We then define a ρ-moderate
net by x̂ε := 0 if ε = εk and x̂ε := xε otherwise. For each n ∈ N, if k is sufficiently
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big, we have |xεk − x̂εk | ≤ ρkεk ≤ ρnεk . This implies that (xε) ∼ρ (x̂ε). Therefore
(x̂ε) is another representative of x, which contradicts (ii) by construction.
(iii) ⇒ (i): By assumption, limε→0+ ρε = 0+. This and (iii) yield that xε > ρmε > 0
for ε small, say for ε ≤ ε0. Therefore, 0 < yε := x−1

ε ≤ ρ−mε for ε ≤ ε0 (and yε
arbitrarily defined elsewhere) is ρ-moderate and hence it is a representative of the
inverse of x.

Finally, (iii) implies (iv) for logical reasons, and (iv) implies (i) because ρε >
0. □

2.2. Open, closed and bounded sets generated by nets. A natural way to

obtain sharply open, closed and bounded sets in ρR̃n is by using a net (Aε) of
subsets Aε ⊆ Rn. We have two ways of extending the membership relation xε ∈ Aε
to generalized points [xε] ∈ ρR̃n (cf. [87, 43]):

Definition 9. Let (Aε) be a net of subsets of Rn. Then

(i) [Aε] :=
{

[xε] ∈ ρR̃n | ∀0ε : xε ∈ Aε

}
is called the internal set generated by

the net (Aε).
(ii) Let (xε) be a net of points of Rn. Then we say that xε ∈ε Aε, and we read it

as (xε) strongly belongs to (Aε), if
(a) ∀0ε : xε ∈ Aε.
(b) If (x′ε) ∼ρ (xε), then also x′ε ∈ Aε for ε small.

Moreover, we set ⟨Aε⟩ :=
{

[xε] ∈ ρR̃n | xε ∈ε Aε
}

, and we call it the strongly

internal set generated by the net (Aε).
(iii) We say that the internal set K = [Aε] is sharply bounded if there exists

M ∈ ρR̃>0 such that K ⊆ BM (0).
(iv) Finally, we say that the (Aε) is a sharply bounded net if there exists N ∈ R>0

such that ∀0ε∀x ∈ Aε : |x| ≤ ρ−Nε .

Therefore, x ∈ [Aε] if there exists a representative [xε] = x such that xε ∈ Aε for
ε small, whereas this membership is independent from the chosen representative in
case of strongly internal sets. An internal set generated by a constant net Aε =
A ⊆ Rn will simply be denoted by [A].

The following theorem (cf. [87, 43] for the case ρε = ε) shows that internal and
strongly internal sets have dual topological properties:

Theorem 10. For ε ∈ I, let Aε ⊆ Rn and let xε ∈ Rn. Then we have

(i) [xε] ∈ [Aε] if and only if ∀q ∈ R>0 ∀0ε : d(xε, Aε) ≤ ρqε. Therefore [xε] ∈ [Aε]

if and only if [d(xε, Aε)] = 0 ∈ ρR̃.
(ii) [xε] ∈ ⟨Aε⟩ if and only if ∃q ∈ R>0 ∀0ε : d(xε, A

c
ε) > ρqε, where A

c
ε := Rn\Aε.

Therefore, if (d(xε, A
c
ε)) ∈ Rρ, then [xε] ∈ ⟨Aε⟩ if and only if [d(xε, A

c
ε)] > 0.

(iii) [Aε] is sharply closed.
(iv) ⟨Aε⟩ is sharply open.
(v) [Aε] = [cl (Aε)], where cl (S) is the closure of S ⊆ Rn.
(vi) ⟨Aε⟩ = ⟨int(Aε)⟩, where int (S) is the interior of S ⊆ Rn.

Proof. (i) ⇒: We have x′ε ∈ Aε for some representative [x′ε] = [xε] ∈ [Aε]. But
d(xε, Aε) ≤ |xε − x′ε| + d(x′ε, Aε), from which the conclusion follows.
(i) ⇐: Since the net (infa∈Aε |xε − a|) is ρ-negligible, we can find a decreasing
sequence (εk)k∈N ↓ 0 such that infa∈Aε

|xε − a| < ρkε for ε ≤ εk. Hence, for each
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ε ∈ (εk+1, εk]R we can find x′ε ∈ Aε such that |xε − x′ε| ≤ ρkε . Therefore, (x′ε) is
another representative of [xε] and x′ε ∈ Aε for ε ≤ ε0.
(ii): Let [xε] ∈ ⟨Aε⟩ and suppose to the contrary that there exists a sequence εk ↓ 0
such that d(xεk , A

c
εk

) ≤ ρkεk for all k ∈ N. For each k, pick some x′k ∈ Ac
εk

with

|x′k − xεk | < 2ρkεk and choose (x′ε) ∼ρ (xε) such that x′εk = x′k for all k. Then
x′εk ̸∈ Aεk for all k, contradicting xε ∈ε Aε. Conversely, let d(xε, A

c
ε) > ρqε for ε

small. Then in particular, xε ∈ Aε. Also, if (x′ε) ∼ρ (xε) then d(x′ε, A
c
ε) > (1/2)ρqε

for ε small, so x′ε ∈ Aε. Thus, [xε] ∈ ⟨Aε⟩.
(iii): Let x = [xε] ∈ ρR̃n \ [Aε]. Then (i) yields that d(xεk , Aεk) > ρqεk for some

q ∈ R>0 and some sequence (εk)k∈N ↓ 0. Set r := 1
2dρq, then y ∈ Br(x) implies that

for some representative [yε] = y we have d(yεk , Aεk) ≥ d(xεk , Aεk) − |xεk − yεk | >
ρqεk −

1
2ρ
q
εk

. Thereby (i) gives y /∈ [Aε]. This proves that ρR̃n \ [Aε] is sharply open.
(iv): (ii) yields that [xε] ∈ ⟨Aε⟩ if and only if [xε] is in the interior of ⟨Aε⟩ with
respect to the sharp topology.
(v), (vi): Directly from (i) and (ii). □

For example, it is not hard to show that the closure in the sharp topology of a
ball of center c = [cε] and radius r = [rε] > 0 is

Br(c) =
{
x ∈ ρR̃d | |x− c| ≤ r

}
=

[
BE
rε(cε)

]
. (2.6)

In fact, it suffices to prove these equalities for c = 0, because the translation
x 7→ x − c is sharply continuous. If (xn) is a sequence in {x | |x| ≤ r} that
converges to x0, then |x0| ≤ |x0 − xn| + |xn| ≤ |x0 − xn| + r. Letting n → +∞,
this shows that {x | |x| ≤ r} is closed. Conversely, if |x| ≤ r, to prove that x is an
adherent point of Br(0), we need to show that

∀s ∈ ρR̃>0 ∃x̄ ∈ Br(0) ∩Bs(x).

Take k ∈ N such that 2dρk ≤ min(r, s), and representatives [xε] = x and [rε] = r
such that |xε| ≤ rε for small ε. The point x̄ε := xε if |xε| < rε − ρkε and x̄ε :=
xε − xε

|xε|ρ
k
ε otherwise satisfies the desired conditions. This proves the first equality

in (2.6). The proof that Br(0) ⊇
[
BE
rε(0)

]
is easy. Vice versa, if |x̄ε| ≤ rε + zε

for some representatives [x̄ε] = x and [zε] = 0, then setting xε := x̄ε if |x̄ε| ≤ rε
and xε := x̄ε

|x̄ε|rε otherwise gives another representative of x that shows that x ∈[
BE
rε(0)

]
.

From (2.6) and Thm. (10), it hence also follows that

Br(c) = ⟨BE

rε(cε)⟩. (2.7)

In a similar way, it can be shown that for every x, y ∈ ρR̃

y ≥ x⇔ y ∈
{
z ∈ ρR̃ | z > x

}
. (2.8)

Some relations between internal and strongly internal sets that we will use below
are listed in the following

Lemma 11. Let (Ωε) be a net of subsets in Rn for all ε, and (Bε) a sharply bounded
net such that [Bε] ⊆ ⟨Ωε⟩. Then

(i) ∀0ε : Bε ⊆ Ωε.
(ii) If each Bε is closed, then ∃S ∈ N ∀[xε] ∈ [Bε]∀0ε : d(xε,Ω

c
ε) ≥ ρSε .
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(iii) If r = [rε] ∈ ρR̃>0, b = [bε] ∈ ρR̃n and Br(b) ⊆ int ([Bε]), then ∀0ε : BE
rε(bε) ⊆

Bε.
(iv) If x ∈ ⟨Aε⟩ ⊆ [Bε], then ∀[xε] = x ∀0ε : xε ∈ Bε.
(v) If (Cε) is also sharply bounded and [Bε] ⊆ int ([Cε]), then there exists S ∈ N

such that:
(a) ∀0ε : BE

ρSε
(Bε) ⊆ Cε

(b) BdρS (B) ⊆ C,
where, in general

Bdr (B) = {x | d(x,B) < r} =
⋃
b∈B

Bdr (b)

(in ρR̃n, we also set d(x,B) := [d(xε, Bε)] ∈ ρR̃).
(vi) If each Bε is closed, then there exists a sharply bounded net (B+

ε ) of closed
sets such that [B+

ε ] ⊆ ⟨Ωε⟩ is a sharp neighborhood of [Bε].

Proof. To prove (i), let us assume, by contradiction, that we can find sequences
(εk)k and (xk)k such that εk ↓ 0 and xk ∈ Bεk \ Ωεk . Defining xε := xk for ε = εk,
and xε ∈ Bε otherwise, we have that x := [xε] is moderate since (Bε) is sharply
bounded. Hence x ∈ [Bε], but xεk /∈ Ωεk by construction, hence x /∈ ⟨Ωε⟩ by Def. 9,
which is impossible because [Bε] ⊆ ⟨Ωε⟩.
(ii): Assume that (i) holds for all ε ≤ ε0. If Bε is closed, then Bε ⋐ Rn because (Bε)
is sharply bounded. We can therefore find a point x̄ε ∈ Bε such that d(x̄ε,Ω

c
ε) =

d(Bε,Ω
c
ε). At x̄ := [x̄ε] ∈ [Bε] property (ii) of Thm. 10 yields the existence of

some S ∈ N such that d(x̄ε,Ω
c
ε) ≥ ρSε for ε small. From this the conclusion follows

because d(xε,Ω
c
ε) ≥ d(Bε,Ω

c
ε) = d(x̄ε,Ω

c
ε) if xε ∈ Bε for ε small. If [x′ε] = [xε] is

any other representative, then claim (ii) still holds because d(xε, x
′
ε) is negligible.

(iii): By contradiction, assume that for some J ⊆0 I we can find xε ∈ BE
rε(bε) \Bε

for all ε ∈ J . Therefore, x :=
[
(xε)ε∈J

]
∈ Br(B)|J . But the assumption Br(b) ⊆

int ([Bε]) yields Br(b) ⊆ [Bε] =: B and hence x ∈ B|J , which is impossible.
(iv): Directly from the previous result and Thm. 10(iv).
(v): We prove by contradiction that there exists S ∈ N satisfying (a); we will then
show that this S also works for (b). So, assume that for all s ∈ N there exists
Js ⊆0 I and xsε ∈ BE

ρsε
(Bε) \ Cε for all ε ∈ Js. We can hence find εs ∈ Js such

that εs <
1
s and xsεs ∈ BE

ρsεs
(Bεs) \ Cεs . Choosing recursively these εs, we can

assume that εs+1 < εs, so that (εs)s ↓ 0. Set J := {εs ∈ Js | s ∈ N>0} ⊆0 I. For
each ε ∈ J , we can set xε := xsεs for the unique s ∈ N>0 such that ε = εs, so

that x ∈ ρR̃|J . For all ε = εp ∈ J , if ε < εs, then p > s because (εs)s is strictly
decreasing. Thereby

xε = xεp ∈ BE

ρpεp
(Bεp) \ Cεp ⊆ BE

ρsε
(Bε) \ Cε

because p > s and ε = εp. This proves that (d(xε, Bε))ε∈J ∼ρ 0 and hence that x :=[
(xε)ε∈J

]
∈ B|J ⊆ int (C) |J . Therefore, Br(x) ⊆ int (C|J) for some r ∈ ρR̃>0|J .

Using (iii), we get BE
rε(xε) ⊆ Cε for ε ∈ J sufficiently small, and hence xε ∈ Cε, a

contradiction. Now assume that S ∈ N satisfies (a). Then for all x ∈ BdρS (B), we
have x ∈ BdρS (b) for some b = [bε] ∈ B. Therefore, for all [xε] = x and ε small, we
have xε ∈ BE

rε(bε) ⊆ Cε using (a).
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(vi): To prove this property, it suffices to consider an M ∈ ρR̃>0 such that [Bε] ∈
BM (0) and to define

B+
ε :=

{
x ∈ BE

Mε
(0) | d(x,Ωcε) ≥ ρS+1

ε

}
⋐ Rn,

where S ∈ N comes from (ii). □

Let X = ⟨Aε⟩ be a strongly internal set, x, y ∈ X and both K, Kc ⊆0 I.

Set eK := [1Kε] ∈ ρR̃, where 1Kε := 1 if ε ∈ K and 1Kε := 0 otherwise. Then
z := x · eK + y · eKc ∈ X and z|K ⊆ x, z|Kc ⊆ y (we then say that X is closed
with respect to interleaving ; this property holds also for internal sets, see [87]).
The same property does not hold if x ∈ Br(c) \ Bs(d) and y ∈ Bs(d) \ Br(c), so
that Br(c) ∪ Bs(d) is sharply open but is not strongly internal. The same kind of
example can be repeated e.g. considering arbitrary unions of pairwise disjoint balls.

To obtain large open sets starting from a net of subsets Aε ⊆ Rn, we can consider
the analogue of ⟨Aε⟩ but using the radii of the Fermat topology:

Definition 12. Let (Aε) be a net of subsets of Rn and let (xε), (x′ε) be nets of
points of Rn. Then

(i) We write (xε) ∼F (x′ε) to denote the property |x − x′| < r for all r ∈ R>0,
i.e., limε→0+ |xε − x′ε| = 0.

(ii) We say that xε ∈F Aε, and we read it as (xε) strongly belongs to (Aε) in the
Fermat topology, if
(a) ∀0ε : xε ∈ Aε.
(b) If (x′ε) ∼F (xε), then also x′ε ∈ Aε for ε small.

Moreover, we set ⟨Aε⟩F :=
{

[xε] ∈ ρR̃n | xε ∈F Aε

}
, and we call it the strongly

internal set generated by the net (Aε) in the Fermat topology.

The following result can be proved simply by generalizing the proof of Thm. 10.

Theorem 13. For ε ∈ I, let Aε ⊆ Rn and let xε ∈ Rn. Then we have

(i) [xε] ∈ ⟨Aε⟩F if and only if ∃r ∈ R>0 ∀0ε : d(xε, A
c
ε) > r.

(ii) ⟨Aε⟩F is a Fermat open set.

Sharply bounded internal sets (which are always sharply closed by Thm. 10 (iii))
serve as compact sets for our generalized functions. We will show this by proving
for them an extreme value theorem (see Thm. 51); for a deeper study of this type of
sets in the case ρ = (ε) see [41]; in the same particular setting, the notion of sharp
topology was introduced in [10, 97]; see also [80, 50] for an analogue of Lem. 8; see
[87] for the study of internal sets, and see [43] for strongly internal sets.

3. Generalized functions as smooth set-theoretical maps

3.0.1. Definition and sharp continuity. Using the ring ρR̃, it is easy to consider a
Gaussian with an infinitesimal standard deviation. If we denote this probability

density by f(x, σ), and if we set σ = [σε] ∈ ρR̃>0, where σ ≈ 0, we obtain the net
of smooth functions (f(−, σε))ε∈I . This is the basic idea we are going to develop
in the following definitions. We will first introduce the notion of a net (fε) defining

a generalized smooth function of the type X −→ Y , where X ⊆ ρR̃n and Y ⊆ ρR̃d.
This is a net of smooth functions fε ∈ C∞(Ωε,Rd) that induces well-defined maps

of the form [∂αfε(−)] : ⟨Ωε⟩ −→ ρR̃d, for every multi-index α ∈ Nn.
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Definition 14. Let X ⊆ ρR̃n and Y ⊆ ρR̃d be arbitrary subsets of generalized
points. Let (Ωε) be a net of open subsets of Rn, and (fε) be a net of smooth
functions, with fε ∈ C∞(Ωε,Rd). Then we say that

(fε) defines a generalized smooth function : X −→ Y

if:

(i) X ⊆ ⟨Ωε⟩ and [fε(xε)] ∈ Y for all [xε] ∈ X.
(ii) ∀[xε] ∈ X ∀α ∈ Nn : (∂αfε(xε)) ∈ Rdρ.

We recall that the notation

∀[xε] ∈ X : P{(xε)}

means

∀(xε) ∈ Rnρ : [xε] ∈ X ⇒ P{(xε)},
i.e. for all representatives (xε) generating a point [xε] ∈ X, the property P{(xε)}
holds.

A generalized smooth function (or map, in this paper these terms are used as
synonymous) is simply a function of the form f = [fε(−)]|X :

Definition 15. Let X ⊆ ρR̃n and Y ⊆ ρR̃d be arbitrary subsets of generalized
points. Then we say that

f : X −→ Y is a generalized smooth function

if f ∈ Set(X,Y ) and there exists a net fε ∈ C∞(Ωε,Rd) defining a generalized
smooth map of type X −→ Y , in the sense of Def. 14, such that

∀[xε] ∈ X : f ([xε]) = [fε(xε)] . (3.1)

We will also say that f is defined by the net of smooth functions (fε) or that the
net (fε) represents f . The set of all these generalized smooth functions (GSF) will
be denoted by ρGC∞(X,Y ) or simply by GC∞(X,Y ).

Let us note explicitly that definitions 14 and 15 state minimal logical conditions
to obtain a set-theoretical map from X into Y and defined by a net of smooth
functions. In particular, the following Thm. 16 states that in equality (3.1) we have
independence from the representatives for all derivatives [xε] ∈ X 7→ [∂αfε(xε)] ∈
ρR̃d, α ∈ Nn.

Theorem 16. Let X ⊆ ρR̃n and Y ⊆ ρR̃d be arbitrary subsets of generalized points.
Let (Ωε) be a net of open subsets of Rn, and (fε) be a net of smooth functions, with
fε ∈ C∞(Ωε,Rd). Assume that (fε) defines a generalized smooth map of the type
X −→ Y , then

∀α ∈ Nn ∀(xε), (x
′
ε) ∈ Rnρ : [xε] = [x′ε] ∈ X ⇒ (∂αfε(xε)) ∼ρ (∂αfε(x

′
ε))

Proof. Let α ∈ Nn and (xε), (x′ε) be two representatives of the same point x =
[xε] = [x′ε] ∈ X ⊆ ⟨Ωε⟩. Thm. 10 (ii) yields

d(xε,Ω
c
ε) > ρqε (3.2)

for some q ∈ R>0 and ε small. Thus BE

ρqε
(xε) ⊆ Ωε for these values of ε. Choose

r ∈ R>0 sufficiently big so that

2ρrε < ρqε (3.3)
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for ε small. Since (xε) ∼ρ (x′ε) we have that

x′ε ∈ BE

ρrε
(xε) (3.4)

for ε small, and the entire segment [xε, x
′
ε] connecting xε and x′ε lies in BE

ρrε
(xε).

Suppose that (3.2), (3.3) and (3.4) hold for ε ∈ (0, ε0]. Fix i ∈ {1, . . . , d} and set
µε(t) := ∂αf iε(xε + t(x′ε − xε)) for t ∈ [0, 1]R and ε ∈ (0, ε0]. By the classical mean
value theorem ∂αf iε(x

′
ε) − ∂αf iε(xε) = µε(1) − µε(0) = µ′

ε(θε) for some θε ∈ (0, 1),
and hence for all ε ∈ (0, ε0] we get

∂αf iε(x
′
ε) − ∂αf iε(xε) =

n∑
k=1

∂α+ekf iε(ξε) · (x′kε − xkε), (3.5)

where ξε := xε + θε(x
′
ε − xε) and ek := (0, k−1. . . . . . , 0, 1, 0, . . . , 0) ∈ Nn. The gener-

alized point [ξε] = [xε] ∈ X since (x′ε) ∼ρ (xε). Therefore by Def. 14 (ii) we get
that every derivative

(
∂α+ekf iε(ξε)

)
is ρ-moderate. From this and the equivalence

(x′ε) ∼ρ (xε), equation (3.5) yields the conclusion (∂αfε(x
′
ε)) ∼ρ (∂αfε(xε)). □

Note that taking arbitrary subsets X ⊆ ρR̃n in Def. 14, we can also consider GSF
defined on closed sets, like the set of all infinitesimals, or like a closed interval

[a, b] ⊆ ρR̃. We can also consider GSF defined at infinite generalized points. A
simple case is the exponential map

e(−) : [xε] ∈
{
x ∈ ρR̃ | ∃z ∈ ρR̃>0 : x ≤ log z

}
7→ [exε ] ∈ ρR̃. (3.6)

The domain of this map depends on the infinitesimal net ρ. For instance, if ρ = (ε)
then all its points are bounded by generalized numbers of the form [−N log ε],

N ∈ N; whereas if ρ =
(
e−

1
ε

)
, all points are bounded by [Nε−1], N ∈ N. Another

possibility for the exponential function is to consider two gauges ρ ≥ σ and the

subring of σR̃ defined by

σ
ρ R̃ := {x ∈ σR̃ | ∃N ∈ N : |x| ≤ dρ−N},

where here we have set dρ := [ρε]∼σ
∈ σR̃. If we have

∀N ∈ N∃M ∈ N : dρ−N ≤ −M log dσ, (3.7)

then e(−) : [xε] ∈ σ
ρ R̃ 7→ [exε ] ∈ σR̃ is well defined. For example, if σε :=

exp
(
−ρ1/εε

)
, then σ ≤ ρ and (3.7) holds for M = 1. Note that the natural ring

morphism [xε]∼σ ∈ σ
ρ R̃ 7→ [xε]∼ρ

∈ ρR̃ is surjective but generally not injective.
A first regularity property of GSF is the continuity with respect to the sharp

topology, as proved in the following

Theorem 17. Let X ⊆ ρR̃n, Y ⊆ ρR̃d and fε ∈ C∞(Ωε,Rd) be a net of smooth
functions that defines a GSF of the type X −→ Y . Then

(i) ∀[xε] ∈ X ∀α ∈ Nn ∃q ∈ R>0 ∀0ε : supy∈BE
ρ
q
ε
(xε) |∂

αfε(y)| ≤ ρ−qε .

(ii) For all α ∈ Nn, the GSF g : [xε] ∈ X 7→ [∂αfε(xε)] ∈ R̃d is locally Lipschitz
in the sharp topology, i.e. each x ∈ X possesses a sharp neighborhood U such

that |g(x) − g(y)| ≤ L|x− y| for all x, y ∈ U and some L ∈ ρR̃.
(iii) Each f ∈ ρGC∞(X,Y ) is continuous with respect to the sharp topologies in-

duced on X, Y .
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(iv) Assume that the GSF f is locally Lipschitz in the Fermat topology and that
its Lipschitz constants are always finite: L ∈ R. Then f is continuous in the
Fermat topology.

Proof. We first prove (i) by contradiction, assuming that for some [xε] ∈ X and
some α there exists (εk)k ↓ 0 and a sequence (yk)k of points in Rn such that
|xεk − yk| < ρkεk but |∂αfε(yk)| > ρ−kεk . Define x′ε := yk for ε = εk and x′ε := xε
otherwise. Then (x′ε) ∼ρ (xε) but (∂αfε(x

′
ε)) is not ρ-moderate, which contradicts

Def. 14 (ii).
To prove (ii), we apply (i) to each derivative ∂α+ekfε to obtain

∀k = 1, . . . , n ∃qk ∈ R>0∃εk ∈ I ∀ε ∈ (0, εk] : sup
y∈BE

ρ
qk
ε

(xε)

|∂α+ekfε(y)| ≤ ρ−qkε .

