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H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES FORQUASIPERIODIC SCHR�ODINGER EQUATIONS AND AVERAGES OF SHIFTS OFSUBHARMONIC FUNCTIONSMICHAEL GOLDSTEIN AND WILHELM SCHLAGAbstract. In this paper we consider various regularity results for discrete quasiperiodic Schr�odinger equa-tions � n+1 �  n�1 + V (� + n!) n = E nwith analytic potential V . We prove that on intervals of positivity for the Lyapunov exponent the integrateddensity of states is H�older continuous in the energy provided ! has a typical continued fraction expansion.The proof is based on certain sharp large deviation theorems for the norms of the monodromy matrices andthe \avalanche{principle". The latter refers to a mechanism that allows us to write the norm of a monodromymatrix as the product of the norms of many short blocks. In the multifrequency case the integrated density ofstates is shown to have a modulus of continuity of the form exp(�j log tj�) for some 0 < � < 1, but currentlywe do not obtain H�older continuity in the case of more than one frequency. We also present a mechanism forproving the positivity of the Lyapunov exponent for large disorders for a general class of equations. The onlyrequirement for this approach is some weak form of a large deviation theorem for the Lyapunov exponents.In particular, we obtain an independent proof of the Herman{Sorets{Spencer theorem in the multifrequencycase. The approach in this paper is related to the recent nonperturbative proof of Anderson localization inthe quasiperiodic case by J. Bourgain and M. Goldstein.1. IntroductionGiven a real{valued function V :Td!Td, an ergodic shift � 7! �+! onTd, and a real number � considerthe following family of discrete Schr�odinger operators(H!;�;�  )(n) = � (n + 1)�  (n � 1) + �V (� + n!) (n) = E (n); n 2Z(1.1)on `2(Z). It is a well{known consequence of ergodicity that the spectra of this family of self{adjoint operatorsare deterministic, i.e., there exists a �xed compact set K � R so that spec(H!;�;�) = K for a.e. � 2 Td.Moreover, the spectral parts are also deterministic, seeFigotin, Pastur [12]. It was shown by Shnol and Simonthat a.e. energy E with respect to the spectral measure has polynomially bounded solutions of equation (1.1),see [30] and [31]. These generalized eigenfunctions exhibit di�erent behavior in di�erent domains of the(�;E){plane. This phenomenon was studied by physicists starting with the famous works by Anderson [1]and Harper [20]. In physical terminology the quantum system ruled by (1.1) experiences phase transitionsin the plane of the main parameters � (coupling constant) and E (energy). The rigorous analysis of thisphenomenon was initiated by Sinai's Moscow seminar about thirty years ago, see Oseledec [28], Dinaburg,Sinai [9] and Goldsheid, Molchanov, Pastur [18]. Equations with random potentials have a particularly richhistory with important contributions by many researchers. A list of basic references up to roughly 1991 canbe found in the monographs Cycon, Fr�ose, Kirsch, Simon[8], Carmona, Lacroix [6], [12].The �rst author was supported in part by Ben{Gurion University and a grant of the Israel Academy of Sciences. This paperwas completed while he was a member of the Institute for Advanced Study, Princeton, where he was supported by a grant ofthe NEC Research Institute, Inc. The second author was supported in part by the NSF, grant number DMS-9706889 and by theErwin Schr�odinger Institute in Vienna, Austria. The authors wish to thank Alexander Brudnyi and Thomas Spencer for usefuldiscussions. 1



2 MICHAEL GOLDSTEIN AND WILHELM SCHLAGThe following notions are essential in the study of equation (1.1). For further details we refer the readerto [12].(I) The Lyapunov Exponent. Rewriting (1.1) as a system of �rst order di�erence equations yields�  (n + 1) (n) � = A(� + n!; E)�  (n) (n � 1) � ;(1.2)where A(�; E) = � �V (�)�E �11 0 � :(1.3)By Kingman's subadditive ergodic theorem the limitL(�;E) = limn!1n�1 log kA(� + n!; E) : : :A(� + !; E)k = limn!1 1n ZTd log kA(� + n!; E) : : :A(� +!; E)k d�exists for a.e. �. L(�;E) is called the Lyapunov exponent. Since the matrix A in (1.3) is unimodular, oneclearly has L(�;E) � 0. Mn(�; E) = A(� + n!; E) : : :A(� + !; E) is referred to as the monodromy matrixassociated with (1.1). As the propagator of that equation on the interval [0; n] it is of fundamental importancein its study.(II) The Integrated Density of States. Let E�;j(�; �), j = 1; : : : ; b � a + 1 = j�j be the eigenvalues of therestriction of (1.1) to the interval � = [a; b] with zero boundary conditions, '(a�1) = '(b+1) = 0. ConsiderN�(�;E; �) = 1j�jXj �(�1;E)(E�;j):It is well{know that the weak limit (in the sense of measures)lima!�1;b!+1 dN�(�; �; �) = dN (�; �)exists and does not depend on � (up to a set of measure zero). The distribution function N (�; �) is called theintegrated density of states. It is connected with the Lyapunov exponent via the Thouless formulaL(�;E) = Z log jE � E0j dN (�;E0):(1.4)Assuming that V (�) possesses a certain degree of regularity and that ! is a generic irrational number, themain conjecture about equation (1.1) is as follows:(A) If L(�0; E0) > 0, then there is some � > 0 such that almost every � satis�es the following property: Forevery E 2 (E0 � �; E0 + �) any generalized eigenfunction of (1.1) with that choice of E decays exponentially.This is equivalent to the following property:(AL) The spectrum of (1.1) in (E0 � �; E0 + �) is pure point and the corresponding eigenfunctions decayexponentially.Property (AL) is called Anderson localization. Deciding in which cases Anderson localization holds has beenat the center of research in this area. Consider the equation�� (n) + �Vn n = E n(1.5)where n 2 Zd and fVng is a random �eld on Zd. Equation (1.5) includes all relevant models, for examplethe quasiperiodic case (1.1) and the case of independent identically distributed random potentials (the latteris the classical \Anderson model"). The basic ideas in the analysis of AL were introduced in the followingworks:� Goldsheid, Molchanov, Pastur [18]: Reduction of AL to F�urstenberg's theorem [17] on the positivity ofthe Lyapunov exponent.� Fr�ohlich, Spencer [14]: A probabilistic KAM scheme for multi{dimensionalAnderson model with large �.



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 3� Dinaburg, Sinai [9], Sinai [33], Fr�ohlich, Spencer, Wittwer [16]: KAM approach for quasiperiodic equa-tions.These techniques have been developed in a number of important publications, see the references in [6],and [12] for the literature up to roughly 1991. In the years since then a simple proof of AL for the Andersonmodel with large � was given by Aizenman and Molchanov [2], the complete analysis of Floquet{Blochsolutions in the quasiperiodic case was obtained by Eliasson [11], the purely singular continuous nature ofthe spectrum for the almost Mathieu equation with � = 2 was established in the works by Avron, Gordon,Jitomirskaya, Last, van Mouche, Simon, Thouless [36], [3], [25], [26], [19], a nonperturbative proof of AL forthe almost Mathieu equation with � > 2 was given by Jitmoriskaya [22].In the recent preprint by Bourgain and Goldstein [4] Anderson localization for equation (1.1) was establishedin a nonperturbative regime for d = 1; 2 provided V is analytic. It seems reasonable to believe that the methodsfrom [4] will lead to the solution of problem (A) for equation (1.1) with analytic potentials V .To provide a more complete picture of the phase transitions in this models one needs to answer the followingquestions:(i) How regular are the main thermodynamical functions L(�;E) and dN (�;E) with respect to � and E?Is dN (�;E) analytic in � in some regions?(ii) What are the typical spacings between the eigenvalues of (1.1) in a large interval � = [a; b]? What arethe typical localization lengths of the corresponding eigenfunctions? What is the connection between thesequantities? How are these quantities related to the Lyapunov exponent?In this paper we study the regularity properties of L(�;E) and dN (�;E). This problem is considered di�cultfor any type of sequence of potentials, see [8]. Positive results are known only for independent randompotentials V (n) under certain assumptions, cf. Constantinescu, Fr�ohlich, Spencer [7], Wegner [37], Simon,Taylor [32], and Campanino, Klein [5]. We would like to emphasize, however, that our approach is completelydi�erent from these works. Although our methods also allow us to establish H�older regularity of L in �without signi�cant changes, we have restricted ourselves to E. We plan to return to the issue of (possiblymuch greater) regularity in � elsewhere.Our method hinges on two basic tools. The �rst of these tools is the so called avalanche principle. Thisprinciple basically allows one to write the norm of the monodromy matrix on [0; n] as the product of thenorms of shifts of the monodromymatrix on [0; `] provided the norms of all the monodromymatrices of size `are large compared with n, see Section 2. It applies to any number of frequencies, i.e., d = 1; 2; : : : , andprovides the rescaling procedure in non-perturbative regimes.The second basic tool are certain sharp large deviation theorems for the Lyapunov exponents. More precisely,we prove estimates of the form (setting � = 1 and L(E) = L(1; E) for simplicity)mes�n� 2T: ��� 1n log kMn(�; E)k � L(E)��� > �o� � exp(�c�n):(1.6)These estimates are of crucial importance in our approach since they provide the aforementioned largenesshypothesis in the avalanche principle. More precisely, applying (1.6) to M` with ` = C logn shows thatthe avalanche principle can be applied with this choice of ` up to an exceptional set of �'s of measure nolarger than n�10, say. This is essential, since the derivative of M` in the energy is only polynomially largein n rather than exponentially large, as for Mn itself. This is the key observation that allows us to proveH�older continuity of L(E) in E. The corresponding result for N then follows easily from (1.4) by well{knownarguments. See Section 6 for details. We would like to emphasize that (1.6) has so far been established onlyfor the case of one frequency. For the case of several frequencies (1.6) is known to hold with exp(�Cn�) onthe right{hand side for some � 2 (0; 1). This fact accounts for the weaker regularity results for d = 2; 3 : : :given below, see Section 10. In connection with (1.6) we would like to mention that the appearance of � 2Tfor which the deviations 1n log kMn(�; E)k�L(E) are large is intimately connected with the essential supportof eigenfunctions that was discovered in [33] and [16] for perturbative regimes. Moreover, the exponential



