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Introduction

The aim of this paper is to present results on the independence of the spectrum
of Schrödinger operators in different spaces. We treat Schrödinger operators of a
very general kind, namely − 1

2∆ perturbed by certain measures µ.
In Section 1 we recall what measures can be used and we review results stating

the p-independence of the spectrum of the realizations of − 1
2∆ + µ in Lp(R

d),
1 ≤ p ≤ ∞.

In Section 2 we show that the realizations of − 1
2∆ + µ in spaces of continu-

ous functions, e.g., the bounded uniformly continuous functions or the continuous
functions vanishing at infinity, again have the same spectrum, for suitable µ. In
fact, this is derived in a much more general context, utilizing the semigroup dual
of a Banach space with respect to a strongly continuous semigroup.

In Section 3 it is shown thal Shnol’s method of constructing singular se-
quences can also be employed in a proof of the inclusions σ(H2,V ) ⊂ σ(Hp,V ) and
σ(H2,V ) ⊂ σ(HC0,V ), for suitable potentials V. This establishes the connection
between the spectrum in Lp and C0 and the existence of polynomially bounded
generalized eigenfunctions.
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1. Review of Lp-results.

In order to state the results we have to recall some notations. Let

M0 := {µ : B → [0,∞]; µ σ-additive, µ(B) = 0

for all sets B ∈ B with capacity zero},

where B denotes the σ-algebra of Borel subsets of Rd.
For the definition of the extended Kato class ŜK ⊂ M0 of measures and of

the constant c(µ) defined for µ ∈ ŜK we refer to [StV]. We recall that for µ+ ∈M0,
µ− ∈ ŜK with c(µ−) < 1 a closed form in L2(Rd) is defined by

(h− µ− + µ+)[u, v] :=
1

2

∫
∇u · ∇vdx−

∫
u˜v˜dµ− +

∫
u˜v˜dµ+,

with domain

D(h− µ− + µ+) = {u ∈W 1
2 (Rd);

∫
|u˜ |2 dµ+ <∞}

(u˜ denoting a quasi-continuous version of u). The closure of D(h − µ− + µ+)
in L2(Rd) is of the form L2(Y ), for a suitable set Y ∈ B. The operator Hµ =
Hµ+−µ− is the self-adjoint operator in L2(Y ) associated with h − µ− + µ+. It is
shown in [StV; Corollary 4.2] that the semi-group

(
e−tHµ ; t ≥ 0

)
on L2(Y ) acts

also as a strongly continuous semigroup Up,µ(.) on Lp(Y ), for all p ∈ [1,∞); the
generators of these semigroups will be denoted by −Hp,µ. Also, H∞,µ := H ∗

1,µ.
The corresponding unperturbed operators (for µ = 0) will be denoted by Hp.

1.1. Theorem. With the notations introduced so far, we have

σ(Hp,µ) = σ(H2,µ)

for all p ∈ [1,∞].

We are going to give an outline of the proof of this result. In order to do so
we first collect several facts which are needed in the proof.

1.2. Remark. (a) Let ε > 0. There exist constants C, ω such that

‖eξ·x e−tHp,µ e−ξ·x‖p,q ≤ C t−γeωt

for all t > 0, 1 ≤ p ≤ q ≤ ∞, ξ ∈ Rd with |ξ| ≤ ε, where γ = d
2 ( 1
p − 1

q ). (Here

‖ · ‖p,q) denotes the norm in L(Lp, Lq).)
The proof of this fact consists in two steps. In both of these steps it is essential

that there exists a > 1 such that aµ is also in the class considered above (in
particular, c(aµ) < 1).

(i) One shows the inequality for ξ = 0, using Stein interpolation; cf. [StV;
Theorem 5.1 (b)].
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(ii) From the fact that the desired statement is true for the unperturbed heat
semigroup (µ = 0) one concludes it for the perturbed semigroup, again using Stein
interpolation; cf. [ScV; Remark 3.4 (b), (c)].

