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Abstract. There is a procedure, due to Dani and Levcovitz, for taking a finite simplicial graph Γ
and a subgraph Λ of its complement, checking some conditions, and, if satisfied, producing a graph
∆ such that the right-angled Artin group with presentation graph ∆ is a finite index subgroup of the
right-angled Coxeter group with presentation graph Γ. They do not tell us how to find Λ, given Γ.

We show, in the 2–dimensional case, that the existence of such a Λ is connected to the graph property
of satellite-dismantlabilty of Γ, and we use this to give an algorithm for producing a suitable Λ or
deciding that one does not exist.

1. Introduction

Every right-angled Artin group (RAAG) is a finite index subgroup of a right-angled Coxeter group
(RACG), and given the presentation graph ∆ of the RAAG A∆ there is a simple graph operation that
turns it into a graph Γ that is the presentation graph of the RACG supergroup WΓ [8]. The converse is
not true; RACGs are more varied, and there are invariants such as divergence that show that some
RACGs are not even quasiisometric to a RAAG. So, what graph conditions on Γ imply that WΓ is
commensurable to a RAAG?

Consider the case that Γ is a square. Each pair of diagonal vertices generate an infinite dihedral
group, and these two dihedral groups commute. Each of the dihedral groups has an index two, infinite
cyclic subgroup, and these make an index four, Z2 subgroup of WΓ. This is the basic example of a
finite index visual RAAG subgroup; it is ‘visual’ in the sense that we ‘see’ the RAAG generators as
pairs of non-adjacent vertices of Γ, and they commute when the vertex pairs from Γ make a square.

This situation generalizes as follows: let Λ be a subgraph of the complement graph Γc of Γ; that is,
Γc has the same vertex set as Γ, and has an edge if and only if Γ does not. Edges of Λ give pairs of
generators of WΓ that generate an infinite dihedral subgroup. Let ∆ be the graph with one vertex for
each edge of Λ, and an edge between two vertices if the corresponding subgroups commute, which is
the case exactly when they span a square in Γ. There is a homomorphism from A∆ to WΓ given by
sending a generator of A∆ to the product in WΓ of the two endpoints of the corresponding edge of Λ.
In general, however, this homomorphism is not injective, nor does it have finite index image. Based on
initial results of LaForge [12], Dani and Levcovitz [5] give conditions on Λ that determine whether the
natural homomorphism is injective when Λ has at most two connected components. In particular, this
is always sufficient [5, Lemma 4.7] for the 2–dimensional case, when Γ is triangle-free, and in this case
they give necessary and sufficient conditions on Λ for A∆ to be a finite index subgroup of WΓ.

We focus on the 2–dimensional case, and call a Λ < Γc satisfying their conditions a finite index
Dani-Levcovitz Λ (FIDL–Λ). Checking that a given subgraph of Γc is a FIDL–Λ is algorithmic, and
since Γ is finite, one can simply enumerate subgraphs of Γc and check them all. This is slow, even for
rather small examples. We are interested in a more efficient algorithm for starting from Γ alone and
either producing a FIDL–Λ or deciding that one does not exist.

We give such an algorithm as Global Search Algorithm 5.3. The key step, Theorem 4.7, is that a
FIDL–Λ exists if and only if Γ admits a satellite-dismantling sequence that reduces it to a square and
satisfies some additional conditions that can be checked only from Γ. We apply this algorithm to a
large number of examples via computer computations in a forthcoming work.

2. Preliminaries

2.1. Graphs. A ∗B denotes the join of A and B; that is, the complete bipartite graph with one part
the elements of A and the other the elements of B. A graph is complete if for every pair of vertices
there exists an edge between them. It is incomplete if there exist two vertices that are not joined by an
edge. The empty graph and a graph consisting of a single vertex are complete. A clique is a complete
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subgraph. A graph Γ is separated by a clique if there is a clique C such that Γ− C has more than one
connected component. A disconnected graph is separated by the empty clique. The link lk(v) of a
vertex v in a graph is the induced subgraph on its neighboring vertices. The star st(v) of a vertex v is
{v} ∗ lk(v). A loop is an edge path that starts and ends at the same vertex, and a cycle is a loop that
has no repeated vertices. A subgraph of Γ is induced if it contains all of the edges between its vertices.
The induced subgraph of a set of vertices is the induced subgraph that they span. Given a cycle γ, an
n–chord, or just chord when n = 1, is a path of length n between vertices x and y of γ such that both
subsegments of γ between x and y have length greater than n.

Distinct vertices v and w are twins if lk(v) = lk(w), and v is a satellite of w if lk(v) ⊂ lk(w). A
vertex is a satellite if it is a satellite of some vertex. A graph Γ is satellite-dismantlable to a square
if there exists a sequence Γ = Γ0 ⊃ Γ1 ⊃ · · · ⊃ Γn such that Γi − Γi+1 is a single satellite and Γn is
a square. This is reminiscent of the more common graph-theoretic notion of a dismantlable graph, in
which a vertex v is dominated by w if st(v) ⊂ st(w), and a graph is dismantlable if it is possible to
reduce it to a single vertex by removing one dominated vertex at a time.

