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ABSTRACT
We give experimental support for a conjecture of Louder and Wilton saying that words of imprimitivity rank
greater than two yield hyperbolic one-relator groups.
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1. Introduction

An element in a free group is primitive if it is an element of some basis, or free generating set. Failure of primitivity can be quantified:
define the imprimitivity rank of an element to be the minimal rank of a subgroup containing it as an imprimitive element, if such
a subgroup exists, or infinite otherwise. An element has imprimitivity rank 0 if and only if it is trivial, 1 if and only if it is a proper
power, and ∞ if and only if it is a primitive element. In these cases the quotient of the free group by the subgroup normally generated
by the element is a hyperbolic group, either a free group, in the first and third cases, or a one-relator group with torsion, which is
hyperbolic by the B. B. Newman spelling theorem [27], in the second case. Nonelementary torsion-free two-generator one-relator
groups have relators of imprimitivity rank 2. There are many nonhyperbolic groups of this form, such as Z2 = 〈a, b | aba−1b−1〉,
the Baumslag-Solitar groups BS(m, n) = 〈a, b | abma−1b−n〉, the torus knot groups 〈a, b | ap = bq〉 for |p|, |q| > 1, and the groups
considered by Gardam and Woodhouse [10]. Louder and Wilton [24, Theorem 1.4] show that two-generated subgroups of a higher
imprimitivity rank one-relator group are free. Thus, they have no Baumslag-Solitar subgroups. It is a long-standing open question
whether groups of Type F with no Baumslag-Solitar subgroups must be hyperbolic. One-relator groups are Type F, so Louder and
Wilton conjecture [24, Conjecture 1.6] that a one-relator group is hyperbolic if its defining relator does not have imprimitivity rank
equal to 2.

We offer experimental support for their conjecture. Fix a basis for a free group, so that a group element can be uniquely represented
as a freely reduced word, a product of basis elements and their inverses, of a well-defined length.

Theorem 1.1. Let w be a word in Fr of length L and imprimivity rank not equal to 2. Then Fr/〈〈w〉〉 is hyperbolic if r ≤ 4 and L ≤ 17.

These results are achieved computationally, by a combination of efficient enumeration of representatives and brute force1. Details
are in Section 4.

We also observe that a well-known result about hyperbolicity of one-relator groups is consistent with the conjecture. In these
results |w|a denotes the total number of occurrences of a and a−1 in w, where w is freely reduced and a is an element of the chosen
basis.

Proposition 1.2. Every word satisfying one of the nonhyperbolicity criteria of Ivanov and Schupp [17, Theorems 3 & 4] (see Theorem 3.1
and Theorem 3.2) has imprimitivity rank 2.

The proposition is proven in Section 3. As a consequence, we have:

Corollary 1.3. Let w be a cyclically reduced word in Fr of imprimitivity rank not equal to 2 such that 0 < |w|a < 4 for some basis
element a. Then Fr/〈〈w〉〉 is hyperbolic.

1We ran 12 x 4 core Intel Core i5-4670S @ 3.10GHz for two months.
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Corollary 1.4. Let w be cyclically reduced word in Fr of length less than 4r and imprimitivity rank not equal to 2 such that every
generator or its inverse occurs in w. Then Fr/〈〈w〉〉 is hyperbolic.

Combining these results with our experimental results, we have:

Corollary 1.5. Let w be a word in Fr of length at most 17 and imprimitivity rank not equal to 2. Then Fr/〈〈w〉〉 is hyperbolic.

Proof. Fr/〈〈w〉〉 is hyperbolic when the imprimitivity rank of w is 0, 1, or ∞, so suppose it is finite and at least 3. Up to replacing w
by an element in the same automorphic orbit, we may, without increasing the length of w, assume that it is cyclically reduced and
that there is s such that taking the first s basis elements and the last r − s basis elements gives a splitting Fr = Fs ∗ Fr−s where
the Fs factor is the smallest free factor containing w. Since w is imprimitive in Fr , it is imprimitive in Fs, so s is an upper bound
on imprimitivity rank, which implies s ≥ 3. Furthermore, since Fs is the smallest free factor containing w, all of the generators of
Fs or their inverses occur in w. Since Fr/〈〈w〉〉 ∼= (Fs/〈〈w〉〉) ∗ Fr−s is hyperbolic if and only if Fs/〈〈w〉〉 is, we conclude by applying
Theorem 1.1 or Corollary 1.4 to Fs/〈〈w〉〉, according to whether s < 5 or s ≥ 5, respectively.

