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Abstract. In the sequel of the work of H.G.Dales and M.E.Polyakov we give a few more

examples of modules over the Banach algebra L
1(G) whose projectivity resp. flatness implies

the compactness resp. amenability of the locally compact group G.

Let L1(G) be the L1-algebra associated with a left invariant Haar measure on the

locally compact group G. In the sequel of the work of H.G. Dales and M.E. Polyakov,

[D-P], we will give a few more examples supporting Helemskii’s philosophy on the relation

between the projectivity of L1(G)-modules and the compactness of G on the one hand,

and between the flatness of L1(G)-modules and the amenability of G on the other; see

for instance [He1, p.238], or [He1, IV. Theorem 5.13, p.190] and [He1, VII. Theorem 2.35,

p.260].

If A is an abstract Banach algebra and A+ = A ⊕ C its unitization, La will denote

the operator of left multiplication by a ∈ A on either A or A+. A Banach left A-module

X will always be contractive such that the action π : A⊗̂X → X, π(a ⊗ x) = ax, is

a linear contraction; ⊗̂ denotes the projective tensor product of Banach spaces, and L

the space of all bounded linear mappings. For any Banach left A-module X, its dual

Banach space, X∗, becomes a Banach right A-module by defining 〈x, x∗a〉 = 〈ax, x∗〉,

for x ∈ X, x∗ ∈ X∗, a ∈ A. We shall always use the canonical isometrical isomorphism

(A⊗̂X)∗ = L(A,X∗).

A Banach left A-module X is called essential if the linear span of the products ax

(a ∈ A, x ∈ X) is dense in X. In case A = L1(G), every essential Banach left L1(G)-

module is a Banach G-module such that for any x ∈ X the map s 7→ sx is continuous from

G into X and satisfies ‖sx‖ = ‖x‖ for all s ∈ G. Conversely, every Banach G-module

is an essential Banach L1(G)-module. Left translation by s ∈ G will be denoted by
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Lsf(t) = f(s−1t), for any function f on G.

1. Projectivity over L1(G). Instead of giving the original definition, cf. [D-P, Defini-

tion 1.1, p.392], we shall use the following criterion, [D-P, Proposition 1.2, p.392].

1.1. Criterion. – Let A be a Banach algebra and X be a Banach left A-module. X

is projective if and only if there is a bounded linear map ρ such that π ◦ ρ = 1X and

ρ(ax) = (La⊗̂1X)(ρx), for x ∈ X, a ∈ A:

X
ρ

−→ A+⊗̂X
π

−→ X.

X is called c-projective, for some constant c > 0, if there is such a ρ of norm ‖ρ‖ 6 c, cf.

[W, Proposition 2.8, p.158]. – If X is essential, A+ may be replaced by A.

1.2.. Let A be L1(G). If G is compact, then every essential Banach left L1(G)-module

X is 1-projective. Denoting the continuous contractive action of s ∈ G on x ∈ X by sx,

and identifying L1(G)⊗̂X with L1(G,X), we see that (ρx)(t) = t−1x (x ∈ X, t ∈ G),

defines a linear contraction ρ from X into L1(G,X) such that for all s ∈ G and x ∈ X,

ρ(sx)(t) = t−1(sx) = (s−1t)−1x = (Ls⊗̂1X)(ρx)(t) (t ∈ G),

and

π(ρx) =

∫
t(ρx)(t)dt =

∫
t(t−1x)dt =

∫
x dt = x,

provided the Haar measure of G having been chosen equal to one. This implies the

1-projectivity of X.

Here we are rather interested in the converse question: given an L1(G)-module X,

when does the projectivity of X imply the compactness of G? The main tool for deciding

this is the following lemma of Yu. V. Selivanov, cf. [S1, Lemma 1.4, p.389] and [S2,

Corollary 1. p.212].

1.3. Lemma (Selivanov). – Let A be a Banach algebra and X be an essential Banach

left A-module such that either A or X satisfy Grothendieck’s approximation condition.

If X is projective then there exists for every x 6= 0 in X an A-module homomorphism

ϕ : X → A with ϕ(x) 6= 0.

1.4. Proposition. – Let G be a locally compact group. If there exists a projective

essential Banach left L1(G)-module X with X∗ being either norm separable or weakly

sequentially complete, then G is compact.

