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Abstract. Given a compact Riemannian manifold (M d, g), a finite dimensional rep-

resentation ρ : π1(M)→ GL(V ) of the fundamental group π1(M) on a vectorspace V

of dimension l and a Hermitian structure µ on the flat vector bundle E p→M associ-

ated to ρ, Ray-Singer [RS] have introduced the analytic torsion T = T (M,ρ, g, µ) > 0.
Witten’s deformation dq(t) of the exterior derivative dq , dq(t) = e−htdqeht, with

h : M → R a smooth Morse function, can be used to define a deformation T (h, t) > 0
of the analytic torsion T with T (h, 0) = T.

The main results of this paper are to provide, assuming that grad gh is Morse

Smale, an asymptotic expansion for log T (h, t) for t → ∞ of the form
∑d+1
j=0 ajt

j +

b log t + O( 1√
t
) and to present two different formulae for a0. As an application we

obtain a shorter derivation of results due to Ray-Singer [RS], Cheeger [Ch], Müller
[Mu1,2] and Bismut-Zhang [BZ] which, in increasing generality, concern the equal-
ity for odd dimensional manifolds of the analytic torsion with the average of the
Reidemeister torsion corresponding to the triangulation T = (h, g) and the dual

triangulation TD = (d− h, g).

0. Introduction

Let M be a compact smooth manifold of dimension d without boundary and
ρ : π1(M)→ GL(V ) a linear representation of the fundamental group π1(M) of M
on a vectorspace V of dimension l. The representation ρ induces a smooth vec-
tor bundle E → M equipped with a flat canonical connection. Let Λq(M ; E) =
C∞(Λq(T ∗M)⊗E) be the space of smooth q-forms with values in E where T ∗M de-
notes the cotangent bundle of M. The above connection can be interpreted as a first
order differential operator ρdq : Λq(M ; E)→ Λq+1(M ; E) and its flatness is equiva-
lent to ρdq+1.ρdq = 0 for 0 ≤ q ≤ d. Note that if ρ is trivial, ρd is the usual exterior
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differential d. In case there is no risk of ambiguity we will write d instead of ρd and
continue to call it exterior differential. Let h : M → R be a smooth Morse function.
For convenience we assume that h is selfindexing i.e. h(x) = index x, for any critical
point x of h. Following Witten [Wi] we introduce the deformation (Λq(M ; E), dq(t))
of the de Rham complex (Λq(M ; E), dq) where dq(t) = e−thdqeth = dq + tdh∧. One
verifies that this complex in elliptic. Let g be a Riemannian metric on M and µ a
Hermitian structure for E →M. The Riemannian metric g induces the Hodge oper-
ators Jq : Λq(T ∗M)x → Λd−q(T ∗M)x (x ∈M) and the Hermitian structure µ on
E together with the Hodge operators induce a Hermitian structure on Λq(T ∗M)⊗E
given by (w⊗s, w′⊗s′)(x) = Jd(w(x)∧Jqw′(x))µ(s(x), s′(x)). The formal adjoint of

ρdq(t) with respect to this Hermitian structure is a first order differential operator

ρd
∗
q(t) : Λq+1(M ; E)→ Λq(M ; E). More explicitly let ρ∗ be the dual representation

of ρ, ρ∗ : π1(M)→ GL(V ∗), with V ∗ denoting the dual of V and let µ∗ denote the
Hermitian structure µ when viewed as an isomorphism µ∗ : E → E∗. Then ρd

∗
q(t)

can be written as

ρd
∗
q(t) = (−1)dq+1(Jd−q ⊗ Id)(Id⊗ µ∗)−1.ρ∗dd−(q+1)(Id⊗ µ∗)(Jq+1 ⊗ Id).

Introduce the deformed Laplacians, acting on q-forms,

∆q(t) = d∗q(t)dq(t) + dq−1(t)d∗q−1(t).

The operators ∆q(t) are elliptic, non negative selfadjoint operators. Denote by
(λqj)j≥1 the set of all eigenvalues of ∆q(t), counted with multiplicities, and introduce
the corresponding zeta function

ζq(s) =
∑

λqj 6=0

(λqj)
−s

The functions ζq(s) are holomorphic in the half plane Res > d/2 and they can be
extended to meromorphic functions in the whole complex plane [Se1] with s = 0
being a regular point for all of them. Therefore one can define the regularized
determinant of ∆q

log det ∆q = − d

ds
ζq(0).

Consider the function T (h, t) = T (M,ρ, g, µ, h, t) defined by

(0.1) log T (h, t) =
1

2

d∑

q=0

(−1)q+1q log det ∆q(t).

Note that T (h, 0) is independent of h and is equal to the analytic torsion T =
T (M,ρ, g, µ) as introduced by Ray-Singer [RS]. For t 6= 0, T (h, t) will be referred
to as Witten’s deformation of the analytic torsion. It is well known that the set
of eigenvalues of ∆q(t), when t → ∞, separates into two parts. The part of small
eigenvalues, whose number is equal to mql (l = limV,mq = #Crq(h), Crq(h) the
set of critical points of h of index q), converge to zero at a rate of e−2t/t and all large
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eigenvalues grow at a rate of O(t). Therefore one can decompose, for sufficiently
large t,(Λq(M ; E), dq(t)) as

Λq(M ; E), dq(t) = (Λq(M ; E)sm, dq(t))⊕
(Λq(M ; E)la, dq(t))

where Λq(M ; E)sm respectively Λq(M ; E)la are the orthogonal subspaces of
Λq(M ; E), both depending on t, generated by eigenforms corresponding to small
respectively large eigenvalues. Accordingly one decomposes ζq(s) = ζq,sm(s) +
ζq,la(s) and log T (h, t) = log Tsm(h, t) + log Tla(h, t). The main results of this paper
concern the asymptotic expansions of log T (h, t), log Tsm(h, t) and log Tla(h, t) for
t→∞. Before formulating these results we recall the notion of Reidemeister torsion
associated to (M,ρ, g, µ) and to a generalized triangulation of M, which is defined
as follows:

Definition.

A pair T = (h, g′) is said to be a generalized triangulation if
(i) h : M → R is a smooth Morse function which is selfindexing (h(x) =index(x)

for any critical point x of h);
(ii) g′ is a Riemannian metric so that grad g′h satisfies the Morse-Smale con-

dition (for any two critical points x and y of h the stable manifold W+
x and the

unstable manifold W−y , with respect to grad g′h, intersect transversely).

The notion of generalized triangulation is justified as it is a straight generalization
of the notion of a simplicial triangulation(*

Given a generalized triangulation T = (h, g′) we denote by TD the generalized
triangulation TD = (d − h, g′) and extending the definition of dual triangulations
in combinatorial topology we call TD the generalized triangulation dual to T . The
Reidemeister torsion τ(T ) = τ(M,ρ, g, µ, T ), associated to (M,ρ, g, µ) and the
generalized triangulation T = (h, g′), is a positive number given by

log τ(T ) = log τcomb(T ) + log τmet(T )

where we refer to τcomb(T ) = τcomb(M,ρ, g, µ, T ) as the combinatorial part of τ(T )
and to τmet(T ) = τmet(M,ρ, g, µ, T ) as the metric part of τ(T ).

In order to define τcomb(T ) and τmet(T ) consider the universal covering p : M̂ →
M of M. Choose an orientation of M̂ and for each critical point x̂ of ĥ = h¦p an

orientation for the unstable manifold W−x̂ of grad g′ ĥ, the gradient of ĥ with respect

to the pull back of the metric g′ on M̂, again denoted by g′. The orientations on
M̂ and on W−x̂ induce an orientation on W+

x̂ . Consider the chain complex

C∗(M, T ) := {Cq(M̂, T )|δq : Cq(M̂, T )→ Cq−1(M̂, T )}

(*Given a smooth simplicial triangulation Tsim, one can construct a generalized triangulation

T = (h, g′) so that the unstable manifolds W−x corresponding to grad g′h, with x a critical point

of h, are the open simplexes of Tsim (c.f[Po]). Moreover, one may choose the metric g′ in T in

such a way that it agrees with a given Riemannian metric g near all critical points of h.
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where Cq(M̂, T ) denotes the free abelian group generated by the set Crq(ĥ) of

critical points of ĥ of index q and δq : Cq(M̂, T )→ Cq−1(M̂, T ) is a homomorphism
given by

δq(x̂) =
∑

ŷ∈Crq−1

βŷq;x̂ŷ.

The integers βŷq;x̂ are the intersection numbers of W−ŷ and W+
x̂ in h−1(q − 1/2).

The free action of π1(M) on M̂ makes C∗(M̂, T ) a chain complex of free Z[π1(M)]-

modules. Let C∗(M,ρ, T ) := homπ1
(C∗(M̂, T ), V ) be the space of linear maps

C∗(M̂, T ) → V which are equivariant with respect to the action provided by

π1(M) on C∗(M̂, T ) and on V, the underlying vector space of the representation

ρ. C∗(M̂, T ) is a cochain complex of finite dimensional vector spaces. The vector
space Cq(M,ρ, T ) has dimension mql, where l = limV and mq = #Crq(h); it can
be identified with the space of sections of the restriction of E to the discrete space
Crq(h) ⊆ M of critical points of h of index q. Therefore it is equipped with the
scalar product induced by the Hermitian structure µ. An alternative description of
this scalar product is the following: For each critical point xq;j ∈ Crq(h) choose a

µ-orthonormal basis eq;j1, . . . , eq;jl of Exq;j and select a lift x̂q;j of xq;j in M̂. Define

Eq;jr(1 ≤ j ≤ mq, 1 ≤ r ≤ l) to be the unique element in homπ(Cq(M̂, T ), V )
which satisfies Eq;jr(x̂q;i) = δjiēq;jr where ēq;jr ∈ V corresponds to the element
eq;jr uniquely determined by the commutative diagram

M̂ × V −−−−→ E
y

y

M̂ −−−−→ M

The elements Eq;jr (1 ≤ j ≤ mq, 1 ≤ r ≤ l) form a basis of Cq(M ; ρ, T ) and the
scalar product which makes this basis orthonormal is identical with the one defined
previously. When equipped with this scalar product C∗(M ; ρ, T ) will be denoted
by C∗(M ; ρ, T , µ). Denote by δ∗q : Cq+1(M ; ρ, T , µ) → Cq(M ; ρ, T , µ) the adjoint

of δq : Cq(M ; ρ, T , µ)→ Cq+1(M ; ρ, T , µ) and form the Laplacians

∆q := δ∗qδq + δq−1δ
∗
q−1,∆q : Cq(M ; ρ, T , µ)→ Cq(M ; ρ, T , µ).

Denote by det′∆q the product of all non zero eigenvalues of ∆q. Notice that

det′∆q is always a positive number and therefore we may introduce τcomb(T ) =
τcomb(M ; ρ, T , µ) by

(0,2) log τcomb(T ) = 1/2
d∑

q=0

(−1)q+1q log
′

det∆q.

It remains to define τmet. De Rham theory provides a canonically defined isomor-
phism between the de Rham cohomology Hq(M ; E) = Hq(Λ∗(M ; E), d) and the
cohomology Hq(C∗(M,ρ, T ), δ)

Rq : Hq(M ; E)→ Hq(C∗(M,ρ, T ), δ).
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Let Aq respectively Bq be the canonical isomorphisms between Ker∆q and
Hq(M ; E) respectively between Ker∆q and Hq(C∗(M,ρ, T ), δ). Denote by Vq =

Vq(ρ, T ) the volume Vq = |det(r−1
q )| ,where r−1

q = A−1
q R−1

q Bq. The metric part of
the Reidemeister torsion τmet(T ) = τmet(M,ρ, T , g, µ) is defined by

(0.3) log τmet(T ) =

d∑

q=0

(−1)q log Vq

To state the first result we introduce the following definitions:

Definition.

A system (M,ρ, h, g, µ) satisfies hypothesis (H) if:
(H.1) T = (h, g) is a generalized triangulation.
(H.2) In a neighborhood of any critical point of index q of the function h one

can introduce local coordinates such that

h(x) = q − (x2
1 + ...x2

q)/2 + (x2
q+1 + ...x2

d)/2,

and the metric g is Euclidean in these coordinates.
(H.3) µ is parallel with respect to the canonical connection in a neighbourhood

of any critical point of h.

