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HOLDER CONTINUITY OF THE INTEGRATED DENSITY OF STATES FOR
QUASIPERIODIC SCHRODINGER EQUATIONS AND AVERAGES OF SHIFTS OF
SUBHARMONIC FUNCTIONS

MICHAEL GOLDSTEIN AND WILHELM SCHLAG

ABSTRACT. In this paper we consider various regularity results for discrete quasiperiodic Schréodinger equa-
tions

_wn-l-l - wn—l + V(@ + nw)ll/n = Ewn

with analytic potential V. We prove that on intervals of positivity for the Lyapunov exponent the integrated
density of states is Holder continuous in the energy provided w has a typical continued fraction expansion.
The proof is based on certain sharp large deviation theorems for the norms of the monodromy matrices and
the “avalanche—principle”. The latter refers to a mechanism that allows us to write the norm of a monodromy
matrix as the product of the norms of many short blocks. In the multifrequency case the integrated density of
states is shown to have a modulus of continuity of the form exp(—|logt|?) for some 0 < ¢ < 1, but currently
we do not obtain Hélder continuity in the case of more than one frequency. We also present a mechanism for
proving the positivity of the Lyapunov exponent for large disorders for a general class of equations. The only
requirement for this approach is some weak form of a large deviation theorem for the Lyapunov exponents.
In particular, we obtain an independent proof of the Herman—Sorets—Spencer theorem in the multifrequency
case. The approach in this paper is related to the recent nonperturbative proof of Anderson localization in
the quasiperiodic case by J. Bourgain and M. Goldstein.

1. INTRODUCTION

Given a real-valued function V : T¢ — T4 an ergodic shift 8 — 6 +w on T¢ and a real number u consider
the following family of discrete Schrodinger operators

(1.1) (Hy o 0)(n) = =(n+1) —¢(n — 1) + uV(0 + nw)d(n) = Ey(n), neZ

on (2(Z). It is a well-known consequence of ergodicity that the spectra of this family of self-adjoint operators
are deterministic, i.e., there exists a fixed compact set K C R so that SpeC(Hw,uﬂ) = K for ae. 8 € T
Moreover, the spectral parts are also deterministic, seeFigotin, Pastur [12]. It was shown by Shnol and Simon
that a.e. energy F with respect to the spectral measure has polynomially bounded solutions of equation (1.1),
see [30] and [31]. These generalized eigenfunctions exhibit different behavior in different domains of the
(pt, E)-plane. This phenomenon was studied by physicists starting with the famous works by Anderson [I]
and Harper [20]. In physical terminology the quantum system ruled by (1.1) experiences phase transitions
in the plane of the main parameters u (coupling constant) and E (energy). The rigorous analysis of this
phenomenon was initiated by Sinai’s Moscow seminar about thirty years ago, see Oseledec [28], Dinaburg,
Sinai [9] and Goldsheid, Molchanov, Pastur [18]. Equations with random potentials have a particularly rich
history with important contributions by many researchers. A list of basic references up to roughly 1991 can
be found in the monographs Cycon, Frose, Kirsch, Simon[§], Carmona, Lacroix [6], [12].
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the NEC Research Institute, Inc. The second author was supported in part by the NSF, grant number DMS-9706889 and by the
Erwin Schrédinger Institute in Vienna, Austria. The authors wish to thank Alexander Brudnyi and Thomas Spencer for useful
discussions.
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The following notions are essential in the study of equation (1.1). For further details we refer the reader
to [12].
(1) The Lyapunov Exponent. Rewriting (1.1) as a system of first order difference equations yields

19 ( 1/)(121(:)1) ) = A(0 + nw, E) ( Wﬁ(ﬁ)l) ) ,

where

(1.3) A(8,E) = ( pEO-F ) .

By Kingman’s subadditive ergodic theorem the limit

Lp, E) = li_}rn n~tlog||A(8 4 nw, E)... A8 + w, E)|| = li_}rn % /dlog |A(n+ nw, E) ... Aln +w, E)||dn
n (o] n (o] T

exists for a.e. 8. L(u, F) is called the Lyapunov exponent. Since the matrix A in (1.3) is unimodular, one
clearly has L(p, F) > 0. M,(6,F) = A(@ + nw, E)...A(8 + w, ) is referred to as the monodromy matrix
associated with (1.1). As the propagator of that equation on the interval [0, n] it is of fundamental importance
in its study.

(II) The Integrated Density of States. Let Ea ;(p,6), j = 1,...,b—a+ 1 = |A| be the eigenvalues of the
restriction of (1.1) to the interval A = [a, b] with zero boundary conditions, p(a—1) = ¢(b+1) = 0. Consider

1

NA(/,L, E, 9) = m ZX(—OO,E)(EAJ)'
J

It is well-know that the weak limit (in the sense of measures)

lim dNp(p, -, 0) =dN(p,-)
a——0o0,b—+o0

exists and does not depend on @ (up to a set of measure zero). The distribution function N (g, -) is called the

integrated density of states. It is connected with the Lyapunov exponent via the Thouless formula

(1.4) Ly, E) = /log|E— E'|dN (u, E').

Assuming that V(0) possesses a certain degree of regularity and that w is a generic irrational number, the
main conjecture about equation (1.1) is as follows:

(A) If L(po, Fo) > 0, then there is some 6 > 0 such that almost every ¢ satisfies the following property: For
every F € (Ey — 0, Fg + 6) any generalized eigenfunction of (1.1) with that choice of E decays exponentially.
This is equivalent to the following property:

(AL) The spectrum of (1.1) in (Eg — d, Eg + 6) is pure point and the corresponding eigenfunctions decay
exponentially.

Property (AL) is called Anderson localization. Deciding in which cases Anderson localization holds has been
at the center of research in this area. Consider the equation

(1.5) —AY(n) + pVoh, = Eiy

where n € Z% and {V,} is a random field on Z%. Equation (1.5) includes all relevant models, for example
the quasiperiodic case (1.1) and the case of independent identically distributed random potentials (the latter
is the classical “Anderson model”). The basic ideas in the analysis of AL were introduced in the following
works:

e Goldsheid, Molchanov, Pastur [18]: Reduction of AL to Fiirstenberg’s theorem [17] on the positivity of

the Lyapunov exponent.
e Frohlich, Spencer [14]: A probabilistic KAM scheme for multi—dimensional Anderson model with large p.
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e Dinaburg, Sinai [9], Sinai [33], Frohlich, Spencer, Wittwer [16]: KAM approach for quasiperiodic equa-
tions.

These techniques have been developed in a number of important publications, see the references in [6],
and [12] for the literature up to roughly 1991. In the years since then a simple proof of AL for the Anderson
model with large p was given by Aizenman and Molchanov [2], the complete analysis of Floquet—Bloch
solutions in the quasiperiodic case was obtained by Eliasson [11], the purely singular continuous nature of
the spectrum for the almost Mathieu equation with g = 2 was established in the works by Avron, Gordon,
Jitomirskaya, Last, van Mouche, Simon, Thouless [36], [3], [25], [26], [19], a nonperturbative proof of AL for
the almost Mathieu equation with p > 2 was given by Jitmoriskaya [22].

In the recent preprint by Bourgain and Goldstein [4] Anderson localization for equation (1.1) was established
in a nonperturbative regime for d = 1, 2 provided V is analytic. It seems reasonable to believe that the methods
from [4] will lead to the solution of problem (A) for equation (1.1) with analytic potentials V.

To provide a more complete picture of the phase transitions in this models one needs to answer the following
questions:

(i) How regular are the main thermodynamical functions L(p, F) and dN(y, E') with respect to p and E?
Is dN (g, ) analytic in g in some regions?

(i1) What are the typical spacings between the eigenvalues of (1.1) in a large interval A = [a, b]? What are
the typical localization lengths of the corresponding eigenfunctions? What is the connection between these
quantities? How are these quantities related to the Lyapunov exponent?

In this paper we study the regularity properties of Ly, F) and dN (p, ). This problem is considered difficult
for any type of sequence of potentials, see [8]. Positive results are known only for independent random
potentials V(n) under certain assumptions, cf. Constantinescu, Frohlich, Spencer [7], Wegner [37], Simon,
Taylor [32], and Campanino, Klein [5]. We would like to emphasize, however, that our approach is completely
different from these works. Although our methods also allow us to establish Holder regularity of L in p
without significant changes, we have restricted ourselves to E. We plan to return to the issue of (possibly
much greater) regularity in p elsewhere.

Our method hinges on two basic tools. The first of these tools is the so called avalanche principle. This
principle basically allows one to write the norm of the monodromy matrix on [0, n] as the product of the
norms of shifts of the monodromy matrix on [0, ] provided the norms of all the monodromy matrices of size ¢
are large compared with n, see Section 2. It applies to any number of frequencies, i.e., d = 1,2,..., and
provides the rescaling procedure in non-perturbative regimes.

The second basic tool are certain sharp large deviation theorems for the Lyapunov exponents. More precisely,
we prove estimates of the form (setting ¢ = 1 and L(E) = L(1, E) for simplicity)

(1.6) mes({0 €T ‘%log 1M, (6, E)|| L(E)‘ > 6}) < exp(—con).

These estimates are of crucial importance in our approach since they provide the aforementioned largeness
hypothesis in the avalanche principle. More precisely, applying (1.6) to M, with £ = C'logn shows that
the avalanche principle can be applied with this choice of £ up to an exceptional set of #’s of measure no
larger than n~'% say. This is essential, since the derivative of M, in the energy is only polynomially large
in n rather than exponentially large, as for M, itself. This is the key observation that allows us to prove
Holder continuity of L(E) in E. The corresponding result for N then follows easily from (1.4) by well-known
arguments. See Section 6 for details. We would like to emphasize that (1.6) has so far been established only
for the case of one frequency. For the case of several frequencies (1.6) is known to hold with exp(—Cn?) on
the right-hand side for some ¢ € (0,1). This fact accounts for the weaker regularity results for d = 2,3 ...
given below, see Section 10. In connection with (1.6) we would like to mention that the appearance of § € T
for which the deviations %log || My, (0, E)|| — L(E) are large is intimately connected with the essential support
of eigenfunctions that was discovered in [33] and [16] for perturbative regimes. Moreover, the exponential
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decay of the measure of this set reflects the exponential growth of the gaps between the points in the essential
support. However, we do not exploit these facts here but plan to elaborate them elsewhere.
All proof methods of (1.6) known to the authors rely on the fact that for analytic potentials (and fixed F)

1
(1.7) un(z1,...,24) = glogHMn(zl,...,zd,E)H

is a plurisubharmonic bounded function on a neighborhood of the origin. The importance of subharmonicity
or plurisubharmonicity was already recognized by Herman in his seminal paper [21]. As in [4] subharmonicity
is exploited be means of Riesz’s representation. More precisely, any subharmonic function u on the unit disk D
can be written in the form

(1.8) u(z) = /log |z — ¢ du(¢) + h(z) forall z € D.

