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1. IntroductionTraditionally the physical applications of integrable systems are exhausted by theapproximations to real dynamical systems. The con�gurations of the (classical or quantum)model form the phase space which is a manifold M with the symplectic two-form ! orPoisson bi-vector �.The phase space might carry a natural complex structure, such that the symplecticform ! is a holomorphic (2; 0)-form, the Hamiltonians H(p; q) are the holomorphic func-tions and the vector �elds are holomorphic vector �elds (see [1] for example). The use ofintegrable systems as describing the evolution in the physical models is less transparent inthis case.The integrable systems in the holomorphic sense entered physics approximately at thesame time as the string theory did. Particle which has a one-real-dimensional worldline isnaturally described with the help of a real phase space, its (real) time evolution being gen-erated by the real Hamiltonian. The worldsheet of a string is a complex curve, embeddedinto the target space. It senses holomorphic geometry in many di�erent ways. In partic-ular, the embeddings of the worldsheet � are governed by a two dimensional conformal�eld theory on �. An example of holomorphic integrable system relevant to the latter isthe famous Hitchin system. The phase space of this model is the cotangent bundle to themoduli spaceMG(�) of holomorphic G-bundles over a Riemann surface �. One can thinkof Knizhnik-Zamolodchikov-Bernard [2] equations in two dimensional WZW theories as ofthe non-stationary quantum version of Hitchin system [3][4][5][6][7][8]. The rôle of timesis played by the complex (and hypothetically W)-moduli of �. Complex time evolutionoccurs also in the models of N = (2; 2) strings, where space-time may have (2; 2) signature[9]. However there exist other possibilities for integrable system to encode the physicalinformation.In particular, the rich source of holomorphic integrable systems is the combination ofsupersymmetry and duality. It is known for some time now that the holomorphy of certainquantities (like the superpotential in N = 1 or prepotential in N = 2) in the supersym-metric theories in three/four dimensions yields powerful predictions for the behavior of thequantum theory even in the presence of the non-perturbative e�ects [10], [11], [12],[13],[14], [15]. In particular, the complex structure of the moduli space of vacua in N = 43d gauge theories and N = 2 4d gauge theories can be determined revealing the exciting2



link with the special nature of the geometry of the phase spaces of complex integrablesystems [16], [17], [18], [15]. The action variables appear as the central charges in the BPSrepresentations of the susy algebra [16].There exists an approach to a class of integrable system which allows to uncover theorigin of their integrability/solvability. Namely, one realizes the system under investigationas a projection of a simple system on a larger phase space [19],[20]. This idea is actuallya counterpart of the main principle behind the gauge theories - the complex dynamicsof the actual world (as far as most of the fundamental interactions are concerned) is aprojection of a somewhat simpler dynamics of the extended phase space. One of the goalsof the present discussion is to use the analogy between the two ideas and explain certainproperties of integrable systems as well as gauge theories.We are going to study the phenomenon of duality whose precise de�nition is presentedshortly. Duality is a subject of much recent investigation in the context of (supersymmetric)gauge theories, in which case the duality is an involution, which maps the observables ofone theory to those of another. The duality is powerful when the coupling constant in onetheory is inverse of that in another (or more generally, when small coupling is mappedto the strong one). For example, a weakly coupled (magnetic) theory can be dual to thestrongly coupled (electric) theory thus making possible to understand the strong couplingbehavior of the latter. In particular, it was shown by N. Seiberg and E. Witten [12] thatusing the concept of duality one can �nd exact low-energy Lagrangian of N = 2,d = 4SU(2) gauge theory. A more fascinating recent development is that the duality connectingweak and strong coupling regimes of one or di�erent theories may have a geometric origin.The most notorious example of that is provided by M-theory [21],[22]. We are going tostudy the dualities in integrable systems, related to the gauge theories with the emphasison their geometric origin.The study of geometry of integrable systems also allows to understand the origin ofcertain constructions of separation of variables [23]. The similarity of this construction tothe description of the D2-brane moduli space and its rôle in the understanding the stringduality makes one hope that both subjects - many-body integrable systems and gaugetheories (more generally, D-geometry of M. Douglas [24][25]) will bene�t more from eachother in the near future.Topics left beyond the scope of the paper: To keep the size of the paper withinreasonable limits we decided to restrict our attention with the pure many-body systems.More or less everything we have said can be carried over to the spin systems both of the3



`adjoint' [26][27] and `fundamental' [28] type. We don't discuss extensively the relationof our dualities in integrable systems to the physics of D-branes [29][30][31]. Some ofthe results in this direction together with the applications to the theory of separationof variables can be found in [23]. Also, except for the general discussion and two-bodyexamples we don't treat quantum case. For some results related to our main topic see[32][33][34][35]. Realizations of elliptic Ruijsenaars-Schneider models via Hamiltonian andPoisson reductions can be found in [36].Organization of the paper: Various concepts of duality are discussed in the section 2.The examples of the dual systems are studied in section 3 where mostly two-body case istreated, both classical and quantum one. Many-body systems are studied in the section4 with the explanation of the dualities between them coming from Hamiltonian/Poissonreductions. The section 5 is devoted to the gauge dynamics and their relation to theintegrable systems discussed so far. We discuss the geometry of the moduli spaces of vacuaof supersymmetric gauge theories in three, four, �ve and six dimensions and construct alittle dictionary translating the notions of integrable systems to those of gauge theories.Acknowledgements: During the �ve years of the development of this project we have ben-e�ted a lot from the discussions with our colleagues and friends on the matters re
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2. The concepts of Duality:Let (M;!) be a symplectic manifold. There exist Darboux local coordinates (cf. [37])in which the symplectic form looks like a canonical one:! = mXi=1 dpi ^ dqi (2:1)The local canonical coordinates are de�ned up to the symplectomorphisms. Unlike the gen-eral di�eomorphisms, which have N functional degrees of freedom, N being the dimensionof the manifold, the symplectomorphisms have only 1 functional degree of freedom.The evolution of a Hamiltonian system is de�ned with the help of Hamiltonian H :M ! IR. The function H de�nes a Hamiltonian vector �eld by the formula�VH! = �dH (2:2)The integrable system on M has a maximal collection of the functionally independentcommuting Hamiltonians Hi i = 1; : : : ;m = 12dimM :[VHi ; VHj ] = 0 (2:3)Let ~h : M ! B � IRm be the map de�ned as: ~h : x 7! (H1(x); : : : ;Hm(x)). Liouville'stheorem states that the integrable system has a normal form locally: there are coordinates(Ii; 'i), such that ! =Xi dIi ^ d'iHk = fk(fIg) (2:4)i.e. Ik are coordinates on B. For a su�ciently small domain U � B the space ~h�1(U) isthe product U�IRn�m�T 2m�n and 'k are standard linear coordinates on IRn�m�T 2m�n.If the common level set of all Hamiltonians is compact then this set is isomorphic to thetorus of the dimension m. In that case one may impose a condition on the coordinates'i that the di�erentials d'i have periods which are integer multiples of 2�. This �xes thecoordinates (I; ') up to the action of discrete group PGLm(ZZ).The Liouville theory also has a counterpart in the holomorphic setting where themanifold M is replaced by the complex manifold, the symplectic form is a holomorphicclosed (2; 0)-form, the Hamiltonians H are the holomorphic functions and the vector �eldsare holomorphic vector �elds. The Liouville theorem modi�es in this case. In fact the6



Liouville real tori are replaced by the complex tori. If we require these tori to be abelianvarieties then we get what is called algebraically integrable system [38]. In the family ofsuch varieties the degenerate �bers can appear.The coordinates Ii are referred to as \action" variables. If n = 0 then there is a niceformula for I. Let b1; b2 2 U � B be su�ciently close to each other. Choose a basis eb inIH1(~h�1(b1);ZZ). Connect the points b1 and b2 with a path 
 � U . The base eb1 can betransported to IH1(~h�1(
);ZZ) by means of the Gau�-Manin connection and it de�nes anelement ~� 2 IH2(~h�1(
); ~h�1(b1 [ b2);ZZ). Then~I(b2)� ~I(b1) = Z~� !2.1. (p; q)! (I; ')Suppose that we have two integrable systems fHkg and fHDk g on the same symplecticmanifold M . In this situation we say that these two systems are dual to each other.Notice that this de�nition does not make duality an involution.A pair of integrable systems given on one symplectic manifold (M;!) is called self-dualif there exists a symplectic involution � :M !M exchanging fHkg and fHDk g, i.e., suchthat for any k = 1; : : : ; n ��Hk = HDkOnce we have two integrable systems on the same manifold such that both collectionsof Hamiltonians constitute at least locally a coordinate system on the phase space M , onecan write down the equations of motion of the second integrable system in the secondorder formalism using the action variables Ii of the �rst system as the coordinates qi forthe second.The global version of this de�nition is: Two Hamiltonian systems are dual to eachother in the sense of action-coordinate duality if the action variables Ii of the �rst systemcoincide with the coordinates qi of the second one and vice versa.2.2. I ! IDIn the holomorphic algebraic category there is an interesting complication: the torushas a complex dimension m and therefore IH1(Tb;ZZ) = ZZ2m. One can do the following,though: choose a symplectic basis eb = (A�; B�) such that A\A = B \B = 0; A� \B� =���, where \ is an intersection form IH1 
ZZ IH1 ! ZZ.7



