The spectrum of Schrödinger operators in $L_p(\mathbb{R}^d)$ and $C_0(\mathbb{R}^d)$

R. Hempel J. Voigt

Vienna, Preprint ESI 43 (1993)

August 2, 1993

Supported by Federal Ministry of Science and Research, Austria

The Spectrum of Schrödinger Operators in $L_p(\mathbf{R}^d)$ and in $C_0(\mathbf{R}^d)^{\dagger}$

Rainer Hempel^{*} Erwin Schrödinger International Institute for Mathematical Physics Pasteurgasse 6/7 A-1090 Vienna, Austria

> Jürgen Voigt Technische Universität Dresden Abteilung Mathematik 01062 Dresden, Germany

Introduction

The aim of this paper is to present results on the independence of the spectrum of Schrödinger operators in different spaces. We treat Schrödinger operators of a very general kind, namely $-\frac{1}{2}\Delta$ perturbed by certain measures μ .

In Section 1 we recall what measures can be used and we review results stating the *p*-independence of the spectrum of the realizations of $-\frac{1}{2}\Delta + \mu$ in $L_p(\mathbf{R}^d)$, $1 \le p \le \infty$.

In Section 2 we show that the realizations of $-\frac{1}{2}\Delta + \mu$ in spaces of continuous functions, e.g., the bounded uniformly continuous functions or the continuous functions vanishing at infinity, again have the same spectrum, for suitable μ . In fact, this is derived in a much more general context, utilizing the semigroup dual of a Banach space with respect to a strongly continuous semigroup.

In Section 3 it is shown that Shnol's method of constructing singular sequences can also be employed in a proof of the inclusions $\sigma(H_{2,V}) \subset \sigma(H_{p,V})$ and $\sigma(H_{2,V}) \subset \sigma(H_{C_0,V})$, for suitable potentials V. This establishes the connection between the spectrum in L_p and C_0 and the existence of polynomially bounded generalized eigenfunctions.

[†]Presented at the meeting by J. Voigt

^{*}On leave from Math. Inst. der Univ. München, Theresienstr. 39, D-8000 München 2

Address after September 1, 1993: Department of Mathematics, University of Alabama in Birmingham, Birmingham, AL35294

1. Review of L_p -results.

In order to state the results we have to recall some notations. Let

$$M_0 := \{ \mu : \mathcal{B} \to [0, \infty]; \ \mu \ \sigma \text{-additive}, \ \mu(B) = 0$$
for all sets $B \in \mathcal{B}$ with capacity zero}

where \mathcal{B} denotes the σ -algebra of Borel subsets of \mathbf{R}^d .

For the definition of the extended Kato class $\hat{S}_K \subset M_0$ of measures and of the constant $c(\mu)$ defined for $\mu \in \hat{S}_K$ we refer to [StV]. We recall that for $\mu_+ \in M_0$, $\mu_- \in \hat{S}_K$ with $c(\mu_-) < 1$ a closed form in $L_2(\mathbf{R}^d)$ is defined by

$$(\mathbf{h} - \mu_{-} + \mu_{+})[u, v] := \frac{1}{2} \int \nabla u \cdot \overline{\nabla v} dx - \int u \widetilde{v} d\mu_{-} + \int u \widetilde{v} d\mu_{+},$$

with domain

$$D(\mathbf{h} - \mu_{-} + \mu_{+}) = \{ u \in W_{2}^{1}(\mathbf{R}^{d}); \int |u^{\tilde{-}}|^{2} d\mu_{+} < \infty \}$$

 $(u^{\tilde{}} \text{ denoting a quasi-continuous version of } u)$. The closure of $D(\mathbf{h} - \mu_{-} + \mu_{+})$ in $L_2(\mathbf{R}^d)$ is of the form $L_2(Y)$, for a suitable set $Y \in \mathcal{B}$. The operator $H_{\mu} = H_{\mu_+-\mu_-}$ is the self-adjoint operator in $L_2(Y)$ associated with $\mathbf{h} - \mu_- + \mu_+$. It is shown in [StV; Corollary 4.2] that the semi-group $(e^{-tH_{\mu}}; t \ge 0)$ on $L_2(Y)$ acts also as a strongly continuous semigroup $U_{p,\mu}(.)$ on $L_p(Y)$, for all $p \in [1, \infty)$; the generators of these semigroups will be denoted by $-H_{p,\mu}$. Also, $H_{\infty,\mu} := H_{1,\mu}^*$. The corresponding unperturbed operators (for $\mu = 0$) will be denoted by H_p .

