
ESI The Erwin Schrödinger International Boltzmanngasse 9
Institute for Mathematical Physics A-1090 Wien, Austria

Injective Modules and Amenable Groups

G. Racher

Vienna, Preprint ESI 2313 (2011) April 27, 2011

Supported by the Austrian Federal Ministry of Education, Science and Culture
Available online at http://www.esi.ac.at



Injective modules and amenable groups

G. Racher

Abstract We show that a locally compact group is amenable if and only if it
admits a (nontrivial) injective Banach module which is reflexive as a Banach
space, generalizing work by H.G. Dales, M. Daws, H.L. Pham, P. Ramsden,
and M.E. Polyakov.
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1 Introduction

Let A be a Banach algebra. By a left A-module we shall always mean a Banach
left A-module satisfying ‖ax‖ ≤ ‖a‖ ‖x‖ whenever a ∈ A and x ∈ X, and
a morphism of left A-modules will be a bounded linear map commuting with
the respective actions. X will be called injective, cf. [H, III.1.14, p. 136], if for
any morphism ι of left A-modules admitting a bounded linear left inverse ℓ,
and any morphism λ0 from Y0 into X, there is a morphism λ from Y into X
satisfying λ0 = λ ◦ ι,

Y0

λ0

��

ι
// Y

ℓ
//

λ

~~|
|

|

|

Y0 ℓ ◦ ι = idY0
, λ ◦ ι = λ0.

X

Let the essential part, Xe, of a left A-module X be defined as the closed
linear hull of the set of products ax, a ∈ A, x ∈ X. We shall call X nontrivial if
Xe 6= 0, essential if X = Xe, and reflexive if X is reflexive as a Banach space.
In case that X is reflexive and A has a bounded two-sided approximate unit
(of norm ≤ c), there is an A-module morphism (of norm ≤ c) projecting X
onto Xe. The Banach space dual, X∗, of X becomes a right A-module under
the action defined by 〈x, x∗a〉 = 〈ax, x∗〉, for x∗ ∈ X∗, a ∈ A, and x ∈ X.

Let G be a locally compact group. Choosing a left invariant Haar measure
on G, we obtain the Banach algebra L1(G) whose dual space will be identified



with L∞(G) by 〈a, ϕ〉 =
∫

a(s)ϕ(s) ds whenever a ∈ L1(G) and ϕ ∈ L∞(G).
If G acts on L1(G) by left translation, (Lsa)(t) = a(s−1t), s ∈ G, a ∈ L1(G),
its dual action on L∞(G) is given by (L∗

sϕ)(t) = ϕ(st), s ∈ G, ϕ ∈ L∞(G).
It is well known that every essential left L1(G)-module is a left G-module
such that, for any x ∈ X, the mapping s 7→ sx is continuous from G into X
and ‖sx‖ = ‖x‖, s ∈ G, the respective actions being related by the formula
ax =

∫
a(s) sx ds, for a ∈ L1(G) and x ∈ X. This same formula defines on

any such left G-module an essential left L1(G)-action.
Letting G act by left translation on Lp(G), 1 < p < ∞, Lp(G) becomes an

essential reflexive left L1(G)-module. H.G. Dales, M. Daws, H.L. Pham, and
P. Ramsden recently showed the following theorem, [DDPR, Theorem 9.6].

Theorem([DDPR]). – Let G be a locally compact group, and 1 < p < ∞. If
the left L1(G)-module Lp(G) is injective, then G is amenable.

Imitating F.J. Yeadon’s method, [Y], for establishing the existence of a
trace in a finite von Neumann algebra, we show

Proposition. – Let G be a locally compact group. If G admits a nontrivial
injective Banach left L1(G)-module which is reflexive as a Banach space, then
G is amenable.

Combining this with known results we obtain the following characterization
of compact and amenable groups, in good correspondence with Helemskii’s
philosophy, cf. e.g. [H, p. 262].

Corollary. – Let G be a locally compact group.

a) If G admits a nontrivial projective left L1(G)-module which is reflexive as
a Banach space, then G is compact; if, conversely, G is compact then every
essential left L1(G)-module is projective.

b) If G admits a nontrivial flat left L1(G)-module which is reflexive as a
Banach space, then G is amenable; if, conversely, G is amenable then every
left L1(G)-module is flat.

These results are equally valid for uniformly bounded, left or right Banach
L1(G)-modules. For the notions of the injective tensor product, ⊗̌, of Banach
spaces and integral operators to be used we refer to the monograph of J. Cigler,
V. Losert, and P. Michor, [CLM]. The proof of the Proposition starts right after
this Introduction.