Here h is harmonic and y is a nonnegative measure that is finite on compact subsets of D. One easily checks
from the definition (1.7) that

C
sup |un (0 4+ w) —uy(0)] < —.
OeTd n

This allows one to reduce the proof of (1.6) to similar estimates for averages of the form

(1.9) E70 3 u(f +mw),

1<m<K
where u 1s a bounded subharmonic function. Furthermore, in the case of one frequency, i.e., d = 1, prop-
erty (1.8) allows one to reduce the large deviation estimates for these averages to the case u(z) = log|z|.
This is precisely the approach developed in this paper, see Section 3. Averages as in (1.9) appear already
in [4]. However, the methods from [4], which are based on Fourier expansions, seem to be insufficient for the
somewhat delicate regularity questions that we address in this paper.

In the case of several frequencies this straightforward reduction to averages of shifts of log |z| is not available.
We therefore develop a different approach based on Cartan type estimates for plurisubharmonic functions,
see Section 8. Given any bounded plurisubharmonic function u(z1,...,zq) and any r > 0, there exists a
polydisk II of size r and a set B C II such that on I\ B the deviation of u from its average is smaller than r?
for some # > 0. Moreover, mes(B) < exp(—r~—#). Here # > 0 is some small absolute constant. Compare
Theorems 8.3 and 8.5 below for more precise statements. This result was motivated by Cartan’s theorem
for subharmonic functions of one variable, see Levin [27]. Combining this statement with the dynamics then
allows us to control the deviation of w, asin (1.7) on the entire torus, cf. Section 9. We would like to emphasize
that the approach based on Cartan type estimates is not limited to the dynamics of the shift, but applies to
a much larger class of transformations.

We conclude this paper with Section 11 that is devoted to a proof of the positivity of the Lyapunov exponent
for large disorders for equations of the form

_1/)n+1 - 1/)71—1 + AV(T”G)’(/)H = E'l/)n

Here 8 € T¢ T : T — T%is an ergodic transformation, and V' a nonconstant real-analytic function on T4
We show that the Lyapunov exponents are positive for large A provided the following large deviation theorem
holds: For some o > 0 and all n

1
(1.10) / ‘—log||Mn(6,/\,E)|| — La(\ E)|d6 < ¢S\, E)ne,
Tal T

where S(A, E) is some scaling factor. In particular, we obtain an independent proof of the Herman, Sorets—
Spencer Theorem [21], [34] in the multifrequency case. We hope that this method will lead to positivity of
the Lyapunov exponent for many interesting examples, although (1.10) is unknown in most cases and also
seems rather difficult to establish.
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2. AVALANCHE PRINCIPLE

Deﬁnition 2.1. Fix some unimodular 2 x 2 matrix K. We denote the normalized eigenvectors of VK*K
by uf and uj, respectively. One has Ku} = ||K||v} and Kuj =

~lvz where VK and vy are unit
vectors. Given two unimodular 2 x 2 matrices K and M, we let bt +)(A,M) = v}'} uJ'I"/I and similarly
for b(+=) p(=H) and b(—7) . Strictly speaking, these quantities are defined up to a sign, but we are only
interested in the absolute value.

The letters C' and ¢ will denote absolute constants. Any dependence on parameters will usually be stated. As
usual, a < b will mean C~'a < b < Ca for some C.

Proposition 2.2. Let Ay, ..., A, be a sequence of unimodular 2 x 2—matrices. Suppose that
(2.1) 112112 [[4;]] > p>n and
1
(2.2 s 1og LA 1+ Tog L4 — log 1414141 ] < 5 Tog .
Then
n n—1 n
(23) ogllAn oo+ Al = S lowllal = a4, )| < €5
(2.4) log||An - ... Aull + ZIOgHA - ZIOgHAJ+1A ||‘ < C—~
j=1
Proof. One checks from the definition that
(K, M) <|IMK (K, M)
In particular,
A+ A5l 1 A+ A5l 1 1
- < BHEFTN(A; Aj4)| < + + .
A llllA N 1145117 ! A llllA I (1A NP 1A 4all?

In view of our assumptions therefore

A, A; 2
Ml 2vE

Vi (++) (4
2.5 - Y
(25) - 4 oAl =172

ﬂz ]+1)

which implies |b(t:H)(A; A;4q)| > \/Lﬁ(l — ) > Ty =7 if n > 2, say. One checks easily by induction that

for any vector u

Apo A= S A TG (A, Ay, ) oy
€1,... ,€n=%1 j

Hence

n—1
[An - Aval[ = (A TT A6 (A5, A, - [l + Ry (u)]
j=1
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where
| blererr) (A Ag )
R, (u < A
L S | (T s
€1,...,6p = ==+1 j=1
min; ej =-1
i _ " /n 4\ n
Z() 22 /m)* (E)(4//J)Z:(1+—) — 1< 4e* —
£=1 £=1 K K
and (2.3) follows. In view of (2.5)
n—1
_3 n
5 [l8 0050 (45 gy = og11471.40 + 106 4y + g g < CuF < €2,
j=1
Combining this with (2.3) yields (2.4). O

3. LARGE DEVIATION THEOREM FOR SUMS OF SHIFTS OF NORMALIZED 1-PERIODIC SUBHARMONIC
FUNCTIONS

In this section we consider subharmonic functions u(z) defined on some neighborhood of the real axis
satisfying u(z) = u(z+1). Furthermore, we require |u(z)| < 1 on that neighborhood. Recall Riesz’s theorem,
see Levin [27], Lecture 7: Given any subharmonic function on a domain G, there are a unique positive
measure y and a unique harmonic function & defined on G such that

u(z) = /Glog |z — ¢ dp(C) + h(z) forall z € G.

Furthermore, for any compact K C G there is a constant C'(K, ) so that
(3.1) p(K) +sup [h(:)] < OO Gl
z€

This follows easily from Jensen’s formula, see [27], and an explicit representation of h as boundary integral.
See also Koosis [24] or the proof of Lemma 8.2 below.

In particular, with a periodic subharmonic function u as above, there is some positive measure g and
a harmonic function h both of which are defined on a neighborhood of the interval [0, 1] such that for all
0<z<1

(3.2) u(e) = [ logle = ¢l du(¢) + h(o).

Moreover, ||p]| + ||h]|leo < C. The appearance of the logarithm in (3.2) should explain the following lemmas.
For the relevance of subharmonicity for the Schrodinger equation see the beginning of the following section.
Fix some a > 1. Throughout this paper we assume that w € (0, 1) satisfies the Diophantine condition

(3.3) ||nw]|| > _ G for all n.
~ n(logn)®
It is well-known that for a fixed @ > 1 a.e. w satisfies (3.3). Consider the continued fraction expansion
w = [a1,as,...] with convergents Z—j for s = 1,2,.... One has ||¢;w|| < qs__&l and in view of condition (3.3)
therefore
(3.4) gs+1 < Cys(loggs)”.
One checks by induction that this implies
(3.5) 95 < exp(2aslog s)

for sufficiently large s > sq(a).
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Let {2} = « — [#]. For any positive integer ¢, complex number { = £ + 7, and 0 < # < 1 define
1
(3:0)  fucle)= 3 logl{e—k/a) = C, Fye)= 3 logle— ko) =dl, 1) = [ logly—Cldy
0<k<q 0<k<q 0
We will always assume that —1 < £ < 2 and |p| < 1. In what follows dist will denote the distance mod 1, i.e.,
dist(z,y) = min |z —y+n|.

This is the same as dist(z,y) = ||# — y||, where || - || denotes the distance to the nearest integer.
Lemma 3.1. Let d(x,q) = dist(x,{k/q : 0 < k < q}) and D(x,w,q) = dist(z, {mw, k/q : 0 < k,m < ¢}).
Then for all0 <z <1
[fac(x) —qI(Q)] < C(llogd(z — &, q)| +logq)
[Fg.c(2) = f.c(@)] < C(llog D(z — &, w, ¢5)| + log gs).

Proof. Let gc(y) = log|{y} — ¢|. Clearly, g has at most two monotonicity intervals on [0,1]. Arranged in
increasing order, the points {2 — %} for k=0,1,...,¢g— 1 form an arithmetic progression with increment é.
An elementary consideration involving Riemann integrals therefore implies that

B Zgg(x——)—f«)\sCogl,ggq|gg(x—§)|—/lyl< log yldy < < (Jlogd(x — & 4)| + oga)

and the first assertions holds. To obtain the second assertion, arrange the points {a& — %} — ( in increasing
order on the line & = —5. The distance between any two adjacent points is exactly 1/¢; and for each of them
there is a point of the form {x — kw} —  at a distance less than 1/¢,41. Fix any « € [0, 1] and let kg be that
value of k for which |{& — kps/qs} — (| + |{x — kw} — (| is minimal. Then

Froc(@) = fac@)l <D0 [|log|{x—kps/qs}—<=||+|log|{x—kw}—<=||}+

|k—kol<3
-kps/qg}—-{x-kw}|‘
+ Z log
|k—ko|>3 |: |{x_kps/qs}—<=| i|
s -1
S CHOgD(l‘ —g’w qs | _1_02 qs+1
= las
s log g,
< CllogD(e — &,w,q,)] + C11B2
ds+1
as claimed. .
Lemma 3.2. Let Q@ C T be an arbitrary finite set. Then
2>\
/exp(/\| logdist(z, )]) dx < T (#Q)A
T _

forany 0 < A < 1.

Proof. Let Q= {y1,...,yn} and set {z : dist(z,Q) = ||z — y;||} = I; for each j = 1,...,m. The intervals I;
intersect at most at the endpoints. Thus

/ exp(A] log dist(z, Q)|) de = Z/ exp(—Alog||z — y;]|) de <
T — JI;
j=1 7

< < () <
ST = TyA ) s Ty
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as claimed. O

Proposition 3.3. Let q; and { be as above. Then for sufficiently small A > 0

1
/0 exp(A|Fy, ¢ (1) — e 1(O)]) da < CgE™.