(3.8)
Set q := maxk=1,...,n qk, so that for y, z ∈ Bdρq (x) we get

∃ε0 ∀ε ∈ (0, ε0] : [yε, zε] ⊆ BE

ρqε
(xε). (3.9)

For any i ∈ {1, . . . , d} and ε small we can write

|∂αf iε(yε) − ∂αf iε(zε)| =

∣∣∣∣∣
n∑
k=1

∂α+ekf iε(ζε) · (ykε − zkε )

∣∣∣∣∣
where ζε := yε+σε(zε−yε) for some σε ∈ (0, 1). Therefore ζε ∈ BE

ρqε
(xε) ⊆ BE

ρ
qk
ε

(xε)

and (3.8) implies

|∂αfε(yε) − ∂αfε(zε)| ≤ d
√
nρ−qε |yε − zε|.

Property (iii) follows upon setting α = 0 in (ii). Property (iv) follows directly
from the definition of locally Lipschitz function in the Fermat topology. In fact, we
have that L|x − y| < r ∈ R if y ∈ BF

r/L(x), which is an open ball in the Fermat

topology because L ∈ R. □

In the following result, we show that the dependence of the domains Ωε on ε can
be avoided since it does not lead to a larger class of generalized functions. In spite
of this possibility, we preferred to formulate Def. 14 using ε-dependent domains
because the extension of fε ∈ C∞(Ωε,Rd) to the whole of Rn is not unique and
hence introduces extrinsic elements.

Lemma 18. Let X ⊆ ρR̃n and Y ⊆ ρR̃d be arbitrary subsets of generalized points.
Then f : X −→ Y is a GSF if and only if there exists a net vε ∈ C∞(Rn,Rd)
defining a generalized smooth map of type X −→ Y such that f = [vε(−)]|X .

Proof. The stated condition is clearly sufficient. Conversely, assume that f :
X −→ Y is defined by the net fε ∈ C∞(Ωε,Rd). For every ε ∈ I let Ω′

ε :={
x ∈ Ωε | d(x,Ωc

ε) > ρ
1
ε
ε

}
, Ω′′

ε :=
{
x ∈ Ωε | d(x,Ωc

ε) > ρ
2
ε

ε/2

}
and choose χε ∈ C∞(Ωε)

with supp(χε) ⊆ Ω′′
ε and χε = 1 in a neighborhood of Ω′

ε. Set fε := 0 on Rn\Ωε and
vε := χε · fε, so that vε ∈ C∞(Rn,Rd). If x = [xε] ∈ X ⊆ ⟨Ωε⟩, then xε ∈ Ω′

ε ⊆ Ωε
for ε small by Thm. 10, so for all α ∈ Nn we get ∂αvε(xε) = ∂αfε(xε). Therefore,
(vε)ε defines a GSF of the type X −→ Y and clearly f = [fε(−)]|X = [vε(−)]|X . □

Consider a GSF f : X −→ Y . We want to show that for a large class of domains
X, the function f is uniquely determined by its values on particularly well behaved
points x ∈ X. These domains and these points are introduced in the following



16 PAOLO GIORDANO, MICHAEL KUNZINGER, AND HANS VERNAEVE

Definition 19.

(i) Let x ∈ ρR̃n. Then we say that the point x is near-standard if there exists a
representative (xε) of x such that ∃ limε→0+ xε =: x◦ ∈ Rn (x◦ is called the
standard part of x). Clearly, this limit does not depend on the representative
of x.

(ii) If Ω ⊆ Rn, then Ω• :=
{
x ∈ ρR̃n | ∃x◦ ∈ Ω

}
.

(iii) We say that X ⊆ ρR̃n contains its converging subpoints if for all J ⊆0 I and
all x′ ∈ X|J which is near standard or infinite, there exists some x ∈ X with
x′ ⊆ x and such that limε→0,ε∈J x

′
ε = limε→0 xε.

Theorem 20. Let X ⊆ ρR̃n, Y ⊆ ρR̃d, and let f : X −→ Y be a GSF. If X contains
its converging subpoints and if f(x) = 0 for all near-standard and for all infinite
points x ∈ X. Then f = 0.

Proof. In fact, suppose that f vanishes on every near-standard and every infinite
point belonging to X, but that f(x) ̸= 0 for some x ∈ X. Let (xε) be a repre-
sentative of x. Then there exist m ∈ N and (εk)k ↓ 0 such that |fεk(xεk)| > ρmεk ,
where (fε) is a net that defines f . If (xεk)k is a bounded sequence, we can extract
from it a convergent subsequence (xεkl

)l. Setting J := {kl | l ∈ N}, x′ = x|J is a

subpoint of x and by assumption there exists some y ∈ X that satisfies y|J = x′ and
additionally is near-standard, with the same limit as x′. By construction, f(y) ̸= 0,
a contradiction. If, on the other hand, the sequence (xεk)k is unbounded, then we
can extract a subsequence with liml→+∞ |xεkl

| = +∞, and can then proceed as

above to construct an infinite point y ∈ X at which f(y) ̸= 0. □

Analogously, we can prove the following:

Theorem 21. Let X ⊆ ρR̃n and Y ⊆ ρR̃d. Let (Ωε) be a net of open subsets of
Rn, and (fε) be a net of smooth functions, with fε ∈ C∞(Ωε,Rd). Assume that X
contains its converging subpoints. Then (fε) defines a GSF of the type X −→ Y if
and only if

(i) X ⊆ ⟨Ωε⟩ and [fε(xε)] ∈ Y for all [xε] ∈ X.
(ii) ∀α ∈ Nn : (∂αfε(xε)) ∈ Rdρ for all near-standard and for all infinite points

[xε] ∈ X.

For example, if Ω is an open subset of Rn, and we define the set of compactly
supported generalized points by

c(Ω) := {[xε] ∈ ρR̃n | ∃K ⋐ Ω ∀0ε : xε ∈ K} ⊆ ⟨Ω⟩,
then c(Ω) contains its converging subpoints. Internal and strongly internal sets
generated by a constant sequence A ⊆ Rn, i.e. [A] and ⟨A⟩, provide further exam-
ples of a subset containing its converging subpoints. Moreover, an arbitrary union⋃
j∈J Xj of sets, with each Xj containing its converging subpoints, still contains its

converging subpoints.
The subset c(Ω) is the natural domain for embedded distributions, as shown in

the following section.

4. Embedding of Schwartz distributions

Introduction. Among the re-occurring themes of this work are the choices which the
solution of a given problem within our framework may depend upon. For instance,
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(3.6) shows that the domain of a GSF depends on the infinitesimal net ρ. It is also
easy to show that the trivial Cauchy problem{

x′(t) − [ε−1] · x(t) = 0

x(0) = 1

has no solution (in a finite interval) if ρ = (ε), but it has the unique solution

x(t) =
[
e

1
ε t
]
∈ ρ̄GC∞(R,R) for all t ∈ R if we consider another gauge ρ̄ := (e−1/ε).

Therefore, the choice of the infinitesimal net ρ is closely tied to the possibility of
solving a given class of differential equations. This illustrates the dependence of
the theory on the infinitesimal net ρ.

Further choices concern the embedding of Schwartz distributions. Since we need
to associate a net of smooth functions (fε) to a given distribution T ∈ D′(Ω),
this embedding is naturally built upon a regularization process. In our approach,

this regularization will depend on an infinite number b ∈ ρR̃, and the choice of b
depends on what properties we need from the embedding. For example, if δ is the
(embedding of the) one-dimensional Dirac delta, then we have the property

δ(0) = b, (4.1)

We can also choose the embedding so as to get the property

H(0) =
1

2
, (4.2)

where H is the (embedding of the) Heaviside step function. Equalities like these are
used in diverse applications (see, e.g., [17, 84] and references therein). In fact, we are
going to construct a family of structures of the type (G, ∂, ι), where (G, ∂) is a a sheaf
of differential algebra and ι : D′ −→ G is an embedding. The particular structure
we need to consider depends on the problem we have to solve. Of course, one may
be more interested in having an intrinsic embedding of distributions. This can be
done by following the ideas of the full Colombeau algebra (see e.g. [50, 46, 45, 51]).
Nevertheless, this choice decreases the simplicity of the present approach and is
incompatible with properties like (4.1) and (4.2).
The embedding. If φ ∈ D(Rn), r ∈ R>0 and x ∈ Rn, we use the notations r ⊙ φ
for the function x ∈ Rn 7→ 1

rn · φ
(
x
r

)
∈ R and x ⊕ φ for the function y ∈ Rn 7→

φ(y−x) ∈ R. These notations highlight that ⊙ is a free action of the multiplicative
group (R>0, ·, 1) on D(Rn) and ⊕ is a free action of the additive group (R>0,+, 0)
on D(Rn). We also have the distributive property r ⊙ (x ⊕ φ) = rx ⊕ r ⊙ φ. Our
embedding procedure will ultimately rely on convolution with suitable mollifiers.
To construct these, we need some technical preparations.

Lemma 22. For any n ∈ N>0 there exists some µn ∈ S(R) with the following
properties:

(i)
´
µn(x) dx = 1.

(ii)
´∞
0
x

j
nµn(x) dx = 0 for all j ∈ N>0.

(iii) µn(0) = 1.
(iv) µn is even.
(v) µn(k) = 0 for all k ∈ Z \ {0}.

Proof. Consider the Fréchet space

F := {µ ∈ S(R) | µ even, ∀k ∈ Z \ {0} : µ(k) = 0}
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and define the continuous linear functionals fm : F → R, where f0(µ) := µ(0),

f1(µ) :=
´
µ(x) dx, and fm(µ) :=

´∞
0
x

m−1
n µ(x) dx (m ≥ 2). Our objective then is

to implement conditions (i)–(iii) by showing the solvability of the system

f0(µ) = 1, f1(µ) = 1, fm(µ) = 0 (m ≥ 2) (4.3)

in F . To this end, we employ a classical result of M. Eidelheit ([22, Satz 2]).
First, the family (fm)m∈N is linearly independent. Next, the topology of F ⊆ S(R)
is generated by the family of norms pk(µ) = supl+m≤k supx∈R(1 + |x|)l|µ(m)(x)|,
k ∈ N. Suppose now that λ1, . . . , λi are nonzero numbers and that the order of the

linear functional
∑i
m=0 λmfm is less or equal l. Here, the order of an element f of

S ′(R) is defined to be the smallest k such that |f(µ)| ≤ Cpk(µ) for some C > 0 and
all µ ∈ S(R). Let il := nl + 1, then certainly i ≤ il. Hence both conditions of [22,
Satz 2] are satisfied and we may conclude that (4.3) has a solution µn in F . □

Remark 23. In addition to conditions (i)-(v) from Lemma 22 we may require that
µn satisfy finitely many additional properties expressible by linearly independent
functionals as in the above proof (again by [22, Satz 2]). In particular, we may
prescribe the values for µn or its derivatives at finitely many further points.

Finally, we note that any element of S(R) satisfying condition (ii) from Lemma
22 must change sign infinitely often.

We call Colombeau mollifier (for a fixed dimension n) any function µ that satisfies
the properties of the previous lemma. Concerning embeddings of Schwartz distri-
butions, the idea is classically to regularize distributions using a mollifier. The use
of a Colombeau mollifier allows us, on the one hand, to identify the distribution
φ ∈ D(Ω) 7→

´
fφ with the GSF f ∈ C∞(Ω) ⊆ ρGC∞(Ω,R) (thanks to property

(ii)); on the other hand, it allows us to explicitly calculate compositions such as
δ ◦ δ, H ◦ δ, δ ◦H (see below).
It is worth noting that the condition (ii) of null moments is well known in the
study of convergence of numerical solutions of singular differential equations, see
e.g. [57, 24, 115] and references therein.

Next we show that the assignment U 7→ ρGC∞(c(U), ρR̃) (U ⊆ Ω open) is a fine

sheaf on Ω. In fact, for V ⊆ U , the natural restriction map ρGC∞(c(U), ρR̃) →
GC∞(c(V ), ρR̃) can also be written, in terms of defining nets, as f = [fε] 7→ [fε|V ].
Also, c(U) ∩ c(V ) = c(U ∩ V ).

Suppose that Ωj (j ∈ J) is an open covering of Ω and that for each j ∈ J we

are given f j = [f jε ] ∈ ρGC∞(c(Ωj),
ρR̃) such that f j |c(Ωj∩Ωk) = fk|c(Ωj∩Ωk) for all j,

k ∈ J . Then letting χj (j ∈ J) be a partition of unity subordinate to Ωj (j ∈ J),
the GSF defined by the net

fε :=
∑
j∈J

χj · f jε ∈ C∞(Ω)

is the unique element of ρGC∞(c(Ω), ρR̃) with f |c(Ωj) = f j for all j ∈ J . In
particular, we may define a corresponding notion of standard support for each

f ∈ ρGC∞(c(Ω), ρR̃) by

stsupp(f) :=
(⋃

{Ω′ ⊆ Ω | Ω′ open, f |Ω′ = 0}
)c

.
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Figure 4.1. A representation of Dirac delta and Heaviside func-
tion. A Colombeau mollifier has a representation similar to Dirac
delta (but with finite values).

The adjective standard underscores that this set is made only of standard points; a
better notion of support for GSF is defined as supp(f) = {x ∈ X | |f(x)| > 0} and
studied in [41].

As a final preparation for the embedding of D′(Ω) into ρGC∞(c(Ω), ρR̃) we need
to construct suitable n-dimensional mollifiers from a Colombeau mollifier µ as given
by Lemma 22. To this end, let ωn denote the surface area of Sn−1 and set

cn :=

{
2n
ωn

for n > 1

1 for n = 1.
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Then let µ̃ : Rn → R, µ̃(x) := cnµ(|x|n). Since µ is even, µ̃ is smooth. Moreover,
by Lemma 22, it has unit integral and all its higher moments

´
xαµ̃(x) dx vanish

(|α| ≥ 1). With this notation we have:

Lemma 24. Let χ ∈ D(Rn), χ = 1 on BE
1 (0), and χ = 0 on Rn \BE

2 (0). Also, let

b = [bε] ∈ ρR̃ be an infinite positive number, i.e. limε→0+ bε = +∞. Now set

µbε(x) := (b−1
ε ⊙ µ̃)(x)χ(x| log(bε)|) = bnε µ̃(bεx)χ(x| log(bε)|). (4.4)

(i) ∀ε : µbε ∈ C∞(Rn), stsupp(µbε) ⊆ BE

2| log(bε)|−1(0).

(ii) ∀α ∈ Nn ∃N ∈ N : supx∈Rn |∂αµbε(x)| = O(bNε ) (ε→ 0).
(iii) ∀α ∈ Nn ∀q ∈ N : supx∈Rn |∂α(µbε − bnε µ̃(bε . ))(x)| = O(b−qε ) (ε→ 0).
(iv) ∀q ∈ N :

´
µbε(x) dx = 1 +O(b−qε ) (ε→ 0).

(v) ∀q ∈ N∀α ∈ Nn : |α| > 0 ⇒
´
xαµbε(x) dx = O(b−qε ) (ε→ 0) .

Proof. All the claimed properties have been proved for the special case bε = ε−1 in
[19, Sec. 3], and the arguments employed there carry over in a straightforward way
to the present setting. □

Theorem 25. Let (∅ ≠)Ω ⊆ Rn be an open set and let µbε as in Lemma 24. Set

Ωε :=
{
x ∈ Ω | d(x,Ωc) ≥ ε, |x| ≤ 1

ε

}
and fix some χ ∈ D(Rn), χ = 1 on BE

1 (0),
0 ≤ χ ≤ 1 and χ = 0 on Rn \ BE

2 (0). Also, take κε ∈ D(Ω) such that κε = 1 on a
neighborhood Lε of Ωε. Then the map

ιbΩ : T ∈ D′(Ω) 7→
[(

(κε · T ) ∗ µbε
)

(−)
]
∈ ρGC∞(c(Ω), ρR̃). (4.5)

satisfies:

(i) ιb : D′ −→ ρGC∞(c(−), ρR̃) is a sheaf-morphism of real vector spaces: If
Ω′ ⊆ Ω is another open set and T ∈ D′(Ω), then ιbΩ(T )|c(Ω′) = ιbΩ′(T |Ω′).

(ii) ιb preserves supports, hence is in fact a sheaf-monomorphism.

(iii) Any f ∈ C∞(Ω) can naturally be considered an element of ρGC∞(c(Ω), ρR̃) via
[xε] 7→ [f(xε)]. Moreover, ∀q ∈ N>0 ∀x ∈ c(Ω) :

∣∣ιbΩ(f)(x) − f(x)
∣∣ ≤ b−q.

(iv) If f ∈ C∞(Ω) and if b ≥ dρ−a for some a ∈ R>0, then ιbΩ(f) = f . In
particular, ιb then provides a multiplicative sheaf-monomorphism C∞(−) ↪→
ρGC∞(c(−),R).

(v) For any T ∈ D′(Ω) and any α ∈ Nn, ιbΩ(∂αT ) = ∂αιbΩ(T ).
(vi) Let b ≥ dρ−a for some a ∈ R>0. Then for any φ ∈ D(Ω) and any T ∈ D′(Ω),[ˆ

Ω

ιbΩ(T )ε(x) · φ(x) dx
]

= ⟨T, φ⟩ in ρR̃.

(vii) ιbRn(δ)(0) = cnb
n and if b ≥ dρ−a for some a ∈ R>0, then ι

b
R(H)(0) = 1

2 .

(viii) The embedding ιb does not depend on the particular choice of (κε) and (if
b ≥ dρ−a for some a ∈ R>0) χ as above.

(ix) ιb does not depend on the representative (bε) of b employed in (4.4).

Proof. We follow ideas from [50, Sec. 1.2] and [19]. Let T ∈ D′(Ω) and let [xε] ∈
c(Ω). Then there exists some K ⋐ Ω such that xε ∈ K for ε small. Also, we may
assume that K + BE

2| log(bε)|−1(0) ⊆ L ⊆ Ωε for these ε, where L ⋐ Ω. Then by (i)

of Lemma 24, for ε small we have

ιbΩ(T )ε(xε) = (κε · T ) ∗ µbε(xε) = T ∗ µbε(xε) = ⟨T, µbε(xε − . )⟩. (4.6)
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Since T ∈ D′(Ω), we have a seminorm estimate of the form

∀φ ∈ DL(Ω) : |⟨T, φ⟩| ≤ C max
|β|≤m

sup
x∈L

|∂βφ(x)|.

Together with Lemma 24 (i) and (ii) this implies that (∂αιbΩ(T )ε(xε)) ∈ Rnρ for each

α. Hence ιbΩ indeed maps D′(Ω) into ρGC∞(c(Ω), ρR̃).
To show (i), let Ω′ ⊆ Ω be open and let [xε] ∈ c(Ω′). Then using the notations

introduced before (4.6), we may suppose that L ⊆ Ω′
ε, and so for ε small we have

µbε ∈ D(Ω′). Therefore, (4.6) implies for such ε:

ιbΩ(T )ε(xε) = ⟨T, µbε(xε − . )⟩ = ⟨T |Ω′ , µbε(xε − . )⟩ = ιbΩ′(T |Ω′)ε(xε).

Next we show (ii). Suppose first that T |Ω′ = 0 for some open subset Ω′ of Ω. Let
[xε] ∈ c(Ω′) and pick K ⋐ Ω′ such that xε ∈ K for ε small. As above, for ε small
we have stsupp(µbε(xε − . )) ⊆ Ω′, as well as ιbΩ(T )ε(xε) = ⟨T, µbε(xε − . )⟩, which
therefore vanishes. Hence ιbΩ(T )|Ω′ = 0, and thereby stsupp(ιbΩ(T )) ⊆ stsupp(T ).

Conversely, let Ω′ ⊆ Ω such that ιbΩ(T )|Ω′ = 0 and let φ ∈ D(Ω′). Since (κεT ) ∗
µbε → T in D′(Ω), in order to show ⟨T, φ⟩ = 0 it suffices to demonstrate that
(κεT ) ∗ µbε → 0 as ε → 0, uniformly on compact subsets of Ω′. Suppose this were
not the case, then we could find some L ⋐ Ω′, some c > 0 and sequences εk ↓ 0
and xk ∈ L such that |(κεT ) ∗ µbεk(xk)| ≥ c for all k. Fixing any z ∈ Ω′ and setting
xε := xk for ε = εk and xε = z otherwise then defines an element [xε] ∈ c(Ω′) with
ιbΩ(T )([xε]) ̸= 0, a contradiction.

Consequently, ιbΩ induces an injective sheaf morphism (again denoted by) ιb :

D′(−) −→ ρGC∞(c(−), ρR̃).
(iii): If f ∈ C∞(Ω) then any derivative of f is uniformly (in ε) bounded on

any (xε) (for [xε] ∈ c(Ω)). Thus f ∈ GC∞(c(Ω), ρR̃). Now let [xε] ∈ c(Ω) and
suppose first that f has compact support. By Lemma 24 (iv), for any x ∈ Ω,
f(x) =

´
f(x)µbε(y) dy + nε, where nε = O(b−qε ) for every q > 0. Thus for ε small

and any q ∈ N we have by Taylor expansion

(ιbΩ(f)ε − f)(xε) =

ˆ
(f(xε − y) − f(xε))µ

b
ε(y) dy + nε

=

q−1∑
k=1

ˆ
1

k!
((−y ·D)kf)(xε)µ

b
ε(y) dy

+
b−qε
q!

ˆ
((−y ·D)qf)(xε − θεb

−1
ε y)µ̃(y)χ(b−1

ε y| log(bε)|) dy + nε,

(4.7)

where θε ∈ (0, 1). Here, the first sum is O(b−qε ) by Lemma 24 (v), as is the second
term since f is compactly supported, χ is globally bounded, and µ̃ ∈ S(Rn). If
f is not compactly supported, pick L ⋐ Ω such that xε ∈ L for ε small and let
φ ∈ D(Ω) equal 1 in a neighborhood of L. Then f(x) = (φf)(x) and (ii) implies
that ιbΩ(f)(x) = ιbΩ(φf)(x), so the general case follows as well.

(iv): It suffices to observe that, by our assumption on b, (iii) implies that
ιbΩ(f)([xε]) = [f(xε)] = f(x) for any f ∈ C∞(Ω) and any x = [xε] ∈ c(Ω).

(v): As in the proof of (iv) we may assume that T has compact support. Then
for ε small we have

ιbΩ(∂αT )ε = ∂αT ∗ µbε = ∂α(T ∗ µbε) = ∂αιbΩ(T )ε.
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(vi): Pick ζ ∈ D(Ω) such that ζ ≡ 1 on a neighborhood of stsupp(φ). Then

stsupp(ιbΩ(T ) − ιbΩ(ζT )) ∩ stsuppφ = stsupp(T − ζT ) ∩ stsuppφ = ∅,
so we may replace T by ζT , i.e., we may assume without loss of generality that
T ∈ E ′(Ω). By the representation theorem of distribution theory T then is a finite
sum of terms of the form ∂αf with f ∈ C0(Ω) compactly supported in Ω, so it will
suffice to treat the case T = ∂αf . For any φ ∈ D(Ω) we haveˆ

(ιbΩ(∂αf)ε−∂αf)(x)φ(x) dx =

ˆ ˆ
(∂αf(x− y) − ∂αf(x))µbε(y)φ(x) dydx+ nε

=

ˆ
∂αf(x)

ˆ
µbε(y)(φ(x+ y) − φ(x)) dydx+ nε.

with nε = O(b−qε ) for any q ∈ N by Lemma 24 (v). As in the proof of (iii) it follows
that also the integral term in the above equality is of order O(b−qε ), giving the claim
due to our assumption on b.

(vii): The first claim is immediate from ιbR(δ)ε(0) = µbε(0). To show the second,
note first that

ιbR(H)ε(0) −
ˆ
H(y)µbε(−y) dy =

ˆ
H(y)(κε(y) − 1)µbε(−y) dy = 0

for ε small by the support properties of κε and χ. Furthermore, since
´∞
0
µ(y) dy =

1/2, we obtain∣∣∣ ˆ H(y)µbε(−y) dy − 1

2

∣∣∣ =
∣∣∣ˆ ∞

0

µ(y)(χ(b−1
ε | log(bε)|)y) − 1) dy

∣∣∣
≤
ˆ ∞

bε| log(bε)|−1

|µ(y)|dy = O(b−qε )

for any q ∈ N, so the claim follows.
(viii): We first note that any two choices for either (κε) or χ provide sheaf

morphisms as in (i), (ii), hence it suffices to check that the resulting embeddings
coincide on compactly supported distributions. For any such T we have κεT = T
for ε small, so independence from the choice of (κε) follows.