2 Some Preparations

The L1(G)-module action on K(L1(G),X) and the morphism ι described be-
low were introduced by P. Ramsden, [Ra, Ch. 5, p. 21]; cf. also[DDPR, Ch. 9].



2.1 The L1(G)-module K(L1(G),X)

Let G be a locally compact group, and X an essential Banach left L1(G)-
module. We denote by K(L1(G),X) the Banach space of compact linear map-
pings from L1(G) into X. For any s ∈ G and T ∈ K(L1(G),X), the operator
sT , defined by (sT )(b) = sT (Ls−1b), b ∈ L1(G), belongs to K(L1(G),X).
Since for any b ∈ L1(G), the function s 7→ (sT )(b) is continuous and bounded,
from G into X, the integral

(aT )(b) =

∫
a(s) (sT )(b) ds (b ∈ L1(G))

defines, for any a ∈ L1(G), a bounded linear operator aT from L1(G) into
X, of norm ‖aT‖ ≤ ‖a‖ ‖T‖. To show that it is compact, we may assume a
nonnegative, of integral one, and of compact support, K. But then the image
of the unit ball, OL1(G), of L1(G) under aT is contained in the closed convex
hull of K · T (OL1(G)). Since this is compact, the compactness of aT follows.

2.2 The morphism ι : X −→ K(L1(G),X)

As in [Ra, p. 21], we define an isometric linear embedding ι of X into K(L1(G),X)
by (ιx)(b) = 〈b, 1G〉x, for x ∈ X and b ∈ L1(G), 1G denoting the constant
function one on G. Since for any a ∈ L1(G) and x ∈ X, we have

(a(ιx))(b) =

∫
a(s) s(ιx)(b) ds

=

∫
a(s) s(ιx(Ls−1b)) ds

=

∫
a(s) 〈Ls−1b, 1G〉 sx ds

= 〈b, 1G〉

∫
a(s) sx ds

= 〈b, 1G〉 ax

= ι(ax)(b) (b ∈ L1(G)),

ι is a morphism: ι(ax) = a(ιx) whenever a ∈ L1(G), x ∈ X. For any b ∈ L1(G)
of integral one, the bounded linear operator ℓ : K(L1(G),X) −→ X, ℓ(T ) =
T (b), T ∈ K(L1(G),X), satisfies ℓ(ιx) = ιx(b) = 〈b, 1G〉 x = x, so that ℓ is a
left inverse of ι.

2.3 Let now the essential left L1(G)-module X be injective. Setting Y0 = X,
Y = K(L1(G),X), and λ0 = idX in the definition, we obtain a morphism λ,

X
ι

−→ K(L1(G),X)
λ

−→ X,



satisfying the following properties:

(i) λ is bounded and linear;
(ii) λ(aT ) = a(λT );
(iii) λ(ιx) = x,

whenever a ∈ L1(G), T ∈ K(L1(G), X), and x ∈ X. To show that λ commutes
also with the respective G-actions, we proceed as in [L, Lemma 2, p. 354].

Proof Let us fix s ∈ G and T ∈ K(L1(G),X). Setting, for a ∈ L1(G),
(Rsa)(t) = a(ts−1)∆(s−1), t ∈ G, ∆ the Haar modulus of G, we first compute,
for a ∈ L1(G) and x ∈ X,

a(sT ) =

∫
a(t) t(sT ) dt

=

∫
a(t) (ts)T dt

=

∫
a(ts−1)∆(s−1) tT dt

= (Rsa)T,

and

(Rsa)x =

∫
(Rsa)(t) tx dt

=

∫
a(ts−1)∆(s−1) tx dt

=

∫
a(t)∆(s−1)∆(s) (ts)x dt

=

∫
a(t) t(sx) dt

= a(sx).

Since X is essential, these formulae yield, (ai) being an approximate unit in
L1(G),

λ(sT ) = lim aiλ(sT )

= lim λ(ai(sT ))

= lim λ((Rsai)T )

= lim (Rsai)(λT )

= lim ai(s(λT ))

= s(λT ),

i.e. λ(sT ) = s(λT ), for s ∈ G and T ∈ K(L1(G),X).