Proof. Since A = L1(G) enjoys the approximation property, the projectivity of X implies

by (1.3) the existence of a non-zero L1(G)-module homomorphism ϕ : X −→ L1(G) such

that ϕ(sx) = Ls(ϕx), for all s ∈ G, x ∈ X. Since the dual map of ϕ, ϕ∗ : L∞(G) → X∗,

is weakly compact, in case X∗ being norm separable by [G, Corollaire 1, p.168] and in

case X∗ being weakly sequentially complete by [D-S, VI.7.6 Theorem, p.494], ϕ is weakly

compact as well. Since for any x ∈ X its G-orbit {sx : s ∈ G} is norm bounded in X,

it follows from ϕ(sx) = Ls(ϕx), s ∈ G, that its image is relatively weakly compact in

L1(G). Since ϕ(x) 6= 0 in L1(G) for some x ∈ X, the Dunford-Pettis theorem implies the

compactness of G, cf. [La, Theorem 4.8, p.137] or [R, Lemma 1.1.(a), p.602].
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1.5. Example. ([D-P, Theorem 5.1, p.415]). Let X = Lp(G), 1 < p < ∞, be endowed

with any action making it an essential L1(G)-module. Then we have:

Lp(G) projective ⇐⇒ G compact

Let us remark that L1(G) is a projective left L1(G)-module for any G, by [He1, IV.

Theorem 2.17, p.175].

1.6. Example. Let π be a continuous unitary representation of the locally compact

group G on a Hilbert space h and let X = Lp(h), 1 < p < ∞, be the space of all

operators T on h such that trace (T ∗T )
p

2 < ∞. Then X is a reflexive Banach space that

becomes an essential left L1(G)-module under the action sT = π(s)Tπ(s−1), for s ∈ G,

T ∈ Lp(h). Endowing the C∗-algebra, K(h), of all compact operators on h with the same

action and noting that the dual of any C∗-algebra is weakly sequentially complete, [T1,

III. Corollary 5.2, p.148], we have

K(h), Lp(h) projective ⇐⇒ G compact

1.7. Example. Let X be either C∗(G), the full C∗-algebra of G, or C∗
r (G), the reduced

C∗-algebra of G, endowed with left translation. Then C∗(G) and C∗
r (G) are essential left

L1(G)-modules whose duals are weakly sequentially complete such that

C∗(G), C∗
r (G) projective ⇐⇒ G compact

The same applies for the C∗-algebra, K(L2(G)), of compact operators on L2(G) with G

acting as sT = LsT Ls−1 , T ∈ K(L2(G)), a special case of (1.6).

1.8. Example. Let X be K(Lp(G)) the space of compact operators on Lp(G), 1 <

p < ∞. Then K(Lp(G)) is an essential L1(G)-module under sT = LsT Ls−1 , whose dual

Banach space is isometrically isomorphic to Lp(G)⊗̂Lp′

(G), which is norm separable

whenever the topology of G has a countable base:

K(Lp(G)) projective and G 2nd-countable =⇒ G compact

1.9. Example. Let A(G) be the Fourier algebra of G, and V N(G) its von Neumann

algebra such that A(G)∗ = V N(G). If ϕ is a function on G satisfying ϕu ∈ A(G) for all

u ∈ A(G), then ϕ is continuous and bounded and defines a bounded linear operator, mϕ,

on the Banach space A(G), mϕ(u) = ϕu (u ∈ A(G)). With this in mind we define

MA(G) = {ϕ ∈ Cb(G) : ϕu ∈ A(G) ∀u ∈ A(G)}

M0A(G) = {ϕ ∈ MA(G) : (mϕ)∗ : V N(G) → V N(G) completely bounded}

with norms

‖ϕ‖MA(G) = ‖mϕ : A(G) → A(G)‖

‖ϕ‖M0A(G)= ‖(mϕ)∗ : V N(G) → V N(G)‖cb.