Now suppose that two different χ’s have been chosen and denote the correspond-
ing functions from (4.4) by µbε and µ̄bε, and the resulting embeddings by ιb and ῑb,
respectively. Since T ∈ E ′(Ω), it satisfies a seminorm estimate of the form

∀φ ∈ C∞(Ω) : |⟨T, φ⟩| ≤ C max
|β|≤m

sup
x∈L

|∂βφ(x)|. (4.8)

for some L ⋐ Ω. Together with Lemma 24 (iii) this implies that, for any [xε] ∈ c(Ω)
and ε small, we have

|(ιbΩ(T )ε − ῑbΩ(T )ε)(xε)| = |⟨T, (µbε − µ̄bε)(xε − . )⟩| = O(b−qε )

for any q ∈ N.
(ix): Let (cε) be another representative of b, so (cε) ∼ρ (bε). As in the proof

of (viii) it then suffices to show that ιb(T ) = ιc(T ) for any T ∈ E ′(Ω). Given
x = [xε] ∈ c(Ω), let K ⋐ Ω be such that xε ∈ K for ε small. Then by (4.8) and
(4.5),

|(ιb(T ) − ιc(T ))(xε)| ≤ C max
|β|≤m

sup
x∈K−L

|∂β(µbε − µcε)(x)|.

Inserting from (4.4) it follows by a straightforward estimate that the right hand
side here is of order O(ρqε) for any q ∈ N, proving the claim. □
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Whenever we use the notation ιb for an embedding, we assume that b ∈ ρR̃
satisfies the overall assumptions of Thm. 25 and of (iv) in that Theorem, and that
ιb has been defined as in (4.5) using a Colombeau mollifier µ for the given dimension.
Note in particular that by Theorem 25 (ix) we are justified in using the short hand
notation ιb for the embedding defined via any representative (bε) of b.

Remark 26.

(i) In Def. 1, we introduced the asymptotic gauge I(ρ), and the entire construc-
tion depends on the fixed infinitesimal net ρ only through this set I(ρ). A
more general definition of asymptotic gauge is possible (see [45]). Anyhow,
[45, Sec. 4.3] shows that an embedding of Schwartz distribution having cer-
tain minimal properties necessarily requires that the asymptotic gauge be
generated by a single net, as is the case for I(ρ).

(ii) Let δ, H ∈ ρGC∞(ρR̃, ρR̃) be the corresponding ιb-embeddings of the Dirac
delta and of the Heaviside function. Then δ(x) = b · µ(b · x) and δ(x) = 0 if
x is near-standard and x◦ ̸= 0 or if x is infinite because µ ∈ S(R). Also, by
construction of µbε, δ can be represented like in the first diagram of Fig. 4.1.
E.g., δ(k/b) = 0 for each k ∈ Z \ {0}, and each k

b is a nonzero infinitesimal.

Similar properties can be stated e.g. for δ2(x) = b2 · µ(b · x)2.
(iii) Analogously, we have H(x) = 1 if x is near-standard and x◦ > 0 or if x > 0

is infinite; H(x) = 0 if x is near-standard and x◦ < 0 or if x < 0 is infinite.
(iv) Let vp( 1

x ) ∈ D′(R) be the Cauchy principal value, so that ιbR(vp( 1
x ))(x) =

[(vp( 1
x )∗µbε)(xε)] = [⟨vp( 1

x )(y), µbε(xε−y)⟩] and µbε(x) = bεµ(bεx)χ(x| log bε|).
If x = [xε] is far from the origin, in the sense that |x| ≥ r for some r ∈
R>0, then ιbR(vp( 1

x ))(x) = [
´ Rε

−Rε

µb
ε(xε−y)
y dy], where Rε := xε + 2| log bε|−1.

Proceeding as above for the smooth function x 7→ 1
x in a neighborhood of xε

not containing the origin (i.e. for ε small), we can prove that ιbR(vp( 1
x ))(x) =

1
x . The behavior of the GSF ιbR(vp( 1

x )) in an infinitesimal neighborhood of
the origin depends on the Colombeau mollifier µ. For example, if in Lem. 22

we add the linear condition
´ µn(x)

x dx = 0, then also ιbR(vp( 1
x ))(0) = 0.

(v) In [76], S.  Lojasiewicz introduced the notion of a point value for distributions.
He defined that T ∈ D′(Ω) has the point value c ∈ C in x0 ∈ Ω if

lim
ε→0

⟨T (x0 + εx), φ(x)⟩ = c

ˆ
φ(x) dx ∀φ ∈ D(Ω). (4.9)

Not every distribution has point values in arbitrary points — in fact, if it
does, it already has to be a function of first Baire class ([76]). Conversely,
a continuous function f clearly has point value f(x) in any point x in its
domain.

We show that if T has point value c at x0 ∈ Ω then ιbΩ(T )ε(x0) → c as
ε→ 0. In fact, since S ′(Rn) is a normal space of distributions that is invariant
under translations, by [103, Prop. 7] this follows if for any sequence εk ↓ 0,
the functions gk := µbεk satisfy the following conditions:

(a)
´
gk(x) dx→ 1, and ∀η > 0:

´
|x|≥η gk(x) dx→ 0 as k → ∞.

(b) For each α ∈ D(Rn) that is 1 on a neighborhood of 0, (1 − α)gk → 0 in
S ′(Rn) for k → ∞.

(c) For each α ∈ Nn there exists some Mα > 0 such that, for any η > 0:´
|x|≤η |x|

|α||∂αgk(x)|dx ≤Mα.
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Indeed, all these properties follow readily from (4.4).
(vi) Colombeau’s special (or simplified) algebra G ([15, 16, 84, 50]) is defined,

for Ω ⊆ Rn open, as the quotient Gs(Ω) := EM (Ω)/N s(Ω) of moderate nets
modulo negligible nets, where

EM (Ω) := {(uε) ∈ C∞(Ω)I | ∀K ⋐ Ω∀α ∈ Nn ∃N ∈ N :

sup
x∈K

|∂αuε(x)| = O(ε−N )}

and

N s(Ω) := {(uε) ∈ C∞(Ω)I | ∀K ⋐ Ω ∀α ∈ Nn ∀m ∈ N :

sup
x∈K

|∂αuε(x)| = O(εm)}.

It follows from [43, Th. 37] that Gs(Ω) can be identified with the algebra
ρGC∞(c(Ω), ρR̃) in the special case of ρ(ε) = ε. In this setting, Theorem 25
gives an alternative proof of the well known facts that the Colombeau algebra
contains C∞(Ω) as a faithful subalgebra, D′(Ω) as a linear subspace and that
the embedding is a sheaf morphism that commutes with partial derivatives.
An alternative point of view is that Colombeau generalized functions corre-
spond to those generalized smooth functions that are defined on compactly
supported generalized points. As was already mentioned, more general do-
mains are both useful in applications and are indeed a necessary requirement
for obtaining a construction that is closed with respect to composition of
generalized functions.

We close this section by considering the following natural problem: let us define
two embeddings ιbΩ, ιcΩ as in (4.5), but using two different infinite positive numbers

b, c ∈ ρR̃, so that for all T ∈ E ′(Ω) we have

ιbΩ(T ) :=
[
T ∗ µbε

]
,

ιcΩ(T ) := [T ∗ µcε] .

The following result characterizes equality of such embeddings.

Theorem 27. Let b, c ∈ ρR̃ be infinite positive numbers and let µ be a Colombeau
mollifier for dimension n. Let Ω ⊆ Rn be open. Then ιbΩ = ιcΩ if and only if b = c

in ρR̃, i.e. if and only if they are equal as Robinson-Colombeau generalized number.

Proof. By Theorem 25 (ix), ιb is well-defined, i.e., does not depend on the repre-

sentative of b ∈ ρR̃. Conversely, suppose that ιbΩ = ιcΩ and fix any x0 ∈ Ω. Then in

particular ιbΩ(δx0
) = ιcΩ(δx0

) in ρGC∞(c(Ω), ρR̃). Due to (4.4), (4.5), an evaluation
of these GSF at x0 implies

∀m ∈ N : |(bnε − cnε )cn| = O(ρmε ),

so b = c in ρR̃. □

4.0.1. Closure with respect to composition. In contrast to the case of distributions,
there is no problem in considering the composition of two GSF. This property opens
new interesting possibilities, e.g. in considering differential equations y′ = f(y, t),
where y and f are GSF. For instance, there is no problem in studying y′ = δ(y)
(see [77]).
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Theorem 28. Subsets S ⊆ ρR̃s with the trace of the sharp topology, and generalized
smooth maps as arrows form a subcategory of the category of topological spaces. We
will call this category ρGC∞, the category of GSF.

Proof. From Thm. 17 (iii) we already know that every GSF is continuous; we have
hence to prove that these arrows are closed with respect to identity and composition
in order to obtain a concrete subcategory of topological spaces and continuous maps.

If T ⊆ ρR̃t is an arbitrary object, then fε(x) := x is the net of smooth functions
that globally defines the identity 1T on T . It is immediate that 1T is generalized
smooth.
To prove that arrows of ρGC∞ are closed with respect to composition, let S ⊆
ρR̃s, T ⊆ ρR̃t, R ⊆ ρR̃r and f : S −→ T , g : T −→ R be GSF, then f(x) = [fε(xε)] ∈
T and g(y) = [gε(yε)] ∈ R for every x ∈ S and y ∈ T , where fε ∈ C∞(Ω′

ε,R
t)

and gε ∈ C∞(Ω′′
ε ,R

r) are suitable nets of smooth functions as in Def. 14, and
where Ω′

ε is open in Rs and Ω′′
ε is open in Rt. Of course, the idea is to consider

gε ◦fε ∈ C∞(Ωε,Rr), where Ωε := f−1
ε (Ω′′

ε ) (let us note that, even in the case where
Ω′′
ε does not depend by ε, generally speaking Ωε still depends on ε).

Take x ∈ S, so that f(x) = [fε(xε)] ∈ T ⊆ ⟨Ω′′
ε ⟩ and hence fε(xε) ∈ε Ω′′

ε and
xε ∈ Ωε for ε small. If we take another representative (x′ε) ∼ρ (xε) we have
f(x′) = f(x) since f is well-defined and, proceeding as before, we still have that
x′ε ∈ Ωε for ε sufficiently small. This proves that S ⊆ ⟨Ωε⟩. Moreover, since
[fε(xε)] ∈ T , we also have that [gε(fε(xε))] ∈ R and g(f(x)) = [gε(fε(xε))]. It
remains to show that the net (gε ◦ fε) defines a GSF (Def. 14) of the type S −→ R.
To this end, let us consider any [xε] ∈ S and any γ ∈ Ns. We can write

∂γ(gε ◦ fε)(xε) = p
[
∂α1fε(xε), . . . , ∂

αAfε(xε), ∂
β1gε(fε(xε)), . . . , ∂

βBgε(fε(xε))
]
,

(4.10)
where p is a suitable polynomial (from the Faà di Bruno formula) not depending on
xε. Every term ∂αifε(xε) and ∂βjgε(fε(xε)) is ρ-moderate by (ii) of Def. 14. Since
moderateness is preserved by polynomial operations, it follows that also ∂γ(gε ◦
fε)(xε) is ρ-moderate. □

For instance, we can think of the Dirac delta as a map of the form δ : ρR̃ −→ ρR̃,

and therefore the composition eδ is defined in {x ∈ ρR̃ | ∃z ∈ ρR̃>0 : δ(x) ≤ log z},
which of course does not contain x = 0 but only suitable non zero infinitesimals. On

the other hand, δ ◦ δ : ρR̃ −→ ρR̃. Moreover, from the inclusion of ordinary smooth
functions (Thm. 25) and the closure with respect to composition, it directly follows

that every ρGC∞(U, ρR̃) is an algebra with pointwise operations for every subset

U ⊆ ρR̃n. For an open subset Ω ⊆ Rn, the algebra ρGC∞(c(Ω), ρR̃) contains the
space D′(Ω) of Schwartz distributions.

A natural way to define a GSF is to follow the original idea of classical authors
(see [60, 73, 20]) to fix an infinitesimal or infinite parameter in a suitable ordinary
smooth function. We will call this type of GSF of Cauchy-Dirac type; the next the-
orem specifies this notion and states that GSF are of Cauchy-Dirac type whenever
the generating net (fε) is smooth in ε.

Corollary 29. Let X ⊆ Rn, Y ⊆ Rd, P ⊆ Rm be open sets and φ ∈ C∞(P ×X,Y )
be an ordinary smooth function. Let p ∈ [P ], and define fε := φ(pε,−) ∈ C∞(X,Y ),
then [fε(−)] : [X] −→ [Y ] is a GSF. In particular, if f : [X] −→ [Y ] is a GSF
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Figure 4.2. A representation of δ ◦ δ

defined by (fε) and the net (fε) is smooth in ε, i.e. if

∃φ ∈ C∞((0, 1) ×X,Y ) : fε = φ(ε,−) ∀ε ∈ (0, 1),

and if [ε] ∈ ρR̃, then the GSF f is of Cauchy-Dirac type because f(x) = φ([ε], x)
for all x ∈ [X]. Finally, Cauchy-Dirac GSF are closed with respect to composition.

Proof. In fact, the map x ∈ [X] 7→ (p, x) ∈ [P ]× [X] is trivially generalized smooth
and hence from the inclusion of smooth functions (Theorem 25) and the closure
with respect to composition (Theorem 28) the conclusions follow. □

Example 30. The composition δ ◦ δ ∈ ρGC∞(ρR̃, ρR̃) is given by (δ ◦ δ)(x) =
bµ

(
b2µ(bx)

)
and is an even function. If x is near-standard and x◦ ̸= 0, or x is

infinite, then (δ ◦ δ)(x) = b. Since (δ ◦ δ)(0) = 0, by the intermediate value theorem

(see Cor. 48 below), we have that δ ◦ δ attains any value in the interval [0, b] ⊆ ρR̃.
If 0 ≤ x ≤ 1

2b , then (for a µ as in Fig. 4) x is infinitesimal and (δ◦δ)(x) = 0 because

δ(x) ≥ bµ
(
1
k

)
is an infinite number. If x = k

b for some k ∈ N>0, then x is still
infinitesimal but (δ ◦ δ)(x) = b because µ(bx) = 0. A representation of δ ◦ δ is given
in Fig. 4.2. Analogously, one can deal with H ◦ δ and δ ◦H.

The theory of GSF originates from the theory of Colombeau quotient algebras.
In this well-developed approach, strong analytic tools, including microlocal anal-
ysis, and an elaborate theory of pseudodifferential and Fourier integral operators
have been developed over the past few years (cf. [15, 16, 84, 50, 54, 31, 32] and ref-
erences therein). In these quotient algebras, each generalized function generates a

unique GSF defined on a subset of (ε)R̃. On the other hand, Colombeau generalized
functions are in general not closed with respect to composition because they cannot

be defined on arbitrary domains X ⊆ ρR̃n. We refer to [43] for details about the
links between Colombeau algebras and GSF, and to [112, 113, 114] for a treatment
of Colombeau algebras in the framework of nonstandard analysis.
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5. Differential calculus and the Fermat-Reyes theorem

In this section we show how the derivatives of a GSF can be calculated using a
form of incremental ratio. The idea is to prove the Fermat-Reyes theorem for GSF
(see [38, 40, 62]). Essentially, this theorem shows the existence and uniqueness of
another GSF serving as incremental ratio. This is the first of a long list of results
demonstrating the close similarities between ordinary smooth functions and GSF.

We recall that the thickening of an open set Ω ⊆ Rn along v ∈ Rn is thv(Ω) :=
{(x, h) ∈ Rn+1 | [x, x + hv]Rn ⊆ Ω}, and serves as a natural domain of a partial
incremental ratio along v of any function defined on Ω. In order to prove the

Fermat-Reyes theorem, it is simpler to define what a thickening of U ⊆ ρR̃n along

v ∈ ρR̃n is.

Definition 31. Let U ⊆ ρR̃n and let v ∈ ρR̃n. Then we say that T ⊆ ρR̃n+1 is a
(sharp) thickening of U along v if

(i) ∀x ∈ U : (x, 0) ∈ T

(ii) For all (x, h) ∈ T there exist a, b ∈ ρR̃>0, with b < a, such that:
(a) |h · v| < b
(b) Ba(x) ⊆ U
(c) Ba(x) ×Bb(0) ⊆ T .

Finally, we will say that T is a large thickening of Ualong v if the radii a, b in (ii)
are real: a, b ∈ R>0.
Remark 32.

(i) Conditions (i) and (ii) imply that necessarily U is a sharply open set, whereas
U is a large open set if T is a large thickening.

(ii) Let (x, h) ∈ T and let the radii a, b be as in (ii). Then for all s ∈ [0, 1] we
have |x+ shv − x| ≤ |hv| < b < a. Therefore [x, x+ hv] ⊆ Ba(x) ⊆ U . This
gives a connection with the classical definition of thickening and shows that

if f : U −→ ρR̃, we can consider the difference f(x+ hv) − f(x).

(iii) Condition (ii) of Def. 31 yields that T is a sharply open subset of ρR̃n+1; it is
a large open subset in case T is a large thickening.

(iv) If T and T̄ are two (large) thickenings of U along v, then also T ∩ T̄ is a
(large) thickening of the same type. Finally, thickenings are also closed with
respect to arbitrary non empty unions.

In the present setting, the Fermat-Reyes theorem is the following.

Theorem 33. Let U ⊆ ρR̃n be a sharply open set, let v = [vε] ∈ ρR̃n, and

let f ∈ ρGC∞(U, ρR̃) be a generalized smooth map generated by the net of smooth
functions fε ∈ C∞(Ωε,R). Then

(i) If S is a thickening of U along v such that S ⊆ ⟨thvε(Ωε)⟩, then there
exists a thickening T ⊆ S of U along v and a generalized smooth map

r ∈ ρGC∞(T, ρR̃), called the generalized incremental ratio of f along v, such
that

f(x+ hv) = f(x) + h · r(x, h) ∀(x, h) ∈ T.

Moreover r(x, 0) =
[
∂fε
∂vε

(xε)
]
for every x ∈ U , and we can thus define

∂f
∂v (x) := r(x, 0), so that ∂f

∂v ∈ ρGC∞(U, ρR̃).
(ii) Any two generalized incremental ratios of f coincide on the intersection of

their domains.
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If U is a large open set and S is a large thickening of U along v, then an analogous
statement holds for a large thickening T of U along v.

Note that this result allows us to consider the partial derivative of f with respect

to an arbitrary generalized vector v ∈ ρR̃n which can be, e.g., near-standard or
infinite.
Before proving the theorem, it is essential to show that GSF are uniquely deter-
mined by invertible elements.

Lemma 34. Let U ⊆ ρR̃n be an open set in the sharp topology, and let f ∈
ρGC∞(U, ρR̃d) be a GSF. Then f(x) = 0 for every x ∈ U if and only if f(x) = 0 for
all x ∈ U such that |x| is invertible.

Proof. Using Lem. 8, it is straightforward to prove that the group of invertible

elements is dense in ρR̃ with respect to the sharp topology. This implies that the
set of points in U whose every coordinate is invertible is dense in U . Clearly for any
such point y, |y| is invertible. Thus given any point x ∈ U there exists a sequence
(xk) in U converging to x in the sharp topology and such that |xk| is invertible for
each k. Since f is continuous with respect to the sharp topology (Thm. 17 (iii)),
this yields 0 = f(xk) → f(x). □

To show the existence of thickenings, we also need the following result

Lemma 35. Let (Ωε) be a net of open sets of Rn, and let v = [vε] ∈ ρR̃n. Then

(i) if x ∈ ⟨Ωε⟩ then (x, 0) ∈ ⟨thvε(Ωε)⟩.
(ii) If (x, h) ∈ ⟨thvε(Ωε)⟩ then x+ thv ∈ ⟨Ωε⟩ for all t ∈ [0, 1].
(iii) If U ⊆ ⟨Ωε⟩ is sharply open, there exists a sharp thickening T of U along v

such that T ⊆ ⟨thvε(Ωε)⟩.
The same properties hold if we consider the strongly internal sets ⟨Ωε⟩F and ⟨thvε(Ωε)⟩F
in the Fermat topology. In this case in (iii), U has to be supposed large open and
the resulting thickening is large as well.

Proof. If x ∈ ⟨Ωε⟩, then xε ∈ Ωε for ε small, and we also have (xε, 0) ∈ thvε(Ωε)
for the same ε. Now take (x′ε, zε) ∼ρ (xε, 0), so that x = [x′ε] ∈ ⟨Ωε⟩ and hence

Br(x) ⊆ ⟨Ωε⟩ for some r ∈ ρR̃>0 such that rε < d(x′ε,Ω
c
ε) for all ε ∈ I (see

Thm. 10). The net (zε) ∼ρ 0, so we also have |zεvε| < rε for ε small. Thus for ε
sufficiently small we obtain both x′ε ∈ Ωε and |zεvε| < rε, so that for all s ∈ [0, 1]R
we have that |x′ε + szεvε − x′ε| ≤ |zεvε| < rε < d(x′ε,Ω

c
ε). Hence x′ε + szεvε ∈ Ωε,

i.e. (x′ε, zε) ∈ thvε(Ωε) for ε sufficiently small. This shows that (x, 0) ∈ ⟨thvε(Ωε)⟩,
implying (i).
To prove (ii), assume that (x, h) ∈ ⟨thvε(Ωε)⟩ and t ∈ [0, 1]. Therefore, 0 ≤ tε ≤ 1
for ε small and some representative (tε) of t. Since (xε, hε) ∈ε thvε(Ωε), we have
that xε + tεhεvε ∈ Ωε for ε small. If we take another representative (yε) ∼ρ
(xε + tεhεvε), then we can define x′ε := yε − tεhεvε so that (xε, hε) ∼ρ (x′ε, hε).
From (xε, hε) ∈ε thvε(Ωε) we thus get that also (x′ε, hε) ∈ thvε(Ωε) for ε small.
Therefore x′ε + tεhεvε = yε ∈ Ωε for ε small. This shows that x+ thv ∈ ⟨Ωε⟩.
Finally, in order to prove (iii), we assume that U ⊆ ⟨Ωε⟩ is a sharply open subset.
For all x ∈ U ⊆ ⟨Ωε⟩, we have (x, 0) ∈ ⟨thvε(Ωε)⟩ from (i), and hence Thm. 10 (iv)

yields the existence of cx ∈ ρR̃>0 such that Bcx(x, 0) ⊆ ⟨thvε(Ωε)⟩. Since U is a

neighborhood of x, there exists ax ∈ ρR̃>0, ax < cx, such that Bax(x) ⊆ U . Choose

bx ∈ ρR̃>0 such that bx < ax and ax + bx < cx. Because v ∈ ρR̃n is ρ-moderate, we
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have |v| < dρ−N for some N ∈ N. Take dx ∈ ρR̃>0 such that dx < bx · dρN and
define

T :=
⋃
x∈U

Bax(x) ×Bdx(0).

If |h| < dx, then |h · v| < |v| · dx < bx and hence T is a sharp thickening of U
along v. We finally note that (x′, h) ∈ Bax(x) × Bdx(0) implies |(x′, h) − (x, 0)| ≤
|x′ − x| + |h| < ax + dx < ax + bx < cx, so that (x′, h) ∈ Bcx(x, 0) ⊆ ⟨thvε(Ωε)⟩.
Therefore T ⊆ ⟨thvε(Ωε)⟩.

Considering ∼F instead of ∼ρ and radii in R>0, in the same way we can prove
the analogous properties for strongly internal sets in the Fermat topology. □

We can now prove the Fermat-Reyes theorem for GSF.