1.1. Additional conjectures

In checking the hyperbolicity conjecture, we enumerated the Aut(F4) orbits of cyclic subgroups of F4 that have a representative that
can be generated by a word of length at most 16. We also computed imprimitivity ranks for these words. Armed with this data, we can
test other questions involving imprimitivity rank. We check two additional conjectures and find that they are consistent with the data
up to length 16. The first of these concerns uniqueness of the subgroup in the definition of imprimitivity rank, see Proposition 4.2.
The second concerns the relationship between imprimitivity rank and stable commutator length, see Proposition 4.4.

2. Preliminaries

Fix a free group Fr with basis X = (x1, . . . , xr). Let X± := {x1, . . . , xr} ∪ {x−1
1 , . . . , x−1

r }. Write f ∼ g if f and g are conjugate. The
word length of f with respect to X is denoted |f |, and the word length of the cyclic reduction of f with respect to X, the cylic length
of f , is denoted ||f ||.

We use ∼= to denote an isomorphism between groups and also for the equivalence of group elements via an isomorphism.
For our purposes, a finitely presented group is hyperbolic if there exists a linear function δ such that if w is a freely reduced word of

length n in the generators or their inverses that represents the identity element of the group then it is possible to express w as the free
reduction of a product of at most δ(n) conjugates of relators or their inverses. It turns out that while the precise function δ depends
on the choice of finite presentation, its linearity does not, so being hyperbolic is a group property and not merely a property of a
presentation. More on hyperbolic groups can be found in any textbook on Geometric Group Theory.

Imprimitivity rank was introduced by Puder2 [30].
Stallings [31] gave a way to conveniently represent subgroups of a free group in terms of labeled graphs. We follows the treatment

given by Kapovich and Myasnikov [18]: A Stallings graph is a based, directed, connected, X-labeled graph (�, o) that is folded and
core with respect to o. The free group π1(�, o) is identified with a subgroup of Fr via the labeling, and, in fact, Stallings graphs are in
bijection with subgroups of Fr . See Kapovich and Myasnikov [18] for details.

The group WI of Whitehead automorphisms of the first kind are automorphic extensions of maps defined on X by xi 
→ xεi
σ(i) for

1 ≤ i ≤ r, where σ ∈ Sym(r) and εi = ±1.
The set WII of Whitehead automorphisms of the second kind are automorphic extensions of maps defined on X± as follows. Given

an element x ∈ X± and a subset Z ⊂ X± \ {x, x−1} take the map that fixes x and x−1 and for y ∈ X± \ {x, x−1} does

y 
→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y if y, y−1 /∈ Z,
xy if y ∈ Z and y−1 /∈ Z,
yx−1 if y /∈ Z and y−1 ∈ Z,
xyx−1 if y, y−1 ∈ Z.

Together the Whitehead automorphisms generate Aut(Fr). Moreover, Whitehead [32] proves two stronger facts:

• Call a word w ∈ Fr Whitehead minimal if there does not exist a Whitehead automorphism α such that ||α(w)|| < |w|. An element
has minimal length in its Aut(Fr) orbit if and only if it is Whitehead minimal.

2The terminology is imperfect. Puder and, following him, Louder and Wilton, use the term “primitivity rank.” The motivation is that Puder’s work shows that as
this number increases, the words “behave more and more like primitive words,” in a specific quantifiable sense. We use ‘imprimitivity rank’ because it is the
smallest rank of a subgroup for which the word becomes imprimitive upon inclusion into that subgroup. Compare, for instance, to the “primitivity index” of
Gupta and Kapovich [12], which is the smallest index of a subgroup for which the element becomes primitive upon lifting to that subgroup.
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• Define the Whitehead level—L graph to be the graph whose vertices are Whitehead minimal words of length L, where w and v are
connected by an edge if there exists a Whitehead automorphism α such that v is the cyclic reduction of α(w). Then the partition
of vertices by connected component in the Whitehead level—L graph is the same as the partition by Aut(Fr) orbits.

Combining these two facts gives Whitehead’s Algorithm for determining if two words are in the same Aut(Fr) orbit: they are if
and only if their Whitehead minimal representatives have the same length, say L, and are contained in the same component of the
Whitehead level–L graph. In particular, a word represents a primitive element if and only if it Whitehead reduces to a word of length 1.