1.1. Theorem. With the notations introduced so far, we have

$$\sigma(H_{p,\mu}) = \sigma(H_{2,\mu})$$

for all $p \in [1, \infty]$.

We are going to give an outline of the proof of this result. In order to do so we first collect several facts which are needed in the proof.

1.2. Remark. (a) Let $\varepsilon > 0$. There exist constants C, ω such that

$$\|\mathrm{e}^{\xi \cdot x} \mathrm{e}^{-tH_{p,\mu}} \mathrm{e}^{-\xi \cdot x}\|_{p,q} \leq C t^{-\gamma} \mathrm{e}^{\omega t}$$

for all $t > 0, 1 \le p \le q \le \infty, \xi \in \mathbf{R}^d$ with $|\xi| \le \varepsilon$, where $\gamma = \frac{d}{2}(\frac{1}{p} - \frac{1}{q})$. (Here $\|\cdot\|_{p,q}$) denotes the norm in $L(L_p, L_q)$.)

The proof of this fact consists in two steps. In both of these steps it is essential that there exists a > 1 such that $a\mu$ is also in the class considered above (in particular, $c(a\mu) < 1$).

(i) One shows the inequality for $\xi = 0$, using Stein interpolation; cf. [StV; Theorem 5.1 (b)].

(ii) From the fact that the desired statement is true for the unperturbed heat semigroup ($\mu = 0$) one concludes it for the perturbed semigroup, again using Stein interpolation; cf. [ScV; Remark 3.4 (b), (c)].

(b) Let $\epsilon > 0, \omega$ be as in (a). Then there exists C such that

$$\left\| e^{\xi \cdot x} (H_{\mu} - w)^{-1} e^{-\xi \cdot x} \right\|_{p,q} \le C \left(\frac{1}{1 - \gamma} + \frac{1}{-w - \omega} \right)$$

for all $w \in \mathbf{R}$ with $w < -\omega$, $p \leq q$ with $\gamma = \frac{d}{2}(\frac{1}{p} - \frac{1}{q}) < 1$, $|\xi| \leq \epsilon$. Further, $(-\infty, -\omega) \subset \rho(H_{p,\mu})$ for all $p \in [1, \infty]$, and

$$(H_{p,\mu} - w)^{-1} = (H_{\mu} - w)^{-1}$$

on $L_p(Y) \cap L_2(Y)$, for $w < -\omega$.

The proof consists in integrating the inequality in (a) after multiplying by e^{wt} ; cf. [HV; Proposition 3.7], [ScV; Remark 3.4 (d)].

1.3. Lemma. ([ScV; Corollary 3.3]) Let $1 \le p \le q \le \infty$, $0 < \epsilon' < \epsilon''$. Then there exists $C \ge 0$ such that for each linear operator

$$A: L_{\infty,c}(\mathbf{R}^d) \to L_{\infty,\mathrm{loc}}(\mathbf{R}^d)$$

 $(L_{\infty,c} \text{ denoting } L_{\infty} \text{-functions with compact support}) \text{ satisfying}$

$$\|e^{\xi \cdot x} A e^{-\xi \cdot x}\|_{p,q} \le 1$$
 for all $\xi \in \mathbf{R}^d$ with $|\xi| \le \epsilon''$

one has

$$\left\| e^{\xi \cdot x} A e^{-\xi \cdot x} \right\|_{r,r} \le C$$

for $p \le r \le q$, $|\xi| \le \epsilon'$.

The inclusion
$$\rho(H_{p,\mu}) \subset \rho(H_{2,\mu})$$
 in Theorem 1.1 is obtained as in [HV; section 2], using Remark 1.2 (a) for $\xi = 0$.

