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ON ASYMPTOTIC ISOPERIMETRIC CONSTANT OF TORID. Burago and S. IvanovIn this note we continue study of asymptotic invariants of Riemannian tori.By asymptotic invariants we mean invariants which do not change under passing to�nite covers. In [BuI2] we show that the asymptotic volume growth of a Riemanniantorus is at least as fast as that of a at one. One may ask what are the possible valuesof \asymptotic isoperimetric constants" for such metrics (see de�nition below). Weshow that the asymptotic isoperimetric constant of a conformally at torus is noless than that of a at one, while for general metrics (in dimensions higher than 2)this constant may be arbitrarily small.Let (M;g) be a universal cover of a Riemannian n-torus.De�nition. We de�ne the asymptotic isoperimetric constant �(M;g) of (M;g) by�(M;g) = lim supVoln(
)!1 Voln(
; g)1=nVoln�1(@
; g)1=n�1where Vn and Vn�1 are Riemannian measures (for g) of the respective dimensionsand 
 ranges over all open bounded subsets of M .Clearly �(M;g) is �nite, positive, and invariant under homotheties of the metric.We denote by �n the isoperimetric constant of the standard Euclidean n-space,�n = mn(Dn)1=nmn�1(Sn�1)1=(n�1)where mn and mn�1 are the standard (Euclidean) measures of the respective di-mensions.Proposition. If (M;g) is a universal cover of a conformally at torus, then �(M;g) ��n, and the equality holds if and only if the metric is at.Proof. Our argument is a version of so called Loewner's length-area method (see[G1] for details). LetM = Rn, and let the metric g be given by g = �gE where gE isthe standard Euclidean metric, � is a positive smooth function on Rn, � is periodicwith respect to some (co-compact) lattice � � Rn. Without loss of generality wemay assume that the volume of Rn=� is equal to 1 for both metrics g and gE, i.e.ZRn=� �n dmn =mn(Rn=�) = 1:The �rst author is partially supported by a Sloan Foundation Fellowship and NSF grant DMS-95-05157. The second author is partially supported by RFFR grant 96-01-00676 and CRDF grantRM1-169. Typeset by AMS-TEX1



2 D. BURAGO AND S. IVANOVDe�ne � := RRn=� �n�1 dmn. By H�older inequality, the above identity implies that� < 1 unless � � 1.For x 2 Rn and r > 0 denote by B(x; r) the Euclidean ball of radius r centeredat x. To prove that �(M;g) � �n it su�ces to construct a sequence of regions 
iwith volumes growing to in�nity andlimi!1 Voln(
i; g)1=nVoln�1(@
i; g)1=n�1 � �n:We will show that such regions can be chosen among Euclidean balls B(x; r).It is clear that Vol(B(x; r); g)mn(B(x; r)) ! 1 as r!1;with the convergence being uniform in x. (Indeed, both Vol(B(x; r); g) andmn(B(x; r))are asymptotically equal to the number of fundamental domains of � contained inB(x; r)). De�ne Ar(x) = Voln�1(@B(x; r); g)mn�1(@B(x; r)) ;then Ar(x) is the average value of the function �n�1 over the Euclidean sphere@B(x; r). Thus the function Ar is �-periodic. A standard argument of Euclideanintegral geometry shows that the average value of Ar (w.r.t. the standard Euclideanvolume mn) is equal to �. Therefore for every r > 0 there is a a point x0 = x0(r) 2Rn such that Ar(x0) � �. To complete the proof, observe that�(M;g) � lim supr!1 Voln(B(x0(r)); g)1=nAr(x0(r))1=(n�1)� 1�1=(n�1) � mn(B(x0(r)))1=nmn�1(@B(x0(r)))1=(n�1) = �n�1=(n�1) : �Remark. The Proposition implies, in particular, that the asymptotic isoperimet-ric constant of an arbitrary 2-dimensional torus is at least �2, since all 2-tori areconformally at. There is a direct 2-dimensional argument, which may give bettergeometric insight and suggests di�erent candidates for \optimal" regions 
i. Wegive an outline of the argument below.In the notations of the Proposition, denote by Ei the ellipse of maximum areainscribed in the ball of radius i in the stable norm of g (see [BuI2] for de�nitions).The proof of the volume growth theorem [BuI2] implies that the area enclosed in Erin g is at least �i2 + o(i2). Choose pi points on Ei such that all distances betweenneighboring points are equal, an let 
i be the interior of a geodesic polygon (w.r.t.g) with these vertices. One easily sees that limi!1 Vol2(
i)Vol2(Ei) = 1. On the otherhand, the length of each side of 
i di�ers from the distance between its endpointsin the stable norm by no more than a constant c. This distance, in its turn, isno greater than the distance between these endpoints in the Euclidean metric forwhich Ei is a ball of radius i. Combining these inequalities, one concludes thatVol1(@
i) � 2�i + cpi, that completes the argument.