Proof. This is an immediate consequence of the previous two lemmas and Cauchy—-Schwarz. O
We shall now obtain a version of this proposition for arbitrary n instead of ¢;. Let ¢; < n < ¢541 and write
n =ALqs + r where 0 < r < g, and £ < ¢541/qs. Then

-1

Fro(x) =3 Fy c(n)+ Frel(xe)
h=0

where ), = £ — hq;w mod 1. By Lemma 3.1

[Fnc(@) =nl(Q)] < Z_: [Fauc(2n) = g5 L] + | Fr ¢ (20) — 7 I(C)]

-1
(3.7 < O |log D(w =&, qo,w)| + [ Frc(we) = rI(C)| + Cllogg,.
h=0
Let
-1
Qs: U<{k/qs’mw:ngam<QS}+hst) mod 1.
h=0

Lemma 3.4. With q; and n as above,

-1

exp(/\z |log D(xp — €&, qs,w)|) < exp(CMlogn) - exp(A|logdist(z — €&, Q5)|)
h=0

for any A > 0.
Proof. Let D(xn, — &, qs,w) = ming<pce D(xp — &€, qs,w). Suppose that
D(xp, =&, q5,0) < ¢ °
and moreover, that there is some k1 # hg so that
D(xp, — & ¢5,w) < ¢;°
By definition, there are y,z € {k/qs,bw : k, £ =0,1,...,q; — 1} such that
llene =& = yll < a7® llen, =€ =2l <47
This implies that

k 2
H(h1 — hy)gsw + q_ + me < q_6

for some —q; < k, m < ¢q5. In other words,
2

k
(3.8) Huw v <

qs
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where 1 < |u| < gs|h1 — ho| + m < gs41. One has quw =t + p where —1 < p < 1 and ¢ € Z. By (3.3),

lp| > (gsu)~2, and therefore
Ht—l—k—l—pH . (1 1 )
= ||——=|| > min S
qs 2q; QS(QsU)

1 1
> .
QS(QSQs+1)2 - Q?(log (Js)za

This contradicts (3.8). The conclusion is that there is always some hg such that

uw + —
qs

in D(zp, — ] 7°.
mmin (xh —&w,q5) > q5
Since D(zp, — &, w,qs) < dist(x — &, Q) and |log D(zp — &, w, q5)| < 6loggs if h # hg, the lemma follows. [

Lemma 3.5. With n and g, as above,

S5

1 1
[ bl o) = (@) i < exp (Chttogm)* ™) ([ explAlFc(0) = 0] )
0 0
for small A > 0.
Proof. In view of Lemmas 3.4 and 3.2 and (3.7)

1
2

/01 exp(A (@) —nl(Ql)dz < exp(CALlogn) (/01 exp(2)|log dist(z — &, 2,)]) dx)
: (/01 exp(2\|Fr e () — 1(C)]) dx)%
< Comp(Chllogn™*!) (#92)° (/ XA c(o) = (O] ) %

Here we have used that ¢ < % < (loggs)® < (logn)®. Since #Q; < Cgsf < Cgs41 < n?, the lemma
follows. g

Proposition 3.6. With n and s as above,

(3.9) /01 exp(A|Fpc(2) — nI(¢)]) de < exp (C'/\ %(log qj)a+1) < exp (C'/\(log n)A)

7=0
for small A > 0 and any A > a + 2.

Proof. Recall that n = {lg; 4+ r where 0 < r < ¢5. Hence ¢: <7 < g¢41 with ¢ + 1 < s. The first inequality
now follows by induction in s using Lemma 3.5. To pass to the second inequality one invokes (3.5) and the
general fact g, > 205=1/2 see Theorem 12 in [23]. O

We shall now combine Propositions 3.3 and 3.6 with Riesz’s representation (3.2) to obtain analogous results
for subharmonic functions. To begin with, we need a deviation theorem for harmonic functions.

Lemma 3.7. Let h be a 1-periodic harmonic function defined on a neighborhood of the real axis. Suppose
further that ||h]|oc < 1. Then

q

Zh(l‘—k’W)—Q/olh(y)dy‘ <,

k=1

sup
xr

where the constant depends only on the width of the neighborhood.
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Proof. Clearly,

q

‘Z h(z — kw) — f]/l h(y) dy‘ < > |A(n)| min(g, Ii e~ mikney),

k=1 0 n#0

One has |il(n | < nc_4 with some constant depending on the width of the neighborhood. Combining this with
the bound (see (3.3))

< 2|7 < O,

q
‘ E 6—27Tiknw

k=1

yields the desired result. O

The following theorem is the main result of this section.

Theorem 3.8. Let u be a 1-periodic subharmonic function defined on a neighborhood of the real azxis. Suppose
furthermore that |u(z)| < 1. Then for sufficiently small A > 0

/01 exp(/\‘i u(z — kw) — n<u>D de < eXP(C/\(log n)A),

Here A is as in Proposition 3.6 and {u) = fl

o wW(y)dy. If n = q, where Z—S is a convergent of w, then

n

/01 exXp (/\‘Z U(l‘ — k’w) — n<u>D dr < CnC>

k=1
In particular,

n

(3.10) mes({x : |Z u(r — kw) — n<u>| > (5n}) < exp(—cdn + ry)

k=1
where r, < C(logn)? for general n and v, < C'logn if n = ¢, for any s.

Proof. In view of (3.2)

n n

Zu(r — kw) — n{u) = Z/long —kw} —¢|dp(C) — n/I(C) du(¢) + Zh({x —kw}) — n/o h(y) dy.

k=1 k=1

By the previous lemma, it suffices to consider the contribution from the logarithmic integral. In view of (3.6)

> [toglfe — ko) = ¢l dn() = [ Fo o) dnc).
k=1
Since exp(A-) is a convex function Jensen’s inequality implies

/01 P (A\ JACRERIE) dﬂ<<>D dz < / 1 [ exe (Ml Frc(o) = 1)) dlﬁ‘—“)dx.

[l

The theorem therefore follows from Propositions 3.3 and 3.6. Finally, (3.10) follows immediately from the
integral estimates via Markov’s inequality. O
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4. A LARGE DEVIATION THEOREM FOR MONODROMY MATRICES

We now turn to the equation

_1/)n+1 - 1/)71—1 + V(G + nw)'l/)n = E'l/)n

A6, ) = ( V(G)l—E —01 )

Let

Then

My (0, E) = [] A(6 + jw, E)
j=1

is the monodromy matrix of the Schrodinger equation at energy £. Assuming that the potential V' is analytic,
1
un(x) = —log|| Mn(z, £}

can be extended to a neighborhood of the real axis as a subharmonic, 1-periodic function. This observation
goes back to Herman [21]. Moreover, its size is bounded by a constant depending only on V| |E|, and the
width of that neighborhood. As usual, L, (E) = [} un(y) dy. We start with the following lemma. Notice that
it sharpens the large deviation theorem in [4], ¢f. Lemma 1.1.

Lemma 4.1. For any § > 0 and any positive integer n,
mes({z € T : |un(z) — Ln(E)| > 6}) < exp(_cazn + C(log n)A).

The constants ¢,C' only depend on the size of E, the potential, and w. A s determined by the constant a,
see (3.3) and Proposition 3.6.

—1
2

3|0

Proof. We may assume that § > n~2. Since sup,, |u,(z —w) — un(2)| < &, one can choose K = [0n/C] with

some large constant C' so that

| X
upn () — K};un(l‘—kw)‘ < 4/2.

Thus
| K
mes({z : |un(z) — Lo (E)| > 48}) < mes({x : ‘Ezun(l‘ — kw) — Ln(E)‘ > 5/2})
k=1
< exp (—céK + C(log K)A) ,
where the second inequality follows from Theorem 3.8 with some fixed choice of A > 0. |

We shall sharpen this estimate in section 7 by replacing % with §. This will be accomplished by means
of the avalanche principle Proposition 2.2. In fact, our main application of Lemma 4.1 will be to prove an
important form of the avalanche principle, see Lemma 4.3 below. First we need to derive an auxiliary fact
concerning the speed of convergence of L, (F) to L(F). The essential statement in the following lemma is
that L, (E) = L(F) uniformly on any compact interval on which L(F) is positive.

Lemma 4.2. Suppose L(E) >~ > 0. Then

1
0< Ln(E) - L(E) < C%,
where C'= C(v,|E|, V,w). In particular, L,(E) = L(E) uniformly on any compact interval on which L(FE)
18 positive.
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Proof. Clearly, 0 < L,(F) < Cy = Cy(V,|E|) for all n. Let ¢ be a positive integer such that ty > 16Cy. Given
n > 10, let £y = [Cylogn] with C to be specified below. Consider the integers €y, 26, ... ,2". There is
some 0 < j <t such that (with ¢; = 27¢g)

v
< T
For if not, then Cy > Ly, (F) — Loty (E) > tv/16 > Cp, which is a contradiction. Let £ = 2/, with the choice
of j satisfying (4.1).

We shall now apply Proposition 2.2 to the matrices A; = A;(2) = My(z+ (j — 1)tw) for 1 < j < m = [n/{]
and with g = exp(£y/2). Notice that g > n? if C; > 4/v. By Lemma 4.1,

in (145 ()] 2 exp(e(Le() = 3/2) 2 1> n°

(4.1) Le;(E) — Le

7

(E)

J+1

up to a set of € T of measure not exceeding
mexp(—co(7/2)%€) < nexp(—coC1y* logn/4) < n™?
provided C1y% > 12/¢q. Furthermore, in view of (4.1) and Lemma 4.1,

max [log 145 41(2)]] + log|[A; ()] — log [14; 4145 x|

0<j<
< 2(Lo(E) + L) — 20(Lag(B) — 1) < 20(Le(E) — Loe(E) + )
32 32 16
Y, 1 _7

up to a set of z of measure not exceeding
2mexp(—co(v/32)%) < 2nexp(—co(7/32)*Cy logn) < n~?

if C14? is large. We have shown that (2.1) and (2.2) hold for all z € G, where |T\ G| < 2n=2. We conclude
from (2.4) that

m—2 m—2
log || My (, E)|[+ > log|[My(2 + jlw, E)|| = > log|[Me(2 + (j + )lw, E)Mq(x + jlw, E)||| < Cn™"
j=1 7=0

for all + € G. Arguing similarly for log||Mm, (z + ¢mw)|| and log||Masm (2)|| and comparing the respective
estimates yields

log|| My (2, E)|| = log || Mem (2 + tmw, E)|| — log|| M (2, E)|| + log|| M (2 + tmw, E)|| +

C
(4.2) +log || M(xz + (m — 1)tw, E)|| — log || Me(x + fmw, EYM;(x + (m — 1)bw, E)||‘ < -
up to a set of x not exceeding Cn~? in measure. Since (recall m = [n/{])

(4.3)

log || Mx ()| = log|[Mem ()[]| < C¢ and  [log]|[Me(2)]|] < C¥,

we conclude from (4.2) that

log | M (2, E)]| — log | M (& -+ nss, B)]| ~ log | M (&, )| < Clogn

up to a set of & not exceeding Cn~? in measure. Integrating over = therefore implies that
logn

|Lan(B) = Ln(E)| < =22,

where C' = C(v, |E|,V,w). Summing over 2*n finally proves the lemma. O
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The following lemma represents a form of the avalanche principle which will turn out to be relevant for
certain applications below. Its proof is similar to the proof of the previous lemma, but it will be important
for us to know that the speed of convergence of L, (F) — L(F) is controlled by ~.

Lemma 4.3. Suppose L(E) > v > 0. Let n = Z;n:l £; with [Crlogn] < ¢; < 2[Cylogn] and set s; =

7—1 k. Then one can choose Cy = C4(y) sufficiently large so that there exists a set G = G(n, E) C T
satisfying | T\ G| < n=% with the property that

m—1 m—1

(4.4) {log|| My (x, E)| +_ log [|Me, (& + 55100, E)| =Y log || Me, (& + sj0, E)My, (& + 551w, E)||| <

j=2 j=1

for allx € G. Both Cy and Cs depend only on v, |E|, V, and w.