4 MICHAEL GOLDSTEIN AND WILHELM SCHLAGdecay of the measure of this set reects the exponential growth of the gaps between the points in the essentialsupport. However, we do not exploit these facts here but plan to elaborate them elsewhere.All proof methods of (1.6) known to the authors rely on the fact that for analytic potentials (and �xed E)un(z1; : : : ; zd) = 1n logkMn(z1; : : : ; zd; E)k(1.7)is a plurisubharmonic bounded function on a neighborhood of the origin. The importance of subharmonicityor plurisubharmonicity was already recognized by Herman in his seminal paper [21]. As in [4] subharmonicityis exploited be means of Riesz's representation. More precisely, any subharmonic function u on the unit diskDcan be written in the form u(z) = Z log jz � �j d�(�) + h(z) for all z 2 D:(1.8)Here h is harmonic and � is a nonnegative measure that is �nite on compact subsets of D. One easily checksfrom the de�nition (1.7) that sup�2Td jun(� +!)� un(�)j < Cn :This allows one to reduce the proof of (1.6) to similar estimates for averages of the formK�1 X1�m�K u(� +m!);(1.9)where u is a bounded subharmonic function. Furthermore, in the case of one frequency, i.e., d = 1, prop-erty (1.8) allows one to reduce the large deviation estimates for these averages to the case u(z) = log jzj.This is precisely the approach developed in this paper, see Section 3. Averages as in (1.9) appear alreadyin [4]. However, the methods from [4], which are based on Fourier expansions, seem to be insu�cient for thesomewhat delicate regularity questions that we address in this paper.In the case of several frequencies this straightforward reduction to averages of shifts of log jzj is not available.We therefore develop a di�erent approach based on Cartan type estimates for plurisubharmonic functions,see Section 8. Given any bounded plurisubharmonic function u(z1; : : : ; zd) and any r > 0, there exists apolydisk � of size r and a set B � � such that on � nB the deviation of u from its average is smaller than r�for some � > 0. Moreover, mes(B) < exp(�r��). Here � > 0 is some small absolute constant. CompareTheorems 8.3 and 8.5 below for more precise statements. This result was motivated by Cartan's theoremfor subharmonic functions of one variable, see Levin [27]. Combining this statement with the dynamics thenallows us to control the deviation of un as in (1.7) on the entire torus, cf. Section 9. We would like to emphasizethat the approach based on Cartan type estimates is not limited to the dynamics of the shift, but applies toa much larger class of transformations.We conclude this paper with Section 11 that is devoted to a proof of the positivity of the Lyapunov exponentfor large disorders for equations of the form� n+1 �  n�1 + �V (Tn�) n = E n:Here � 2 Td, T : Td ! Td is an ergodic transformation, and V a nonconstant real{analytic function on Td.We show that the Lyapunov exponents are positive for large � provided the following large deviation theoremholds: For some � > 0 and all nZTd��� 1n logkMn(�; �; E)k � Ln(�;E)��� d� � C S(�;E)n�� ;(1.10)where S(�;E) is some scaling factor. In particular, we obtain an independent proof of the Herman, Sorets{Spencer Theorem [21], [34] in the multifrequency case. We hope that this method will lead to positivity ofthe Lyapunov exponent for many interesting examples, although (1.10) is unknown in most cases and alsoseems rather di�cult to establish.



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 52. Avalanche principleDe�nition 2.1. Fix some unimodular 2 � 2 matrix K. We denote the normalized eigenvectors of pK�Kby u+K and u�K, respectively. One has Ku+K = kKkv+K and Ku�K = kKk�1v�K where v+K and v�K are unitvectors. Given two unimodular 2 � 2 matrices K and M , we let b(+;+)(K;M ) = v+K � u+M and similarlyfor b(+;�); b(�;+), and b(�;�). Strictly speaking, these quantities are de�ned up to a sign, but we are onlyinterested in the absolute value.The letters C and c will denote absolute constants. Any dependence on parameters will usually be stated. Asusual, a � b will mean C�1a � b � Ca for some C.Proposition 2.2. Let A1; : : : ; An be a sequence of unimodular 2� 2{matrices. Suppose thatmin1�j�nkAjk � � > n and(2.1) max1�j<n[logkAj+1k+ logkAjk � log kAj+1Ajk] < 12 log�:(2.2)Then ���logkAn � : : : �A1k � nXj=1 log kAjk � n�1Xj=1 log jb(+;+)(Aj ; Aj+1)j��� < Cn�(2.3) ���logkAn � : : : �A1k+ n�1Xj=2 log kAjk � n�1Xj=1 logkAj+1Ajk��� < Cn�:(2.4)Proof. One checks from the de�nition thatkKkkMkjb(+;+)(K;M )j � kKkkMk�1 � kMKk � kKkkMkjb(+;+)(K;M )j+ kKk�1kMk+ kKkkMk�1:In particular, kAj+1AjkkAj+1kkAjk � 1kAjk2 � jb(+;+)(Aj ; Aj+1)j � kAj+1AjkkAj+1kkAjk + 1kAjk2 + 1kAj+1k2 :In view of our assumptions therefore1� p��2 � jb(+;+)(Aj ; Aj+1)j kAj+1kkAjkkAj+1Ajk � 1 + 2p��2(2.5)which implies jb(+;+)(Aj; Aj+1)j � 1p� (1 � �� 32 ) � 12�� 12 if n � 2, say. One checks easily by induction thatfor any vector uAn � : : : �A1u = X�1;::: ;�n=�1 kAnk�n n�1Yj=1 kAjk�j b(�j;�j+1)(Aj ; Aj+1)(u�1A1 � u) v�nAn :Hence kAn � : : : �A1uk = kAnk n�1Yj=1 kAjkjb(+;+)(Aj; Aj+1)jju+A1 � uj[1 + Rn(u)]



6 MICHAEL GOLDSTEIN AND WILHELM SCHLAGwhere jRn(u)j � X�1; : : : ; �n = �1minj �j = �1 nYj=1kAjk�j�1 n�1Yk=1 ����b(�k;�k+1)(Ak; Ak+1)b(+;+)(Ak; Ak+1) ����� nX̀=1�ǹ���2`(2p�)2` = nX̀=1�ǹ�(4=�)` = �1 + 4��n � 1 < 4e4 n�and (2.3) follows. In view of (2.5)����n�1Xj=1hlog jb(+;+)(Aj ; Aj+1)j � log kAj+1Ajk+ log kAjk+ logkAj+1ki���� � C�� 32n � Cn�:Combining this with (2.3) yields (2.4).3. Large deviation theorem for sums of shifts of normalized 1-periodic subharmonicfunctionsIn this section we consider subharmonic functions u(z) de�ned on some neighborhood of the real axissatisfying u(z) = u(z+ 1). Furthermore, we require ju(z)j � 1 on that neighborhood. Recall Riesz's theorem,see Levin [27], Lecture 7: Given any subharmonic function on a domain G, there are a unique positivemeasure � and a unique harmonic function h de�ned on G such thatu(z) = ZG log jz � �j d�(�) + h(z) for all z 2 G:Furthermore, for any compact K � G there is a constant C(K;G) so that�(K) + supz2K jh(z)j � C(K;G)kuk1:(3.1)This follows easily from Jensen's formula, see [27], and an explicit representation of h as boundary integral.See also Koosis [24] or the proof of Lemma 8.2 below.In particular, with a periodic subharmonic function u as above, there is some positive measure � anda harmonic function h both of which are de�ned on a neighborhood of the interval [0; 1] such that for all0 � x � 1 u(x) = Z log jx� �j d�(�) + h(x):(3.2)Moreover, k�k+ khk1 � C. The appearance of the logarithm in (3.2) should explain the following lemmas.For the relevance of subharmonicity for the Schr�odinger equation see the beginning of the following section.Fix some a > 1. Throughout this paper we assume that ! 2 (0; 1) satis�es the Diophantine conditionkn!k � C!n(logn)a for all n:(3.3)It is well{known that for a �xed a > 1 a.e. ! satis�es (3.3). Consider the continued fraction expansion! = [a1; a2; : : : ] with convergents psqs for s = 1; 2; : : :. One has kqs!k � q�1s+1 and in view of condition (3.3)therefore qs+1 � Cqs(log qs)a:(3.4)One checks by induction that this implies qs � exp(2as log s)(3.5)for su�ciently large s > s0(a).



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 7Let fxg = x� [x]. For any positive integer q, complex number � = � + i�, and 0 < x < 1 de�nefq;�(x) = X0�k<q log jfx� k=qg � �j; Fq;�(x) = X0�k<q log jfx� k!g � �j; I(�) = Z 10 log jy � �j dy:(3.6)We will always assume that �1 < � < 2 and j�j � 1. In what follows dist will denote the distance mod 1, i.e.,dist(x; y) = minn2Zjx� y + nj:This is the same as dist(x; y) = kx� yk, where k � k denotes the distance to the nearest integer.Lemma 3.1. Let d(x; q) = dist(x; fk=q : 0 � k < qg) and D(x; !; q) = dist(x; fm!; k=q : 0 � k;m < qg).Then for all 0 � x < 1 jfq;�(x) � qI(�)j � C(j logd(x� �; q)j+ log q)jFqs;�(x)� fqs;�(x)j � C(j logD(x� �; !; qs)j+ log qs):Proof. Let g�(y) = log jfyg � �j. Clearly, g� has at most two monotonicity intervals on [0; 1]. Arranged inincreasing order, the points fx� kq g for k = 0; 1; : : : ; q� 1 form an arithmetic progression with increment 1q .An elementary consideration involving Riemann integrals therefore implies that���1q q�1Xk=0 g��x� kq �� I(�)��� � Cq max0�k<q jg��x� kq �j � Zjyj<Cq log jyj dy � Cq (j logd(x� �; q)j+ log q)and the �rst assertions holds. To obtain the second assertion, arrange the points fx � kqs g � � in increasingorder on the line = = ��. The distance between any two adjacent points is exactly 1=qs and for each of themthere is a point of the form fx� k!g � � at a distance less than 1=qs+1. Fix any x 2 [0; 1] and let k0 be thatvalue of k for which jfx� kps=qsg � �j+ jfx� k!g � �j is minimal. ThenjFqs;�(x)� fqs ;�(x)j � Xjk�k0j<3h��log jfx� kps=qsg � �j��+ ��log jfx� k!g � �j��i++ Xjk�k0j�3 ����logh1 + jfx� kps=qsg � fx� k!gjjfx� kps=qsg � �j i����� Cj logD(x � �; !; qs)j+C qsX̀=1 q�1s+1`q�1s� Cj logD(x � �; !; qs)j+C qs log qsqs+1 ;as claimed.Lemma 3.2. Let 
 � Tbe an arbitrary �nite set. ThenZTexp(�j logdist(x;
)j) dx � 2�1� � (#
)�for any 0 < � < 1.Proof. Let 
 = fy1; : : : ; ymg and set fx : dist(x;
) = kx� yjkg = Ij for each j = 1; : : : ;m. The intervals Ijintersect at most at the endpoints. ThusZTexp(�j log dist(x;
)j) dx = mXj=1 ZIj exp(�� log kx� yjk) dx �� 2�1� � mXj=1 jIjj1�� � 2�1� ��Xj jIjj�1��m� � 2�1� �m�



8 MICHAEL GOLDSTEIN AND WILHELM SCHLAGas claimed.Proposition 3.3. Let qs and � be as above. Then for su�ciently small � > 0Z 10 exp(�jFqs;�(x) � qsI(�)j) dx � CqC�s :Proof. This is an immediate consequence of the previous two lemmas and Cauchy{Schwarz.We shall now obtain a version of this proposition for arbitrary n instead of qs. Let qs � n < qs+1 and writen = `qs + r where 0 � r < qs and ` < qs+1=qs. ThenFn;�(x) = `�1Xh=0Fqs;�(xh) + Fr;�(x`)where xh = x� hqs! mod 1. By Lemma 3.1jFn;�(x) � nI(�)j � `�1Xh=0 jFqs;�(xh)� qsI(�)j + jFr;�(x`)� rI(�)j� C `�1Xh=0 j logD(xh � �; qs; !)j+ jFr;�(x`)� rI(�)j+ C` log qs:(3.7)Let 
s = `�1[h=0�fk=qs;m! : 0 � k;m < qsg+ hqs!� mod 1:Lemma 3.4. With qs and n as above,exp�� `�1Xh=0 j logD(xh � �; qs; !)j� � exp(C�` logn) � exp(�j logdist(x � �;
s)j)for any � > 0.Proof. Let D(xh0 � �; qs; !) = min0�h<`D(xh � �; qs; !). Suppose thatD(xh0 � �; qs; !) < q�6sand moreover, that there is some h1 6= h0 so thatD(xh1 � �; qs; !) < q�6s :By de�nition, there are y; z 2 fk=qs; `! : k; ` = 0; 1; : : : ; qs � 1g such thatkxh0 � � � yk < q�6s ; kxh1 � � � zk < q�6s :This implies that (h1 � h0)qs! + kqs +m! < 2q6sfor some �qs < k;m < qs. In other words, u! + kqs < 2q6s(3.8)