Definition.

A continuous function a : R→ R is said to have a complete asymptotic expan-
sion for t→∞ if there are sequences i1 > i2 > ... with limk→∞ ik = −∞, (ak)k≥1

and (bk)k≥1 such that, for any L ≥ 1,

(0.4) a(t) =

L−1∑

k=1

akt
ik +

L−1∑

k=1

bkt
ik log t+O(tiL log t).

In that case we write

a(t) ∼
∑

k≥1

akt
ik +

∑

k≥1

bkt
ik log t.

The function a(t) is said to have an asymptotic expansion for t→∞ if there exists
i1 > · · · > iN = 0 > iN+1 and sequences of numbers (ak)k≥1 and (bk)k≥1 such that

(0.5) a(t) =

N∑

1

akt
ik +

N∑

1

bkt
ik log t+O(tiN+1).

For convenience we denote by FT (a(t)) the coefficient of the asymptotic expan-
sion of a(t) corresponding to t0.

Both Theorem A and Theorem B concern the asymptotic expansions of
log T (h, t), log Tsm(h, t) and log Tla(h, t). There are two different methods to an-
alyze these expansions. Theorem A contains results which can be obtained by
applying the analysis of Helffer-Sjöstrand [HS] of Wittens’s deformation of the de
Rham complex. Theorem B contains results which can be obtained from the the-
ory of families of pseudodifferential operators elliptic with parameter. As usual
βq = βq(M,ρ) denotes the qth Betti number, βq = dimHq(M ; E).
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Theorem A. Assume that the system (M,ρ, h, g, µ) satisfies (H) and let T denote
the generalized triangulation (h, g). Then the following statements are true:

(i) The function log T (h, t), log Tsm(h, t) and log Tla(h, t) admit asymptotic ex-
pansions for t→∞.

(ii) The asymptotic expansion of log T (h, t) is of the form

log T (h, t) = log T − log τmet(T ) +

(
log π

d∑

q=0

(−1)q
d− 2q

4
βq

)
+

+

(
d∑

q=0

(−1)q+1 d− 2q

4
βq

)
log t+

(
d∑

q=0

(−1)q+1qβq

)
t

+

d+1∑

j=1

(
d∑

q=0

(−1)qpq;j

)
tj +O

(
1√
t

)
(0.6)

where the pq;j’s are local terms (of Lemma 2.3) which all vanish in the case M is
of odd dimension.

(iii) The asymptotic expansion of log Tsm(h, t) is of the form

(0.7) log τcomb(τ) +
1

2

(
d∑

q=0

(−1)qq(mql − βq)
)

(2t− log t+ log π) +O

(
1√
t

)
.

Theorem A is proved in section 2 using, as already mentioned, results due to
Helffer-Sjöstrand [HS] concerning the asymptotic analysis of the complex
(Λ∗(M)sm, d(t)). Actually, we use a generalization of their results to the case of
vector valued differential forms. It has been verified by Bismut-Zhang [BZ] that
all the arguments of Helffer-Sjöstrand carry over for the asymptotic analysis of the
complex (Λ∗(M, E)sm, d(t)). For the convenience of the reader the auxiliary results
needed for the proof of Theorem A are reviewed in section 1. However the paper
can be well understood without reading section 1.

Concerning Theorem B we first remark that the family of operators ∆q(t) is a
family with parameter of order 2 and weight 1 (see [Sh] [BFK] or section 1). If
∆q(t) were a family of operators elliptic with parameter, then log det ∆q(t) would
admit a complete asymptotic expansion for t → ∞, whose coefficients would be
given by local expressions, involving the symbol of the resolvent of ∆q(t) ([BFK],
Theorem A.(iii)). This would lead to the false conclusion that the analytic torsion
itself is a local expression.

However, the family ∆q(t) fails to be elliptic with parameter precisely at the
critical points of the Morse function h. We therefore can use the Mayer-Vietoris type
formula for determinants [BFK], reviewed in section 1, to localize the failure of the
family ∆q(t) to be elliptic with parameter and to obtain a relative result, comparing
the asymptotic expansions corresponding to two different systems (M,ρ, h, g, µ)

and (M̃, ρ̃, h̃, g̃, µ̃). In view of the application in section 4 we only present a result

concerning the free term of the asymptotic expansion for log Tla(h, t)− log Tla(h̃, t).
In section 3 we prove
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Theorem B. Suppose (Md, ρ, h, g, µ) and (M̃d, ρ̃, h̃, g̃, µ̃) satisfy both hypothesis

(H) and further assume that l(ρ̃) = l(ρ) and Crq(h) = Crq(h̃)(0 ≤ q ≤ d). Then
the following statements hold:

(i) The free term FT (log Tla(h, t)− log Tla(h̃, t)) of the asymptotic expansion of

log Tla(h, t)− log Tla(h̃, t) is given by

FT (log Tla(h, t)− log Tla(h̃, t)) =

∫

M\Cr(h)

a0(h, ε = 0, x)dx

−
∫

M̃\Cr(h̃)

a0(h̃, ε = 0, x̃)dx̃(0.8)

where the densities a0(h, ε, x) and a0(h̃, ε, x̃) are forms of degree d and are given
by explicit local formulae (see (3.5)); the difference is taken in the sense explained
below.

(ii)If h′ : M → R is another self indexing Morse function with the same critical
points as h, which is equal to h in a neighborhood of the critical points, and gradgh

′

generates the same cochain complex as gradgh then a0(h, ε = 0, x) − a0(h′, ε =
0, x) = db(x) with b(x) a differential form of degree d-1 which vanishes in a neigh-
borhood of Cr(h).

(iii)If d is odd then a0(h, ε = 0, x) + a0(d− h, ε = 0, x) = 0

The integral
∫
M\Cr(h)

a0(h, ε = 0, x)dx is not convergent so the difference on

the right hand side of (0.8) should be understood in the following way: in view

of the hypothesis (H) there exist neighborhoods V of Cr(h) and Ṽ of Cr(h̃), a

diffeomorphism τ : V → Ṽ and a bundle isomorphism χ : E|V → Ẽ|Ṽ so that τ and

χ intertwine the functions h and h̃,the metrics g and g̃,the hermitian structures µ
and µ̃ and the differential operators ρd and ρ̃d. Define

∫

M\Cr(h)

a0(h, ε = 0, x)−
∫

M̃\Cr(h̃)

a0(h̃, ε = 0, x̃)

:=

∫

M\V
a0(h, ε = 0, x)−

∫

M̃\Ṽ
a0(h̃, ε = 0, x̃)(0.9)

Clearly, this definition is independent of the choice of V and Ṽ .
As an immediate application of Theorem A and Theorem B we obtain the fol-

lowing Corollary which will be proved in section 3 as well:

CorollaryC. Suppose (Md, ρ, h, g, µ) and (M̃d, ρ̃, h̃, g̃, µ̃) both satisfy (H). More-

over assume that d is odd, l(ρ) = l(ρ̃) and #Crq(h) = #Crq(h̃) for 0 ≤ q ≤ d.

Denote by T respectively T̃ the generalized triangulation (h, g) respectively (h̃, g̃).

Then, with T̃ := T (M̃d, ρ̃, h̃, g̃, µ̃)

log T − log T̃ = (log τ(T ) + log τ(TD))/2

− (log τ(T̃ ) + log τ(T̃D))/2.(0.9)

Section 4 contains an application of Corollary C. We prove a theorem due to, in
increasing generality, Ray-Singer, Cheeger, Müller, Bismut-Zhang.
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Theorem 4.1. ( [RS], [Ch], [Mü 1.2], [BZ]) Assume that (Md, g) is a Riemannian
manifold of odd dimension, ρ a representation ρ : π1(M)→ GL(V ), µ a Hermitian
structure of E →M and T = (h, g′) a generalized triangulation. Then

(0.10) log T = (log τ(T ) + log τ(TD))/2.

The formula (0.10) is not true for n even.However in view of Theorem B,i)
the same arguments as in the odd dimensional case imply that log T − log τ can
be expressed by a local formula. Such a formula has been obtained by Bismut-
Zhang [BZ]. We can also obtain such a formula by explicitely evaluating the density
a0(h, ε = 0, x),a calculation which might be of independent interest.

In forthcoming papers we will provide further extensions and applications of
Theorem A, B and Corollary C to analyse the G-torsion of a compact G-manifold
(G a compact Lie group) and to treat the case (in collaboration with P.Macdonald)
where ρ is a finite type Hilbert module. As a particular case this extension includes
the L2-torsion.

A few historical comments concerning Theorem 4.1 are in place. The above
result was conjectured by Ray-Singer [RS] and proved independently by Cheeger
[Ch] and Müller [Mü 1] in the case where the Hermitian structure µ is parallel with
respect to the canonical connection induced by ρ. We point out that in this case
τ(T ) = τ(TD).

The result in the generality stated is implicit in the work of Bismut-Zhang ([BZ],
Theorem 2) (see also [Mü 2] for a less general version). Their proof is rather involved
and lengthy while our proof is an application of Theorem A and Theorem B and is
considerably shorter. This paper was preceeded by [BFK-2](unpublished) where a
new proof of the Cheeger Müller theorem was given on the lines presented in this
paper.

1. Auxiliary results

In this section, for the convenience of the reader and to the extent needed in this
paper we review in the first part Seeley’s work on the value of the zeta function
of an elliptic operator at zero [Se 1,2], previous results of ours concerning the
asymptotic expansion of log det of an elliptic family of pseudodifferential operators
with parameter and a Mayer-Vietoris type formula for determinants [BFK].

In the second part we review results due to Helffer-Sjöstrand [HS] concerning
the analysis of Witten’s de Rham complex.

Let M be a compact smooth manifold of dimension d, possibly with nonempty

boundary ∂M and let E
p−→ M be a smooth complex vector bundle of rank N .

A pair (ϕ,ψ) of smooth maps ϕ : X → ϕ(X) = U ⊂ M , U an open set and
ψ : X ×CN → E/U , with X = Rd or Rd

+ = {(x1, . . . , xd)/xd ≥ 0}, is said to be

a coordinate chart of (M,E
p−→ M) if ϕ is a chart of M and ψ is a trivialization

of E → M above U , i.e. pψ = ϕp1 where p1 : X × CN → X is the canonical
projection.

Let Q : C∞(E) → C∞(E) be a classical pseudodifferential operator of order

m; this means that with respect to any chart of (M,E
p−→ M), the symbol q of
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Q, q : X × Rd → End(CN ), (x, ξ) → q(x, ξ), admits an asymptotic expansion∑∞
j=0 qm−j(x, ξ), where qm−j(x, ξ) is positive homogeneous of degree m − j in ξ.

Any differential operator is a classical pseudodifferential operator. The principal
symbol σ(Q) = qm(x, ξ) of a classical pseudodifferential operator Q of order m is
invariantly defined as a map T ∗xM → End(Ex).

Definition.

Q is called elliptic if qm(x, ξ) is invertible for all (x, ξ) ∈ T ∗xM\0.

We first review the case ∂M = ∅. One can construct a parametrix R(µ)
of the resolvent for an elliptic classical pseudodifferential operator Q. This is a
family of elliptic classical pseudodifferential operators depending on µ ∈ C\ ∪x,ξ
Spec (qm(x, ξ)), (x, ξ) ∈ T ∗M\0 representing an inverse of µ − Q up to smooth-

ing operators. The symbol of R(µ) in a chart (ϕ,ψ) has an asymptotic expansion
determined inductively as follows

(1.1) r−m(x, ξ, µ) = (µ− qm(x, ξ))−1,

and, for j ≥ 1,
(1.2)

r−m−j(x, ξ, µ) = r−m(x, ξ, µ)

j−1∑

k=0

∑

|α|+l+k=j

1

α!
∂αξ qm−l(x, ξ) · (

1

i
∂x)αr−m−k(x, ξ, µ)

where α = (α1, . . . , αd) denotes a multiindex, α! = α1! . . . αd!, and
∂αξ = ∂α1

ξ1
∂α2

ξ2
. . . ∂αdξd . The component r−m−j(x, ξ, µ) is positive homogeneous of

degree −m− j in (ξ, µ1/m), i.e. r−m−j(x, λξ, λmµ) = λ−m−jr−m−j(x, ξ, µ) for any
ξ 6= 0, λ > 0.