Sketch of the proof of the inclusion $\rho(H_{2,\mu}) \subset \rho(H_{p,\mu})$ (compare [ScV]). It is sufficient to prove the assertion for all $p \in [1, 2]$. According to Remark 1.2 (b) we find w (< $-\omega$), C such that

$$||e^{\xi \cdot x}(H_{\mu} - w)^{-1}e^{-\xi \cdot x}||_{p,q} \le C$$

whenever $1 \le p \le q \le 2, \ \frac{d}{2}(\frac{1}{p} - \frac{1}{q}) \le \frac{1}{2}, \ |\xi| \le 1.$

Let $K \subset \rho(H_{2,\mu})$ be compact, $\overset{\circ}{K}$ connected, $K = \overline{\overset{\circ}{K}}$, $w \in \overset{\circ}{K}$. Then there exist $\epsilon \in (0,1]$ and a constant C' such that $K \subset \rho(e^{\xi \cdot x}H_{2,\mu}e^{-\xi \cdot x})$ for $|\xi| \leq \epsilon$, and

$$\begin{aligned} \|e^{\xi \cdot x} (H_{2,\mu} - z)^{-1} e^{-\xi \cdot x}\| &= \|(e^{\xi \cdot x} H_{2,\mu} e^{-\xi \cdot x} - z)^{-1}\| \\ &\leq C' \quad (|\xi| \le \epsilon, \ z \in K). \end{aligned}$$

This follows from perturbation theory and analytic continuation. (Note that the equality

$$e^{\xi \cdot x} (H_{2,\mu} - z)^{-1} e^{-\xi \cdot x} = \left(e^{\xi \cdot x} H_{2,\mu} e^{-\xi \cdot x} - z \right)^{-1}$$

on $L_2(Y) \cap L_{2,c}(\mathbf{R}^d)$, whose validity for z = w is obtained by Laplace transform, has to be extended to K by analytic continuation. The absence of this argument in [HV] was pointed out to the authors by W. Arendt.)

Using the resolvent equation

$$(H_{2,\mu}-z)^{-1} = (I + (z - w)(H_{2,\mu}-z)^{-1})(H_{2,\mu}-w)^{-1}$$

together with Lemma 1.3 one concludes the existence of C'' such that

$$||e^{\xi \cdot x} (H_{2,\mu} - z)^{-1} e^{-\xi \cdot x}||_{p,q} \le C''$$

for $z \in K$, $1 \le p \le 2$ with $\frac{d}{2}(\frac{1}{p} - \frac{1}{q}) \le \frac{1}{2}$, $|\xi| \le \frac{\epsilon}{2}$.

Iterating this argument one obtains the last inequality for all $p \in [1, 2]$ and small $|\xi|$. Using this estimate for $\xi = 0$ and the fact that

$$(H_{2,\mu} - w)^{-1} = (H_{p,\mu} - w)^{-1}$$
 on $L_p \cap L_2(Y)$

one obtains $K \subset \rho(H_{p,\mu})$.

1.4. Remarks. (a) A slightly different situation has been treated in [ScV]. In this paper the perturbation μ is the sum of a form small distributional part μ_0 (cf. [HS]) and $\mu_+ \in M_0$. This implies that the semigroup $(e^{-tH_{\mu}}; t \ge 0)$ acts as a strongly continuous semigroup on $L_p(Y)$ for $p_0 \le p \le p'_0$ where $p_0 \in [1, 2)$ depends on the form bound of μ_0 (cf. [BS]). It is then shown that $\sigma(H_{p,\mu}) = \sigma(H_{2,\mu})$ for all $p \in (p_0, p'_0)$.

(b) The *p*-independence of the L_p -spectrum of elliptic operators on certain Riemannian manifolds was shown in [Stu]. In a similar context the *p*-independence for 1 was shown in [Sh; Proposition 2.6].

(c) The p-independence of spectra has been shown in [Al] for perturbations of certain translation invariant operators.

(d) If $U(\cdot)$ is a strongly continuous semigroup on $L_2(\Omega)$ (where $\Omega \subset \mathbf{R}^d$) satisfying a Gaussian estimate, then it was shown in [Ar] that the spectra of the generators of the corresponding semigroups on $L_p(\Omega)$ are *p*-independent.