Oy

n

Proof. Set £ = [C log n] where C; will be specified below. We shall apply Proposition 2.2 with 4; = A;(z) =
My, (z +sj_1w, E) and p = exp({y/2). In view of Lemma 4.1 with § = 6o = /100 and Cy+? sufficiently large

(4.5) min (14 (@) 2 exp(ty Le, (£)/2) 2 exp(o{Ch logn}/2) = o > n?

up to a set of x of measure less than

(4.6) mexp(—cdil) < nexp(—cdiCilogn) < n=2.
As for the second condition (2.2), let ng(F) be sufficiently large such that
(4.7) Le(E) — L(E) < &

for all k > [Clogng]. Lemma 4.2 implies that ng depends only on v and the size of E. Applying Lemma 4.1
again with the same choice of dg yields (suppressing F for simplicity)

log |[Aj41 ()] + log||A;j(x)]] — log|[Aj+1 4 (2)|| < Lj41(Le,yy +60) + €5 (Le; + do)
— (€5 + £j41)(Le; 40,4, — 60)

1 1
(48) < £j+1(2(50 + L, L) + Ej (2(50 + sz — L) < 12464 < 5 logp = Zﬁ’y

1

up to a set of x of measure at most n=% see (4.6). Let G be the set of z satisfying both (4.5) and (4.8).
We have shown that |T\ G| < n~? for an appropriate choice of C and provided n > ng(y). In view of
Proposition 2.2 therefore

m—1

m—1
log [ My ()| + Y log|[Me, (¢ + sj—1w)|| = D log|[Me,,, (x + sjw) Me, (& + sj_1w)[| <

j=2 j=1

Oy

n

for all x € G, as claimed. O

5. AN ESTIMATE FOR THE SPEED OF CONVERGENCE OF L,(E) To L(FE)

The purpose of the following theorem is to remove the logn factor in Lemma 4.2.
Theorem 5.1. Suppose that for some fired compact interval I one has L(E) > v > 0 for all E € I. Then
the estimate

&
n
holds for alln =1,2,... and E € I with some Cy = Cy(y,1,V,w).

0 < Ln(E) — L(E)
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Proof. Fix some E € I. Tt suffices to show that L, (FE) — Lapn (F) < % Fix some large n and let n = Z;»n:l 4
where [C7logn] < £; < 2[C1logn] with C being the constant from Lemma 4.3. It is clear that this can be
done with all but two of the ¢; being equal. In fact, we can assume that {; = £,,. Let G = G(n, E) be as in
Lemma4.3. Then (4.4) holds simultaneously for all # and # 4 nw provided € GN (G — nw). Partitioning the
interval [1,2n] into intervals of length £y, ... £, ¢1,... £y in this order and applying Lemma 4.3 once more,
one obtains a similar estimate for log ||Ma,(z, E)|| off a set of measure at most n=2. Comparing the three
estimates (4.4) for log||M, (z, E)||, log||Mn(x + nw, E)||, and log||Man (z, E)||, respectively, one concludes

that
log || M2 (2, E)|| — log || My (2 + nw, E)|| — log [ My (z, E)|| + log || Me, (z + nw, E)|| +

C
(5.1) +log|| My, (2 + sm_1w, E)|| — log || My, (2 + nw, EYM,, (2 + sm—1w, E)||| < -

up to set of x of size at most n=2. Since the terms on the left-hand side of (5.1) are no bigger than Cn in
absolute value, integrating (5.1) over T yields (recall £; = £,,)

C

[20(Lan(B) = Ln(E)) = 261(L26,(B) = Ley (E))] < —

This implies that the function R(n) = 2n(Lan(FE) — L, (FE)) satisfies
C
Since [Cylogn] < £; < 2[C logn], iteration leads to
C C C

5.2 R(n) < — ...+ R(k
(5:2) (n) < n + Chlogn + Cy log(Cy logn) o+ Rlko)
where kg < C?, say. As the sum in (5.2) clearly gives a bounded contribution, the theorem follows. O

The following proposition shows that the positive quantities Lap(F) — L(E) and L¢(E) — Log(E) differ only
by an amount that is exponentially small in £.

Proposition 5.2. Suppose L(E) > v > 0. Then there exists a constant ¢; = ¢1(v, |E|,V,w) > 0 such that
(5.3) |L(E) — 2L (E) + Le(E)| < exp(—c18) forall=1,2,....
Moreover, there is £y = £o(c1) so that if Ly (E) — L(E) > 4exp(—c1ty) for some {1 > Ly, then

1
Lok, (B) = L(E) > gy (Ley (B) = L(E))
for all k > 0. In other words, on intervals of positivity of L either Li(E) — L(E) exponentially fast, or
Lo (E) — L(E) > % for infinitely many n.
Proof. Let Cy be as in Lemma 4.3. Set £ = [C logn] and write n = mf + r where 0 < r < £. In view of (4.4)
and (4.3),

m—1 m—1
log || M (2)|] + Z log ||M,(z + jlw)|| — Z log || M¢(z + (j + 1)lw) M, (x + jlw)||| < C¢
7=0 7=0

for all # up to a set of measure at most n=2.

integrating over T yields

Since the left-hand side is no bigger than Cn for any =z,

0L (E) + mlLe(E) — 2mlLyy (E)| < CF

or

ILa(E) + Lo(E) — 2Log(B)] < SF

n
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Replacing Ly (E) with L(E) by means of Theorem 5.1 establishes (5.3).
Now assume that L, (E) — L(E) > 4dexp(—c1f1). In view of (5.3),

Lot (B) = L(E) > ~(Le, (E) — L(E)) %exp(—clﬁl).

2

Continuing inductively one obtains that

Loke, (E) — L(E) > %(LZI(E) — L(E)) — ;k exp(—ci 1) {1 + 2exp(—(2 — 1)erly) +

(5.4) o 2 e (= (2 = )]

Now choose ¢y so large that
ZQj exp(—(?j — l)clﬁo) <2
7=0

By (5.4) and our assumption,

1

> i(LZI(E) - L(E)) - 3eXp(_ClEl) oF+L

2k 2k
as claimed. O

Lakg, (E) — L(E) (Ley (B) = L(E))

6. HOLDER CONTINUITY OF THE LYAPUNOV EXPONENT AND THE INTEGRATED DENSITY OF STATES

Theorem 6.1. Let N(FE) be the integrated density of states. Assume that L(E) >~ > 0 for all E € T where
I is some compact interval. Then there exists 3 = (7,1, V,w) > 0 such that

() - L(E')| + [N (B) — N(E")| < C|E - B
for all E,E" € T where C = C(y,1,V,w).

Proof. Fix some E,E’ € I and let C; be as in Lemma 4.3. Let n be a large integer to be specified below.
Write n = mf 4 r with £ = [C} logn] and 0 < r < {. By Lemma 4.3 and (4.3)

m—1 m—1
(6.1)  |log || My (2, E)|| +D  log || My(x + jlw, E)|| = log || Me(x + (j + 1)lw, E)M;(x —|—j£w,E)||‘ <Ct
j—O 7=0
m—1
(6.2) |log||M, (=, E') |+Z log || My (z + jlw, E')|| = log|[Me(w + (j + 1)lw, B') My (x + jlw, E') ||‘ <
j=0 j=0

provided # € G(n, EYNG(n, E'). Tt is clear that

6.3 su H
( ) xepﬂé’ E

with a constant Cs depending only on the potential and the size of E. Since ||M;|| > 1 one therefore has

||Mﬁ(yaE) Mﬁ(yaE/ ||
log | Me(y, B)| — log || Me(y, E')|l| <
ey, )l

for all y € T and similarly for Ms,. Subtracting (6.1) from (6.2) yields by means of (6.3) that for all
r€e€Gn, EYNG(n, E)

My (z, E) H < exp(Csl)

(6.4)

log{l + } ‘ < exp(C3l)|E — F'|

ct Clogn

‘—logHM (z, B)|| - —log||M z, E') ||‘ < exp(2050)|E— '+ —

provided |E — E'| < = exp( 2C'3¢). Integrating over T and invoking Theorem 5.1 finally implies that

\L(E) - L(E")| < 18"
n

if | — B'| < n=4C10s,
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This proves the stated bound for the Lyapunov exponent. The bound on the integrated density of states follows
from the Holder continuity of the Lyapunov exponent via the Thouless formula and standard properties of
the Hilbert transform. This is well-known, see e.g. Figotin, Pastur [12], chapters 11.B and 11.C, and also
Section 10 below. O

7. A SHARP LARGE DEVIATION THEOREM FOR MONODROMY MATRICES

In this section we replace 67 with § in Lemma 4.1. Notice that this increases the range of deviations we
can control from roughly [n=2,1] to [(logn)?/n,1]. As the former region is precisely the one in the random
case, one therefore sees that the quasi—periodic case behaves differently in this respect. In fact, the main
point is that || M, (#)|| can basically be written as a product of shifts of some function, cf. Proposition 2.2 and
Lemma 4.3.

Theorem 7.1. Let u,(x) = L log||My,(x, E)|| and assume that L(E) >~ > 0. Then with some ¢ = c(y)

(7.1) mes({x €T: |up(x) — L(E)| > (5}) < exp(—edn + ry)

where r, < C(logn) for general n and r, < Clogn if n = g5 for any s. Moreover, the set on the left-hand
side of (7.1) is contained in no more than Cn many intervals. Also,

(1.2) | oM og M, o )| = nLE)) dr < exp(r)

pTOUided 0 < A < AO(PYa |E|a V,W)~

Proof. For the sake of simplicity, we fix £ and we shall not indicate the dependence on E. Take n large and

4logn

let £ = [6n] where %g_ < § < 15. We claim that for all z up to a set of measure not exceeding exp(—cy*én)

m—1 m—1
(7.3) log [ M ()] + 3 log |[ M (& + jtw)| = 3 log|[Me(a + (j + 1)) Mo (a + jiw)]| < Gt
j=0 j=0

where m = [n/f]. This follows from Proposition 2.2 and Lemma 4.1. More precisely, let dy = /100 and
i = exp(£y/2). By Lemma 4.1 and Lemma 4.2 with Cyy large,

Olénjil || Me(2 + jw)|| > exp(Ly — dof) > > n
<j<n

) ) ) ) 1
max [log | Mo(a + (5 + 1) + log Moo + )|~ log [ Me(z + (G + Ow)Ma(e + )] < 5 log

up to a set of z of measure not exceeding
1
(7.4) Cnexp(—cdil) < exp(—;:é%ﬁ)

if Cyy? is large. This guarantees the conditions (2.1) and (2.2) not just for = but also for = + kw with
0 < k < £. We conclude that there is G C T with |T \ G| bounded by (7.4) such that (7.3) holds for all » + kw,
k=0,1,...,0—1 provided z € G. Consequently,

-1 n—1 n—1
1 1 . 1 . .
(7.5) \z; log 1+ k| + 3 7log It + )| = 3 7 log M+ 5+ ) -+ | < €
= J= J=

for all z € G. Since

-1
1
log | Mn (@) = 5 D log 1Mo (z + kw)||‘ < Cl=Con
k=0
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for all 2, one can rewrite (7.5) in the form

n—1 n—1
1 1
log || M (2)]| + ;:0: 7 log|[Me(e + juo) | - ;:0: S 1og [ Mo+ (j + ) Me(a + )| < Con.

In view of Theorem 3.8 the sums in this expression differ from a constant by more than én on a set of measure
at most exp(—cdén + ry,). Therefore, log || M, (x)]| differs from its mean by more than dn on a set of measure
not exceeding (cf. (7.4))

IT\ G| 4 exp(—cén + 1) < Cnexp(—cy?dn) + exp(—cdn + r,),

as claimed. The boundedness of the integral (7.2) follows from (7.1) by integrating over level sets.
To obtain the statement about intervals we will basically show that the function w,(z) does not have more
than C'n many intervals of monotonicity. Let

M (2) = [ Fa(2) gn(2) ]

r(z)  sp(z)

with analytic functions f,, gn, 7n, sn on D(0,2) (it is possible to identify these entries as certain determinants,
see (11.13)). For any =z € R,

(7.6) My (@)l = Fal@) + g5 (x) + 5 (2) + 55 ().