Assume that the angle π is a principal angle for a classical elliptic pseudo-
differential operator Q of positive order, i.e. there exists ε > 0 so that for any
(x, ξ) ∈ T ∗M\0 the spectrum of the principal symbol σ(Q)(x, ξ) does not intersect
the solid angle Vπ,ε = {z ∈ C : Rez ≤ 0, |Imz| ≤ ε|Rez|}. It is a well known
fact that at most a finite number of eigenvalues of the operator Q may be in Vπ,ε.
Therefore, if the operator Q is invertible, one can find a closed solid angle

Vθ,ε1 = {z ∈ C : θ − ε1 ≤ arg(z) ≤ θ + ε1}, π − ε < θ < π + ε

that does not intersect the spectrum of Q. To simplify notations, without loss of
generality, we assume that the angle Vπ,ε itself and the ball Bε(0) = {z ∈ C||z| < ε}
do not intersect the spectrum of Q. In this case we say that π is an Agmon angle.
In the case when π is not an Agmon angle, one can choose an Agmon angle θ from
Vπ,ε, and make all constructions with π replaced by θ.1

According to Seeley [Se 1] these conditions are more than sufficient to define the
complex powers of Q. To do this denote by Γ the contour Γ1 t Γ2 t Γ3 with

Γ1 := {z = ρeiπ :∞ > ρ ≥ ε0} (ray towards origin)

1Note that the zeta-function itself depends on the choice of θ but the determinant is indepen-

dent of this choice as long as π − ε < θ < π + ε.
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Γ2 := {z = ε0e
iθ : π ≥ θ ≥ −π} (circle with clockwise orientation)

Γ3 := {z = ρeiπ : ε0 ≤ ρ <∞} (ray towards infinity)

and for s ∈ C, with Res > d/m define Q−s : C∞(E)→ C∞(E) by the formula

(1.3) Q−s =
1

2πi

∫

Γ

µ−s(µ−Q)−1dµ.

Seeley [Se 1] proved that Q−s is a pseudodifferential operator depending holomor-
phically on s, and it is of trace class when Res > d/m. For α ∈ C∞(M ; C) and
Res > d/m one defines the generalized zeta function

(1.4) ζα,Q(s) :=
1

2πi

∫

Γ

µ−sTr(α(µ−Q)−1)dµ.

It is easy to see that ζq(s) defined in the introduction is equal to ζ1,∆q
(s). The

following result is implicit in [Se 1].

Theorem 1.1[Se 1].
(1) Assume Q is a classical pseudodifferential operator which is elliptic and has

π as an Agmon angle. If α ∈ C∞(M,C) then ζα,Q(s) admits a meromorphic
continuation to the entire s-plane. It has at most simple poles, and s = 0 is its
regular point. The value of ζα,Q(s) at s = 0 is given by

ζα,Q(0) =

∫

M

α(x)Id(x)

where Id(x) is a density on M . In a coordinate chart (ϕ,ψ), Id(x) is given by

(1.5) Id(x) =
1

m

1

(2π)d

∫

|ξ|=1

dξ

∫ ∞

0

Trr−m−d(x, ξ,−µ)dµ.

If Q is differential operator and dimM is odd, then Id(x) ≡ 0.
(2) Assume Q(t) : Hm(E) → L2(E) is a family of classical pseudodifferential

operators of order m depending in Cr-fashion on a parameter t varying in an open
set of R (here Hm(E) denotes the space of sections with derivatives up to order m
in L2(E)). Assume Q(t) is elliptic and π is an Agmon angle for any t, uniformly
in t.2 Then ζQ(t)(s) is a family of holomorphic functions in the neighbourhood of
s = 0, which depends in Cr-fashion on t.

Theorem 1.1 (1) allows to introduce the ζ-regularized determinant of Q

(1.6) detQ := exp

(
− d

ds
ζQ(s)

)

s=0

Theorem 1.1 (2) implies that detQ(t) is Cr in t.
Let Q(t) : C∞(E)→ C∞(E) be a family of classical pseudodifferential operators

of order m depending on a parameter t ∈ R+, R+ = [0,∞).

2Uniformity in t means that there exists ε > 0 such that both the angle Vπ,ε and the ball

Bε(0) do not intersect the spectrum of Q(t) for any t. Note that the condition of existence of an

Agmon angle uniformly in t is not algebraic: it can not be verified by looking at the symbol of

an operator-valued family. An algebraic condition is that there exists a principal angle, say π,
uniformly in t. It may happen, however, that, as the parameter changes, the arguments of a finite

number of eigenvalues of Q(t) lying in Vπ,ε cover all possible angles. If such a situation occurs, the
zeta-function as a continuous function of t can be defined only locally (in a small neighborhood

of any t0). Nevertheless, the determinant is a Cr-function of t.
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Definition.

A family Q(t) is a family of operators with parameter of order m and weight
χ > 0 if the following two conditions are met (see [Sh]):

(a) with respect to an arbitrary coordinate chart (ϕ,ψ) of (M,E
p−→M), for any

compact set K ⊂ Rd and multiindices α and β there exists a constant C = Cα,β,K
such that

(1.7) |∂αx ∂βξ q(x, ξ, t)| ≤ Cα,β,k(1 + |ξ|+ |t|1/χ)m−|β|

where q(x, ξ, t) denotes the symbol of Q(t).
(b) The symbol q(x, ξ, t) of Q(with respect to an arbitrary chart (ϕ,ψ)) admits

an asymptotic expansion
∑
j≥0 qm−j(x, ξ, t) with

(1.8) qm−j(x, λξ, λ
χt) = λm−jqm−j(x, ξ, t)

for λ > 0, ξ ∈ Rd\0, and t ∈ R+.

The principal symbol with parameter qm(x, ξ, t) is invariantly defined as a map
T ∗xM ×R+ → EndEx

Definition.

A family Q(t) is called elliptic with parameter [Sh] if the principal symbol
qm(x, ξ, t) of Q(t) is invertible for all (x, ξ, t) ∈ T ∗M×R+ with (ξ, t) ∈ T ∗xM×R+.

In that case one can construct a parametrix R(µ, t); this is a family of elliptic
classical pseudodifferential operators depending on t and µ, t ∈ R+, µ ∈ C\ ∪x,ξ,t
Spec qm(x, ξ, t), (x, ξ, t) ∈ T ∗M × R+, representing an inverse of (µ − Q(t)) up

to smoothing operators whose symbol with respect to a chart (ϕ,ψ) is determined
inductively by

(1.1′) r−m(x, ξ, t, µ) = (µ− qm(x, ξ, t))−1

r−m−j(x, ξ, t, µ) = (µ− qm(x, ξ, t))−1

j−1∑

k=0

∑

|α|+l+k=j

1

α!
(1.2′)

∂αξ qm−l(x, ξ, t)

(
1

i
∂x

)α
r−m−k(x, ξ, t, µ).

The component r−m−j(x, ξ, t, µ) is positive homogeneous of degree (−m − j) in

ξ, µ1/m, t1/χ. The angle π is said to be a principal angle for the family Q(t) if there
exists ε > 0 so that for any (x, ξ, t), (ξ, t) ∈ T ∗xM×R+ the spectrum of the principal
symbol qm(Q)(x, ξ, t) does not intersect the solid angle Vπ,ε. The angle π is said to
be an Agmon angle for the family Q(t) if in addition SpecQ(t) ∩ (Vπ,ε ∪Bε(0)) =
∅. In [BFK] Appendix, the following result concerning the complete asymptotic
expansion for t→∞ of log detQ(t) is proven



12 D. Burghelea, L. Friedlander, T. Kappeler

Theorem 1.2. ( [BFK]) Assume that Q(t) is a family of pseudodifferential opera-
tors, elliptic with parameter of order m and weight χ. Assume that π is an Agmon
angle for Q(t). Then the function log detQ(t) admits a complete asymptotic expan-
sion for t→∞ of the form

(1.9) log detQ(t) ∼
d∑

j=−∞
ājt

j/χ +

d∑

j=0

b̄jt
j/χ log t

where āj =
∫
M
aj(x)dx, b̄j =

∫
M
bj(x)dx are defined by smooth densities aj(x) and

bj(x) on M which can be computed in terms of the symbol of Q(t).
In particular, with respect to a coordinate chart, a0(x) is given by

a0(x) =
∂

∂s
|s=0

1

(2π)d

(
1

2πi

∫

Rd

dξ

∫

Γ

dµµ−sTr r−m−d(x, ξ, t = 1, µ)

)(1.10)

=
−1

(2π)d

∫

Rd
dξ

∫ ∞

0

Tr r−m−d(x, ξ, t = 1,−µ)dµ.

Let us consider now the case ∂M 6= ∅. For the purpose of this paper we only
need to consider the Dirichlet problem for an elliptic differential operator of order
2.

Introduce the operator

QD : C∞D (E)→ C∞(E)

where
C∞D (E) =: {u ∈ C∞(E)| u|∂M = 0}.

The ellipticity of Q insures that Spec QD is discrete. Assume that π is an Agmon
angle [BFK]. In [Se 2] Seeley constructs a parametrix RD(µ) for QD in a similar
fashion as in the case ∂M = ∅, describing inductively the asymptotic expansion of
its symbol. The only difference is that to each term in the symbol expansion (1.1-
1.2) a term coming from the boundary conditions is added. These terms depend
only on the symbol expansion of Q and its derivatives along the boundary ∂M .
Having constructed a parametrix, Seeley [Se 2] introduces complex powers of QD
(1.5) and the generalized zeta function ζα,QD (s) (1.6). As a special case one obtains
from Seeley’s results [Se 2] the following

Theorem 1.1′. Assume Q is an elliptic differential operator of order 2 so that
QD has π as an Agmon angle. Then the function ζα,QD (s) admits a meromor-
phic continuation to the entire s-plane. It has at most simple poles and s = 0
is its regular point. The value of ζα,QD (s) at s = 0 is given by ζα,QD (0) =∫
M
α(x)Id(x, 0) +

∫
∂M

α(x)Bd(x) where in a coordinate chart of (M,E → M),
Id(x) is defined as in (1.5). In a coordinate chart of (∂M,E|∂M → ∂M), Bd(x) is
given by a formula [Se 2] involving at most the first d terms of the symbol expansion
of Q and its derivatives up to order d.

One defines the ζ-regularized determinant of QD by

(1.6′) detQD := exp

(
− d

ds
ζQD (s)

)

s=0

As mentioned in [BFK, A.19,p64], a result analogous to Theorem 1.2 holds:
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Theorem 1.2′. Assume that Q(t) is a family of differential operators, elliptic with
parameter, of order 2 and weight χ > 0. Further assume that π is a principal angle
for Q(t)D and Spec Q(t)D ∩ (Vπ,ε ∪Bε(0)) = ∅ for some ε > 0. Then the function
log detQ(t)D admits a complete asymptotic expansion for t→∞ of the form

log detQ(t)D ∼
d∑

j=−∞
(āj + ābj)t

j/χ +

d∑

j=0

(b̄j + b̄bj)t
j/χ log t

where āj and b̄j are given as in Theorem 1.2. The quantities ābj and b̄bj are contri-
butions from the boundary conditions and are of the form

(1.11) ābj =

∫

∂M

abj(x); b̄bj =

∫

∂M

bbj(x).

In a coordinate chart of (∂M,E|∂M → ∂M), the densities abj(x), bbj(x) are given by
a formula involving the terms in the symbol expansion of Q(t) and its derivatives.

Next we recall a Mayer-Vietoris type formula for determinants [BFK]. We restrict
ourselves to the case needed in this paper. Assume that ∂M d = ∅ and let Γ be a
smooth hypersurface in Md. Consider an elliptic differential operator Q of order
2, Q : C∞(E) → C∞(E). Denote by MΓ the manifold whose interior is M\Γ
and whose boundary is ∂MΓ = Γ+ t Γ−, and let EΓ → MΓ be the pull back of
E → M . Consider QΓ : C∞(EΓ) → C∞(EΓ) with Dirichlet boundary conditions,
and assume that π is a principal and Agmon angle for both Q and QΓ. In [BFK]
we have introduced the Dirichlet to Neumann operator RDN associated to the
vector field X along Γ which is transversal to Γ. This operator is defined as the
composition

C∞(E|Γ)
∆ia−→ C∞(E|Γ+)⊕ C∞(E|Γ−)

PD−→ C∞(EΓ)
N−→

C∞(E|Γ+)⊕ C∞(E|Γ−)
∆iff−→ C∞(E|Γ)

where ∆ia(f) = (f, f) is the diagonal operator, PD in the Poisson operator associ-
ated to QΓ, N is the operator induced by the vector field X and ∆iff is the difference
operator ∆iff(f+, f−) = f+ − f−. In [BFK], Proposition 3.2 and Theorem A the
following result has been proved

Theorem 1.3. [BFK]
(1) RDN is an invertible elliptic classical pseudodifferential operator of order 1.