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 9where 1 � juj < qsjh1 � h0j + m < qs+1. One has qsu! = t + � where �12 < � < 12 and t 2 Z. By (3.3),j�j > (qsu)�2, and therefore u! + kqs =  t+ k + �qs  � min� 12qs ; 1qs(qsu)2�� 1qs(qsqs+1)2 � 1q5s(log qs)2a :This contradicts (3.8). The conclusion is that there is always some h0 such thatminh6=h0D(xh � �; !; qs) > q�6s :Since D(xh0 � �; !; qs) � dist(x� �;
s) and j logD(xh � �; !; qs)j � 6 log qs if h 6= h0, the lemma follows.Lemma 3.5. With n and qr as above,Z 10 exp(�jFn;�(x)� nI(�)j) dx � exp�C�(logn)a+1��Z 10 exp(2�jFr;�(x)� rI(�)j) dx�12for small � > 0.Proof. In view of Lemmas 3.4 and 3.2 and (3.7)Z 10 exp(�jFn;�(x) � nI(�)j) dx � exp(C�` logn)�Z 10 exp(2�j log dist(x� �;
s)j) dx�12 ���Z 10 exp(2�jFr;�(x)� rI(�)j) dx�12� C exp�C�(logn)a+1�(#
s)��Z 10 exp(2�jFr;�(x)� rI(�)j) dx� 12 :Here we have used that ` < qs+1qs � (log qs)a � (logn)a. Since #
s � Cqs` � Cqs+1 < n2, the lemmafollows.Proposition 3.6. With n and s as above,Z 10 exp(�jFn;�(x)� nI(�)j) dx � exp�C� s+1Xj=0(log qj)a+1� � exp�C�(logn)A�(3.9)for small � > 0 and any A > a+ 2.Proof. Recall that n = `qs + r where 0 � r < qs. Hence qt � r < qt+1 with t + 1 � s. The �rst inequalitynow follows by induction in s using Lemma 3.5. To pass to the second inequality one invokes (3.5) and thegeneral fact qs � 2(s�1)=2, see Theorem 12 in [23].We shall now combine Propositions 3.3 and 3.6 with Riesz's representation (3.2) to obtain analogous resultsfor subharmonic functions. To begin with, we need a deviation theorem for harmonic functions.Lemma 3.7. Let h be a 1{periodic harmonic function de�ned on a neighborhood of the real axis. Supposefurther that khk1 � 1. Then supx ��� qXk=1h(x� k!) � q Z 10 h(y) dy��� � C;where the constant depends only on the width of the neighborhood.



10 MICHAEL GOLDSTEIN AND WILHELM SCHLAGProof. Clearly, ��� qXk=1h(x� k!)� q Z 10 h(y) dy��� �Xn6=0 jĥ(n)jmin(q; j qXk=1 e�2�ikn!j):One has jĥ(n)j � Cn4 with some constant depending on the width of the neighborhood. Combining this withthe bound (see (3.3)) ��� qXk=1 e�2�ikn!��� � 2kn!k�1 � Cn2;yields the desired result.The following theorem is the main result of this section.Theorem 3.8. Let u be a 1{periodic subharmonic function de�ned on a neighborhood of the real axis. Supposefurthermore that ju(z)j � 1. Then for su�ciently small � > 0Z 10 exp����� nXk=1u(x� k!)� nhui����dx � exp�C�(logn)A�:Here A is as in Proposition 3.6 and hui = R 10 u(y) dy. If n = qs where psqs is a convergent of !, thenZ 10 exp����� nXk=1u(x� k!) � nhui���� dx � CnC�:In particular, mes��x : �� nXk=1u(x� k!) � nhui�� > �n	� < exp(�c�n + rn)(3.10)where rn � C(logn)A for general n and rn � C logn if n = qs for any s.Proof. In view of (3.2)nXk=1u(x� k!)� nhui = nXk=1Z log jfx� k!g � �j d�(�)� n Z I(�) d�(�) + nXk=1h(fx� k!g)� n Z 10 h(y) dy:By the previous lemma, it su�ces to consider the contribution from the logarithmic integral. In view of (3.6)nXk=1Z log jfx� k!g � �j d�(�) = Z Fn;�(x) d�(�):Since exp(��) is a convex function Jensen's inequality impliesZ 10 exp�����Z �Fn;�(x)� nI(�)� d�(�)���� dx � Z 10 Z exp��k�k��Fn;�(x)� nI(�)��� d�(�)k�k dx:The theorem therefore follows from Propositions 3.3 and 3.6. Finally, (3.10) follows immediately from theintegral estimates via Markov's inequality.



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 114. A large deviation theorem for monodromy matricesWe now turn to the equation � n+1 �  n�1 + V (� + n!) n = E n:Let A(�; E) = � V (�) � E �11 0 � :Then Mn(�; E) = nYj=1A(� + j!;E)is the monodromymatrix of the Schr�odinger equation at energy E. Assuming that the potential V is analytic,un(x) = 1n log kMn(x;E)kcan be extended to a neighborhood of the real axis as a subharmonic, 1{periodic function. This observationgoes back to Herman [21]. Moreover, its size is bounded by a constant depending only on V , jEj, and thewidth of that neighborhood. As usual, Ln(E) = RTun(y) dy. We start with the following lemma. Notice thatit sharpens the large deviation theorem in [4], cf. Lemma 1.1.Lemma 4.1. For any � > 0 and any positive integer n,mes�fx 2 T: jun(x)� Ln(E)j > �g� � exp��c�2n+C(logn)A�:The constants c; C only depend on the size of E, the potential, and !. A is determined by the constant a,see (3.3) and Proposition 3.6.Proof. We may assume that � > n�12 . Since supx jun(x� !)� un(x)j � Cn , one can choose K = [�n=C] withsome large constant C so that ���un(x) � 1K KXk=1un(x� k!)��� � �=2:Thus mes�fx : jun(x)� Ln(E)j > �g� � mes�nx : ��� 1K KXk=1un(x� k!) � Ln(E)��� > �=2o�� exp��c�K +C(logK)A�;where the second inequality follows from Theorem 3.8 with some �xed choice of � > 0.We shall sharpen this estimate in section 7 by replacing �2 with �. This will be accomplished by meansof the avalanche principle Proposition 2.2. In fact, our main application of Lemma 4.1 will be to prove animportant form of the avalanche principle, see Lemma 4.3 below. First we need to derive an auxiliary factconcerning the speed of convergence of Ln(E) to L(E). The essential statement in the following lemma isthat Ln(E)! L(E) uniformly on any compact interval on which L(E) is positive.Lemma 4.2. Suppose L(E) >  > 0. Then0 � Ln(E)� L(E) < C lognn ;where C = C(; jEj; V; !). In particular, Ln(E) ! L(E) uniformly on any compact interval on which L(E)is positive.



12 MICHAEL GOLDSTEIN AND WILHELM SCHLAGProof. Clearly, 0 � Ln(E) � C0 = C0(V; jEj) for all n. Let t be a positive integer such that t > 16C0. Givenn > 10, let `0 = [C1 logn] with C1 to be speci�ed below. Consider the integers `0; 2`0; : : : ; 2t`0. There issome 0 � j < t such that (with `j = 2j`0)L`j (E) � L`j+1 (E) < 16 :(4.1)For if not, then C0 > L`0 (E)�L2t`0 (E) � t=16 > C0, which is a contradiction. Let ` = 2j`0 with the choiceof j satisfying (4.1).We shall now apply Proposition 2.2 to the matrices Aj = Aj(x) =M`(x+(j �1)`!) for 1 � j � m = [n=`]and with � = exp(`=2). Notice that � > n2 if C1 > 4=. By Lemma 4.1,min1�j�m kAj(x)k � exp(`(L`(E) � =2)) � � > n2up to a set of x 2Tof measure not exceedingm exp(�c0(=2)2`) < n exp(�c0C12 logn=4) < n�2provided C12 > 12=c0. Furthermore, in view of (4.1) and Lemma 4.1,max0�j<mhlog kAj+1(x)k+ logkAj(x)k � log kAj+1Aj(x)ki� 2`(L`(E) + 32) � 2`(L2`(E) � 32) � 2`(L`(E) � L2`(E) + 16)� 2`( 16 + 16) � 12 log� = 4 `;up to a set of x of measure not exceeding2m exp(�c0(=32)2`) � 2n exp(�c0(=32)2C1 logn) < n�2if C12 is large. We have shown that (2.1) and (2.2) hold for all x 2 G, where jTn Gj < 2n�2. We concludefrom (2.4) that���logkM`m(x;E)k+ m�2Xj=1 logkM`(x+ j`!;E)k � m�2Xj=0 logkM`(x+ (j + 1)`!;E)M`(x+ j`!;E)k��� � Cn�1for all x 2 G. Arguing similarly for log kM`m(x + `m!)k and log kM2`m(x)k and comparing the respectiveestimates yields���logkM2`m(x;E)k � log kM`m(x+ `m!;E)k � logkM`m(x;E)k+ logkM`(x+ `m!;E)k ++ logkM`(x + (m � 1)`!;E)k � log kM`(x+ `m!;E)M`(x+ (m � 1)`!;E)k��� � Cn(4.2)up to a set of x not exceeding Cn�2 in measure. Since (recall m = [n=`])���log kMn(x)k � logkM`m(x)k��� � C` and ��logkM`(x)k�� � C`;(4.3)we conclude from (4.2) that���log kM2n(x;E)k � logkMn(x+ n!;E)k � logkMn(x;E)k��� � C lognup to a set of x not exceeding Cn�2 in measure. Integrating over x therefore implies thatjL2n(E)� Ln(E)j � C lognn ;where C = C(; jEj; V; !). Summing over 2kn �nally proves the lemma.



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 13The following lemma represents a form of the avalanche principle which will turn out to be relevant forcertain applications below. Its proof is similar to the proof of the previous lemma, but it will be importantfor us to know that the speed of convergence of Ln(E)! L(E) is controlled by .Lemma 4.3. Suppose L(E) >  > 0. Let n = Pmj=1 `j with [C1 logn] � `j � 2[C1 logn] and set sj =Pjk=1 `k. Then one can choose C1 = C1() su�ciently large so that there exists a set G = G(n;E) � Tsatisfying jTn Gj < n�2 with the property that���log kMn(x;E)k+m�1Xj=2 log kM`j (x + sj�1!;E)k �m�1Xj=1 logkM`j+1 (x + sj!;E)M`j (x+ sj�1!;E)k��� � C2n(4.4)for all x 2 G. Both C1 and C2 depend only on , jEj, V , and !.Proof. Set ` = [C1 logn] where C1 will be speci�ed below. We shall apply Proposition 2.2 with Aj = Aj(x) =M`j (x+ sj�1!;E) and � = exp(`=2). In view of Lemma 4.1 with � = �0 = =100 and C12 su�ciently largemin1�j�mkAj(x)k � exp(`jL`j (E)=2) � exp([C1 logn]=2) = � > n2(4.5)up to a set of x of measure less thanm exp(�c�20`) � n exp(�c�20C1 logn) � n�2:(4.6)As for the second condition (2.2), let n0(E) be su�ciently large such thatLk(E) � L(E) < �0(4.7)for all k > [C1 logn0]. Lemma 4.2 implies that n0 depends only on  and the size of E. Applying Lemma 4.1again with the same choice of �0 yields (suppressing E for simplicity)logkAj+1(x)k+ log kAj(x)k � logkAj+1Aj(x)k � `j+1(L`j+1 + �0) + `j(L`j + �0)�(`j + `j+1)(L`j+`j+1 � �0)� `j+1(2�0 + L`j+1 � L) + `j(2�0 + L`j � L) � 12`�0 < 12 log� = 14`(4.8)up to a set of x of measure at most n�2, see (4.6). Let G be the set of x satisfying both (4.5) and (4.8).We have shown that jTn Gj � n�2 for an appropriate choice of C1 and provided n > n0(). In view ofProposition 2.2 therefore���log kMn(x)k+ m�1Xj=2 logkM`j (x+ sj�1!)k � m�1Xj=1 logkM`j+1 (x+ sj!)M`j (x+ sj�1!)k��� � C2nfor all x 2 G, as claimed.5. An estimate for the speed of convergence of Ln(E) to L(E)The purpose of the following theorem is to remove the logn factor in Lemma 4.2.Theorem 5.1. Suppose that for some �xed compact interval I one has L(E) >  > 0 for all E 2 I. Thenthe estimate 0 � Ln(E) � L(E) < C0nholds for all n = 1; 2; : : : and E 2 I with some C0 = C0(; I; V; !).