M0A(G) is called the space of completely bounded multipliers, and MA(G) the space

of all multipliers of A(G). Denoting by Q0(G) and Q(G) the completions of L1(G) with
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respect to the norms

‖f‖Q0(G) = sup{|

∫
f(t)ϕ(t)dt| : ϕ ∈ M0A(G) , ‖ϕ‖M0A(G) 6 1},

‖f‖Q(G) = sup{|

∫
f(t)ϕ(t)dt| : ϕ ∈ MA(G) , ‖ϕ‖MA(G) 6 1} (f ∈ L1(G)),

we get two translation invariant Banach spaces whose duals are isometrically isomorphic

with M0A(G) and MA(G), respectively:

Q0(G)∗ = M0A(G), Q(G)∗ = MA(G),

cf. [dC-H, 1.10 Proposition, p.466]. It follows from 1.9 Lemma, p.465 in [dC-H], that

M0A(G) and MA(G) are weakly sequentially complete. Since left translation is continu-

ous and isometric on Q0(G) and Q(G), these are essential left L1(G)-modules such that

we have

Q0(G), Q(G) projective ⇐⇒ G compact

2. Flatness over L1(G). Rather than giving the original definition, [He1, VII. Defini-

tion 1.1, p.239], we shall use the following criterion, due to O. Yu. Aristov [A, Lemma

1.2, p.1558], and its dual.

2.1. Criterion (Aristov). – Let A be a Banach algebra and X be a Banach left A-

module. X is flat if and only if there is a bounded linear map ρ from X into the bidual

(A+⊗̂X)∗∗ such that π∗∗ ◦ ρ = ιX , the canonical embedding of X into X∗∗, and ρ(ax) =

(La⊗̂1X)∗∗(ρx), for x ∈ X and a ∈ A:

X
ρ

−→ (A+⊗̂X)∗∗
π∗∗

−→ X∗∗.

X is called c-flat, for some constant c > 0, if there is such a ρ of norm ‖ρ‖ 6 c, cf. [W,

Definition 4.2, p.164]. – If X is essential, A+ may be replaced by A.

2.2. Criterion (dual). – Let A be a Banach algebra, X be a Banach left A-module and

X∗ its dual right A-module. X is flat if and only if there is a bounded linear map λ from

L(A+,X∗) into X∗ such that λ◦π∗ = 1X∗ and λ(T ◦La) = (λT )a, for all T ∈ L(A+,X∗)

and a ∈ X:

X∗ π∗

−→ L(A+,X∗)
λ

−→ X∗.

In this case, X∗ is called an injective right A-module, and c-injective if there is such a λ

of norm ‖λ‖ 6 c . – If X is essential, A+ may again be replaced by A.

Clearly, a left A-module X is c-flat if and only if its dual right A-module X∗ is c-

injective. For a discussion of injectivity see, for instance, Definition 1.5 and Propositions

1.6 and 1.7 in [D-P, p.394 ].

2.3.. Let A = L1(G). If G is amenable then every essential Banach left L1(G)-module X

is 1-flat. Indeed, let M be a left invariant mean on L∞(G). Using the isometric isomor-

phism of L(L1(G),X∗) with L∞
w∗(G,X∗), the space of all bounded functions Φ : G → X∗
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such that, for any x ∈ X, t 7→ 〈x,Φ(t)〉 is measurable on G, there corresponds to every

T ∈ L(L1(G),X∗) a unique function Φ ∈ L∞
w∗(G,X∗) via the formula

〈x, Tf〉 =

∫

G

f(t)〈x,Φ(t)〉dt (x ∈ X, f ∈ L1(G)),

cf. [T1, IV. Proposition 7.16, p.262]. Considering X as a (continuous, contractive) Banach

G-module, the function t 7→ 〈t−1x,Φ(t)〉 is bounded and measurable in t ∈ G such that

〈x, λ(Φ)〉 =

∫
〈t−1x,Φ(t)〉dM(t) (x ∈ X,Φ ∈ L∞

w∗(G,X∗))

defines a linear contraction λ,

X∗ π∗

−→ L∞(G,X∗)
λ

−→ X∗,

satisfying λ◦π∗ = 1X∗ and λ◦(Ls⊗̂1X)∗(Φ) = (λΦ)s , for all Φ ∈ L∞
w∗(G,X∗) and s ∈ G.

It follows that X∗ is 1-injective and X 1-flat.

2.4. Remark. In spite of the similarity of the diagrams in (1.1) and (2.1) one must not

expect that every flat Banach left module X over a Banach algebra A admits a non-zero

A-module homomorphism ϕ : X → A∗∗. Indeed, let G be an amenable locally compact

group and let A = L1(G) and X = Lp(G), 2 < p < ∞. Then every non-zero left L1(G)-

module homomorphism ϕ : Lp(G) → L1(G)∗∗ gives rise to a non-zero left invariant

operator ϕt : L∞(G) → Lp′

(G) which forces G to be compact, cf. [L-vR, Theorem 3,

p.308] or [R, Proposition 1.2, p.603].