Then the action variables are the periods of � over the A-cycles. The reason for theB-cycles to be discarded is simply the fact that the B-periods of � are not independent ofthe A-periods. On the other hand, one can choose as the independent periods the integralsof � over any lagrangian (in the sense of \) sublattice in IH1(Tb;ZZ).This leads to the following structure of the action variables in the holomorphic setting.Locally over a patch in B one chooses a basis in IH1 of the �ber together with the set ofA-cycles. This choice may di�er over another patch. Over the intersection of these discsone has a Sp2m(ZZ) transformation relating the bases. Altogether they form an Sp2m(ZZ)bundle. It is an easy excercise on the properties of the period matrix of abelian varietiesthat the two form: dIi ^ dIDi (2:5)vanishes. Therefore one can always locally �nd a function F - prepotential, such that:IDi = @F@Ii (2:6)This duality maps the integrable system to itself. It is called action-action (AA) dual-ity.2.3. Quantum dualityThere exists a clear quantum counterpart of this picture. Consider the eigenvalueproblem for the Schr�odinger operators and the issue of the normalization of the wave-functions.The quantum integrable system is a complete collection of \independent" (in theappropriate sense) commuting operators fĤig; i = 1; : : : ;m, acting in the Hilbert spaceH of the model. By completeness we mean that these operators have simple commonspectrum U � IRm.The commuting operators have common eigenfunctions. Genericallythe eigen-value problem: Ĥkj~�i = ek(�)j~�i (2:7)has the unique (up to normalization) solution. Here ei is the corresponding eigenvalueand ~� is a label, which takes values in some set �. Altogether, ek form an imbeddinge� : �! UTypically one has another set of commuting operators (\position operators") fĤDk gand the eigen-states j~xi with eigen-values ek(~x) in the Hilbert space of the model arerepresented as the appropriate functionals on the space of the eigen-values of the operators8



ĤDk . Here ~x is another label, which takes values in the set �D, which is mapped by eD�to UD 2 IRm. The familiar case is M = T �M, HM = L2(M), the operators Ĥi arerepresented as commuting di�erential operators, and ĤDk are represented as operators ofmultiplication by a function eDi (~x). Suppose that we are given two classically AC dualHamiltonian systems. Let Ii and IDi be their action variables (recall that IDi are thecoordinates for the �rst system). Assume that there exist quantum integrals of motion forboth systems. Let us denote by Îi the quantum integrals of motion of the �rst system andby ÎDi the quantum integrals of motion of the second one.Once we have a quantum integrable system we can identify H with the space L2(�)of square integrable functions on � (w.r.t. the spectral measure d�). Indeed, choose abasis in H consisting of the common eigenvectors (2.7) j~�i, where ~� = f�1; : : : ; �mg 2 �.Then for any j i 2 H one can associate the function h~�j i on �. Of course this mappingH ! L2(�) depends on the normalization of the eigenvectors we have chosen.In particular any operator A acting on H can be expressed as an operator acting onL2(�) as Â :  (~�) 7! Z�h~�jAj~�0i (~�0)d�(~�0)Now suppose that we have two integrable systems Ĥ1; : : : ; Ĥn and ĤD1 ; : : : ; ĤDn on thesame Hilbert space H. We can use the �rst one to identify the Hilbert space with thespace of functions on its spectrum L2(�) and write down the operators of the secondintegrable system as acting on these functions and not on some abstract Hilbert spacevectors. Consider the function h~�j~�Di 2 L2(�) 
 L2(�D) = L2(� � �D), where j~�i andj ~�Di are the eigenvectors of the �rst and the second integrable system respectively. Thisfunction by de�nition satisfy for any k = 1; : : : ;m the equations:Z�h~�jĤDi j~�0ih~�0j~�Did�(~�0) = eDi (�D)h~�j~�DiZ�D h~�j~�D0ih~�D0jĤij~�Did�(�D0) = ei(�)h~�j~�Di (2:8)We see that the function h~�j~�Di turns out to be an eigenfunction for two commuting set ofoperators acting on two groups of variables. Otherwise the function h~�j~�Di is not uniquelyde�ned by the two dual integrable systems since the arbitrary change of the normalizationsof the eigenvectors j~�i 7! F (~�)j~�i and j~�Di 7! FD(~�D)j~�Di results inh~�j~�Di 7! F (~�)FD(~�D)h~�j~�Di9



Note also that though we have written the equations (2.8) as integral equation withthe kernel being a generalized function for particular dual systems these equations may bedi�erential or di�erence ones. (In fact it happens in examples considered in the sequel.)Analogously to the classical case a pair of quantum integrable systems fHig andfHDi g is called self-dual if there exists a unitary involution � : H ! H exchanging the twocollections of operators, i.e. such that for any k = 1; : : : ;m� �Hk = HDk � �Though the two integrable systems of a self-dual pair are completely equivalent, the corre-sponding function h~�j~�Di does not necessarily satisfy the condition h~�j~�Di = h~�Dj~�i. Onecan make it obey this equation after a suitable normalization of the eigenvector bases.In some cases it is natural to choose � among the action variables of the classicalintegrable system.3. Examples of dual systems. One degree of freedom:In this section we work out explicitly a few examples of the dual systems.3.1. Classical systemsTwo-particle systems which we are going to consider reduce (after exclusion of thecenter of mass motion) to a one-dimensional problem. The action-angle variables can bewritten explicitly and the dual system emerges immediately once the natural Hamiltoniansare chosen. The problem is the following. Suppose the phase space is coordinatized by(p; q). The dual Hamiltonian (in the sense of AC duality) is a function of q expressed interms of I; ', where I; ' are the action-angle variables of the original system : HD(I; ') =HD(q). In all the cases below there is a natural choice of HD(q).Calogero oscillator: The Hamiltonian in the center of mass frame reads as:H(p; q) = p22 + !2q22 + �22q2 (3:1)where ! and � are the parameters. In the limiting cases � = 0 and ! = 0 one gets the usualoscillator and rational Calogero-Moser system respectively. The action-angle variables I; 'can be found by the standard procedure:I = 12� I pdq = 12� I s2(E � !2q22 � �22q2 )dqd' =dqp � @I@E ��1I (3:2)10



with the result: I = E � !�2! = 14! �p2 + (!q � �q )2�HD(I; ') = q22 = I! �1 + �2I +r1 + �I cos'� (3:3)The limit � ! 0 is straightforward, yet tricky. We must rescale '! 2' sinc e the periodof motion jumps as � approaches zero. We get: I = E2!HD(I; ') = q = 2pI cos('): (3:4)The limit ! ! 0 is more subtle as the classical motion become in�nite. For the systemwith the Hamiltonian H(p; q) = p22 + �22q2 (3:5)the action variable could be de�ned as the asymptotic value of the momentum: I = p2E.This choice gives rise to the evolution, linear in the \angle"-like variable,' =rq2 � �22EHD(I; ') =q22 = '22 + �22I2 (3:6)Sutherland model: The Hamiltonian is:H(p; q) = 12p2 + �22sin2(q) : (3:7)The action variable I can be chosen to be:I = p2E (3:8)To prove that one might go to the coordinate t = cos(q) and compute the integral 12� H pdqby residues. The angle variable ' can be determined from the condition dp^dq = d~I ^d'.We get: d' = IdqqI2 � 2�2sin2(q) (3:9)HD(I; ') = cos(q) = cos'r1� 2�2I2 (3:10)11