Proof of Theorem 33. Since U is sharply open, for any point x ∈ U we can find a

ball BRx(x) ⊆ U , Rx ∈ ρR̃>0. Define ax := Rx

2 and bx := ax
2 . Because v ∈ ρR̃n

is ρ-moderate, we have |v| < dρ−N for some N ∈ N. Take dx ∈ ρR̃>0 such that
dx < bx · dρN and set T :=

⋃
x∈U Bax(x) × Bdx(0). Since for all x ∈ U the pair

(x, 0) is an interior point of the given thickening S, we can assume to have chosen
ax and dx so that T ⊆ S ⊆ ⟨thvε(Ωε)⟩. In case U is large open, we can proceed as
above to obtain ax, dx ∈ R>0, so that T would then be a large thickening.
Let us consider the net of smooth function rε ∈ C∞(thvε(Ωε)) defined by rε(y, h) :=´ 1
0
∂fε
∂vε

(y+ thvε)dt for all ε ∈ I. We calculate the partial derivative ∂αrε(yε, hε) for

α ∈ Nn+1 and an arbitrary point (y, h) ∈ T . For simplicity, set α̂ := (α1, . . . , αn),
and vε =: (v1ε, . . . , vnε) ∈ Rn.

∂αrε(yε, hε) =

ˆ 1

0

∂|α|

∂hαn+1∂yα̂

[
∂fε
∂vε

(yε + thεvε)

]
dt (5.1)

Applying the chain rule and the mean value theorem for integrals, (5.1) can be
written as a sum of terms of the form ∂βf(yε + tεhεvε)v

γ
ε t
m
ε , for suitable multi-

indices β, γ, and m ∈ N. Here, tε ∈ [0, 1]R for all ε ∈ I. From (y, h) ∈ T , we
get y ∈ Bax(x) and h ∈ Bdx(0) for some x ∈ U . This gives |y + thv − x| ≤
|y − x| + |hv| < ax + bx < Rx, so that y + thv ∈ BRx

(x) ⊆ U . From Def. 14
(ii) we hence have that

(
∂βfε(yε + tεhεvε)

)
is ρ-moderate. Since moderateness is

preserved by polynomials, and tε ∈ [0, 1]R is moderate, from (5.1) we obtain that

(∂αrε(yε, hε)) is moderate. This proves that r := [rε(−,−)]|T : T −→ ρR̃ is a GSF.
We have

h · r(x, h) =

[
hε ·
ˆ 1

0

∂fε
∂vε

(xε + thεvε) dt

]
=

[ˆ hε

0

d

ds
{fε(xε + svε)} (s) ds

]
= [fε(xε + hεvε)] − [fε(xε)] = f(x+ hv) − f(x).

Of course r(x, 0) =
[
∂fε
∂vε

(xε)
]
, and this concludes the existence part.

To prove uniqueness, consider (x, h) ∈ T ∩ T̄ , where T and T̄ are two thickenings
(along v) of the incremental ratios r, r̄. Define R(k) := r(x, k) and R̄(k) := r̄(x, k)
for k ∈ Bb(0), where (x, h) ∈ Ba(x)×Bb(0) ⊆ T ∩ T̄ by the definition of thickening.
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Since k ∈ Bb(0) 7→ (x, k) ∈ T ∩ T̄ is a GSF, both R and R̄ are still generalized
smooth maps by the closure with respect to composition. Moreover

k ·R(k) = k · r(x, k) = f(x+ kv) − f(x), (5.2)

and analogously k · R̄(k) = f(x+ kv)− f(x) = k ·R(k). Therefore R(k) = R̄(k) for
every k ∈ Bb(0) which is invertible, and Lemma 34 yields R = R̄. Since h ∈ Bb(0)
we get R(h) = r(x, h) = R̄(h) = r̄(x, h). □

We will use the notation ∂f
∂v [−,−]T ∈ ρGC∞(T, ρR̃) (or simply ∂f

∂v [−,−] in case
the domain is clear from the context) for the generalized smooth incremental ratio

of a function f ∈ ρGC∞(U, ρR̃) defined on the thickening T , so as to distinguish it

from the derivative ∂f
∂v ∈ ρGC∞(U, ρR̃). Since any partial derivative of a GSF is still

a GSF, higher order derivatives ∂αf
∂vα ∈ ρGC∞(U, ρR̃) are simply defined recursively.

As follows from Thm. 33 (i) and Thm. 25 (v), the concept of derivative de-
fined using the Fermat-Reyes theorem is compatible with the classical derivative of
Schwartz distributions via the embeddings ιb from Thm. 25. The following result
follows from the analogous properties for the nets of smooth functions defining f
and g.

Theorem 36. Let U ⊆ ρR̃n be an open subset in the sharp topology, let v ∈ ρR̃n

and f , g : U −→ ρR̃ be generalized smooth maps. Then

(i) ∂(f+g)
∂v = ∂f

∂v + ∂g
∂v

(ii) ∂(r·f)
∂v = r · ∂f∂v ∀r ∈ ρR̃

(iii) ∂(f ·g)
∂v = ∂f

∂v · g + f · ∂g∂v
(iv) For each x ∈ U , the map df(x).v := ∂f

∂v (x) ∈ ρR̃ is ρR̃-linear in v ∈ ρR̃n.

Using the Fermat-Reyes theorem, it is also possible to give intrinsic proofs
(i.e. without using nets of smooth functions that define a given GSF), as exem-
plified in the following

Theorem 37. Let U ⊆ ρR̃n and V ⊆ ρR̃d be open subsets in the sharp topology and

g ∈ ρGC∞(V,U), f ∈ ρGC∞(U, ρR̃) be generalized smooth maps. Then for all x ∈ V

and all v ∈ ρR̃d

∂ (f ◦ g)

∂v
(x) = df (g(x)) .

∂g

∂v
(x)

d(f ◦ g) (x) = df (g(x)) ◦ dg(x).

Proof. For h small (in the sharp topology), we can write

f [g(x+ hv)] = f

[
g(x) + h

∂g

∂v
[x, h]

]
. (5.3)

Set u(x, h) := ∂g
∂v [x, h] ∈ ρR̃n. Then (5.3) yields

f [g(x+ hv)] = f(g(x)) + h · ∂f

∂u(x, h)
[g(x), h] .

Therefore, the uniqueness of the smooth incremental ratio of f ◦ g in the direction
v implies

∂ (f ◦ g)

∂v
[x, h] =

∂f

∂u(x, h)
[g(x), h] .
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For h = 0, we get

∂ (f ◦ g)

∂v
(x) =

∂f

∂u(x, 0)
(g(x)) = df(g(x)).u(x, 0) = df(g(x)).

∂g

∂v
(x),

which is our conclusion. □

6. Integral calculus using primitives

In this section, we inquire existence and uniqueness of primitives F of a GSF

f ∈ ρGC∞([a, b], ρR̃) (see also [121] for an analogous approach). To this end, we shall
have to introduce the derivative F ′(x) at boundary points x ∈ [a, b], i.e. such that
x−a or b−x is not invertible. Let us note explicitly, in fact, that the Fermat-Reyes
Theorem 33 is stated only for sharply open domains. We shall therefore require the
following result.

Lemma 38. Let a, b ∈ ρR̃ be such that a < b. Then the interior int ([a, b]) in the
sharp topology is dense in [a, b].

Proof. Take representatives of a, b and x ∈ [a, b] such that aε < bε and aε ≤ xε ≤ bε
for ε small. Thm. 10 (ii) yields int ([a, b]) = ⟨(aε, bε)⟩. To prove the conclusion, it
suffices to define

ykε :=


xε if aε + ρkε ≤ xε ≤ bε − ρkε
aε + ρkε if xε < aε + ρkε
bε − ρkε if xε > bε − ρkε

for any k ∈ N and ε ∈ I. We have d(ykε, (aε, bε)
c) ≥ ρkε , so that yk ∈ ⟨(aε, bε)⟩.

Moreover, |ykε − xε| < ρkε for all ε, and from this the desired limit condition
follows. □

The following result shows that every GSF can have at most one primitive GSF
up to an additive constant.

Theorem 39. Let X ⊆ ρR̃ and let f ∈ ρGC∞(X, ρR̃) be a generalized smooth

function. Let a, b ∈ ρR̃, with a < b, such that (a, b) ⊆ X. If f ′(x) = 0 for all
x ∈ int(a, b), then f is constant on (a, b). An analogous statement holds if we take
any other type of interval (closed or half closed) instead of (a, b).

Proof. By Lemma 18, we can assume that f is defined by a net of smooth functions
fε ∈ C∞(R,R). From the Fermat-Reyes Theorem 33, we know that f ′(x) = [f ′ε(xε)]
for every interior point x = [xε] ∈ X. For all x, y ∈ int(a, b) ⊆ X, we can write

f(x) − f(y) = [fε(xε) − fε(yε)] =

[
(yε − xε) ·

ˆ 1

0

f ′ε(xε + s(yε − xε)) ds

]
= (y − x) · [f ′ε(xε + sε(yε − xε))] = (y − x) · f ′(x+ s(y − x)), (6.1)

where sε ∈ [0, 1]R is provided by the integral mean value theorem and s := [sε] ∈
[0, 1]. Since x, y ∈ int(a, b), we have x + s(y − x) ∈ int(a, b) and hence f ′(x +
s(y − x)) = 0. Thereby, (6.1) yields f(x) = f(y) as claimed. For a different
type of interval, it suffices to consider Lemma 38 and sharp continuity of GSF
(Thm. 17). □
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Remark 40. From the Fermat-Reyes Thm. 33 and from Thm. 39, it follows that
the function i(x) := 1 if x ≈ 0 and i(x) := 0 otherwise cannot be a GSF on any
large neighborhood of x = 0. This example stems from the property that different
standard real numbers can always be separated by infinitesimal balls.

At interior points x ∈ [a, b] in the sharp topology, the definition of derivative
f (k)(x) follows from the Fermat-Reyes Theorem 33. At boundary points, we have
the following

Theorem 41. Let a, b ∈ ρR̃ with a < b, and f ∈ ρGC∞([a, b], ρR̃) be a generalized
smooth function. Then for all x ∈ [a, b], the following limit exists in the sharp
topology

lim
y→x

y∈int([a,b])

f (k)(y) =: f (k)(x).

Moreover, if the net fε ∈ C∞(Ωε,R) defines f and x = [xε], then f (k)(x) =

[f
(k)
ε (xε)] and hence f (k) ∈ ρGC∞([a, b], ρR̃).

Proof. We have

lim
y→x

y∈int([a,b])

f (k)(y) = lim
y→x

y∈int([a,b])

[
f (k)ε (yε)

]
= [f (k)ε (xε)],

where the last equality follows due to the sharp continuity of [f
(k)
ε (−)] at every

point x ∈ [a, b] ⊆ ⟨Ωε⟩ (Thm. 17 (iii) and Lem. 38). □

We can now prove existence and uniqueness of primitives of GSF:

Theorem 42. Let a, b, c ∈ ρR̃, with a < b and c ∈ [a, b]. Let f ∈ ρGC∞([a, b], ρR̃)
be a generalized smooth function. Then, there exists one and only one generalized

smooth function F ∈ ρGC∞([a, b], ρR̃) such that F (c) = 0 and F ′(x) = f(x) for all
x ∈ [a, b]. Moreover, if f is defined by the net fε ∈ C∞(R,R) and c = [cε], then

F (x) =
[´ xε

cε
fε(s) ds

]
for all x = [xε] ∈ [a, b].

Proof. Fix representatives (aε), (bε) and (cε) of a, b, c such that

aε ≤ cε ≤ bε (6.2)

for ε small. By Lemma 18, we can assume that f is generated by a net fε ∈
C∞(R,R). Set

Fε(x) :=

ˆ x

cε

fε(s) ds ∀x ∈ R. (6.3)

We want to prove that the net (Fε) defines a GSF of type [a, b] −→ ρR̃, and therefore
we take x ∈ [a, b] and α ∈ N. Choose a representative (xε) of x such that

aε ≤ xε ≤ bε (6.4)

for ε small. If α > 0, then F
(α)
ε (xε) = f

(α−1)
ε (xε) and hence moderateness is clear

since x ∈ [a, b]. For α = 0 we have Fε(xε) = fε(σε) · (xε − cε), where

σε ∈ [cε, xε] ∪ [xε, cε] ∀ε ∈ I (6.5)

is obtained by the integral mean value theorem. For ε small, we have both (6.2) and
(6.4), so that these inequalities and (6.5) yield σ ∈ [a, b] ⊆ U . Therefore (fε(σε))
and (Fε(xε)) are moderate. This proves condition Def. 14 (ii) for the net (Fε), and
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we can hence set F (x) := [Fε(xε)] ∈ ρR̃ for all x = [xε] ∈ [a, b].
If y ∈ int([a, b]), we can apply our differential calculus to the generalized smooth
map F |int([a,b]) = [Fε(−)]|int([a,b]), obtaining F ′(y) = [fε(yε)] = f(y). From this, if
x ∈ [a, b], we get

F ′(x) = lim
y→x

y∈int([a,b])

F ′(y) = lim
y→x

y∈int([a,b])

f(y) = f(x)

because f is sharply continuous at x ∈ [a, b] ⊆ U . The uniqueness part follows from
Theorem 39. □

Definition 43. Under the assumptions of Theorem 42, we denote by
´ (−)

c
f :=´ (−)

c
f(s) ds ∈ ρGC∞([a, b], ρR̃) the unique generalized smooth function such that:

(i)
´ c
c
f = 0

(ii)
(´ (−)

c
f
)′

(x) = d
dx

´ x
c
f(s) ds = f(x) for all x ∈ [a, b].

In Sec. 8, we develop a generalization of this concept of integration to GSF in

several variables and to more general domains of integration M ⊆ ρR̃d.
Example 44.

(i) Since ρR̃ contains both infinitesimal and infinite numbers, our notion of def-
inite integral also includes “improper integrals”. Let e.g. f(x) = 1

x for

x ∈ ρR̃>0 and a = 1, b = dρ−q, q > 0. Then

ˆ b

a

f(s) ds =

[ˆ ρ−q
ε

1

1

s
ds

]
= [log ρ−qε ] − log 1 = −q log dρ, (6.6)

which is, of course, a positive infinite generalized number. This apparently
trivial result is closely tied to the possibility to define GSF on arbitrary

domains, like F ∈ ρGC∞([a, b], ρR̃) in Thm. 42 where b is an infinite number
as in (6.6), which is one of the key properties allowing one to get the closure
with respect to composition.

(ii) If p, q ∈ ρR̃, p < 0 < q and both p and q are not infinitesimal, then
´ q
p
δ(t) dt ≈

1. If p ≤ −r and q ≥ s where r, s ∈ R>0, then
´ q
p
δ(t) dt = 1.

Theorem 45. Let f ∈ ρGC∞(X, ρR̃) and g ∈ ρGC∞(Y, ρR̃) be generalized smooth

functions defined on arbitrary domains in ρR̃. Let a, b ∈ ρR̃ with a < b and [a, b] ⊆
X ∩ Y . Then

(i)
´ b
a

(f + g) =
´ b
a
f +
´ b
a
g

(ii)
´ b
a
λf = λ

´ b
a
f ∀λ ∈ ρR̃

(iii)
´ b
a
f =
´ c
a
f +
´ b
c
f for all c ∈ [a, b]

(iv)
´ b
a
f = −

´ a
b
f

(v)
´ b
a
f ′ = f(b) − f(a)

(vi)
´ b
a
f ′ · g = [f · g]

b
a −
´ b
a
f · g′

(vii) If f(x) ≤ g(x) for all x ∈ [a, b], then
´ b
a
f ≤
´ b
a
g.

Proof. This follows directly from (6.3) and the usual rules of the integral calculus,
or from Def. 43 and Thm. 33 for property (vii). □
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Theorem 46. Let f ∈ ρGC∞(T, ρR̃) and φ ∈ ρGC∞(S, T ) be generalized smooth

functions defined on arbitrary domains in ρR̃. Let a, b ∈ ρR̃, with a < b, such
that [a, b] ⊆ S, φ(a) < φ(b) and [φ(a), φ(b)] ⊆ T . Finally, assume that φ([a, b]) ⊆
[φ(a), φ(b)]. Then ˆ φ(b)

φ(a)

f(t) dt =

ˆ b

a

f [φ(s)] · φ′(s) ds.

Proof. Define

F (x) :=

ˆ x

φ(a)

f(t) dt ∀x ∈ [φ(a), φ(b)]

H(y) :=

ˆ φ(y)

φ(a)

f(t) dt ∀y ∈ [a, b]

G(y) :=

ˆ y

a

f [φ(s)] · φ′(s) ds ∀y ∈ [a, b],

Each one of these functions is generalized smooth by Def. 43 of the integral or by
Thm. 28, because it can be written as a composition of generalized smooth maps.
We have H(a) = G(a) = 0, H(y) = F [φ(y)] for every y ∈ [a, b] and, by the chain
rule (Prop. 37) H ′(y) = F ′[φ(y)] · φ′(y) = f [φ(y)] · φ′(y) = G′(y), the last two
equalities following by Def. 43 of the integral. From the uniqueness Theorem 39,
the conclusion H = G follows. □

Remark 47. (Relation to distributional primitives) Let a, b ∈ R, a < b, and set
Ω = (a, b) ⊆ R. By [105, Ch. II, §4] there exists a sequentially continuous operator
R : D′(Ω) → D′(Ω) assigning to any T ∈ D′(Ω) a primitive R(T ), i.e., R(T )′ = T in

D′(Ω). Now let ι := ιbΩ : D′(Ω) → ρGC∞(c(Ω), ρR̃) be an embedding as in Theorem

25, and fix any c ∈ ρR̃ with a ≤ c ≤ b. Then

ι(R(T ))′ = ι(R(T )′) = ι(T ) =
( ˆ (−)

c

ι(T )
)′
.

Therefore, Theorem 45(v) implies thatˆ s

r

ι(T ) = ι(R(T ))(s) − ι(R(T ))(r)

for all s, t ∈ ρR̃ with a ≤ s, t ≤ b.

7. Some classical theorems for generalized smooth functions

It is natural to expect that several classical theorems of differential and integral
calculus can be extended from the ordinary smooth case to the generalized smooth
framework. Once again, we underscore that these faithful generalizations are possi-
ble because we do not have a priori limitations in the evaluation f(x) for GSF. For
example, one does not have similar results in Colombeau theory, where an arbitrary
generalized function can be evaluated only at compactly supported points.
We start from the intermediate value theorem.

Corollary 48. Let f ∈ ρGC∞(X, ρR̃) be a generalized smooth function defined on

the subset X ⊆ ρR̃. Let a, b ∈ ρR̃, with a < b, such that [a, b] ⊆ X. Assume that
f(a) < f(b). Then

∀y ∈ ρR̃ : f(a) ≤ y ≤ f(b) ⇒ ∃c ∈ [a, b] : y = f(c).
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Proof. Let f be defined by the net fε ∈ C∞(R,R). For small ε and for suitable
representatives (aε), (bε), (yε), we have

aε < bε , fε(aε) ≤ yε ≤ fε(bε).

By the classical intermediate value theorem we get some cε ∈ [aε, bε] such that
fε(cε) = yε. Therefore c := [cε] ∈ [a, b] ⊆ X and hence f(c) = [fε(cε)] = [yε] =
y. □

Using this theorem we can conclude that no GSF can assume only a finite number
of values which are comparable with respect to the relation < on any nontrivial
interval [a, b] ⊆ X, unless it is constant. For example, this provides an alternative
way of seeing that the function i of Rem. 40 cannot be a generalized smooth map.
We note that the solution c ∈ [a, b] of the previous generalized smooth equation
y = f(x) need not even be continuous in ε. Indeed, let us consider the net of smooth
functions depicted in Figure 7.1, where it is understood that, as ε approaches 0, the
two waves at the extremes oscillate around the dashed rectilinear positions shown

in the figure. Set f(x) =
[´ 1

0
fε(s) ds− fε(xε)

]
∈ ρR̃ for x ∈ [0, 1] ⊆ ρR̃, and analyze

the generalized smooth equation f(x) = 0. Let εk = 1
k be the “times” where the

two waves of the net (fε) are rectilinear. At these times the solution f(xεk) = 0
can be any point xεk ∈ [b, c]. Assume that for ε ∈

[
1
k ,

1
k + δk

]
only the wave on the

left is rectilinear and for ε ∈
[
1
k − δk,

1
k

]
only the wave on the right is rectilinear

(where δk ↓ 0 is sufficiently small). Therefore, in the first case, any solution must
be of the form xε ∈ [c, 1] and in the second case xε ∈ [0, b]. Thus any solution must
jump at every time εk and the height of the jump must be at least c− b.

This example allows us to draw the following general conclusion: if we consider
generalized numbers as solutions of smooth equations, then we are forced to work
on a non-totally ordered ring of scalars derived from discontinuous (in ε) represen-
tatives. To put it differently: if we choose a ring of scalars with a total order or
continuous representatives, we will not be able to solve every smooth equation, and
the given ring can be considered, in some sense, incomplete. Of course, this does

not mean that the study of better behaved (non-totally ordered) subrings of ρR̃,
useful for special purposes, is not interesting.

Theorem 49. Let f ∈ ρGC∞(X, ρR̃d) be a generalized smooth function defined in

the sharply open set X ⊆ ρR̃n. Let a, b ∈ ρR̃n such that [a, b] ⊆ X. Then

(i) If n = d = 1, then ∃c ∈ [a, b] : f(b) − f(a) = (b− a) · f ′(c).
(ii) If n = d = 1, then ∃c ∈ [a, b] :

´ b
a
f(t) dt = (b− a) · f(c).

(iii) If d = 1, then ∃c ∈ [a, b] : f(b) − f(a) = ∇f(c) · (b− a).

(iv) Let h := b− a. Then f(a+ h) − f(a) =
´ 1
0

df(a+ t · h).hdt.

Proof. Using the usual notations, for small ε we have aε < bε and

∃cε ∈ [aε, bε] : fε(bε) − fε(aε) = (bε − aε) · f ′ε(cε) (7.1)

∃cε ∈ [aε, bε] :

ˆ bε

aε

fε = (bε − aε) · fε(cε), (7.2)

from which the conclusions (i) and (ii) follow directly. The several variables and
vector valued cases (iii), (iv) follow as usual by reduction to the one-variable and
scalar valued case. □
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Figure 7.1. A net (fε) defining a discontinuous solution of a
smooth equation.

Internal sets generated by a sharply bounded net of compact sets serve as a
substitute for compact subsets for GSF, as can be seen from the following extreme
value theorem:

Lemma 50. Let ∅ ≠ K = [Kε] ⊆ ρR̃n be an internal set generated by a sharply

bounded net (Kε) of compact sets Kε ⋐ Rn Assume that α : K −→ ρR̃ is a well-
defined map given by α(x) = [αε(xε)] for all x ∈ K, where αε : Kε −→ R are
continuous maps (e.g. α(x) = |x|). Then

∃m,M ∈ K ∀x ∈ K : α(m) ≤ α(x) ≤ α(M).

Proof. Since K ̸= ∅, for ε sufficiently small, let us say for ε ∈ (0, ε0], Kε is non
empty and, by our assumptions, it is also compact. Since each αε is continuous,
for all ε ∈ (0, ε0] we have

∃mε,Mε ∈ Kε ∀x ∈ Kε : αε(mε) ≤ αε(x) ≤ αε(Mε).

Since the net (Kε) is sharply bounded, both the nets (mε) and (Mε) are moderate.
Therefore m = [mε], M = [Mε] ∈ K. Take any x ∈ [Kε], then there exists a
representative (xε) such that xε ∈ Kε for ε small. Therefore α(m) = [αε(mε)] ≤
[αε(xε)] = α(x) ≤ α(M). □

Corollary 51. Let f ∈ ρGC∞(X, ρR̃) be a generalized smooth function defined in

the subset X ⊆ ρR̃n. Let ∅ ≠ K = [Kε] ⊆ X be an internal set generated by a
sharply bounded net (Kε) of compact sets Kε ⋐ Rn. Then

∃m,M ∈ K ∀x ∈ K : f(m) ≤ f(x) ≤ f(M). (7.3)

These results motivate the following

Definition 52. A subset K of ρR̃n is called functionally compact, denoted by

K ⋐f
ρR̃n, if there exists a net (Kε) such that

(i) K = [Kε] ⊆ ρR̃n

(ii) (Kε) is sharply bounded
(iii) ∀ε ∈ I : Kε ⋐ Rn
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If, in addition, K ⊆ U ⊆ ρR̃n then we write K ⋐f U . Finally, we write [Kε] ⋐f U if
(ii), (iii) and [Kε] ⊆ U hold.