2.2. RACGs and RAAGs. See [7] and [4, Section 2.6] for background on RACGs and RAAGs.

Definition 2.1. Let Ω be a finite, simplicial graph with vertex set V (Ω). The right-angled Coxeter
group (RACG) WΩ is defined as the group given by the following presentation

WΩ = 〈s ∈ V (Ω) | s2 = 1 for all s ∈ V (Ω) , st = ts if (s, t) ∈ E(Ω)〉 .

The right-angled Artin group (RAAG) AΩ is defined as the group given by the following presentation

AΩ = 〈m ∈ V (Ω) | mn = nm if (m,n) ∈ E(Ω)〉 .

The graph Ω is called the presentation graph1.

Definition 2.2. If WΓ is a RACG and Υ is an induced subgraph of Γ, then the subgroup of WΓ

generated by V (Υ) is called a special subgroup. It is a RACG with presentation graph Υ, and is denoted
WV (Υ) or WΥ. The analogous statement and terminology also applies to RAAGs.

We will restrict to one–ended groups. A RACG is one–ended if and only if it is incomplete and
has no separating clique [7, Theorem 8.7.2]. A RAAG is one-ended if it is connected and has at least
two vertices. To further simplify the set-up, we consider only RACGs and RAAGs whose Davis and
Salvetti complexes, respectively, are two-dimensional. This is satisfied for both RACGs and RAAGs if
the presentation graph is triangle-free.

There is a quasiisometry invariant known as divergence. In particular, if a group has polynomial
divergence then the degree of the polynomial is a quasiisometry invariant. RAAGs have at most
quadratic divergence [1, Corollary 4.8], thus so does every group quasiisometric to a RAAG. By work
of Dani and Thomas [6, Theorem 1.1] a one-ended, two-dimensional RACG has at most quadratic
divergence if and only if its presentation graph has a property known as CFS (component of full
support/constructed from squares). This was generalized to higher dimension in [2, Definition 1.3].

Definition 2.3. The diagonal graph �(Γ) of Γ is the graph whose vertices are diagonals of induced
squares in Γ, with {a, b} and {c, d} connected by an edge if {a, b} ∗ {c, d} is an induced square in Γ.

The support supp({a, b}) of a vertex {a, b} of �(Γ) is the pair of vertices {a, b} in Γ. The support of
a subset of �(Γ) is the union of the supports of its vertices.

The graph Γ is CFS if �(Γ) has a connected component whose support is all non-cone vertices of
Γ. If Γ is triangle-free and not a star then it has no cone vertices, and we can simply say that some
component of �(Γ) has full support, ie, its support is all of Γ.

The graph Γ is strongly CFS if it is CFS and �(Γ) is connected.

Remark. The usual definition of CFS uses a graph �(Γ) whose vertices are induced squares of Γ, with
an edge between two vertices if they intersect in a diagonal. The graphs �(Γ) and �(Γ) carry the same
information, but �(Γ) is topologically simpler, since many squares intersecting in a common diagonal
form a star in �(Γ) but a clique in �(Γ). The diagonal graph is also more natural for our purposes
because when we have Γ with a FIDL–Λ, then the commuting graph ∆ of Λ sits as a subgraph in �(Γ).

1This is different from the conventions used to define the Coxeter graph, which is more commonly used for not-
necessarily-right-angled Coxeter groups.
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Theorem 2.4 ([6]). If Γ is an incomplete, triangle–free graph without separating cliques such that WΓ

is quasiisometric to a RAAG then Γ is CFS.

Lemma 2.5. If Γ is incomplete, triangle-free, and CFS then it has no separating clique.

Proof. Take a, b ∈ Γ. If a and b are the diagonal of some square then they are not separated by a
clique. Otherwise, there is a path {p0, q0}, . . . , {pn, qn} in the full support component of �(Γ) with
n > 0, p0 = a, and pn = b. This path corresponds to a chain of squares {pi, qi} ∗ {pi+1, qi+1} in Γ, with
successive squares sharing a diagonal. The union of the squares is not separated by a clique. �

2.3. Dani-Levcovitz conditions. Let Θ = Θ(Γ,Λ) be the graph with vertex set Γ, with edges from
both Γ and Λ < Γc. The edges coming from Γ are Γ–edges, and the edges coming from Λ are Λ–edges.
Similarly, a path consisting only of Γ–edges is a Γ–path, etc. The Λ–hull, hullΛ, of a subset of vertices
of Θ is the vertex set of their convex hull in Λ. A set of vertices is Λ–convex if it is equal to its Λ–hull.

Dani and Levcovitz [5] give subgroup conditions R1–R4 to determine that the RAAG A∆ on the
commuting graph ∆ associated to Λ is a visual RAAG subgroup of WΓ. They give index conditions
F1 and F2 to ensure that the visual RAAG subgroup is of finite index in WΓ. They show in the
2–dimensional case that it always suffices to find Λ with two components, and for two component Λ
their conditions are necessary and sufficient.

The conditions are as follows, simplified by specializing to the case that Γ is an incomplete, triangle-
free graph without separating cliques. Let Λr (red) and Λb (blue) be disjoint, connected subgraphs of
Γc, with Λ = Λr t Λb.
R1: Λr and Λb are trees.
R2: Λr and Λb are induced subgraphs of Θ.
F1: Λ spans Γ.