A basic algorithm for enumerating words of a fixed length L in a given ordered finite alphabet a0 < a1 < a2 < · · · < an is via an
odometer. Given a word of length L in the alphabet, we inductively construct a new word as follows. Incrementing at place k means
that if the kth letter of the current word is am for m < n then we replace it by am+1 and take the resulting word. If m = n and k > 1,
then we increment at place k − 1 and replace letters to the right of the (k − 1)–st place by a0. If m = n and k = 1 then the odometer
is said to rollover to aL

0 . The odometer algorithm is to start with aL
0 , and increment on the Lth (right-most) place. Repeat until the

odometer rolls over and then stop.
We will be interested in enumerating freely reduced words in a free group with a given basis. The alphabet will consist of the

chosen basis elements and their inverses, with some order imposed upon them. Since we are interested in freely reduced words we
modify the induction step so that we increment as many times as necessary until the resulting word is freely reduced.

3. The Ivanov-Schupp criteria

Theorem 3.1 ([17, Theorem 3]). Let w be a freely and cyclically reduced word in Fr and suppose that for some basis element a, the total
number of occurrences of a and a−1, |w|a, satisfies 0 < |w|a < 4. The group Fr/〈〈w〉〉 is not hyperbolic if and only if one of the following
holds up to cyclic permutation and taking inverses:

1. |w|a = 2, w = auav and uv−1 is a proper power in Fr.
2. |w|a = 2, w = aua−1v and either u and v are conjugate to powers of the same word in Fr or u and v are both proper powers in Fr.
3. |w|a = 3, w = atauav and ut−1 = zm, vt−1 = zn where z is not a proper power, such that one of the following holds:

(a) min(|m|, |n|) = 0 and max(|m|, |n|) > 1.
(b) min(|m|, |n|) > 0 and |m| = |n| �= 1.
(c) min(|m|, |n|) > 0 and m = −n.
(d) min(|m|, |n|) > 0 and m = 2n (or n = 2m).

4. |w|a = 3, w = ataua−1v and t−1ut = zm, v = zn where z is not a proper power and either |m| = |n| or m = −2n (or n = −2m).

Theorem 3.2 ([17, Theorem 4 (3)]). Let w = au1au2au3au4 be a freely and cyclically reduced word in Fr, such that |w|a = 4 and the
subwords ui are pairwise different. Then the group Fr/〈〈w〉〉 is not hyperbolic if and only if for some i ∈ {1, . . . , 4} the following holds
(with subscripts modulo 4):

uiu−1
i+1ui+2u−1

i+3 = 1.

We check that nonhyperbolicity in these theorems implies imprimitivity rank 2:

Proof of Proposition 1.2. Suppose w is of one of the forms in Theorem 3.1 and Theorem 3.2 so that Fr/〈〈w〉〉 is not hyperbolic. For
each case we exhibit a connected, based, rank 2 core graph with edges labeled by words in Fr in which (a conjugate of) w labels a
imprimitive element of the fundamental group. By subdividing edges we can arrange that edges are labeled by basis elements. The
graphs are not necessarily folded, but from the hypothesis in Theorem 3.1 and Theorem 3.2 that the only occurrences of a±1 are the
explicit ones, it follows that in all of our examples folding will be a homotopy equivalence, so these graphs really do represent rank 2
subgroups.

In each of the figures the larger dot marks the base vertex, the triangular arrows mark a choice of edges in a maximal subtree,
and the edges with the single and double arrows mark edges whose unique completion through the maximal subtree to a based loop
represent generators α and β , respectively, of the fundamental group of the graph.

It turns out that, except where noted, when we rewrite a conjugate of w in terms of α and β the result is Whitehead minimal, so
we can tell that it is imprimitive by observing that it does not have length 1.

First, let |w|a = 2 and w = auav such that uv−1 = xn with n > 1. Then w ∼ (va)2xn ∼= α2βn is imprimitive in Figure 1(a).
Now assume that |w|a = 2, w = aua−1v and u = s−1

1 xms1 and v = s−1
2 xns2. Note that min(|m|, |n|) > 0, since otherwise w fails

to be either freely or cyclically reduced, so w ∼= αβmα−1βn is imprimitive in Figure 1(b). If u = um
0 and v = vn

0 with min(m, n) > 1
then w ∼= αmβn is imprimitive in Figure 1(c).

Let now |w|a = 3, w = atauav with ut−1 = zm and vt−1 = zn, where z is not a proper power and m, n satisfy one of the conditions
(3a)–(3d) in Theorem 3.1.

Suppose in case (3a) we have m = 0 and n > 1, other variations of this case being similar. Then w ∼ (ta)3zn ∼= α3βn is
imprimitive in Figure 2(a).
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Figure 1. Graphs for |w|a = 2 in the proof of Proposition 1.2.

Figure 2. Graphs for |w|a = 3 in the proof of Proposition 1.2.