14 MICHAEL GOLDSTEIN AND WILHELM SCHLAGProof. Fix some E 2 I. It su�ces to show that Ln(E)�L2n(E) < Cn . Fix some large n and let n =Pmj=1 `jwhere [C1 logn] � `j � 2[C1 logn] with C1 being the constant from Lemma 4.3. It is clear that this can bedone with all but two of the `j being equal. In fact, we can assume that `1 = `m. Let G = G(n;E) be as inLemma 4.3. Then (4.4) holds simultaneously for all x and x+n! provided x 2 G\ (G �n!). Partitioning theinterval [1; 2n] into intervals of length `1; : : : ; `m; `1; : : : ; `m in this order and applying Lemma 4.3 once more,one obtains a similar estimate for log kM2n(x;E)k o� a set of measure at most n�2. Comparing the threeestimates (4.4) for logkMn(x;E)k, log kMn(x + n!;E)k, and log kM2n(x;E)k, respectively, one concludesthat ���logkM2n(x;E)k � log kMn(x+ n!;E)k � log kMn(x;E)k+ log kM`1(x+ n!;E)k++ logkM`m (x+ sm�1!;E)k � logkM`1(x+ n!;E)M`m (x+ sm�1!;E)k��� � Cn(5.1)up to set of x of size at most n�2. Since the terms on the left{hand side of (5.1) are no bigger than Cn inabsolute value, integrating (5.1) over Tyields (recall `1 = `m)j2n(L2n(E)� Ln(E))� 2`1(L2`1(E)� L`1(E))j � Cn :This implies that the function R(n) = 2n(L2n(E) � Ln(E)) satis�esR(n) � R(`1) + Cn :Since [C1 logn] � `1 � 2[C1 logn], iteration leads toR(n) � Cn + CC1 logn + CC1 log(C1 logn) + : : :+R(k0)(5.2)where k0 < C21 , say. As the sum in (5.2) clearly gives a bounded contribution, the theorem follows.The following proposition shows that the positive quantities L2`(E)�L(E) and L`(E)�L2`(E) di�er onlyby an amount that is exponentially small in `.Proposition 5.2. Suppose L(E) >  > 0. Then there exists a constant c1 = c1(; jEj; V; !) > 0 such thatjL(E) � 2L2`(E) + L`(E)j � exp(�c1`) for all ` = 1; 2; : : : :(5.3)Moreover, there is `0 = `0(c1) so that if L`1(E) � L(E) > 4 exp(�c1`1) for some `1 � `0, thenL2k`1(E)� L(E) > 12k+1 (L`1(E) � L(E))for all k � 0. In other words, on intervals of positivity of L either L`(E) ! L(E) exponentially fast, orLn(E) � L(E) > C(E)n for in�nitely many n.Proof. Let C1 be as in Lemma 4.3. Set ` = [C1 logn] and write n = m`+ r where 0 � r < `. In view of (4.4)and (4.3), ���log kMn(x)k+ m�1Xj=0 logkM`(x+ j`!)k � m�1Xj=0 log kM`(x+ (j + 1)`!)M`(x+ j`!)k��� � C`for all x up to a set of measure at most n�2. Since the left{hand side is no bigger than Cn for any x,integrating over Tyields jnLn(E) +m`L`(E) � 2m`L2`(E)j � C`or jLn(E) + L`(E) � 2L2`(E)j � Cǹ :



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 15Replacing Ln(E) with L(E) by means of Theorem 5.1 establishes (5.3).Now assume that L`1 (E)� L(E) > 4 exp(�c1`1). In view of (5.3),L2`1(E)� L(E) > 12(L`1(E) � L(E)) � 12 exp(�c1`1):Continuing inductively one obtains thatL2k`1(E) � L(E) > 12k (L`1 (E)� L(E)) � 12k exp(�c1`1)h1 + 2 exp��(2� 1)c1`1� ++ : : :+ 2k�1 exp��(2k�1 � 1)c1`1�i:(5.4)Now choose `0 so large that 1Xj=0 2j exp��(2j � 1)c1`0� � 2:By (5.4) and our assumption,L2k`1(E)� L(E) > 12k (L`1 (E)� L(E)) � 22k exp(�c1`1) > 12k+1 (L`1 (E)� L(E))as claimed.6. H�older continuity of the Lyapunov exponent and the integrated density of statesTheorem 6.1. Let N (E) be the integrated density of states. Assume that L(E) >  > 0 for all E 2 I whereI is some compact interval. Then there exists � = �(; I; V; !) > 0 such thatjL(E)� L(E0)j+ jN (E)� N (E0)j � CjE � E0j�for all E;E0 2 I where C = C(; I; V; !).Proof. Fix some E;E0 2 I and let C1 be as in Lemma 4.3. Let n be a large integer to be speci�ed below.Write n = m` + r with ` = [C1 logn] and 0 � r < `. By Lemma 4.3 and (4.3)���logkMn(x;E)k+m�1Xj=0 log kM`(x+ j`!;E)k �m�1Xj=0 logkM`(x+ (j + 1)`!;E)M`(x+ j`!;E)k��� � C`(6.1) ���logkMn(x;E0)k+m�1Xj=0 logkM`(x+ j`!;E0)k �m�1Xj=0 logkM`(x+ (j + 1)`!;E0)M`(x+ j`!;E0)k��� � C`(6.2)provided x 2 G(n;E) \ G(n;E0). It is clear thatsupx2T ddEM`(x;E) � exp(C3`)(6.3)with a constant C3 depending only on the potential and the size of E. Since kM`k � 1 one therefore has���log kM`(y;E)k � log kM`(y;E0)k��� � ���logh1 + kM`(y;E) �M`(y;E0)kkM`(y;E)k i��� � exp(C3`)jE �E0j(6.4)for all y 2 T and similarly for M2`. Subtracting (6.1) from (6.2) yields by means of (6.3) that for allx 2 G(n;E) \ G(n;E0)��� 1n log kMn(x;E)k � 1n log kMn(x;E0)k��� � exp(2C3`)jE � E0j+ Cǹ � C lognnprovided jE �E0j < 1n exp(�2C3`). Integrating over Tand invoking Theorem 5.1 �nally implies thatjL(E) � L(E0)j � C lognn if jE �E0j < n�4C1C3 :



16 MICHAEL GOLDSTEIN AND WILHELM SCHLAGThis proves the stated bound for the Lyapunov exponent. The bound on the integrated density of states followsfrom the H�older continuity of the Lyapunov exponent via the Thouless formula and standard properties ofthe Hilbert transform. This is well{known, see e.g. Figotin, Pastur [12], chapters 11.B and 11.C, and alsoSection 10 below. 7. A sharp large deviation theorem for monodromy matricesIn this section we replace �2 with � in Lemma 4.1. Notice that this increases the range of deviations wecan control from roughly [n�12 ; 1] to [(logn)A=n; 1]. As the former region is precisely the one in the randomcase, one therefore sees that the quasi{periodic case behaves di�erently in this respect. In fact, the mainpoint is that kMn(x)k can basically be written as a product of shifts of some function, cf. Proposition 2.2 andLemma 4.3.Theorem 7.1. Let un(x) = 1n logkMn(x;E)k and assume that L(E) >  > 0. Then with some c = c()mes�fx 2T: jun(x)� L(E)j > �g� � exp(�c�n+ rn)(7.1)where rn � C(logn)A for general n and rn � C logn if n = qs for any s. Moreover, the set on the left{handside of (7.1) is contained in no more than Cn many intervals. Also,Z 10 exp(�j logkMn(x;E)k � nL(E)j) dx � exp(rn)(7.2)provided 0 < � < �0(; jEj; V; !).Proof. For the sake of simplicity, we �x E and we shall not indicate the dependence on E. Take n large andlet ` = [�n] where C4 lognn < � < 110 . We claim that for all x up to a set of measure not exceeding exp(�c2�n)���logkMn(x)k+ m�1Xj=0 log kM`(x+ j`!)k � m�1Xj=0 logkM`(x + (j + 1)`!)M`(x+ j`!)k��� � C`(7.3)where m = [n=`]. This follows from Proposition 2.2 and Lemma 4.1. More precisely, let �0 = =100 and� = exp(`=2). By Lemma 4.1 and Lemma 4.2 with C4 large,min0�j<nkM`(x+ j!)k � exp(`L` � �0`) > � > nmax0�j<nhlog kM`(x+ (j + 1)!)k+ logkM`(x+ j!)k � log kM`(x+ (j + `)!)M`(x+ j!)ki � 12 log�up to a set of x of measure not exceedingCn exp(�c�20`) < exp(�12c�20`)(7.4)if C42 is large. This guarantees the conditions (2.1) and (2.2) not just for x but also for x + k! with0 � k < `. We conclude that there is G � Twith jTnGj bounded by (7.4) such that (7.3) holds for all x+ k!,k = 0; 1; : : : ; `� 1 provided x 2 G. Consequently,��� 1̀ `�1Xk=0 logkMn(x+ k!)k + n�1Xj=0 1̀ logkM`(x+ j!)k � n�1Xj=0 1̀ logkM`(x + (j + `)!)M`(x+ j!)k��� � C`(7.5)for all x 2 G. Since ���log kMn(x)k � 1̀ `�1Xk=0 logkMn(x+ k!)k��� < C` = C�n



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 17for all x, one can rewrite (7.5) in the form���logkMn(x)k+ n�1Xj=0 1̀ logkM`(x + j!)k � n�1Xj=0 1̀ log kM`(x+ (j + `)!)M`(x+ j!)k��� � C�n:In view of Theorem 3.8 the sums in this expression di�er from a constant by more than �n on a set of measureat most exp(�c�n + rn). Therefore, log kMn(x)k di�ers from its mean by more than �n on a set of measurenot exceeding (cf. (7.4))jTn Gj+ exp(�c�n + rn) < Cn exp(�c2�n) + exp(�c�n + rn);as claimed. The boundedness of the integral (7.2) follows from (7.1) by integrating over level sets.To obtain the statement about intervals we will basically show that the function un(x) does not have morethan Cn many intervals of monotonicity. LetMn(z) = � fn(z) gn(z)rn(z) sn(z) �with analytic functions fn; gn; rn; sn on D(0; 2) (it is possible to identify these entries as certain determinants,see (11.13)). For any x 2 R, kMn(x)k � f2n(x) + g2n(x) + r2n(x) + s2n(x):(7.6)Denote the right{hand side of (7.6) by vn. Then vn is analytic on D(0; 2), and jvnj � exp(Cn) on that disk.Therefore also jv0n(z)j � exp(Cn) for all jzj � 78 . Since kMn(x)k � 1 for all x, one has jvn(x)j � c for all xwith some small absolute constant c. We claim that jv0n(x0)j � 1 for some x0 2 [�1=8; 1=8]. Suppose not.Then jvn(x) � vn(y)j � 1 for all x; y 2 [�1=8; 1=8] and thus j logvn(x) � logvn(y)j � C on that interval.Therefore, jun(x)� un(y)j � Cn + 1n j logvn(x)� log vn(y)j � Cn(7.7)for any x; y 2 [�1=8; 1=8]. Since jun(x) � un(x + `!)j � Cǹ , inequality (7.7) holds for all x; y 2 T. But thisimplies that supx2Tjun(x) � Ln(E)j � Cn ;so that in view of Theorem 5.1 the left{hand side of (7.1) is empty provided � > Cn . But for smaller valuesof � (7.1) is trivial. Hence the claim. By Jensen's formulaZ 10 log jv0n�x0 + 32e2�i��j d� � log jv0n(x0)j =Xj log 32jzjj ;where the sum runs over all the zeros zj of v0n(� + x0). Since the left{hand side is no bigger than Cn andjx0j � 18 , we conclude that cardfj : jzjj � 1g � Cn:Consequently, vn has at most Cn monotonicity intervals on T. Therefore,fx 2T: j logvn � nL(E)j > �ngis contained in no more than Cn intervals for any n. Since ���un � 1n log vn��� � Cn , the same statement holdsfor un and any � > Cn . Since these are the only relevant values of �, the theorem follows.