Notice, that (3.10) coincides with the Hamiltonian of the rational Ruijsenaars model (seebelow).Elliptic Calogero�Moser system: The Hamiltonian is:H(p; q) = p22 + �2}� (q) (3:11)Here p; q are complex, }� (q) is the Weierstrass function on the elliptic curve E� :}� (q) = 1q2 + X(m;n) 2 ZZ2(m;n) 6= (0; 0) 1(q +m� + n��)2 � 1(m� + n��)2 (3:12)Let us introduce the Weierstrass notations: x = }� (q), y = }� (q)0. We have an equationde�ning the curve E� :y2 = 4x3 � g2(� )x � g3(� ) = 4 3Yi=1(x � ei); 3Xi=1 ei = 0 (3:13)The holomorphic di�erential dq on E� equals dq = dx=y. Introduce the variable e0 =2E=�2. The action variable is one of the periods of the di�erential pdq2� on the curveE = H(p; q) :I = 12� IAp2(E � �2}� (q)) = 14�i IA dxpx� e0p(x � e1)(x � e2)(x � e3) (3:14)The angle variable can be determined from the condition dp ^ dq = dI ^ d':d' = 12iT (E) dxqQ3i=0(x � ei) (3:15)where T (E) normalizes d' in such a way that the A period of d' is equal to 2�:T (E) = 14�i IA dxqQ3i=0(x � ei) (3:16)Thus: 2iT (E)d' = dxq4Q3i=0(x � ei)!d' = dtq4Q3i=1(t � ti) (3:17)12



where ! = �2iT (E)pe01e02e03 = 12� IA dtq4Q3i=1(t� ti)t = 1x � e0 + 13 3Xi=1 1e0i ti = 13 3Xj=1 ejie0ie0jeij = ei � ej (3:18)Introduce a meromorphic function on E� :ccn� (z) =rx� e1x� e3 (3:19)where z has periods 2� and 2�� . It is an elliptic analogue of the cosine (in fact, up to arescaling of z it coincides with the Jacobi elliptic cosine). Then we have:HD(I; ') =ccn� (z) =ccn�E (')s1� �2e132E � �2e3 (3:20)where �E is the modular parameter of the relevant spectral curve v2 = 4Q3i=1(t � ti):�E = �IB dtq4Q3i=1(t� ti)�.�IA dtq4Q3i=1(t � ti)�: (3:21)For large I, 2E(I) � I2Elliptic Ruijsenaars model: The Hamiltonian is:H(p; q) = cos(�p)p1� 2(��)2}� (q): (3:22)As the curve E� degenerates one 
ows down to the trigonometric (}� (q) ! 1sin2(q)) orrational (}� (q)! 1q2 ) Ruijsenaars system. The spectral curve H(p; q) = E helps to de�nethe action variable I: I = 12� IA pdq; (3:23)up to the transformations I ! n1ID + n2I + 2�� n3 where n1; n2; n3 2 ZZ and (n1; n2) = 1( choice of a cycle. The appearence of n3 twas used in [39] ). We can write an explicitformula for the quantity which is better de�ned:@I@E = 12p2��2� IA dxqQ3i=0(x � ei) (3:24)13



where now e0 = 1�E22(��)2 . Under A! B transformation @I@E gets multiplied by �E, where �Eis de�ned as in (3.21) . Quite similarly to (3.17) we get:d' = 1T (E) dxqQ3i=0(x � ei) (3:25)with T (E) = 12� IA dxqQ3i=0(x � ei) (3:26)Finally, for HD given by (3.19) we get:HD(I; ') =ccn� (z) =ccn�E (')s1� 2(��)2e13E(I)2 � 1� 2(��)2e3 (3:27)Asymptotically, for large I, E(I) � cos(�I).General elliptic model: In the general case one modi�es the formula (3.13) in such away that the coe�cients g2 and g3 are the sections of the line bundles O(4n) and O(6n)respectively over B � IP1. The elliptic curve Ez de�ned by the modi�ed (3.13) degeneratesover the divisor of zeroes of its discriminant:� = g32 � 27g23 (3:28)which is a section of O(12n). The latter has generically 12n zeroes. To make the totalspace of �bration isomorphic to the K3 surface (compact simply-connected symplecticsurface) we need 24 singular �bers, which �xes n = 2. The Hamiltonian of the integrablesystem we consider is any function on B. It gives rise to a meromorphic vector �eld onM ,which linearizes along the elliptic �bers. The symplectic form is given by:! = dx ^ dzy (3:29)where z is the projective coordinate on B. Under change of the variables: ~z = 1z , ~y = � yz6 ,~x = xz4 the form (3.29) goes over to d~x^d~z~y and the equation (3.13) is mapped to~y2 = 4~x3 � ~g2(~z)~x � ~g3(~z)where the polynomials ~gk are de�ned through the relation:~gk(~z) = ~z4kgk(1=~z):14



Over a simply connected region U � IP1n��1(0) one can trivialize the bundle of the�rst homologies IH1(Ez;ZZ), in particular to make a well-de�ned choice of the A-cycle ofthe ellitpic �bre. The local action variable I = I(z) is de�ned over U by the equation:dI(z)dz = T (z) = 12� IA dxy (3:30)where the integral is taken over a chosen A-cycle. The �bration of IH1(Ez;ZZ) overBn��1(0) is non-trivial and there is no global monodromy invariant choice of A-cycles.So the action variable is de�ned by (3.30) only locally. The monodromies around the de-generate �bers corresponding to various singularities has been worked out by Kodaira andtheir physical interpretation can be found in [40]. For generic polynomials g2(z); g3(z) thesingularities are of the type A1.The angle variable dual to I(z) is nothing but the linear coordinate on the Jacobian ofthe �ber elliptic curve (3.13). In particular it is periodic with the periods 2� and 2�� (z).It is to be found from the relation: d' = 1T (z) dxy : (3:31)We can get a dual system by treating x as the Hamiltonian. Since x is not a mero-morphic function on K3 (it changes under the z ! 1z transformation) this is only possibleif we delete the elliptic �ber E1.Let us see what will be the action-angle variables. First of all, generically the �ber Cxover x 2 IP1 is an incomplete hyperelliptic curve of genus 5. The holomorphic di�erentialson this curve are: !k = zkdzp4x3 � g2(z)x � g3(z) ; k = 0; : : : 4The action variable ID = ID(x) obeys the equation:dIDdx = TD(x) = 12� IL dzy (3:32)where L is a one-cycle in IH1(Cx;ZZ). Here we face AA duality in its extreme form:the freedom to choose L is much bigger then in the case of original system, since thecorresponding duality group is Sp10(ZZ). We can partially integrate (3.32) to getID = 12� IL 'T (z)dz (3:33)15



where x = 1T (z)2} ('; � (z))The angle variable is one of the linear coordinates on the Jacobian variety of Cx, which is5 dimensional abelian variety: d'D = 1TD(x) dzyThe embedding of the Liouville tori into the abelian varieties of higher rank originatingfrom hyperelliptic curves is a well-known phenomenon in the theory of integrable systems,going back to the original work of S. Novikov and A. Veselov [41].3.2. Quantum systems.Here we work out a few examples of quantum dual systems.Harmonic oscillator: The Hamiltonian (3.1) in the limit � = 0 quantizes to:Ĥ = �12 @2@q2 + !2q22 (3:34)Its normalized eigen-functions are [42]:Ĥ n =!(n+ 12) n n(q) = �!� �1=4 e�!q222n=2pn!Hn(qp!) (3:35)where Hn(�) is the Hermite polynomial: Hn(�) = e�2(�@�)ne��2 . Using this representa-tion of the wave-function one can easily obtain a reccurence relation (details are in theappendix): pn+ 1 n+1(q) +pn n�1(x) = p2!q n(x) (3:36)It means that  n(q) is an eigen-function of the following di�erence operator:ĤD = T+pn+pnT�; T� = e� @@n (3:37)acting on the subscript n. It is easy to recognize in (3.37) the quantized version of (3.4).Sutherland model: Here we deal with the Hamiltonian:Ĥ = �12 @2@q2 + �(� � 1)2 sin2(q) (3:38)16