2. The spectrum of $-\frac{1}{2}\Delta + \mu$ in spaces of continuous functions

We want to show that under suitable hypotheses the spectrum of $-\frac{1}{2}\Delta + \mu$ in

$$C_0(\mathbf{R}^d) = \{ f \in C(\mathbf{R}^d); \ f(x) \to 0 \ (|x| \to \infty) \}$$

(or in other spaces of bounded continuous functions) is the same as the $L_p\mbox{-}$ spectrum.

It turns out that the main point which is specific about this situation is the question whether $(e^{-tH_{\mu}}; t \ge 0)$ acts as a strongly continuous semigroup on $C_0(\mathbf{R}^d)$. The fact that then coincidence of spectra can be concluded will follow from very general considerations presented next.

Let X be a Banach space, $(U(t); t \ge 0)$ a strongly continuous semigroup on X, and T its generator. The semigroup dual of X is then defined by

$$X^{\odot} := \{ x^* \in X^*; \ T(t)^* x^* \to x^* \ (t \to 0) \};$$

see, e.g., [HP; Chap. XIV], [BB; Sec. 1.4] (where X^{\odot} is denoted by X_0^*), [Ne]. (We use the adjoint space X^* of continuous conjugate linear functionals on X in order to stay consistent with duality in L_2 .)

2.1. Theorem. Let $Y \subset X^{\odot}$ be a closed subspace which is invariant under $U^*(t)$ $(t \ge 0)$. Denote by $U_Y(\cdot)$ the part of the semigroup $U^*(\cdot)$ in Y, and by T_Y the generator of $U_Y(\cdot)$.

(a) Then T_Y is the part of T^* in Y,

$$D(T_Y) = \{x^* \in Y \cap D(T^*); T^*x^* \in Y\}, T_Y = T^* | D(T_Y).$$

(b) $\rho_{\infty}(T) \subset \rho_{\infty}(T_Y)$, and $(\lambda - T_Y)^{-1}$ is the part of $((\lambda - T)^{-1})^*$ in Y, for $\lambda \in \rho_{\infty}(T)$. (Here $\rho_{\infty}(T)$ denotes the component of $\rho(T)$ containing a right half plane; and similarly for T_Y .)

(c) If additionally Y is equi-norming for X, i.e., the norm

$$||x||_{Y} := \sup\{| < x^{*}, x > |; x^{*} \in Y, ||x^{*}|| \le 1\} \quad (x \in X)$$

is equivalent to the original norm in X, then

$$\rho_{\infty}(T) = \rho_{\infty}(T_Y).$$

Proof. (a) This is known for $Y = X^{\odot}$, and the proof carries over to our case (cf. [BB; p. 51], [Ne; Theorem 1.3.3]).

(b) For $\lambda \in \mathbf{C}$ with $\operatorname{Re}\lambda$ larger than the type of $U(\cdot)$, the resolvents of T and T_Y are given by the Laplace transform of $U(\cdot)$ and $U_Y(\cdot)$, respectively, and therefore

$$< x^*, (\lambda - T)^{-1}x > = < (\lambda - T_Y)^{-1}x^*, x >$$

for all $x \in X$, $x^* \in Y$. Therefore $(\lambda - T_Y)^{-1}$ is the part of $((\lambda - T)^{-1})^*$ in Y. This implies that $((\lambda - T)^{-1})^*$ maps Y to Y for all $\lambda \in \rho_{\infty}(T)$. By uniqueness we obtain the claimed assertions.

(c) The equivalence of $\|\cdot\|$ and $\|\cdot\|_Y$ implies that there exists a constant c such that

$$\|(\lambda - T)^{-1}\| \le c \|(\lambda - T_Y)^{-1}\| \quad \text{for all} \quad \lambda \in \rho_{\infty}(T).$$

This implies $\partial(\rho_{\infty}(T)) \subset \sigma(T_Y)$, and therefore $\rho_{\infty}(T) = \rho_{\infty}(T_Y)$.

2.2. Remark. The assymptions made in the previous theorem are satisfied, in particular, for $Y = X^{\odot}$. For this case, however, one has $\rho(T^{\odot}) = \rho(T)$; cf. [Ne; Theorem 1.4.2].