Figure 3. A graph for |w|a = 4 in the proof of Proposition 1.2.

In case (3c), w ∼ (ta)2zmtaz−m ∼= α2βαβ−1 is imprimitive in Figure 2(b).
In the subcase m = n of case (3b) that is not covered by case (3c), we may assume m > 1 by replacing z with z−1, if necessary. Then

w ∼ (ta)2zmtazm ∼= α2βmαβm in Figure 2(a). This word admits a Whitehead reduction α−1 
→ βα−1, which sends the w–loop to
αβ−1αβ2(m−1). Since m > 1, this word is Whitehead minimal, so the w–loop is imprimitive.

In case (3d) assume n = 2m, the other case being similar. Then w ∼ (ta)2zmtaz2m ∼= α2βαβ2 in Figure 2(b). This word admits a
Whitehead reduction β 
→ α−1β sending it to a Baumslag-Solitar word, so the w–loop is imprimitive.

Next, consider the case |w|a = 3, w = ataua−1v and t−1ut = zm, v = zn where z is not a proper power. Again we can assume
that |m|, |n| > 0 since otherwise |w|a would be less than 3. Then w = (at)2zm(at)−1zn. Consider Figure 2(c). If |m| = |n| then
w ∼= α2βα−1β±1. If n = −2m then w ∼= α2βα−1β−2. In all three cases w is imprimitive. If m = −2n then w ∼= α2β2α−1β−1 is
imprimitive in the graph obtained from Figure 2(c) by relabeling the β edge with z−n.

Finally, let w = au1au2au3au4 be as in Theorem 3.2. We may assume that u1u−1
2 u3u−1

4 = 1, so w = au1au2au3au1u−1
2 u3 ∼=

αβαβ−1 is imprimitive in Figure 3.

4. The experiments

To prove Theorem 1.1, the idea is to enumerate words of each length in the given free group, compute their imprimitivity ranks, and
for those of imprimitivity rank not equal to two, test to see if the resulting one-relator presentation is a hyperbolic group.

4.1. Enumerating words/groups

For w ∈ Fr , an automorphism α ∈ Aut(Fr) induces an isomorphism between Fr/〈〈w〉〉 and Fr/〈〈α(w)±1〉〉. Call these the “obvious”
isomorphisms between one-relator groups. To enumerate isomorphism types of one-relator groups it suffices to enumerate one
generator of one representative of each automorphic orbit of cyclic subgroup. There is a canonical choice of such an element: we
choose the one that is shortlex minimal with respect to the integer lexicographic order; that is, if (a1, . . . , ar) is our fixed ordered
basis for Fr , we declare a−1

r < a−1
r−1 < · · · < a−1

1 < a1 < · · · < ar and extend to a shortlex ordering on reduced words. There
are examples of McCool and Pietrowski [25] that show that not all isomorphisms between one-relator groups are obvious, so our
enumeration has some redundancies at the level of isomorphism type of one-relator groups. However, work of Kapovich and Schupp
[19] and Kapovich et al. [20], says that there is a generic set of one-relator groups for which the only isomorphisms are the obvious
ones, so the redundancies are rare, in a specific quantifiable sense.

A naive algorithm for enumerating representatives of length L is to simply construct the Whitehead level–L graph. Additionally,
since we are interested in cyclic subgroups and not just elements, we connect every vertex v to the vertex v−1. Then choose the
shortlex minimal word in each component.
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We speed this algorithm up as follows. Permutation of generators and inversion of generators and conjugation by a generator are
in Aut(Fr). Define the PCI class of a word to be those words that can be reached from it by a finite chain of Permutation of generators,
Cyclic permutation, or Inversion of generators. Similarly, the PCI± class is those words that can be reached by the above operations
plus replacing an element by its inverse. Define a word to be SLPCI(±) minimal if it is ShortLex minimal in its PCI(±) class. Notice
that if we start with a cyclically reduced word then none of the above operations change the length of the word.

Lemma 4.1. Aut(Fr) equivalence classes of cyclic subgroup such that the minimal generator length of a representative has length L are
in bijection with connected components of the length–L SLPCI± graph: the graph whose vertices are freely and cyclically reduced words
of Fr of length L that are both Whitehead and SLPCI± minimal, and where two vertices u and v are connected by an edge if there exists
an element α ∈ WII such that v is the SLPCI± minimal representative of α(u).

Khan [21] used a similar construction, without inversion, to study the complexity of Whitehead’s Algorithm in the special case
r = 2.