(b) Let ε > 0, ω be as in (a). Then there exists C such that

∥∥eξ·x(Hµ − w)−1e−ξ·x
∥∥
p,q
≤ C

(
1

1− γ +
1

−w − ω

)

for all w ∈ R with w < −ω, p ≤ q with γ = d
2 ( 1
p − 1

q ) < 1, |ξ| ≤ ε. Further,

(−∞,−ω) ⊂ ρ(Hp,µ) for all p ∈ [1,∞], and

(Hp,µ − w)−1 = (Hµ − w)−1

on Lp(Y ) ∩ L2(Y ), for w < −ω.
The proof consists in integrating the inequality in (a) after multiplying by

ewt; cf. [HV; Proposition 3.7], [ScV; Remark 3.4 (d)].

1.3. Lemma. ([ScV; Corollary 3.3]) Let 1 ≤ p ≤ q ≤ ∞, 0 < ε′ < ε′′. Then
there exists C ≥ 0 such that for each linear operator

A : L∞,c(R
d)→ L∞,loc(Rd)

(L∞,c denoting L∞-functions with compact support) satisfying

‖eξ·xAe−ξ·x‖p,q ≤ 1 for all ξ ∈ Rd with |ξ| ≤ ε′′

one has ∥∥eξ·xAe−ξ·x
∥∥
r,r
≤ C

for p ≤ r ≤ q, |ξ| ≤ ε′.
The inclusion ρ(Hp,µ) ⊂ ρ(H2,µ) in Theorem 1.1 is obtained as in [HV; section

2], using Remark 1.2 (a) for ξ = 0.

Sketch of the proof of the inclusion ρ(H2,µ) ⊂ ρ(Hp,µ) (compare [ScV]).
It is sufficient to prove the assertion for all p ∈ [1, 2]. According to Remark 1.2 (b)
we find w (< −ω), C such that

‖eξ·x(Hµ − w)−1e−ξ·x‖p,q ≤ C

whenever 1 ≤ p ≤ q ≤ 2, d
2 ( 1
p − 1

q ) ≤ 1
2 , |ξ| ≤ 1.

Let K ⊂ ρ(H2,µ) be compact,
◦
K connected, K =

◦
K, w ∈

◦
K . Then there

exist ε ∈ (0, 1] and a constant C ′ such that K ⊂ ρ(eξ·xH2,µe
−ξ·x) for |ξ| ≤ ε, and

‖eξ·x(H2,µ − z)−1e−ξ·x‖ = ‖(eξ·xH2,µe
−ξ·x − z)−1‖

≤ C ′ (|ξ| ≤ ε, z ∈ K).
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This follows from perturbation theory and analytic continuation. (Note that the
equality

eξ·x(H2,µ − z)−1e−ξ·x =
(
eξ·xH2,µe

−ξ·x − z
)−1

on L2(Y ) ∩ L2,c(R
d), whose validity for z = w is obtained by Laplace transform,

has to be extended to K by analytic continuation. The absence of this argument
in [HV] was pointed out to the authors by W. Arendt.)

Using the resolvent equation

(H2,µ − z)−1 = (I + (z − w)(H2,µ − z)−1)(H2,µ − w)−1

together with Lemma 1.3 one concludes the existence of C ′′ such that

‖eξ·x(H2,µ − z)−1e−ξ·x‖p,q ≤ C ′′

for z ∈ K, 1 ≤ p ≤ 2 with d
2 ( 1
p − 1

q ) ≤ 1
2 , |ξ| ≤ ε

2 .

Iterating this argument one obtains the last inequality for all p ∈ [1, 2] and
small |ξ|. Using this estimate for ξ = 0 and the fact that

(H2,µ − w)−1 = (Hp,µ − w)−1 on Lp ∩ L2(Y )

one obtains K ⊂ ρ(Hp,µ).

1.4. Remarks. (a) A slightly different situation has been treated in [ScV].
In this paper the perturbation µ is the sum of a form small distributional part µ0

(cf. [HS]) and µ+ ∈M0. This implies that the semigroup (e−tHµ ; t ≥ 0) acts as a
strongly continuous semigroup on Lp(Y ) for p0 ≤ p ≤ p′0 where p0 ∈ [1, 2) depends
on the form bound of µ0 (cf. [BS]). It is then shown that σ(Hp,µ) = σ(H2,µ) for
all p ∈ (p0, p

′
0).

(b) The p-independence of the Lp-spectrum of elliptic operators on certain
Riemannian manifolds was shown in [Stu]. In a similar context the p-independence
for 1 < p <∞ was shown in [Sh; Proposition 2.6].

(c) The p-independence of spectra has been shown in [Al] for perturbations
of certain translation invariant operators.