18 MICHAEL GOLDSTEIN AND WILHELM SCHLAGChoosing � = n�� for some 0 < � < 1 in (7.1), one obtainsmes�fx 2T: jun(x)� L(E)j > n��g� � exp(�cn1�� ):(7.8)We shall now indicate that these estimates are sharp, at least if � � 12 . More precisely, pick an x0 such thatlogkMn(x0; E)k > nL(E) � n1�� :Also let  = max(1� �; 12). We require the following bound:supx2T1n logkMn(x;E)k � Ln(E) +C�n� 12+�(7.9)for all n and � > 0. This is proved in [4], Lemma 2.1 provided on chooses the parameters there appropriately.(7.9) can also be proved by the methods of the previous sections, even without the �. Furthermore, we shalluse the following algebraic fact (Trotter's identity)AnAn�1 : : :A1 � BnBn�1 : : :B1 = nXj=1 n�jYi=1 Aj+i(Aj �Bj) j�1Yk=1Bk:(7.10)In view of (7.9), (7.10), and Theorem 5.1kMn(x0; E)�Mn(x;E)k � Cjx0 � xj nXj=1 kMn�j(x+ j!;E)kkMj�1(x0; E)k� Cjx� x0j nXj=1 exp�(n � j)L(E) +Cn 12+�� exp�(j � 1)L(E) + Cn 12+��� Cjx� x0jn exp(nL(E) + Cn 12+�):Therefore, by our choice of x0,��� 1n logkMn(x;E)k � 1n logkMn(x0; E)k��� � 1n logh1 + kMn(x;E)�Mn(x0; E)kkMn(x0; E)k i� Cjx� x0jexp�nL(E) + Cn 12+��exp�nL(E) � n1��� � Cjx� x0j exp�Cn+��:(7.11)Hence if jx� x0j < exp(�2n+2�) and n is large, then��� 1n logkMn(x;E)k � 1n logkMn(x0; E)k��� < exp��n+2��:Consequently, if the set on the left{hand side of (7.8) is nonempty, then it has to contain an interval of sizeat least exp(�2n+2�). This proves that for large n,mes�fx 2T: jun(x)� L(E)j > n��g� � exp(�cn+�)unless the set on the left{hand side is empty. Hence (7.8) cannot be improved if � � 12 .8. Cartan's Theorem in higher dimensionsThe purpose of this section is to develop analytical tools to prove large deviation theorems in the case ofseveral frequencies. The approach chosen here is not the only available one. In fact, [4] contains a direct proofof a large deviation theorem for monodromy matrices in the case of several frequencies by means of Fourierseries. The approach chosen here, however, is more exible in terms of the dynamics and it also leads tobetter exponents. See the following section for further discussion.



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 19De�nition 8.1. Let 0 < H < 1. For any subset B � C we say that B 2 Car1(H) if B � SjD(zj ; rj) withXj rj � C0H:(8.1)If d is a positive integer greater than one and B � C d we de�ne inductively that B 2 Card(H) if there existssome B0 2 Card�1(H) so thatB = f(z1; z2; : : : ; zd) : (z2; : : : ; zd) 2 B0 or z1 2 B(z2; : : : ; zd) for some B(z2; : : : ; zd) 2 Car1(H)g:We refer to the sets in Card(H) for any d and H collectively as Cartan sets.Notice that the absolute constant C0 is not speci�ed in this de�nition. This allows one to say that theunion of two Cartan sets (with the same parameters d and H) is again a Cartan set but with 2C0 insteadof C0. It is important, however, that C0 will always be an absolute constant which is implicitly de�ned bythe context in which it arises. The following lemma collects some well{known facts, see [27] and [24]. For thede�nition of Riesz measures see the beginning of Section 3.Lemma 8.2. Suppose u : D(0; 2) 7! [�1; 1] is a subharmonic function. Let � be the Riesz measure of u. Forany z0 2 D(0; 12 ), 0 < r < 12 , and H 2 (0; 1) there exists B 2 Car1(H) so thatju(z)� u(z0)j < Ch�(D(z0; r)) log 1H + jz � z0j�1 + ZD(0;1)nD(z0;r) d�(�)jz0 � �j�i(8.2)for all z; z0 2 D(z0; r=2) n B. In particular, if for some A � 1M1�(z0) = sup0<t<12 �(D(z0; t))t � A;(8.3)then ju(z)� u(z0)j < CAhr log 1H + jz � z0j log 1r i(8.4)for all z; z0 2 D(z0; r=2) n B.Proof. Let D0 = D(z0; r). It is well{known, see Koosis [24], that for any z = rei� with r < 1u(z) = ZD(0;1) log jz � �jj1� z�j d�(�) + Z 2�0 1� r21� 2r cos(�� �) + r2u(ei�)d�2�(8.5) = ZD0 log jz � �j d�(�) + ZD(0;1)nD0 log jz � �j d�(�)� ZD(0;1) log j1� z� j d�(�) + h(z)(8.6) = v(z) + w(z) + g(z):(8.7)We denoted the Poisson integral in (8.5) by h, the functions v and w stand for the �rst and second integralsin line (8.6), respectively, and g is the sum of the other two. If z; z0 2 D(z0; r=2), then jzj; jz0j < 34 and thusjg(z) � g(z0)j < C ZD(0;1)nD0 jz � z0j1� jzj d�(�) + supj�j�34 jrh(�)jjz � z0j � Cjz � z0jh1 + �(D(0; 1))i:(8.8)According to Jensen's formula [27] section 7.2Z 2�0 u�32ei�� d�2� � u(0) = Zjzj�32 log� 32jzj� d�(z)and therefore �(D(0; 1)) � 23 log 32 :(8.9)



20 MICHAEL GOLDSTEIN AND WILHELM SCHLAGWith z; z0 as above,jw(z)� w(z0)j � C ZD(0;1)nD0 jz � z0jjz � �j d�(�) � C ZD(0;1)nD0 jz � z0jjz0 � �j d�(�):(8.10)Since r < 12 one has v � 0 on D0. By Cartan's theorem, see [27] Section 11.2, there is B 2 Car1(H) withC0 = 5 in (8.1) so that v(z) > �(D0) log(H=e) if z 2 D0 n B:(8.11)Estimate (8.2) follows from (8.7), (8.8), (8.9), (8.10), and (8.11). Finally, if (8.3) holds, then (8.4) followsfrom (8.2).The following theorem presents a version of the previous lemma that applies to functions of two variableswhich are subharmonic in each variable. Although there is a corresponding result for functions on C d for anyd > 2 we �rst present the proof on C 2 , as the argument turns out to be more e�cient in that case.Theorem 8.3. Let u be a continuous function on D(0; 2) �D(0; 2) � C 2 so that juj � 1. Suppose furtherthat � z1 7! u(z1; z2) is subharmonic for each z2 2 D(0; 2)z2 7! u(z1; z2) is subharmonic for each z1 2 D(0; 2):Fix some  2 (0; 12 ). Given r 2 (0; 1) there exists a polydisk � = D(x(0)1 ; r1�)�D(x(0)2 ; r) � D(0; 1)�D(0; 1)with x(0)1 ; x(0)2 2 [�1; 1] and a set B 2 Car2(H) so thatju(z1; z2)� u(z01; z02)j < C r1�2 log 1r for all (z1; z2); (z01; z02) 2 � n B(8.12) H = exp��r��:(8.13)Proof. For any z1 2 D(0; 2) de�ne v(z1) = Z 1�1 u(z1; x2) dx2:(8.14)v : D(0; 2)! R is a subharmonic function such that jvj � 2 with Riesz measure �v. LetM1�v be the maximalfunction given by (8.3). Clearly,M1 satis�es the usual weak{type L1 inequalitymes(fx1 2 [�1; 1] :M1�v(x1) > �g) � C� �v(D(0; 32)):In particular, there is some x(0)1 2 [�1; 1] so that M1�v(x(0)1 ) � C. For any z2 2 D(0; 2) letgt(z2) = Z 10 u(x(0)1 + te2�i�; z2) d� � u(x(0)1 ; z2):(8.15)By Jensen's formula, see Theorem 2 in Section 7.2 of [27],gt(z2) = Zjz1�x(0)1 j<t log tjz1 � x(0)1 j �(dz1; z2) = Z t0 n(s; z2)s ds(8.16)where n(s; z2) = �(D(x(0)1 ; s); z2) with the Riesz measure �(�; z2) of u(�; z2). Clearly,�v(D(x(0)1 ; s)) = Z 1�1 n(s; x2) dx2:Therefore, in view of (8.15), (8.16), and our choice of x(0)1 ,Z 1�1 gt(x2) dx2 = Z t0 �v(D(x(0)1 ; s))s ds � Ct:(8.17)