2.4 Since L∞(G) = L1(G)∗ enjoys Grothendieck’s approximation property,
the mapping

L∞(G)⊗̌X −→ K(L1(G),X), (ϕ ⊗ x)∼(b) = 〈b, ϕ〉 x (b ∈ L1(G)),

ϕ⊗x ∈ L∞(G)⊗̌X, defines an isometric linear isomorphism from the injective
tensor product of L∞(G) and X onto K(L1(G),X), cf. [CLM, 3.5. Corollary,
p. 85]. Defining the G-action on L∞(G)⊗̌X by s(ϕ ⊗ x) = (Ls−1)∗ϕ ⊗ sx, for
s ∈ G, ϕ ⊗ x ∈ L∞(G)⊗̌X, this isomorphism becomes a G-morphism, since
for any b ∈ L1(G),

(s(ϕ ⊗ x)∼)(b) = s((ϕ ⊗ x)∼(Ls−1b)) = s〈Ls−1b, ϕ〉x

= 〈b, (Ls−1)∗ϕ〉sx = ((Ls−1)∗ϕ ⊗ sx)
∼

(b),

i.e. (s(ϕ ⊗ x))∼ = s(ϕ ⊗ x)∼ whenever s ∈ G and ϕ ⊗ x ∈ L∞(G)⊗̌X.

2.5 Summarizing the above, we have: if the essential left L1(G)-module X is
injective, the morphism ι, ιx = 1G ⊗ x, x ∈ X, possesses a left inverse λ,

X
ι

−→ L∞(G)⊗̌X
λ

−→ X

enjoying the following properties:

(i) λ is bounded and linear;
(ii) λ((Ls−1)∗ϕ ⊗ sx) = sλ(ϕ ⊗ x);
(iii) λ(1G ⊗ x) = x,

whenever s ∈ G, ϕ ∈ L∞(G), and x ∈ X.

3 A Lemma

3.1 Let K be a compact Hausdorff space, and Y be a Banach space. It is well
known that the dual space of the injective tensor product
C(K)⊗̌Y = C(K,Y ) is isometrically isomorphic to the Banach space,
I(C(K), Y ∗), of integral operators v from C(K) into Y ∗, and that this again
is isometrically isomorphic to the Banach space, bvrca(B(K), Y ∗), of regular
countably additive vector measures m of bounded variation on the Borel
σ-algebra, B(K), of K with values in Y ∗,

(C(K)⊗̌Y )∗ = I(C(K), Y ∗) = bvrca(B(K), Y ∗),

the correspondence between v and m being given by m(A) = ṽ(cA), A ∈
B(K), where ṽ : C(K)∗∗ −→ Y ∗ denotes the unique weak∗-weak∗ continuous
extension of v, and cA the characteristic function of A. The variation, |m|, of
m ∈ bvrca(B(K), Y ∗), defined as

|m|(A) = sup
∑

‖m(Ai)‖ (A ∈ B(K)),



the supremum being taken over all finite Borel partitions {Ai} of A, is a finite
positive regular Borel measure on K. Defining the norm of m ∈ bvrca(B(K), Y ∗)
by ‖m‖ = |m|(K), we have ‖m‖ = I(v), the integral norm of v ∈ I(C(K), Y ∗)
corresponding to m. – The theorems involved in this discussion are due to
I. Singer, [S]; cf. also VI.3.Theorem 3, p. 162, and VI.3.Theorem 12, p. 169, in
[DU], and, in particular, Satz 1 in Losert’s Thesis, [Lo, p.7].

3.2 Lemma. – Let K be a compact Hausdorff space, X and Y be Banach
spaces, and u a weakly compact linear map,

u : C(K) ⊗̌Y −→ X.

For any sequence (An) of pairwise disjoint Borel subsets of K, and any
bounded sequences (yn) in Y and (x∗

n) in X∗, we have

lim 〈x∗

n, u∗∗(cAn
⊗ yn)〉 = 0.

Proof Let (An) be a sequence of disjoint sets in B(K), (x∗

n) a bounded se-
quence in X∗, (yn) a sequence in Y of bound c, and ε > 0. Using the dual
operator u∗ : X∗ −→ (C(K)⊗̌Y )∗, we define, for any n, vn ∈ (C(K)⊗̌Y )∗ =
I(C(K), Y ∗) and mn ∈ bvrca(B(K), Y ∗) by

vn = u∗(x∗

n), mn(A) = ṽn(cA) (A ∈ B(K), n ≥ 1).