Denote the right-hand side of (7.6) by v,. Then v, is analytic on D(0,2), and |v,| < exp(Cn) on that disk.
Therefore also [v/,(2)] < exp(Cn) for all |z] < &. Since || M, (z)|| > 1 for all 2, one has |v,(z)| > ¢ for all z
with some small absolute constant ¢. We claim that |v],(zg)] > 1 for some zy € [—1/8,1/8]. Suppose not.
Then |v,(2) — va(y)| < 1 for all z,y € [—1/8,1/8] and thus |logv,(z) — logv,(y)| < C on that interval.
Therefore,

c 1 C
(7.7) lun (@) —un(y)l < — 4 —[logun(z) —logva(y)| < —

noon n
for any x,y € [—1/8,1/8]. Since |u,(z) — up(z + bw)| < %, inequality (7.7) holds for all z,y € T. But this
implies that

Sup lun (2) — Ln (E)] <
zeT

2|Q

bl

so that in view of Theorem 5.1 the left-hand side of (7.1) is empty provided § > % But for smaller values
of ¢ (7.1) is trivial. Hence the claim. By Jensen’s formula

1
| 1ol (a0 + 56575 10 = tog o (o)) = > ol

where the sum runs over all the zeros z; of v/,(- 4+ 2g). Since the left-hand side is no bigger than C'n and
|zo| < &, we conclude that

card{j : |z;] <1} < Cn.
Consequently, v, has at most C'n monotonicity intervals on T. Therefore,
{r €T :|logv, —nL(E)| > dn}

is contained in no more than Cn intervals for any n. Since ‘un — %log vn‘ < %, the same statement holds

for u,, and any § > % Since these are the only relevant values of §, the theorem follows. [l
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Choosing § = n~7 for some 0 < 7 < 1 in (7.1), one obtains

(7.8) mes({x €T |un(z) — L(E)| > n_T}) < exp(—en'™7).

We shall now indicate that these estimates are sharp, at least if 7 < % More precisely, pick an xg such that
log || My, (0, E)|| > nL(E) —n'~".

Also let ¥ = max(1 — 7, ). We require the following bound:

(7.9) sup — log|[My (2, E)| < Ly(E) + Con™ b+

zeT N

for all n and € > 0. This is proved in [4], Lemma 2.1 provided on chooses the parameters there appropriately.
(7.9) can also be proved by the methods of the previous sections, even without the €. Furthermore, we shall
use the following algebraic fact (Trotter’s identity)

n n—j

j—1
(7.10) ApAn_y. Ay = ByBuoy...Br = Y T Ajxi(45 = B;) [ Be-
k=1

j=11i=1

In view of (7.9), (7.10), and Theorem 5.1

1Mo (0, ) = Mo (2, B)|| < Claa — 2] S M + o, E)|M; 1 (o, )|

j=1

< Clz — o] Zn:eXP ((” —J)L(E) + Cn%+€) exp((j —1)L(E) + Cn%+ﬁ)

< Cle — x| nexp(nL(E) + C’n%'l'ﬁ).

Therefore, by our choice of xg,

| M (2, E) —Mn(l‘an)H}
| M (2o, B
exp(nL(E) + C’n%‘l'ﬁ)
exp(nL(E) - nl—T)

1 1
~log|[Ma(, E)|| = —log|[Ma (a0, E)[| < —log[1+
n n n

(7.11) < Clz — x| < Clz — zolexp(Cn*e).

Hence if |2 — zo| < exp(—2n712¢) and n is large, then
1 1
| tog 1My (2, B)| = ~1og |Ma (2o, E)|| < exp(=n"+*).

Consequently, if the set on the left-hand side of (7.8) is nonempty, then it has to contain an interval of size
at least exp(—2n7T2¢). This proves that for large n,

mes({x €T : |up(z) — L(E)| > n_T}) > exp(—en?t)
unless the set on the left—hand side is empty. Hence (7.8) cannot be improved if 7 < %

8. CARTAN’s THEOREM IN HIGHER DIMENSIONS

The purpose of this section is to develop analytical tools to prove large deviation theorems in the case of
several frequencies. The approach chosen here is not the only available one. In fact, [4] contains a direct proof
of a large deviation theorem for monodromy matrices in the case of several frequencies by means of Fourier
series. The approach chosen here, however, is more flexible in terms of the dynamics and it also leads to
better exponents. See the following section for further discussion.
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Definition 8.1. Let 0 < H < 1. For any subset B C C we say that 5 € Car (H) if B C Uj D(z;,r;) with
(8.1) d < CoH

J
If d is a positive integer greater than one and B C C? we define inductively that B € Cary(H) if there exists
some By € Carg_1(H) so that
B=A{(z1,729,...,24) : (#2,...,24) € By or zy € B(za,...,zq) for some B(za,...,zq) € Car1(H)}.

We refer to the sets in Carg(H) for any d and H collectively as Cartan sets.

Notice that the absolute constant Cjy is not specified in this definition. This allows one to say that the
union of two Cartan sets (with the same parameters d and H) is again a Cartan set but with 2Cy instead
of Cy. It is important, however, that Cy will always be an absolute constant which is implicitly defined by
the context in which it arises. The following lemma collects some well-known facts, see [27] and [24]. For the
definition of Riesz measures see the beginning of Section 3.

Lemma 8.2. Suppose u D(O 2) = [-1
any z € D(0,3), 0<r < %, and H € (0

(8.2) lu(z) —u(z')| < Clu(D(z0,7)) log% + |z — 2| (1 _|_/ du(¢) )}

D(0,1I\D (z0,) |20 = (|

, 1] is a subharmonic function. Let u be the Riesz measure of u. For
, 1) there exists B € Cary(H) so that

for all z, 2" € D(zo,r/2)\ B. In particular, if for some A > 1

D(z0,t
(8.3) Mip(z) = sup Mgfl,
0<t< 3 t
then
1 1
(8.4) u(z) — u(z')] < CA[rlogH + |z — /| log -

for all z,2' € D(z,r/2)\ B.
Proof. Let Dy = D(z0,7). It is well-known, see Koosis [24], that for any » = re'® with r < 1

- |2 —¢| 2 1 -2 o dd
8.5) ulz) = /D(oyl)l |1 — zC| 4u(©) +/0 1 —2rcos(¢ —0) —|—r2u(6 )ﬁ
(3.6) = / log |z — ¢| du(¢) + / log |z — C|dy(¢) — / log |1 — 2Z] dyu(¢) + h(z)
Dy D(O,l)\DD D(O,l)
(8.7) = u(z) +w(e) +g(2).

We denoted the Poisson integral in (8.5) by h, the functions v and w stand for the first and second integrals
in line (8.6), respectively, and g is the sum of the other two. If z, 2 € D(zy,r/2), then |z],|2/| < % and thus

|z = 4|

(8.8) lg(2) —g(z")| < C

du(¢) + sup |[VA(()||z — 2| < Clz = 2| |1+ u(D(0,1))|.
p(o,\pe 1 =17 lcI<2

According to Jensen’s formula [27 ] section 7.2

and therefore

(8.9) #(D(0,1)) <
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With z, 2" as above,

EErd
(8.10) ofz) —w()l < C/01\DD |Z—C| <C/01\DD |ZO—C|dﬂ(C).

Since 7 < 1 one has v < 0 on Dy. By Cartan’s theorem, see [27] Section 11.2, there is B € Cary(H) with
Cy =5 in (8.1) so that

(8.11) v(z) > p(Do)log(H/e) if z € Do\ B.
Estimate (8.2) follows from (8.7), (8.8), (8.9), (8.10), and (8.11). Finally, if (8.3) holds, then (8.4) follows
from (8.2). O

The following theorem presents a version of the previous lemma that applies to functions of two variables
which are subharmonic in each variable. Although there is a corresponding result for functions on C? for any
d > 2 we first present the proof on C?, as the argument turns out to be more efficient in that case.

Theorem 8.3. Let u be a continuous function on D(0,2) x D(0,2) C C? so that |u| < 1. Suppose further
that

71— u(z1,z2)  is subharmonic for each zy € D(0,2)

zo — u(z1, z2)  is subharmonic for each z € D(0,2).
Fiz some v € (0,%). Given r € (0,1) there exists a polydisk I1 = D(ar:(1 ), ~7) x D(x(zo),r) C D(0,1)x D(0,1)
with x(l ), J:(ZO) € [-1,1] and a set B € Cary(H) so that

1
(8.12) |u(z1, 22) = u(zy, 25)| < Cy '™ log = Jorall (z1,2), (1, 2) €T\ B
(8.13) H = exp (—r‘”).

Proof. For any z1 € D(0,2) define

(8.14) v(z) = /_u(zl,xz)dxz.

1
v : D(0,2) — Ris a subharmonic function such that |v| < 2 with Riesz measure p,,. Let My, be the maximal
function given by (8.3). Clearly, M satisfies the usual weak—type L' inequality
C 3
mes({z1 € [~1,1]: Mipto(21) > A}) < T (D(0, 5))-

In particular, there is some l‘(lo) € [—1,1] so that Mluv(x(lo)) < C'. For any z3 € D(0,2) let

1
(8.15) ge(z2) = / u(x(lo) + te? z9) dO — u(x(lo), Z3).
0
By Jensen’s formula, see Theorem 2 in Section 7.2 of [27],
[ “n S,z
(8.16) ge(z2) = / logi(o) p(dzy, z2) :/ Mds
|21 x(10)|<t |Zl — | 0 §

where n(s, z2) = u(D(x(lo), $), z2) with the Riesz measure py(-, z2) of u(-, z2). Clearly,
1
uU(D(x(lo), s)) = / n(s, x2) drs.
-1

Therefore, in view of (8.15), (8.16), and our choice of l‘(lo),

1 t (0)
(8.17) /_gt(xz)dxz = /Owdsgc%.

1
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Now fix some r € (0,1/2) and define

G = Z 2_jg2jr.

0§j<Clog%

The subharmonicity of z; — u(z1, z2) implies that g; > 0 so that G is the sum of nonnegative terms. By (8.17)

! 1

/ G(xq) dxy < Crlog —

-1 r

and thus

1 1
(8.18) mes({z2 € [-1,1]: G(22) > Crlog ;}) <3

provided (' is a sufficiently large absolute constant. For technical reasons we introduce the auxiliary subhar-
monic function

1
(8.19) h(z2) = / e (0) + pPe?mi? z2)df  for any z; € D(0,2).
0

Clearly, |h] < 1 and we denote the Riesz measure of h by pp. As before, 1y (D(0,3/2)) < C. The function
g+ introduced in (8.15) is the difference of two subharmonic functions on D(0,2). Let p; and g be their
respective Riesz measures. As before, most points @5 € [—1, 1] satisfy

1
(8.20) Mi( 3 i+ o+ ) () < Clog .
0§j<Clog%

In view of Lemma 8.2, for any such s there exists By(z2) € Cary(exp(—r~"7)) so that

1
(8.21) sup  |gasr (22) — gasp (#4)] < Crt~Vlog = for all 25, 25 € D(2,7) \ Bo(xa).
0<j<Clog L r

Combining (8.18) and (8.21) yields a point J:(ZO) € [—1, 1] with the property that
Goir(22) < C[27 +7177] log1 for all 25 € D(ar:2 ,7)\ By and all 0 < j < C'log1
Here we have set By = Bo(l‘(z )). Using (8.16) this immediately leads to
p(DE,97), 25) < Cr '] log +

for all zo and j as before. Inserting this bound into (8.2) with H = exp(—r~7) and r'~7 instead of r one
obtains for any such z; a Cartan set B(z2) € Cary(H) so that

1 1 1
|u(z1,22) —u(2), z2)| < C|r' Tlog ;log i + |21 — 21| log? -

(8.22)

IA

1
1= log - for any z1,z] € D(l‘(lo), )\ B(za).