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 21Now �x some r 2 (0; 1=2) and de�ne G = X0�j<C log 1r 2�jg2jr :The subharmonicity of z1 7! u(z1; z2) implies that gt � 0 so that G is the sum of nonnegative terms. By (8.17)Z 1�1G(x2) dx2 � Cr log 1rand thus mes�fx2 2 [�1; 1] : G(x2) > Cr log 1r g� < 12(8.18)provided C is a su�ciently large absolute constant. For technical reasons we introduce the auxiliary subhar-monic function h(z2) = Z 10 u(x(0)1 + r2e2�i�; z2) d� for any z2 2 D(0; 2):(8.19)Clearly, jhj � 1 and we denote the Riesz measure of h by �h. As before, �h(D(0; 3=2)) � C. The functiongt introduced in (8.15) is the di�erence of two subharmonic functions on D(0; 2). Let �t and �0 be theirrespective Riesz measures. As before, most points x2 2 [�1; 1] satisfyM1� X0�j<C log 1r �2jr + �0 + �h�(x2) � C log 1r :(8.20)In view of Lemma 8.2, for any such x2 there exists B0(x2) 2 Car1(exp(�r�)) so thatsup0�j<C log 1r jg2jr(z2)� g2jr(z02)j < Cr1� log 1r for all z2; z02 2 D(x2; r) n B0(x2):(8.21)Combining (8.18) and (8.21) yields a point x(0)2 2 [�1; 1] with the property thatg2jr(z2) � C[2jr + r1� ] log 1r for all z2 2 D(x(0)2 ; r) n B0 and all 0 � j < C log 1r :Here we have set B0 = B0(x(0)2 ). Using (8.16) this immediately leads to�(D(x(0)1 ; 2jr); z2) � C[2jr + r1� ] log 1rfor all z2 and j as before. Inserting this bound into (8.2) with H = exp(�r� ) and r1� instead of r oneobtains for any such z2 a Cartan set B(z2) 2 Car1(H) so thatju(z1; z2) � u(z01; z2)j � Chr1� log 1r log 1H + jz1 � z01j log2 1r i� r1�2 log 1r for any z1; z01 2 D(x(0)1 ; r1�) n B(z2):(8.22)To control the deviation in z2 we invoke the auxiliary subharmonic function h from above. Because of (8.20)Lemma 8.2 implies thatjh(z2)� h(z02)j � Cr1� log 1r for all z2; z02 2 D(x(0)2 ; r) n B1(8.23)where B1 2 Car1(H), H = exp(�r�). By the de�nition of a Cartan set and (8.22),jh(z2) � u(z1; z2)j � C[r1�2 log 1r + r�2H] for all z2 2 D(x(0)2 ; r) n B0; z1 2 D(x(0)1 ; r) n B(z2):(8.24)



22 MICHAEL GOLDSTEIN AND WILHELM SCHLAGLet � = D(x(0)1 ; r1�)�D(x(0)2 ; r) andB = f(z1; z2) : z2 2 B0 [ B1 or z2 2 D(x(0)2 ; r) n B0 [ B1 and z1 2 B(z2)g:In view of De�nition 8.1, B 2 Car2(H) with H = exp��r��. Combining (8.24) with (8.23) implies thatju(z1; z2)� u(z01; z02)j � Cr1�2 log 1r for all (z1; z2); (z01; z02) 2 � n B;as claimed.Remark 8.4. Under the same assumptions as in Theorem 8.3 the previous proof implies the following state-ment: Given r 2 (0; 1) there exists a polydisk � = D(z(0)1 ; r) � D(z(0)2 ; r2) � D(0; 1) � D(0; 1) withz(0)1 ; z(0)2 2 D(0; 1) and a set B 2 Car2(H) so thatju(z1; z2)� u(z01; z02)j < C r for all (z1; z2); (z01; z02) 2 � n BH = exp��r�1�:The point here is that the center of the polydisk is no longer restricted to the real plane. Since this fact isnot useful to us, we do not supply a detailed proof (which is, however, very similar to the previous one).We now turn to the case of higher dimensions. The following theorem is formulated in all dimensions fortechnical reasons, but Theorem 8.3 is superior to it if d = 2.Theorem 8.5. Let d be a positive integer. Suppose u : D(0; 2)d ! [�1; 1] is subharmonic in each variable,i.e., z1 7! u(z1; z2; : : : ; zd) is subharmonic for any choice of (z2; : : : ; zd) 2 D(0; 2)d�1 and similarly for eachof the other variables. Given r 2 (0; 1) there exists a polydisk � = D(x(0)1 ; r) � : : : � D(x(0)d ; r) � C d withx(0)1 ; : : : ; x(0)d 2 [�1; 1] and a Cartan set B 2 Card(H) so thatju(z1; : : : ; zd)� u(z01; : : : ; z0d)j < C r� for all (z1; : : : ; zd); (z01; : : : ; z0d) 2 � n B(8.25) H = exp��r���:(8.26)The constant � > 0 depends only on the dimension d. Furthermore, given u1; : : : ; uk each of which satis�esthe hypotheses of the theorem, there are � and B as above so that (8.25) holds simultaneously for each of theu1; : : : ; uk with a constant Ck instead of C.Proof. We start with the case d = 1. Given subharmonic functions u1; : : : ; uk each of which is bounded byone on D(0; 2) we let �1; : : : ; �k be their respective Riesz measures. There exists a point x(0) 2 [�1; 1] suchthat M1[�1 + : : :+ �k](x(0)) < Ck:The theorem now follows from Lemma 8.2 with � = D(x0; r) and � = 12 .Now let d � 2 and suppose the theorem is true for d � 1 and we will prove it for d. The proof is similar tothat of the previous theorem and we shall only sketch the argument. Fix some r 2 (0; 1) and let v be thebounded subharmonic function on D(0; 2) given byv(z1) = Z 1�1 : : :Z 1�1 u(z1; x2; : : : ; xd) dx2 : : :dxd:We denote the Riesz measure of v by �v. Pick some x(0)1 so that M1�v(x(0)1 ) � C. For any (z2; : : : ; zd) 2D(0; 2)d�1 de�ne gt(z2; : : : ; zd) = Z 10 u(x(0)1 + te2�i�; z2; : : : ; zd) d� � u(x(0)1 ; z2; : : : ; zd)(8.27) h(z2; : : : ; zd) = Z 10 u(x(0)1 + r2de2�i�; z2; : : : ; zd) d�:



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 23Applying the induction hypothesis (with d � 1 and k � [log 1r ]) to the functions given by the right{handsides of (8.27) for all t = 2jrd with j = 0; : : : ; C[log 1r ] and h, one obtains a polydisk � = D(x(0)2 ; r)� : : :�D(x(0)d ; r) � D(0; 1)d�1 with real x(0)2 ; : : : ; x(0)d , and a Cartan set B1 2 Card�1(H1) with H1 = exp(�r��)such that sup0�j<C log 1r jg2jrd (q)� g2jrd (q0)j+ jh(q)� h(q0)j < Cr� log 1r(8.28)for any q = (z2; : : : ; zd); q0 = (z02; : : : ; z0d) 2 � n B1. As above we letG = X0�j<C log 1r 2�jg2jrd :The same calculation as in (8.17) yieldsZ 1�1 : : :Z 1�1G(x2; : : : ; xd) dx2 : : :dxd � Crd log 1r :Therefore, mes�f� \Rd�1 : G > C�rd log 1r g� < ��1for any � > 1. Since mes[� \Rd�1] = Crd�1, one has in particular that for some large Cmes�f� \Rd�1 : G > C r log 1rg� < 12mes[� \Rd�1]:For small r this implies in conjunction with (8.28) thatg2jrd (z2; : : : ; zd) < Chr� + 2jri log 1r for all z2; : : : ; zd 2 � n B1:(8.29)Recall gt(z2; : : : ; zd) = Zjz1�x(0)1 j<t log tjz1 � x(0)1 j �(dz1; z2; : : : ; zd)where �(�; z2; : : : ; zd) is the Riesz measure of u(�; z2; : : : ; zd). We therefore conclude from (8.29) that�(D(x(0)1 ; 2jrd); z2; : : : ; zd) < Chr� + 2jri log 1r for all z2 2 � n B1 and all 0 � j < C log 1r :Assuming as we may that � < 1 Lemma 8.2 implies thatju(z1; z2; : : : ; zd)� u(z01; z2; : : : ; zd)j < Chr� log 1H2 + r��d log 1r jz1 � z01ji log 1rif z1; z01 2 D(x(0)1 ; rd=2) n B(z2; : : : ; zd) where B(z2; : : : ; zd) 2 Car1(H2). Setting H2 = exp��r��=2� oneobtains for any (z2; : : : ; zd); (z02; : : : ; z0d) 2 � n B1ju(z1; z2; : : : ; zd) � u(z01; z2; : : : ; zd)j < Cr�=2 log 1r if z1; z01 2 D(x(0)1 ; rd=2) n B(z2; : : : ; zd):(8.30)Combining the deviation estimate (8.28) for h with the following easy consequence of (8.30)ju(z1; z2; : : : ; zd)� h(z2; : : : ; zd)j < C�r�=2 + r�2dH2]yields (8.25) and (8.26) with �2d � � instead of �.One easily checks that this argument can be applied to u1; : : : ; uk simultaneously and the theorem follows.



24 MICHAEL GOLDSTEIN AND WILHELM SCHLAG9. A large deviation theorem for monodromy matrices in the multifrequency caseIn this section we consider the Schr�odinger equation� n+1 �  n�1 + V (�1 + n!1; : : : ; �d + n!d) n = E n(9.1)where � = (�1; : : : ; �d) 2 Td is arbitrary, ! = (!1; : : : ; !d) 2 Td is an ergodic shift, and V is a real{analyticfunction on Td. We assume further that V extends to an analytic function on D(0; 2)d. LetA(�; E) = � V (�)�E �11 0 � :As usual, Mn(�; E) = nYj=1A(� + j!; E)(9.2)is the associated monodromy matrix. Furthermore, letLn(E) = 1n ZTd log kMn(�; E)k d� and L(E) = infn Ln(E) = limn!1Ln(E)(9.3)be the Lyapunov exponents.In [4] Bourgain and Goldstein proved a large deviation theorem for log kMnk based on a Fourier seriesexpansion of this function and (3.2), see Lemma 8.1. We show in this section how to obtain a similarstatement by means of the Cartan type estimate from the previous section. This approach has the advantagethat it generalizes immediately to other types of dynamics than shifts whereas the method from [4] appearsto be rather restrictive. It is essential, however, that the map underlying the dynamics extends to an analyticfunction � on a polydisk � containing the torus in such a way that � does not expand in the imaginarydirection. In particular, it seems that the skew shift requires ideas beyond those presented here.We are going to assume that ! satis�esk! � kk � C(�1)jkjd+�1 for all nonzero k 2Zd(9.4)where �1 > 0 is small. It is well{known that a.e. ! satis�es (9.4) for any �1 > 0 .The main results of this section are as follows.Proposition 9.1. Let ! be as in (9.4). Suppose the function u satis�es the hypotheses of Theorem 8.5.Assume furthermore that for some n � 1sup�2Td ju(� + !)� u(�)j < 1n:(9.5)Then there exist � > 0, � > 0, and c0 only depending on d and �1 such thatmes�f� 2Td : ju(�)� huij > n��g� < exp(�c0n�):(9.6)Here hui = RTd u(�) d�. If d = 2 then one obtains the range 0 < � < 13 � �2 and � = 13 � � � �2 where �2 ! 0as �1 ! 0.Proof. Let r 2 (0; 1) be arbitrary. By Theorem 8.5 there is some rectangle R = �\Td onTdwith diam(R) = 2rand a set B � Td such that ju(�)� u(�0)j < r� for any �; �0 2 R n B(9.7) mes(B) < exp��r���:(9.8)