Its normalized eigen-functions are [42]:Ĥ n = n22  n n(q) = sin�(q)sn (n � �)!(n + � � 1)!��� 12n� 12 �cos(q)��ml (x) = 1l!@l+mx �x2 � 12 �l (3:39)For simplicity we take � and n to be half-integers. One can change � ! �� � 1 toget another eigen-function with the same eigenvalue. Using the fact that the generatingfunction for �0l 's is Z(y; x) = 1Xl=0 yl�0l = 1p1� 2xy + y2 (3:40)one derives the recurrence relations (details are in the appendix):x�ml = l + 1�m2l + 1 �ml+1 + l+m2l+ 1�ml�1cos(q) n =12�s1� �(� � 1)n(n + 1)  n+1 +s1� �(� � 1)n(n� 1)  n�1� (3:41)that is  n is an eigen-function of the �nite-di�erence operator acting on the n subscript:ĤD (q) = cos(q) (q)ĤD = T+s1� �(� � 1)n(n� 1) +s1� �(� � 1)n(n� 1)T� (3:42)which is a quantum version of (3.10).Moral of the story: The moral of the previous discussion is that the polynomial de-pendence on momenta of the hamiltonian is traded with the rational potential of thedual system. The trigonometric potential is mapped to the trigonometric (= relativis-tic) dependence on momenta of dual system. The elliptic potential gives rise to elliptic(=\double-relativistic" ) dependence onmomentum of the dual systemHamiltonian. Whenthe system with trigonometric dependence on momentum is quantized its Hamiltonian be-comes a �nite- di�erence operator. The wave-functions become the functions of the discretevariables. The origin of this is in the Bohr-Sommerfeld quantization condition. Indeed,since the trigonometric dependence of momenta implies that the leaves of the polarizationare compact and moreover non-simply connected the covariantly constant sections of the17



prequantization connection along the polarization �ber generically seases to exist. It isonly for special \quantized" values of the action variables that the section exists. In theelliptic case the quantum dual Hamiltonian is going to be a di�erence operator of ini�niteorder. The self-dual elliptic many-body system is still to be constructed. It seems that toachieve this goal one needs a notion of the Heisenberg double for the central extension ofthe two dimensional current group [43].Example of the prepotential: To illustrate the meaning of the AA duality we look atthe two-body system, relevant for the SU(2) N = 2 supersymmetric gauge theory [16]:H = p22 + �2 cos(q) (3:43)with �2 being a complex number - the coupling constant of a two-body problem and at thesame time a dynamically generated scale of the gauge theory. The action variable is givenby one of the periods of the di�erential pdq. Let us introduce more notations: x = cos(q),y = p sin(q)p�2� , u = H�2 . Then the spectral curve, associated to the system (3.43) which is alsoa level set of the Hamiltonian can be written as follows:y2 = (x� u)(x2 � 1) (3:44)which is exactly Seiberg-Witten curve [12] as it was �rst observed in [16]. The periods are:I = Z 1�1r x � ux2 � 1dx;ID = Z u1 r x � ux2 � 1dx (3:45)They obey Picard-Fuchs equation:� d2du2 + 14(u2 � 1)�� IID� = 0which can be used to write down an asymptotic expansion of the action variable nearu = 1 or u = �1 as well as that of prepotential (2.6). The AA duality is manifestedin the fact that near u = 1 (which corresponds to the high energy scattering in thetwo-body problem and also a perturbative regime of SU(2) gauge theory) the appropriateaction variable is I (it experiences a monodromy I ! �I as u goes around1), while nearu = 1 (which corresponds to the dynamics of the two-body system near the top of thepotential and to the strongly coupled SU(2) gauge theory) the appropriate variable is ID18



(which corresponds to a weakly coupled magnetic U(1) gauge theory and is actually wellde�ned near u = 1 point) [12]. The monodromy invariant combination of the periods:IID � 2F = u (3:46)(whose origin is in the periods of Calabi-Yau manifolds on the one hand and in the proper-ties of anomaly in t heory on the other) can be chosen as a global coordinate on the spaceof integrals of motion B. At u!1 the prepotential has an expansion of the form:F � 12u logu+ : : : � I2 log I +Xn fnn I2�4n3.3. Appendix.To derive the recurrence relation for the oscillator wave-functions we use the creationoperator representation:  n = 1p2n(�@� + �) n. Applying this relation twice and usingthe fact that  n is an eigen-function of Ĥ one arrives at (3.36). For the Sutherland modelwe use two obvious relations: (x � y)@xZ = y@yZ (3:47)(1� 2xy + y2)@yZ = (x � y)Z (3:48)Next, (3.47) implies: (y@y �m)@mx Z = (x � y)@m+1x Z (3:49)and (3.48) yields:�(1� 2xy + y2)@y + y � x�@mx Z = m(1 + 2y@y)@m�1x Z (3:50)Combination of those two gives rise to (3.41).
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4. Duality in Many-Body Systems:In the previous sections we discussed the concepts of duality and worked out explicitlyseveral examples of dual two-body systems in both classical and quantum cases. We nowturn to a study of many-body systems. The many-body systems can be divided into threeclasses: rational, trigonometric and elliptic one. The Hamiltonian of the model may dependon momenta/coordinates in any one of these three fashions. The duality transformationexchanges them.4.1. Examples.We summarize the systems and their duals in the following table:rat:CM $ rat:CMR! 0 " " � ! 0trig:CM $ rat:RS� ! 0 " " R! 0trig:RS $ trig:RS (4:1)Here CM denotes Calogero-Moser models [44][45][46] and RS stands for Ruijsenaars-Schneider [47][48][49][50][51]. The parameters R and � here are the radius of the circlethe coordinates of the particles take values in and the inverse speed of light respectively.The horizontal arrows in this table are the dualities, relating the systems on the bothsides. Most of them were discussed by Simon Ruijsenaars [51],[48]. We notice that theduality transformations form a group which in the case of self-dual systems listed herecontains SL2(ZZ). The generator S is the gorizontal arrow described below, while the Tgenerator is in fact a certain �nite time evolution of the original system (which is alwaysa symplectomorphism, which maps the integrable system to the dual one). We begin withrecalling the Hamiltonians of these systems. Throughout this section qij denotes qi � qj .Rational CM model: The phase space is (T �V )=�, where V is a line ar space acted onby a Coxeter group �. We consider the simplest case V = IRN , � = SN+1. Let (pi; qi)be the set of coordinates, i = 1; : : : ;N + 1 with the constraint P qi = P pi = 0. TheHamiltonians can be conveniently packaged using the Lax operator:Hk = 1kTrLkLij =pi�ij + i�(1 � �ij )qi � qj (4:2)20



In particular, the quadratic Hamiltonian reads:H2 =Xi 12p2i +Xi<j �2q2ij : (4:3)Trigonometric CM = Sutherland model. The phase space is (T �V )=�̂, where V is a lin-ear space acted on by an a�ne Coxeter group �̂. We consider the simplest case V = IRN�1,�̂ = SN � 2�R ZZN . Let (pi; qi) be the set of coordinates, i = 1; : : : ;N with the constraintP qi =P pi = 0, and the identi�cations qi � qi + 2�R ni; ni 2 ZZ. The Hamiltonians can beconveniently packaged using the Lax operator:Hk = 1kTrLkLij =pi�ij + iR�(1 � �ij)2 sin�R(qi�qj)2 � (4:4)In particular, the quadratic Hamiltonian equals:H2 =Xi p2i +Xi<j R2�24 sin2�R(qi�qj)2 � : (4:5)Rational RS = Relativistic rational CM model. The phase space is (T �V )=�̂, whereV is a linear space acted on by an a�ne Coxeter group �̂. We consider the simplest caseV = IRN�1, �̂ = SN � 2�� ZZN . Let (pi; qi) be the set of coordinates, i = 1; : : : ;N withthe constraint P qi = P pi = 0, and the identi�cations pi � pi + 2�� ni; ni 2 ZZ. The Hamiltonians can be conveniently packaged using the Lax operator:Hk = 1kTrLkLij = e�i�pi ��qij + �� Yk 6=js1� (��)2q2jk (4:6)In particular, the Hamiltonian 12 (H1 �H�1) equals:H = 12Tr(L+ L�1) =Xi cos(�pi)Yj 6=is1� (��)2q2ij : (4:7)The Lax operator (4.6) is gauge equivalent to the operatorLij = e�i�pi ��qij + ��q�+i ��j��i = ��(qi � ��)���0(qi) ; �(q) =Yi (q � qi) (4:8)21