These conditions are true if and only if Γ is bipartite, with a bicoloring r/b (every vertex is colored
either r or b, and adjacent vertices have different colors), and Λr and Λb are trees in Γc spanning the r
and b parts, respectively. We will not state F2. In our case it is always satisfied if R2 and F1 are [5,
Remark 4.3]. Assuming these conditions, we can state the remaining two conditions in simplified form:
R3: If {a, b} ∗ {c, d} is a square in Γ then hullΛ{a, b} ∗ hullΛ{c, d} ⊂ Γ.
R4: If a b is an edge in a cycle γ then there is a square {a, a′} ∗ {b, b′} with a′, b′ ∈ hullΛ(γ).
Notice that the assumption that Γ is incomplete with no separating clique implies WΓ is 1–ended, so

A∆ is 1–ended, so ∆ is connected and has more than one vertex. Thus, every edge of Λ is a diagonal of
a square in Γ, since otherwise it would have nothing to commute with, so would give an isolated vertex
in ∆. Thus, we may identify ∆ with a subgraph of �(Γ).

One nice application of these conditions in [5] is to connect them to conditions given by Nguyen and
Tran [15] on deciding when a planar graph Γ defines a RACG that is quasiisometric to a RAAG. The
conclusion is that, for planar Γ, WΓ being quasiisometic to a RAAG implies graph conditions that imply
R1 −R4 and F1 and F2, so WΓ actually has a finite index visual RAAG subgroup, which happens
always to be defined by a tree ∆. Dani and Levcovitz also give two families of non-planar graphs to
which their conditions apply and yield ∆ that are not trees. We mention one of these families here:

Example 2.6. A bicycle wheel is a graph consisting of adjacent vertices x and y, the ‘hub’, a circle of
even length 2n ≥ 6 given by c1, d1, c2,. . . , dn, the ‘rim’, and edges from each ci to x, and from each di
to y, the ‘spokes’.

Figure 2.1. A bicycle wheel

A bicycle wheel admits a 2–component FIDL–Λ consisting of the opposite of the spokes: one star
consisting of an edge from x to each di and another consisting of an edge from y to each ci. The
commuting graph ∆ is a circle of the same length as the rim.

In Figure 2.2 the case n = 3 is also recognizable as the 1–skeleton of a 3–cube with one space diagonal:
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2.4. Splittings of RACGs. We have mentioned that WΓ is one–ended when it is incomplete with no
separating clique. This corresponds to not having a splitting as an amalgamated product over a finite
group. The next simplest splittings are over two-ended, or virtually Z, groups.

A JSJ decomposition of a finitely presented group is a certain maximal graph of groups decomposition
(see [11] for the precise definition) with two-ended edge groups and vertex groups in three categories:
two-ended, hanging or rigid. A hanging vertex group is essentially the fundamental group of a surface
with boundary and a rigid vertex group does not split any further with respect to its incident edge
groups. JSJ decompositions are not unique, but there is a way to encode all of them simultaneously in a
JSJ graph of cylinders. It is the canonical representative for the deformation space of JSJ decompositions
of the group and it can be used to deduce quasiisometry invariants, by [3]. The idea is that some of the
two–ended edge and vertex groups in a JSJ decomposition may be commensurable, and these can be
grouped together to form cylinders, and from this a new decomposition is derived. For RACGs, all of
this is visible in the presentation graph: Mihalik and Tschantz [14] show a one-ended, two-dimensional
RACG WΓ admits a splitting over a two-ended subgroup if and only if Γ has a cut

(
a
b

)
:

Definition 2.7. If Γ is an incomplete, triangle-free graph without separating cliques, a cut
(
a
b

)
means

one of the following, both of which have the property that the element ab ∈WΓ generates an infinite
cyclic subgroup that is finite index in W(ab)

.

• A cut pair
(
a
b

)
= {a, b}: a pair of non-adjacent vertices such that Γ− {a, b} is not connected.

• A 2–path cut triple
(
a
b

)
= {a, b, c}: a triple of vertices with c ∈ lk(a)∩ lk(b) such that Γ− {a, b}

is connected but Γ− {a, b, c} is not.

Definition 2.7 implies that every component of Γ−
(
a
b

)
contains a neighbor of each vertex in

(
a
b

)
.

A cut pair {a, b} is crossed by another, disjoint, cut pair {c, d} if a and b lie in different connected
components of Γ− {c, d}. A cut

(
a
b

)
= {a, b, c} is crossed by a cut

(
d
e

)
= {d, e, f} if c is equal to f and

a and b lie in different connected components of Γ−{d, e, c}. A cut that is not crossed by any other cut
is uncrossed. Crossing cuts are responsible for hanging vertices in the JSJ decomposition, but RAAGs
do not have these [13], so they cannot appear in groups quasiisometric to RAAGs.

Theorem 2.8 ([10, Theorem 3.29]). Let Γ be an incomplete, triangle free graph without separating
cliques. If the JSJ graph of cylinders of WΓ has no hanging vertices, it consist of:

• For every pair {a, b} such that there is an uncrossed cut
(
a
b

)
, there is a cylinder vertex with

vertex group W{a,b}∪(lk(a)∩lk(b)).
• For every set B of essential (valence at least 3) vertices in Γ satisfying the following conditions,
there is a rigid vertex with vertex group WB:

(B1) No cut separates B.
(B2) The set B is maximal among all sets satisfying (B1).
(B3) |B| ≥ 4.