2.3. Corollary. Assume that μ satisfies the hypotheses of Theorem 1.1. Let Y be a closed subspace of L_{∞} which is equi-norming for L_1 , invariant under $(e^{-tH_{1,\mu}})^*$ $(t \ge 0)$ and such that

$$||(e^{-tH_{1,\mu}})^*f - f||_{\infty} \to 0 \quad (t \to 0)$$

for all $f \in Y$. Denote by $-H_{Y,\mu}$ the generator of the strongly continuous semigroup on Y induced by $((e^{-tH_{1,\mu}})^*; t \ge 0)$. Then

$$\sigma(H_{Y,\mu}) = \sigma(H_{2,\mu})$$

2.4. Remarks. (a) The semigroup dual of $L_1(\mathbf{R}^d)$ for the unperturbed Schrödinger semigroup $(e^{-tH_1}; t \ge 0)$ is

 $C_{b,u}(\mathbf{R}^d) = \{ f \in C(\mathbf{R}^d); f \text{ bounded and uniformly continuous} \}.$

The generator is then the part of $-H_{\infty}$ in $C_{b,u}$,

$$D(H_{C_{b,u}}) = \{ f \in C_{b,u}(\mathbf{R}^d); \ H_{C_{b,u}}f = -\frac{1}{2}\Delta f \in C_{b,u} \}.$$

For $V \in C_{b,u}(\mathbf{R}^d)$, the multiplication operator by V is a bounded operator in $C_{b,u}(\mathbf{R}^d)$, and therefore Theorem 2.3 is applicable to H + V with $Y = C_{b,u}(\mathbf{R}^d)$. (b) The space $C_0(\mathbf{R}^d)$ is invariant under the unperturbed Schrödinger semigroup, and

$$D(H_{C_0}) = \{ f \in C_0(\mathbf{R}^d); \ H_{C_0}f = -\frac{1}{2}\Delta f \in C_0 \}.$$

For bounded $V \in C(\mathbf{R}^d)$ the multiplication by V is a bounded operator on $C_0(\mathbf{R}^d)$. Therefore Theorem 2.3 is applicable to H + V with $Y = C_0(\mathbf{R}^d)$.

(c) For $V = V_+ - V_-$, $V_{\pm} \ge 0$, $V_- \in K_d$, $V_+ \in K_{d,\text{loc}}$ it is shown in [S; Theorem B.3.1] that e^{-tH_V} maps L_{∞} -functions to continuous functions, for t > 0. As a consequence,

$$Y := L_1(\mathbf{R}^d)^{\odot}$$

consists of continuous functions, in this case.

3. An application of Shnol's method.

In order to establish a connection with the PDE-world, we will now discuss an alternative proof of the inclusions

$$\sigma(H_{p,V}) \supset \sigma(H_{2,V}), \qquad \sigma(H_{C_0,V}) \supset \sigma(H_{2,V}). \tag{3.1}$$

To this end, we will produce rather explicit "Weyl sequences" in L_p and also in C_0 which are obtained by applying suitably chosen cut-offs to generalized eigenfunctions associated with the expansion theorem for $H_{2,V}$ ([B], [S], [PStW]); this requires some mild modifications of Shnol's method (cf. [Shn], [S; Section C.4], and [HSt]). Therefore, we learn that properties of the Schrödinger operator in Hilbert space L_2 fully determine the spectra in L_p and even in C_0 : while estimates for the resolvent kernel $(H_{2,V} - z)^{-1}(x, y)$ give the inclusion $\rho(H_{p,V}) \supset \rho(H_{2,V})$, the converse inclusion will now be a consequence of the eigenfunction expansion theorem for $H_{2,V}$. Related ideas are also discussed in [Sh].

It should be stressed, however, that the approach proposed here requires more restrictive assumptions on the potential V, as compared with the "duality and interpolation"-proof described in Section 2. In the following, we will restrict the discussion to the case $V \in L_{\infty}(\mathbf{R}^d)$ where it is easy to obtain L_p -bounds for the gradient of a generalized eigenfunction.

