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ON ASYMPTOTIC ISOPERIMETRIC CONSTANT OF TORI

D. BURAGO AND S. IvaNOV

In this note we continue study of asymptotic invariants of Riemannian tori.
By asymptotic invariants we mean invariants which do not change under passing to
finite covers. In [Bul2] we show that the asymptotic volume growth of a Riemannian
torus is at least as fast as that of a flat one. One may ask what are the possible values
of “asymptotic isoperimetric constants” for such metrics (see definition below). We
show that the asymptotic isoperimetric constant of a conformally flat torus is no
less than that of a flat one, while for general metrics (in dimensions higher than 2)
this constant may be arbitrarily small.

Let (M, g) be a universal cover of a Riemannian n-torus.

Definition. We define the asymptotic isoperimetric constant o(M,g) of (M, g) by

, Vol, (2, g)'/™
o(M,g) = limsu
( g) Voln(Q)—l:))oo VOln—l(aQLg)l/n_l

where V,, and V,,_; are Riemannian measures (for ¢g) of the respective dimensions
and €2 ranges over all open bounded subsets of M.

Clearly o(M, g) is finite, positive, and invariant under homotheties of the metric.
We denote by o, the isoperimetric constant of the standard Euclidean n-space,
mn_l(Sn—l)l/(n—l)

Op =

where m,, and m,_; are the standard (Euclidean) measures of the respective di-
mensions.

Proposition. If (M, g) is a universal cover of a conformally flat torus, then o(M,g) >
on, and the equality holds if and only if the metric 1s flat.

Proof. Our argument is a version of so called Loewner’s length-area method (see
[G1] for details). Let M = R"™, and let the metric g be given by ¢ = Agr where g is
the standard Euclidean metric, A is a positive smooth function on R", A is periodic
with respect to some (co-compact) lattice I' C R™. Without loss of generality we
may assume that the volume of R"/I" is equal to 1 for both metrics g and gp, i.e.

/ A" dmy, = m,(R"/T) = 1.
R/
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Define a := fR"/F A" "1 dm,,. By Holder inequality, the above identity implies that
a < 1 unless A = 1.

For # € R™ and r > 0 denote by B(z,r) the Euclidean ball of radius r centered
at x. To prove that o(M,g) > o, it suffices to construct a sequence of regions €,
with volumes growing to infinity and

. VO1n(leg)1/n
lim 2
i—oo Vol,,—1(09Q;, g)t/n—1

O -

We will show that such regions can be chosen among Euclidean balls B(x,r).

It is clear that
Vol(B(x,7),9)

ma(B(z,r))

—1 as r — oo,

with the convergence being uniformin z. (Indeed, both Vol(B(x,r),g) and m,(B(x,r))
are asymptotically equal to the number of fundamental domains of I' contained in
B(x,r)). Define
A(z) = \/'01,1_1(({93(:]1;,r),g)7

Mp—1(0B(x,r))

then A,(z) is the average value of the function A"~! over the Euclidean sphere
OB(x,r). Thus the function A, is I'-periodic. A standard argument of Euclidean
integral geometry shows that the average value of A, (w.r.t. the standard Euclidean
volume my,) is equal to a. Therefore for every r > 0 there is a a point x¢ = xo(r) €
R" such that A,(x9) < a. To complete the proof, observe that

o(M,g) > limsup
r—00 r($0(r)

1 my(B :1;0(7“)))1/" On

( _
> Ql/(n=1) " mn_l(aB(xO(r)))l/(n—l) T al/(n=1)” O

Remark. The Proposition implies, in particular, that the asymptotic isoperimet-
ric constant of an arbitrary 2-dimensional torus is at least o9, since all 2-tori are
conformally flat. There is a direct 2-dimensional argument, which may give better
geometric insight and suggests different candidates for “optimal” regions ;. We
give an outline of the argument below.

In the notations of the Proposition, denote by E; the ellipse of maximum area
inscribed in the ball of radius ¢ in the stable norm of ¢ (see [Bul2] for definitions).
The proof of the volume growth theorem [Bul2] implies that the area enclosed in E,
in g is at least mi? + o(i*). Choose Vi points on E; such that all distances between
neighboring points are equal, an let ; be the interior of a geodesic polygon (w.r.t.