Proof. Whitehead’s result shows that the partition by components of the Whitehead level graph is the same as the partition by
Aut(Fr)–orbits. It is clear from the definitions that two words in the same component of the length–L SLPCI± graph are in the same
component of the Whitehead level–L graph. We show the opposite. The essential observation is that the group WI acts by conjugation
on the set WII .

Elements that differ by an element of WI are in the same PCI class, so suppose α ∈ WII and α(u1) = u2 where ui = aivia−1
i

with vi cyclically reduced, and suppose σi(vεi
i ) = wi is the SLPCI± minimal representative of vi, where σi ∈ WI and εi ∈ ±1. Let

α′ := σ1 ◦ α ◦ σ−1
1 . Since α′ is a WI conjugate of an element of WII , α′ ∈ WII . Thus α′ ∈ WII takes w1 to α′(w1) ∼ σ1(uε1

2 ), which
is in the same PCI± class as u2 (apply σ2 ◦ σ−1

1 , conjugate, and invert, if necessary), so w2 is the SLPCI± minimal representative of
α′(w1).

The lemma says we can run the naive algorithm but instead of enumerating all words of a fixed length, it’s enough to enumerate
SLPCI± minimal ones. This is a benefit because SLPCI± minimality is falsifiable by a subword: if w is a word that contains a prefix
p and a (cyclic) subword v of equal length such that there is a WI automorphism that takes v or v−1 to a word that lexicographically
precedes p, then w is not SLPCI± minimal. We modify the standard odometer algorithm for enumerating words of a fixed length
by checking in the induction step for such subwords v. If we find such a subword then we increment the odometer at the rightmost
position of v. This potentially allows us to skip over large ranges of words that do not contain any SLPCI± minimal words.

Consider the following example: suppose we have the ordering B < A < a < b for the rank 2 free group 〈a, b〉, where capitalization
denotes inversion. Suppose we are enumerating length 10 words, and we are given a word of the form BAA ∗ ∗ ∗ ∗ ∗ ∗∗. Notice the
prefix BA and the subword AA. There is a WI automorphism sending AA to BB, which precedes BA lexicographically, so no word
of the form BAA ∗ ∗ ∗ ∗ ∗ ∗∗ is SLPCI± minimal, and to get the next candidate we increment at the third position, the right-most
position of the subword AA, to get the next candidate word. Thus we skip over the 73 possible freely reduced words of the form
BAA ∗ ∗ ∗ ∗ ∗ ∗∗. Similarly, no word that begins with BA and contains equal consecutive letters is SLPCI± minimal. We include the
possibility that v is a cyclic subword, meaning that it may wrap from the end of w around to the beginning. So words of the form
BA ∗ ∗ ∗ ∗ ∗ ∗B are not SLPCI± minimal, because they contain BB as a cyclic subword. In the case the “right-most position” of the
subword should be interpreted in terms of the original word, so the right-most position of a wrapped subword is the last letter of the
original word. Thus, when the problematic subword v wraps, incrementing on its right-most position does not skip over any words.
However, it is still convenient that such a subword falsifies SLPCI± minimality for us.

As the wordlength grows and exponential growth in the free group builds up steam, it is impractical to hold the entire SLPCI±
graph in memory. Instead, for each SLPCI± and Whitehead minimal word w we start constructing its graph component as described
in Lemma 4.1. If in this construction we encounter a shortlex predecessor then we throw w away and proceed to the next candidate.
If no such element occurs, then w is minimal in its component. This procedure would be most effective if the SLPCI± graph consists
of many small components, and if in each component it is easy to verify whether or not a given word is the shortlex minimal one.
Unfortunately, for the latter case, there do exist examples of components with shortlex local minima. For example, here is a component
of the graph in rank 2 at length 9 (Capitalization indicates inversion, and the base ordering is B < A < a < b.) that contains a word
w := BBABBAAbA that is a shortlex local minimum but not the global minimum in its component:

BBABBAAbA − BBABAbAbA − BBBABBAAA.

The edges in this example are determined as follows: Apply the WII automorphism A 
→ bA, b 
→ b to BBABBAAbA to get
BABAbAbbA. It turns out that the SLPCI± representative for this word is in the SLPCI class of its inverse, which is aBBaBabab. There
is only one matching consecutive pair, so cyclically permute to put that in the front of the word, and then apply the WI automorphism
a 
→ A, b 
→ b to get BBABAbAbA. This is the middle vertex of the graph. To get from the middle to the right-hand vertex apply the
WII automorphism a 
→ ba, b 
→ b and cyclically permute.