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 25Notice that it is essential to know the structure of Cartan sets to deduce the estimate for mes(B), cf. 8.1. It iswell{known that for any � 2 Td there exists 0 � k < k0 = [Cr�d��1 ] so that � + k! 2 R. Since (9.5) impliesthat ju(� + k!) � u(�)j < knone obtains from (9.7) ju(�)� u(�0)j < r� + k0n for any �; �0 2Td n eBwhere eB = Sk0k=0(B + k!) modZd. Letting r = n� 1d+�+�1 one now obtains (9.6) with � = � = �d+�+�1 .If d = 2 Theorem 8.3 gives better results. Indeed, �x some ; r 2 (0; 1) and let � be as in Theorem 8.3.Setting �1 = 0 for simplicity, recall that for any � 2T2 there is some integer 0 < k < k0 such that �+k! 2 �.Here k0 needs to satisfy r�2k�10 + r�1k�10 < cfor some small constant c. Since  < 1 one can take k0 � r�2. Therefore, for any �; �0 2T2,ju(�)� u(�0)j < r1�2 + r�2n for any �; �0 2Td n eBwith eB as above. Setting r = n� 13(1�) yields � = 13 � � , as desired.Corollary 9.2. Let ! be as in (9.4). Let Sn(E) be a positive number satisfyingSn(E) � sup(z1;::: ;zd)2D(0;2)dh 1n log kMn(z1; : : : ; zd; E)k+ 2 log kA(z1; : : : ; zd; E)ki:(9.9)Then there exist � > 0, � > 0, and c0 only depending on d and �1 such thatmes�f� 2Td : j logkMn(�; E)k � nLn(E)j > Sn(E)n1��g� < exp(�c0n�):(9.10)If d = 2 then one obtains the range 0 < � < 13 � �2 and � = 13 � � � �2 where �2 ! 0 as �1 ! 0.Proof. Fix some dimension d and energy E. De�ne for any (z1; : : : ; zd) 2 D(0; 2)dun(z1; : : : ; zd) = 1nSn log kMn(z1; : : : ; zd; E)k:Then un is a continuous subharmonic function bounded by one in D(0; 2)d. Furthermore, un satis�es (9.5).Hence (9.10) is an immediate consequence of (9.6).Remark 9.3. Usually one has bounded potentials and energies so that basically Sn(E) � 1. In provingpositivity of the Lyapunov exponent, however, it will be necessary to consider large potentials and then thestatement of (9.10) will be convenient.The method from [4] yields exponents � = 34(13 � �)� �2 for d = 2. This can be easily checked by makingappropriate choices for the parameters in the proof of Lemma 8.1 in [4]. Therefore, our method is slightlymore economical here. Moreover, the approach in [4] seems to be rather restrictive in terms of the dynamics,whereas our argument applies to any transformation that does not stretch in the imaginary direction.



26 MICHAEL GOLDSTEIN AND WILHELM SCHLAG10. Modulus of continuity for the integrated density of states in the multifrequency caseFix some dimension d � 2 and let N denote the integrated density of states for equation (9.1) with dfrequencies. Let � be the exponent arising in Theorem 9.2. It turns out that N has modulus of continuityexp(�j log tj�) on any interval on which the Lyapunov exponent is positive. To obtain H�older continuityfor N using the methods of this paper one would need to prove (9.10) with � = 1 and deviations of size �,cf. Lemma 4.1 and Theorem 6.1. In what follows let S(E) = supn Sn(E) where Sn(E) is de�ned in (9.9).Before turning to the discussion of continuity we require a version of Lemma 4.2 for the multifrequental case.Lemma 10.1. Fix some dimension d � 2 and let �; � be as in Proposition 9.2. Suppose L(E) >  > 0 whereL(E) is the Lyapunov exponent (9.3). Then0 � Ln(E)� L(E) < C (logn)1=�n ;where C = C(; jEj; V; �; � ). In particular, Ln(E)! L(E) uniformly on any compact interval on which L(E)is positive.Proof. The proof is basically the same as that of Lemma 4.2. The only di�erence is that here ` = [C(logn)1=�]with some large C and that one uses Proposition 9.2 instead of Lemma 4.1. We leave the details to thereader.Proposition 10.2. Fix some dimension d � 2 and suppose L(E) >  > 0 for all E 2 I, where I is someinterval. Then jL(E)� L(E0)j+ jN (E)�N (E0)j � C exp(�C�1j log jE � E0jj�)for all E;E0 2 I with C = C(; �; �; S; I). Here � and � are the exponents from (9.10) and we set S =supE2I S(E). If d = 2 one can take � < 13 .Proof. The proof is similar to that of Theorem 6.1. Fix some E;E0 2 I and let n be some large integer. Writen = m` + r with ` = [C1(logn)1=�] and 0 � r < `. We claim that for some large constant C1 and all large n���logkMn(�; E)k+m�1Xj=0 log kM`(� + j`!; E)k �m�1Xj=0 log kM`(� + (j + 1)`!; E)M`(� + j`!; E)k��� � C`(10.1) ���logkMn(�; E0)k+m�1Xj=0 logkM`(� + j`!; E0)k �m�1Xj=0 logkM`(� + (j + 1)`!; E0)M`(� + j`!; E0)k��� � C`(10.2)for all � 2 Gn(E;E0) where mes(TdnGn(E;E0)) < n�1. This follows from Proposition 2.2 with Aj = Aj(�) =M`(� + j`!; E), � = exp(`=2) and similarly for E0. In fact, if S`�� � =2min1�j�mkAj(�)k � exp(`(L`(E)� S`�� )) � exp�[C1(logn)1=�]=2� = � > n2(10.3)up to a set of � of measure less than, see (9.10)m exp(�c0`�) � n exp(�c0C�1 logn) � n�2:(10.4)The second condition (2.2) of Proposition (2.2) is checked as in (4.8), and we skip the details. It is clear thatsup�2Td ddEM`(�; E) � exp(C3`)(10.5)with a constant C3 depending only on the potential and the size of E. Since kM`k � 1 one therefore has���logkM`(�; E)k � log kM`(�; E0)k��� � ���logh1 + kM`(�; E)�M`(�; E0)kkM`(�; E)k i��� � exp(C3`)jE � E0j(10.6)



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 27for all � 2 Td and similarly for M2`. Subtracting (10.1) from (10.2) yields by means of (10.5) that for all� 2 Gn(E;E0)��� 1n logkMn(�; E)k � 1n log kMn(�; E0)k��� � exp(2C3`)jE � E0j+ Cǹ � C(logn)1=�nprovided jE �E0j < 1n exp(�2C3`). Integrating over Td and invoking Lemma 10.1 �nally implies thatjL(E)� L(E0)j � C(logn)1=�n if jE � E0j < exp��C(logn)1=��:This proves the statement of Proposition 10.2 on the Lyapunov exponent. The corresponding bound on theintegrated density of states can be derived from it fairly easily via the Thouless formula, see Theorem 11.8in [12], L(E) = Z log jE � E0j dN (E0) for all E 2 R(10.7)and some elementary properties of the Hilbert transform H. Since the modulus of continuity involved is notso common, we provide some details. Fix I as above and let J � I be an interval with the same center asI but half the length. Pick a smooth cuto� function  with compact support so that  = 1 on I. De�neN1 =  N and N2 = N � N1. Then for almost every EHN1(E) = Z N1(E0) dE0E �E0 = � Z log jE � E0j dN2(E0) + L(E) = g(E) :(10.8)This follows from (10.7) by replacing log jE�E0j with log(jE�E0j+ �), integrating by parts, and then letting�! 0+. Let J0 be an interval centered at 0 with jJ0j = jJ j and pick a smooth cuto� function � with supportinside J0 and �(0) = 1. De�ne HJ to be the operator with kernel kJ (x) = �(x) 1x = �(x)k(x). The operatorHJH has the kernel (�k) � k. Taking Fourier transforms one obtains\(�k) � k(�) = �̂ � k̂(�) � k̂(�) = �1 + R̂(�)where jR̂(�)j � Cm(1 + j�j)�m for any positive m. This follows from k̂(�) = �isign(�), R �̂(�) d� = 1, and thefact that �̂ has rapidly decreasing tails. Consequently, R is a smooth kernel. Applying HJ to (10.8) thereforeleads to HJHN1 = �N1 + R �N1 = HJg:Since R �N1 is a smooth function, the theorem follows from the fact thatjg(E) � g(E0)j � C exp(�cj log jE � E0jj�) on Iand the following lemma.Let � be a modulus of continuity with the property thatXn�`�(2�n) � �(2�`) for any ` 2Z(10.9) Xn<`2n�(2�n) � 2`�(2�`) for any ` 2Z:(10.10)Examples of such � are �(t) = t� with 0 < � < 1 and �(t) = exp(�cj log tj�) with � > 0, the latter one beingrelevant for Theorem 1. LetC� = ff : R! R : jf(x) � f(y)j � A�(jx� yj) for all x; y and for some Agand let [f ]� denote the minimumof all such A. The following lemmaprovides a fairly standard characterizationof the spaces C� in terms of the Fourier transform and states that they are preserved under singular integrals,



28 MICHAEL GOLDSTEIN AND WILHELM SCHLAGsee [35], chapter VI, Section 5.3. It is formulated by means of the Littlewood{Paley projections �n thatlocalize the Fourier transform to a dyadic block of size 2n at a distance 2n from the origin.Lemma 10.3. A function f : R! R lies in C� i� k�n(f)k1 � B�(2�n) for all n. In fact,[f ]� � minimum of all such B:Moreover, [Tf ]� � C[f ]�for any singular integral operator T .Proof. This is a simple exercise and we will leave most details to the reader. One can write�nf =  2�n � fwhere  is a Schwartz function with mean zero and  2�n(x) = 2n (2nx). Thusk�n(f)k1 = supx ����Z  2�n(x� y)[f(y) � f(x)] dy����� C Xm�n 2m�n�(2�m) � �(2�n)(10.11)by (10.10). Conversely, one writes f =Pm<n�m(f) +Pm�n�m(f) modulo a constant which yieldsjf(x)� f(y)j � j Xm<n�m(f)(x) � Xm<n�m(f)(y)j + 2k Xm�n�m(f)k1 � CB�(jx� yj):To obtain the last inequality one sets 2n � jx � yj�1, takes the derivative of the �rst sum and then appliesthe assumption together with (10.10) and (10.9), respectively.To prove the bound for singular integrals let ~�n be another Littlewood{Paley projection chosen such that~�n�n = �n for all n. Thenk�nTfk1 = kT ~�n�nfk1 � kT ~�nk1!1k�nfk1:The lemma now follows since the kernel of T ~�n is bounded in L1 uniformly in n.11. Positivity of the Lyapunov exponentThe main purpose of this section is to present a general mechanism that allows one to prove positivity ofthe Lyapunov exponent for large disorders. More precisely, consider a family of equations of the form� n+1 �  n�1 + �V (Tn�) n = E n(11.1)where � 2 Td, T : Td !Td is an ergodic transformation, and V a nonconstant real{analytic function on Td.Let Aj(�; �; E) = � �V (T j�) �E �11 0 � :The matrix Mn(�; �; E) = Qnj=1Aj(�; �; E) denotes the monodromy matrix of the equation (11.1) . Asbefore, Ln(�;E) = 1n ZTd log kMn(�; �; E)k d�and L(�;E) = limn!1 Ln(�;E) exists. Finally, let S(�;E) be a number satisfyingS(�;E) � supn�1 sup�2Td 1n log kMn(�; �; E)k:(11.2)