Again, we are interested in the question: given an L1(G)-module X, when does flatness

of X imply amenability of G ? Several examples are given in [D-P], and we will add a

few more.

2.5. Example. Let X = K(Lp(G)), 1 < p < ∞, be the space of compact operators on

Lp(G) with the action sT = LsT Ls−1 for s ∈ G, T ∈ K(Lp(G)). Then K(Lp(G)) becomes

an essential Banach left L1(G)-module whose dual module Lp(G)⊗̂Lp′

(G) is endowed

with the right action (f ⊗g)s = Ls−1f ⊗Ls−1g, for s ∈ G and f ⊗g ∈ Lp(G)⊗̂Lp′

(G). By

the left invariance of Haar measure, the duality τ : Lp(G)⊗̂Lp′

(G) −→ C is G-invariant

such that we infer from Theorem 4.6 in [D-P, p.414]: if Lp(G)⊗̂Lp′

(G) is injective under

the above action then G is amenable. Dually, if K(Lp(G)) is flat then G is amenable, i.e.

together with (2.3):

K(Lp(G)) flat ⇐⇒ G amenable

2.6. Example. Let π be a continuous unitary representation of G on the Hilbert space

h, K(h) the C∗-algebra of compact operators on h with sT = π(s)Tπ(s−1) , for s ∈ G,

T ∈ K(h), such that its dual module h⊗̂h has the action (ξ ⊗ η)s = π(s−1)ξ ⊗ π(s−1)η,

for s ∈ G and ξ ⊗ η ∈ h ⊗ h (h and π denoting the complex-conjugates of h and π,

respectively). Therefore the trace τ : h⊗̂h −→ C is G-invariant, and we conclude as in

(2.5):

K(h)) flat ⇐⇒ G amenable
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2.7. Example. Let C∗(G) be the full C∗-algebra of G, and Q0(G) be the Banach space

defined in (1.9). Endowing both of them with left translation by G, we have

C∗(G), Q0(G) flat ⇐⇒ G amenable

Proof. One direction follows from (2.3). To prove the other one we will show that the

injectivity of the dual modules, C∗(G)∗ and Q0(G)∗, implies the amenability of G. Iden-

tifying C∗(G)∗ with the space, B(G), of coefficients of all continuous unitary represen-

tations of G, and Q0(G)∗ with M0A(G), we see that B(G) is contained in M0A(G).

By a theorem of Bożejko and Fendler, [B-F] or [J], every ϕ ∈ M0A(G) can be writ-

ten as ϕ(t−1s) = (Φ1(s)|Φ2(t)) for (s, t) ∈ G × G, where Φ1,Φ2 : G → h are two

continuous bounded functions with values in some Hilbert space h. It follows that ev-

ery such ϕ is weakly almost periodic: M0A(G) ⊂ WAP (G). Denoting by 1G the con-

stant function corresponding to the trivial representation of dimension one, we have

1G ∈ B(G) ⊂ M0A(G) ⊂ WAP (G), and so it suffices to prove the statement for M0A(G).

If M0A(G) is injective as a right Banach G-module, we have a map λ as in (2.2),

M0A(G)
π∗

−→ L(L1(G),M0A(G))
λ

−→ M0A(G))

such that λ(π∗ϕ) = ϕ for ϕ ∈ M0A(G), and λ(T ◦Ls) = Ls−1(λT ) , for T ∈ L(L1,M0A)

and s ∈ G. Associating with every ϕ ∈ L∞(G) the operator Tϕ , as kindly suggested to

us by N. Monod, [M],

Tϕ : L1(G) → M0A(G), Tϕ(f) = 〈f, ϕ〉1G (f ∈ L1(G)),

we get by left invariance of Haar measure

TLsϕ(f) = 〈f, Lsϕ〉1G = 〈Ls−1f, ϕ〉1G = Tϕ(Ls−1f) (s ∈ G, f ∈ L1(G)),

and

T1G
(f) = 〈f, 1G〉1G = 1G ⊗ 1G(f) (f ∈ L1(G)),

such that T1G
= π∗(1G). Denoting by m the left invariant mean on WAP (G), we see

that the composition M = m ◦ λ ◦ T is a non-zero left invariant functional on L∞(G).