In the limit � ! 0 both L;L of (4.6),(4.8) behave as Id�i� ( Lax operator in (4.2) )+o(�).Trigonometric RS = Relativistic Sutherland model: The phase space is (T �V )=�E ,where V is a linear space acted on by a double a�ne Coxeter group �E , E being anelliptic curve. We consider the simplest case V = IRN�1, � = SN � �2�� ZZN � 2�R ZZN�. Let(pi; qi) be the set of coordinates, i = 1; : : : ;N with the constraint P qi = P pi = 0, andthe identi�cations pi � pi + 2�� ni; qi � qi + 2�Rmi; ni;mi 2 ZZ. The Hamiltonianscan be conveniently packaged using the Lax operator:Hk = 1kTrLkLij = e�i�pi sin�R��2 �sin�R2 (qij + ��)� Yk 6=jvuuut1� sin2 �R��2 �sin2 �Rqjk2 � (4:9)In particular, the Hamiltonian 12 (H1 �H�1) equals:H = 12Tr(L+ L�1) =Xi cos(�pi)Yj 6=ivuut1� sin2(R��)sin2�R(qij)2 � : (4:10)The Lax operator (4.6) is gauge equivalent to the operatorLij = e�i�pi sin�NR��2 �Nsin �R2 (qij + ��)�q�+i ��j��i = � NR2sin�NR��2 � P (qi � ��)P 0(qi) ; P (q) = NYi=1 sin�R2 (q � qi)� (4:11)In the limit R ! 0, with � �xed the expressions (4.9),(4.10),(4.11) naturally go over to(4.6), (4.7), (4.8) respectively. In the limit � ! 0, R �xed both L;L behave as Id�i�( Laxoperator in (4.4) ) + o(�).4.2. Explanations: Hamiltonian and/or Poisson reductionSuppose we are given a symplectic manifold (X;!X ) with the Hamiltonian action ofa Lie group G with equivariant moment map � : X ! g�. The symplectic quotient of Xwith respect to G is the symplectic manifold M , denoted as X==G and de�ned as:M = ��1(0)=G22



Its symplectic form !M is de�ned through the relation:p�!M = i�!Xwhere p : ��1(0)!M is the projection and i : ��1(0)! X is the inclusion.Let us assume that an integrable Hamiltonian system is de�ned on X. Let �K =fK1; : : : ;Kxg, x = 12dimX denote the set of its integrals of motion. Suppose that thissystem is equivariant with respect to the action of G. This is equivalent to the statement,that Ki and �a form a closed algebra K with respect to the Poisson brackets. Let usassume that on the zero level of the moment map � the center Z(K) of the algebra K issu�ciently big, i.e. the dimension of its spectrum equals half the dimension of M . Thenthe integrable system on X descends to the integrable system on M , K being replaced byZ(K).Now let us impose one further restriction. Suppose that X possesses another G-equivariant integrable Hamiltonian system, with integrals �Q = fQ1; : : : ; Qxg, which isdual to the system �K (algebraically it means that �K and �Q generate all functions on X).We also assume that �Q descends to M .On the original manifold X the evolution of the system �K looks non-trivially in theaction-angle variables for the system �Q and vice versa. The same is true for the reducedsystems. The advantage of the consideration of X is that the systems on X can be muchsimpler then those on M . In the following sections we shall consider various examples ofthis situation.The similar statements hold in the case of Poisson manifolds, the relevant reductionbeing the Poisson one (one �rst takes a quotient with respect to the group and then picksout a symplectic leaf). We leave the details to the interested readers.Now we proceed to the explicit constructions. We will discuss the models introducedin the previous section on case-by-case basis and show how the reduction which yieldsthese systems also explains the dualities between di�erent systems.Rational CM model: This model can be obtained as a result of Hamiltonian reductionapplied to T �g�O [52] for g = su(N), O =CIPN�1. The symplectic form on this manifoldis the sum of Liouville form on T �g and �N�� Fubini-Study form on O. Let (e1 : : : : : eN )be the homogeneous coordinates onO. The groupG = SU(N) acts on T �g via conjugationand on O in a standard way (O = G=H, H = S(U(N � 1) � U(1))). Then the momentmap for the action of G on T �g �O is� = ad�Q(P ) � J Jij = �(N�ij � eie�j ) (4:12)23



where Q 2 g; P 2 g�. Now we choose two sets of Hamiltonians:Hk = 1kTrP k and HDk = 1kTrQk (4:13)If we identify g� and g with the help of Tr then the equation � = 0 has the form:[P;Q] = J (4:14)which is obviously preserved by the involution: P ! Q;Q ! �P . So we are guaranteedto get a self-dual system. Now we have to �nd suitable coordinates and action variables.Let us choose the gauge (remember that we have to mod out (4.14) by the action of G):Q = diag(q1; : : : ; qN ) (4:15)This gauge is preserved by the action of the maximal torus T = U(1)N�1 which turns outto be su�cient to set all ei to be equal: ei = 1 [53]. Then the equation (4.14) �xes Pwhich turns out to be nothing but L in (4.2). As it is obvious that the reduced symplecticform equalsPi dpi^dqi (with the constraintP qi =Ppi = 0) one concludes that qi's arethe action variables for the system generated by HDk 's. Therefore eigenvalues of P are theaction variables for the 
ows generated by Hk's. We therefore proved the followingStatement. Consider the map:� : f(pi; qi)g ! f(�i;��i)g (4:16)where �i's are the eigenvalues of L � P and �i are the diagonal entries of Q in theeigenbasis of P . It is an involutionLet us go back to the systems (4.13). The moment map equation (4.14) is obviouslypreserved by the transformations of the form(P;Q) 7! (aP + bQ; cP + dQ) ad� bc = 1 (4:17)which form SL2(IR) group. The transformed Hamiltoniansg �Hk = 1kTr(aP + bQ)kare easy to express through the original Hamiltonians (4.13) in the coordinates (pi; qi):g �Hk(pi; qi)j� = Hk(api + bqi; qi)ja�24



Let us restrict our attention to the SL2(ZZ) subgroup of the group (4.17). It is generatedby the transformations S = � 0 �11 0 � T = � 1 10 1� (4:18)It is clear that S coincides with the involution leading to (4.16) while T is the unit timeevolution with respect to the Hamiltonian HD2 .Trigonometric CM; Rational RS. The trigonometric CM system can be obtained asHamiltonian reduction applied to either T �G � O [52] or T �ĝ � O [54] where ĝ is thecentral extension of the loop algebra. In the latter case one has to specify the action ofthe gauge group LG on the orbit O. The correct choice is the most natural one: since theorbit is �nite-dimensional, the only sensible way the loop group can act on it is throughthe evaluation at some point. The elements of T �ĝ of our interest are the pairs:P (x); k@x +Q(x) (4:19)where k is a �xed number, P (x) is a g-valued function on a circle S1 and Q(x) is a gauge�eld on a circle. The phase space is acted on by the gauge group:P (x) 7! g(x)�1P (x)g(x); Q(x) 7! g(x)�1Q(x)g(x) + kg�1(x)@xg(x) (4:20)The moment equation has the form:k@xP + [Q;P ] = J�(x) (4:21)where J is the one from (4.12). The number k can be rescaled by the choice of the radiusof a circle S1. Instead we choose the circle of unit radius and keep k. To solve the equation(4.21) we �x a gauge (4.20). We can either decide that Q is a constant diagonal matrixQ = diag(q1; : : : ; qN )and then the solution for P (x) will produce the Lax operator (4.4) of the Sutherland modelwith R = 2�k [54],[55].It is quite amusing that the same reduction yields the rational RS model as well. Inorder to see that choose the gaugeP (x) = diag (p1 (x) ; : : : ; pN (x)) (4:22)25



Then the moment equation (4.21) implies that Q(x) is diagonal everywhere except x = 0where it has an o�-diagonal part proportional to the delta-function. At the same timeP (x) is forced to be constant pi(x) = qi.Q(x)ij = �i(x)�ij + �(x) i�qi � qj (4:23)The natural candidate for a Hamiltonian in this setting would be a gauge invariant functionof Q(x). Since Q(x) is actually a gauge �eld the gauge invariant function is a trace in somerepresentation R of a Wilson loop:HR = TrRP exp I 1kQ(x)dx (4:24)which is easy to evaluate provided we assume the following structure of the diagonal pieceof Q(x) (which supported by the alternative derivation of the solution to the momentequation below): �i(x) = 'i(x) + �(x)Xk 6=i i�qk � qiwhich makes the Wilson loopB = P expI 1kQ(x)dx = diag�e 1k H 'i(x)dx� exp� i�k r� (4:25)with r being the matrix: rij = 1qij ; i 6= j; rii = �Xj 6=i rij (4:26)It is shown in the Appendix (in the trigonometric case from which this one follows aswell) that the matrix B is gauge equivalent to (4.8) with the identi�cation � = 1k , and (cf.(4.8)): pi + 12i� log(��+i =��i ) = I 'i(x)dx:One can also get the same matrix (without the assumptions like (4.23)) B by perform-ing a reduction of T �G under the adjoint action of G at the same level J of the momentmap: � = B�1PB � P = JTrigonometric RS = Relativistic trigonometric CM model: There are three di�erentapproaches, all leading to the same �nite-dimensional Hamitlonian system. There are two26