We refer to [41] for a deeper study of this type of compact sets in the case

ρ = (ε). Note that any interval [a, b] ⊆ ρR̃ with b − a ∈ R>0, is not connected:
in fact if c ∈ (a, b), then both c + D∞ and [a, b] \ (c+D∞) are sharply open in
[a, b]. Once again, this is a general property in several non-Archimedean frameworks
(see e.g. [93, 62]). On the other hand, as in the case of functionally compact sets,
GSF behave on intervals as if they were connected, in the sense that both the
intermediate value theorem Cor. 48 and the extreme value theorem Cor. 51 hold
for them (therefore, f ([a, b]) = [f(m), f(M)], where we used the notations from
the results just mentioned).

We close this section with generalizations of Taylor’s theorem in various forms. In

the following statement, dkf(x) : ρR̃dk −→ ρR̃ is the k-th differential of the GSF f ,

viewed as an ρR̃-multilinear map ρR̃d× k. . . . . . ×ρR̃d −→ ρR̃, and we use the common

notation dkf(x) · hk := dkf(x)(h, . . . , h). Clearly, dkf(x) ∈ ρGC∞(ρR̃dk, ρR̃). For

multilinear maps A : ρR̃p −→ ρR̃q, we set |A| := [|Aε|] ∈ ρR̃, the generalized number
defined by the norms of the operators Aε : Rp −→ Rq.

Theorem 53. Let f ∈ ρGC∞(U, ρR̃) be a generalized smooth function defined in the

sharply open set U ⊆ ρR̃d. Let a, b ∈ ρR̃d such that the line segment [a, b] ⊆ U , and
set h := b− a. Then, for all n ∈ N we have

(i) ∃ξ ∈ [a, b] : f(a+ h) =
∑n
j=0

djf(a)
j! · hj + dn+1f(ξ)

(n+1)! · hn+1.

(ii) f(a+ h) =
∑n
j=0

djf(a)
j! · hj + 1

n! ·
´ 1
0

(1 − t)n dn+1f(a+ th) · hn+1 dt.

Moreover, there exists some R ∈ ρR̃>0 such that

∀k ∈ BR(0) ∃ξ ∈ [a, a+ k] : f(a+ k) =

n∑
j=0

djf(a)

j!
· kj +

dn+1f(ξ)

(n+ 1)!
· kn+1 (7.4)

dn+1f(ξ)

(n+ 1)!
· kn+1 =

1

n!
·
ˆ 1

0

(1 − t)n dn+1f(a+ tk) · kn+1 dt ≈ 0. (7.5)

Formulas (i) and (ii) correspond to a plain generalization of Taylor’s theorem
for ordinary smooth functions with Lagrange and integral remainder, respectively.
Dealing with generalized functions, it is important to note that this direct statement
also includes the possibility that the differential dn+1f(ξ) may be infinite at some
point. For this reason, in (7.4) and (7.5), considering a sufficiently small increment
k, we get more classical infinitesimal remainders dn+1f(ξ) · kn+1 ≈ 0.

Proof. Let fε ∈ C∞(Rd,R) be a net of smooth functions that defines f . We have
a + h = b ∈ [a, b] ⊆ U and U is sharply open, so by the Taylor formula applied to
fε and by Theorem 33 we have

f(a+ h) = [fε(aε + hε)]

=

 n∑
j=0

djfε(aε)

j!
hjε +

dn+1fε(ξε)

(n+ 1)!
hn+1
ε


=

n∑
j=0

djf(a)

j!
hj +

dn+1f(ξ)

(n+ 1)!
hn+1
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for some ξε ∈ (aε, bε), and where ξ = [ξε] ∈ ρR̃ so that ξ ∈ [a, b]. Analogously, we
can prove (ii).

To prove the second part of the theorem, we start by considering a sharp ball

Br(a) ⊆ U , where r = [rε] > 0. Set H :=
[
BE

rε/2
(aε)

]
, and

K := max
(∣∣dn+1f(M)

∣∣ , ∣∣dn+1f(m)
∣∣) ∈ ρR̃,

where dn+1f(M) and dn+1f(m) are the maximum and the minimum values of

the GSF dn+1f : U × ρR̃d(n+1) −→ ρR̃ on H ⊆ U , see Cor. 51. We hence have∣∣dn+1f(ξ)
∣∣ ≤ K for all ξ ∈ H. Take any strictly positive number P ∈ ρR̃>0 such

that P ≥ K and any strictly positive infinitesimal p ∈ ρR̃>0 so that p
P ≈ 0 and

hence
(
p
P

)n+1 ≤ p
P . Set R := min

(
r
2 ,

p
P

)
, then R ∈ ρR̃>0 since both r and p

P are
invertible. If k ∈ BR(0) then [a, a+ k] ⊆ H ⊆ U . We can therefore apply (i) to get
(7.4). Finally∣∣∣∣dn+1f(ξ)

(n+ 1)!
kn+1

∣∣∣∣ ≤ K

(n+ 1)!
Rn+1 ≤ P

(n+ 1)!
·
( p
P

)n+1

≤ P

(n+ 1)!
· p
P

≈ 0.

□

The following definitions allow us to state Taylor formulas in Peano and in infini-
tesimal form. The latter has no remainder term thanks to the use of an equivalence
relation that permits the introduction of a language of nilpotent infinitesimals, see
e.g. [35] for a similar formulation. For simplicity, we only present the 1-dimentional
case.

Definition 54. (i) Let U ⊆ ρR̃ be a sharp neighborhood of 0 and P , Q : U −→
ρR̃ be maps defined on U . Then we say that

P (u) = o(Q(u)) as u→ 0

if there exists a function R : U −→ ρR̃ such that

∀u ∈ U : P (u) = R(u) ·Q(u) and lim
u→0

R(u) = 0,

where the limit is taken in the sharp topology.

(ii) Let x, y ∈ ρR̃ and k, j ∈ R>0, then we write x =j y if there exist representa-
tives (xε), (yε) of x, y, respectively, such that

|xε − yε| = O(ρ
1
j
ε ). (7.6)

We will read x =j y as x is equal to y up to j-th order infinitesimals. Finally,

if k ∈ N>0, we set Dkj :=
{
x ∈ ρR̃ | xk+1 =j 0

}
, which is called the set of

k-th order infinitesimals for the equality =j , and

D∞j :=
{
x ∈ ρR̃ | ∃k ∈ N>0 : xk+1 =j 0

}
which is called the set of infinitesimals for the equality =j .

Of course, the reformulation of Def. 54 (i) for the classical Landau’s little-oh is

particularly suited to the case of a ring like ρR̃, instead of a field. The intuitive
interpretation of x =j y is that for particular (e.g. physics-related) problems one is
not interested in distinguishing quantities whose difference |x − y| is less than an
infinitesimal of order j. In fact, if x =j y we can write xε = yε + rε with rε → 0 of
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order at most ρ
1
j
ε . The idea behind taking 1

j in (7.6) is to obtain the property that

the greater the order j of the infinitesimal error, the greater the difference |x − y|
is allowed to be. This is a typical property in rings with nilpotent infinitesimals
(see e.g. [35, 62]). The set Dki represents the neighborhood of infinitesimals of
k-th order for the equality =j . Once again, the greater the order k, the bigger
is the neighborhood (see Theorem 55 (viii) below). Note that if x =j y, then

xε = yε + o

(
ρ

1
j −a
ε

)
for all a ∈ (0, 1/j]R. In particular, xε = yε + o (ρε) implies

x =1 y, whereas x =1 y yields only xε = yε + o
(
ρ1−aε

)
for all a ∈ (0, 1]R. On

the other hand, it is not hard to prove the embedding •R ⊆ ρR̃/ =j of the ring of
Fermat reals •R of [35] for all j < 1.

Theorem 55. Let f ∈ ρGC∞(U, ρR̃) be a generalized smooth function defined in the

sharply open set U ⊆ ρR̃. Let x, δ ∈ ρR̃, with δ > 0 and [x− δ, x+ δ] ⊆ U . Let k, l,
j ∈ R>0. Then

(i) ∀n ∈ N : f(x+ u) =
∑n
r=0

f(r)(x)
r! ur + o(un) as u→ 0.

(ii) The definition of x =j y does not depend on the representatives of x, y.

(iii) =j is an equivalence relation on ρR̃.
(iv) If x =j y and l ≥ j, then x =l y. Therefore, Dnj ⊆ Dnl.
(v) If ∀0j ∈ R>0 : x =j y, then x = y.
(vi) If x =j y and z =j w then x + z =j y + w. If x and z are finite, then

x · z =j y · w.
(vii) ∀h ∈ Dkj : h ≈ 0.
(viii) Dmj ⊆ Dkj ⊆ D∞j if m ≤ k.

(ix) Dkj is a subring of ρR̃. For all h ∈ Dkj and all finite x ∈ ρR̃, we have
x · h ∈ Dkj.

(x) Let n ∈ N>0 and assume that j, k and f satisfy

∀z ∈ ρR̃ ∀ξ ∈ [x− δ, x+ δ] : z =j 0 ⇒ z · f (n+1)(ξ) =k 0. (7.7)

Then, we have

∀u ∈ Dnj : f(x+ u) =k

n∑
r=0

f (r)(x)

r!
ur.

(xi) For all n ∈ N>0 there exist e ∈ R>0 such that e ≤ j, and ∀u ∈ Dne :

f(x+ u) =j

∑n
r=0

f(r)(x)
r! ur.

Proof. In order to prove (i) we set P (u) = f(x + u) −
∑n
r=0

f(r)(x)
r! ur, Q(u) = un

and R(u) = u ·
´ 1
0
f(n+1)(x+tu)

n! (1− t)n dt for u ∈ Bδ(0). The segment [x−u, x+u] ⊆
Bδ(x) ⊆ U , so Thm. 53 (ii) yields P (u) = Q(u) · R(u) for all u ∈ Ux. As in the
previous proof, set

K := max
(∣∣∣f (n+1)(M)

∣∣∣ , ∣∣∣f (n+1)(m)
∣∣∣)

so that
∣∣f (n+1)(ξ)

∣∣ ≤ K for all ξ ∈ [x− δ, x+ δ], then

|R(u)| ≤ |u| ·
∣∣∣∣ˆ 1

0

f (n+1)(x+ tu)

n!
(1 − t)n dt

∣∣∣∣ ≤ |u| · K

(n+ 1)!

which goes to 0 as u→ 0 in the sharp topology.



40 PAOLO GIORDANO, MICHAEL KUNZINGER, AND HANS VERNAEVE

The proofs of (ii)-(ix) are simple. We only prove that Dkj is closed with respect
to sums. Let x, y ∈ Dkj so that∣∣∣∣∣xk+1

ε

ρ
1
j
ε

∣∣∣∣∣ ≤M ,

∣∣∣∣∣yk+1
ε

ρ
1
j
ε

∣∣∣∣∣ ≤ N (7.8)

for ε small and for some M , N ∈ R>0. Then∣∣∣∣∣ (xε + yε)
k+1

ρ
1
j
ε

∣∣∣∣∣ ≤
k+1∑
r=0

(
k + 1

r

) ∣∣∣∣∣xk+1
ε

ρ
1
j
ε

∣∣∣∣∣
r

k+1
∣∣∣∣∣yk+1
ε

ρ
1
j
ε

∣∣∣∣∣
k+1−r
k+1

≤
k+1∑
r=0

(
k + 1

r

)
M

r
k+1N

k+1−r
k+1 ,

proving the claim.
In order to show (x), we first note that x =j y is equivalent to

∃A ∈ R>0 : |x− y| ≤ A · dρ
1
j .

We again use the notation K := max
(∣∣f (n+1)(M)

∣∣ , ∣∣f (n+1)(m)
∣∣) and note that for

some ξ ∈ [x− δ, x+ δ], K =
∣∣f (n+1)(ξ)

∣∣. We have∣∣∣∣∣f(x+ u) −
n∑
r=0

f (r)(x)

r!
ur

∣∣∣∣∣ ≤ K

(n+ 1)!
· |u|n+1

=
1

(n+ 1)!
·
∣∣∣f (n+1)(ξ)

∣∣∣ · |u|n+1. (7.9)

In particular, if u ∈ Dnj then un+1 =j 0, and assumption (7.7) yields f (n+1)(ξ) ·
un+1 =k 0 =k

∣∣f (n+1)(ξ)
∣∣ · |u|n+1

. This and (7.9) yield the conclusion.
To prove (xi), we proceed as above but taking u ∈ Dne in order to find 0 < e ≤ j

such that
∣∣f (n+1)(ξ)

∣∣ · |u|n+1
=j 0. For moderateness

∣∣f (n+1)(ξ)
∣∣ ≤ dρ−Q and

|u|n+1 ≤ A · dρ
1
e for some Q, A ∈ R>0 because u ∈ Dne. It suffices to take e > 0

sufficiently small so that 1
e −Q ≥ 1

j . □

8. Multidimensional integration and hyperlimits

In this section we want to introduce integration of GSF over functionally compact
sets with respect to an arbitrary Borel measure µ.

The possibility to achieve results mirroring classical limit theorems for this notion
of integral is closely linked to the introduction of the notion of hyperlimit, i.e. of

limits of sequences of generalized numbers a = (an)n∈N : ρÑ −→ σR̃, where σ and ρ
are two gauges (see Def. 1) and n→ +∞ along generalized natural numbers, i.e. for

n ∈ ρÑ :=
{

[nε] ∈ ρR̃ | nε ∈ N ∀ε
}
.

Mimicking nonstandard analysis, the numbers n ∈ ρÑ are called hypernatural num-

bers. To glimpse the necessity of studying ρÑ, it suffices to note that 1
n < dρq is

always false for n ∈ N but it can be satisfied for suitable n ∈ ρÑ. Therefore, if
limn→+∞ an = 0 in the classical sense, i.e. for n ∈ N and with respect to the sharp
topology, then necessarily an is infinitesimal for n ∈ N sufficiently large. This rep-
resents a severe limitation for this notion of limit. It is also clear from the fact that
ρR̃ with the sharp topology is an ultra-pseudometric space, see e.g. [98], and hence
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a series in ρR̃ converges in the sharp topology if and only if its general term an → 0
as n→ +∞, n ∈ N, in the sharp topology, see [61].

8.1. Integration over functionally compact sets. In section 6, we already de-
fined a notion of integral over intervals using the notion of primitive. This notion
does not help if we want to define the integral

´
D
f of a GSF f over a domain

D ⊆ ρR̃n which is more general than an interval. In this case, it is natural to try

an ε-wise definition of the type
´
D
f dµ :=

[´
Dε
fε dµ

]
∈ ρR̃, where the net (fε)

defines the GSF f and the net (Dε) determines, in some way, the subset D ⊆ ρR̃n,
e.g. D = [Dε] in case of internal sets. In pursuing this idea, it is important to recall
that the internal set (interval) [0, 1] = [[0, 1]R] can also be defined by a net of finite
sets. Indeed, if int(−) is the integer part function, and we set

Nε := int
(
ρ−1/ε
ε

)
Kε := {ρ1/εε , 2ρ1/εε , . . . , Nερ

1/ε
ε } (8.1)

then the Hausdorff distance dH([0, 1]R,Kε) = ρ
1/ε
ε and hence [0, 1] = [Kε] (see

also [116, 43]). Consequently, if λ is the Lebesgue measure on R, we have that
the generalized number [λ([0, 1]R)] = 1, whereas [λ(Kε)] = 0 and, in general,[´

[0,1]R
fε dλ

]
̸=

[´
Kε
fε dλ

]
= 0. Therefore, even the definition of integral over

an interval cannot be easily accomplished by proceeding ε-wise, i.e. on defining
nets.

If we try to understand when such an ε-wise definition can be accomplished,
it turns out that we have to consider an enlargement BE

ρmε
(Kε) and then take

m→ +∞. This is indeed quite natural if one keeps in mind that [Kε] = [Lε] if and
only if the Hausdorff distance dH(Kε, Lε) defines a negligible nets, (see [116, 43]).

In the following, we say that (Kε) is a representative of K ⋐f
ρR̃n if K = [Kε],

(Kε) is sharply bounded, and Kε ⋐ Rn for all ε.

Definition 56. Let µ be a Borel measure on Rn and let K be a functionally

compact subset of ρR̃n. Then we call K µ-measurable if the limit

µ(K) := lim
m→∞
m∈N

[µ(BE
ρmε

(Kε))] (8.2)

exists for some representative (Kε) of K. The limit is taken in the sharp topology

on ρR̃, and BE
r(A) := {x ∈ Rn : d(x,A) ≤ r}.

In the following result, we will prove that this definition satisfies our require-
ments. We will occasionally integrate generalized functions more general than GSF:

Definition 57. Let K ⋐f
ρR̃n. Let (Ωε) be a net of open subsets of Rn, and (fε)

be a net of continuous maps fε: Ωε −→ R. Then we say that

(fε) defines a generalized integrable map : K −→ ρR̃

if

(i) K ⊆ ⟨Ωε⟩ and [fε(xε)] ∈ ρR̃ for all [xε] ∈ K.
(ii) ∀(xε), (x

′
ε) ∈ Rnρ : [xε] = [x′ε] ∈ K ⇒ (fε(xε)) ∼ρ (fε(x

′
ε)).

If f ∈ Set(K, ρR̃) is such that

∀[xε] ∈ K : f ([xε]) = [fε(xε)] (8.3)
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we say that f : K −→ ρR̃ is a generalized integrable function.
We will again say that f is defined by the net (fε) or that the net (fε) represents f .

The set of all these generalized integrable functions will be denoted by ρGI(K, ρR̃).

E.g., if f = [fε(−)]|K ∈ ρGC∞(K, ρR̃), then both f and |f | = [|fε(−)|]|K are inte-
grable on K.

As in Lemma 18, we may assume without loss of generality that fε are continuous
maps defined on the whole of Rn.

Theorem 58. Let K ⊆ ρR̃n be µ-measurable.

(i) The definition of µ(K) is independent of the representative (Kε).
(ii) There exists a representative (Kε) of K such that µ(K) = [µ(Kε)].

(iii) Let (Kε) be any representative of K and let f = [fε(−)]|K ∈ ρGI(K, ρR̃).
Then ˆ

K

f dµ := lim
m→∞

[ˆ
BE

ρmε
(Kε)

fε dµ

]
exists and its value is independent of the representative (Kε).

(iv) There exists a representative (Kε) of K such thatˆ
K

f dµ =

[ˆ
Kε

fε dµ

]
(8.4)

for each f = [fε(−)]|K ∈ ρGI(K, ρR̃). From (8.4), it also follows that∣∣´
K
f dµ

∣∣ ≤ ´
K
|f | dµ.

(v) If (8.4) holds, then the same holds for any representative (Lε) of K with
Lε ⊇ Kε, ∀0ε.

Proof. (i) Let (Lε) be another representative. As [Kε] ⊆ [Lε], we have that
(supx∈Kε

d(x, Lε))ε =: (nε) is negligible, so Kε ⊆ BE
nε

(Lε), and µ(BE
ρmε

(Kε)) ≤
µ(BE

ρm−1
ε

(Lε)). Also using this inequality with the roles of Kε and Lε interchanged,

we see that limm→∞[µ(BE
ρmε

(Lε))] exists and that it equals limm→∞[µ(BE
ρmε

(Kε))].
(ii) Call [cε] := µ(K) and let K = [Lε]. By definition of µ-measurable set and

by the previous point (i), for any q ∈ N, there exists mq ∈ N (w.l.o.g. mq ≥ q) and
εq > 0 (w.l.o.g. εq < εq−1 and εq < 1/q) such that

|µ(BE
ρ
mq
ε

(Lε)) − cε| ≤ ρqε, ∀ε ≤ εq

Now let qε := q if ε ∈ (εq+1, εq]. Then qε → ∞ as ε→ 0 and

[µ(BE
ρ
mqε
ε

(Lε))] = [cε] = µ(K).

As also (ρ
mqε
ε ) is negligible, we have K = [BE

ρ
mqε
ε

(Lε)] and hence the conclusion

follows for Kε := BE
ρ
mqε
ε

(Lε).

(iii)–(iv). Choose a representative (Kε) as in part (ii). Then∣∣∣∣∣
ˆ
BE

ρmε
(Kε)

fε dµ−
ˆ
Kε

fε dµ

∣∣∣∣∣ ≤ µ(BE
ρmε

(Kε) \Kε) sup
BE

ρmε
(Kε)

|fε|.

As [µ(BE
ρmε

(Kε) \ Kε)] = [µ(BE
ρmε

(Kε))] − [µ(Kε)] → 0 as m → ∞ and since
(sup

BE
ρmε

(Kε)
|fε|) is moderate for some m and decreasing in m, we find that

lim
m→∞

[ˆ
BE

ρmε
(Kε)

fε dµ

]
=

[ˆ
Kε

fε dµ

]
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exists. Independence of the representative of K follows as in part (i), if fε ≥ 0.
The general case follows by considering the positive and negative part of fε.

(v) Let fε ≥ 0. Then by assumption, [
´
Kε
fε dµ] ≤ [

´
Lε
fε dµ]. For the converse

inequality, observe that [
´
Lε
fε dµ] ≤ [

´
BE

ρmε
(Lε)

fε dµ] for each m ∈ N. Again the

general case follows by considering the positive and negative part of fε. □

The following Lemma provides an alternative characterization of µ-measurability:

Lemma 59. A functionally compact set K is µ-measurable if and only if there exists
a representative (Kε) of K such that [µ(Kε)] = [µ(Lε)], for each representative (Lε)
of K with Lε ⊇ Kε, ∀0ε.

Proof. ⇒: by the previous Thm. 58.
⇐: it suffices to show that limm→∞[µ(BE

ρmε
(Kε))] = [µ(Kε)]. Seeking a contra-

diction, suppose that there exists q ∈ N for which it does not hold that

∃M ∀m ≥M ∀0ε : |µ(BE
ρmε

(Kε)) − µ(Kε)| ≤ ρqε.

Then we can construct a strictly increasing sequence (mk)k → ∞ and a strictly
decreasing sequence (εk)k → 0 such that |µ(BE

ρ
mk
εk

(Kεk)) − µ(Kεk)| > ρqεk , ∀k.

Let Lε := BE
ρ
mk
ε

(Kε), whenever ε ∈ (εk+1, εk], ∀k. Then K = [Lε], but [µ(Kε)] ̸=
[µ(Lε)], as |µ(Lε) − µ(Kε)| > ρqε, for each ε = εk (k ∈ N). □

Example 60. Let λ denote the Lebesgue-measure.

(i) If K =
∏n
i=1[ai, bi], then K is λ-measurable with

ˆ
K

f dλ =

[ˆ b1,ε

a1,ε

dx1 . . .

ˆ bn,ε

an,ε

fε(x1, . . . , xn) dxn

]
for any representatives (ai,ε), (bi,ε) of ai and bi, respectively.

(ii) Let ρε = ε, and

K :=
{

1
n | n ∈ N>0

}
∪ {0}.

Then [K] is λ-measurable with λ([K]) = 0. Indeed, the contribution of
{1/n | n > ε−m/2} to λ(BE

εm(K)) is at most εm/2 + 2εm, while the con-
tribution of {1/n | n ≤ ε−m/2} is at most 2εmε−m/2 = 2εm/2. Thus
limm→∞[λ(BE

εm(K))] = 0.
(iii) Let ρε = ε, and

K :=
{

1
logn | n ∈ N>1

}
∪ {0}.

Then [K] is not λ-measurable. For, if n ≥ ε−m

(log ε−m)2 , then, by the mean value

theorem,

1

log n
− 1

log(n+ 1)
≤ 1

n(log n)2
≤ εm(log ε−m)2(

log
(

ε−m

(log ε−m)2

))2 ≤ 2εm

for small ε. So the contribution of
{

1
logn | n ≥ ε−m

(log ε−m)2

}
to λ(BE

εm(K)) lies

between 1
log(ε−m) and 2

log(ε−m) for small ε. The contribution of
{

1
logn | n <

ε−m

(log ε−m)2

}
to λ(BE

εm(K)) is at most 2
(log ε−m)2 , which is of a lower order.

Thus limm→∞[λ(BE
εm(K))] does not exist.
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8.2. Hyperfinite limits. We start by defining the set of hypernatural numbers in
ρR̃ and the set of ρ-moderate nets of natural numbers. For a deeper study of these
notions, see [83].

Definition 61. We set

(i) ρÑ :=
{

[nε] ∈ ρR̃ | nε ∈ N ∀ε
}

(ii) Nρ := {(nε) ∈ Rρ | nε ∈ N ∀ε} .