In a coordinate chart of (Γ, E|Γ→ Γ) the symbol of RDN has an expansion whose
terms depend only on the terms of the expansion of the symbol of Q in an arbitrary
small neighbourhood of Γ and their derivatives as well as on the vector field X along
Γ.

(2) Denote by x = (x′, w) coordinates in a collar neighbourhood of Γ such that
x′ are coordinates for Γ, and let X the vector field given by ∂/∂w. The principal
symbol σ(R−1

DN )(x′, ξ′) of R−1
DN can be computed in these coordinates [BFK, (4.6)]

in terms of the principal symbol σ(Q−1)(x′, w′, ξ′, η) of Q−1,

σ(R−1
DN )(x′, ξ′) =

1

2π

∫

R

σ(Q−1)(x′, 0, ξ′, η)dη.
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(3) In the case when π is a principal angle for RDN one has

det(QD) = c̄det(QΓ) detRDN

where

c̄ = exp

{∫

Γ

c(x)

}
,

and the density c(x), when expressed in a coordinate chart of (Γ, E|Γ→ Γ), depends
only on the first d terms of the symbol expansion of Q and their derivatives in an
arbitrary small neighbourhood of Γ as well as on the vector field X.

(4) Assume that instead of a single operator Q,there is a family Q(t) : C∞(E)→
C∞(E) of differential operators of order 2 with parameter t of weight χ so that Q(t)
is elliptic and invertible for each t. Introduce, as above Q(t)Γ, RDN (t) and assume
that SpecQ(t) ∩ (Vπ,ε ∪Bε) = ∅, Spec Q(t)Γ ∩ (Vπ,ε ∪Bε) = ∅ for some ε > 0 and
that π is a principal angle for Q(t) and Q(t)Γ. Then RDN (t) is an invertible family
of pseudodifferential operators with parameter [BFK,3.13] of order 1 and weight χ.

Now we review the analysis of the Witten complex developed by Helffer and
Sjöstrand [HS].

As we have seen in the introduction, the system (M,ρ, h, g, µ) provides a cochain
complex (Cq(M,ρ, T , µ), δ) with T = (h, g) for which we have introduced an or-
thonormal basis Eq;i,r (1 ≤ i ≤ mq; 1 ≤ r ≤ l). Write δq : Cq(M,ρ, T ) →
Cq+1(M,ρ, T ) in this basis

(1.12) δq(Eq;ir) =
∑

1≤i′≤mq+1

1≤r′≤l

γq;ir,i′r′Eq+1;i′r′ .

In [BZ], Bismut-Zhang have verified that the analysis of ∆q(t), done in the case
where V = R and E is the trivial line bundle by Helffer-Sjöstrand, can be carried
out in the case where dimV ≥ 1, ρ is an arbitrary representation of π1(M), and
µ is an arbitrary Hermitian structure for E → M . We begin by reviewing the t-
asymptotics of an orthonormal basis aq;ir(t) (1 ≤ i ≤ mq; 1 ≤ r ≤ l) of Λq(M ; E)sm
as constructed by Helffer-Sjöstrand.

Denote by Uqj a small connected neighbourhood of a critical point xq;j and

by Ûqj the component of p−1(Uqj) containing x̂q;j . According to hypothesis (H),
which is supposed to hold throughout the remaining of this section, we can find

coordinates x = (x1, . . . , xd) in Ûq;j so that ĥ is given by

ĥ(x) = q − (x2
1 + . . . x2

q)/2 + (x2
q+1 + . . . x2

d)/2,

the Riemannian metric g given by gij = δij , and the Hermitian structure µ is given

on Ûqj × V by µij = δij . The forms aq;jr are concentrated in Uqj as the following
estimates show; they are versions of much more refined estimates due to [HS].

Theorem 1.4. ( [HS, Proposition 1.7] [BZ, Theorem 8.15]) There exist η > 0 and
C > 0 such that, for t sufficiently large, 1 ≤ r ≤ l,

sup
x∈M\Uqj

||aq;jr(x, t)|| ≤ Ce−ηt.
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Similar estimates hold for the derivatives of aq;jr(x, t).

Recall that W−q;j denotes the unstable manifold of the critical point x̂q;j with

respect to grad gĥ. By choosing Uqj sufficiently small we may assume that Ûqj ∩
W−q;j′ = ∅ for j 6= j′. When expressed in the coordinates introduced above, aq;jr

admits the following expansion in t on Ûqj ∩W−q;j :

Theorem 1.5. ( [HS, Theorem 2.5] [BZ, Theorem 8.27]) On Ûqj ∩W−q;j

(1.13) aq;jr(t) = (t/π)d/4e−t|x|
2/2(1 +O(

1

t
))dx1 ∧ · · · ∧ dxq ēq;jr

with ēq;jr defined as in introduction.

Moreover we need

Theorem 1.6. ( [HS, Theorem 3.1, Proposition 3.3], [BZ, Theorem 8.30]) The
coefficients ηq;ir,i′r′(t) in the representation

(1.14) dq(t)aq;ir(t) =
∑

1≤i′≤mq+1

1≤r′≤l

ηq;ir,i′r′aq+1;i′r′(t)

satisfy, for t sufficiently large, the following estimate

ηq;ir,i′r′(t) =
(
γq;ir,i′r′(t/π)1/2 +O(1)

)
e−t

where the γq;ir,i′r′ are defined in (1.12).

We conclude this auxiliary section with the following application of the above
results.

First, recall that by de Rham’s theory the linear isomorphism (see Introduction)
rq : Ker∆q → Ker∆qare induced by the linear maps σq : Zq(M ; E) → Zq where
Zq(M ; E) denotes the space of closed q forms Zq(M ; E) ⊂ Λq(M ; E), and Zq is the
space of cocycles Zq ⊂ Cq. To define σq(a) for a ∈ Zq(M ; E), take the pull back of

a on M̂ , view it as a π1(M)-invariant form in Λq(M̂, V ), and define σq(a) ∈ Cq by
the formula

σq(a)(x̂q;j) =

∫

W−q;j

a.

Here we use that, in view of hypothesis (H), c.f [L], the unstable manifolds W−q;j
′s

provide a cell decomposition of M̂ .

Corollary 1.7.

σq(e
htaq;jr(t)) = (t/π)(d−2q)/4etq(Eq;jr +O(

1

t
))

Proof.
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It is to show that for any x̂q;j′

∫

W−
q;j′

aq;jr(t)e
ht = (t/π)(d−2q)/4etq(δjj′ ēq;jr +O

(
1

t

)
).

First, note that, due to Theorem 1.4 and to the choice of Uqj′ , it suffices to consider
the case j′ = j. Moreover, it suffices to estimate

∫

W−q;j∩Uqj
aq;jr(t)e

ht.

Note that on W−q,j ∩ Uqj , the function eht is at the form

eht = eqte−t(
∑ q

1 x
2
k)/2.

By Theorem 1.5, we conclude that

∫

W−q;j∩Uqj
aq;jr(t)e

ht = (t/π)d/4eqt
∫

W−q;j∩Uqj
et
∑ q

1 x
2
k(1 +O(1/t))dx1 ∧ . . . dxq.ēq;jr

= eqt(t/π)d/4(t/π)−q/2(ēq;jr +O(1/t)).

2. Asymptotic expansion of Witten’s

deformation of the analytic torsion

In this section we prove Theorem A. Throughout we assume the (M,ρ, h, g, µ)
satisfies (H) as defined in the introduction.

We begin by deriving an alternative formula for the analytic torsion (cf[Ch]).
The space of q-forms Λq(M ; E) can be decomposed

Λq(M ; E) = Λ+,q
t (M ; E)⊕ Λ−,qt (M ; E)⊕Hqt

where

Λ+,q
t (M ; E) := dq−1(t)Λq−1(M ; E); Λ−,qt (M ; E) := dq(t)

∗Λq+1(M ; E);

Hqt := {ω ∈ Λq(M ; E) : ∆q(t)ω = 0}

Note that the spaces Λ±,qt (M ; E) are invariant with respect to the Laplacians ∆q(t).
Therefore the zeta function ζq(t, s) corresponding to ∆q(t) can be written as a sum

ζq(t, s) = ζ+
q (t, s) + ζ−q (t, s)

where ζ±q (t, s) is the zeta function of the operator ∆q(t), restricted to Λ±,qt (M ; E).

The operator dq(t) maps the space Λ−,qt (M ; E) isomorphically onto Λ+,q+1
t (M ; E),

and intertwines ∆q(t) and ∆q+1(t). This implies that

ζ−q (t, s) = ζ+
q+1(t, s)
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which is used to write the zeta function ζ(t, s), defined by

ζ(t, s) :=

d∑

q=0

(−1)qqζq(t, s),

in the following way:

ζ(t, s) =

d∑

q=0

(−1)qq(ζ+
q (t, s) + ζ−q (t, s))

=

d∑

q=0

(−1)qqζ+
q (t, s)−

d∑

q=0

(−1)q(q − 1)ζ+
q (t, s)

=

d∑

q=0

(−1)qζ+
q (t, s) = −

d∑

q=0

(−1)qζ−q (t, s).

Thus,

log T (h, t) =
1

2

d

ds
ζ(t, s)s=0

=
1

2

d∑

q=0

(−1)q log det ∆−q (t)

=
1

2

d∑

q=0

(−1)(q+1) log det ∆+
q (t)

where ∆±q (t) is the restriction of ∆q(t) to Λ±,qt (M ; E). Note that

∆+
q (t) = dq−1(t)dq−1(t)∗; ∆−q (t) = dq(t)

∗dq(t).

Let
W±q (t) := log det ∆±q (t).

Our first goal is to compute the variation Ẇ±q (t) of W±q (t) with respect to t
(
. = d

dt

)

by using the following well known variational formula for determinants [RS]: Let
Q(t) be elliptic pseudodifferential operator of order m with π a principal angle
and Spec Q(t) ∩ (Vπ,ε ∪ Bε(0)) = ∅ for some ε > 0. Further assume that Q(t) is
continuously differentiable when considered as a function with values in the space
of linear operators Hm(M, E) → L2(M, E), where Hm(M, E) denotes the Sobolev

space of L2-sections with derivatives up to order m in L2(E). Then TrQ̇(t)Q(t)−s−1

is holomorphic in s for Res > d/m and has a meromorphic extension to the whole
complex s-plane with the point s = 0 being either a regular point or a simple pole.
Denoting by F.p.s=0Q̇(t)Q(t)−s−1 the 0’th order term in the Laurent expansion of

TrQ̇(t)Q(t)−s−1 at s = 0, the variational formula for log detQ(t) takes the form

(2.1)
d

dt
log detQ(t) = F.p.s=0TrQ̇(t)Q(t)−s−1.
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To compute Ẇ±q (t) consider the operator ∆+
q (t) which equals the restriction of

dq−1(t)d∗q−1(t) = e−thdq−1(t)e2thd∗q−1(t)e−th

= eth(dq−1(t)d∗q−1(t) + 2tdh ∧ d∗q−1(t))e−th

to the space

Λ+,q
t = dq−1(t)Λq−1 = e−thdq−1tΛ

q−1 = e−thΛ+,q.