Indeed, we have, for any ϕ ∈ L∞(G) and s ∈ G,

M(Lsϕ) = m(λ(TLsϕ))

= m(λ(Tϕ ◦ Ls−1))

= m(Ls(λ(Tϕ)))

= m(λ(Tϕ))

= M(ϕ),

and

M(1G) = m(λ(T1G
))

= m(λ(π∗(1G)))

= m(1G)

= 1,
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from which the amenability of G follows.

2.8.. In [S2, Theorem 1, p.211], Selivanov showed that for any projective module X over

a Banach algebra A there is a bounded linear projection from L(X) onto the subspace,

LA(X), of A-module homomorphisms. In the same vein, there is for any flat X a bounded

linear projection from L(X∗) onto LA(X∗), the space of homomorphisms of the dual

module X∗, and if X is c-flat the projection can be chosen of norm 6 c. Since, in this

case, X∗ is injective, this follows from the following lemma which we will formulate only

for left modules.

Lemma. – Let Y be a Banach left module over the Banach algebra A. If, for some

constant c > 0, Y is c-injective, then there is a bounded linear projection, P , of norm

‖P‖ 6 c from L(Y ) onto the subspace, LA(Y ), of A-module homomorphisms.

Proof. According to the definition, cf. [D-P, Proposition 1.6, p.394], there is a bounded

linear map λ of norm ‖λ‖ 6 c, satisfying λ(T ◦ Ra) = a(λT ) and λ(αy) = y, for T ∈

L(A+, Y ), a ∈ A and y ∈ Y ,

Y
α

−→ L(A+, Y )
λ

−→ Y,

α being given by (αy)(a) = ay, for y ∈ Y and a ∈ A+, and Ra denoting right multiplica-

tion by a on A+. Defining P by (PT )(y) = λ(T ◦ αy), for T ∈ L(Y ), y ∈ Y , we see that

P is a bounded linear operator on L(Y ) of norm ‖P‖ 6 ‖λ‖ satisfying, for T ∈ L(Y ) and

a ∈ A,

(PT )(ay) = λ(T ◦ α(ay)) = λ(T ◦ αy ◦ Ra) = aλ(T ◦ αy) = a(PT )(y),

and, for T ∈ LA(Y ), in virtue of T ◦ αy = α(Ty),

(PT )(y) = λ(T ◦ αy) = λ(α(Ty)) = Ty,

such that P is a linear projection from L(Y ) onto LA(Y ) of norm ‖P‖ 6 c.

2.9.. A von Neumann algebra M on a Hilbert space h is called injective if there is a linear

projection of norm one from L(h) onto M. By a theorem of Helemskii, [He3, Corollary

1, p.77], the injectivity of M implies the injectivity of the Banach left M-module h. As

a partial converse we have

Corollary. – Let M be a von Neumann algebra on h. If the Banach left M-module h

is 1-injective then M is injective.

Proof. Let the elements of M act on h as operators. From (2.8), with A = M and Y = h,

follows the existence of a linear projection of norm c = 1 from L(h) onto LM(h) = M′,

the commutant of M. Hence M′ is injective, and so is M, cf. e.g. [T2, XV. Proposition

3.2(iii), p.174].

Remark. The question of how the bound of the projection can be relaxed is discussed

by Pisier in [P] and by Christensen and Sinclair in [C-S1] and [C-S2].

2.10. Example. Let G be a discrete group and let l1(G) act on l2(G) by left or right

convolution. Then the Banach l1(G)-module l2(G) is 1-flat if and only if G is amenable:

l2(G) 1-flat ⇐⇒ G amenable
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Proof. Let us consider l2(G) as a right l1(G)-module such that G acts on l2(G) by right

translation (Rsf)(t) = f(ts), for s ∈ G and f ∈ l2(G). If l2(G) is 1-flat, it is 1-injective

such that, by (2.8), there is a projection, P , of norm one from L(l2(G)) onto Ll1(G)(l
2(G)),

the subspace of all operators commuting with Rs, s ∈ G, which coincides with the von

Neumann algebra, V N(G), generated by the left translation operators Ls, s ∈ G. By

Tomiyama’s Theorem, [T1, III. Theorem 3.4, p.131], P is actually a V N(G)-bimodule

homomorphism such that P (LsTLs−1) = Ls(PT )Ls−1 , for all T ∈ L(l2(G)) and s ∈ G.