Hamiltonian reductions and one Poisson reduction. The advantage of Hamiltonian one isthe simplicity and geometric clarity. The advantage of Poisson one is �nite-dimensionalityat each step and considerable simplicity of the proof of the canonical commutation relations.We try to outline all three approaches with the emphasis on the Poisson reduction, as therelevant Hamiltonian reduction was described in some details in [55]. We keep in mind asequence of contractions: AT2 ! T �Ĝ! G �G (4:27)where the �rst entry is the space of G-valued gauge �elds on a two-torus T2, the secondentry is the cotangent bundle to the central extension of the loop group LG and the lastone is the space of lattice (for the simplest graph, representing a two-torus) connections,described below.Hamiltonian approach: Consider the space AT2 of SU(N) gauge �elds A on a two-torusT2 = S1 � S1. Let the circumferences of the circles be R and �. The space AT2 is actedon by a gauge group G , which preserves a symplectic form
 = k4�2 Z Tr�A ^ �A; (4:28)with k being an arbitrary real number for now. The gauge group acts via evaluation at somepoint p 2 T2 on any coadjoint orbit O of G, in particular, on O = CIPN�1. Let CIPN�1have a �N�� Fubini-Study symplectic form. Let (e1 : : : : : eN ) be the homogeneouscoordinates on O. Then the moment map for the action of G on AT2 �O iskFA + J�2(p); Jij = i�(�ij � eie�j ) (4:29)FA being the curvature two-form. Here we think of ei as being the coordinates on CNconstrained so that Pi jeij2 = N and considered up to the multiplication by a commonphase factor.Let us provide a certain amount of commuting Hamiltonians. Obviously, the eigen-values of the monodromy of A along any �xed loop on T2 commute with themselves. Weconsider the reduction at the zero level of the moment map. We have at least N � 1functionally independent commuting functions on the reduced phase spaceM� .Let us estimate the dimension of M� . If � = 0 then the moment equation forces theconnection to be 
at and therefore its gauge orbits are parameterized by the conjugacyclasses of the monodromies around two non-contractible cycles on T2: A and B. Sincethe fundamental group �1(T2) of T2 is abelian A and B are to commute. Hence they are27



simultaneously diagonalizable, which makesM0 a 2(N � 1) dimensional manifold. Noticethat the generic point on the quotient space has a non-trivial stabilizer, isomorphic to themaximal torus T of SU(N). Now, in the presence of O the moment equation implies thatthe connection A is 
at outside of p and has a non-trivial monodromy around p. Thus:ABA�1B�1 = exp(R�J) (4:30)(the factor R� comes from the normalization of the delta-function in (4.29)). If we diago-nalize A, then B is uniquely reconstructed up to the right multiplication by the elementsof T . The potential degrees of freedom in J are "eaten" up by the former stabilizer T of a
at connection: if we conjugate both A and B by an element t 2 T then J gets conjugated.Now, it is important that O has dimension 2(N�1). The reduction of O with respect to Tconsists of a point and does not contribute to the dimension ofM� . Thereby we expect toget an integrable system. Without doing any computations we already know that we geta pair of dual systems. Indeed, we may choose as the set of coordinates the eigen-valuesof A or the eigen-values e the action variables for the system generated by TrBk.The two-dimensional picture has the advantage that the geometry of the problemsuggest the SL2(ZZ)-like duality. Consider the operations S and T realized as:S : (A;B) 7! (ABA�1; A�1); T : (A;B) 7! (A;BA) (4:31)which correspond to the freedom of choice of generators in the fundamental group of a two-torus. Notice that both S and T preserve the commutator ABA�1B�1 and commute withthe action of the gauge group. The group � generated by S and T (it is a subrogup of thegroup OutFree(2) of the outer authomorphismes of the free group with two generators)seems to be larger then SL2(ZZ). However in the limit �;R! 0 it contracts to SL2(ZZ) ina sense that we get the transformations (4.18) by expandingA = 1 + �P + : : : ; B = 1 +RQ + : : :for R;� ! 0.The disadvantage of the two-dimensional picture us the necessity to keep to manyredundant degrees of freedom. The �rst of the contractions (4.27) actually allows toreplace the space of two dimensional gauge �elds by the cotangent space to the (centralextension of) loop group: T �Ĝ = f(g(x); k@x + P (x))g28



which is a \deformation" of the phase space of the previous example (Q(x) got promotedto a group-valued �eld). The relation to the two dimensional construction is the following.Choose a non-contractible circle S1 on the two-torus which does not pass through themarked point p. Let x; y be the coordinates on the torus and y = 0 is the equation of theS1. The periodicity of x is � and that of y is R. ThenP (x) = Ax(x; 0); g(x) = P expZ R0 Ay(x; y)dy:The gauge transformations on S1 transform on (g(x); P (x)) is a way, similar to (4.20).The moment map equation (4.29) goes over to the moment map equation [55]:kg�1@xg + g�1Pg � P = J�(x); (4:32)with k = 1R� . The solution of this equation in the gauge P = diag(q1; : : : ; qN ) leads to theLax operator A = g(0) of the form (4.11) with R;� exchanged [55]. On the other hand, ifwe follow (4.22) and diagonalize g(x):g(x) = diag �z1 = eiRq1 ; : : : ; zN = eiRqN � (4:33)then a similar calculation leads to the Lax operatorB = P expI 1kP (x)dx = diag(ei�i ) exp iR��rwith rij = 11� eiRqji ; i 6= j; rii = �Xj 6=i rijthereby establishing the duality A$ B explicitly.Poisson description: Here we introduce a set of commuting functions on the space ofgraph connection on a graph, corresponding to a moduli space of 
at connections on atorus with one hole and describe the 
ow generated by this set. Being reduced to aparticular symplectic leaf of the moduli space of 
at connections on the torus , this setof functions turns out to be a full set of commuting Hamiltonians. We introduce anotherfull set of commuting variables and write down the Hamiltonians taking the latter set asa set of coordinates thus recovering the Ruijsenaars integrable system. Consider a graph,consisting of two edges and one vertex with the fat graph structure corresponding to apunctured torus [56]. The space of graph connections AL for such graph is just a product29



of two copies of the group G: AL = G � G = f(A;B)jA;B 2 Gg, where A and B areassigned to the edges of the graph. For a choice of ciliation on AL the Poisson bracket onAL is given by the relations, following from the general rules [56].fA
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B); (4:34)where ra = 12 (r � r21).Now let us restrict ourselves to the case G = SLN and the standard r-matrix:r =X�>0E� 
E�� + 12Xi Hi 
Hi; ra = 12X�>0E� ^E�� (4:35)In this case one can easily derive the following commutaion relationsfTrAn; Ag = 0 fTrBn; Bg = 0 (4:36)fTrAn; Bg = n(An)0 fTrBn; Ag = nA(Bn)0 (4:37)where (X)0 denotes the traceless part of the matrix X. Therefore, the functions TrBn forn = 1 : : : N � 1 considered as Hamiltonians generate commuting 
ows on AL.B (t1; : : : ; tN�1) = B (0; : : : ; 0)A (t1; : : : ; tN�1) = A (0; : : : ; 0) e�t1B+���+tN�1BN�1�0 (4:38)As it was shown in [56] the lattice gauge group GL acts on GL in a Poisson way, and thequotient Poisson manifold coincides with the moduli spaceM of smooth 
at connection onthe Riemann surface, corresponding to the fat graph L. In our case the group GL is G itself(for the graph has just one vertex) which acts on A and B by simultaneous conjugation.g : (A;B) 7! (gAg�1; gBg�1): (4:39)The functions TrAk and TrBk are invariant under this action, and therefore theirpull-downs on the moduli spaceM generate commuting 
ows there, which trajectories arejust projections of (4.38).However the moduli spaceM in our case is a Poissonmanifold with degenerate Poissonbracket. The Casimir functions of this Poisson structure are the functions of conjugacy30