Note that the operator

ethdq−1(t)d∗q−1(t)e−th = e2th(dq−1d
∗
q−1 + 2tdh ∧ d∗q−1)e−2th,

when restricted to Λ+,q
t , is isospectral to ∆+

q (t) and therefore, with [A,B] denoting
the commutator of two operators A and B we obtain

Ẇ+
q (t) = F.p.s=0Tr

d

dt
(e2th(dq−1d

∗
q−1 + 2tdh ∧ d∗q−1)e−2th)

.(e2th(dq−1d
∗
q−1 + 2tdh ∧ d∗q−1)e−2th)−s−1

= F.p.s=0Tr{2[h, e2thdq−1d
∗
q−1 + 2tdh ∧ d∗q−1)e−2th)]

+ 2e2thdh ∧ d∗q−1e
−2th}(e2th(dq−1d

∗
q−1 + 2tdh ∧ d∗q−1)e−2th)−s−1

= 2F.p.s=0Tre
2thdh ∧ d∗q−1e

−2th(e2th(dq−1d
∗
q−1 + 2tdh ∧ d∗q−1)e−2th)

where we used that Tr[A,B]B−s−1 = 0. Note that

(e2th(dq−1d
∗
q−1 + 2tdh ∧ d∗q−1)e−2th)−s−1 = (eth∆+

q (t)e−th)−s−1

and therefore

Ẇ+
q (t) = 2F.p.s=0Tre

thdh ∧ d∗q−1(t)e−th(eth(dq−1d
∗
q−1 + 2tdh ∧ d∗q−1(t))e−th)−s−1

= 2F.p.s=0Trdh ∧ d∗q−1(t)(dq−1(t)d∗q−1(t))−s−1

= 2F.p.s=0Trdh ∧ dq−1(t)−1(dq−1(t)dq−1(t)∗)−s

where the operator dq−1(t)−1 is defined on Λ+,q
t ,

dq−1(t)−1 : Λ+,q
t → Λ−,q−1

t .

Substituting
dq−1(t)hdq−1(t)−1 = h+ dh ∧ dq−1(t)−1

leads to

Ẇ+
q (t) = 2F.p.s=0Trdq−1(t)hdq−1(t)−1(∆+

q (t))−s − 2F.p.s=0Trh(∆+
q (t)−s.

As the operator dq−1(t) intertwines ∆+
q (t) and ∆+

q−1(t) one concludes that

Trdq−1(t)hdq−1(t)−1∆+
q (t)−s = Trh∆−q−1(t)−s,
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and obtains

(2.2) Ẇ+
q (t) = 2F.p.s=0Trh∆−q−1(t)−s − 2F.p.s=0Trh∆+

q (t)−s.

From (2.2) we derive the following variational formula for log T (h, t):

d

dt
log T (h, t) =

d∑

q=0

(−1)q+1F.p.s=0Trh∆−q−1(t)−s

−
d∑

q=0

(−1)q+1F.p.s=0Trh∆+
q (t)−s

=
d∑

q=0

(−1)qF.p.s=0Trh∆q(t)
−s

where the operator ∆q(t)
−s is defined as the (−s)th power of ∆q(t) on Λ+,q

t ⊕Λ−,qt

and 0 on Hqt . Denote by Pq(t) the orthogonal projector onto Hqt , the space of
t-harmonic q-forms. Note that

lim
ε→0

F.p.s=0Trh(∆q(t) + ε)−s = F.p.s=0Trh(∆q(t))
−s + TrPq(t)hPq(t).

We point out that according to Theorem 1.1, F.p.s=0Trh(∆q(t) + ε)−s can be
computed in local charts and is identically 0 in the case M is of odd dimension.
We summarize the above considerations in the following

Lemma 2.1.

(i)
d

dt
log T (h, t) =

d∑

q=0

(−1)q lim
ε→0

F.p.s=0Trh(∆q(t) + ε)−s

+

d∑

q=0

(−1)q+1TrPq(t)hPq(t).

(ii)If M is of odd dimension,

d

dt
log T (h, t) =

d∑

q=0

(−1)q+1TrPq(t)hPq(t).

Next we want to express the terms TrPq(t)hPq(t) in a more explicit way. Let
w1, . . . , wβ be a basis in the space Hq(M ; E) of harmonic q-forms where β = βq =
dimHq is the q′th Betti number. Introduce the β×β matrix Kq(t) = (Hij(t)) with

(2.3) Hij(t) =< Pq(t)e
−thwi, e

−thwj >=< Pq(t)e
−thwi, Pq(t)e

−thwj > .

We claim that the matrix Kq(t) is nonsingular for all values of t. To see it, note

that the forms wj(t) = e−tqwj are t-closed, i.e. are elements in Λ+,q
t ⊕Hqt . If Kq(t)

were singular a nontrivial linear combination

β∑

1

ajwj(t) = e−th(

β∑

1

ajwj)

would belong to the space Λ+,q
t and, therefore,

∑β
1 ajwj would belong to Λ+,q which

contradicts the choice of the w′js. Next we show the following
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Lemma 2.2.

(2.4) TrPq(t)hPq(t) = −1/2
d

dt
log |detKq(t)|

Proof. Denote Pq(t)wj(t) by ηj(t) and let η∗j (t) be the basis which is biorthogonal
to ηj(t), i.e.

(2.5) < η∗i (t), ηj(t) >= δij .

Expressing the forms η∗j (t) with respect to ηi(t)(1 ≤ i ≤ β) one obtains

η∗j (t) =

β∑

i=1

aji(t)ηi(t)

where, by (2.2), A(t) := (aji(t)) is given by Kq(t)
−1. This leads to

(2.6) TrPq(t)hPq(t) =

β∑

j=1

< hηj , η
∗
j >=

∑

1≤i,j≤β
aji < hηj , ηi >= TrK−1

q Σ

where Σ = Σ(t) = (σij(t)) is the matrix with σij(t) =< hηi(t), ηj(t) >. Formula
(2.4) follows, once we show that

(2.7) Σ(t) = −1

2
K̇q(t).

To verify (2.7) note that

ηi(t) = wi(t) + e−thθi(t) = e−thwi + e−thθi(t) ∈ Hqt ⊕ Λ+,q
t

where θi(t) ∈ Λ+,q. Therefore −η̇i(t) = hηi(t) + e−thθ̇i(t) and < η̇i(t), ηj(t) >=
− < hηi(t), ηj(t) > . Hence we obtain

Ḣij(t) =< η̇i(t), ηj(t) > + < ηi(t), η̇j(t) >= −2 < hηi(t), ηj(t) > .

which is (2.7). ¤
The right hand side of (2.4) has a simple geometric interpretation. Denote by

Cq(t) the canonical isomorphism Cq(t) : Hqt → Hq which maps a t-harmonic form
η to the unique harmonic form w cohomologous to ethη. Note that Cq(t)ηj(t) = wj
and, therefore we conclude that

(2.8) log Vq(t) =
1

2
log |detKq(t)|

where Vq(t) denotes the volume of the parallepiped in Hqt spanned by the forms
ηj(t). Note that Vq(0) = 1. Introduce the positive numbers C(t) > 0 by setting

(2.9) logC(t) :=
d∑

q=0

(−1)q log Vq(t).

Integrate Lemma 2.1 (i) with respect to t we obtain, combined with Lemma 2.2

(2.10) log T (h, t)− log T = logC(t) +

d∑

q=0

(−1)q lim
ε→0

∫ t

0

F.p.s=0Trh(∆q(t) + ε)−s.

To prove Theorem A we provide an asymptotic expansion for each of the terms on
the right hand side of (2.10).
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Lemma 2.3.
(i) For d odd,

lim
ε→0

∫ t

0

F.p.s=0Trh(∆q(t) + ε)−s = 0 (0 ≤ q ≤ d)

(ii) For d even

lim
ε→0

∫ t

0

F.p.s=0Trh(∆q(t) + ε)−s

is a polynormal in t of degree at most d+ 1,
∑d+1
j=o pq;jt

j where the coefficients pq;j
can be computed in local charts (see Theorem 1.1). Moreover

(2.11) pq;0 = 0 (0 ≤ q ≤ d).

Proof. Note that (i) is already contained in Lemma 2.1. Concerning (ii), re-
call from Theorem 1.1. that for ε > 0, F.p.s=0Trh(∆q(t) + ε)−s is given by∫
M
h(x)Id(x, t, ε)dx where, in a local chart, Id(x, t, ε) can be computed by a for-

mula of the type (1.7), which is obtained from the d-th term in the expansion of
the symbol of the resolvent of ∆q(t) + ε. The symbol of (∆q(t) + ε), in a chart is
given by

a2(x, ξ) + t2||∇h||2Id+ a1(x, ξ) + tLq + ε

where Lq is a certain multiplication operator acting on Λq(T ∗M)⊗V . The symbol
expansion of the resolvent, which we want to consider, is constructed inductively
as follows

r−2(x, ξ, λ, t, ε) = (λ− a2(x, ξ))−1

and for j ≥ 1

r−2−j(x, ξ, λ, t, ε) = (a2(x, ξ)− λ)−1
∑

1≤|α|≤2
l+|α|=j

1

α!

∂αξ a2(x, ξ)

(
1

i
∂x

)α
r−2−l(x, ξ, λ, t, ε)

+ (a2((x, ξ)− λ)−1)
∑

0≤|α|≤1
l+|α|=j

∂αξ a1(x, ξ)

(
1

i
∂x

)α
r−2−l(x, ξ, λ, t, ε)

+ (a2(x, ξ)− λ)−1
∑

2+l=j

(t2||∇h||2 + tLq + ε)r−2−l(x, ξ, λ, t, ε).

This shows that

r−2−d(x, ξ, λ, t, ) := lim
ε→0

r−2−d(x, ξ, λ, t, ε)

is a polynormal in t of degree at most d. Integrating in t we conclude that (ii)
holds. ¤

Recall that we have introduced in section O the volumes Vq = |det r−1
q | and we

denote by βq the q-th Betti number, βq = dimHq.
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Lemma 2.4.
(i)

log detCq(t) = log Vq + qβqt+ βq
d− 2q

4
log(t/π) + 0(1/

√
t).

(ii)

logC(t) = −
d∑

q=0

(−1)q log Vq +

(
d∑

q=0

(−1)q+1 d− 2q

4
βq

)
log t/π

+ (
d∑

q=0

(−1)q+1qβq)t+O(1/
√
t).

Proof. Summing with respect to q, statement (ii) follows from (i), together with
log Vq(t) = − log detCq(t). To compute detCq(t) we express Cq(t) with respect
to orthomormal bases of Htq and Hq. We decompose Cq(t) = r−1

q ◦ C ′q(t). Where

C ′q(t) : Hqt → Ker∆q. To describe C ′q(t) we choose a fixed orthomormal basis of
Ker∆q, Hqj(1 ≤ j ≤ βq) and express it with respect to the orthomormal basis
Eq;ir of Cq constructed in the introduction. One has

(2.12) Hqj =
∑

i,r

bjirEq;ir(1 ≤ j ≤ βq).

In section 1 we introduced an orthonormal basis of q-forms aq;ir(t) in Λq(M, E)sm
constructed by Helffer-Sjöstrand. Define

(2.13) w′qj(t) =
∑

i,r

bjiraq;ir(t)

where the coefficients bjirare the same as in (2.12). To prove that w′qj(t) is close to
a t-harmonic q-form we write w′qj(t) = Pq(t)(w

′
qj(t)) + w′′qj(t) and estimate w′′qj(t)

by

w′′qj(t) = ∆q(t)
−1(∆q(t)w

′
qj(t)) = O(1/

√
t)

where we used that, according to Theorem 1.6, the operator ∆q(t) when expressed
in the orthonormal basis aq;jr is given by

(
η(q)(t)

)T
η(q)(t) + η(q−1)(t)

(
η(q−1)(t)

)T

=
t

π
e−2t

{
(γ(q))T γ(q) + γ(q−1)(γ(q−1))T +O

(
1

t1/2

)}
.

Therefore, we can find an orthonormal basis wqj(t) of Hqt such that

wqj(t)− w′qj(t) = O(1/
√
t).
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Note that C ′q(t)(wqj(t)) = πq(σq(t))(e
thwqj(t)) where the map σq(t) has been in-

troduced at the end of section 1 and πq denotes the orthogonal projection from the
space Zq of closed q-cocycles into Ker∆q. Using that πq(Hqj) = Hqj , we obtain

(2.14) C ′q(t)w
′
qj(t) = (t/π)(d−2q)/4etq(Hqj +O(1/

√
t))

and, by estimating σq(t)(e
thwqj(t)− ethw′qj(t)) in a straightforward way,

(2.15) C ′q(t)(wqj(t)− w′qj(t)) = t−q/2etqO(1/
√
t).

