PS Harmonische Analysis Luigi Roberti and Gerald Teschl

WS2024/25

Note: References refer to the lecture notes.

1. Show that for $n, m \in \mathbb{N}$ we have

$$
2\int_0^1 \sin(n\pi x)\sin(m\pi x)dx = \begin{cases} 1, & n = m, \\ 0, & n \neq m. \end{cases}
$$

Conclude that the Fourier sine coefficients g_n of

$$
g(x) = \sum_{n=1}^{\infty} g_n \sin(n\pi x).
$$

are given by

$$
g_n = 2 \int_0^1 \sin(n\pi x) g(x) dx.
$$

provided the sum converges uniformly.

2. Use the method of separation of variables as described in the notes to solve the heat equation

$$
\frac{\partial}{\partial t}u(t,x) = \frac{\partial^2}{\partial x^2}u(t,x)
$$

with boundary conditions $u(t, 0) = u_0, u(t, 1) = u_1$ and initial condition $u(0, x) = u(x)$. It models the temperature distribution of a thin wire whose edges are kept at a fixed temperature u_0 and u_1 . What can you say about $\lim_{t\to\infty} u(t,x)$? (Hint: If $u(x,t)$ solves the heat equation, so does $u(x,t) + a + bx$. Use this to reduce the boundary conditions to the case $u_0 = u_1 = 0.$

3. Show that $\ell^2(\mathbb{N})$ is a Hilbert space.

4. Prove the parallelogram law

$$
||f+g||^2 + ||f-g||^2 = 2||f||^2 + 2||g||^2
$$

for f, g in some Hilbert space \mathfrak{H} .

5. Let

$$
\ell^p(\mathbb{N}) := \{ a := (a_j)_{j \in \mathbb{N}} \mid ||a||_p < \infty \},\
$$

where

$$
||a||_p = \begin{cases} \left(\sum_{j \in \mathbb{N}} |a_j|^p\right)^{1/p}, & 1 \le p < \infty, \\ \sup_{j \in \mathbb{N}} |a_j|, & p = \infty. \end{cases}
$$

Show that $\ell^p(\mathbb{N})$, $1 \leq p \leq \infty$, is a Hilbert space if and only if $p = 2$. (Hint: Previous problem.)

6. Suppose $\mathfrak Q$ is a complex vector space. Let $s(f, g)$ be a sesquilinear form on $\mathfrak Q$ and $q(f) := s(f, f)$ the associated quadratic form. Prove the **par**allelogram law

$$
q(f + g) + q(f - g) = 2q(f) + 2q(g)
$$

and the polarization identity

$$
s(f,g) = \frac{1}{4} (q(f+g) - q(f-g) + \mathrm{i} q(f - \mathrm{i} g) - \mathrm{i} q(f + \mathrm{i} g)).
$$

Show that $s(f, g)$ is symmetric if and only if $q(f)$ is real-valued.

Note, that if $\mathfrak Q$ is a real vector space, then the parallelogram law is unchanged but the polarization identity in the form $s(f,g) = \frac{1}{4}(q(f + g)$ $q(f - g)$) will only hold if $s(f, g)$ is symmetric.

7. Let $\{u_j\}_{j=0}^{\infty} \subset \mathfrak{H}$ be a countable orthonormal set and $f \in \mathfrak{H}$. Show that

$$
f_n = \sum_{j=0}^n \langle u_j, f \rangle u_j
$$

is a Cauchy sequence.

8. Let $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$ with $\frac{1}{p} + \frac{1}{q} = 1$. Show that $f * g \in L^\infty(\mathbb{R}^n)$ with

$$
||f * g||_{\infty} \leq ||f||_p ||g||_q.
$$

Show that for $1 \leq p \leq \infty$ or $p = 1$ and $g \in C_0(\mathbb{R}^n)$ we even have $f * g \in C_0(\mathbb{R}^n)$.