Therefore, n ∈ ρÑ if and only if there exists (xε) ∈ Rρ such that n = [int(|xε|)].
Clearly, N ⊂ ρÑ. Note that the integer part function int(−) is not well-defined

on ρR̃. In fact, if x = 1 =
[
1 − ρ

1/ε
ε

]
=

[
1 + ρ

1/ε
ε

]
, then int

(
1 − ρ

1/ε
ε

)
= 0,

whereas int
(

1 + ρ
1/ε
ε

)
= 1, for ε sufficiently small. Similar counterexamples can

be constructed for floor and ceiling functions.

However, the nearest integer function is well defined on ρÑ.

Lemma 62. Let (nε) ∈ Nρ and (xε) ∈ Rρ be such that [nε] = [xε]. Let rpi : R −→ N
be the function rounding to the nearest integer with tie breaking towards positive
infinity. Then rpi(xε) = nε for ε small. The same result holds using rni : R −→ N,
the function rounding half towards −∞.

Proof. We have rpi(x) = ⌊x+ 1
2⌋, where ⌊−⌋ is the floor function. For ε small, ρε <

1
2

and, since [nε] = [xε], for such ε we can also have nε−ρε+ 1
2 < xε+ 1

2 < nε+ρε+ 1
2 .

But nε ≤ nε − ρε + 1
2 and nε + ρε + 1

2 < nε + 1. Therefore ⌊xε + 1
2⌋ = nε. An

analogous argument can be applied to rni(−). □

Actually, this lemma does not allow us to define a nearest integer function ni :
ρÑ −→ Nρ as ni([xε]) := rpi(xε) because if [xε] = [nε], the equality nε = rpi(xε)
holds only for ε small. We should therefore consider the function ni as valued in
the germs for ε → 0+ generated by nets in Nρ. A simpler approach is to choose a

representative (nε) ∈ Nρ for each x ∈ ρÑ and to define ni(x) := (nε). Clearly, we
must consider the net (ni(x)ε) only for ε small, such as in equalities of the form
x = [ni(x)ε]. This is what we do in the following

Definition 63. The nearest integer function ni(−) is defined by:

(i) ni : ρÑ :−→ Nρ
(ii) If [xε] ∈ ρÑ and ni ([xε]) = (nε) then ∀0ε : nε = rpi(xε).

In other words, if x ∈ ρÑ, then x = [ni(x)ε] and ni(x)ε ∈ N for all ε.

We first consider the notion of hyperlimit. As we will see clearly in Example
66(i), a key point in the definition of hyperlimit is to consider two gauges. This is a
natural way of proceeding because different gauges define different topologies. On
the other hand, the notion of hyperlimit corresponds exactly to that of limit in the

sharp topology on ρR̃ of a generalized sequence (hypersequence), i.e. defined on the

directed set σÑ.

Definition 64. Let ρ, σ be two gauges (see Def. 1). Let (an)n : σÑ −→ ρR̃ be a

σ-hypersequence of ρ-generalized numbers. Finally let l ∈ ρR̃. Then we say that

l is the hyperlimit of (an)n

if
∀q ∈ N ∃M ∈ σÑ ∀n ∈ σÑ : n ≥M ⇒ |an − l| < dρq. (8.5)
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Remark 65.

(i) In a hyperlimit, we are considering σÑ as an ordered set directed by ≤:

n,m ∈ σÑ ⇒ n ∨m = [max (ni(n)ε,ni(m)ε)] ∈ σÑ.

On the other hand, on ρR̃ we are considering the sharp topology (which is

Hausdorff). In fact, if l, λ are hyperlimits of a : σÑ −→ ρR̃, then

|l − λ| ≤ |l − aM | + |aM − λ| ≤ 2dρq+1 < dρq

for all q. So l = λ ∈ ρR̃. We will therefore use the notations

l = ρ lim
n∈σÑ

an

or simply l = limn∈ρÑ an if σ = ρ.

(ii) A sufficient condition to extend an ordinary sequence a : N −→ ρR̃ of ρ-

generalized numbers to the whole of σÑ is

∀n ∈ σÑ :
(
ani(n)ε

)
∈ Rρ. (8.6)

In fact, in this way an is well-defined because of Lem. 62; on the other hand,
using (8.6), we have defined an extension of the old sequence a because if
n ∈ N, then ni(n)ε = n for ε small and hence we get an = [an]. For example,
the sequence of infinities an = 1

n + dρ−1 for all n ∈ N can be extended to any
σÑ, whereas an = dσ−n can be extended as a : σÑ −→ ρR̃ only for certain
gauges ρ, e.g. if the gauges satisfy

∃N ∈ N∀n ∈ N∀0ε : σnε ≥ ρNε ,

e.g. σε ≥ − log(ρε)
−1.

Example 66.

(i) The following example strongly motivates the use of two gauges. Let ρ be a

gauge and set σε := exp

(
−ρ

− 1
ρε

ε

)
, so that also σ is a gauge. We have

ρ lim
n∈σÑ

1

log n
= 0 ∈ ρR̃ whereas ̸ ∃ ρ lim

n∈ρÑ

1

log n
.

In fact, if n > 1, we have 0 < 1
logn < dρq if and only if log n > dρ−q,

i.e. n > edρ−q

(in σR̃). We can thus take M :=
[
int

(
eρ

−q
ε

)
+ 1

]
∈ σÑ because

eρ
−q
ε < exp

(
ρ
− 1

ρε
ε

)
= σ−1

ε for ε small.

Vice versa, by contradiction, if ∃ ρlimn∈ρÑ
1

logn =: l ∈ ρR̃, then by the defini-

tion of hyperlimit from ρÑ to ρR̃ we would get the existence of M ∈ ρÑ such
that

∀n ∈ ρÑ : n ≥M ⇒ 1

log n
− dρ < l <

1

log n
+ dρ. (8.7)

Since M is ρ-moderate, we always have 0 < 1
logM − dρ, so l > 0. Thus

dρp < |l| for some p ∈ N. Setting

q := min {p ∈ N | dρp < |l|} + 1,
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we get that |lε̄k | < ρqε̄k for some sequence (ε̄k)k ↓ 0. Therefore

1

logMε̄k

< lε̄k + ρε̄k ≤ |lε̄k | + ρε̄k < ρqε̄k + ρε̄k

and hence Mε̄k > exp
(

1
ρqε̄k

+ρε̄k

)
for all k ∈ N, which is in contradiction with

M ∈ ρR̃ because q ≥ 1.

(ii) For all k ∈ N>0, we have limn∈ρÑ
1
nk = 0. In fact, for all n ∈ ρÑ>0, we have

0 < 1
nk < dρq if and only if nk > dρ−q, i.e. n > dρ−

q
k . Thus, it suffices to

take Mε := int
(
ρ
− q

k
ε

)
+ 1 in the definition of hyperlimit. Analogously, we

can treat rational functions having degree of denominator greater or equal to
that of the numerator.

8.3. Properties of multidimensional integral. We start by proving the change
of variable formula.

Lemma 67. Let K = [Kε] be functionally compact and φ = [φε] ∈ ρGC∞(K, ρR̃d)
with det(dφ)(x) invertible for each x ∈ K. If φ is injective on K, then the φε are
injective on Kε, ∀0ε.

Proof. By contradiction, suppose that for each η > 0, there exists ε < η such that
φε is not injective on Kε. Then we find for such ε some xε, yε ∈ Kε with xε ̸= yε
and φε(xε) = φε(yε). For all other ε, define xε = yε ∈ Kε arbitrary. Then x := [xε],
y := [yε] ∈ K and φ(x) = φ(y). As φ is injective, x = y. But then this contradicts
the local injectivity of φε on BE

rε(xε) for some [rε] > 0, see also [42, Thm. 6] and
[26]. □

Theorem 68. Let K ⊆ ρR̃n be λ-measurable, where λ is the Lebesgue measure,

and let φ ∈ ρGC∞(K, ρR̃d) be such that φ−1 ∈ ρGC∞(φ(K), ρR̃n). Then φ(K) is
λ-measurable and ˆ

φ(K)

f dλ =

ˆ
K

(f ◦ φ) |det(dφ)| dλ

for each f ∈ ρGC∞(φ(K), ρR̃).

Proof. Let x ∈ BE
ρmε

(Kε). Then there exists y ∈ Kε such that |x − y| ≤ ρmε . As

φ ∈ ρGC∞(K, ρR̃d),

|φε(x) − φε(y)| ≤ |x− y| sup
BE

ρmε
(Kε)

∥dφε∥ ≤ ρm−M
ε

for some M ∈ N (not depending on m). Thus φε(BE
ρmε (Kε)) ⊆ BE

ρm−M
ε

(φε(Kε)).

Applying this to φ−1, we find that also BE
ρmε

(φε(Kε)) ⊆ φε(BE
ρm−M
ε

(Kε)) for some

M ∈ N. Now let fε ≥ 0. As (det(dφ−1
ε )) is moderate, |det(dφε)(x)| > 0 for each

x ∈ K. Thus by Lem. 67, w.l.o.g φε are injective. Thenˆ
BE

ρmε
(φε(Kε))

fε dλ ≤
ˆ
φε(BE

ρ
m−M
ε

(Kε))

fε dλ =

ˆ
BE

ρ
m−M
ε

(Kε)

(fε ◦ φε)|det dφε|dλ

andˆ
BE

ρ
m+M
ε

(Kε)

(fε ◦ φε)|det dφε|dλ =

ˆ
φε(BE

ρ
m+M
ε

(Kε))

fε dλ ≤
ˆ
BE

ρmε
(φε(Kε))

fε dλ
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Since limm→∞
[´
BE

ρ
m−M
ε

(Kε)
(fε◦φε)|det dφε|dλ

]
exists, it follows from the previous

inequalities that also limm→∞
[´
BE

ρmε
(φε(Kε))

fε dλ
]

exists, with the same value.

The general case follows by considering the positive and negative part of fε. □

We now consider the problem of additivity of the integral.

Definition 69. Let K, L be functionally compact. Then we call K and L strongly
disjoint if the following equivalent conditions hold:

(i) for each representative (Kε) of K and (Lε) of L, Kε ∩ Lε = ∅, ∀0ε
(ii) for some (and thus each) representative (Kε) of K and (Lε) of L, there exists

m ∈ N such that BE
ρmε

(Kε) ∩BE
ρmε

(Lε) = ∅, ∀0ε
(iii) ∀e ∈ ρR̃ : e2 = e, e ̸= 0 ⇒ Ke ∩ Le = ∅
(iv) ∀H ⊆0 I : K|H ∩ L|H = ∅
(v) x ̸= y for each subpoint x of K and y of L.

Definition 70. Let K, L be functionally compact. Then we call K and L almost
strongly disjoint if the following equivalent conditions hold:

(i) for each representative (Kε) of K and (Lε) of L, [µ(Kε ∩ Lε)] = 0
(ii) for some (and thus each) representative (Kε) of K and (Lε) of L

lim
m→∞

[µ(BE
ρmε

(Kε) ∩BE
ρmε

(Lε))] = 0.

The equivalence of the conditions follows by a similar argument as in Lem. 59, e.g.:

Lemma 71. The conditions in Def. 70 are equivalent.

Proof. (i) ⇒ (ii): let K = [Kε] and L = [Lε]. Seeking a contradiction, suppose
that there exists q ∈ N for which it does not hold that

∃M ∀m ≥M ∀0ε : µ(BE
ρmε

(Kε) ∩BE
ρmε

(Lε)) ≤ ρqε.

Then we can construct a strictly increasing sequence (mk)k → ∞ and a strictly
decreasing sequence (εk)k → 0 s.t. µ(BE

ρ
mk
εk

(Kεk) ∩BE
ρ
mk
εk

(Lεk)) > ρqεk , ∀k.

Let K ′
ε := BE

ρ
mk
ε

(Kε) and L′
ε := BE

ρ
mk
ε

(Lε), whenever ε ∈ (εk+1, εk], ∀k. Then

K = [K ′
ε] and L = [L′

ε], but [µ(K ′
ε ∩ L′

ε)] ̸= 0, as µ(K ′
ε ∩ L′

ε) > ρqε, for each ε = εk
(k ∈ N).
(ii) ⇒ (i): let (Kε), (Lε) as in (ii), and K = [K ′

ε] and L = [L′
ε]. For each q ∈ N,

we have that

[µ(BE
ρmε

(Kε) ∩BE
ρmε

(Lε))] ≤ dρq

for sufficiently large m ∈ N. As [K ′
ε] ⊆ [Kε], K

′
ε ⊆ BE

ρmε
(Kε), ∀0ε, and similarly

for L, and thus also [µ(K ′
ε ∩ L′

ε)] ≤ dρq. □

E.g., if a ≤ b ≤ c, then [a, b] and [b, c] are almost strongly disjoint. Obviously,
strongly disjoint sets are almost strongly disjoint. Recall that the union of two
internal sets is usually not internal, but

K ∨ L := [Kε ∪ Lε] = {eSx+ eScy : x ∈ K, y ∈ L, S ⊆ ]0, 1]}

is the smallest internal set containing K and L [87]. E.g., [a, b] ∨ [b, c] = [a, c].
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Theorem 72. If K, L are almost strongly disjoint µ-measurable subsets of ρR̃n,
then K ∨ L is also µ-measurable and for each f ∈ ρGI(K ∨ L, ρR̃)ˆ

K∨L
f dµ =

ˆ
K

f dµ+

ˆ
L

f dµ.

Proof. As BE
ρmε

(Kε ∪ Lε) = BE
ρmε

(Kε) ∪BE
ρmε

(Lε),[ˆ
BE

ρmε
(Kε∪Lε)

f dµ

]
=

[ˆ
BE

ρmε
(Kε)

f dµ

]
+

[ˆ
BE

ρmε
(Lε)

f dµ

]
−

−

[ˆ
BE

ρmε
(Kε)∩BE

ρmε
(Lε)

f dµ

]
.

Since ∣∣∣∣∣
[ˆ

BE
ρmε

(Kε)∩BE
ρmε

(Lε)

f dµ

]∣∣∣∣∣ ≤ [
µ(BE

ρmε
(Kε) ∩BE

ρmε
(Lε))

]
·

·

 sup
BE

ρmε
(Kε)∩BE

ρmε
(Lε)

|f |

 m→∞→ 0

we see that K ∨ L is µ-measurable with
´
K∨L f dµ =

´
K
f dµ+

´
L
f dµ. □

Example 73. Let S ⊆ [0, 1[ with 0 ∈ S and 0 ∈ Sc. Let Kε =

{
[0, 1], ε ∈ S

[0, 3], ε ∈ Sc
and

Lε =

{
[2, 3], ε ∈ S

[0, 3], ε ∈ Sc.
Then K ∩L = ∅ and µ(K ∨L) = 2eS + 3eSc ̸= 2eS + 6eSc =

µ(K) +µ(L). Thus the condition that K and L are almost strongly disjoint cannot
be replaced by the condition that K ∩ L = ∅.

Theorem 74. Let K ⋐f
ρR̃n. Let fn ∈ ρGI(K, ρR̃d), ∀n ∈ σÑ. If ρlimn∈σÑ fn(x)

exists for each x ∈ K, then the convergence is uniform over K and the limit function
is integrable on K.

Proof. We first show that the sequence is uniformly Cauchy, i.e. that for each m ∈ N

∃N ∈ N ∀k, l ∈ σÑ ∀x ∈ K : k, l ≥ dσ−N ⇒ |fk(x) − fl(x)| ≤ dρm. (8.8)

Seeking a contradiction, suppose that for some m ∈ N, we have

∀N ∈ N ∃k, l ∈ σÑ, k, l ≥ dσ−N ∃x ∈ K : |fk(x) − fl(x)| ̸≤ dρm.

We thus construct sequences (kN )N and (lN )N in σÑ, with kN , lN ≥ dσ−N for
which there exist xN ∈ K s.t. |fkN (xN ) − flN (xN )| ̸≤ dρm, ∀N ∈ N. Let K = [Kε]
and fk = [fk,ε]. We thus find SN ⊆ (0, 1] with 0 ∈ SN such that |fkN ,ε(xN,ε) −
flN ,ε(xN,ε)| ≥ ρmε for each ε ∈ SN . Then choose a decreasing sequence (εn)n → 0
such that

ε1 ∈ S1

ε2 ∈ S2; ε3 ∈ S1;

ε4 ∈ S3; ε5 ∈ S2; ε6 ∈ S1;

. . .
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Let xεn := xN,εn if εn ∈ SN , for each n ∈ N. Extend to a net (xε)ε with xε ∈
Kε, ∀ε. Then xeUN

= xNeUN
for some UN ⊆ SN with 0 ∈ UN , and therefore

|fkN (x)−flN (x)|eUN
≥ dρmeUN

, ∀N . We thus contradict the fact that (fn(x))n∈σÑ
is a convergent hypersequence.
By taking the limit for l → ∞ in (8.8), we conclude that (fn)n∈σÑ is uniformly
convergent on K.

For each n ∈ N, fix a representative (f[dσ−n],ε), where [dσ−n] := [int (σ−n
ε )] ∈ σÑ,

of f[dσ−n] with supx∈Kε
|f[dσ−n],ε(x)| ≤ ρ−Mε , ∀ε ∈ (0, 1], ∀n ∈ N (some M ∈ N,

independent of n). For each m ∈ N, there exists Nm ∈ N such that

∀n, n′ ≥ Nm ∀0ε : sup
x∈Kε

|f[dσ−n],ε(x) − f[dσ−n′ ],ε(x)| ≤ ρmε .

Then for each k ∈ N, there exists some εk > 0 such that

∀ε ≤ εk ∀m ≤ k ∀n, n′ ∈ [Nm, k] : sup
x∈Kε

|f[dσ−n],ε(x) − f[dσ−n′ ],ε(x)| ≤ ρmε .

W.l.o.g., (εk)k ↓ 0. Let nε := k, for ε ∈ (εk+1, εk]. Then

∀m ∈ N∀n ∈ N, n ≥ Nm ∀0ε : sup
x∈Kε

|f[dσ−n],ε(x) − f[dσ−nε ],ε(x)| ≤ ρmε .

Thus the limit function f = [f[dσ−nε ],ε(−)] ∈ ρGI(K, ρR̃). □

Theorem 75. Let K ⋐f
ρR̃n be µ-measurable. Let fn ∈ ρGI(K, ρR̃d), ∀n ∈ σÑ. If

ρlimn∈σÑ fn(x) exists for each x ∈ K, then ρlimn∈σÑ fn is integrable on K and

ρ lim
n∈σÑ

ˆ
K

fn dµ =

ˆ
K

ρ lim
n∈σÑ

fn dµ.

Proof. By Thm. 74, (fn)n uniformly converges to some f = [fε(−)]. Then for all
q ∈ N we have ∣∣∣∣ˆ

K

fn −
ˆ
K

f

∣∣∣∣ ≤ ˆ
K

|fn − f | ≤ dρqµ(K)

as soon as n ∈ σÑ is large enough. □

9. Sheaf properties

The aim of this section is to establish appropriate sheaf properties for GSF. That
this task is not entirely straightforward can be seen from the following example,
which can be easily reformulated in other non-Archimedean settings:

Example 76. Let i : ρR̃ → ρR̃ be as in Rem. 40, i.e., i(x) := 1 if x ≈ 0 and i(x) := 0

otherwise. The domain ρR̃ of this function is the disjoint union of the sharply open

sets D∞ = {x ∈ ρR̃ | x ≈ 0} and its complement Dc
∞. Moreover, i|D∞ ≡ 1 and

i|Dc
∞

≡ 0 are both GSF. However, as we have seen in the remark following Cor. 48,
i itself is not a GSF. This shows that ρGC∞ is not a sheaf with respect to the sharp
topology.

Trivially, if we introduce the space of (sharply) locally defined GSF by means of

f ∈ ρGC∞
loc(X,Y ) if f : X → Y , and ∀x ∈ X ∃r ∈ ρR̃>0 : f |Br(x)∩X ∈ ρGC∞(Br(x)∩

X,Y ), then ρGC∞
loc(−, Y ) is naturally a sheaf with respect to the sharp topology. By

Example 76, however, ρGC∞
loc(X,Y ) is strictly larger than ρGC∞(X,Y ). This fact

can be viewed as a necessary trade-off between the classical statement of locality for
generalized functions, on the one hand, and the requirement to preserve classical
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theorems from smooth analysis on the other. In the above example, it is the
validity of an intermediate value theorem in our setting that precludes the function
i from qualifying as a GSF. Conversely, it follows that this result does not hold in
ρGC∞

loc(X,Y ). Any theory of generalized functions that is based on set-theoretical
functions and includes actual infinitesimals has to face these dichotomies related to
the total disconnectedness of its non-Archimedean ring of scalars.

The general scheme of this section is:

(a) We are searching for a new compatibility/coherence condition for an arbitrarily
indexed family (fj)j∈J of GSF (throughout this section, J will be an arbitrary

set), which allows us to prove a corresponding sheaf property. We will call this
property dynamic compatibility condition (DCC).

(b) The DCC must imply the classical one. Note that for particular types of
covers the classic coherence condition may still work, e.g. covers made of near-
standard points and large open sets (see Cor. 87 below) or those made of
increasing sequences of internal sets (see Thm. 77 below).

(c) The DCC must be a necessary condition if we assume that the sections (fj)j∈J
glue together into a GSF.

(d) The sheaf property based on the DCC should be a particular case of the general
abstract notion of sheaf (see Sec. 10).

We start from the following sheaf property (originally proved in [116]):

Theorem 77. Let X ⊆ ρR̃n, Y ⊆ ρR̃d and Kq ⋐f
ρR̃n, fq ∈ ρGC∞(Kq, Y ) for all

q ∈ N, where X =
⋃
q∈N Kq, Kq ⊆ int (Kq+1) and fq+1|Kq

= fq for each q ∈ N.

Then there exists a unique f ∈ ρGC∞(X,Y ) such that f |Kq = fq for all q ∈ N.

Proof. Let fq = [fq,ε(−)] and Kq = [Kq,ε], for each q ∈ N. By Lem. 11(v),
there exist kq ∈ N (kq recursively chosen so that (kq)q is increasing) such that

BE

ρ
kq
ε

(Kq,ε) ⊆ Kq+1,ε, for each q, ε. We may assume Y ⊆ ρR̃ (in general, one can

apply the one-dimensional case componentwise). Let θ ∈ C∞(Rn) with θ(x) = 0, if
|x| ≥ 1 and θ(x) ≥ 0, for each x ∈ Rn with

´
Rn θ = 1 and let r⊙θr(x) := r−nθ(r−1x),

for r ∈ R>0. Let 1A denote the characteristic function of a set A ⊆ Rn, and set

φq,ε := 1Kq+3,ε\Kq,ε
∗ ρkq+3

ε ⊙ θ, ∀q, ε.

If y ∈ BE

ρ
kq+3
ε

(x)∩Kq,ε, then x ∈ BE

ρ
kq
ε

(Kq,ε) ⊆ Kq+1,ε, and hence BE

ρ
kq+3
ε

(x)∩Kq,ε =

∅ if x /∈ Kq+1,ε. If x ∈ Kq+2,ε, then BE

ρ
kq+3
ε

(x) ⊆ BE

ρ
kq+2
ε

(Kq+2,ε) ⊆ Kq+3,ε.

Thereby, φq,ε(x) = 1, for each x ∈ Kq+2,ε \ Kq+1,ε. Moreover, stsuppφq,ε ⊆
Kq+3,ε + BE

ρ
kq+3
ε

(0) = BE

ρ
kq+3
ε

(Kq+3,ε) ⊆ Kq+4,ε. Further, supx∈Rn |∂αφq,ε(x)| ≤

ρ
−kq+3|α|
ε

´
Rn |∂αθ| by the properties of the convolution. Let φε :=

∑
q∈N φq,ε.