From (2.14) and (2.15) we conclude that, for t sufficiently large

detC ′q(t) = (t/π)βq(d−2q)/4eqβqt(1 +O(1/
√
t)

or
log detC ′q(t) = βq(d− 2q)/4 log(t/π) + qβqt+O(1/

√
t).

This fact together with log detCq(t) = log detC ′q(t) + log |det r−1
q | and together

with log Vq = log |det r−1
q |, as defined in the introduction, yields statement (i). ¤

Lemma 2.5. For t sufficiently large,

log Tsm = log τcomb(T ) +
1

2

d∑

q=0

(−1)qq(mql − βq)(2t− log t/π) +O(1/
√
t).

Proof. Recall that

log Tsm(h, t) =
1

2

d∑

q=0

(−1)q+1q log det ∆q(t)|Λqt (M ;E)sm

and that Ker∆q as well as Ker∆q have both dimensions βq. Using Theorem 1.7

we conclude that (with det′ denoting the product of nonzero eigenvalues)

log det∆q(t)|Λqt (M ;E)sm = log
′

det((η(q))T η(q) + η(q−1)(η(q−1))T )

= log(
√
t/πe−t)2(mql−βq)

′
det((γ(q))T γ(q) + γ(q−1)(γ(q−1))T +O(1/

√
t))

= −2(mql − βq)t+ 2(mql − βq)
1

2
log(t/π) + log

′
det ∆q +O(1/

√
t)

where the matrices ηq and γ(q) have been defined in (1.14) and (1.12). ¤
The proof of Theorem A now follows easily. First note that log Tla(h, t) =

log T (h, t)− log Tsm(h, t). Therefore the asymptotic expansion of log Tla(h, t) is ob-
tained from the expansions of log T (h, t) and log Tsm(h, t). The asymptotic expan-
sion (1.4) for log T (h, t) follows from (2.10) together with Lemma 2.3 and Lemma

2.4 where we use the definition of log τmet(T ) =
∑d

0(−1)q log Vq. The expansion
(1.5) is contained in Lemma 2.5.
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3. Comparison theorem for Witten’s

deformation of the analytic torsion

In this section we prove the comparison result stated in Theorem B. Through-
out this section we assume that all systems involved satisfy hypothesis (H). Let
(M,ρ, h, g, µ) be such a system.

Let xq;j ∈ Crq(h) be a critical point of h of index q and Uqj an open neighbour-
hood of xq;j .

Definition.

Uqj is said to be a H-neighbourhood if there is a ball B2α := {x ∈ Rd : |x| < 2α}
and diffeomorphisms ϕ : B2α → Uqj and ψ : B2α × V → E/Uqj with the following
properties:

(i) ϕ(0) = xq;j ;
(ii) When expressed in the coordinates of ϕ, h is of the form h(x) = q − (x2

1 +
· · ·+ x2

q)/2 + (x2
q+1 + · · ·+ x2

d)/2;
(iii) the pull back ϕ∗(g) of the Riemannian metric g is the Euclidean metric;
(iv) ψ is a trivialization of E|Uqj , and the pull back ψ∗(µ) of the Hermitian

structure µ is given at any point in B2α by the scalar product ψ∗(µxq;j ).
For later use we define U ′qj := ϕ(Bα).

Definition.

Uqj (0 ≤ q ≤ d, 1 ≤ j ≤ #Crq(h)) is said to be a system of H-neighbourhoods if
(i) Uqj are H-neighbourhoods
(ii) Uqj are pairwise disjoint

Given a system of H-neighbourhoods Uqj introduce the manifolds

MI := M\ ∪q,j U ′qj ; MII := ∪q,jU ′qj ,

where U ′qj is defined as in the above definition. Both manifolds MI and MII have
the same boundary, given by a disjoint union of spheres of dimension d− 1.

Fix ε > 0 and consider the auxiliary operator ∆q(t) + ε. Its symbol with respect
to arbitrary coordinates (ϕ,ψ) of (M, E →M) is of the form

(3.1) a2(x, ξ) + t2||∇h||2 + a1(x, ξ) + tL(x) + ε

where ai : B2α ×Rd → End(Λq(Rd) ⊗ V ) (i = 1, 2) are homogeneous of degree i
in ξ, where ||∇h||2 : B2α → R is given by

||∇h||2 =
∑

1≤i,j≤d
gij

∂h

∂xi

∂h

∂xj

and where L : B2α → End(Λq(Rd)) is the operator L = L∇h+L∗∇h of order 0 with
L∇h denoting the Lie-derivative of q-forms along the vector field

∇h =
∑

i,j

gij
∂h

∂xi

∂

∂xj
.
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The operator L∗∇h is the adjoint of L∇h with respect to the metric g and is given
by

(3.2) L∗∇h = −(−1)q(d+q)Jd−qL∇hJq

where Jq : Λq(B2α) → Λd−q(B2α) is the Hodge operator associated to the metric
ϕ∗g. Recall that we have denoted by Cr(h) the set of all critical points of h. Set
M∗ := M\Cr(h). For an arbitrary chart (ϕ,ψ) of (M∗, E|M∗ → M∗), define, as
discussed in section 1 for operators elliptic with parameter, the symbol expansion∑
j≥0 r−2−j(h, ε, x, ξ, t, µ) of the resolvent (µ−∆q(t)− ε)−1 inductively as follows:

r−2(h, ε, x, ξ, t, µ) = (µ− a2(x, ξ)− t2||∇h||2)−1

and, for j ≥ 1,

r−2−j = −(µ− a2 − t2||∇h||2)−1
∑

1≤|α|≤2
l+|α|=j

1

α!
∂αξ a2

(
1

i
∂x

)α
r−2−l

(3.3)

− (µ− a2 − t2||∇h||2)−1
∑

0≤|α|≤1
l+|α|=j

∂αξ (a1 + tL)

(
1

i
∂x

)α
r−2−l

− (µ− a2 − t2||∇h||2)−1εr−j .

Note that r−2−j have the following homogeneity property: for λ ∈ R+

(3.4) r−2−j(h, ε, x, λξ, λt, λ
1/2µ) = λ−2−jr−2−j(h, ε, x, ξ, t, h).

For later use, we introduce the densities a0(h, ε, x) on M∗ with values in R, defined
with respect to the chart (ϕ,ψ) and arbitrary ε as

a0(h, ε, x) =
∂

∂s
/s=0

(
1

2π

)d
1

2πi

∫

Rd

dξ(3.5)

∫

Γ

dµµ−sTrr−2−d(h, ε, x, ξ, t = 1, µ)

=
−1

(2π)d

∫

Rd

dξ

∫ ∞

0

dµTrr−2−d(h, ε, x, t = 1,−µ).

Proposition 3.1. Assume that (Md, ρ, h, g, µ) and (M̃d, ρ̃, h̃, g̃, µ̃)) both satisfy (H)

so that Crq(h) = Crq(h̃) (0 ≤ q ≤ d) and l = l̃ = dimV . Then for any ε > 0

(i) log det(∆q(h, t)+ε)−log det(∆q(h̃, t)+ε) has a complete asymptotic expansion

for t→∞ whose free term is denoted by a0 := a0(h, h̃, ε)
(ii) The coefficient a0 can be represented in the form

(3.6) a0 =

∫

MI

a0(h, ε, x)−
∫

M̃I

a0(h̃, ε, x̃)



26 D. Burghelea, L. Friedlander, T. Kappeler

where a0(h, ε, x) and a0(h̃, ε, x̃) are the densities introduced in (3.5) for arbitrary ε.
(iii) In the case, dimM = d is odd

(3.7) a0(h, h̃, ε) + a0(d− h, d− h̃, ε) = 0 ( all ε > 0).

Proof. The proof is based on a Mayer-Vietoris type formula (Theorem 1.3). Note
that ∆q(h, t) + ε is a family of invertible, selfadjoint elliptic operators with param-
eter of order 2 and weight 1 for any ε > 0. The same is true for the operators
(∆I

q(h, t) + ε)D and (∆II
q (h, t) + ε)D obtained by restricting ∆q(h, t) + ε to MI and

MII respectively, and by imposing Dirichlet boundary conditions. Therefore we
can apply Theorem 1.3. Denote by RDN (h, t, ε) the Dirichlet to Neumann opera-
tor defined in section 1 where the vector field X is chosen to be the unit normal
vector field along ∂MI . We conclude from Theorem 1.3 (iv) that RDN (h, t, ε) is
an invertible pseudodifferential operator with parameter of order 1 and weight 2
and from Theorem 1.3 (ii) we conclude that RDN (h, t, ε) is elliptic with parameter.
According to Theorem 1.2, log detRDN (h, t, ε) has a complete asymptotic expan-
sion for t → ∞. Inspecting the principal symbol of (∆I

q(h, t) + ε)D one observes

that (∆I
q(h, t) + ε)D is a family of invertible, selfadjoint differential operators with

parameter of order 2 and weight 1 which is elliptic with parameter. From Theorem
1.2’ we therefore conclude that log det(∆I

q(h, t)+ε)D admits a complete asymptotic

expansion as t → ∞. Finally (∆II
q (h, t) + ε)D is a family of invertible selfadjoint

operators with parameter of order 2 and weight 1, which is however not elliptic
with parameter.

Of course the same considerations can be made for the system (M̃, ρ̃, h̃, g̃, µ̃)

to conclude that log detRDN (h̃, t, ε) and log det ∆I
q(h̃, t) + ε)D have both complete

asymptotic expansions for t → ∞. Applying the Mayer-Vietoris type formula
(Theorem 1.3 (iii)) for log det(∆q(h, t) + ε) and log det(∆q(h̃, t) + ε) we obtain for
the difference

log det(∆q(h, t) + ε)− log det(∆q(h̃, t) + ε)(3.8)

= log det(∆I
q(h, t) + ε)D − log det(∆I

q(h̃, t) + ε)D

+ log det(∆II
q (h, t) + ε)D)− log det(∆II

q (h̃, t) + ε)D

+ log detRDN (h, t, ε)− log detRDN (h̃, t, ε)

+ log C̄(h, t, ε)− log C̄(h̃, t, ε).

Note that MII and M̃II are isometric and E|MII
as well as Ẽ|M̃II

are trivial. Con-

sequently
log det(∆II

q (h, t) + ε)D = log det(∆II
q (h̃, t) + ε)D.

Due to our definition of H-coordinates the isometry between MII and M̃II extends
to neighbourhoods of MII and M̃II . As a consequence we conclude from Theorem
1.2 and Theorem 1.3 (iii) that C̄(h, t, ε) = C̄(h̃, t, ε) and that log detRDN (h, t, ε)

and log detRDN (h̃, t, ε) have identical asymptotic expansions.
Therefore we have proved that

log det(∆q(h, t) + ε)− log det(∆q(h̃, t) + ε)
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has a complete asymptotic expansion as t→∞ which is identical with the complete
asymptotic expansion for log det(∆I

q(h, t)+ε)D− log det(∆I
q(h̃, t)+ε)D. According

to Theorem 1.2’ the free term in the asymptotic expansions of both log det(∆I
q(h, t)

+ε)D and log det(∆I
q(h̃, t) + ε)D consists of a boundary contribution and a con-

tribution from the interior. Recall that ∂MI and ∂M̃I are isometric and that in
collar neighbourhoods of ∂MI and of ∂M̃I the symbols of (∆I

q(h, t) + ε)D and

(∆I
q(h̃, t) + ε)D are identical when expressed in (H)-coordinates. Therefore the

boundary contributions are the same and the free term in the asymptotic expan-
sion of log det(∆I

q(h, t) + ε)− log det(∆I
q(h̃, t) + ε) is given by

(3.9) a0 =

∫

MI

a0(h, ε, x)−
∫

M̃I

a0(h̃, ε, x̃)

where the densities a0(h, ε, x) and a0(h̃, ε, x̃) are given by (3.5).

Noting that a0(h, ε, x) and a0(h̃, ε, x̃) are identical on MII\Cr(h) ∼= M̃II\Cr(h̃)
statement (ii) follows. Towards (iii), note that ifM is of odd dimension, the quantity
r−d−2(h, ε, x, ξ, t, µ) defining a0(h, ε, x) satisfies according to (3.3) and (3.4)

(3.10) r−d−2(d− h, ε, x, ξ, t, µ) = r−d−2(h, ε, x, ξ,−t, µ)

and

(3.11) r−d−2(h, ε, x,−ξ,−t, µ) = −r−d−2(h, ε, x, ξ, t, µ).