9. Let ϕ_{ε} be a symmetric approximate identity on R, that is, $\phi_{\varepsilon}(x) = \phi_{\varepsilon}(-x)$. Show that for every bounded measurable function f we have

$$
\lim_{\varepsilon \downarrow 0} (\phi_{\varepsilon} * f)(x) = \frac{f(x+) + f(x-)}{2},
$$

at every point x where both right/left sided limits $f(x\pm) := \lim_{\varepsilon \downarrow 0} f(x\pm \varepsilon)$ exist.

Show that the same conclusion holds for integrable functions f if ϕ_{ε} has compact support, $\text{supp}(\phi_{\varepsilon}) \subseteq [-s, s]$, and for every $r > 0$ we have $\lim_{\varepsilon \downarrow 0} \sup_{r \leq |x| \leq s} |\phi_{\varepsilon}(x)| = 0.$

10. Show that the Landau kernel

$$
L_n(x) := \begin{cases} \frac{1}{I_n}(1-x^2)^n, & |x| < 1, \\ 0, & |x| \ge 1, \end{cases} \qquad I_n = \int_{-1}^1 (1-x^2)^n dx
$$

is an approximate identity on \mathbb{R} (for $\varepsilon = \frac{1}{n}$ with $n \in \mathbb{N}$).

Use this to prove the Weierstraß approximation theorem, that every continuous function on $\left[-\frac{1}{2},\frac{1}{2}\right]$ can be uniformly approximated by polynomials.

11. Show that the Poisson kernel

$$
P_{\varepsilon}(x) := \frac{1}{\pi} \frac{\varepsilon}{x^2 + \varepsilon^2}
$$

is an approximate identity on R.

Show that the Cauchy transform (also Borel transform)

$$
F(z) := \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(\lambda)}{\lambda - z} d\lambda
$$

of a real-valued function $f \in L^p(\mathbb{R})$, $1 \leq p < \infty$ is analytic in the upper half-plane with imaginary part given by

$$
\operatorname{Im}(F(x+{\rm i}y)) = (P_y * f)(x).
$$

In particular, by Young's inequality $\|\text{Im}(F(.+iy))\|_p \leq ||f||_p$ and thus also sup_{y>0} $\|\text{Im}(F(.+iy))\|_p = \|f\|_p$. Such harmonic functions are said to be in the Hardy space $h^p(\mathbb{C}_+).$

(Hint: To see analyticity of F use Problem A.1 from the notes plus the estimate

$$
\left|\frac{1}{\lambda - z}\right| \le \frac{1}{1 + |\lambda|} \frac{1 + |z|}{|\text{Im}(z)|}.
$$

12. Let $f \in L^1(-\pi, \pi)$ be periodic and $a \in \mathbb{R}$, $n \in \mathbb{Z}$. Show

$$
\begin{array}{c|c|c}\ng(x) & \hat{g}_k \\
f(-x) & \hat{f}_{-k} \\
f(x)^* & \hat{f}_{-k}^* \\
f(x+a) & e^{\mathrm{i}ak}\hat{f}_k \\
e^{\mathrm{i}nx}f(x) & \hat{f}_{k-n}\n\end{array}
$$

- 13. Show the following estimates for the Dirichlet and Fejer kernels: $|D_n(x)| \le$ $\min(2n+1, \frac{\pi}{|x|})$ and $F_n(x) \leq \min(n, \frac{\pi^2}{nx^2})$ for $|x| \leq \pi$.
- 14. Show that the Dirichlet kernel satisfies

$$
\frac{8}{\pi} \sum_{k=1}^{n} \frac{1}{k} \leq ||D_n||_1 \leq 2\pi (1 + \log(2n + 1))
$$

and note that the harmonic series diverges.

- 15. Compute the Fourier series of the Dirichlet kernel D_n and the Fejer kernel F_n .
- 16. Compute the Fourier series of $f(x) := |x|$ on $[-\pi, \pi]$. For which $x \in [-\pi, \pi]$ does $S_n(f)(x)$ converge to $f(x)$?
- 17. Compute the Fourier series of $f(x) := x^2$ on $[-\pi, \pi]$ and use this to show (Basel problem)

$$
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.
$$

(Hint: Evaluate the series at $x = \pi$.)