To control the deviation in z3 we invoke the auxiliary subharmonic function h from above. Because of (8.20)
Lemma 8.2 implies that

1

(8.23) |h(z2) — h(24)] < Cr'™Tlog=— forall 23,2} € D(ar:2 , )\ By
r

where By € Cary(H), H = exp(—r~7). By the definition of a Cartan set and (8.22),

1
(8.24)  |h(z2) —u(z1,22)| < C[r* =27 log; +772H] for all 2z, € D(l‘z )\ Bo, 71 € D(ar:1 , )\ B(z2).
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Let II = D(l‘(lo), rl=7) x D(J:(O), r) and
B={(z1,722) : 22 € Bg UB; or ZQED(J:Z , )\ Bo UB;y and z; € B(z2)}.
In view of Definition 8.1, B € Cary(H) with H = exp(—r ) Combining (8.24) with (8.23) implies that

1
lu(z1, 22) — u(z), 25)| < Cr'=log = for all (z1,22), (2], 25) € T\ B,
r
as claimed. O

Remark 8.4. Under the same assumptions as in Theorem 8.3 the previous proof implies the following state-
ment: Given r € (0,1) there exists a polydisk II = D(zgo),r) X D(zéo),rz) C D(0,1) x D(0,1) with
250)’ zéo) € D(0,1) and a set B € Cary(H) so that

[u(z21, 22) — u(z], z5)| < C'r for all (z21,22),(21,24) € I\ B

H =exp (—r_l) .

The point here is that the center of the polydisk is no longer restricted to the real plane. Since this fact is
not useful to us, we do not supply a detailed proof (which is, however, very similar to the previous one).

We now turn to the case of higher dimensions. The following theorem is formulated in all dimensions for
technical reasons, but Theorem 8.3 is superior to 1t if d = 2.

Theorem 8.5. Let d be a positive integer. Suppose u : D(0,2)¢ — [~1,1] is subharmonic in each variable,
i.e., 21 = u(z1, z2,...,2q4) is subharmonic for any choice of (za,...,z4) € D(0, 2)d U and similarly for each
of the other variables. Given r € (0,1) there exists a polydisk 11 = D(l‘(lo 7)) X L X D(J:El ), r) C C? with
l‘(lo), e ,J:Elo) € [-1,1] and a Cartan set B € Carq(H) so that

(8.25) lu(z1, ... zq) —u(z], ... 20| < Cr? for all (21, 2d), (21, -, 2) €I\ B

(8.26) H = exp (—r_ﬁ) .

The constant § > 0 depends only on the dimension d. Furthermore, given uy, ..., ug each of which satisfies

the hypotheses of the theorem, there are I and B as above so that (8.25) holds simultaneously for each of the
Uy, ..., ux with a constant C'k instead of C'.

Proof. We start with the case d = 1. Given subharmonic functions uy, ..., ug each of which is bounded by
one on D(0,2) we let sy, ..., pu be their respective Riesz measures. There exists a point 2(°) € [=1,1] such
that

Mi[ps + . 4 pe] (@) < Ck.

The theorem now follows from Lemma 8.2 with II = D(xg,r) and § = =

Now let d > 2 and suppose the theorem is true for d — 1 and we will prove it for d. The proof is similar to
that of the previous theorem and we shall only sketch the argument. Fix some r € (0,1) and let v be the
bounded subharmonic function on D(0,2) given by

v(z1) / / (z1,22, ..., 24)des .. . deg.

We denote the Riesz measure of v by p,. Pick some x(l ) so that Mluv(x(lo)) < C. For any (za2,...,2q) €

D(0,2)4=1 define

1
(8.27) gi(z2,...,24) = / u(@t™ 162 2y z) d — (@l 2, za)
0

1
h(za,...,2q) = /u(x(lo)—l—rzdezme,zz,.u,Zd)d9~
0
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Applying the induction hypothesis (with d — 1 and k =< [log %]) to the functions given by the right—hand
sides of (8.27) for all t = 2774 with j = 0,...,C[log %] and h, one obtains a polydisk 1T = D(J:(ZO), 7)X ... X

D(xglo),r) C D(0,1)%1 with real J:(ZO), o ,J:Elo), and a Cartan set By € Carg_y(H;) with H; = exp(—r~F)
such that

1
(8.28) sup  |gaspa(q) = gai0a(¢")| + [h(q) = h(q')| < C17 log —
0<j<Clog + r
for any ¢ = (22,...,24), ¢ = (#4,...,2)) € I\ By. As above we let
G = Z 2_jg2jrd.
0§j<Clog%

The same calculation as in (8.17) yields

/11 .../11 Gxa, ..., xq)dey. .. deg < C’rdlog%.
Therefore,
mes({Hﬂ}Rd_l G > C/\rdlog%}) <At
for any A > 1. Since mes[II N[R4"1] = Cr9=! one has in particular that for some large C'
mes ({H ARG > Crlog %}) < %mes[l’[ AR,
For small  this implies in conjunction with (8.28) that
(8.29) Goina(za, .o z2a) < C{r@ + 2%} log% for all zo,...,zq € 1\ By.
Recall

it
gt(zz,...,zd):/ logi(o) pldzy, za, .00 2q)
21—z <t |21 — a7 7]

where (-, z2, ..., 24) is the Riesz measure of u(-, za,...,z4). We therefore conclude from (8.29) that
p(D(x(lo),erd),zz,...,zd)<C'{rﬁ—|—2‘7r} log— forall z2 e I\ By and all 0 <j < Clog—.
r r

Assuming as we may that § < 1 Lemma 8.2 implies that

1 1 1
lu(z1, 22, ..y za) — u(z], 22, ..., 24)] < C’{rﬁlog——l—rﬁ_dlog—kl - Z“} log —
Hy r r

if z1,2] € D(x(lo),rd/Q) \ B(z2,...,zq) where B(za,...,2zq4) € Cari(Hz). Setting Hy = exp(—r—ﬁ/2) one
obtains for any (z2,...,24), (25,...,2) € II\ By

1
(8.30) |u(z1,22,...,24) —u(z], 22, .., 24)] < CrP/?log - if 21,27 € D(l‘(lo), r 2\ B2, ..., za).
Combining the deviation estimate (8.28) for h with the following easy consequence of (8.30)
[u(z1, 22, ...y 24) — h(za, ..., zq)| < C’[rﬁ/z + r_Zde]

yields (8.25) and (8.26) with f—d — ¢ instead of 3.

One easily checks that this argument can be applied to uy, ... , ug simultaneously and the theorem follows. [
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9. A LARGE DEVIATION THEOREM FOR MONODROMY MATRICES IN THE MULTIFREQUENCY CASE

In this section we consider the Schrodinger equation
(91) _1/)n+1 —1/)n—1+V(91+nw1,... ,9d+nwd)1/)n :E’l/)n

where 8 = (01,...,0,) € T?is arbitrary, w = (w1, ... ,wq) € T¢ is an ergodic shift, and V is a real-analytic
function on T<. We assume further that V' extends to an analytic function on D(0,2)%. Let

AB,F) = ( V(H)l—E —01 )

As usual,

(9.2) ﬁ A0+ jw, E)

j=1

is the associated monodromy matrix. Furthermore, let

(9.3) Lo(E) = l/ log || M, (0, E)||d6 and L(E) =inf L,(E) = lim L,(F)

n jrd n n—00
be the Lyapunov exponents.
In [4] Bourgain and Goldstein proved a large deviation theorem for log||M,|| based on a Fourier series
expansion of this function and (3.2), see Lemma 8.1. We show in this section how to obtain a similar
statement by means of the Cartan type estimate from the previous section. This approach has the advantage
that it generalizes immediately to other types of dynamics than shifts whereas the method from [4] appears
to be rather restrictive. It is essential, however, that the map underlying the dynamics extends to an analytic
function ® on a polydisk II containing the torus in such a way that ® does not expand in the imaginary
direction. In particular, it seems that the skew shift requires ideas beyond those presented here.
We are going to assume that w satisfies

Cle)

e for all nonzero k € Z¢

(9.4) ||w - K| >

where €1 > 0 is small. Tt is well-known that a.e. w satisfies (9.4) for any ¢; >0 .
The main results of this section are as follows.

Proposition 9.1. Let w be as in (9.4). Suppose the function u satisfies the hypotheses of Theorem 8.5.
Assume furthermore that for some n > 1

1
(9.5) sup |u(f+ w) —u(6)] < =.
Oecte n
Then there exist 0 > 0, 7 > 0, and ¢y only depending on d and €, such that
(9.6) mes({6 € T |u(6) — (u)| > n™"}) < exp(—con?).

Here (u) = deu(H) dB. If d = 2 then one obtains the range 0 < T < % — €y and o0 = % — T — €9 where €5 — 0
as €1 — 0.

Proof. Let r € (0, 1) be arbitrary. By Theorem 8.5 there is some rectangle R = [INT¢ on T¢ with diam(R) = 2r
and a set B C T9 such that

(9.7) |u(8) — u(@)] < P forany 8,6 € R\ B
(9.8) mes(B) < exp(—r7).
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Notice that it is essential to know the structure of Cartan sets to deduce the estimate for mes(B), cf. 8.1. Tt is

well-known that for any 8 € T¢ there exists 0 < k < ko = [Cr~971] so that 8 + kw € R. Since (9.5) implies
that

k
u(6+ ko) — u(6)| < £
one obtains from (9.7)
k ~
|u(0) — u(@)] < ¥ + 2 for any 0,68’ € T*\ B
n

where B = UlZ”:O(B + kw) mod Z4. Letting r = n” T one now obtains (9.6) with o = 7= cl-l—;ﬁ'

If d = 2 Theorem 8.3 gives better results. Indeed, fix some 4,7 € (0,1) and let II be as in Theorem 8.3.
Setting €; = 0 for simplicity, recall that for any 8 € T? there is some integer 0 < k < kg such that 6+ kw € II.
Here kg needs to satisfy

7”_21470_1 + r_lko_l <c

for some small constant ¢. Since v < 1 one can take ko =< #7~2. Therefore, for any 8,8’ € T?,

y—2 ~
|u(6) — u(8)] < =2 + - for any 8,8" € T\ B
n
with B as above. Setting r = n"~ ST yields o = % — 7, as desired. O

Corollary 9.2. Let w be as in (9.4). Let S,(F) be a positive number satisfying

1
(9.9) Sp(E) > sup —log||Mp(z1, ..., 24, E)|| + 2log || A(z1, - . . , 24, )| |-
(21,...,24)€D(0,2)4 n

Then there exist 0 >0, 7 > 0, and ¢y only depending on d and €1 such that

(9.10) mes({6 € T : |log||Mn (6, E)|| — nLn(E)| > Sp(E)n'~7}) < exp(—con?).
If d = 2 then one obtains the range 0 < T < %—62 anda:%—r—ez where €5 — 0 as €1 — 0.
Proof. Fix some dimension d and energy E. Define for any (z1, ..., z4) € D(0,2)4
1
Un (21, ... ,24) = 5 log || Mn (21, ..., 24, B)]|.