Therefore r−d−2(h, ε, x, ξ, t, µ) + r−d−2(−h, ε, x, ξ, t, µ) is an odd function of ξ. In-
tegrating over |ξ| = 1 we conclude that a0(h, ε, x) + a0(d− h, ε, x) = 0. ¤

Introduce the following perturbed version of log T (h, t) for any ε > 0

(3.12) A(h, t, ε) :=
1

2

d∑

q=0

(−1)q+1q log det(∆q(h, t) + ε).

Note that A(h, t, ε) can be written as a sum

A(h, t, ε) = Asm(h, t, ε) +Ala(h, t, ε)

where Asm is defined similarly as log Tsm(h, t),

Asm(h, t, ε) :=
1

2

d∑

q=0

(−1)q+1q log det(∆sm
q (h, t) + ε)

with
∆sm
q (h, t) := ∆q(h, t)|Λq(M ;E)sm

and Ala(t, h, ε) is given by A(h, t, ε)−Asm(h, t, ε). Note that the eigenvalues of the
operator ∆sm

q (h, t) tend to 0 as t→∞ and therefore by Theorem 1.5

log det(∆sm
q (h, t) + ε) = mq log ε+O

(
1

ε
te−2t

)
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for t → ∞. This shows that Asm(h, t, ε) − Asm(h̃, t, ε) is exponentially small as
t→∞ and hence, for any fixed ε > 0, it has a trivial complete asymptotic expansion
for t → ∞. In view of (3.13) and Proposition 3.1 we conclude that for any ε > 0

A(h, t, ε) − A(h̃, t, ε) and Ala(h, t, ε) − Ala(h̃, t, ε) have both complete asymptotic
expansions for t→∞ and, moreover, these expansions are identical. In particular
we conclude that the free terms of the two expansions are identical

FT (Ala(h, t, ε)−Ala(h̃, t, ε)) = FT (A(h, t, ε)−A(h̃, t, ε)).

Use Proposition 3.1 (ii) and the fact that the densities a0(h, ε, x) and a0(h̃, ε, x)
((3.5)) are continuous in ε to obtain

Lemma 3.2.
(i) For any ε > 0, Ala(h, t, ε)−Ala(h̃, t, ε) has a complete asymptotic expansion

for t→∞ and it is identical to the one for A(h, t, ε)−A(h̃, t, ε).
(ii) The limit

lim
ε→0

FT (Ala(h, t, ε)−Ala(h̃, t, ε))

exists and is given by

lim
ε→0

FT (Ala(h, t, ε)−Ala(h̃, t, ε))(3.14)

=

∫

MI

a0(h, ε = 0, x)−
∫

M̃I

a0(h̃, ε = 0, x̃).

We have to investigate the left hand side of (3.14) further. For this purpose we
need the following estimate for the counting function Nq(t, λ) of Spec ∆q(t),

Nq(t, λ) := #{k ∈ N : λqk(t) ≤ λ}

Lemma 3.3. There exists a constant C > 0 independent of t and λ such that, for
t sufficiently large

Nq(t, λ) ≤ Cλd.

Proof. First note that for t sufficiently large and MII given as in (3.1), ∆q(t) ≥
∆q(0) = ∆q on MII . By Weyl’s law, we conclude

N II
q (t, λ) ≤ N II

q (0, λ) ≤ C1λ
d/2

where N II
q (t, λ) is the counting function for the spectrum of the operator ∆q(t)

restricted to MII , when considered with Neumann boundary conditions (Neumann
spectrum). Recall that MI = ∪q,jUqj . On each of the discs Uqj , ∆q(t), when
expressed in (H)-coordinates, is the direct sum of shifted harmonic oscillators of
the form

Ht := − d2

dx2
+ t2x2 + tc

with −α < x < α (α as in (3.1)). Following [CFKS, p.218] introduce the scaling
operator St defined by

Stf(x); = t1/2f(tx).
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Then St1/2 .tK.S−1
t1/2 = Ht where

K := − d2

dx2
+ x2 + c.

Therefore the Neumann spectrum of Ht on the interval −α < x < α is the same as
the Neumann spectrum of tK when considered on the interval −

√
tα < x <

√
tα.

Denote by NtK;
√
t(λ) the counting function of the Neumann spectrum of tK on the

interval −
√
tα < x <

√
tα and by ND

tK;
√
t
(λ) the counting function of the Dirichlet

spectrum of tK on the interval −
√
tα < x <

√
tα. Note that for all t ≥ 0 and λ

sufficiently large

NtK;
√
t(λ) ≤ ND

tK;
√
t
(λ) + 1 ≤ 2ND

tK;
√
t
(λ/t).

Comparing the Dirichlet problem for K on −
√
tα ≤ x ≤

√
tα with the one on

the whole real line we conclude that ND
K;
√
t
(λ/t) ≤ C2λ/t ≤ C2λ for t ≥ 1 with a

constant C2 > 0 independent of λ and t. Hence we have shown that the counting
function N I

q (t, λ) of the Neumann spectrum of the operator ∆q(t) on MI can be
estimated by

N I
q (t, λ) ≤ C3λ

d

for a constant C3 > 0 independent of t and λ. The subadditive property of the
Neumann counting function [CH] implies that

Nq(t, λ+ 0) ≤ N I
q (t, λ+ 0) +N II

q (t, λ+ 0) ≤ Cλd

for some constant C > 0 independent of t and λ and for t sufficiently large. ¤
Let us introduce the following version of the trace of the heat kernel

(3.15) θq(t, µ) :=
∑

k≥mql+1

e−µλ
q
k(t)

where mq = #Crq(h) and (λqk(t))k≥1 denote the eigenvalues of ∆q(h, t). From
Lemma 3.3 we obtain

Corollary 3.4.
(i) There exists a constant C > 0 independent of t and µ such that, for t suffi-

ciently large

(3.16) θq(t, µ) ≤ Cµ−d.

(ii) There exists a constant C > 0 independent of t and µ such that, for t
sufficiently large, and µ ≥ 1/

√
t

(3.17) θq(t, µ) ≤ Ce−βtµ.

Proof.
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(i) Recall that for k ≥ mql + 1 there exists a constant C1 > 0 such that

λqk(t) > C1t.

Therefore

θq(t, µ) =

∫ ∞

C1t

e−µλdNq(t, λ).

Integrating by parts we obtain

(3.18) θq(t, µ) = µ

∫ ∞

C1t

e−µλNq(t, λ)dλ.

By Lemma 3.3, one then concludes

θq(t, µ) ≤ C

µd

∫ ∞

C1tµ

e−λλddλ ≤ C̃/µd.

(ii) From (3.18) and Lemma 3.3 we obtain

θq(t, µ) ≤ Cµe−C1tµ/2

∫ ∞

C1t

e−µλ/2λddλ ≤ C̃

µd
e−C1tµ/2.

By choosing β < C1/2 and C > 0 sufficiently large we obtain (ii). ¤
Recall from Theorem A that logTla(h, t) has an asymptotic expansion for t→∞.

Proposition 3.5.

lim
ε→0

FT (Ala(h, t, ε)−Ala(h̃, t, ε)) = FT (log Tla(h, t))− FT (log Tla(h̃, t)).

Proof. We verify that the function, defined for ε > 0 and t sufficiently large by

H(t, ε) := Ala(h, t, ε)−Ala(h̃, t, ε) + log Tla(h, t, ε)− log Tla(h̃, t, ε)

is in the form

(3.19) H(t, ε) =

d∑

k=1

εkfk(t) + g(t, ε)

where g(t, ε) = O(1/
√
t) uniformly in ε. The statement of the proposition can

be deduced from (3.19) as follows: Recall that for ε > 0, H(t, ε) has a asymptotic
expansion for t→∞. As g(t, ε) = O(1/

√
t) uniformly in ε we conclude that for any

ε > 0,
∑d
k=1 ε

kfk(t) has an asymptotic expansion for t→∞. By taking d different
values 0 < ε1 < · · · < εd for ε and using that the Vandermonde determinant

det



ε1 . . . εd1
...

...
εd . . . εdd


 6= 0
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we conclude that for any 1 ≤ k ≤ d, fk(t) has an asymptotic expansion for t→∞
and that for any ε > 0

FT (H(t, ε)) =

d∑

k=1

εkFT (fk(t)).

Hence limε→0 FT (H(t, ε)) exists and limε→0 FT (H(t, ε)) = 0. It remains to prove
(3.19). For this purpose we introduce the zeta function ζq,la corresponding to the
large eigenvalues of ∆q(t) + ε,

ζq,la(t, ε, s) =
∑

j=mql+1

(λqj(t) + ε)−s.

Using the heat kernel representation, ζq,la(t, ε, s) can be written as

(3.20) ζq,la(t, ε, s) =
1

Γ(s)

∫ ∞

o

µs−1θq(t, µ)e−εµdµ

with θq(t, µ) given by (3.15). The integral in (3.20) can be splitted into two parts

(3.21) ζIq,la(t, ε, s) =
1

Γ(s)

∫ ∞

1/
√
t

µs−1θq(t, µ)e−εµdµ

and

(3.22) ζIIq,la(t, ε, s) =
1

Γ(s)

∫ 1/
√
t

0

µs−1θq(t, µ)e−εµdµ.

First let us consider

(3.23) ζIq,la(t, ε, s)− ζIq,la(t, ε = 0, s) =
1

Γ(s)

∫ ∞

1/
√
t

µsθq(t, µ)
e−εµ − 1

µ
dµ.

Note that
ζIq,la(t, ε, s)− ζIq,la(t, ε = 0, s)

is by Corollary 3.5 (ii) an entire function of s. Therefore, with

d

ds

(
1

Γ(s)

)

s=0

= 1

and 1− e−εµ ≤ εµ,

| d
ds

(ζIq,la(t, ε, s)− ζIq,la(t, ε = 0, s))s=0|

= |
∫ ∞

1/
√
t

θq(t, µ)
eεµ−1

µ
dµ|

≤ εC
∫ ∞

1/
√
t

e−βtµdµ =
εC

βt
e−β
√
t



32 D. Burghelea, L. Friedlander, T. Kappeler

where we have used Corollary 3.4. Concerning the term

d

ds
(ζIIq,la(t, ε, s)− ζIIq,la(t, ε = 0, s))s=0,

expand (e−εµ − 1)/µ

(e−εµ − 1)/µ =

d∑

k=1

−1k

k!
εkµk−1 + εd+1µde(ε, µ)

where the error term is given by

e(ε, µ) =

( ∞∑

k=d+1

(−1)k

k!
εkµk−1

)
/εd+1µd.

Note that µdθq(t, µ) ≤ C according to Corollary 3.4. Therefore

∫ 1/
√
t

0

µsθq(t, µ)εd+1µde(ε, µ)dµ

is an entire function of s and, for t sufficiently large

| d
ds

(
1

Γ(s)

∫ 1/
√
t

0

µsθq(t, µ)εd+1µde(ε, µ)dµ

)

s=0

|

≤ εd+1C/
√
t

where C is independent of t and ε, 0 ≤ ε ≤ 1. Finally, recall that θq(t, µ) admits
an expansion for µ→ 0+ of the form

θq(t, µ) =

d∑

j=0

Cj(t)µ
(j−d)/2 + θ′q(t, µ)

where θ′q(t, µ) is continuous in µ ≥ 0. Therefore, for 1 ≤ k ≤ d,

1

Γ(s)

∫ 1/
√
t

0

µsθq(t, µ)
(−1)k

k!
εkµk−1dµ

is analytic with respect to s at s = 0 and

d∑

k=1

d

ds
(

1

Γ(s)

∫ 1/
√
t

0

µsθq(t, µ)
(−1)k

k!
εkµk−1dµ)s=0

is of the form
∑d
k=1 ε

kfk(t). This establishes (3.19). ¤
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Proof of Theorem B. From Theorem A we know that log Tla(h, t) − log Tla(h̃, t)
has an asymptotic expansion for t → ∞. By Proposition 3.5, the free term of the
asymptotic expansion a0 is given by

a0 = lim
ε→0

FT (Ala(h, t, ε)−Ala(h̃, t, ε)).