Then φε ∈ C∞(
⋃
q∈N Kq,ε) and for each q, (supx∈Kq,ε

|∂αφε(x)|) ∈ Rρ. Also

φε(x) ≥ 1, for each x ∈
⋃
q∈N Kq,ε. Let ψq,ε := φq,ε/φε ∈ C∞(Rn). Then∑

q∈N ψq,ε(x) = 1, for each x ∈
⋃
q∈N Kq,ε. Since supx∈Kq,ε

|1/φε(x)| ≤ 1, we

find that (supx∈Rn |∂αψq,ε(x)|) ∈ Rρ, for each q. Let fε :=
∑
q∈N ψq,ε · fq+3,ε ∈

C∞(
⋃
q∈N Kq,ε), for each ε (recall that stsuppψq,ε ⊆ Kq+3,ε). Then for each N ∈ N,

α ∈ Nd and x = [xε] ∈ KN (without loss of generality, xε ∈ KN,ε, for each ε),

|∂αfε(xε)| ≤
∑

q≤N+3

|∂α(ψq,ε · fq+3,ε)(xε)| ∈ Rρ
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and

|fε(xε) − fN,ε(xε)| ≤
∑

q≤N+3

|ψq,ε(xε)| |fq+3,ε(xε) − fN,ε(xε)| ∼ρ 0

since stsuppψq,ε ⊆ Kq+3,ε. Hence f ∈ ρGC∞(X,Y ) with f |KN
= fN . □

This property allows us to firstly prove a sheaf property for K = [Kε] ⋐f
ρR̃n

and secondly to use Thm. 77 to extend it to domains X that satisfy the previous
assumptions, i.e. the following

Definition 78. Let X ⊆ ρR̃n, then we say that X admits a functionally compact
exhaustion if there exists a sequence (Kq)q∈N such that

(i) Kq ⋐f
ρR̃n;

(ii) Kq ⊆ int (Kq+1);
(iii) X =

⋃
q∈N Kq.

For example, every strongly internal set X = ⟨Aε⟩ admits a functionally compact
exhaustion since we can consider

Kqε := BE
ρ−q
ε

(0) ∩BE
−ρqε(Aε) ∀q ∈ N

Kq := [Kqε] ⋐f X (9.1)

X =
⋃
q∈N

Kq

where BE−r(A) := {x ∈ A | d(x,Ac) ≥ r}. Other simple examples are e.g. the
intervals (0, a] or (−∞, a].

9.1. The Lebesgue generalized number. We first introduce a notation for a
specified Lebesgue number:

Lemma 79. Let K ⋐ Rn and (Vj)j∈J be an open cover of K. For x ∈ K, set

σ(x) := sup{r ∈ R>0 | ∃j ∈ J : BE

r (x) ⊆ Vj} (9.2)

σ :=
1

2
min{σ(x) | x ∈ K}; if K = ∅, set σ := 1.

Then σ(−) : K −→ R>0 is a continuous function and σ is a Lebesgue number of
(Vj)j∈J for K, i.e.

∀x ∈ K ∃j ∈ J : BE

σ(x) ⊆ Vj . (9.3)

We use the notation Lebnum ((Vj)j∈J ,K) =: σ.

Proof. See the proof of [12, Thm. 1.6.11]. □

Lemma 80. Let K = [Kε] ⋐f
ρR̃n with Kε ⋐ Rn for all ε. Assume that

K ⊆
⋃
j∈J

Uj , (9.4)

where Uj = ⟨Ujε⟩ are strongly internal sets, and set

sε := Lebnum
(

(Ujε)j∈J ,Kε

)
s := [sε] ∈ ρR̃≥0.

Then s > 0.
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Proof. By contradiction, assume that s ̸> 0, so that sεk < ρkεk for all k ∈ N and for

some sequence (εk)k∈N ↓ 0. By definition of Lebnum we can write sεk = 1
2σ(xεk) <

ρkεk for some xεk ∈ Kεk ⋐ Rn. By (9.2) we hence have

∀k ∈ N ∀j ∈ J : BE

2ρkεk
(cεk) ̸⊆ Ujεk . (9.5)

Note that the conclusion is trivial if Kε = ∅ for ε small. We can therefore assume
that there exists some hε ∈ Kε for all ε. Let xε := xεk if ε = εk and xε := hε
otherwise, so that xε ∈ Kε ⊆

⋃
j∈J Ujε for small ε (see Lem. 11(i) and recall that

K ⊆
⋃
j∈J Uj ⊆ ⟨

⋃
j∈J Ujε⟩). Thereby, x := [xε] ∈ K ⊆

⋃
j∈J Uj . So, x ∈ Uj for

some j ∈ J , and hence BR(x) ⊆ Uj = ⟨Ujε⟩ for some R ∈ ρR̃>0, so that BE

Rεk
(xεk) ⊆

Ujεk for k ∈ N sufficiently large by Lem. 11(i) and (2.6). Since also 2ρkεk < Rεk for
k ∈ N sufficiently large, we can finally say that BE

2ρkεk
(xεk) ⊆ BE

Rεk
(xεk) ⊆ Ujεk ,

which contradicts (9.5). □

On the basis of this result, we can set

Lebnum
(

(Uj)j∈J ,K
)

=: s ∈ ρR̃>0.

Assumption (9.4) cannot be replaced by the weaker K ⊆ ⟨
⋃
j∈J Ujε⟩: let Kε :=

[−1, 1]R, J := {1, 2}, c1ε := −1, c2ε := 1, r1ε := 1 + e−1/ε =: r2ε. Then

[Kε] ⊆ ⟨BE

r1ε(c1ε) ∪BE

r2ε(c2ε)⟩ = ⟨(−2 − e−1/ε, 2 + e−1/ε)R⟩

but sε = Lebnum((Ujε)j∈J ,Kε) ≤ e−1/ε because for x = 0 the largest ball contained
in a set of the covering is BE

e−1/ε(0).

9.2. The dynamic compatibility condition.

Definition 81.

(i) Let [J ] := {(jε) | jε ∈ J, ∀ε} = JI .

(ii) Let X ⊆ ρR̃n, Y ⊆ ρR̃d and f ∈ Set(X,Y ). Let K ⋐f X ⊆
⋃
j∈J Uj , and

assume that for all j ∈ J we have fj := f |Uj∩X ∈ ρGC∞(Uj ∩X,Y ). Then we
say that (fj)j∈J satisfies the dynamic compatibility condition (DCC) on the

cover (K ∩ Uj)j∈J if for all j ∈ J there exist nets (fjε) defining fj , for each

j ∈ J , such that setting Uȷ̄ := ⟨Ujε,ε⟩, we have:
(a) ∀ȷ̄ = (jε) ∈ [J ]∀[xε] ∈ Uȷ̄ ∩K ∀α ∈ Nn : (∂αfjε,ε(xε)) ∈ Rdρ.
(b) ∀ȷ̄ = (jε), h̄ = (hε) ∈ [J ]∀[xε] ∈ K ∩ Uȷ̄ ∩ Uh̄ : [fjε,ε(xε)] = [fhε,ε(xε)].

Finally, we say that (fj)j∈J satisfies the DCC on the cover (Uj)j∈J if it satisfies

the DCC on each functionally compact set contained in X. The adjective dynamic
underscores that we are considering ε-depending indices ȷ̄ = (jε) ∈ [J ].

Remark 82.

(i) Taking constant ȷ̄ and h̄ in Def. 81(b), we have that DCC is stronger than
the classical compatibility condition for (fj)j∈J on K ⋐f X.

(ii) DCC is a necessary condition if the sections (fj)j∈J glue into a GSF f =

[fε(−)] because in this case we can take fjε = fε for all j ∈ J .
(iii) The notation Uȷ̄ := ⟨Ujε,ε⟩ used to state the DCC was introduced merely

for simplicity of notations. In fact, in general it is not possible to prove the
independence from the representative net (Ujε): if Uj = ⟨Vjε⟩, we can have



A GROTHENDIECK TOPOS OF GENERALIZED FUNCTIONS I 53

dH(U cjε, V
c
jε) = ρ

j/ε
ε , but taking ȷ̄ = (ε) we would have dH(U cε,ε, V

c
ε,ε) = ρε and

hence Uȷ̄ = ⟨Uε,ε⟩ ≠ Vȷ̄ = ⟨Vε,ε⟩.

In the next and final subsection we prove that the DCC implies the sheaf prop-
erty.

9.3. Proof of the sheaf property.

Lemma 83. Let K, K+ be functionally compact sets with K ⊆ int(K+) ⊆ ρR̃n. Let
Y ⊆ ρR̃d and f ∈ Set(K+, Y ). Let K+ ⊆

⋃
j∈J Uj, where Uj = ⟨Ujε⟩ are strongly

internal sets and for all j ∈ J we have fj := f |Uj∩K+ ∈ ρGC∞(Uj ∩K+, Y ). Let

K+ = [K+
ε ]. Assume that, for some representatives (fjε)j∈J

ε∈I
of (fj)j∈J we have

∀m ∈ N ∀0ε∀j, k ∈ J : sup
K+

ε ∩Ujε∩Ukε

|fkε − fjε| ≤ ρmε . (9.6)

Then f ∈ ρGC∞(K,Y ).

Proof. Let K = [Kε]. By changing the representative (K+
ε )ε of K+, we may assume

that there exists S ∈ N such that BρSε (Kε) ⊆ K+
ε , ∀ε [116, Lemma 3.12]. We have

that K+
ε ⊆

⋃
j∈J Uj,ε, ∀ε ≤ ε0, for some ε0 > 0 (proof by contradiction). Let

ε ∈ (0, ε0]. By compactness of K+
ε , K+

ε ⊆ Uj1,ε ∪ · · · ∪ Ujlε ,ε for some lε ∈ N. Call
Vk := Ujk,ε \ (Uj1,ε ∪ · · · ∪ Ujk−1,ε), and let

fε :=

lε∑
k=1

fjk,ε1Vk
.

Then fε is locally integrable. Let m ∈ N. By (9.6), we find εm > 0 such that

∀j, k ∈ J ∀ε ≤ εm : sup
K+

ε ∩Uj,ε∩Uk,ε

|fk,ε − fj,ε| ≤ ρmε .

Further, by the definition of fε, we then also have

∀j ∈ J ∀ε ≤ εm : sup
K+

ε ∩Uj,ε

|fε − fj,ε| ≤ ρmε .

W.l.o.g., εm ↓ 0. Let qε := q, for each ε ∈ (ε(q+1)2 , εq2 ] (q ∈ N). Then

∀j ∈ J ∀ε ≤ ε0 : sup
K+

ε ∩Uj,ε

|fε − fj,ε| ≤ ρ
q2ε
ε .

Let b be a smooth map Rn → R with
´
b = 1 and stsupp(b) ⊆ B1(0), and let

δq,ε(x) := ρ−nqε b

(
x

ρqε

)
.

We show that (fε ∗ δqε,ε)ε is a representative of f , thereby proving that f ∈
ρGC∞(K, ρR̃d). We therefore take x = [xε] ∈ K, and we prove that

(i) (∂α(fε ∗ δqε,ε)(xε)) ∈ Rdρ, ∀α ∈ Nn

(ii) [(fε ∗ δqε,ε)(xε)] = f(x).

Let j ∈ J such that x ∈ Uj . Then there exists S ∈ N such that BρSε (xε) ⊆ K+
ε ∩Uj,ε,

∀0ε. To prove (i) and (ii), it suffices to see that (∂α(fε ∗ δqε,ε)(xε)− ∂αfj,ε(xε))ε is
negligible for each α ∈ Nn.
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Let α ∈ Nn. Then

|∂α(fε ∗ δqε,ε)(xε) − ∂α(fj,ε ∗ δqε,ε)(xε)| = |((fε − fj,ε) ∗ ∂αδqε,ε)(xε)|

= ρ−|α|qε
ε

∣∣∣∣ˆ (fε − fj,ε)(xε − ρqεε u)∂αb(u) du

∣∣∣∣ ≤ Cαρ
−|α|qε
ε sup

Bρ
qε
ε

(xε)

|fε − fj,ε|

≤ Cαρ
(qε−|α|)qε
ε

and

|∂α(fj,ε ∗ δqε,ε)(xε) − ∂αfj,ε(xε)| =

∣∣∣∣ˆ (∂αfj,ε(xε − y) − ∂αfj,ε(xε))δqε,ε(y) dy

∣∣∣∣
≤ C sup

u∈Bρ
qε
ε

(xε)

|∂αfj,ε(u) − ∂αfj,ε(xε)| ≤ Cρqεε max
|β|=|α|+1

sup
u∈Bρ

qε
ε

(xε)

|∂βfj,ε(u)|

≤ Cρqε−Nj,α
ε

for sufficiently small ε, by Thm. 17 (i). Combining both inequalities, we conclude
that (∂α(fε ∗ δqε,ε)(xε) − ∂αfj,ε(xε))ε is ρ-negligible. □

Lemma 84. Let K, K+ be functionally compact sets with K ⊆ int(K+) ⊆ ρR̃n.
Let Y ⊆ ρR̃d and f ∈ Set(K+, Y ). Let K+ ⊆

⋃
j∈J Uj, where for all j ∈ J we have

fj := f |Uj∩K+ ∈ ρGC∞(Uj ∩K+, Y ) and Uj is a strongly internal set. Assume that

(fj)j∈J satisfies the DCC on the cover (K+ ∩ Uj)j∈J . Then f ∈ ρGC∞(K,Y ).

Proof. Let sε := 1
2Lebnum

(
(Ujε)j∈J ,K

+
ε

)
. By Lemma 80, s := [sε] > 0.

We define a cover (Vx)x∈K+ of K+ as follows. Let x = [xε] ∈ K+, where xε ∈ K+
ε ,

∀ε. Then there exist jε ∈ J such that BE2sε(xε) ⊆ Ujε,ε, ∀ε. We then define
Vx := ⟨BE

sε(xε)⟩, and we denote ȷ̄(x) := [jε] ∈ [J ]. By condition (a), (fjε,ε) defines
a generalized smooth map fȷ̄(x) ∈ ρGC∞(Vx ∩K+, Y ).
In order to conclude that f ∈ ρGC∞(K,Y ) by Lemma 83, it suffices to show that:

(i) fȷ̄(x) = f |Vx∩K+ , ∀x ∈ K+.

(ii) ∀m ∈ N ∀0ε∀x, y ∈ K+ : supK+
ε ∩Vx,ε∩Vy,ε

|fȷ̄(y),ε − fȷ̄(x),ε| ≤ ρmε .

Proof of (i): Let x ∈ K+. Let y ∈ Vx ∩K+. We want to show that fȷ̄(x)(y) = f(y).

As y ∈ K+, we have y ∈ Uj for some j ∈ J . Thus y ∈ K+∩Uj∩Vx ⊆ K+∩Uj∩Uȷ̄(x),
and condition (b) yields f(y) = fj(y) = fȷ̄(x)(y).
Proof of (ii): By contradiction, suppose that there exists m ∈ N and, for each
n ∈ N, there exist εn > 0 with (εn)n decreasingly tending to 0 and xn, yn ∈ K+

and zεn ∈ K+
εn ∩ Vxn,εn ∩ Vyn,εn such that

|fjεn ,εn(zεn) − fhεn ,εn
(zεn)| > ρmεn (9.7)

where we denote jεn := ȷ̄(xn)εn and hεn := ȷ̄(yn)εn ∈ J . Then there exist xεn , yεn ∈
K+
εn such that Vxn,εn = BEsεn (xεn) and Vyn,εn = BEsεn (yεn). For ε /∈ {εn : n ∈ N},

let zε ∈ K+
ε be arbitrary. Then z ∈ K+. Let jε := hε := ȷ̄(z)ε, for ε /∈ {εn : n ∈ N}.

Let (z′ε) be any representative of z. Then{
z′ε ∈ BEsε(zε) ⊆ Ujε,ε = Uhε,ε ∀0ε /∈ {εn : n ∈ N}
z′εn ∈ BEsεn (zεn) ⊆ BE2sεn (xεn) ⊆ Ujεn ,εn ∀n ∈ N large enough

and similarly z′εn ∈ Uhεn ,εn
for large enough n ∈ N. Thus z ∈ K+ ∩ Uȷ̄ ∩ Uh̄, and

condition (b) contradicts (9.7). □
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Using Thm. 77 and a functionally compact exhaustion, see Def. 78, we get

Theorem 85. Let X ⊆ ρR̃n be a set that admits a functionally compact exhaustion,

Y ⊆ ρR̃d and f ∈ Set(X,Y ). Let X ⊆
⋃
j∈J Uj, where for all j ∈ J we have

fj := f |Uj∩X ∈ ρGC∞(Uj ∩ X,Y ) and Uj is a strongly internal set. Assume that
(fj)j∈J satisfies the DCC on the cover (Uj)j∈J . Then f ∈ ρGC∞(X,Y ).

The usual sheaf properties both for Schwartz distributions and for Colombeau
generalized functions do not need any stronger compatibility condition, which ul-
timately stems from the possibility to use, for these generalized functions, only
(near-)standard points (recall Thm. 20 and Thm. 21). This is proved in the follow-
ing result, which generalizes the aforementioned sheaf properties (see e.g. [50]).

Theorem 86. Let X ⊆
(
ρR̃n

)•
, Y ⊆ ρR̃d and let f : X −→ Y be a set-theoretical

map. Suppose that X ⊆
⋃
x∈X Brx(x), where rx ∈ R>0 for all x, and that

f |Brx (x)∩X ∈ ρGC∞(Brx(x) ∩X,Y )

for all x ∈ X. Then f ∈ ρGC∞(X,Y ).

Proof. For every x ∈ X, let f |Brx (x)
=: vx ∈ ρGC∞(Brx(x) ∩ X) and let vx be

defined by the net (vxε ) with vxε ∈ C∞(Rn,Rd). Recall that by x◦ ∈ Rn we denote

the standard part of any x ∈ (ρR̃n)•. Pick a countable, locally finite open (in Rn)
refinement (Ui)i∈N of (BE

rx/2(x◦))x∈X and let (χi)i∈N be a partition of unity with
stsuppχi ⋐ Ui for all i ∈ N. For any i ∈ N pick xi ∈ X such that Ui ⊆ BE

rxi
/2(x◦i )

and set

fε :=
∑
i∈N

χiv
xi
ε ∈ C∞(Rn,Rd).

Then the net (fε) defines a GSF of the type X −→ Y : indeed, we will show that
f(z) = vz(z) = [fε(zε)] for all z = [zε] ∈ X:

fε(zε) − vzε (zε) =
∑
i∈N

χi(zε)(v
xi
ε (zε) − vzε (zε)) =

=
∑

{i|z◦∈B3rxi
/4(xi)}

χi(zε)(v
xi
ε (zε) − vzε (zε)) +

+
∑

{i|z◦ ̸∈B3rxi
/4(xi)}

χi(zε)(v
xi
ε (zε) − vzε (zε)) =

=: Aε +Bε.

Since zε → z◦, for small ε all zε remain in a compact set and since the supports of
the χi form a locally finite family it follows that both Aε and Bε are in fact finite
sums for small ε. To estimate the summands in Aε, note that z◦ ∈ B3rxi

/4(xi)

implies that z ∈ Brxi
(xi), so vxi(z) = f |Brxi

(xi)(z) = f(z) = vz(z). Hence [Aε] = 0.

Concerning Bε, z
◦ ̸∈ B3rxi

/4(xi) implies that |z◦−x◦i | > rxi
/2. On the other hand,

if χi(zε) ̸= 0 then zε ∈ Ui ⊆ BE

rxi
/2(x◦i ), implying |z◦ − x◦i | ≤ rxi

/2. Hence Bε = 0.

Consequently, [fε(zε)] = [vzε (zε)], as claimed. □

The following is the sheaf property for Fermat covers.
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Corollary 87. Let X ⊆ ρR̃n, Y ⊆ ρR̃d and let f : X −→ Y be a set-theoretical
map. Suppose that X ⊆

⋃
j∈J Uj, where each Uj is a large open set, and that

f |Uj∩X ∈ ρGC∞(Uj ∩X,Y )

for all j ∈ J . Then

(i) If X ⊆
(
ρR̃n

)•
, then f ∈ ρGC∞(X,Y ).

(ii) If X contains its converging subpoints and all points of X are finite, then
f ∈ ρGC∞(X,Y ).

Proof. To prove property (i), let s = x◦, x ∈ X. Then x ∈ Ujx for some jx ∈ J ,
and hence Brjx (x) ⊆ Ujx for some rjx ∈ R>0. Therefore s = x◦ ∈ BE

rjx
(x◦) and so

X◦ ⊆
⋃
x∈X B

E
rjx

(x◦). Claim (i) now follows directly from Cor. 86.

Property (ii) follows by (i) and Thm. 21 applied to f |X′ , where X ′ := {x ∈ X |
x is near-standard}. □

It is now natural to ask whether the sheaf property Thm. 85 could be inscribed
into the general notion of sheaf on a site. This is one of the aims of the next Sec. 10.

10. The Grothendieck topos of generalized smooth functions

As we argued in the introduction, function spaces and Cartesian closedness are
considered by many authors as important features for mathematics and mathemati-
cal physics. Even if Colombeau’s theory of generalized functions can be extended to
any locally convex space E, on the other hand, in [72] (p. 2) it is stated that: “locally
convex topology is not appropriate for non-linear questions in infinite dimensions”,
and indeed a different approach to infinite dimensional spaces is to embed smooth
manifolds into a Cartesian closed category C (see [37] for a review of this type of
approaches). Similar lines of thought can be found in [63, 64], but where general-
ized functions are seen as functionals, hence not following Cauchy-Dirac’s original
conception but Schwartz’ conception instead. We first motivate and introduce the
few notions of category theory that we need in the present section. Indeed, only
basic preliminaries of category theory are needed to understand this section: def-
inition of category and basic examples, functors and natural transformation. Our
basic references for this section are [78, 59, 7]. As it is customary, we write D ∈ D

to denote that D is an object of the category D, we write A
f−−−→ B in D to say

that f ∈ D(A,B) and Dop for the opposite of D (see e.g. [79]). Only in this section,

we use both the notations f · g := g ◦ f for arrows X
f−−−→ Y

g−−−→ Z in some
category, and the notation ȷ̄ = (ȷ̄ε) ∈ [J ].

10.1. Coverages, sheaves and sites. The notion of coverage on a category allows
one to define more abstractly the concept of sheaf without being forced to consider a
topological space. Nevertheless, the classical example to keep in mind to have a first
understanding of the following definitions is a sheaf (e.g. of continuous functions)
defined on the poset of open sets D = D(X) in some topological space X.

We first define families with common codomain D:

Definition 88. Let D be a category and let D ∈ D. Then we say that F ∈ Fam(D)
is a family with common codomain D if there exist a set J ∈ Set and families
(Dj)j∈J , (ij)j∈J such that:
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(i) Dj
ij−−−→ D in D for all j ∈ J .

(ii) F =
(
Dj

ij−−−→ D
)
j∈J

.

A coverage is a class of families with a common codomain that is closed with respect
to pullback, in the precise sense stated in the following

Definition 89. Let D be a category, then we say that Γ is a coverage on D if:

(i) Γ : Obj(D) −→ Set, where Obj(D) is the class of objects of the category D.
(ii) ∀D ∈ D : Γ(D) ⊆ Fam(D). Families in Γ(D) are called covering families of

D.

(iii) If D ∈ D,
(
Dj

ij−−−→ D
)
j∈J

∈ Γ(D) is a covering family of D, and C
g−−−→

D is an arbitrary arrow of D, then there exists a covering family of C,(
Ck

hk−−−−→ C
)
k∈K

∈ Γ(C) such that

∀k ∈ K ∃j ∈ J ∃ḡ :

Ck
hk //

ḡ

��

C

g

��
Dj

ij // D

(10.1)

(iv) A pair (D,Γ), of a category and a coverage on it, is called a site.

For example, let ρOGC∞ be the category of sharply open sets U ⊆ ρR̃u (all possible
dimensions u ∈ N are included) and GSF. Let Γ(U) contains open coverings and

inclusions:
(
Uj

ij−−−→ U
)
j∈J

∈ Γ(U) if and only if Uj ∈ ρOGC∞, ij : Uj ↪→ U and⋃
j∈J Uj = U . Then (ρOGC∞,Γ) is a site and property (10.1) holds simply by taking

K = J and Cj := g−1(Uj) ∈ ρOGC∞ as covering family of C, and ḡ := g|Cj
. Note

that these simple steps do not work in the category ρSGC∞ of strongly internal sets
and GSF because in general g−1(Uj) is not strongly internal (only the inclusion
g−1 (⟨Aε⟩) ⊆ ⟨g−1

ε (Aε)⟩ holds). In this case, a general method is to express the
open set g−1(Uj) as a union of strongly internal sets. This implies that we have to
take a different index set K for the covering family Ck ↪→ C.