Then u,, is a continuous subharmonic function bounded by one in D(0,2)?. Furthermore, u,, satisfies (9.5).
Hence (9.10) is an immediate consequence of (9.6). O

Remark 9.3. Usually one has bounded potentials and energies so that basically S,(F) =< 1. In proving
positivity of the Lyapunov exponent, however, it will be necessary to consider large potentials and then the
statement of (9.10) will be convenient.

The method from [4] yields exponents 7 = %(% — o) — €3 for d = 2. This can be easily checked by making
appropriate choices for the parameters in the proof of Lemma 8.1 in [4]. Therefore, our method is slightly
more economical here. Moreover, the approach in [4] seems to be rather restrictive in terms of the dynamics,

whereas our argument applies to any transformation that does not stretch in the imaginary direction.
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10. MODULUS OF CONTINUITY FOR THE INTEGRATED DENSITY OF STATES IN THE MULTIFREQUENCY CASE

Fix some dimension d > 2 and let N denote the integrated density of states for equation (9.1) with d
frequencies. Let o be the exponent arising in Theorem 9.2. It turns out that N has modulus of continuity
exp(—|logt|?) on any interval on which the Lyapunov exponent is positive. To obtain Holder continuity
for N using the methods of this paper one would need to prove (9.10) with o = 1 and deviations of size 4,
cf. Lemma 4.1 and Theorem 6.1. In what follows let S(E) = sup,, S, (F) where S, (FE) is defined in (9.9).
Before turning to the discussion of continuity we require a version of Lemma 4.2 for the multifrequental case.

Lemma 10.1. Fiz some dimension d > 2 and let o, 7 be as in Proposition 9.2. Suppose L(E) > v > 0 where
L(FE) is the Lyapunov exponent (9.3). Then

1/o
0< Ln(E) - L(E) < C%,

where C' = C(v,|E|,V,o,7). In particular, L,(E) — L(E) uniformly on any compact interval on which L(E)
18 positive.

Proof. The proof is basically the same as that of Lemma 4.2. The only difference is that here £ = [C'(logn)'/?]
with some large C' and that one uses Proposition 9.2 instead of Lemma 4.1. We leave the details to the

reader. O

Proposition 10.2. Fir some dimension d > 2 and suppose L(E) > v > 0 for all E € I, where I is some
wnterval. Then

|L(E) = L(E")| + IN(E) = N(E')| < Cexp(=C|log|E — E'||7)

for all EJE" € T with C = C(y,0,7,5,1). Here o and 7 are the exponents from (9.10) and we set S =
suppe; S(E). If d =2 one can take o < %

Proof. The proof is similar to that of Theorem 6.1. Fix some E, E’ € I and let n be some large integer. Write
n =ml +r with £ = [C}(logn)'/?] and 0 < r < £. We claim that for some large constant C and all large n

m—1 m—1

(10.1) [tog 14, (6, B[+ log |[Ms(6 + jteo, E)| " loa |[Me(6 + (j + 1)tew, F)Mi(8 + jteo, F)|| < C¢
7=0 7=0
m—1 m—1

(10.2) flog [ Mo (8, )| +Y_ Tog|[Me(8 + jtw, E| =3 log|[Me(8 + (j + 1)teo, E')Me(6 + jteo, )| < C¢
j=0 7=0

for all @ € G, (E, E') where mes(T?\ G, (E, E')) < n~!. This follows from Proposition 2.2 with A; = 4;(8) =
My(0 4 jlw, E), p = exp(£y/2) and similarly for E’. In fact, if S¢77 < /2

(10.3) min (|45 (6)]| 2 exp(E(Le(E) = SC7)) 2 exp (5[C1 logm) /7]/2) = p > w?

up to a set of @ of measure less than, see (9.10)
(10.4) mexp(—col?) < nexp(—coC{ logn) < n™ %
The second condition (2.2) of Proposition (2.2) is checked as in (4.8), and we skip the details. Tt is clear that

4 e, E)H < exp(C30)

10.
(10.5) sup || =

OecTe

with a constant C5 depending only on the potential and the size of E. Since ||M|| > 1 one therefore has
|M, (6, E) — M (6, E)|
|Me(8, Bl

(106)  [logl|M:(8, B)]| ~ log||Mo(8, B')|| < [tog]1 +

] ‘ < exp(C30)|E — E|
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for all 8 € T? and similarly for Ma,. Subtracting (10.1) from (10.2) yields by means of (10.5) that for all
6 G, (E,F)

1 1 ¢ logn)/@

Llos 34,6, )1~ o 114, (6, 2| < exp(20y0)| — 174 € < CLBDT

n n n n
provided |E — E'| < %exp(—QC’gﬁ). Integrating over T? and invoking Lemma 10.1 finally implies that

C(logn)'/®
n

IL(E) — L(E")| < if |E— B'| < exp(—C(log n)l/o).

This proves the statement of Proposition 10.2 on the Lyapunov exponent. The corresponding bound on the
integrated density of states can be derived from it fairly easily via the Thouless formula, see Theorem 11.8

in [12],
(10.7) L(E) = /log |E — E'|dN(E') forall F€R

and some elementary properties of the Hilbert transform H. Since the modulus of continuity involved is not
so common, we provide some details. Fix [ as above and let J C I be an interval with the same center as
I but half the length. Pick a smooth cutoff function ¢ with compact support so that ¢» = 1 on /. Define
Ni =¢¥N and Ny = N — Ny. Then for almost every F

dE’
(10.8) HN,(F) = /Nl(E’)E = —/log |EF — E'|dN+(E') + L(E) = g(F)
This follows from (10.7) by replacing log | E — E'| with log(|E — E’| 4+ €), integrating by parts, and then letting
¢ — 0+. Let Jy be an interval centered at 0 with |.Jg| = |J| and pick a smooth cutoff function ¢ with support
inside Jy and ¢(0) = 1. Define Hjy to be the operator with kernel ks(x) = (b(r)% = ¢(x)k(z). The operator
HjH has the kernel (¢k) « k. Taking Fourier transforms one obtains

(Gk) * k() = ¢+ k(€) - k(&) = —1 + R(€)

where |R(€)| < Cp (14 |€])~™ for any positive m. This follows from 127(5) = —isign(§), f(/;(é’) dé = 1, and the
fact that q/; has rapidly decreasing tails. Consequently, R is a smooth kernel. Applying H; to (10.8) therefore
leads to

HyHNy =—-Ni1+ R+« Ny = Hyyg.
Since R * Nj is a smooth function, the theorem follows from the fact that
19(E) — g(E')| < Cexp(~c|log | £~ E'|I7) on I
and the following lemma. |

Let p be a modulus of continuity with the property that

(10.9) dp2) = p(27f) forany (€Z
n>4
(10.10) d 22 < 2°p(27") forany L€ Z.
n<t

Examples of such p are p(t) = t* with 0 < o < 1 and p(t) = exp(—c|logt|?) with ¢ > 0, the latter one being
relevant for Theorem 1. Let

Co={fR=>DR: |f(x)— fly)| < Ap(lz —y|) forall z,y and for some A}

and let [f], denote the minimum of all such A. The following lemma provides a fairly standard characterization
of the spaces C, in terms of the Fourier transform and states that they are preserved under singular integrals,
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see [35], chapter VI, Section 5.3. Tt is formulated by means of the Littlewood—Paley projections A, that
localize the Fourier transform to a dyadic block of size 2" at a distance 2™ from the origin.
Lemma 10.3. A function f : R = R lies in C, iff ||An(f)||oc < Bp(27") for all n. In fact,
[f], <  minimum of all such B.

Moreover,

[Tf], < Clflp

for any singular integral operator T'.
Proof. This is a simple exercise and we will leave most details to the reader. One can write

Anf =ths-nx f

where ¢ is a Schwartz function with mean zero and t5-» (2) = 27¢(2"x). Thus

800l = s [ et = ) - FCa
(10.11) < O T2 < p(277)

by (10.10). Conversely, one writes f=3"_ _ An(f) + ZmZn A (f) modulo a constant which yields
@) = FO <1 An(D) = D An(HWI+201 D Anlf)lle < CBp(lz = yl).

m<n m<n m>n

To obtain the last inequality one sets 2" < |z — y|~!, takes the derivative of the first sum and then applies
the assumption together with (10.10) and (10.9), respectively.

_ To prove the bound for singular integrals let A, be another Littlewood—Paley projection chosen such that

AL A, = A, for all n. Then
AT flleo = ITARARf|loo < NTAn o 00| A floo -

The lemma now follows since the kernel of TA,, is bounded in L! uniformly in n. O

11. PosSITIVITY OF THE LYAPUNOV EXPONENT

The main purpose of this section is to present a general mechanism that allows one to prove positivity of
the Lyapunov exponent for large disorders. More precisely, consider a family of equations of the form

(111) _1/)n+1 - wn—l + /\V(Tn6)1/)n = E1/)n
where 8 € T, T : T¢ — T is an ergodic transformation, and V' a nonconstant real-analytic function on T¢.
Let
AV(Ti0) - E —1
1 0

The matrix M, (0,A, F) = H?:l A; (8, ) E) denotes the monodromy matrix of the equation (11.1) . As
before,

A;(6, ), E) = [

1
Lo(AE) = —/ log || M (6, A, E)|| 46
n Jjrd
and L(A, E) = limy 00 Ln (A, E) exists. Finally, let S(A, E) be a number satisfying

1
(11.2) S\ E) = sup sup —log||M, (6, E)||.
n>1@era
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The main result of this section is as follows: If the large deviation theorem (with some ¢ > 0)
1
(11.3) / ‘— log || M, (8, ), E)|| — Ln (A, E)|d8 < CS(\, E)n~
nCARD

holds for all n = 1,2, ..., then
i%fL(/\,E) >0 forall A> A (V,d, o).

Suppose T'(0) = 6 4+ w is simply a shift. Since (11.3) is a much weaker version of the large deviation theorems
from Section 9, we thus get an independent proof of the Herman—Sorets—Spencer result [21],[34], and also
the multifrequency version of it that was established in [4]. Our approach is different from that in [4] as it
relies on the avalanche principle and the weak form of the large deviation theorem (11.3). The basic idea
behind our argument is that Proposition 2.2 allows one to control the distances between various Lyapunov
exponents, cf. Proposition 5.2. Therefore, as soon as one of them 1is sufficiently large, the positivity should
follow. Throughout this section we assume that the potential V' is nonconstant. For the following lemma we
set A = 1. This is no loss of generality, as one can replace V' with AV (but only in this lemma). Hence we
will suppress A in our notation.