Furthermore a pair of vertices is connected by an edge if and only if the pair consists of a cylinder vertex
and a rigid vertex whose vertex groups intersect in a subgroup containing the two-ended cut defining the
cylinder. The edge group is the intersection of its vertex groups.

3. FIDL–Λ Convexity

Lemma 3.1. Let Γ be an incomplete, triangle-free graph with no separating clique that admits a
FIDL–Λ. Let

(
v
v′

)
be a cut of Γ. Every component of Γ−

(
v
v′

)
contains a common neighbor of v and v′.
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Proof. Pick a component of Γ−
(
v
v′

)
; let b be a vertex in that component, and let a be a vertex from a

different component. By Theorem 2.4 we can choose a geodesic {p0, q0}, . . . , {pn, qn} in �(Γ) such that
a ∈ {p0, q0} and b ∈ {pn, qn}. Let i0 be the least index such that {pi0 , qi0} contains a vertex, say pi0 , in
the same component of Γ−

(
v
v′

)
as b.

If i0 = 0 then qi0 = a and there is a square with one diagonal containing vertices in different
components of the cut. This is only possible if the cut

(
v
v′

)
is a cut pair {v, v′} and the square is

{a, p0} ∗ {v, v′}, in which case p0 is a common neighbor of v and v′ in the b–component.
If i0 > 0 then {pi0−1, qi0−1} ∗ {pi0 , qi0} is a square with pi0 in the b–component and with pi0−1

and qi0−1 non-adjacent vertices that are both adjacent to pi0 , but neither of which are in the same
component of Γ−

(
v
v′

)
as pi0 . Then {pi0−1, qi0−1} = {v, v′}. �

Lemma 3.2. Let Γ be an incomplete, triangle-free graph with no separating clique that admits a
FIDL–Λ. Let

(
v
v′

)
be a cut of Γ. Then Λ contains an edge between v and v′.

Proof. By Lemma 3.1, it is possible to choose vertices a and b that are common neighbors of v and v′
and contained in different components of Γ−

(
v
v′

)
. Every common neighbor of a and b must lie in the

cut, so the triangle-free condition implies the only common neighbors of a and b are v and v′.
Now, {a, b} ∗ {v, v′} is a square, so R3 implies {a, b} ∗ hullΛ{v, v′} ⊂ Γ, so hullΛ{v, v′} = {v, v′}, so

there is a Λ–edge between v and v′. �

Lemma 3.3. Let Γ be an incomplete, triangle-free graph with no separating clique that admits a
FIDL–Λ. The link of every vertex is Λ–convex.

Proof. Suppose not. Then there exist a, b, v with a, b ∈ lk(v) such that lk(v) ∩ hullΛ{a, b} = {a, b} and
a and b are not adjacent in Λ. Assume v ∈ Λr and a, b ∈ Λb. Since Λb is a tree, there is a unique
Λb–geodesic a = c0, c1, . . . , cn = b, n ≥ 2, such that each pair {ci, ci+1} is the diagonal of a square
{ci, ci+1} ∗ {di, d′i} of Γ. None of the di and d′i equal v, since the ci for i 6= 0, n are not in lk(v).

We build a cycle γ as follows: start with b, v, a = c0, and d0. Next add cj0 where j0 ≥ 1 is the
largest index such that cj0 is adjacent to d0. Then add dj0 . Continue, where, having most recently
added di we next add cj such that j is the maximal index with di adjacent to cj . If j < n then add
dj and repeat. The point is that while dj is adjacent to cj+1, the previous di that occur in γ are not
adjacent to any ck for k > j, so we guarantee that no d is repeated in γ.

Thus, γ is a cycle in Γ with hullΛb(γ) = hullΛ{a, b} = {c0, . . . , cn}. Condition R4 implies there exists
a square {a, a′} ∗ {v, v′} with a′, v′ ∈ hullΛ γ. However, a and b are the only vertices of lk(v) ∩ hullΛ γ,
so a′ = b. Condition R3 implies {v} ∗ hullΛ{a, b} ⊂ Γ, contradicting hullΛ{a, b} 6⊂ lk(v). �

Corollary 3.4. Let
(
v
v′

)
be a cut of Γ, and let Γ′ be a connected component of Γ−

(
v
v′

)
. Let Γ̄′ := Γ′∪

(
v
v′

)
.

The intersection of each component of Λ with Γ̄′ is Λ–convex.

Proof. Since there are no separating cliques, for every pair of vertices a, b ∈ Γ̄′, there exists a Γ–path
c0 = a, . . . , cn = b such that ci ∈ Γ′ for all i 6= 0, n. If a and b are in the same component of Λ then n is
even. For each odd i, lk(ci) is Λ–convex and contains ci−1 and ci+1. Since ci ∈ Γ′ for odd i, lk(ci) ⊂ Γ̄′,
so we can piece together a Λ–path from a to b that stays in Γ̄′. �

Corollary 3.5. For any two vertices a, b ∈ Γ, lk(a) ∩ lk(b) is Λ–convex.

Proof. If | lk(a)∩ lk(b)| < 2 there is nothing to prove, so assume c and d are distinct common neighbors
of a and b. By Lemma 3.3, there is a Λ–geodesic from c to d in lk(a) and a Λ–geodesic from c to d in
lk(b), but Λ is a forest, so these are the same path, and are therefore in lk(a) ∩ lk(b). �

Here are some consequences of these convexity results:

Proposition 3.6. Let Γ be an incomplete, triangle-free graph with no separating clique that admits a
FIDL–Λ. Then every cycle of Γ has even length, every cycle of length greater than 6 has a 1 or 2–chord,
and an induced cycle of length 6 occurs only as the rim of a bicycle wheel subgraph of Γ.