18. Show that if a sequence of complex numbers S_n converges to S, then the sequence of mean values

$$
\bar S_n:=\frac{1}{n}\sum_{k=0}^{n-1}S_k
$$

also converges to S.

19. Suppose f and q are periodic (with period 2π) integrable functions. Show

$$
\widehat{(f*g)_k}=2\pi \widehat{f}_k\widehat{g}_k,
$$

where

$$
(f * g)(x) = \int_{-\pi}^{\pi} f(x - y)g(y)dy.
$$

(Hint: Fubini.)

- 20. Compute the Fourier series of $f(x) := x$ on $[-\pi, \pi]$ and use this to solve again the Basel problem. (Hint: Parseval's relation.)
- 21. Show that the Hilbert transform H satisfies

$$
(\widehat{Hf}_k) = \frac{\text{sign}(k)}{\text{i}} \widehat{f}_k
$$

for f a trigonometric polynomial. (Hint: To evaluate the integral consider the closed form of the Dirichlet kernel and split off the $+1/2$.)

- 22. Compute the Fourier series of $f(x) := sign(x)$. For which $x \in [-\pi, \pi]$ does $S_n(f)(x)$ converge to $f(x)$?
- 23. Compute the Fourier series of $f(x) := \frac{\pi}{\sin(\alpha \pi)} e^{i\alpha x}$ on $[-\pi, \pi]$ for $\alpha \in \mathbb{C} \setminus \mathbb{Z}$. For which $x \in [-\pi, \pi]$ does $S_n(f)(x)$ converge to $f(x)$?

Establish the partial fraction decomposition

$$
\pi z \cot(\pi z) = 1 + 2z^2 \sum_{k=1}^{\infty} \frac{1}{z^2 - k^2}, \qquad z \in \mathbb{C} \setminus \mathbb{Z}.
$$

24. Show that for $\delta \in \mathbb{R}$ and $f \in L^1(0, \pi)$ we have

$$
\lim_{n \to \infty} \int_0^{\pi} f(x) \sin((n+\delta)x) dx = 0.
$$

Use this to compute the Dirichlet integral

$$
\lim_{R \to \infty} \int_0^R \frac{\sin(x)}{x} dx = \frac{\pi}{2}.
$$

(Hint: To evaluate the Dirichlet integral start from $\int_0^{\pi} D_n(x) dx = \pi$ and observe that $\frac{2}{x} - \frac{1}{\sin(x/2)}$ is continuous on $[-\pi, \pi]$.

25. Show the summation by parts formula

$$
\sum_{j=m}^{n} g_j(\partial f)_j = g_n f_{n+1} - g_{m-1} f_m + \sum_{j=m}^{n} (\partial^* g)_j f_j
$$

where,

$$
(\partial f)_n = f_{n+1} - f_n, \qquad (\partial^* f)_n = f_{n-1} - f_n,
$$

are the forward/backward difference operators.

Suppose the real-valued sequence a_n converges to zero and satisfies $b_n :=$ $-(\partial \partial^* a)_n = a_{n+1} + a_{n-1} - 2a_n \geq 0$ for $n \in \mathbb{N}$. Show that

- $\alpha_n := a_{n-1} a_n \geq 0$ is decreasing and converges to zero,
- $n\alpha_n \to 0$,

•
$$
a_m = \sum_{j=m+1}^{\infty} (j-m)b_j.
$$

(Hint: To show the second claim use $a_m - a_n \ge (n - m)\alpha_n$ for $n \ge m$. For the third claim use summation by parts.)

26. Let $(a_k)_{k\in\mathbb{N}}$ be a nonnegative monotone decreasing sequence which converges to zero and $(b_k(x))_{k\in\mathbb{N}}$ a sequence of complex-valued functions for which $B_n(x) = \sum_{k=1}^{n-1} b_k(x)$ is uniformly bounded, $|B_n(x)| \leq C$. Show that (Dirichlet criterion) the series

$$
\sum_{k=0}^{\infty} a_k b_k(x)
$$

converges uniformly.