Since, by the weak compactness of u∗, the set {mn} is relatively weakly com-
pact in bvrca(B(K), Y ∗), Theorem 1 in [B, p. 288] – or IV.2.Theorem 5 in
[DU, p. 105], in case Y happens to be, for instance, reflexive – yields a finite
positive Borel measure µ on K such that the set, {|mn|}, of variations of the
mn’s is equicontinuous with respect to µ. Hence, for some δ = δ(ε) > 0,
we have |mn|(A) < ε for all n whenever A ∈ B(K) satisfies µ(A) < δ.
From limµ(An) = 0 we obtain an n(δ) such that µ(An) < δ, and therefore
|mn|(An) < ε, for all n ≥ n(δ). This implies

|〈x∗

n, u∗∗(cAn
⊗ yn)〉| = |〈u∗(x∗

n), cAn
⊗ yn〉|

= |〈yn, ṽn(cAn
)〉|

= |〈yn,mn(An)〉|

≤ ‖yn‖ ‖mn(An)‖

≤ ‖yn‖ |mn|(An)

≤ c ε,

for all n ≥ n(δ), proving the lemma.

Any of the following conditions on X and Y assures the weak compactness of
a bounded linear map u from C(K)⊗̌Y into X:



(a) X is reflexive, and Y arbitrary;
(b) X is weakly sequentially complete, and Y ∗ has the Radon-Nikodým prop-

erty, cf. [G];
(c) X is weakly sequentially complete, and Y is a C∗-algebra, cf. [ADG, The-

orem 4.2, p. 449].

3.3 Corollary. – Let G be a locally compact group, X a reflexive Banach
space, and u a bounded linear map,

u : L∞(G) ⊗̌X −→ X.

For any sequence (An) of pairwise disjoint measurable subsets of G, and any
bounded sequences (xn) in X and (x∗

n) in X∗, we have

lim
n

〈u(cAn
⊗ xn), x∗

n 〉 = 0.

Proof L∞(G) being an abelian von Neumann algebra, there exist an (ex-
tremely disconnected) compact Hausdorff space K and a ∗-isomorphism from
L∞(G) onto C(K), mapping (cAn

) onto a sequence of pairwise orthogonal
projections in C(K), so that (3.2) applies.

4 Proof of Proposition

4.1 We shall use the following lemma for the algebra M = L∞(G) whose
projections are of the form cA for some measurable subset A of G. It is due
to Grothendieck, [Gro, Théorème 2, p. 146]; cf. also [A, Theorem II.2.(2),
p. 288].

Lemma. – Let M be an abelian von Neumann algebra. A bounded subset K
of the Banach space dual, M∗, of M is relatively weakly compact if and only
if every sequence (pn) of orthogonal projections in M converges uniformly on
K to zero, i.e., for any ε > 0 exists n(ε), such that

sup
f∈K

|f(pn)| < ε (n ≥ n(ε)).

4.2 Lemma. – Let G be a locally compact group, X an essential reflexive
injective Banach left L1(G)-module, and λ : L∞(G) ⊗̌X −→ X a map
satisfying (2.5. i, ii). Defining, for any x ∈ X and x∗ ∈ X∗, M ∈ L∞(G)∗ by

M(ϕ) = 〈λ(ϕ ⊗ x), x∗〉 (ϕ ∈ L∞(G)),

the set, {L∗∗

s M : s ∈ G}, of left translates of M is relatively weakly compact
in L∞(G)∗.



Proof If this were not the case, there would exist, by 4.1, an ε > 0, a sequence
(An) of pairwise disjoint measurable subsets of G, and a sequence (sn) of
points in G, such that

|L∗∗

sn

M(cAn
)| ≥ ε (n ≥ 1).

Setting λ = u, snx = xn, x∗s−1
n = x∗

n, we obtain, from (3.3), that

L∗∗

sn

M(cAn
) = M(L∗

sn

cAn
)

= 〈λ(L∗

sn

cAn
⊗ x), x∗〉

= 〈λ(L∗

sn

cAn
⊗ s−1

n (snx)), x∗〉

= 〈 s−1
n λ(cAn

⊗ snx), x∗〉

= 〈λ(cAn
⊗ snx), x∗s−1

n 〉

tends to zero with n tending to infinity, contradicting the assumption.

4.3 Proof of Proposition

Let G be a locally compact group, and X a nontrivial injective left L1(G)-
module, reflexive as a Banach space. Since L1(G) possesses a bounded two-
sided approximate unit, the essential part of X – possessing a module com-
plement in X – is equally injective, so that we may assume from the outset X
to be essential itself. Let then λ : L∞(G)⊗̌X −→ X be a map satisfying (2.5.
i, ii, iii). For any pair (x, x∗) ∈ X × X∗ such that 〈x, x∗〉 = 1, the element
M ∈ L∞(G)∗,

M(ϕ) = 〈λ(ϕ ⊗ x), x∗〉 (ϕ ∈ L∞(G)),

enjoys, by (2.5. iii) and (4.2), the following properties,

(i) M(1G) = 〈λ(1G ⊗ x), x∗〉 = 〈x, x∗〉 = 1;
(ii) {L∗∗

s M : s ∈ G} is relatively weakly compact in L∞(G)∗.