(d) If U(·) is a strongly continuous semigroup on L2(Ω) (where Ω ⊂ Rd)
satisfying a Gaussian estimate, then it was shown in [Ar] that the spectra of the
generators of the corresponding semigroups on Lp(Ω) are p-independent.

2. The spectrum of −1
2
∆ +µ in spaces of continuous functions

We want to show that under suitable hypotheses the spectrum of − 1
2∆ + µ in

C0(Rd) = {f ∈ C(Rd); f(x)→ 0 (|x| → ∞)}

(or in other spaces of bounded continuous functions) is the same as the Lp-
spectrum.
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It turns out that the main point which is specific about this situation is
the question whether (e−tHµ ; t ≥ 0) acts as a strongly continuous semigroup on
C0(Rd). The fact that then coincidence of spectra can be concluded will follow
from very general considerations presented next.

Let X be a Banach space, (U(t); t ≥ 0) a strongly continuous semigroup on
X, and T its generator. The semigroup dual of X is then defined by

X¯ := {x∗ ∈ X∗; T (t)∗x∗ → x∗ (t→ 0)};

see, e.g., [HP; Chap. XIV], [BB; Sec. 1.4] (where X¯ is denoted by X∗0 ), [Ne]. (We
use the adjoint space X∗ of continuous conjugate linear functionals on X in order
to stay consistent with duality in L2.)

2.1. Theorem. Let Y ⊂ X¯ be a closed subspace which is invariant under
U∗(t) (t ≥ 0). Denote by UY (·) the part of the semigroup U∗(·) in Y, and by TY
the generator of UY (·).

(a) Then TY is the part of T ∗ in Y,

D(TY ) = {x∗ ∈ Y ∩D(T ∗); T ∗x∗ ∈ Y },
TY = T ∗|D(TY ).

(b) ρ∞(T ) ⊂ ρ∞(TY ), and (λ − TY )−1 is the part of ((λ − T )−1)∗ in Y, for
λ ∈ ρ∞(T ). (Here ρ∞(T ) denotes the component of ρ(T ) containing a right half
plane; and similarly for TY .)

(c) If additionally Y is equi-norming for X, i.e., the norm

‖x‖Y := sup{| < x∗, x > |; x∗ ∈ Y, ‖x∗‖ ≤ 1} (x ∈ X)

is equivalent to the original norm in X, then

ρ∞(T ) = ρ∞(TY ).

Proof. (a) This is known for Y = X¯, and the proof carries over to our
case (cf. [BB; p. 51], [Ne; Theorem 1.3.3]).

(b) For λ ∈ C with Reλ larger than the type of U(·), the resolvents of T
and TY are given by the Laplace transform of U(·) and UY (·), respectively, and
therefore

< x∗, (λ− T )−1x > = < (λ− TY )−1x∗, x >

for all x ∈ X, x∗ ∈ Y. Therefore (λ − TY )−1 is the part of ((λ − T )−1)∗ in Y.
This implies that ((λ− T )−1)∗ maps Y to Y for all λ ∈ ρ∞(T ). By uniqueness we
obtain the claimed assertions.

(c) The equivalence of ‖ · ‖ and ‖ · ‖Y implies that there exists a constant c
such that
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‖(λ− T )−1‖ ≤ c‖(λ− TY )−1‖ for all λ ∈ ρ∞(T ).

This implies ∂(ρ∞(T )) ⊂ σ(TY ), and therefore ρ∞(T ) = ρ∞(TY ).

2.2. Remark. The assymptions made in the previous theorem are satisfied,
in particular, for Y = X¯. For this case, however, one has ρ(T¯) = ρ(T ); cf. [Ne;
Theorem 1.4.2].

2.3. Corollary. Assume that µ satisfies the hypotheses of Theorem 1.1.
Let Y be a closed subspace of L∞ which is equi-norming for L1, invariant under
(e−tH1,µ)∗ (t ≥ 0) and such that

‖(e−tH1,µ)∗f − f‖∞ → 0 (t→ 0)

for all f ∈ Y. Denote by −HY,µ the generator of the strongly continuous semigroup
on Y induced by ((e−tH1,µ)∗; t ≥ 0). Then

σ(HY,µ) = σ(H2,µ).