Denoting the multiplication representation of l∞(G) on l2(G) by π, π(ϕ)f = ϕf for

ϕ ∈ l∞(G), f ∈ l2(G), and the canonical trace on V N(G) by τ , τ(T ) = (Tεe|εe) for

T ∈ V N(G), the composition M = τ ◦ P ◦ π will be a left invariant mean on L∞(G),

as is well known, cf. [Sch, 7. Lemma, p. 23]. The other direction follows, of course, from

(2.3).

3. Questions and remarks. G will denote a locally compact group and p′ the exponent

conjugate to 1 < p < ∞.

3.1. Question. (Dales and Polyakov) Let G act by left translation on Lp(G), 1 < p < ∞.

Does the flatness of Lp(G) as a Banach left module over L1(G) imply the amenability of

G? Or, equivalently, does the injectivity of Lp′

(G) imply the amenability of G? – H.G.

Dales and M.E. Polyakov showed in [D-P], Theorem 5.9 and Theorem 5.12, that for no

discrete group G containing the free group on two generators lp(G) is injective, and they

conjecture that this remains true for all non-amenable discrete groups, [D-P, p.425]. All

that is known today about this is contained in the recent preprint of P. Ramsden [Ra].

3.2. Remark. Let G be a discrete amenable group acting contractively on a Banach

space X. If λ : L(L1(G),X∗) −→ X∗ is the map associated, as in (2.3), with an invariant

mean on G, then λ(T ) is contained in the weak *- closed convex hull of the set {T (εt)εt−1 :

t ∈ G}, for every T ∈ L(L1(G),X∗).

Proof. Let T : L1(G) −→ X∗ be bounded linear and let φ : G −→ X∗ be defined by

φ(t) = T (εt), εt being the point measure at t ∈ G. If λ is associated with the left invariant

mean M on G, (2.3), we have

〈x, λT 〉 =

∫
〈t−1x, φ(t)〉dM(t) =

∫
〈x, φ(t)t−1〉dM(t),

for T ∈ L(L1(G),X∗) and x ∈ X. If the assertion were wrong there would exist such T

and x and two real numbers α < β satisfying

Re〈x, λT 〉 6 α < β 6 Re〈x, φ(t)t−1〉 (t ∈ G),

such that averaging with respect to M gives the desired contradiction. (We have written

φ(t)t−1 = T (εt)εt−1.)

3.3. Remark. Let G act by left translation on Lp(G), 1 < p < ∞. If G is amenable,

but non-compact, then any map λ : L(L1(G), Lp′

(G)) −→ Lp′

(G) associated with an

invariant mean on G, (2.3), vanishes on the subspace of compact operators from L1(G)

into Lp′

(G).
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Proof. Since the space of compact operators from L1(G) into Lp′

(G) can be identified

with L∞(G)⊗̌Lp′

(G), the injective tensor product of L∞(G) with Lp′

(G), and λ is linear

and continuous, it suffices to show that λ(ϕ ⊗ g) = 0 for all ϕ ∈ L∞(G) and g ∈ Lp′

(G).

But, for any f ∈ Lp(G), the definition of λ associated with the invariant mean M , (2.3)

with x = f and φ = ϕ ⊗ g, implies

〈f, λ(ϕ ⊗ g)〉 =

∫
〈Lt−1f, ϕ(t)g〉dM(t)

=

∫
〈Lt−1f, g〉ϕ(t)dM(t)

=

∫
g ∗ f̌(t)ϕ(t)dM(t)

= 0,

since the convolution g ∗ f̌ , f̌(t) = f(t−1), vanishes at infinity.

3.4.. Denoting by WAP (G) the space of weakly almost periodic functions on G and by

⊗̌ the injective tensor product of Banach spaces, we have for any 1 < p < ∞ isometric

inclusions

Co(G)⊗̌Lp′

(G) ⊂ WAP (G)⊗̌Lp′

(G) ⊂ L∞(G)⊗̌Lp′

(G) ⊂ L∞(G,Lp′

(G)),

the last space being equal to L(L1(G), Lp′

(G)), in this case, and Co(G) denoting the

space of continuous functions on G vanishing at infinity.