Conclude that the Fourier cosine/sine series

$$
\sum_{k=0}^{\infty} a_k \cos(kx), \qquad \sum_{k=0}^{\infty} a_k \sin(kx)
$$

converge uniformly on every compact subinterval $0 < |x| < 2\pi$. (Hint: To show the Dirichlet criterion use summation by parts from Problem [25.](#page-4-0))

27. Show that the operator

$$
I: L^{1}(-\pi, \pi) \to C_{per}[-\pi, \pi], \quad f(x) \mapsto F(x) - \hat{f}_0 x - \frac{1}{2\pi} \int_{-\pi}^{\pi} F(x) dx,
$$

where $F(x) := \int_0^x f(y) dy$, satisfies

$$
\widehat{I(f)}_k = \begin{cases} 0, & k = 0, \\ \frac{\widehat{f}_k}{ik}, & k \in \mathbb{Z} \setminus \{0\}. \end{cases}
$$

Show also $||I(f)||_{\infty} \leq \frac{5}{2}||f||_{1}.$

28. Show that $f \in C^{\infty}_{per}[-\pi, \pi]$ if and only if $|k^m \hat{f}_k|$ is bounded for all $m \in \mathbb{N}$.

29. Define the Sobolev space

$$
H_{per}^s(-\pi,\pi) := \{ f \in L^2(-\pi,\pi) \mid |k|^s \hat{f}_k \in \ell^2(\mathbb{Z}) \}.
$$

Show that $H_{per}^1(-\pi,\pi) = \{ f \in AC_{per}[-\pi,\pi] \mid f' \in L^2(-\pi,\pi) \}.$ Show that the Fourier coefficients of $f \in H_{per}^{s}(-\pi, \pi)$ are summable for $s > \frac{1}{2}$. Show that this fails for $s = \frac{1}{2}$. (Hint: Problem [27.](#page-4-1))

30. Show that if $f \in C_{per}^{0,\gamma}[-\pi,\pi]$ is Hölder continuous, then

$$
|\widehat{f}_k|\leq \frac{[f]_\gamma}{2}\left(\frac{\pi}{|k|}\right)^{\gamma},\qquad k\neq 0.
$$

Conclude that if $f \in C_{per}^{l, \gamma}[-\pi, \pi]$ (the set of periodic functions which are C^l and for which the highest derivative is Hölder continuous of exponent γ) we have

$$
|\widehat{f}_k| \le \frac{[f^{(l)}]_\gamma}{2} \left(\frac{\pi}{|k|}\right)^{l+\gamma}, \qquad k \ne 0.
$$

(Hint: What changes if you replace e^{-iky} by $e^{-ik(y+\pi/k)}$ in a Fourier series? Now make a change of variables $y \to y - \pi/k$ in the integral.)

31. Consider the function

$$
f(x) := \sum_{j=0}^{\infty} 2^{-\gamma j} e^{i2^j x}, \quad \gamma > 0.
$$

Show:

- (i) f is in the Wiener algebra (and in particular continuous).
- (ii) f is not of bounded variation for $0 < \gamma < 1$.
- (iii) f is not absolutely continuous for $0 < \gamma \leq 1$.
- (iv) f is Hölder continuous of exponent γ for $0 < \gamma < 1$ but not Lipschitz continuous for $\gamma = 1$.

(Hint for (iv): To estimate $|f(x + \delta) - f(x)|$ split the sum at an index n and use $|e^{ix} - 1| \leq |x|, x \in \mathbb{R}$, for the first part and $|e^{ix} - 1| \leq 2, x \in \mathbb{R}$, for the second. Now find a suitable value for n .)