2.4. Remarks. (a) The semigroup dual of L1(Rd) for the unperturbed
Schrödinger semigroup (e−tH1 ; t ≥ 0) is

Cb,u(Rd) = {f ∈ C(Rd); f bounded and uniformly continuous}.

The generator is then the part of −H∞ in Cb,u,

D(HCb,u) = {f ∈ Cb,u(Rd); HCb,uf = −1

2
∆f ∈ Cb,u}.

For V ∈ Cb,u(Rd), the multiplication operator by V is a bounded operator in
Cb,u(Rd), and therefore Theorem 2.3 is applicable to H + V with Y = Cb,u(Rd).

(b) The space C0(Rd) is invariant under the unperturbed Schrödinger semi-
group, and

D(HC0
) = {f ∈ C0(Rd); HC0

f = −1

2
∆f ∈ C0}.

For bounded V ∈ C(Rd) the multiplication by V is a bounded operator on C0(Rd).
Therefore Theorem 2.3 is applicable to H + V with Y = C0(Rd).

(c) For V = V+ − V−, V± ≥ 0, V− ∈ Kd, V+ ∈ Kd,loc it is shown in [S;
Theorem B.3.1] that e−tHV maps L∞-functions to continuous functions, for t > 0.
As a consequence,

Y := L1(Rd)¯

consists of continuous functions, in this case.
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3. An application of Shnol’s method.

In order to establish a connection with the PDE-world, we will now discuss an
alternative proof of the inclusions

σ(Hp,V ) ⊃ σ(H2,V ), σ(HC0,V ) ⊃ σ(H2,V ). (3.1)

To this end, we will produce rather explicit “Weyl sequences” in Lp and also in
C0 which are obtained by applying suitably chosen cut-offs to generalized eigen-
functions associated with the expansion theorem for H2,V ([B], [S], [PStW]); this
requires some mild modifications of Shnol’s method (cf. [Shn], [S; Section C.4], and
[HSt]). Therefore, we learn that properties of the Schrödinger operator in Hilbert
space L2 fully determine the spectra in Lp and even in C0: while estimates for the
resolvent kernel (H2,V − z)−1(x, y) give the inclusion %(Hp,V ) ⊃ %(H2,V ), the con-
verse inclusion will now be a consequence of the eigenfunction expansion theorem
for H2,V . Related ideas are also discussed in [Sh].

It should be stressed, however, that the approach proposed here requires
more restrictive assumptions on the potential V , as compared with the “duality
and interpolation”-proof described in Section 2. In the following, we will restrict
the discussion to the case V ∈ L∞(Rd) where it is easy to obtain Lp-bounds for
the gradient of a generalized eigenfunction.

We first collect a few facts (where we always assume that V is bounded):

(1) For 1 ≤ p ≤ ∞, we have ([HV1])

D(Hp,V ) = D(Hp) = {u ∈ Lp; ∆u ∈ Lp}. (3.2)

If, more strongly, V is bounded and continuous, then (cf. Section 2)

D(HC0,V ) = D(HC0
) = {u ∈ C0; ∆u ∈ C0}. (3.3)

(2) From the generalized eigenfunction expansion theorem for H2,V ([B], [S],
[PStW]), we can draw the following conclusion: for any µ ∈ σ(H2,V ) and any ε > 0,
there exists a λ ∈ (µ− ε, µ+ ε) and a (non-trivial) distributional solution u of the
PDE

−1

2
∆u+ V u = λu, (3.4)

satisfying a polynomial growth bound

|u(x)| ≤ c1(1 + |x|)K , (3.5)

with some constants c1 > 0 and K ∈ N. For V bounded, it is also known that u
is (equivalent to) a continuous function (cf., e.g., [S]).

(3) To control the cut-off errors, we need an Lp-bound on ∇u, for u satisfying
(3.4), (3.5). Note that there is no Lp-analogue of the L2-gradient bound given in
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[S; Lemma C.2.1]. Here we proceed as in [HV1], using an argument of L. Schwartz,
to obtain the following lemma.

3.1. Lemma. Let p ∈ [1,∞], and suppose that Ω ⊂ Ω′ are open sets in Rd

with the property that dist(Ω, ∂Ω′) ≥ 1. Then there exists a constant C = C(p),
which is independent of both Ω and Ω′, such that

‖∇u‖Lp(Ω) ≤ C
(
‖u‖Lp(Ω′) + ‖∆u‖Lp(Ω′)

)
, (3.6)

for all u ∈ Lp(Ω′) with the property that ∆u ∈ Lp(Ω′).