Proof. Γ is bipartite, since its vertices are 2–colored r/b according to which component Λr or Λb of Λ
they belong. Thus, Γ has no odd cycles. Suppose γ := c0, c1, . . . , cn−1 is a cycle of length n > 4 with
no 1 or 2–chords. We always take subscripts modulo n, without further comment.

Let [x, y]Λ denote the unique Λ–geodesic joining vertices x and y if they are in the same Λ component.
Construct a Λ–loop at c0 by taking [c0, c2]Λ + [c2, c4]Λ + · · ·+ [cn−2, cn]Λ. This is a loop in a tree,

so it is degenerate. In particular, each edge is crossed an even number of times. By Lemma 3.3,
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[c2m, c2m+2]Λ ⊂ lk(c2m+1). Since the cycle has no 1 or 2–chords, for odd j > i we have that lk(ci) and
lk(cj) intersect only if j = i + 2 or i = 1 and j = n − 1, so only [c2m−2, c2m]Λ and [c2m+2, c2m+4]Λ
potentially share edges with [c2m, c2m+2]Λ. Since a geodesic uses an edge once or not at all, to have all
of the edges of [c2m, c2m+2]Λ crossed evenly in total by the loop we need that each edge of [c2m, c2m+2]Λ
is also contained in exactly one of [c2m−2, c2m]Λ and [c2m+2, c2m+4]Λ. Thus, there is x ∈ [c2m, c2m+2]Λ
such that [c2m, x]Λ = [c2m−2, c2m]Λ ∩ [c2m, c2m+2]Λ and [x, c2m+2]Λ = [c2m, c2m+2]Λ ∩ [c2m+2, c2m+4]Λ.
Such an x is in lk(c2m−1) ∩ lk(c2m+1) ∩ lk(c2m+3). But then dΓ(c2m−1, c2m+3) = 2, so, since γ has no
2–chords, dγ(c2m−1, c2m+3) = 2, so n = 6.

The same argument, reversing evens and odds, shows there exists y ∈ lk(c0) ∩ lk(c2) ∩ lk(c4).
Consider the cycle γ′ := y, c0, c1, x, c3, c4. By condition R4, there is a square {c0, v} ∗ {c1, w} with

v, w ∈ hullΛ(γ′) = {x, c0, c4} t {y, c1, c3}, so v ∈ {x, c4} and w ∈ {y, c3}. But since γ has no chords, c1

is not adjacent to c4 and c3 is not adjacent to c0, so v = x and w = y, implying x and y are adjacent.
Thus, γ is the rim of a bicycle wheel with hub {x, y}. �

Proposition 3.7. Let Γ be an incomplete, triangle-free graph with no separating clique. Suppose Γ has
an uncrossed cut

(
a
b

)
. Let Γi be the components of Γ −

(
a
b

)
, and let Γ̄i := Γi ∪

(
a
b

)
. Then Γ admits a

FIDL–Λ if and only if each Γ̄i admits a FIDL–Λi that contains an edge a b.

Proof. The ‘only if’ direction follows easily from Lemma 3.2 and Corollary 3.4.
For the converse, suppose ΛΓi := ΛΓi,r ∪ ΛΓi,b contains an edge a b in ΛΓi,r for all i. This is the

only intersection of any of the r trees, since
(
a
b

)
= ∩iΓ̄i, so Λr := ∪iΛΓi,r is a tree.

For Λb there are two cases. If
(
a
b

)
= {a, b} is a cut pair then the ΛΓi,b are disjoint. For each i,

choose ci ∈ Γi ∩ lk(a) ∩ lk(b), which exists by Lemma 3.1. Define Λb as the union of the ΛΓi,b, together
with a tree spanning the ci. If

(
a
b

)
= {a, b, c} is a 2–path cut triple then c is a vertex in all ΛΓi,b, so

Λb := ∪iΛΓi,b is a tree. In this case, set each ci := c, so that we can write a common argument.
Let Λ := Λr t Λb. Condition R1 we arranged by constructing trees. Conditions R2, and F1 are

immediate. We check conditions R3 and R4. The only interesting cases are squares and cycles that
include vertices from different components of Γ−

(
a
b

)
.

Suppose x1 ∈ Γ1 and x2 ∈ Γ2 are the diagonals of a square. Since
(
a
b

)
is a cut, the square is

{x1, x2} ∗ {a, b}. Since the only Λb connection between Γ1 and Γ2 is through c1 and c2, we have:

hullΛ{a, b} ∗ hullΛ{x1, x2} = {a, b} ∗ (hullΛΓ1,b
{x1, c1} ∪ hullΛΓ2,b

{c2, x2} ∪ hullΛb{c1, c2})

This join is indeed contained in Γ, because xi, ci ∈ lkΓ̄i
(a)∩ lkΓ̄i

(b), and by Corollary 3.5, lkΓ̄i
(a)∩ lkΓ̄i

(b)
is ΛΓ̄i

–convex, so all of hullΛΓi,b
{xi, ci} are common neighbors of a and b, whereas hullΛb{c1, c2} ⊂

lk(a) ∩ lk(b) by construction. Thus, R3 is satisfied.
If R4 is violated there is a shortest cycle γ containing an edge e that is not included in a square with

vertices in hullΛ(γ). We may assume such a cycle is induced, since if it has vertices that are adjacent in
Γ and not in γ we could use that edge to cut γ into two strictly shorter cycles whose union contains all
the edges of γ. In particular, e is in one of these shorter cycles, γ′. But hullΛ γ

′ ⊂ hullΛ γ, so e is not
included in a square with vertices in hullΛ γ

′, contradicting that γ was a shortest counterexample.
So, consider an induced cycle γ that contains, without loss of generality, vertices from Γ1 and Γ2.