So, to verify that w is not the global minimum in its component we have to construct the entire component. That is easy in this
example because the component is small. It turns out that most components are small. Figure 4 shows the observed number of
components of each size in rank 3 at length 15. In this example 99% of the components have size at most 14.
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Figure 4. Number of connected components of the SLPCI± graph by size in rank 3 at length 15.

Table 1. The number of length L Aut(Fr) equivalence
classes of cyclic subgroup not contained in a proper
free factor of Fr , for L ≤ 16.

L F1 F2 F3 F4

1 1 0 0 0
2 1 0 0 0
3 1 0 0 0
4 1 2 0 0
5 1 3 0 0
6 1 8 1 0
7 1 12 5 0
8 1 34 18 2
9 1 71 98 5

10 1 217 522 35
11 1 515 3,124 315
12 1 1,423 16,866 7,106
13 1 3,834 96,086 93,460
14 1 11,816 582,844 1,124,764
15 1 33,321 3,481,458 11,679,597
16 1 95,440 19,514,686 109,264,221

For all3 11 ≤ L ≤ 15 the component frequency plot looks much like Figure 4, with most values clustered left and one prominent
spectrum at multiples of 1

2 ((L − 7)2 + 11(L − 7) + 30), with a unique largest component of size L−7
2 ((L − 7)2 + 11(L − 7) + 30)

represented by CL−8BCACaBAA.
Myasnikov and Shpilrain [26] proved that components of the Whitehead level–L graph in rank r = 2 have size bounded by a

polynomial of degree 2r − 2 in L, see also [7, 21], and conjectured that this should be true in higher ranks (see the conjecture and
discussion following [26, Corollary 1.2]). The conjecture has been proven in some cases with additional technical hypotheses [22, 23].
Myasnikov and Shpilrain also, citing experimental evidence, give a specific quartic polynomial for rank 3 bounding the size of the
largest component, and a representative of that component. Their representative is in the same Aut(F3)–orbit as CL−8BCACaBAA.

We enumerated Aut(Fr) equivalence classes of cyclic subgroup up to length 16 for r ≤ 4. Table 1 shows the resulting number of
representatives of each length. Lists of these representatives can be found at:

https://www.mat.univie.ac.at/~cashen/orgcensus/
Our tools for working with free groups and enumerating equivalence classes are extensions of those developed with Manning for

[5].

4.2. Computing imprimitivity rank

We compute imprimitivity rank by inductively building Stallings graphs � representing finite rank subgroups H of Fr containing w
as an imprimitive word. Since we are interested in minimal rank subgroups containing w, we may assume that the loop labeled by w
traverses every edge of �. Furthermore, since we are interested in subgroups containing w as an imprimitive element, we may assume

3The formula for the size of the component containing CL−8BCACaBAA has been confirmed up to L = 25, but we have not computed the full component
frequency distribution for L > 15.

https://www.mat.univie.ac.at/~cashen/orgcensus/
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Table 2. The number of length L Aut(Fr) equivalence classes of
cyclic subgroup not contained in a proper free factor, by rank and
imprimitivity rank, for 14 ≤ L ≤ 16.

L = 14 irank F1 F2 F3 F4

1 1 12 5 0
2 0 11804 364 6
3 0 0 582475 321
4 0 0 0 1124437

L = 15
1 1 3 0 0
2 0 33318 258 7
3 0 0 3481200 1055
4 0 0 0 11678535

L = 16
1 1 34 18 2
2 0 95406 2765 111
3 0 0 19511903 11023
4 0 0 0 109253085

w traverses every edge at least twice. In particular, � can contain at most �|w|a/2� edges labeled a for each basis element a. These
constraints cut down on the number of possible graphs �.

To be more specific about the inductive construction: we start with a base vertex. The word w must label a loop in the finished
Stallings graph, so there must be an outgoing edge at the base vertex labeled with the first letter of w. There are two choices: we could
make the edge a loop or we could introduce a new vertex and have the edge not be a loop. Say that there are the two “candidate graphs
for the length 1 prefix.”

Now suppose we have some number of candidate graphs for the length n prefix for n < |w|−1. By construction, for each candidate,
the length n prefix of w labels a path in the graph starting at the base vertex and ending at some other vertex v. If v already has an
outgoing edge labeled by the (n + 1)–st letter of w then there is nothing to do, pass this graph on to be a candidate for the length
n + 1 prefix. If not, consider all possible ways of introducing such an edge that would result in a folded graph. This could mean
introducing an edge that connects to a new vertex, or introducing an edge that connects to an existing vertex that does not already
have an incoming edge with the same label. Any of the resulting graphs that also satisfy the edge counting constraints of the first
paragraph are passed on to be candidates for the length n + 1 prefix.