Proof. We proceed as in [HV1]: letting T denote the usual fundamental
solution for −∆, and picking some χ ∈ C∞c (Rd) with support in the unit ball and
χ(x) = 1 for |x| ≤ 1/2, we have

∇u = (∇(χT )) ∗∆u−∇ζ ∗ u, (3.7)

(where ζ = (∆χ)T + 2∇χ · ∇T ∈ C∞c (Rd)), and the required estimate follows
from Young’s inequality ([RS]). Furthermore, it is clear from eq. (3.7) that ∇u is
continuous, provided u and ∆u are continuous functions.

Now let u be a (continuous) generalized eigenfunction ofH2 and ϕ ∈ C∞c (Rd).
Then it follows from Lemma 3.1 and ∆(ϕu) = ϕ∆u + 2∇ϕ∇u + (∆ϕ)u that ϕu
will belong to the domain of Hp, for 1 ≤ p ≤ ∞. Similarly, if V is bounded and
continuous, then ϕu will belong to the domain of HC0,V .

(4) Central to Shnol’s method is the observation that the growth bound (3.5)
implies that the L2-norm of u, considered on a suitable sequence of balls, will
not grow too rapidly (cf. [S]). While the exposition given in [S; Section C.4] can
directly be carried over to the Lp-case for 1 ≤ p < ∞, it has to be modified for
p =∞ and, similarly, also for the space C0. We therefore change the scenario used
in [S] and consider

En = {x ∈ Rd; |x| < 2n}, Fn = En+1 \ En (n ∈ N). (3.8)

We then have the following lemma.

3.2. Lemma. Let 1 ≤ p ≤ ∞, and let u be as in (3.5). Let a > 2 and set

c2 = c2(p) = aK+ d
p . Then there exists a sequence (nj)j∈N ⊂ N, nj → ∞, such

that ∥∥∥u|Fnj
∥∥∥
p
≤ c2

∥∥∥u|Enj
∥∥∥
p

(j ∈ N). (3.9)

Proof. If the statement of the lemma were not true, there would exist
some n0 such that

‖u|Fn‖p ≥ c2 ‖u|En‖p > 0 (n ≥ n0), (3.10)
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so that
‖u|En‖p ≥

∥∥u|Fn−1

∥∥
p
≥ c2

∥∥u|En−1

∥∥
p

(n > n0). (3.11)

This leads to
‖u|En‖p ≥ cn−n0

2 ‖u|En0
‖p (n ≥ n0), (3.12)

in contradiction with the polynomial growth bound of u.

With these preparations, it is now easy to prove the inclusions stated in
eq. (3.1).

Proposition 3.3. Let V ∈ L∞(Rd). Then σ(Hp,V ) ⊃ σ(H2,V ), for all p ∈
[1,∞]. If, moreover, V is (bounded and) continuous, then σ(HC0,V ) ⊃ σ(H2,V ).

Proof. We first choose a function ϕ ∈ C∞c (−2, 2) with the property that
ϕ(x) = 1, for |x| ≤ 4/3, and ϕ(x) = 0, for |x| ≥ 5/3, and we define

ϕn(x) = ϕ(2−n|x|) , x ∈ Rd.

Then Gn := supp(∇ϕn) ⊂ Fn and dist(Gn, ∂Fn) ≥ 1, for n ≥ 2. Furthermore, we
have ‖∇ϕn‖∞ ≤ c32−n and ‖∆ϕn‖∞ ≤ c42−2n.

Now let µ ∈ σ(H2,V ) be given, and let ε > 0. By what was said in point (2),
there exists some λ ∈ (µ − ε, µ + ε) and a (non-trivial) generalized eigenfunction
u of H2,V that satisfies (3.4), (3.5). For given p ∈ [1,∞], we will prove that there
exists a sequence (nj) ⊂ N so that

∥∥(Hp,V − λ)(ϕnju)
∥∥
p
/
∥∥ϕnju

∥∥
p
→ 0, j →∞. (3.13)

Therefore, Hp,V −λ does not have a bounded inverse, whence λ ∈ σ(Hp,V ). Taking
ε→ 0 then gives µ ∈ σ(Hp,V ).