Since the cycle crosses the cut, it contains a and b. Since it is induced, either γ ∩ Γ̄1 = a c1 b, or
c1 /∈ γ. In the first case, both edges a c1 and c1 b are in the square {c1, c2}∗{a, b}, and c2 ∈ hullΛ(γ)
since the only Λb–connection between Γ1 and Γ2 is through c2. On the other hand, if c1 /∈ γ then there
is a cycle γ′ made from γ ∩ Γ̄1 and the segment a c1 b that is completely contained in Γ̄1, so its
edges all participate in squares with vertices in hullΛΓ1

(γ′), which is contained in hullΛΓ
(γ), since the

vertex c1 = γ′ − γ is in the Λb–hull of γ, being the only Λb–connection between Γ̄1 and Γ̄2. This shows
that all Γ̄1–edges of γ are contained in a square with vertices in hullΛ(γ). �

4. Satellite-dismantlability and the Coning Algorithm

In this section we take a graph with a FIDL–Λ apart and then put it back together again.

Theorem 4.1. Let Γ be an incomplete, triangle-free graph with no separating clique that admits a FIDL–
Λ. Then Γ is satellite-dismantlable to a square through a sequence of graphs Γ0 = Γ ⊃ Γ1 ⊃ · · · ⊃ Γn
such that for all i, Γi is incomplete, triangle-free with no separating clique and has Λ∩ Γi as a FIDL–Λ,
with the satellite vertex Γi − Γi+1 being a leaf in Λ ∩ Γi.
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Proof. Our goal is to find a leaf v of Λ such that v is a satellite in Γ and Γ1 := Γ− {v} has the desired
properties. The proof is easy if Γ is a suspension, so assume not.

Identify ∆ with its image in �(Γ). This graph is connected, since WΓ and A∆ are one-ended. We
claim that every vertex of �(Γ) is adjacent to a vertex of ∆. Suppose that {a, b} ∈ �(Γ) −∆. By
definition, {a, b} is a diagonal of some square, so a and b have at least two common neighbors. By
Corollary 3.5, lk(a) ∩ lk(b) is Λ–convex, so it contains a subtree of Λ with at least one edge. Any such
edge gives a vertex of ∆ adjacent to {a, b} in �(Γ). Note that this shows Γ is strongly CFS.

The vertex v is a leaf of Λ if and only if it has a unique neighbor v′ in Λ. Equivalently, {v, v′} is the
unique vertex of ∆ containing v. We claim that v is a satellite of v′. Let w ∈ lk(v). Since {v, v′} is the
diagonal of some square, | lk(v) ∩ lk(v′)| ≥ 2, so there exists c ∈ (lk(v) ∩ lk(v′))− {w}. Since the edge
v c is not a separating clique, there is a path from v′ to w that does not go through v or c, so there is
a cycle γ that goes from v to c to v′ to w and then back across the edge between v and w. By R4 there
is a square {v, x} ∗ {w, u} with x, u ∈ hullΛ(γ). But then R3 implies {w} ∗ hullΛ{v, x} ⊂ Γ. Since v
was a Λ–leaf, v′ ∈ hullΛ{v, x}, so w is adjacent to v′. Thus, lk(v) ⊂ lk(v′).

The claim that Λ− {v} is a FIDL–Λ is automatic, as all of the defining properties are inherited from
Λ. The key for this is that since only a leaf of Λ was deleted, convex sets in Λ− {v} are still convex in
Λ.

We must show it is possible to choose a leaf of Λ such that Γ−{v} is not separated by a clique. First,
let v be a Λ–leaf and {v, v′} the unique vertex of ∆ containing v, and suppose that {v, v′} is not a cut
vertex of ∆. Then �(Γ)− {v, v′} consists of leaves of �(Γ) that were connected only to {v, v′}, plus
one additional component Ω containing ∆− {v, v′}. The reason for this is that Γ being triangle-free
implies �(Γ) is triangle-free, so if {a, b} is adjacent to {v, v′}, but is not a leaf of �(Γ), then it is also
adjacent to some other vertex {c, d}, which is adjacent to a vertex of ∆, but not to {v, v′}.

We further note that Ω has support Γ− {v}. Since Γ is not a suspension, v′ is not a Λ–leaf, so it is
contained in at least one other vertex of ∆, so v′ ∈ supp(Ω). For other vertices, we only worry about
those appearing in a leaf {a, b} of �(Γ) connected to {v, v′}. Since {v, v′} is not a cut vertex of ∆,
{a, b} /∈ ∆. But Λ spans Γ, so there is some vertex of ∆ with a in its support, and likewise for b.