Lemma 11.1. Suppose that (11.3) holds for all n with some choice of o > 0. Then there exists a positive
integer Ly = Lo(o) such that if
Li(E)

8

(11.4) Le > S(E)™/* and Ly(E) — La(E) <
for some £ > £y, then L(E) > Li(E)/2.

Proof. Let ¢; = £ satisfy (11.4) and define inductively

(11.5) G =[77] forj=1,2,....

Here we have set 7 = %0’. For simplicity we shall drop £ for the rest of this proof. Let C7 be a large constant

that will be determined below. We denote by A; the statement

Ly, — Log; < Ly, /8
A 7 7 g 7
( J){ Le, > 867

Notice that by hypothesis A; holds. Furthermore, B; will denote the statement

(B){ |sz+1 - QLZZ]' +sz| < ClS &

3 Lita
J L, — Loy < (1852

J+1 J+1 Li41
We shall show that A;, B; = A;; and that A; = B;. Notice that this will give B; and A; for all j. The

first implication is easy. Indeed,

£; Ly, £;
sz+1 > sz - Q(sz - Lzzj) — 015—] > sz -2 b 015—‘7
Ej-l-l 8 £j+1
3 —o/4 4 —o/4
(11.6) > 186G — s> s

j+1

where the latter inequality is an immediate consequence of (11.5) provided Iy is large. Hence the second
inequality from A;1; holds. To obtain the first it suffices to prove the second inequality in

Y 0
Ley, > S > 8015,
lit1
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the first one being (11.6). ;From (11.5) and 7 > ¢/4 it is again evident that this will hold provided ¢, is
large. To show that A; = B, one uses Proposition 2.2. Fix some j and let £; 1, = nf; +r with 0 <r < ¥;.
In view of (11.3)

(11.7) mes({e € T |log||My, (6, E)|| — £;Le, (E)| > 55@}) < C5He
Applying this with S6 = L,, /100 shows that

min (1M, (8 + k)| > exp(36;Le, /4) = 1

for all 8 € G; where
mes(T9\ G1) < Cnd= 57 < Cluy (772 = 5.

One checks that g > n provided £; is large. Moreover, by (11.7) there exists a set Go with mes(T%\Gs) < C'Ej_T
so that

s [log M (8 -+ (k -+ 1)6560)[ |-+ 108 |1Ms, (8 + ktseo)|| — log |IMe, (6 + (k + 1)tje0) Mo, (8 + ko) ] <
. 1

(118) < QEj(sz + S(S) — QEj(Lzzj — S(S) = QEj(sz - Lzzj + 256) < 3

Ejsz.

Since this is clearly less than %log i, (2.2) is satisfied. Therefore, Proposition 2.2 applies to all 8 € G; U G
and hence

n—1 n—1
log || Mz, (B)]] = Y log|[ My, (6 + ktjw)|| + Y log|[ My, (8 + (k + 1)¢jw) My, (8 + ktjw)]|
k=0 k=0

(119) < 256 +C2
I
for all such 8. Integrating (11.9) over G; N G5 yields

£ £
— 2Ly, + Ly | < C S—]—I-L-I-E;T < 18—

11.10 L,
( ) | Gy plipa it

J+1

with an appropriate choice of €. To complete the proof of A; => B;, one simply applies the same reasoning
to Mag,,, and then subtracts the resulting inequality from (11.10). We skip the details.

i+
Since B; now holds for all j, one concludes that
4 4
sz+1 > sz — Q(sz — Lzzj) - C1S5——> sz —3C15——
i liya
3 £ Ay 4
11.11 2 L, — {— A
( ) > ahn 3Cy S 7 + A +...+ Tt
In view of (11.5) it is clear that
D=4
j=1 £‘7+1
provided ¢ is large. Since Ly, > SE;UM the lemma follows from (11.11). O

Remark 11.2. Tt is possible to prove a version of this lemma under a weaker condition than (11.3). More
precisely, one can replace n=7 by (log n)_z_é, but we do not elaborate on this point.
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In order to use this lemma to prove positivity of L(A, ) one needs to insure that the initial conditions (11.4)
are satisfied. This will be accomplished by means of the following lemma. First we need to introduce some
further notation. Let

[ AV4(6) - F 1 0 0 0
1 AV;2(0) — F 1 oo . . . 0
0 1 AVz0)—E 1 0 0 . . 0
(11.12)  fo(8, A, E) = det ‘ ‘
i 0 0 . S L AV(e) - F ]
where V;(0) = V(T70). Recall the simple property
fn(GaAaE) fn—l(TgaAaE)
11.13 M, (0,)\ E) = .
1.13) oam=| OGN T
Finally, let
(11.14) Dn(0,), E) = diag(AV1(8) — E,... AV,(0) — E).
Lemma 11.3. Let 0 < € < 1. Then there is a constant C, depending only on V such that
1
(11.15) (1—¢€)logh—Cpe™t < —/ log||M,, (6, X, E)|| d6 < log A\ + C,
n Jord

for all |E| < 2A||V||eo, and A > Ao(V, d, n,€).

Proof. The upper bound in (11.15) is simple. In fact,

log [, (8, A, )| < 3" log |1 4; (6., E)|| < nlog A + nC,
j=1
as claimed. Now fix some 0 < € < 1 and any F as above. The matrix on the right—hand side of (11.12) can
be written in the form D,, + By, where D,, is given by (11.14). Clearly, || B,|| = 2 and
1 1o
—log|det D, (8, A, E)| =log A+ — log |V;(8) — E/A.
1081t Dn (8.0, ) = log A + 23 log|5(6) — £/

By the Dunford-Schwarz maximal ergodic theorem

mes({@ETd3 |%§10g|W(9)_E/A|| >p}) < %/Td

with an absolute constant C'. Since by the following lemma

sup /
[ E]<2X]|V]|oo /T4

log |V (8) — E/A|| @

log |V (8) — E//\|‘ 9 < C,

one therefore has

1
(11.16) mes({@ € T4: —log|det D, (0, E)| > log A — C'Ue_l}) >1- %
n

for an appropriate choice of C),. Clearly,
(11.17) IDn(6,\, EY7H| < A~! sup |V;(0) — E/AI7L.
<

1<]
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By the following lemma there is § = §(V, n, €) > 0 such that
mes({@ETd: min |V(Tj0)—E//\|<(5}) <n sup mes({BE€T:|V(8) —E/N <))< <
1<jsn |EI<2AVloe 2
Combining this with (11.17) yields

mes({6 € T+ |[D, (6,1, B) ™' > A7'/6)) < 5
and thus

(11.18) mes({6 € T: 2|[Dn (8, A, B) " B,|| < 1}) > 1 — %

provided A > Xg(V,n,¢). Let G C T? be the intersection of the sets on the left-hand sides of (11.16)
and (11.18). Then mes(T¢\ G) < ¢, and for any 8 € G,

1 1
[ (8,0 E) = =log|det D, (8, E)|4+ —log|det(I + D,(8,\, E)"'B,)|
n n

logh — Cye~! —log2.

>
> [fn(8, 4, E)| (see (11.13)),

Since ||[Mp|| > 1 and ||M,(0)]]
1 1

—/ log || My, (8, A, E)|| d6 > —/ log||M,, (8, X, E)||d8 > (1 — ¢)log A — Cye™?

n Td n G

provided A > Ag(V, n, €), as claimed. O
The following technical lemma about real-analytic functions was used in the previous proof.

Lemma 11.4. Suppose V is a nonconstant real-analytic function on Qo = [—2,2]¢ with supg, |V < 1. Then
there exist e = ¢(V,d) > 0 and C' = C(V,d) so that

mes({(x1,...,2q) € [—1,1]¢: V(e ..., 2q) — E| < t}) < Ct°
foradl -1<E<land 0<t<1.

Proof. Tt is not hard to derive this result from Theorem 8, part (B) in [29], see also Theorem 4 in that paper.
Moreover, this statement is also contained in a forthcoming paper by A. Brudnyi. However, since Lemma 11.4
is much simpler than the results in [29], we give a short self—contained proof. We use the following fact about
analytic functions of one complex variable, see Theorem 4, section 11.3 in [27]:

Let f(z) be an analytic function in the disk {z : |z| < 2e} bounded by M and assume |f(0)| = 1. Then

log A
mm&eDmmwﬂMSADSde%gﬁ)
for any A > 0. In fact, the set on the left-hand side can be covered by a family of disks {D;}; so that
. log A
(11.19) Zj:dlam(Dj) < C’exp(logM).

To apply this fact, consider a covering

(-1, C [ Blpe, )
=1

where m = m(d) such that |[VV(p,)| > go = go(V) > 0 and r; < 1/10 for every £. Suppose that |aix1V(p1)| >
go/d and define fy(z) = aile(pl + zu) where u is a unit vector in R? and z € C. In view of (11.19), there
is some € = €(V, d) such that

(11.20) mes({z € [—ry,m]: |fulz)] < té}) < Ctd
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for any § > 0 and 0 < ¢ < 1. Integrating this over «w and summing over £ = 1, ... m one obtains
mes({(z1,...,24) € [1, 1] [VV(21,...,24)| <1°}) < Cto<.
Suppose |[VV (p)| > t° for some point p € [—1,1]%. Then clearly
IVV(p')| > %té for all |p’ — p| < ct®.
One therefore concludes that
mes({[=1,1]*: |V = E| <t}) < mes({[~1,1]%: [V = B| < t,[VV| > t'}) + mes({[-1, 1] : [VV| < t°})
< OB 4 o,
Choosing ¢ = ﬁ, say, implies the lemma. O

The following proposition is the main result of this section.
Proposition 11.5. Suppose (11.3) holds. With L(\, E) as defined above,
(11.21) inf L\ E) > %log/\
provided A\ > Xo(V, d). In particular, (11.21) holds in case of an ergodic shift on T4
Proof. Consider first the case |E| < 2A||V]|s. Clearly,

S\ E) = log(CA|[V||eo + 1)

satisfies the requirement (11.2) for all n. To obtain the first condition in (11.4) one needs to insure that
(setting ¢ = 1 in (11.15))
(11.22) %log/\ —Cy > 401log(CA|V]e + 1)€7/%.

Fixing some ¢ > max({y, 100§) with £y as in Lemma 11.1, and taking A > Ag(V,d, ¢) sufficiently large
yields (11.22). To obtain the second condition in (11.4), one applies (11.15) with ¢ = 1/32, say. For large A
the proposition now follows from Lemma 11.1 for energies as above.

Now suppose that |E| > 2A||V||s. Then

INV(T78) — E| > M|V|co-

Let D, be as in (11.14). Then |det D, (0, X, E)| > (A[|V|leo)” and || Dy (0, X, E)7Y| < AV ]Jeo)™! < 3
provided A > 4||V||2l. Writing the matrix on the right-hand side of (11.12) as D,, + By, leads to

a8, )\, E) = det(Dy,) det(I + D' By,).
One therefore has (since ||B,|| < 2)

1 1
inf —log[fn(6,A, E)| > —log[(A||[V][e)"27"] = log A 4 log |[V][oc — log 2.
BcTa N n

Hence
1
—/ log || M (8, A, E)|| d6 > log A — C,
n Td

which implies that

inf  L(\ E)>logh—C,
1221V [loo

and the proposition follows. [l
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