Next, consider the candidates for the length |w| − 1 prefix. For each such graph the length |w| − 1 prefix of w labels a path from
the base vertex to some vertex v. Now there is no choice, the final edge must lead back to the base vertex so that w labels a loop. Let
us say that the last letter of w is a. If there is already an outgoing edge at v labeled a that leads to the base vertex then pass this graph
on to be a candidate for w. If there is no outgoing edge at v labeled a and no incoming edge labeled a at the base vertex, and if there
are less than �|w|a/2� edges labeled a in the graph, then add a new edge labeled a from v to the base vertex, and pass the resulting
graph on to be a candidate for w.

Finally, we have some number of graphs that are “the candidates for w”. By construction, each of these is a folded based graph in
which w labels a based loop. It is a based core graph because w was freely reduced, and the w–loop traverses every edge. Furthermore,
every Stallings graph satisfying the edge counting constraints and containing a based loop labeled w that traverses every edge will
appear in the list of candidates. Each such graph defines a subgroup of the free group containing w. For each of these, we choose
a basis, write w in terms of that basis, and then check using Whitehead’s Algorithm if w is primitive in this subgroup. Discard any
candidates in which w is primitive. The minimal rank of the remaining candidates is the imprimitivity rank of w. In principle there
could be multiple candidates realizing the imprimitivity rank.

Louder and Wilton define w–subgroups to be those minimal rank subgroups containing w as an imprimitive element that are
maximal with respect to inclusion among all such subgroups. They prove that a word w of imprimitivity rank 2 has a unique w-
subgroup. On the other hand, elements of imprimitivity rank r in Fr obviously have a unique w–subgroup, the group Fr itself.
For intermediate imprimitivity ranks the uniqueness of w-subgroups is an open question. We observe that all elements in our
enumeration have unique w-subgroups:

Proposition 4.2. If w ∈ F4 has imprimitivity rank 3 and length at most 16 then it has a unique w–subgroup.

Table 2 shows the observed number of equivalence classes of cyclic subgroups of given imprimitivity rank at word lengths 14-16.
Algorithms in this section can be found in imprimitivity_rank.py of github:cashenchris/freegroups.

4.3. Verifying hyperbolicity

Given an imprimitive, Whitehead minimal word w ∈ Fr that is not a proper power, we check (non)hyperbolicity of G := Fr/〈〈w〉〉
using the following tests:

https://github.com/cashenchris/freegroups.git
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1. Check if the presentation is cyclically pinched, that is, if it can be written as a product of two finite rank free groups amalgamated
over a cyclic subgroup. This is true if a cyclic permutation of w can be written as a product uv such that u and v are nontrivial
words with no generators of Fr in common. In this case, G is nonhyperbolic if u and v are both proper powers, and hyperbolic
otherwise.4 If not cyclically pinched, then

2. check if w satisfies the hypotheses of Ivanov and Schupp [17, Theorem 3 or 4], and if so, whether G is hyperbolic or not. If Ivanov-
Schupp does not apply, then

3. check if w satisfies one of the small cancelation conditions C(7), C(5) − T(4), C(4) − T(5), or C(3) − T(7), in which case G is
hyperbolic via results of Gersten and Short [11]. Otherwise,

4. check if w satisfies the C′(1/4) − T′ hyperbolicity condition of Blufstein and Minian [2]. If not,
5. check hyperbolicity of G with GAP. Finally, if that fails, then
6. verify hyperbolicity of G with kbmag.

The algorithm can be found in geometryofonerelatorgroups.py of:
github:cashenchris/onerelatorgroups
We remark that the above checks cannot certify a counterexample to the Louder-Wilton conjecture, since the only checks that

can conclusively return “nonhyperbolic” are (1) and (2). It is easy to verify that the nonhyperbolic cyclically pinched case implies
imprimitivity rank 2, and we checked this for the Ivanov-Schupp case in Proposition 1.2. Thus, the worst that could happen is
that we encounter a word with high imprimitivity rank whose hyperbolicity we are unable to decide with the above tools. We did
not encounter any such words. In principle, if Fr/〈〈w〉〉 is hyperbolic, this will be verified by kbmag [15], given enough time and
computing resources, but it will run forever in the nonhyperbolic case. Even in our experiments kbmag took up to several minutes
to succeed, making it unsuitable for checking hundreds of millions of examples. Checks (1)–(5) are faster, but sometimes inconclusive.