32. Let $S_n = \sum_{k=0}^n a_k$ and $\bar{S}_n := \frac{1}{n} \sum_{k=0}^{n-1} S_k$. Show that for $m < n$

$$
S_n - \bar{S}_{n+1} = \frac{m+1}{n-m} (\bar{S}_{n+1} - \bar{S}_{m+1}) + \frac{1}{n-m} \sum_{k=m+1}^n (S_n - S_k).
$$

33. Show that $F^1(\mathbb{R}^n) \subset L^p(\mathbb{R}^n)$ with

$$
||f||_p \le (2\pi)^{\frac{n}{2}(1-\frac{1}{p})} ||f||_1^{\frac{1}{p}} ||\widehat{f}||_1^{1-\frac{1}{p}}.
$$

Moreover, show that $\mathcal{S}(\mathbb{R}^n) \subset F^1(\mathbb{R}^n)$ and conclude that $F^1(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$ for $p \in [1,\infty)$. (Hint: Use $x^p \leq x$ for $0 \leq x \leq 1$ to show $||f||_p \leq ||f||_{\infty}^{1-1/p} ||f||_1^{1/p}$.

- 34. Suppose $f_j \in L^1(\mathbb{R})$, $j = 1, ..., n$ and set $f(x) = \prod_{j=1}^n f_j(x_j)$. Show that $f \in L^1(\mathbb{R}^n)$ with $||f||_1 = \prod_{j=1}^n ||f_j||_1$ and $\hat{f}(p) = \prod_{j=1}^n \hat{f}_j(p_j)$.
- 35. Compute the Fourier transform of the following functions $f : \mathbb{R} \to \mathbb{C}$:

(i)
$$
f(x) = \chi_{(-1,1)}(x)
$$
. (ii) $f(x) = \frac{e^{-k|x|}}{k}$, $\text{Re}(k) > 0$.

36. Show that

$$
\psi_n(x) := H_n(x) e^{-\frac{x^2}{2}} \in \mathcal{S}(\mathbb{R}),
$$

where $H_n(x)$ is the Hermite polynomial DLMF [\(12.7.2\)](http://dlmf.nist.gov/12.7.E2) of degree n given by

$$
H_n(x) := e^{\frac{x^2}{2}} \left(x - \frac{d}{dx} \right)^n e^{-\frac{x^2}{2}},
$$

are eigenfunctions of the Fourier transform: $\hat{\psi}_n(p) = (-i)^n \psi_n(p)$.

37. Prove the Poisson summation formula

$$
\sum_{n \in \mathbb{Z}} f(n) e^{-inx} = \sqrt{2\pi} \sum_{m \in \mathbb{Z}} \hat{f}(x + 2\pi m),
$$

where $f \in L^1(\mathbb{R})$ satisfies $|f(x)| + |\hat{f}(x)| \leq \frac{C}{(1+|x|)^{\alpha}}$ for some $\alpha > 1$. (Hint: Compute the Fourier coefficients of the right-hand side. To this end observe that the integrals over $[-\pi, \pi]$ give a tiling of R when m runs through all values in Z.)

38. Suppose $f \in L^1(\mathbb{R})$ satisfies $|f(x)| + |\hat{f}(x)| \leq \frac{C}{(1+|x|)^{\alpha}}$ for some $\alpha > 1$. Prove the Whittaker–Shannon interpolation formula:

$$
f(x) = \sum_{n \in \mathbb{Z}} f(n) \operatorname{sinc}(\pi(x - n))
$$

provided supp $(\widehat{f}) \subseteq [-\pi, \pi]$. Here sinc $(x) := \frac{\sin(x)}{x}$. (Hint: Use the Poisson summation formula to express \hat{f} and take the inverse Fourier transform.)

39. Show

$$
\int_0^\infty \frac{\sin(x)^2}{x^2} dx = \frac{\pi}{2}.
$$

(Hint: Problem [35](#page-6-0) (i).)

40. Suppose $f(x)e^{k|x|} \in L^1(\mathbb{R})$ for some $k > 0$. Then $\hat{f}(p)$ has an analytic extension to the strip $|\text{Im}(p)| < k$.