We first collect a few facts (where we always assume that V is bounded):

(1) For $1 \le p \le \infty$, we have ([HV1]) $D(H_{p,V}) = D(H_p) = \{u \in L_p; \ \Delta u \in L_p\}.$ (3.2)

If, more strongly, V is bounded and continuous, then (cf. Section 2)

$$D(H_{C_0,V}) = D(H_{C_0}) = \{ u \in C_0; \ \Delta u \in C_0 \}.$$
(3.3)

(2) From the generalized eigenfunction expansion theorem for $H_{2,V}$ ([B], [S], [PStW]), we can draw the following conclusion: for any $\mu \in \sigma(H_{2,V})$ and any $\varepsilon > 0$, there exists a $\lambda \in (\mu - \varepsilon, \mu + \varepsilon)$ and a (non-trivial) distributional solution u of the PDE

$$-\frac{1}{2}\Delta u + Vu = \lambda u, \qquad (3.4)$$

satisfying a polynomial growth bound

$$|u(x)| \le c_1 (1+|x|)^K, \tag{3.5}$$

with some constants $c_1 > 0$ and $K \in \mathbf{N}$. For V bounded, it is also known that u is (equivalent to) a continuous function (cf., e.g., [S]).

(3) To control the cut-off errors, we need an L_p -bound on ∇u , for u satisfying (3.4), (3.5). Note that there is no L_p -analogue of the L_2 -gradient bound given in

[S; Lemma C.2.1]. Here we proceed as in [HV1], using an argument of L. Schwartz, to obtain the following lemma.

3.1. Lemma. Let $p \in [1, \infty]$, and suppose that $\Omega \subset \Omega'$ are open sets in \mathbb{R}^d with the property that $\operatorname{dist}(\Omega, \partial \Omega') \geq 1$. Then there exists a constant C = C(p), which is independent of both Ω and Ω' , such that

$$\|\nabla u\|_{L_p(\Omega)} \le C\left(\|u\|_{L_p(\Omega')} + \|\Delta u\|_{L_p(\Omega')}\right),$$
(3.6)

for all $u \in L_p(\Omega')$ with the property that $\Delta u \in L_p(\Omega')$.

Proof. We proceed as in [HV1]: letting T denote the usual fundamental solution for $-\Delta$, and picking some $\chi \in C_c^{\infty}(\mathbf{R}^d)$ with support in the unit ball and $\chi(x) = 1$ for $|x| \leq 1/2$, we have

$$\nabla u = (\nabla(\chi T)) * \Delta u - \nabla \zeta * u, \qquad (3.7)$$

(where $\zeta = (\Delta \chi)T + 2\nabla \chi \cdot \nabla T \in C_c^{\infty}(\mathbf{R}^d)$), and the required estimate follows from Young's inequality ([RS]). Furthermore, it is clear from eq. (3.7) that ∇u is continuous, provided u and Δu are continuous functions.

Now let u be a (continuous) generalized eigenfunction of H_2 and $\varphi \in C_c^{\infty}(\mathbf{R}^d)$. Then it follows from Lemma 3.1 and $\Delta(\varphi u) = \varphi \Delta u + 2\nabla \varphi \nabla u + (\Delta \varphi)u$ that φu will belong to the domain of H_p , for $1 \leq p \leq \infty$. Similarly, if V is bounded and continuous, then φu will belong to the domain of $H_{C_0,V}$.

(4) Central to Shnol's method is the observation that the growth bound (3.5) implies that the L_2 -norm of u, considered on a suitable sequence of balls, will not grow too rapidly (cf. [S]). While the exposition given in [S; Section C.4] can directly be carried over to the L_p -case for $1 \leq p < \infty$, it has to be modified for $p = \infty$ and, similarly, also for the space C_0 . We therefore change the scenario used in [S] and consider

$$\mathcal{E}_n = \{ x \in \mathbf{R}^d; \ |x| < 2^n \}, \qquad \mathcal{F}_n = \mathcal{E}_{n+1} \setminus \mathcal{E}_n \qquad (n \in \mathbf{N}).$$
(3.8)

We then have the following lemma.