ON ASYMPTOTIC ISOPERIMETRIC CONSTANT OF TORI 3Remark. Reasoning as above, one easily sees that, for given asymptotic volumegrowth, in dimension 2 the exact value of �(M;g) can be recovered from the stablenorm (this observation was made independently by P. Pansu.) This is no longertrue in higher dimensions, as one can observe from the examples in the proof of thenext theorem.Theorem. If n � 3, then there exists Zn-periodic Riemannian metrics on Rn witharbitrarily small asymptotic isoperimetric constants.Proof. Let pri : Rn ! Rn�1 denote the projection onto the ith coordinate hy-perplane. Fix n congruent open balls U1; : : : Un in In�1 (where I = [0; 1]), suchthat the \tubes" Gi := pr�1i (Ui) in Rn are disjoint. This is possible since n � 3.Let v = mn�1(U1) = � � � = mn�1(Un). Now pick a small " > 0 and construct aZn-periodic Riemannian metric g" on Rn such that(1) The volume form determined by g" is equal to mn.(2) In every tube Gj , j = 1; : : : ; n, the line element of g" is given byds2 = "2n�2dx2j +Xi6=j dx2i"2 :We will prove that �(Rn; g")! 0 as "! 0. Consider a domain 
 � Rn and letV = Volm(
; g") = mn(
). We think of Rn as the union of \cells" In+ k, k 2 Zn,each cell carrying a copy of the same metric. Let 
0 denote the union of cells In+kfor which mn(
 \ (In + k)) > 1 � v=2. To complete the proof, we will derive alower bound for Volm�1(
; g") in terms of V and ". We argue separately for thetwo following cases.Case 1: mn(
0) � V=2. By a known Loomis{Whitney inequality [LW] thevolume of 
0 can be estimated from above in terms of volumes of its projections:nYi=1mn�1(pri(
0)) � mn(
0)n�1:Hence there exists j, 1 � j � n, for which mn�1(prj(
0)) � mn(
0)1�1=n. Theprojection prj(
0) is a union of (n � 1)-dimensional cells of the form In�1 + k,k 2 Zn�1. For every cell In�1 + k � prj(
0) we havemn�1(prj(
) \ (In�1 + k)) > 1� v=2and therefore mn�1(prj(
) \ (Uj + k)) > v=2:Note that prj(@
) = prj(
) since 
 is bounded. The de�nition of g" implies thatmn�1(prj(X)) � "n�1Voln�1(X; g") for any set X � pr�1j (Uj + k), soVoln�1(@
 \ pr�1j (Uj + k); g") � v2 � "�(n�1):



4 D. BURAGO AND S. IVANOVThereforeVoln�1(@
; g") � v2 � "�(n�1) �mn�1(prj(
0)) � c(n) � "�(n�1) �mn(
0)1�1=n:Replacing mn(
0) by V in the last expression will only a�ect the constant.Case 2: mn(
0) < V=2. Consider the cells of the form In+k, k 2 Zn, intersectingwith 
 with mn(
 \ (In + k)) � 1 � v=2. It is easy to check (e.g., by applyingthe Loomis{Whitney inequality to the set 
\ Int(In+ k)) that, for these cells, thevalues mn�1(@
 \ Int(In + k))mn(
 \ Int(In + k))have a positive lower bound depending only on v and the dimension n. Since theterms mn(
 \ Int(In + k)) adds up to a value of at least mn(
r 
0) � V=2. Thisgives us the following estimationVoln�1(@
; g") � c(n; ") � Vfor case 2.As V !1, the inequalities obtained for the two cases take the formlim sup V 1=nVoln�1(@
; g")1=(n�1) � c(n) � "and lim sup V 1=nVoln�1(@
; g")1=(n�1) = 0;respectively. Thus we obtain that �(Rn; g") � c(n) � ". �Acknowledgement. The proof of the theorem is to some extent motivated byknown examples demonstrating that a natural area-volume analog of the Besikowiĉinequality fails. We would like to thank Yu. Burago who has drawn our attentionto these examples. The �rst author would also like to thank the Erwin SchrodingerInternational Istitute for Mathematical Physics for the opportunity to spend twoweeks at the Institute. References[B] I. Babenko, Asymptotic volume of tori and geometry of convex bodies, Mat. Zametki 44(1988), no. 2, 177{188.[Bu1] D. Burago, Periodic metrics, Advances in Soviet Math. 9 (1992), New York, 205{210.[Bu2] , Periodic metrics, in \Seminar on Dynamical Systems", Progress in NonlinearDi�erential Equations (H. Brezis, ed.), vol. 12, Birkhauser, 1994, pp. 90{96.[BuI1] D. Burago and S. Ivanov, Riemannian tori without conjugate points are at, GAFA 4(1994), no. 3, 259{269.[BuI2] D. Burago, S. Ivanov, On asymptotic volume of tori, GAFA 5 (1995), no. 5, 800{808.[BurZ] Yu. Burago and V. Zalgaller, Geometric inequalities, Springer-Verlag, 1988.[C] C. Croke, Volumes of balls in manifolds without conjugate points, Int. J. Math. 3 (1992),no. 4, 455{467.[D1] W. Derrick, A weighted volume-diameter inequality for n-cube, J. Math. Mech. 18 (1968),no. 5, 453{472.
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