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 29The main result of this section is as follows: If the large deviation theorem (with some � > 0)ZTd���1n log kMn(�; �; E)k � Ln(�;E)���d� � C S(�;E)n��(11.3)holds for all n = 1; 2; : : : , then infE L(�;E) > 0 for all � > �0(V; d; �):Suppose T (�) = �+! is simply a shift. Since (11.3) is a much weaker version of the large deviation theoremsfrom Section 9, we thus get an independent proof of the Herman{Sorets{Spencer result [21],[34], and alsothe multifrequency version of it that was established in [4]. Our approach is di�erent from that in [4] as itrelies on the avalanche principle and the weak form of the large deviation theorem (11.3). The basic ideabehind our argument is that Proposition 2.2 allows one to control the distances between various Lyapunovexponents, cf. Proposition 5.2. Therefore, as soon as one of them is su�ciently large, the positivity shouldfollow. Throughout this section we assume that the potential V is nonconstant. For the following lemma weset � = 1. This is no loss of generality, as one can replace V with �V (but only in this lemma). Hence wewill suppress � in our notation.Lemma 11.1. Suppose that (11.3) holds for all n with some choice of � > 0. Then there exists a positiveinteger `0 = `0(�) such that if L` > S(E)`��=4 and L`(E)� L2`(E) < L`(E)8(11.4)for some ` � `0, then L(E) > L`(E)=2.Proof. Let `1 = ` satisfy (11.4) and de�ne inductively`j+1 = [`1+�j � for j = 1; 2; : : : :(11.5)Here we have set � = 38�. For simplicity we shall drop E for the rest of this proof. Let C1 be a large constantthat will be determined below. We denote by Aj the statement(Aj)� L`j � L2`j < L`j=8L`j > S`��=4j :Notice that by hypothesis A1 holds. Furthermore, Bj will denote the statement(Bj)( jL`j+1 � 2L2`j + L`j j < C1 S `j`j+1L`j+1 � L2`j+1 < C1 S `j`j+1 :We shall show that Aj; Bj =) Aj+1 and that Aj =) Bj . Notice that this will give Bj and Aj for all j. The�rst implication is easy. Indeed,L`j+1 > L`j � 2(L`j � L2`j )� C1S `j`j+1 > L`j � 2L`j8 � C1S `j`j+1> 34S`��=4j �C1S `j`j+1 > S`��=4j+1(11.6)where the latter inequality is an immediate consequence of (11.5) provided l0 is large. Hence the secondinequality from Aj+1 holds. To obtain the �rst it su�ces to prove the second inequality inL`j+1 > S`��=4j+1 > 8C1S `j`j+1 ;



30 MICHAEL GOLDSTEIN AND WILHELM SCHLAGthe �rst one being (11.6). >From (11.5) and � > �=4 it is again evident that this will hold provided `0 islarge. To show that Aj =) Bj one uses Proposition 2.2. Fix some j and let `j+1 = n`j + r with 0 � r < `j .In view of (11.3) mes�n� 2Td : j logkM`j (�; E)k � `jL`j (E)j > S�`jo� � C��1`��j :(11.7)Applying this with S� = L`j=100 shows thatmin0�k<nkM`j (� + k`j!)k � exp�3`jL`j=4� = �for all � 2 G1 where mes(Td n G1) < Cn��1`��j < C`j+1`�1�3�=4j = C`��j :One checks that � > n provided `0 is large. Moreover, by (11.7) there exists a set G2 with mes(TdnG2) < C`��jso thatmax0�k<nhlog kM`j (� + (k + 1)`j!)k + log kM`j (� + k`j!)k � log kM`j (� + (k + 1)`j!)M`j (� + k`j!)ki �� 2`j(L`j + S�) � 2`j(L2`j � S�) = 2`j(L`j � L2`j + 2S�) < 13`jL`j :(11.8)Since this is clearly less than 12 log�, (2.2) is satis�ed. Therefore, Proposition 2.2 applies to all � 2 G1 [ G2and hence ���logkM`j+1 (�)k � n�1Xk=0 logkM`j (� + k`j!)k+ n�1Xk=0 logkM`j (� + (k + 1)`j!)M`j (� + k`j!)k���� 2S`j + Cn�(11.9)for all such �. Integrating (11.9) over G1 \ G2 yieldsjL`j+1 � 2L2`j + L`j j < ChS `j`j+1 + n�`j+1 + `��j i � C1S `j`j+1(11.10)with an appropriate choice of C1. To complete the proof of Aj =) Bj , one simply applies the same reasoningto M2`j+1 and then subtracts the resulting inequality from (11.10). We skip the details.Since Bj now holds for all j, one concludes thatL`j+1 > L`j � 2(L`j � L2`j )� C1S `j`j+1 > L`j � 3C1S `j`j+1> 34L`1 � 3C1 Sh`1`2 + `2`3 + : : :+ `j`j+1 i(11.11)In view of (11.5) it is clear that 1Xj=1 `j`j+1 � `��1provided `0 is large. Since L`1 > S`��=41 the lemma follows from (11.11).Remark 11.2. It is possible to prove a version of this lemma under a weaker condition than (11.3). Moreprecisely, one can replace n�� by (logn)�2��, but we do not elaborate on this point.



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 31In order to use this lemma to prove positivity of L(�;E) one needs to insure that the initial conditions (11.4)are satis�ed. This will be accomplished by means of the following lemma. First we need to introduce somefurther notation. Letfn(�; �; E) = det266666666664 �V1(�)� E 1 0 0 : : : : 01 �V2(�) �E 1 0 0 : : : 00 1 �V3(�)� E 1 0 0 : : 0: : : : : : : : :: : : : : : : : :: : : : : : : : :: : : : : : : : :0 0 : : : : : 1 �Vn(�)� E 377777777775(11.12)where Vj(�) = V (T j�). Recall the simple propertyMn(�; �; E) = � fn(�; �; E) fn�1(T�; �; E)fn�1(�; �; E) fn�2(T�; �; E) � :(11.13)Finally, let Dn(�; �; E) = diag(�V1(�) �E; : : : ; �Vn(�) �E):(11.14)Lemma 11.3. Let 0 < � < 1. Then there is a constant Cv depending only on V such that(1� �) log� �Cv��1 � 1n ZTd logkMn(�; �; E)k d� � log�+ Cv(11.15)for all jEj � 2�kV k1, and � > �0(V; d; n; �).Proof. The upper bound in (11.15) is simple. In fact,log kMn(�; �; E)k � nXj=1 logkAj(�; �; E)k � n log�+ nCv;as claimed. Now �x some 0 < � < 1 and any E as above. The matrix on the right{hand side of (11.12) canbe written in the form Dn +Bn, where Dn is given by (11.14). Clearly, kBnk = 2 and1n log j detDn(�; �; E)j = log�+ 1n nXj=1 log jVj(�)� E=�j:By the Dunford{Schwarz maximal ergodic theoremmes�n� 2Td : ��1n nXj=1 log jVj(�)� E=�j�� > �o� < C� ZTd���log jV (�)� E=�j���d�with an absolute constant C. Since by the following lemmasupjEj�2�kVk1 ZTd���log jV (�) �E=�j��� d� � Cvone therefore has mes�n� 2 Td : 1n log j detDn(�; �; E)j � log�� Cv��1o� > 1� �2(11.16)for an appropriate choice of Cv. Clearly,kDn(�; �; E)�1k � ��1 sup1�j�n jVj(�)�E=�j�1:(11.17)



32 MICHAEL GOLDSTEIN AND WILHELM SCHLAGBy the following lemma there is � = �(V; n; �) > 0 such thatmes�n� 2 Td : min1�j�n jV (T j�)� E=�j < �o� � n supjEj�2�kV k1mes(f� 2Td : jV (�) �E=�j < �g) < �2 :Combining this with (11.17) yieldsmes(f� 2Td : kDn(�; �; E)�1k � ��1=�g) < �2and thus mes�f� 2Td : 2kDn(�; �; E)�1Bnk < 1g� > 1� �2(11.18)provided � > �0(V; n; �). Let G � Td be the intersection of the sets on the left{hand sides of (11.16)and (11.18). Then mes(Td n G) < �, and for any � 2 G,fn(�; �; E) = 1n log j detDn(�; �; E)j+ 1n log j det(I +Dn(�; �; E)�1Bn)j� log� �Cv��1 � log 2:Since kMnk � 1 and kMn(�)k � jfn(�; �; E)j (see (11.13)),1n ZTd logkMn(�; �; E)k d� � 1n ZG logkMn(�; �; E)k d� � (1� �) log� �Cv��1provided � > �0(V; n; �), as claimed.The following technical lemma about real{analytic functions was used in the previous proof.Lemma 11.4. Suppose V is a nonconstant real{analytic function on Q0 = [�2; 2]d with supQ0 jV j � 1. Thenthere exist � = �(V; d) > 0 and C = C(V; d) so thatmes(f(x1; : : : ; xd) 2 [�1; 1]d : jV (x1; : : : ; xd)� Ej < tg) � Ct�for all �1 � E � 1 and 0 < t < 1.Proof. It is not hard to derive this result from Theorem 8, part (B) in [29], see also Theorem 4 in that paper.Moreover, this statement is also contained in a forthcoming paper by A. Brudnyi. However, since Lemma 11.4is much simpler than the results in [29], we give a short self{contained proof. We use the following fact aboutanalytic functions of one complex variable, see Theorem 4, section 11.3 in [27]:Let f(z) be an analytic function in the disk fz : jzj � 2eg bounded by M and assume jf(0)j = 1. Thenmes(fz 2 D(0; 1) : jf(z)j � �g) � C exp�2 log�logM �for any � > 0. In fact, the set on the left{hand side can be covered by a family of disks fDjgj so thatXj diam(Dj) � C exp� log�logM �:(11.19)To apply this fact, consider a covering [�1; 1]d � m[̀=1B(p`; r`)where m = m(d) such that jrV (p`)j > g0 = g0(V ) > 0 and r` < 1=10 for every `. Suppose that j @@x1V (p1)j >g0=d and de�ne fu(z) = @@x1V (p1 + zu) where u is a unit vector in Rd and z 2 C . In view of (11.19), thereis some � = �(V; d) such that mes(fx 2 [�r1; r1] : jfu(x)j � t�g) � Ct��(11.20)



H�OLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES 33for any � > 0 and 0 < t < 1. Integrating this over u and summing over ` = 1; : : : ;m one obtainsmes(f(x1; : : : ; xd) 2 [�1; 1]d : jrV (x1; : : : ; xd)j < t�g) � Ct��:Suppose jrV (p)j > t� for some point p 2 [�1; 1]d. Then clearlyjrV (p0)j > 12 t� for all jp0 � pj < ct�:One therefore concludes thatmes(f[�1; 1]d : jV � Ej < tg) � mes(f[�1; 1]d : jV �Ej < t; jrV j > t�g) + mes(f[�1; 1]d : jrV j � t�g)� Ct�d� t1�� +Ct��:Choosing � = 14d , say, implies the lemma.The following proposition is the main result of this section.Proposition 11.5. Suppose (11.3) holds. With L(�;E) as de�ned above,infE L(�;E) > 14 log�(11.21)provided � > �0(V; d). In particular, (11.21) holds in case of an ergodic shift on Td.Proof. Consider �rst the case jEj < 2�kV k1. Clearly,S(�;E) = log(C�kV k1 + 1)satis�es the requirement (11.2) for all n. To obtain the �rst condition in (11.4) one needs to insure that(setting � = 12 in (11.15)) 12 log� �Cv > 40 log(C�kV k1 + 1)`��=4:(11.22)Fixing some ` > max(`0; 100 4� ) with `0 as in Lemma 11.1, and taking � > �0(V; d; `) su�ciently largeyields (11.22). To obtain the second condition in (11.4), one applies (11.15) with � = 1=32, say. For large �the proposition now follows from Lemma 11.1 for energies as above.Now suppose that jEj � 2�kV k1. Thenj�V (T j�)� Ej > �kV k1:Let Dn be as in (11.14). Then j detDn(�; �; E)j � (�kV k1)n and kDn(�; �; E)�1k � (�kV k1)�1 � 14provided � � 4kV k�11 . Writing the matrix on the right{hand side of (11.12) as Dn +Bn, leads tofn(�; �; E) = det(Dn) det(I +D�1n Bn):One therefore has (since kBnk � 2)inf�2Td 1n log jfn(�; �; E)j � 1n log[(�kV k1)n2�n] = log� + log kV k1 � log 2:Hence 1n ZTd log kMn(�; �; E)k d� � log� �Cvwhich implies that infjEj�2�kV k1 L(�;E) > log� �Cvand the proposition follows.
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