Ve = 1. On the other

hand, the length of each side of {2; differs from the distance between its endpoints
in the stable norm by no more than a constant ¢. This distance, in its turn, is
no greater than the distance between these endpoints in the Euclidean metric for
which FE; is a ball of radius ¢. Combining these inequalities, one concludes that
Vol; (0€;) < 2mi + ¢V, that completes the argument.

g) with these vertices. One easily sees that lim;
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Remark. Reasoning as above, one easily sees that, for given asymptotic volume
growth, in dimension 2 the exact value of o(M, g) can be recovered from the stable
norm (this observation was made independently by P. Pansu.) This is no longer
true in higher dimensions, as one can observe from the examples in the proof of the
next theorem.

Theorem. Ifn > 3, then there exists Z" -periodic Riemannian metrics on R™ with
arbitrarily small asymptotic 1soperimetric constants.

Proof. Let pr,: R" — R"! denote the projection onto the ith coordinate hy-
perplane. Fix n congruent open balls Uy,...U, in I"™! (where I = [0,1]), such
that the “tubes” G; := pri_l(Ui) in R™ are disjoint. This is possible since n > 3.
Let v = myp—1(Uy) = -+ = my—1(U,). Now pick a small ¢ > 0 and construct a
Z"-periodic Riemannian metric g. on R" such that

(1) The volume form determined by g. is equal to m,,.
(2) In every tube G;, j = 1,...,n, the line element of g. is given by

d:Jcl2
2

ds?® = 52"_2d:1;§ + Z .

i# ]

We will prove that o(R",¢.) — 0 as ¢ — 0. Consider a domain @ C R" and let
V = Vol (Q,9:) = mu(Q). We think of R™ as the union of “cells” I" + k, k € Z™,
each cell carrying a copy of the same metric. Let Q' denote the union of cells I"™ + k&
for which m,(Q N (I" + k)) > 1 — v/2. To complete the proof, we will derive a
lower bound for Vol,,,—1(€,¢.) in terms of V' and . We argue separately for the
two following cases.

Case 1: m,(Q') > V/2. By a known Loomis—Whitney inequality [LW] the
volume of ' can be estimated from above in terms of volumes of its projections:

[T a1 (b)) = i)

Hence there exists j, 1 < j < n, for which my,_1(pr;(2')) > M (V)71 The
projection pr;(’) is a union of (n — 1)-dimensional cells of the form It 4 k.
ke Z" 1. Forevery cell I""' +k C pr; (') we have

M1 (pr;(Q) NI+ k) >1—v/2
and therefore
mn_l(prj(Q) N(U; +k))>v/2.
Note that pr;(9Q) = pr;(2) since Q is bounded. The definition of g. implies that

mp—1(pr;(X)) <e" ! Vol,1(X, g.) for any set X C prj_l(Uj + k), so

Vol,,—1(092 N prj_l(Uj +k),9:) > %
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Therefore

Vol_1 (89, g.) > g e (pr () > ) e (@)
Replacing m,(2') by V in the last expression will only affect the constant.

Case 2: m, (') < V/2. Consider the cells of the form I"+k, k € Z", intersecting
with Q with m,(Q N (I" +k)) < 1—wv/2. It is easy to check (e.g., by applying
the Loomis—Whitney inequality to the set Q@ NInt(I" 4+ k)) that, for these cells, the
values

Myp—1 (O N Int(I™ 4+ k))
my (N Int(I™ + k))

have a positive lower bound depending only on v and the dimension n. Since the
terms m,, (2 N Int(I"™ + k)) adds up to a value of at least m, (2 ~ Q') > V/2. This
gives us the following estimation

Vol,,—1(092,g:) > ¢(n,e) -V

for case 2.
As V — oo, the inequalities obtained for the two cases take the form

‘ Vl/n
lim sup Vol 1(860, g )1 /D) <e¢(n)-e
and y
lim sup v 0,

Vol,_1(0%, g2 ) /(n=D —
respectively. Thus we obtain that o(R",¢.) <e¢(n)-e. O
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