3.2. Lemma. Let $1 \le p \le \infty$, and let u be as in (3.5). Let a > 2 and set $c_2 = c_2(p) = a^{K+\frac{d}{p}}$. Then there exists a sequence $(n_j)_{j\in\mathbf{N}} \subset \mathbf{N}, n_j \to \infty$, such that $\left\| u|_{\mathcal{F}_{n_j}} \right\|_p \le c_2 \left\| u|_{\mathcal{E}_{n_j}} \right\|_p \qquad (j \in \mathbf{N}). \tag{3.9}$

Proof. If the statement of the lemma were not true, there would exist some n_0 such that

$$||u|_{\mathcal{F}_n}||_p \ge c_2 ||u|_{\mathcal{E}_n}||_p > 0 \qquad (n \ge n_0), \tag{3.10}$$

so that

$$||u|_{\mathcal{E}_n}||_p \ge ||u|_{\mathcal{F}_{n-1}}||_p \ge c_2 ||u|_{\mathcal{E}_{n-1}}||_p \quad (n > n_0).$$
 (3.11)

This leads to

$$\|u|_{\mathcal{E}_n}\|_p \ge c_2^{n-n_0} \|u|_{\mathcal{E}_{n_0}}\|_p \quad (n \ge n_0),$$
(3.12)

in contradiction with the polynomial growth bound of u.

With these preparations, it is now easy to prove the inclusions stated in eq. (3.1).

Proposition 3.3. Let $V \in L_{\infty}(\mathbf{R}^d)$. Then $\sigma(H_{p,V}) \supset \sigma(H_{2,V})$, for all $p \in [1,\infty]$. If, moreover, V is (bounded and) continuous, then $\sigma(H_{C_0,V}) \supset \sigma(H_{2,V})$.

Proof. We first choose a function $\varphi \in C_c^{\infty}(-2,2)$ with the property that $\varphi(x) = 1$, for $|x| \le 4/3$, and $\varphi(x) = 0$, for $|x| \ge 5/3$, and we define

$$\varphi_n(x) = \varphi(2^{-n}|x|), \qquad x \in \mathbf{R}^d.$$

Then $\mathcal{G}_n := \operatorname{supp}(\nabla \varphi_n) \subset \mathcal{F}_n$ and $\operatorname{dist}(\mathcal{G}_n, \partial \mathcal{F}_n) \geq 1$, for $n \geq 2$. Furthermore, we have $\|\nabla \varphi_n\|_{\infty} \leq c_3 2^{-n}$ and $\|\Delta \varphi_n\|_{\infty} \leq c_4 2^{-2n}$.

Now let $\mu \in \sigma(H_{2,V})$ be given, and let $\varepsilon > 0$. By what was said in point (2), there exists some $\lambda \in (\mu - \varepsilon, \mu + \varepsilon)$ and a (non-trivial) generalized eigenfunction u of $H_{2,V}$ that satisfies (3.4), (3.5). For given $p \in [1, \infty]$, we will prove that there exists a sequence $(n_j) \subset \mathbf{N}$ so that

$$\left\| (H_{p,V} - \lambda)(\varphi_{n_j} u) \right\|_p / \left\| \varphi_{n_j} u \right\|_p \to 0, \quad j \to \infty.$$
(3.13)

Therefore, $H_{p,V} - \lambda$ does not have a bounded inverse, whence $\lambda \in \sigma(H_{p,V})$. Taking $\varepsilon \to 0$ then gives $\mu \in \sigma(H_{p,V})$.

Applying Lemma 3.2 to u, we find a constant c_2 and a sequence (n_j) such that (3.9) holds. As $\varphi_{n_j} u \in \mathcal{D}(H_{p,V})$ and $(H_{p,V} - \lambda)(\varphi_{n_j} u) = -(\nabla \varphi_{n_j})\nabla u - \frac{1}{2}(\Delta \varphi_{n_j})u$, we have

$$\begin{aligned} \left\| (H_{p,V} - \lambda)(\varphi_{n_j} u) \right\|_p &\leq \left\| \nabla \varphi_{n_j} \right\|_{\infty} \left\| \nabla u|_{\mathcal{G}_{n_j}} \right\|_p + \left\| \Delta \varphi_{n_j} \right\|_{\infty} \left\| u|_{\mathcal{G}_{n_j}} \right\|_p \\ &\leq c_5 \, 2^{-n_j} \left(\left\| u|_{\mathcal{F}_{n_j}} \right\|_p + \left\| \Delta u|_{\mathcal{F}_{n_j}} \right\|_p \right), \end{aligned}$$

by Lemma 3.1. From $V \in L_{\infty}$ and $\frac{1}{2}\Delta u = (V - \lambda)u$ we now conclude that

$$\left\| (H_{p,V} - \lambda)(\varphi_{n_j} u) \right\|_p \le c_6 2^{-n_j} \left\| u|_{\mathcal{F}_{n_j}} \right\|_p \le c_7 2^{-n_j} \left\| u|_{\mathcal{E}_{n_j}} \right\|_p \le c_8 2^{-n_j} \left\| \varphi_{n_j} u \right\|_p,$$

and the result follows.