Using the notion of coverage, we can define the notion of compatible family:

Definition 90. Let (D,Γ) be a site and F : Dop −→ Set be a presheaf. Let

F =
(
Dj

ij−−−→ D
)
j∈J

∈ Γ(D) be a covering family of D ∈ D. Then, we say that

(fj)j∈J are compatible on F (rel. F ) if the following conditions hold:

(i) fj ∈ F (Dj) for all j ∈ J . In this case fj is called a section.
(ii) For all g, c and j, h ∈ J , we have

C
c //

g

��

Dh

ih

��
Dj

ij // D

⇒ F (g)(fj) = F (c)(fh). (10.2)

A typical way to apply (10.2) is to construct a sort of intersection object C =
Dh ∩Dj and to take as c, g the inclusions. Then, if F = D(−, Y ), the equality in
(10.2) reduces to the usual compatibility condition fj |Dh∩Dj

= fh|Dh∩Dj
.
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We can finally define the notion of sheaf on a site:

Definition 91. Let (D,Γ) be a site. Then we say that F is a sheaf on (D,Γ), and
we write F ∈ Sh(D,Γ) if

(i) F : Dop −→ Set (i.e. F is a presheaf).

(ii) If F =
(
Dj

ij−−−→ D
)
j∈J

∈ Γ(D) is a covering family of D ∈ D and (fj)j∈J

are compatible on F (rel. F ), then

∃!f ∈ F (D)∀j ∈ J : F (ij)(f) = fj . (10.3)

In the classical example of continuous functions on a topological space, F =
C0(−, Y ) and the equality in (10.3) becomes f |Dj

= fj . Note that, even if the cat-
egory of open sets and GSF ρOGC∞ is a site, example 76 shows that ρOGC∞(−, Y )
is not a sheaf.

10.2. The category of glueable functions. As we mentioned in the introduction
to Sec. 9, our main aim here is to show that the DCC is strictly related to the
aforementioned definition of sheaf on a site. The strategy we will follow is:

(a) Define a category ρGℓ∞ ⊇ ρSGC∞.
(b) Define a coverage on ρGℓ∞.
(c) Show that ρGℓ∞(−,Y) is a sheaf using Thm. 85 and hence the DCC.

Intuitively, we already think that a family of strongly internal sets (Uj)j∈J is a

coverage of the strongly internal set U if, simply, U ⊆
⋃
j∈J Uj ; we also intuitively

think that (fj)j∈J are compatible sections if DCC holds. The following definition
reflects this intuition:

Definition 92. Let ρGℓ∞ be the category of glueable families, whose objects are

non empty families (Uj)j∈J ∈ ρGℓ∞ of strongly internal sets in some space ρR̃u:

J ̸= ∅, ∃u ∈ N ∀j ∈ J : ρR̃u ⊇ Uj ∈ ρSGC∞.

We say that

X φ−−−→ Y in ρGℓ∞

if X = (Uj)j∈J , Y = (Vh)h∈H ∈ ρGℓ∞ and φ =
(

(fj)j∈J , α
)

, where:

(i) The map α ∈ Set(J,H) is called a reparametrization.
(ii) The family of GSF fj ∈ ρSGC∞(Uj , Vα(j)), j ∈ J , satisfies the DCC on

U :=
⋃
j∈J Uj .

To state condition (ii) more explicitly, let u, v ∈ N be the dimensions of (Uj)j∈J
and (Vh)h∈H resp. (i.e. ρR̃u ⊇ Uj and ρR̃v ⊇ Vh for all j, h), and set V :=

⋃
h∈H Vh.

Then (ii) asks that there exists (Ujε)j∈J
ε∈I

such that for all K ⋐f U there exists

(fjε)j∈J
ε∈I

∈ C∞(Ru,Rv) such that:

(ii.a) fj = [fjε(−)] |Uj
for each j ∈ J .

(ii.b) [fȷ̄ε,ε(−)] ∈ ρGC∞(Uȷ̄∩K,Vȷ̄·α∩V ) for all ȷ̄ = (ȷ̄ε) ∈ [J ], where Uȷ̄ := ⟨Uȷ̄ε,ε⟩.
Note that I

ȷ̄−−−→ J
α−−−→ H and hence ȷ̄ · α = α ◦ ȷ̄ ∈ [H].

(ii.c) [fȷ̄ε,ε(−)] =
[
fh̄ε,ε(−)

]
on Uȷ̄ ∩ Uh̄ ∩K for all ȷ̄, h̄ ∈ [J ].

Composition and identities in ρGℓ∞ are defined as follows: Let

X φ−−−→ Y ψ−−−→ Z in ρGℓ∞ (10.4)
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and set X = (Uj)j∈J , Y = (Vh)h∈H , Z = (Wl)l∈L, φ =
(

(fj)j∈J , α
)

, ψ =(
(gh)h∈H , β

)
. Then

Uj
fj−−−−→ Vα(j)

gα(j)−−−−−→Wβ(α(j)) ∀j ∈ J

J
α−−−→ H

β−−−→ L,

and we hence set

φ · ψ :=
((
fj · gα(j)

)
j∈J , α · β

)
1X :=

((
1Uj

)
j∈J , 1J

)
.

The following lemma confirms the correctness of this definition.

Lemma 93. ρGℓ∞ is a category.

Proof. We essentially have to prove the closure with respect to composition, i.e. that
(10.4) implies φ · ψ : X −→ Z in ρGℓ∞. We implicitly use the notations of the
previous definition. For all K = [Kε] ⋐f U , we have fȷ̄ := [fȷ̄ε,ε(−)] ∈ ρGC∞(Uȷ̄ ∩
K,Vȷ̄·α ∩ V ), and hence for ȷ̄ ∈ [J ] we get fȷ̄ ([Uȷ̄ε,ε ∩Kε]) =: K̂ ⋐f Vȷ̄·α ∩ V .

Using K̂ and ȷ̄ · α =: h̄ ∈ [H] with the arrow ψ, we obtain gh̄ :=
[
gh̄ε,ε(−)

]
∈

ρGC∞(Vh̄ ∩ K̂,Wh̄·β ∩W ) for some nets (ghε)h,ε. Therefore

(fȷ̄ · gȷ̄·α) |Uȷ̄∩K =
[
gα(ȷ̄ε),ε (fȷ̄ε,ε(−))

]
∈ ρGC∞(Uȷ̄ ∩K,Wȷ̄·α·β ∩W ).

This shows that condition (ii.b) of Def. 92 holds for φ ·ψ =
((
fj · gα(j)

)
j∈J , α · β

)
.

To prove condition (ii.c) take x = [xε] ∈ Uȷ̄ ∩ Ul̄ ∩K, then fȷ̄(x) = fl̄(x) ∈ Vȷ̄·α ∩
Vl̄·α ∩ K̂ and hence gȷ̄·α (fȷ̄(x)) = gl̄·α (fl̄(x)), which is our conclusion. Properties
of identities trivially hold. □

Note that ρSGC∞ ⊆ ρGℓ∞ through the embedding:

U ∈ ρSGC∞ 7→ (U)1̄ ∈ ρGℓ∞

f ∈ ρSGC∞(U, V ) 7→ ((f)1̄ , 1̄ −→ 1̄) ∈ ρGℓ∞ ((U)1̄ , (V )1̄) ,

where 1̄ := {∗} is any singleton set. The converse is also possible using the sheaf

Thm. 85: In fact, if
(

(fj)j∈J , α
)
∈ ρGℓ∞

(
(Uj)j∈J , (Vh)h∈H

)
, then the DCC holds

and hence there exists a unique f ∈ ρSGC∞(U, V ) such that f |Uj = fj for all j ∈ J .

If we set gl
(

(fj)j∈J , α
)

:= f then

gl (φ · ψ) = gl
((
fj · gα(j)

)
j∈J , α · β

)
= gl (φ) · gl (ψ)

because setting gl(φ) =: f and gl(ψ) =: g, we have (f · g) |Uj
= f |Uj

· g|Vα(j)
=

fj · gα(j), i.e. the unique GSF obtained by gluing
(
fj · gα(j)

)
j∈J is f · g. Finally

gl (1X ) = 1U = 1gl(X ) and hence gl : ρGℓ∞ −→ ρSGC∞ is a (clearly non injective)
functor.
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10.3. Coverage of glueable functions. We now introduce a coverage on the
category ρGℓ∞ of glueable families:

Definition 94. Let E = (We)e∈E ∈ ρGℓ∞. Then we say that γ ∈ Γ(E) if there
exists a non empty J ∈ Set such that:

(i) γ = (γj)j∈J and γj =
(
(ih)h∈J , δ

)
for all j ∈ J .

(ii) J
δ−−−→ E is a surjective map.

(iii) ij : Dj
� � // Wδ(j) for all j ∈ J , where (Dj)j∈J ∈ ρGℓ∞ . Because of this

property, δ is called a refinement map.
(iv) We =

⋃
{Dj | δ(j) = e, j ∈ J} for all e ∈ E.

Remark 95.

(i) Note that the index set J of γ = (γj)j∈J is the same used in (ih)h∈J . More-

over, the two components of γj do not depend on j ∈ J . This may ap-
pear to be a strange property for a coverage, but note that our intuition

here is guided by viewing the inclusions (Dj
� � ij // W )j∈J as a coverage of

W :=
⋃
e∈EWe. On the other hand, note that in Def. 92 of glueable families,

in the DCC (ii) we need the whole family (fj)j∈J and not only the single

GSF fj . Similarly, we need to consider the entire family of inclusions (ih)h∈J
and not the single ih. For this reason, we cannot directly consider the family

(Dj
� � ij // W )j∈J , made of single inclusions, as a coverage.

(ii) Condition (iv) implies W =
⋃
j∈J Dj =

⋃
j∈JWδ(j). We will see more clearly

later that this condition allows us to prove the uniqueness part of (10.3).
(iii) If We ̸= ∅ for all e ∈ E, then (iv) directly implies that δ has to be a surjective

map.

Theorem 96. Γ is a coverage on ρGℓ∞.

Proof. From Def. 94(iii) it follows that γj ∈ ρGℓ∞
(

(Dj)j∈J , E
)

, i.e. property

Def. 88(i). To prove the closure with respect to pullbacks, take η ∈ ρGℓ∞(C, E),
where C =: (Vc)c∈C and η =:

(
(gc)c∈C , β

)
. Since (gc)c∈C satisfies the DCC (see

Def. 92(ii), i.e. Def. 92(ii.a), (ii.b)), we can use Thm. 85 to get

∃!g ∈ ρGC∞(V,W )∀c ∈ C : g|Vc
= gc,

where V :=
⋃
c∈C Vc. We can hence consider g−1(Dj) and cover it with strongly

internal sets:

∀j ∈ J ∃Hj ̸= ∅ ∃ (Bjh)h∈Hj
∀h ∈ Hj : Bjh ∈ ρSGC∞, g−1(Dj) =

⋃
h∈Hj

Bjh.

SetBjhc := Bjh∩Vc ∈ ρSGC∞, K := {(j, h, c) | j ∈ J, h ∈ Hj , c ∈ C}, ν : (j, h, c) ∈

K 7→ c ∈ C, ak : Bk
� � // Vν(k), and αk :=

(
(ak)k∈K , ν

)
. Then K is non empty
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because C, Hj , J ̸= ∅, and we have

B =
⋃
k∈K

Bk =
⋃
c∈C

⋃
j∈J

⋃
h∈Hj

Bjhc =
⋃
c∈C

Vc ∩
⋃
j∈J

⋃
h∈Hj

Bjh = V ∩
⋃
j∈J

g−1(Dj) =

= V ∩ g−1

⋃
j∈J

Dj

 = V ∩ g−1(D) = V ∩ g−1(W ) = V.

To prove property (iv) of Def. 94 for the new covering family (αk)k∈K , take x ∈
Vc ⊆ V , so that g(x) ∈ W . Thereby, x ∈ g−1(Dj) for some j ∈ J , and hence
x ∈ Bjh ⊆ Bjhc for some h ∈ Hj . Setting k := (j, h, c) ∈ K, we have ν(k) = c and

x ∈ Bk. This shows that (αk)k∈K ∈ Γ(C). Finally, let (δ)
−1
l be any left inverse of

δ, i.e. (δ)
−1
l · δ = δ ◦ (δ)

−1
l = 1E (recall Def. 94(ii)), and setting Bk := (Bk)k∈K ,

µ :=
(

(gk|Bk
)k∈K , ν · β · (δ)

−1
l

)
, we have

∀k ∈ K ∃j ∈ J ∃µ :

Bk
αk //

µ

��

C

η

��
Dj

γj // E

i.e. the claim Def. 89(iii). □

Definition 97. The category of sheaves ρTGC∞ := Sh (ρGℓ∞,Γ) (and natural trans-
formations as arrows) is called the Grothendieck topos of generalized smooth func-
tions (see e.g. [78, 59, 7] and references therein).

10.4. The sheaf of glueable functions. We are now able to show that the DCC
is the key property to prove the following

Theorem 98. For each Y ∈ ρGℓ∞, the functor ρGℓ∞(−,Y) is a sheaf on the site
(ρGℓ∞,Γ), i.e. it satisfies Def. 91: ρGℓ∞(−,Y) ∈ ρTGC∞ (ρGℓ∞,Γ).

Proof. We use the notations of Def. 94. Let (γj)j∈J =
(
(ih)h∈J , δ

)
j∈J ∈ Γ(E)

be a covering family and let φj =

((
f jh

)
h∈J

, αj
)

∈ ρGℓ∞(Dj ,Y), j ∈ J , be a

compatible family of sections, where Dj := (Dh)h∈J =: D0 (recall Rem. 95(i) about
the independence from j ∈ J). Note explicitly that by Def. 94(i) the covering
family (γj)j∈J is indexed by the same set J as its inclusions (ih)h∈J ; moreover,

the glueable family
(
f jh

)
h∈J

is also indexed by J because by Def. 92, any arrow in

the category ρGℓ∞ is indexed by the same set of its domain which, in this case, is
D0 = (Dh)h∈J . Set Y =: (Vl)l∈L. We first want to prove that the compatibility of

sections (φj)j∈J allows us to show that both
(
f jh

)
h∈J

and αj do not actually depend

on j. We therefore take i ∈ J and define D0 ∩ D0 := (Dh ∩Dk)(h,k)∈J2 ∈ ρGℓ∞,

ihk : Dh ∩Dk
� � // Dh, ikh : Dh ∩Dk

� � // Dk, ν1 : (h, k) ∈ J2 7→ h ∈ J ,

ν2 : (h, k) ∈ J2 7→ k ∈ J , ι1 :=
(

(ihk)(h,k)∈J2 , ν1

)
, ι2 :=

(
(ikh)(h,k)∈J2 , ν2

)
. The
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compatibility condition (10.2) for the functor ρGℓ∞(−,Y) yields
ρGℓ∞(−,Y)(ι1)(φj) = ρGℓ∞(−,Y)(ι2)(φi)((

ihk · f jν1(h,k)
)
(h,k)∈J2

, ν1 · αj
)

=

((
ikh · f iν2(h,k)

)
(h,k)∈J2

, ν2 · αi
)

((
f jh|Dh∩Dk

)
hk
, ν1 · αj

)
=

((
f ik|Dh∩Dk

)
hk
, ν2 · αi

)
.

Thereby, for h = k we get f jh = f ih and, for arbitrary h, k ∈ J , we also have
(ν1 · αj)(h, k) = (ν2 · αi)(h, k), i.e. αj(h) = αi(k). This equality, since J ̸= ∅,
implies that αi = αj =: αc ∈ L is constant. Therefore, as a consequence of the
compatibility condition, we have that both components of φj do not depend on
j ∈ J : our sections can hence be simply written as φj =:

(
(fh)h∈J , αc

)
. Note

also that all the GSF fh : Dh −→ V := Vαc
have the same codomain. The

glueable family (fh)h∈J satisfies the DCC because of Def. 92(ii) and we can hence
apply Thm. 85 to obtain a unique f ∈ ρGC∞(D,V ) such that f |Dj

= fj for each
j ∈ J , where D =

⋃
j∈J Dj . We can finally set ᾱ : e ∈ E 7→ αc ∈ L and

φ :=
(
(f |We)e∈E , ᾱ

)
to obtain the existence part of the conclusion:

ρGℓ∞(−,Y)(γj)(φ) = γj · φ =
((
f |Wδ(h)∩Dh

)
h∈J , δ · ᾱ

)
=

(
(f |Dh

)h∈J , α
)

= φj .

To prove the uniqueness of the glued section, assume that φ̂ =

((
f̂e

)
e∈E

, α̂

)
∈

ρGℓ∞(E ,Y) is another section such that ρGℓ∞(−,Y)(γj)(φ̂) = φj for all j ∈ J . This
equality gives ((

f̂δ(h)|Dh

)
h∈J

, δ · α̂
)

=
(
(fh)h∈J , α

)
(10.5)

Take e ∈ E and x ∈ We, then condition Def. 94(iv) yields the existence of h ∈ J
such that δ(h) = e and x ∈ Dh. Therefore, using (10.5) we obtain

f̂e(x) = f̂δ(h)|Dh∩We
(x) = fh|We

(x) = f |We
(x),

i.e. f̂e = f |We
for all e ∈ E. Finally, (10.5) also gives α̂ = (δ)

−1
l · α. □

10.5. Concrete sites and generalized diffeological spaces. In this final sec-
tion, we want to sketch one of the many possibilities that we can start to explore
using the Grothendieck topos ρTGC∞. The idea is to show that the site (ρGℓ∞,Γ) is
a concrete site. In this way, considering the space of concrete sheaves over this site,
we get a category of spaces that extends usual smooth manifolds but it is closed
with respect to operations such as: arbitrary subspaces, products, sums, function
spaces, etc. (see [58, 62, 7, 34, 37] and references therein for similar approaches).
As above, all the necessary categorical notions will be introduced).

Definition 99. Let D be a category and F : Dop −→ Set be a functor. Then, we
say that F is representable if F ≃ D(−, D) for some D ∈ D. Moreover, if (D,Γ) is
a site, then we say that (D,Γ) is a subcanonical site if every representable functor
F is a sheaf F ∈ Sh(D,Γ).
Since in Thm. 98 we proved that ρGℓ∞(−,Y) is a sheaf, directly from Def. 99 it
follows that (ρGℓ∞,Γ) is a subcanonical site.

A concrete site is a site whose objects can be thought of as an underlying set with a
structure. The idea is that if 1 ∈ D is a terminal object, then |D| := D(1, D) ∈ Set
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is the underlying set of D ∈ D and if f : C −→ D in D, then |f | := D(1, f) : x ∈
|C| 7→ x · f = f ◦ x ∈ |D| is the set-theoretical map corresponding to the arrow
f . These maps have a natural relation with covering families of Γ, as stated in the
following

Definition 100. We say that (D,Γ,1) is a concrete site if:

(i) (D,Γ) is a subcanonical site.
(ii) 1 ∈ D is a terminal object, i.e. 1 ∈ D and ∀D ∈ D ∃!t ∈ D(D,1).

D(1, D) =: |D| is called the underlying set of D ∈ D. For f ∈ D(C,D), the map
|f | := D(1, f) : |C| −→ |D| is called the function associated to the morphism f .

(iii) The functor D(1,−) : D −→ Set is faithful, i.e. for all f , g ∈ D(C,D), if
|f | = |g|, then f = g.

(iv) If
(
Dj

ij−−−→ D
)
j∈J

∈ Γ(D), then the associated maps trivially cover |D|,
i.e.: ⋃

j∈J
|ij | (|Di|) = |D|. (10.6)

For example, let us define a terminal object in the category ρGℓ∞ of glueable spaces
as:

1 := ({0})1̄ ∈ ρGℓ∞

where 1̄ = {∗}. Note that, if we view Rn = Set ({1, . . . , n} ,R), then Card
(
R0

)
= 1

and hence Card
(
ρR̃0

)
= Card

((
R0

)I
/ ∼ρ

)
= 1. Therefore, ρR̃0 = {0} is the trivial

ring. It is also a strongly internal set because B1(0) =
{
x ∈ ρR̃0 | |x− 0| < 1

}
=

{0}.
What is φ ∈ ρGℓ∞(1,X ) = |X | in this case? Set φ = ((f)1̄ , α) and X = (Uj)j∈J ,

then α : 1̄ −→ J and f : {0} −→ Uα(∗), which can be identified with the pair
(f(0), α(∗)) ∈ Uα(∗) × {α(∗)}. Therefore,

|X | = ρGℓ∞(1,X ) ≃
∑
j∈J

Uj =
⋃
j∈J

Uj × {j}.

Similarly, ψ =
(

(fj)j∈J , α
)
∈ ρGℓ∞

(
(Uj)j∈J , (Vl)l∈L

)
can be identified with the

map:

|ψ| : (x, j) ∈
∑
j∈J

Uj 7→ (fj(x), α(j)) ∈
∑
l∈L

Vl,

i.e. with the map (x, j) 7→ (f(x), α(j)), where f ∈ ρGC∞
(⋃

j∈J Uj ,
⋃
l∈L Vl

)
is ob-

tained by gluing (fj)j∈J . This implies condition Def. 100(iii), whereas Def. 100(iv)

follows from Rem. 95(ii):

Theorem 101. (ρGℓ∞,Γ) is a concrete site.

It is well known that a sheaf F ∈ Sh(D,Γ) can be thought of as a generalized space
defined by the information F (D) ∈ Set associated to each test space D ∈ D. The
idea of concrete sheaf is that it is this kind of generalized space defined by an
underlying set of points F (1). For example, any y ∈ ρGℓ∞(1,Y) can be identified
with the map

∑
0{0} × {0} = {(0, 0)} −→

∑
l∈L Vl, and hence ρGℓ∞(1,Y) ≃∑

l∈L Vl.
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Definition 102. Let (D,Γ,1) be a concrete site. Then we say that F is a concrete
sheaf (and we write F ∈ CSh(D,Γ,1)) if:

(i) F ∈ Sh(D,Γ).
(ii) For all s ∈ F (D), let s : p ∈ |D| 7→ F (p)(s) ∈ F (1), then we have

∀D ∈ D ∀s, t ∈ F (D) : s = t ⇒ s = t.

Similarly to what we did above, we can prove that ρGℓ∞(−,Y) is a concrete sheaf.

11. Conclusions and future perspectives

Sobolev and Schwartz solved the problem “how to derive continuous functions?”.
Also Sebastiao e Silva (see [100]) solved the same problem without relying on func-
tional analysis at all, but instead using only a formal approach and arriving at an
isomorphic solution. We solved the problem: “how to derive continuous functions
obtaining set-theoretical functions, unrestrictedly composable, extending the usual
classical theorems of calculus and allowing for infinitesimal and infinite values?”.
This second problem doesn’t appear to have a trivial formal solution.

We have shown that GSF theory has features that closely resemble classical
smooth functions. In contrast, some differences have to be carefully considered,

such as the fact that the new ring of scalars ρR̃ is not a field, it is not totally
ordered, it is not order complete, so that its theory of supremum and infimum is
more involved (see [83]), and its intervals are not connected in the sharp topology
because the set of all the infinitesimals is a clopen set. Almost all these properties
are necessarily shared by other non-Archimedean rings because their opposites are
incompatible with the existence of infinitesimal numbers.

Conversely, the ring of Robinson-Colombeau generalized numbers ρR̃ is a frame-
work where the use of infinitesimal and infinite quantities is available, it is defined
using elementary mathematics, and with a strong connection with infinitesimal and
infinite functions of classical analysis. As proved in [28], this leads to a better un-
derstanding and opens the possibility to define new models of physical systems. We
can hence state that GSF theory is potentially a good framework for mathematical
physics.

As we started to see in Sec. 10.5, the category of concrete sheaves over the
concrete site of gluable families contains the category of strongly open sets and GSF
and hence, also the category of ordinary smooth functions on open sets. In future
works, we will build on this and show that it also contains the category of smooth
manifolds (more generally all diffeological spaces). This opens the possibility to
study singular differential geometry using non-Archimedean methods and, as is
typical of topos theory, interesting connections with logic.

Finally, as we will see in the next two papers of this series ([77, 44]), GSF theory
is also an interesting non-Archimedian framework for the mathematical analysis of
singular non-linear ordinary and partial differential equations.
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