classes of monodromies around holes and constant value levels of such functions are justthe symplectic leaves of M. In our case such Casimir functions are Tr�ABA�1B�1�k,pulled down to M.Di�erent symplectic leaves have di�erent dimensions and the lowest dimension of themis 2(N � 1). These leaves correspond to the monodromy around the hole conjugated to amatrix e�iR��Id + P;rkP � 1, � is a numerical constant from the previous section parameterizing the set ofsymplectic leaves of lowest dimension. Let t = e�iR�� . On the leaf M� the family offunctions TrAk; k = 1; : : : ;N � 1 forms a full set of Poisson-commuting variables.Introduce local coordinates on these symplectic leaves in the following way. Letz1 = eiRq1 ; : : : ; zN = eiRqN be the eigenvalues of the operator A and �1; : : : ; �N arethe corresponding diagonal matrix elements of B (in the basis, diagonalizing A). One cancheck that in this basis Bij = p�i�j (1� t)zi=zj � t : (4:40)The functions zi and �j are well-de�ned locally on the symplectic leafM� . Their Poissonbrackets are equal to:fzi; zjg = 0f�i; �jg = �i�j (zi + zj)(zi=zj � t)(zj=zi � t)(zi � zj) i 6= jfzi; �jg = zi�j�i;j : (4:41)To de�ne the variables, canonically conjugated to zi we can just multiply �i by factorsindependent on �i. For example one can take:si = �itN�12 Yk;k 6=is (zk � zi)(zi � zk)(zk � tzi)(zi � tzk) (4:42)One can check, that these new variables si have the Poisson bracketsfsi; sjg = 0 fzi; sjg = zisj�i;j : (4:43)Substituting this back to the formula (4.40) we get:Bij = 1� tzi=zj � t ��+i ��i �+j ��j �1=4 (4:44)31



which is gauge equivalent to (4.11).Moral revisited: We have seen in all the previous examples that the origin of the dualsystem is connected with the existence of transversal G-invariant foliations on the originalspace, which become Lagrangian foliations when pulled down to the quotient. The sim-plicity of the operating with dual systems in the advocated framework in the classical caseallows one to hope that the duality can systematically elevated to the quantum case aswell. See [57][34].4.3. Appendix. Computation of the Poisson bracketsThe bivector de�ning the Poisson structure on AL can be rewritten in the form� = 12 Xi;j;u;vEi(u)j 
Ej(v)i (�(u; v) + �(i; j)); (4:45)where �(i; j) is �1; 0 or 1 depending on whether i is less, equal or greater than j respectivelyand Ei(u)j are the standard GLN generators acting on the u-th end of the edge. (In ourcase Ei(1)j acts on A from the left, Ei(2)j acts on B from the left, Ei(3)j acts on A from theright and Ei(4)j acts on B from the right.)It is not convenient to compute the Poisson brackets between zi and �j using thisbivector directly, for it does not preserve the diagonality of the matrix A. However, tocompute the Poisson brackets of the gauge invariant functions we are allowed to add tothis bivector any term vanishing on such functions i.e. any terms of the typePuEi(u)j 
Xor X 
PuEi(u)j , where X is an arbitrary vector �eld. Using this and also the fact thatfor the diagonal A1: Ei(1)j = zizj � zi (Ei(2)j +Ei(4)j )Ei(3)j = zjzi � zj (Ei(2)j +Ei(4)j ) (4:46)the bivector � can be transformed to the form:�0 =Xi>j Ei(2)j ^ Ej(4)i zi + zj2(zi � zj) + 12Xi Ei(2)i ^ Ei(1)i +Ei(3)i ^Ei(4)i (4:47)Applying this bivector for the chosen A and B we get the desired Poisson brackets. [1 These equations are the in�nitesimal forms of the statements that (i) up to the gauge trans-formation the conjugation of A by g is equivalent to the conjugation of B by g�1 thanks to (4.39);(ii) gLA = A�1(Ag�1R )A, with gL = g�1R 32



4.4. Appendix. Solution of the moment equationHere we solve the equation (4.30):A�1BAB�1 = expR�JJ = �i�(Id� e
 ey); hey; ei = N (4:48)with A, B - N �N unitary matrices de�ned up to the gauge transformations (4.39). Weuse the notation: � = R��. We partially �x a gauge:A = diag �eiRq1 ; : : : ; eiRqN � (4:49)which leaves gauge transformations of the formh = exp (idiag(l1; : : : ; lN )) : (4:50)which preserve A, conjugate B and map e to h�1e. The exponent expR�J is easy tocompute: expJ = e�i��Id + eiN� � 1N e
 ey�Let f = B�1e, zi = eiRqi , �+i := jeij2, ��i := jfij2. Then:Bij = e�i� eiN� � 1N eif�jeiRqji � e�i�f = B�1e) Nei�eiN� � 1 = NXi=1 zi�+izj � e�i�zi (4:51)The last equation implies (see below):�+i = Ne�iN� � 1 P (e�i�zi)ziP 0(zi) ; P (z) = NYi=1(z � zi) (4:52)Now the unitarity of B implies, that�ik = fif�k eiN� � 1N Xj=1 P (e�i�zj)zjP 0(zj )(zj=zi � ei�)(zk=zj � e�i�) (4:53)Hence ��i = NeiN� � 1 P (ei�zi)ziP 0(zi) (4:54)33



To prove (4.52) consider the contour integral12�i II� P (e�i�z)dzP (z)(z � ei�zj) = Res1 = e�iN�To prove (4.54) consider the integral:12�i II� P (e�i�z)dzP (z)(z � ei�zi)(zk � e�i�z) = �ikResei�zk = �ik P 0(zk)P (ei�zk)In both cases the contour I� surrounds the roots of P (z).Notice that both ��i are real:��i = Nsin(�=2)sin(N�=2)Yj 6=i sin�Rqij��2 �sin�Rqij2 � (4:55)Substituting this back to (4.51) we get:Bij = ei((1�N)�=2+Rqij=2+"i�'j) sin �N�2 �Nsin�Rqij+�2 �q�+i ��j (4:56)where ei =: jeijei"i , fj =: jfj jei'j . The gauge transformations (4.50) allow us to set'i +Rqi=2 = 0. Then de�nepi = � 1� ((1�N)�=2 +Rqi=2 + "i) (4:57)Finally, the matrix B can also be written as:B = ����� 12 �e�i�~pe�i�r� ����12 (4:58)where �� = diag(��i ), ~p = diag(~pi),~pi = pi � �+ �2� + i2� log���i�+i � (4:59)and rij = zizi � zj ; i 6= jrii = 12 ziP 00(zi)P 0(zi) (4:60)34



To prove the last statement consider the matrixRij(�) = sin �N�2 �N sin�Rqij+�2 ��+i = e i(N�1)�2 rzjzi P (e�i�zi)(e�i�zi � zj)P 0(zi)We have: B = ����� 12 �e�i�~pR(�)� ���� 12A simple contour integral calculation shows thatR(�1)R(�2) = R(�1 + �2)The rest follows by expanding near � = 0. If one performs an expansion near R = 0 onegets the statement that the rational Lax operator (4.8) is conjugated to the operator ofthe form announced in (4.25).It is amusing that the expression 12i� log(�+i =��i ) appears quite often in Bethe AnsatzEquations for XXX magnets and their �eld theoretic limits [58].
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5. Gauge theories and duality in integrable systems5.1. Old approach: many-body systems as low-dimensional gauge theoriesIt is a fruitful approach to think of the many-body system as of the gauge theory ofa certain kind. Namely, the particles of the model can be identi�ed (sometimes) with theeigenvalues of the Wilson loops in the theory and the gauge dynamics becomes a dynamicsof the particles. Of course, in the real four dimensional world the gauge �eld has in�nitelymany degrees of freedom and we don't expect to see any tractable quantum mechanicalsystem unless we have a principle which allows us to restrict the dynamical problem toa �nite number of degrees of freedom. The simplest case is the case of low-dimensionalgauge theory, where the gauge �eld simply doesn't have propagating degrees of freedom.Consider, for example, two dimensional Yang-Mills theory with a gauge group G = U(N).When formulated on a circle of radius R in the Hamiltonian formalism the theory has asa phase space the space of gauge �elds A(x) on the circle and their duals - chromoelectric�elds E(x). The gauge group acts on (E;A) as follows:(E;A)! (g�1Eg; g�1@xg + g�1Ag) (5:1)leading to the Gauss law @xE + [A;E], which is nothing but the moment map from thesection 4:2. We can go to the gauge where A is a constant (w.r.t. x) diagonal matrixA = diag(q1; : : : ; qN ) (5:2)Here are our particles. The time evolution makes qi to move and depending on the cir-cumstances such as the presence of the sources like J (which correspond to the time-likeWilson lines) one gets the Hamiltionian system of the kind we described and studied.The large gauge transformations shift qi's by integer multiples of 1R making them liveon a circle of radius 12�R . One can get more complicated examples by deforming themodel as follows. Replace S1 by T2, E by the second component of the gauge �eldalong the torus, the symplectic form being RT2 Tr�A ^ �A. Then the Gauss law becomesFA = @xAy � @yAx + [Ax; Ay]. Setting it to zero allows to diagonalize Ax; Ay simultane-ously: �AxAy � = diag�� p1q1 � ; : : : ;� pNqN �� (5:3)Here, xi and yi do not Poisson-commute, although both live on circle. One gets, thereforea system of relativistic partcles on a circle. The radius of the circle is 12�Rx , the speed of36