Items (1)–(4) we implemented ourselves.
In item (5) we used the function IsHyperbolic (with parameter ε = 1/100) of the GAP [9] package walrus [29] which is

based on an algorithm of Holt et al. [16]. The function tries to verify that the RSym curvature distribution scheme defined in [16]
succeeds on every van Kampen diagram over the presentation defined by w. This step is crucial, since although small cancelation
words are generic, there are still far too many words that evade checks (1)–(4) to feasibly check with kbmag. Step (5) is based on the
second author’s investigation of the application of RSym and its variants to hyperbolicity of one-relator groups [14]. (Another recent
application of RSym, to a different class of groups, was conducted by Chalk [6].)

The implementation of IsHyperbolic in the version of walrus we used does not capture the full power of the algorithms
described in [16]:

• IsHyperbolic quits and answers inconclusively if it encounters certain potential bad van Kampen diagrams, but sometimes
it can be checked by hand that such a diagram does not really exist.

• TheRSym algorithm in [16] takes a depth parameter d. Success for any d implies hyperbolicity.IsHyperbolic only implements
d = 1.

• [16] also defines an enhanced version of RSym called RSym+ that is not implemented.

The second author showed by hand that the enhanced version of RSym often succeeds when IsHyperbolic is inconclusive.
For example:

Theorem 4.3 ([14, Theorem 5.6]). If w ∈ F3 has imprimitivity rank 3 and length at most 12 then RSym+ succeeds at depth 2.

We considered implementing an enhanced RSym algorithm, but it turned out in our experiments that Checks (1)-(5) caught
enough words that kbmag could finish off the rest in a reasonable amount of time.

After our experiments had finished and the first version of the article was in preparation, an improvement of [2] appeared [3]. It
would be interesting to know if this could improve our results, in particular if the new techniques can catch hyperbolic examples that
walrus misses.

4.4. Word length 17 and beyond

We have described the experiments up to length 16. To extend Theorem 1.1 to length 17 we altered the algorithm. It turns out that
hyperbolicity checks (1)–(5) are fast compared to computing equivalence classes and imprimitivity ranks. Also, the imprimitivity
rank computation can be short-circuited to give a faster decision of whether the imprimitivity rank is greater than 2. For length
17 we enumerated SLPCI± and Whitehead minimal words and checked for hyperbolicity using checks (1)-(5) first. If some check
answered ‘hyperbolic’ we moved on to the next candidate. Otherwise, we checked if the imprimitivity rank was equal to 2. If so, we
moved on to the next candidate. In the remaining cases where hyperbolicity was inconclusive and imprimitivity rank was greater

4This is well known. If both u and v are proper powers it is easy to produce a Z
2 subgroup, so the group is not hyperbolic. If at least one of them is not a proper

power then hyperbolicity can be verified by the combination theorem [1].

https://github.com/cashenchris/onerelatorgroups.git
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Figure 5. The number of Aut(F4) equivalence classes of cyclic subgroups of length at most 16 by stable commutator length and imprimitivity rank.

than 2, then we proceeded to check if the word was the the shortlex minimal generator of a cyclic subgroup in its Aut(Fr) equivalence
class, and if so verified hyperbolicity with kbmag.

This still took ∼ 4 years of CPU time. The problem is completely parallelizable over the words of fixed length in a free group, so
conceivably our programs could be run on a larger cluster to extend the results to length 18 or 19, if there were any particular reason
to expect that a counterexample would be revealed at these lengths. We did have a reason to push as far as length 17: in rank 3 at
length at most 12, kbmag is not necessary—checks (1)-(5) always succeed in verifying hyperbolicity. We conjectured, and verified,
that the same phenomenon would repeat in rank 4—checks (1)-(5) suffice up to length 16, but beginning with length 17 additional
complexity appears that requires kbmag. This leaves us with the question of whether in rank r all words of high imprimitivity rank
and length at most 4r can be verified hyperbolic using only checks (1)-(5), or, similarly to Theorem 4.3, using some enhancement of
RSym? If so, this would improve Corollary 1.4.

4.5. Stable commutator length

The commutator length (cl) of an element in the commutator subgroup of a group is the minimal number of factors in the expression
of that element as a product of commutators. The stable commutator length (scl) is scl(w) := limn→∞ cl(wn)/n. Heuer [13,
Conjecture 6.3.2] conjectures a generalization of the Duncan-Howie scl-gap theorem [8] saying that scl ≥ (irank−1)/2. We confirm
Heuer’s conjecture on our dataset:

Proposition 4.4. For all nontrivial w in the commutator subgroup of F4 with |w| ≤ 16, we have scl(w) ≥ (irank(w) − 1)/2.

We computed stable commutator lengths with scallop [4]. The results are shown in Figure 5.
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