(ii) implies that the closed convex hull, K, of {L∗∗

s M : s ∈ G} is a weakly
compact convex subset of L∞(G)∗. Since it is invariant under the group of
linear isometries L∗∗

s , s ∈ G, the fixed point theorem of Ryll-Nardzewski yields
an element M0 ∈ K satisfying L∗∗

s M0 = M0, s ∈ G, and, in virtue of (i),
M0(1G) = 1. Decomposing M0 into its selfadjoint parts and these into their
positive parts, we obtain, possibly after some rescaling, a positive linear func-
tional on L∞(G), left invariant and taking the value one at the constant func-
tion 1G, thus establishing the amenability of G.

5 Proof of Corollary

For the definition of projective and flat Banach modules over a Banach algebra
we refer to [H, III.1.14, p. 136] and [H, VII.1.2, p. 239], respectively. Rather
than reproducing them here, we note only that every projective module is flat,
and that a module X is flat if and only if its dual module, X∗, is injective, cf.
[H, VII.1.14, p. 243].



5.1 Proof of Corollary a

Let X be a nontrivial projective left L1(G)-module which is reflexive as a Ba-
nach space. Since Xe is module complemented in X, Xe is also projective, and
reflexive, so that G is compact, by [R1, 1.4, p. 316]. (It is shown there that
a locally compact group is already compact, if it admits a nonzero essential
projective left L1(G)-module X whose dual Banach space, X∗, is weakly se-
quentially complete or norm separable.) The second statement is also proved
there, [R1, 1.2, p. 316].

The second part of Corollary b is equally well-known. In [H, VII.2.29,
p. 257], it is deduced from the vanishing of the Tor functor over an amenable
algebra, or can be seen, more directly, from B.E. Johnson’s original definition,
[J, p. 60], as follows.

5.2 Lemma ([H]) Let A be an amenable Banach algebra. Then every Banach
left or right module over A is flat.

Proof Let us show that the dual right module, X∗, of a left A-module X is
injective. Replacing X with X∗ in the diagram defining injectivity, (1), and
taking ι and λ0 as morphisms of right A-modules, we will consider λ0 ◦ ℓ as
element of the Banach space, L(Y,X∗), of bounded linear maps from Y into
X∗. Making it an A-bimodule by (aT )(y) = T (ya) and (Ta)(y) = (Ty)a, for
a ∈ A, T ∈ L(Y,X∗), and y ∈ Y , we obtain a bounded linear map D : A −→
L(Y,X∗), Da = a(λ0 ◦ ℓ)− (λ0 ◦ ℓ)a, a ∈ A, whose values vanish on the closed
submodule ιY0 of Y , thus defining a new map, D0 : A −→ L(Y/ιY0,X

∗),
by the formula (D0a)(πy) = (Da)(y), a ∈ A, y ∈ Y , and π denoting the
canonical morphism of Y onto Y/ιY0. Endowing the projective tensor product
Y/ιY0 ⊗̂X with A-actions a(πy⊗x) = πy ⊗ ax and (πy ⊗ x)a = πya⊗ x, the
Banach space L(Y/ιY0,X

∗) = (Y/ιY0 ⊗̂X)∗, cf [CLM, II.1.7, p. 54], becomes
a dual A-bimodule and D0 a derivation, such that D0a = aS −Sa, a ∈ A, for
some S ∈ L(Y/ιY0,X

∗). Comparing with the definition of D0 yields

a(λ0 ◦ ℓ − S ◦ π) = (λ0 ◦ ℓ − S ◦ π)a (a ∈ A),

so that λ = λ0 ◦ ℓ − S ◦ π becomes a morphism extending λ0 along ι. Hence
X∗ is injective, and X flat.

5.3 Proof of Corollary b

Let X be a nontrivial flat left L1(G)-module, reflexive as a Banach space.
Then X∗ is a nontrivial injective right L1(G)-module and equally reflexive,
implying the amenability of G by the Proposition. If, conversely, the group
G is amenable, then the Banach algebra L1(G) is amenable, [J, Theorem 2.5,
p. 32], so that every left L1(G)-module is flat by the Lemma above.



6 An open problem

Let Lp(M), 1 < p < ∞, be the Lp-space associated with a von Neumann
algebra M, a reflexive normal Banach left M-module. Does its injectivity
imply the injectivity of the von Neumann algebra M? – The answer seems
to be yes in case p = 2 and the injectivity constant being one, cf. [R2, 2.6
Corollary].
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