Now consider �(Γ−{v}). If {a, b} is a leaf of �(Γ) connected only to {v, v′} then the only square of
Γ with {a, b} as a diagonal is {a, b} ∗ {v, v′}, so {a, b} is not the diagonal of a square in Γ− {v} and
does not appear as a vertex of �(Γ− {v}). Since {v, v′} was the unique vertex of �(Γ) containing v,
�(Γ− {v}) = Ω, which is connected, by hypothesis, and has full support in Γ− {v}. Thus, Γ− {v} is
strongly CFS, and Lemma 2.5 says Γ− {v} has no separating clique.

Now we argue that there always exists a Λ–leaf not giving a cut vertex of ∆, so we can find it and
apply the previous argument. Suppose the first chosen Λ–leaf v does give a cut vertex {v, v′} of ∆.
This implies that Γ has a cut

(
v
v′

)
, since WΓ and A∆ split over a two-ended subgroup commensurable

to 〈vv′〉. Let v0 := v and v′0 := v′. By Corollary 3.4, for each component Γ′ of Γ−
(
v0

v′0

)
, the intersection

of each component of Λ with Γ̄′ is Λ–convex, so Γ′ contains at least one Λ–leaf v1. If v1 uniquely
appears as {v1, v

′
1} in ∆ and {v1, v

′
1} is not a cut vertex of ∆, we are done. Otherwise,

(
v1

v′1

)
is a cut

of Γ. Since Γ has no crossing cuts,
(
v0

v′0

)
−

(
v1

v′1

)
is a non-empty set contained in a single component of

Γ−
(
v1

v′1

)
. Choose a component Γ′′ of Γ−

(
v1

v′1

)
not containing

(
v0

v′0

)
−
(
v1

v′1

)
and repeat, always choosing

a complementary component of the most recent cut that does not contain the previous cuts, so that
the size of the components strictly decreases at each step. If vi+1 is the lone vertex in its component
of Γ−

(
vi
v′i

)
then it cannot be part of a cut, since the cut would cross

(
vi
v′i

)
, so eventually this process

produces a Λ–leaf that does not appear in a cut vertex of ∆. �

Corollary 4.2. If Γ is an incomplete, triangle-free graph with no separating clique and no satellite
vertex then Γ does not admit a FIDL–Λ.

Corollary 4.3. If Γ is an incomplete, triangle-free graph with no separating clique and it admits a
FIDL–Λ then it is strongly CFS.
Coning Algorithm 4.4. We perform the following inductive procedure to build a graph Γ with an
associated graph Λ ≤ Γc with two connected components:

(1) The initial graph Γ0 is a square, the associated graph Λ0 = Γc0 is the complement graph of Γ0.
(2) Build a sequence of pairs ((Γ0,Λ0), (Γ1,Λ1), . . . , (Γn,Λn)) by applying the induction step: Given

(Γi,Λi), pick a vertex vi and a set Ni ⊆ lkΓi(vi) of at least two vertices that is Λi–convex. Define
Γi+1 by coning-off Ni to xi+1, and define Λi+1 by adding an edge from vi to xi+1 to Λi.
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Note that at each step, xi+1 is a satellite of vi in Γi+1.

Theorem 4.5. If the pair (Γ,Λ) can be constructed by the Coning Algorithm 4.4, then Γ is incomplete,
triangle-free and has no separating cliques, and Λ is a FIDL–Λ for Γ.

Proof. The proof is by induction on n. Θ(Γ0,Λ0) satisfies all the conditions. Assume Θ(Γi,Λi) does
too. We show that Θ(Γi+1,Λi+1) satisfies R3 and R4. The other conditions are easy to verify.

Since Θ(Γi,Λi) satisfies condition R3, we only need to check squares in Γi+1 containing the new
vertex xi+1. By construction of Λi+1, any such square is of the form {xi+1, l} ∗ {n, n′} with n, n′ ∈ Ni,
and, since Ni = lkΓi+1(xi+1) is Λi–convex, {xi+1} ∗ hullΛi+1{n, n′} ⊂ Γi+1.

The vertex xi+1 is only connected to vi in Λi+1. Hence, hullΛi+1{xi+1, l}−{xi+1} = hullΛi+1{vi, l} =
hullΛi{vi, l}. Since Γi is triangle-free, vi and l are not adjacent, so {vi, l} ∗ {n, n′} ⊆ Γi is a square.
Condition R3 for Θ(Γi,Λi) implies hullΛi{vi, l} ∗ hullΛi{n, n′} ⊂ Γi. Condition R3 is satisfied, since:

hullΛi+1{xi+1, l} ∗ hullΛi+1{n, n′} = {xi+1} ∗ hullΛi{n, n′} ∪ hullΛi{vi, l} ∗ hullΛi{n, n′} ⊂ Γi+1

Since Θ(Γi,Λi) satisfies condition R4, we only need to check cycles containing xi+1. Let γ be a cycle
containing xi+1. Since lkΓi+1(xi+1) = Ni, γ is of the form γ = (xi+1, n, l1, . . . , lk, n

′) for n, n′ ∈ Ni.
The edges incident to xi+1 are contained in the square {xi+1, vi} ∗ {n, n′}, all of whose vertices are in
γ, except possibly vi. But xi+1 is a leaf of Λi+1 connected only to vi, so vi is certainly in hullΛi+1(γ).
For the remaining edges of γ, replace γ by γ′ = (vi, n, l1, . . . , lk, n