light is Ry. The gauge theory this model corresponds to is known as Chern-Simons theoryon a torus (perhaps with punctures).One can go higher in dimensions with some care. For example, by considering super-symmetric N = 2 theory in d = 4 with compact space M3 one gets a quantum mechanicson the moduli space of monopoles in IR3.5.2. New approach: many-body systems in supersymmetric gauge theoriesRecent progress in the understanding of non-perturbative phenomena emerged afterthe work of Seiberg and Witten on four dimensionalN = 2 SYM [12] and works of Seibergand his collaborators on N = 1 d = 4 theories. The major tool in these studies is thelow energy e�ective Lagrangian which is constrained by two priniciples - the holomorphyof chiral objects and electric-magnetic duality. It is the electric-magnetic duality whichmakes the integrable systems to appear in the solutions to the gauge theories.In particular, one can argue on the general grounds [18] that any N = 2 supersym-metric gauge theory in four dimensions corresponds to a certain integrable system in theholomorphic sense. The point is that the Coulomb branch of the theory parameterizesthe family of abelian varieties (whose period matrix coincides with the matrix of couplingconstants of the e�ective low-energy abelian theory). Moreover the total space must carrya holomorphic symplectic form !, whose integral along the cycle in the �ber gives rise toa derivative of the central charge of a BPS representation of N = 2 susy algebra alongthe base. Moreover the abelian varieties must be Lagrangian with respect to !.The integrable systems corresponding to a large number of �eld theories are identi�ed.In particular, the low-energy theory of the pure N = 2 SU(Nc) SYM is governed bythe ANc�1 periodic (or a�ne) Toda system. The N = 2 theory with a massive adjointhypermultiplet corresponds to the elliptic Calogero-Moser system, where the mass (whichis naturally a complex parameter in the N = 2 theory) is identi�ed with the couplingconstant. The theory is UV �nite (in fact, it is softly broken N = 4 theory) and thereforehas as another modulus { the ultra-violet coupling � which enters the integrable model asthe modulus of the curve. Another theories which were mentioned so far are the relativisticgeneralizations of those two. These correspond to �ve dimensional gauge theories with thesame number of supercharges, compacti�ed on a circle of a �nite radius R. The speed oflight of the relativistic model is proportional to the inverse radius 1R of the circle. For thetheories with fundamental matter the �rm identi�cation with the integrable systems hasbeen made in four [28][59] as well as in �ve and six dimensions [59].37



In some cases the dualities suggested by the integrable systems are not obvious onthe �eld theory side. We plan to return to more detailed treatment of these cases (whichinvolve six dimensional theories) in the future.5.3. Dualities in �eld theories vs. dualities in many-body systemsDualities in the old approach: Let us start with the two-dimensional Yang-Mills the-ory with the gauge coupling g2 formulated on a Riemann surface of area A. It was shownby E. Witten in [60] that the perturbative in g2A part of the correlation functions in this(non-supersymmetric) theory coincides with the correlation functions of certain observablesin twisted N = 2 supersymmetric two-dimensional Yang-Mills theory.Among the twisted supercharges of the latter theory one �nds a scalarQ which annihi-lates the complex scalar � in the vector multiplet. The observables constructed out of thegauge invariant functions of � and their descendants can be mapped to certain observablesin non-supersymmetric theory.As we discussed above, when Yang-Mills theory is formulated on a cylinder with theinsertion of an appropriate time-like Wilson line, it is equivalent to the Sutherland modeldescribing a collection of N particles on a circle. The observables Tr�k of the previousparagraph are precisely the integrals of motion of this system.One can look at other supercharges as well. In particular, when the theory is for-mulated on a cylinder there is another class of observables annihilated by a supercharge.One can arrange the combination of supercharges which will annihilate the Wilson loopoperator. By repeating the procedure similar to the one in [60] one arrives at the quantummechanical theory whose Hamiltonians are generated by the spatial Wilson loops. Thismodel is nothing but the rational Ruijsenaars-Schneider many-body system.The duality between these two systems is a consequence of the fact that when liftedto the supersymmetric model both �eld theories become equivalent to the same N = 2super-Yang-Mills theory in two dimensions.The self-duality of trigonometric Ruijsenaars system has even more transparent physi-cal meaning. Namely, the �eld theory whose quantum mechanical avatar is the Ruijsenaarssystem is three dimensional Chern-Simons theory on T2�R1 with the insertion of an ap-propriate temporal Wilson line and spatial Wilson loop. It is the freedom to place thelatter which leads to several equivalent theories. The group of (self-)dualities of this modelis very big and is generated by the transformations S and T (4.31).38



In short, the duality reveals here itself as a consequence of Lorentz invariance of theunderlying �eld theory.Duality in the new approach: The new approach deals with supersymmetric gaugetheories in three, four, �ve and six dimensions. Perhaps the richest case is the six dimen-sional theory compacti�ed on a three dimensional torus T3 down to three dimensions.As was discussed extensively in [15] in case where two out of three radii of T3 are muchsmaller then the third one R the e�ective three dimensional theory is a sigma model withthe target space X being the hyper-kahler manifold (in particular, holomorphic symplectic)which is a total space of algebraic integrable system. The complex structure in which X isthe algebraic integrable system is independent of the radius R while the K�ahler structuredepends on R in such a way that the K�ahler class of the abelian �ber is proportional to1=R.The duality of the integrable systems shows up in the gauge theories in the severalways.First of all AA duality the well-known phenomenon in the four dimensional N = 2gauge theory which was observed and exploited in [12] and then later on in the plenty ofworks. The low-energy e�ective theory has di�erent sets of relevant degrees of freedomover di�erent regions of the moduli space of vacua. The transformations between di�er-ent descriptions go through the electric-magnetic duality on the gauge �eld side which isaccompanied by supersymmetry by a AA-type duality on the scalar side. Although thisduality is connected with the electric-magnetic symmetry which is not realized geometri-cally in four dimensions, it does become geometric when the theory is lifted to a tensortheory in six dimensions [61].The duality of the AC type is also present and is rather interesting. As one varies themoduli of T3 the geometry of X varies as well. In particular, di�erent four dimensionaltheories can 
ow to the same three dimensional theory. This is where the AC duality inthe integrable systems shows up.For example, a certain scaling limit of the �ve dimensional SU(N) theory with massiveadjoint hypermultiplet, compacti�ed on a circle seems to be equivalent/dual to four di-mensional SU(N) theory with massive adjoint hypermultiplet when instanton correctionsare turned o� in both theories.The theory in three dimensions which came from four dimensions upon a compact-i�cation on a circle whose low-energy e�ective action describes only abelian degrees of39



freedom can be always dualized to the theory of scalars/spinors only, due to the vector-scalar duality in three dimensions. In this way di�erent sets of vector and hypermultipletsin four dimensions can lead to the same three dimensional theory (one of the examples ofsuch symmetries is provided by the three dimensional mirror symmetry [62][63]).One can also use the AC duality to establish the following fact. Consider two AC dualintegrable systems. Consider three dimensionalN = 4 supersymmetric gauge theory whoseHiggs branch is X - the phase space of these systems. Then two N = 2 supersymmetrictheories whose spaces of scalars are both X but the superpotentials are taken from thesets of Hamiltonians of the �rst and the second systems respectively are dual to each otherin the sense that both 
ow in the UV/IR (depending on the whether these Hamiltonianscorrespond to the relevant or irrelevant operators) to the same theory.We are certain that there are more applications of the notion of duality in integrablesystems both in the theory of integrability itself and in the physics, gauge theories beingthe arena for the most immediate ones.
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