Remark. Let G be non-compact and 1 < p < ∞. Then any bounded linear map λ :

L(L1(G), Lp′

(G)) −→ Lp′

(G) satisfying λ(T ◦Ls) = Ls−1(λT ), for T ∈ L(L1(G), Lp′

(G))

and s ∈ G, vanishes on the subspace WAP (G)⊗̌Lp′

(G).

Proof. It suffices to show that λ(ϕ ⊗ g) = 0 for all ϕ ∈ WAP (G) and g ∈ Lp′

(G). For

any fixed g ∈ Lp′

(G), we consider the bounded linear operator λ1,

λ1 : L∞(G) −→ Lp′

(G), λ1(ϕ) = λ(ϕ ⊗ g) (ϕ ∈ L∞(G)),

satisfying λ1(Lsϕ) = Ls(λ1ϕ), s ∈ G and ϕ ∈ L∞(G), because of

λ1(Lsϕ) = λ(Lsϕ ⊗ g) = λ(ϕ ⊗ g ◦ Ls−1) = Lsλ(ϕ ⊗ g) = Ls(λ1ϕ).

Let ϕ ∈ WAP (G). The set {Lsϕ : s ∈ G} being relatively weakly compact in L∞(G),

we obtain in virtue of the Dunford-Pettis property of L∞(G), [G, Proposition 1, p.135,

and Théorème 1(a), p.139], and the weak compactness of λ1, that the set{λ1(Lsϕ) : s ∈

G} = {Ls(λ1ϕ) : s ∈ G} is relatively norm compact in Lp′

(G), implying λ1ϕ = 0, by [La,

Theorem 4.6, p.136] or [R, Lemma 1.1.(b), p.602].

3.5. Remark. Let G be non-compact and 2 < p < ∞. Then any bounded linear map

λ : L(L1(G), Lp′

(G)) −→ Lp′

(G) satisfying λ(T ◦Ls) = Ls−1(λT ), T ∈ L(L1(G), Lp′

(G))

and s ∈ G, vanishes on the subspace of all compact operators from L1(G) into Lp′

(G).

Proof. For any fixed g ∈ Lp′

(G), let λ1 : L∞(G) −→ Lp′

(G), λ1(ϕ) = λ(ϕ ⊗ g), ϕ ∈

L∞(G), be the left invariant operator considered in the proof of (3.4). Since 1 < p′ < 2,

it follows from [L-vR, Theorem 3, p.308], that λ1 = 0 such that λ(ϕ ⊗ g) = 0 for all

ϕ ∈ L∞(G) and g ∈ Lp′

(G), implying the assertion.
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3.6. Question. (Gordin) Let G act by left translation on C∗
r (G), the reduced C∗-algebra

of G. Does the flatness of C∗
r (G) as a Banach left module over L1(G) imply the amenability

of G? – This question, related to (2.7), is due to M. Gordin, [Go]. The proof for C∗(G)

in (2.7) does not apply directly since the constant function 1G is in (C∗
r (G))∗ if and only

if G is amenable.

3.7. Question. Let G act by left translation on Q(G), the predual of MA(G) described

in (1.9). Does the flatness of Q(G) as a Banach left module over L1(G) imply the

amenability of G? – The proof for Q0(G), as given in (2.7), does not apply since the

dual Q(G)∗ = MA(G) may contain functions which are not weakly almost peroidic.

3.8. Question. Let M be a von Neumann algebra on the Hilbert space h. By a theorem

of A.Ya. Helemskii, [He3, Theorem, p.77], the injectivity of the von Neumann algebra M

implies the injectivity of any normal dual Banach module over the Banach algebra of M.

Is any such module already 1-injective in the sense of (2.2)? – To be more explicit, let M

be injective, X be a Banach left M-module with dual right module X∗ such that, for all

(x, x∗) ∈ X × X∗, the linear form a 7→ 〈ax, x∗〉, a ∈ M, is σ-weakly continuous on M.

Does there exist a linear map λ satisfying λ(T ◦La) = (λT )a, for T ∈ L(M,X∗), a ∈ M,

and being left inverse to π∗, (π∗x∗)(a) = x∗a, for x∗ ∈ X∗, a ∈ M,

X∗ π∗

−→ L(M,X∗)
λ

−→ X∗

such that ‖λ‖ = 1?
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