Applying Lemma 3.2 to u, we find a constant c2 and a sequence (nj) such that
(3.9) holds. As ϕnju ∈ D(Hp,V ) and (Hp,V −λ)(ϕnju) = −(∇ϕnj )∇u− 1

2 (∆ϕnj )u,
we have

∥∥(Hp,V − λ)(ϕnju)
∥∥
p
≤

∥∥∇ϕnj
∥∥
∞

∥∥∥∇u|Gnj
∥∥∥
p

+
∥∥∆ϕnj

∥∥
∞

∥∥∥u|Gnj
∥∥∥
p

≤ c5 2−nj
(∥∥∥u|Fnj

∥∥∥
p

+
∥∥∥∆u|Fnj

∥∥∥
p

)
,

by Lemma 3.1. From V ∈ L∞ and 1
2∆u = (V − λ)u we now conclude that

∥∥(Hp,V − λ)(ϕnju)
∥∥
p
≤ c62−nj

∥∥∥u|Fnj
∥∥∥
p
≤ c7 2−nj

∥∥∥u|Enj
∥∥∥
p
≤ c82−nj

∥∥ϕnju
∥∥
p
,

and the result follows.
The proof in the case of the space C0 is essentially identical with the p =∞

proof and omitted.

Acknowledgements. R. Hempel would like to thank T. Hoffmann-Ostenhof
for the kind invitation to the Erwin Schrödinger Institute at Vienna.

9



References.

[Al] D. Alboth: Closable translation invariant operators and perturbations by
potentials. Dissertation, Kiel 1991.

[Ar] W. Arendt: Gaussian estimates and p-independence of the spectrum in Lp.
Manuscript 1993.

[BS] A. G. Belyi, Yu. A. Semenov: Lp-theory of Schrödinger semigroups II.
Sibirskii Matematicheskii Zhurnal 31, 16 - 26 (1990) (russian). Translation:
Siberian Math. J. 31, 540 - 549 (1990).

[B] J. M. Berezanski: Expansions in eigenfunctions of selfadjoint operators.
Transl. Math. Monogr., vol. 17, Amer. Math. Soc., Providence, 1968.

[BB] P. L.Butzer, H. Berens: Semi-groups of operators and approximation.
Springer-Verlag, Berlin, 1967.

[HV] R. Hempel, J. Voigt: The spectrum of a Schrödinger operator in Lp(R
N )

is p-independent. Commun. Math. Phys. 104, 243 - 250 (1986).

[HV1] R. Hempel, J. Voigt: On the Lp-spectrum of Schrödinger operators. J.
Math. Anal. Appl. 121, 138 - 159 (1987).

[HS] I. W. Herbst, A. D. Sloan: Perturbation of translation invariant positivity
preserving semigroups on L2(RN ). Transactions Amer. Math. Soc. 236, 325 -
360 (1978).

[HP] E. Hille, R. S. Phillips: Functional analysis and semi-groups. Amer.
Math. Soc., Providence, 1957.

[HSt] A. M. Hinz, G. Stolz: Polynomial boundedness of eigensolutions and the
spectrum of Schrödinger operators. Math. Ann. 294, 195 - 211 (1992).

[Ne] J. van Neerven: The adjoint of a semigroup of linear operators. Lecture
Notes in Math. 1529, Springer-Verlag, Berlin, 1992.

[PStW] Th. Poerschke, G. Stolz, J. Weidmann: Expansions in generalized
eigenfunctions of selfadjoint operators. Math. Z. 202, 397 - 408 (1989).

[RS] M. Reed, B. Simon: Methods of modern mathematical physics II: Fourier
analysis, self-adjointness. Academic Press, New York, 1975.

[ScV] G. Schreieck, J. Voigt: Stability of the Lp-spectrum of Schrödinger oper-
ators with form small negative part of the potential. In: “Functional Analy-
sis”, Proc. Essen 1991, Bierstedt, Pietsch, Ruess, Vogt eds., Marcel Dekker,
to appear.

10



[Shn] I. Eh. Shnol’: Ob ogranichennykh resheniyakh uravneniya vtorogo poryadka
v chastnykh proizvodnykh. Dokl. Akad. Nauk SSSR 89, 411 - 413 (1953).

[Sh] M. A. Shubin: Spectral theory of elliptic operators on non-compact mani-
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