By Lemma 3.3 (ii) we conclude that

a0 =

∫

MI

a0(h, ε = 0, x)−
∫

M̃I

a0(h̃, ε = 0, x̃).

Equation (0.9) is proved in Proposition 3.1 (iii). In view of the equality

FT (log T (h, t)− log Tsm(h, t)) = FT (log Tla(h, t))

one can see that a0 is independent of h and h̃ within the class of functions h
and h̃ which give rise to the same cochain complexes C∗(M ; ρ, T , µ) respectively

C∗(M ; ρ̃, T̃ , µ̃). This combined with the locality of a0 implies that
∫
MI

a0(h, ε =

0, x) =
∫
MI

a0(h′, ε = 0, x); this implies (ii). ¤

Proof of Corollary C. Choose a bijection Θ : Cr(h) → Cr(h̃) so that Θ(xq;j) is

a critical point x̃q;j of h̃ of index q. By assumption Θ extends to an isometry

Θ : ∪q,jUqj → ∪q,jŨqj where (Uqj) and (Ũqj) are systems of H-neighbourhoods for

h respectively h̃. Denote by T respectively T̃ the triangulation induced by (h, g)

respectively (h̃, g̃) and the dual triangulation by TD respectively T̃D.

Using Theorem A for both h and d− h, we obtain

2 log T − 2 log T̃ = FT (log T (h, t)− log T (h̃, t))

+ FT (log T (d− h, t)− log T (d− h̃, t))
+ log τmet(T )− log τmet(T̃ )

+ log τmet(TD)− log τmet(T̃D).

Decomposing log T (h, t) = log Tla(h, t) + log Tsm(h, t) and taking into account the
asymptotics (0.7) of log Tsm(h, t) we conclude that

2 log T − 2 log T̃ = log τ(T )− log τ(T̃ )

+ log τ(TD)− log τ(T̃D)

+ FT (log Tla(h, t)− log Tla(h̃, t))

+ FT (log Tla(d− h, t)− log Tla(d− h̃, t))

from which the Corollary follows by (0.9) and (0.10). ¤
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4. Application

In this section we present a new and short proof of results due to, in increasing
generality, Ray-Singer, Cheeger, Müller and Bismut-Zhang concerning the relation
of the analytic torsion and the Reidemeister torsion. To the best of our knowledge
the result as formulated can not be found in literature.

Theorem 4.1. (Ray-Singer; Cheeger; Müller; Bismut-Zhang). Assume that (M d

, g) is a compact Riemannian manifold without boundary of odd dimension d, ρ is a
representation of the fundamental group π1(M) on a vectors space V of dimension
l, ρ : π1(M) → GL(V ), µ is a Hermitian structure on the flat bundle E → M
(E induced by ρ) and T = (h, g′) is a generalized triangulation of M with TD =
(d− h, g′) denoting its dual. Then

log T = (log τ(T ) + log τ(TD))/2.

For the derivation of Theorem 4.1 from Theorem A and Theorem B we need a
number of well known results which we state for the convenience of the reader.They
can be proved in a straight forward fashion, or found in literature as mentioned.

Lemma 4.2. Let (M, g) be a Riemannian manifold. Assume that T = (h, g′) is a
generalized triangulation of M .

Then there exists a triangulation T ′ = (h, g′′) of M with the following properties:
(i) For any critical point xq;j ∈ Crq(h) there exists a neighbourhood Uqj so that

g′′ and g coincide on Uqj.
(ii) For any two critical points x, y, in Cr(h) the intersections W+

x (g′)∩W−y (g′)
and W+

x (g′′)∩W−y (g′′) are diffeomorphic where W+
x (g′) respectively W+

x (g′′) denote
the stable manifold associated to the critical point x and the gradient vector field
grad g′h respectively grad g′′h and where W−y (g′) respectively W−y (g′′) denote the

unstable manifold associated to the critical point y and the gradient vector field
grad g′h respectively grad g′′h

Definition.

Given generalized triangulations T = (h, g) and T ′ = (h′, g′), T ′ is called a
subdivision of T if

(i) Cr(h) ⊆ Cr(h′)
(ii) W±x (h′, g′) = W±x (h, g) for any x ∈ Cr(h).
The following result is implicit in [Mi2].

Lemma 4.3. Let T = (h, g′) be a generalized triangulation, 0 ≤ q ≤ d − 1 an
integer and x, y two distinct points in M\Cr(h). Then there exists a generalized
triangulation T ′ = (h′, g′′) with the following properties

(i) Cr(h′) = Cr(h) ∪ {x, y};
(ii) x ∈ Crq(h′); y ∈ Crq+1(h′);
(iii) T ′ is a subdivision of T ;
(iv) W−y ∩W+

x is connected.

As a consequence one obtains

(4.1) τ(T ) = τ(T ′)
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for any Riemannian manifold (M, g), any representation ρ : π1(M) → GL(V ) and
any Hermitian structure µ for E →M where E is the flat bundle induced by ρ.

For a Riemannian manifold (M, g), a set F ⊆ M and r > 0, denote by Br(F )
the following neighbourhood of F , Br(F ) := {x ∈M : dist g(x, F ) ≤ r}.
Lemma 4.4. Assume that (M, g) is a Riemannian manifold, F = {x1, . . . , xN} a
finite set of points of M and E →M a vector bundle of rank l. Then the following
statements hold:

(1) There exists a 1-parameter family gε, (|ε| < 2ε0, ε0 > 0) of Riemannian
metrics of class C1 in (ε, x) with the following properties:

(i) gε = g on M\B2ε(F );
(ii) gε is flat on Bε(F );
(iii) limε→0 gε = g in C1-topology.
(2) There exists a 1-parameter family µε, (|ε| < 2ε0, ε0 > 0) of Hermitian struc-

tures of class C1 in (ε, x) with the following properties:
(i) µε = µ on M\B2ε(F );
(ii) µε is a parallel on B2ε(F ) with respect to the canonical connection induced

by ρ;
(iii) limε→0 µε = µ in C1-topology.

The following result is a slight, but immediate generalization of [RS, Theorem
2.5].

Lemma 4.5. [RS] Assume that for j = 1, 2 we are given Riemannian manifolds
(Mj , gj), representations ρj : π1(Mj) → GL(Vj) and Hermitian structures µj :
Ej →Mj where Ej denotes the bundle induced by ρj. Then

log T (M1 ×M2, ρ1 ⊗ ρ2, g1 × g2, µ1 ⊗ µ2)

= χ(M2) log T (M1, ρ1, g1, µ1) + χ(M1) log T (M2, ρ2, g2, µ2)

where χ(Mj) denotes the Euler characteristic of Mj .

We use Lemma 4.5 only to prove the following

Corollary 4.6. Let T d := Rd/L be a d-dimensional torus,with L a lattice in Rd,
g0 the Euclidean metric on T d, ρ0 : π1(T d) → GL(Rd) the trivial representation
and µ0 the Hermitian structure on E → T d parallel with respect to the canonical
connection of ρ0.

(i) If d ≥ 2, then log T = 0 .
(ii) If d = 1, then log T = l log a where a > 0 is such that L = aZ

Proof.
(i) follows from Lemma 4.5 together with the fact that the Euler characteristic

χ(T d) satisfies χ(T d) = 0 for d ≥ 1.
(ii) For d = 1, T 1 is the circle {a/2π(cos θ, sin θ) : 0 ≤ θ ≤ 2π} and with

l = dimV ,

− log T =
l

2

d

ds
|s=0

∑

k 6=,0

( a

2πk

)2s

=
d

ds
|s=0(

a

2π
)2sζ(2s)
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where ζ(s) is the Riemann zeta function. Recalling that ζ(0) = −1/2 and d
dsζ(0) =

− log
√

2π we obtain log T = l log a ¤

The result analogous to Lemma 4.5 for the Reidemester torsion is implicit in
[Mi1]:

Lemma4.7. [Mi1] Assume that for j = 1, 2 we are given Riemannian manifolds
(Mj , gj), representations ρj : π1(Mj)→ GL(Vj), Hermitian structures µj on Ej →
Mj and triangulations Tj of (Mj , gj). Then

log τ(T1 × T2) = χ(M2) log τ(T1) + χ(M1) log τ(T2).

Again we use Lemma 4.7 only to prove the following:

Corollary 4.8. Let T d := Rd/L be a d-dimensional torus,with L a lattice in Rd,
g0 the Euclidean metric on T d, ρ : π1(T d) → GL(V ) the trivial representation
and µ0 the Hermitian structure on E → T d parallel with respect to the canonical
connection of ρ0. Moreover let h0 : T d → R be given by

h0(θ1, . . . , θd) :=
d∑

j=1

cos θj

Then T0 = (h0, g0) is a generalized triangulation with the following properties:
(i) If d ≥ 2, then τ(T0) = 0
(ii) If d = 1, then τ(T0) = l log a where a > 0 is such that L = aZ.

Proof.
(i) follows from Lemma 4.7 together with the fact that the Euler characteristic

χ(T d) satisfies χ(T d) = 0 for d ≥ 1.
(ii) It is easy to see that τcomb(T0) = 1 and log τmet(T0) = log V0 − log V1 =

l log a. ¤

The last result we need concerns the metric anomaly of the analytic torsion. In
the form needed for the proof of Theorem 4.1 it is a slight generalization of a result
due to Ray-Singer.

Lemma 4.9. ( [RS]). Let M be a manifold, ρ : π1(M)→ GL(V ) a representation
of the fundamental group of M on a vector space V and µ a Hermitian structure
on the bundle E →M induced by ρ. Let g(u) be a 1-parameter family of class C1 of
Riemannian metrics of M . Then log T (M,ρ, g(u), µ) is a C1-function of u whose
derivative is given by

d

du
log T (M,ρ, g(u), µ) =

d∑

q=0

(−1)q
d

du
logVq(u)

where Vq(u) is the volume defined by

Vq(u) = vol g(u)(Aq(u)−1(aq;j), . . . , Aq(u)−1(aq;βq)).
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Here (aq;j)1≤j≤βq is a basis of the q′th cohomology group Hq(M ; E), chosen inde-
pendently of u and Aq(u) : Ker∆q(u) → Hq(M ; E) is the canonical isomorphism
provided by Hodge theory between the null space Ker∆q(u) of the q-Laplacian ∆q(u)
and Hq(M ; E).

Proof. Taking into account Lemma 4.1 it suffices to verify the statement for the
case where the generalized triangulation T = (h, g′) has the additional property
that g′(x) = g(x) for any critical point x ∈ Cr(h).

In view of Lemma 4.4 and Theorem 1.1 we may assume in addition that in
sufficiently small neighbourhoods of any of the critical points of h, g = g′, g is flat
and µ is parallel with respect to the canonical connection induced by ρ. According
to Lemma 4.9 and the definition of the Reidemeister torsion τ = τmetτcomb it suffices
to verify the statement under the additional assumption that g = g′ on all of M .
Moreover, due to (4.1) it suffices to verify the statement for a subdivision T ′ of
T of our choice. Denote by βq(T

d) the q th Betti number of the d-dimensional
torus T d = Rd/Zd. Note that for any smooth Morse function h : M → R with
#Cr(h) ≥ βq(T

d) (0 ≤ q ≤ d) there exists a smooth Morse function h′ : T d → R
such that #Crq(h) = #Crq(h

′) (0 ≤ q ≤ d). Therefore, by Corollary C, we
conclude that it remains to verify the statement of Theorem 4.1 for M = T d, g0

the Euclidean metric on T d, ρ0 the trivial representation of π1(T d) on V , µ0 the
Hermitian structure on E → T d, which is parallel with respect to the canonical
connection induced by ρ and the generalized triangulation T = (h, g0) where h :
T d → R is a Morse function. In the case where ρ is a trivial and µ is the Hermitian
structure, parallel with respect to the canonical connection on E → M it is well
known [Mi1] that the Reidemeister torsion τ(T ) is independent of the generalized
triangulation. In particular τ(T ) = τ(TD). It then follows from Corollary 4.6 and
Corollary 4.8, that for any d ≥ 1,

T (T d, ρ0, g0, µ0) = τ(T d, ρ0, g0, µ0, T0)

where T0 = (h0, g0) with h(θ1, . . . , θd) :=
∑d
j=1 cos θj ¤
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