The proof in the case of the space C_0 is essentially identical with the $p = \infty$ proof and omitted.

Acknowledgements. R. Hempel would like to thank T. Hoffmann-Ostenhof for the kind invitation to the Erwin Schrödinger Institute at Vienna.

References.

- [Al] D. ALBOTH: Closable translation invariant operators and perturbations by potentials. Dissertation, Kiel 1991.
- [Ar] W. ARENDT: Gaussian estimates and p-independence of the spectrum in L^p. Manuscript 1993.
- [BS] A. G. BELYI, YU. A. SEMENOV: L^p-theory of Schrödinger semigroups II. Sibirskii Matematicheskii Zhurnal **31**, 16 - 26 (1990) (russian). Translation: Siberian Math. J. **31**, 540 - 549 (1990).
- [B] J. M. BEREZANSKI: Expansions in eigenfunctions of selfadjoint operators. Transl. Math. Monogr., vol. 17, Amer. Math. Soc., Providence, 1968.
- [BB] P. L.BUTZER, H. BERENS: Semi-groups of operators and approximation. Springer-Verlag, Berlin, 1967.
- [HV] R. HEMPEL, J. VOIGT: The spectrum of a Schrödinger operator in $L_p(\mathbf{R}^N)$ is *p*-independent. Commun. Math. Phys. **104**, 243 250 (1986).
- [HV1] R. HEMPEL, J. VOIGT: On the L_p-spectrum of Schrödinger operators. J. Math. Anal. Appl. **121**, 138 - 159 (1987).
- [HS] I. W. HERBST, A. D. SLOAN: Perturbation of translation invariant positivity preserving semigroups on $L^2(\mathbb{R}^N)$. Transactions Amer. Math. Soc. **236**, 325 360 (1978).
- [HP] E. HILLE, R. S. PHILLIPS: Functional analysis and semi-groups. Amer. Math. Soc., Providence, 1957.
- [HSt] A. M. HINZ, G. STOLZ: Polynomial boundedness of eigensolutions and the spectrum of Schrödinger operators. Math. Ann. 294, 195 - 211 (1992).
- [Ne] J. VAN NEERVEN: The adjoint of a semigroup of linear operators. Lecture Notes in Math. 1529, Springer-Verlag, Berlin, 1992.
- [PStW] TH. POERSCHKE, G. STOLZ, J. WEIDMANN: Expansions in generalized eigenfunctions of selfadjoint operators. Math. Z. 202, 397 - 408 (1989).
 - [RS] M. REED, B. SIMON: Methods of modern mathematical physics II: Fourier analysis, self-adjointness. Academic Press, New York, 1975.
 - [ScV] G. SCHREIECK, J. VOIGT: Stability of the L_p -spectrum of Schrödinger operators with form small negative part of the potential. In: "Functional Analysis", Proc. Essen 1991, Bierstedt, Pietsch, Ruess, Vogt eds., Marcel Dekker, to appear.

- [Shn] I. EH. SHNOL': Ob ogranichennykh resheniyakh uravneniya vtorogo poryadka v chastnykh proizvodnykh. Dokl. Akad. Nauk SSSR 89, 411 - 413 (1953).
- [Sh] M. A. SHUBIN: Spectral theory of elliptic operators on non-compact manifolds. In: "Méthodes semi-classiques, vol. 1", Astérisque 207, 37 - 108 (1992).
- [S] B. SIMON: Schrödinger semigroups. Bull. (N. S.) Amer. Math. Soc. 7, 447 -526 (1982).
- [StV] P. STOLLMANN, J. VOIGT: Perturbation of Dirichlet forms by measures. Preprint 1992.
- [Stu] K.-TH. STURM: On the L^p-spectrum of uniformly elliptic operators on Riemannian manifolds. J. Funct. Anal., to appear.