′), which is a loop in Γi that can be
split into at most two cycles in Γi. Condition R4 for Θ(Γi,Λi) implies each of these edges belongs to a
square with vertices in the Λi–hull of its cycle, which is a subset of the Λi+1–hull of γ. �

Example 4.6. The graph Γ of Example 2.6 that is the 1–skeleton of a 3-cube with one space diagonal
has a FIDL-Λ. The pair (Γ,Λ) can be constructed by the Coning Algorithm 4.4. A coning sequence
(xi,Γi,Λi, vi, Ni) is illustrated in Figure 4.1.

d3 c2

d1

x

y

d3 c2

x

y

c1

d3 c2

d1

x

y

c1

d3 c2

d1

x

y

d2

c1

d3 c2

d1

c3

x

y

d2

(Γ0,Λ0, x, {y, c2}) (d1,Γ1,Λ1, y, {x, d3}) (c1,Γ2,Λ2, x, {y, c1}) (d2,Γ3,Λ3, y, {x, d1, d2}) (c3,Γ4,Λ4)

Figure 4.1. Example of a Coning Sequence

Theorem 4.7. Let Γ be an incomplete, triangle-free graph without separating cliques. Γ admits a
FIDL–Λ if and only if it admits a satellite-dismantling sequence Γ = Γn ⊃ Γn−1 ⊃ · · · ⊃ Γ0 such that Γ0

is a square, each Γi is incomplete and triangle-free with no separating clique, and the following condition
is satisfied: For 0 ≤ i < n let {xi+1} := Γi+1 − Γi and Ni := lkΓi+1(xi+1).

(†) ∀i < n, ∃vi ∈ Vi := {v ∈ Γi | Ni ⊂ lkΓi(v)}, ∀j > i, if xi+1 ∈ Nj and Nj ∩ Γi 6= ∅ then vi ∈ Nj

Proof. Suppose we have a satellite-dismantling sequence for Γ satisfying the given conditions. Let
Λ0 := Γc0, and construct Λi+1 from Λi by choosing vi satisfying (†), and adding a Λ–edge from vi to
xi+1. To apply Theorem 4.5 we must verify that Nj is Λj–convex, for each j. Given j, let kj ≥ 0 be
the minimum index such that Nj ∩ Γkj 6= ∅. The vertices of Nj are pairwise at distance 2 from one
another, so they all have the same color; assume it is b. If n ∈ Nj then either n ∈ Γkj or n = xi+1 for
some kj ≤ i < j. In the second case, by (†), n is Λj–adjacent to vi ∈ Nj , which is in a lower stratum.
In this way, (†) implies that every vertex in Nj can be Λj–connected through vertices in Nj to a vertex
in Nj ∩ Γkj . If kj > 0 then Γkj − Γkj−1 is a single vertex, and if kj = 0 then the two vertices Λ0,b are
connected by an edge. Thus, Nj is Λj–convex.

Conversely, if Γ admits a FIDL–Λ then, by Theorem 4.1, it admits a satellite-dismantling sequence
leading to a square through graphs with the desired properties. For each satellite xi+1 there is a unique
Λi+1–edge at xi+1 connecting it to a vi ∈ Vi. We check that this vi satisfies (†).

Suppose for some j there is an i such that xi+1 ∈ Nj and there exists y ∈ Γi ∩Nj . Assume Nj ⊂ Λr.
Lemma 3.3 says Nj := lkΓj+1(xj+1) is Λj+1-convex, but hullΛj (Nj) = hullΛj+1(Nj), so Nj is Λj–convex.
Now we have two points xi+1 and y that are contained in two different subtrees of Λj,r: one is Nj ∩Λj,r
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and the other is Λi+1,r. Thus, the Λj,r–geodesic from xi+1 to y, the Nj ∩ Λj,r–geodesic from xi+1 to y
and the Λi+1,r–geodesic from xi+1 to y coincide. We know that the Λi+1,r–geodesic from xi+1 to y goes
through vi, since xi+1 is a leaf of Λi+1,r connected only to vi. Thus vi ∈ Nj , and (†) is satisfied. �

Here are a family of examples to illustrate Theorem 4.7.

Proposition 4.8. Let T be a finite tree, with at least one edge, whose vertices are labelled by natural
numbers n(v) such that 1 occurs only on leaves and if T is a single edge then both labels are greater than
1. Let Γ be the graph that has, for each v ∈ T , n(v)–many vertices (v, 0), . . . , (v, n(v)− 1). Connect
(v, i) to (w, j) by an edge if and only if v is adjacent to w in T . Then Γ admits a FIDL–Λ.

Proof. We describe a satellite-dismantling and then say why it satisfies Theorem 4.7.
If v ∈ T with n(v) > 1 then for i + 1 ≤ n(v) − 1, (v, i + 1) is a satellite of (v, i), coning off

{(w, j) | w ∈ lkT (v), 0 ≤ j < n(w)}. Pick any such v and iteratively remove (v, n(v)− 1), . . . , (v, 2).
Repeat for all v with n(v) > 2. This reduces us to the case that n is bounded by 2.

If Γ is not a square and there is a leaf v of T attached to w with n(v) = 1 then there exists x ∈ T at
distance 2 from v. In Γ, (v, 0) is a satellite of (x, 0) coning-off {(w, 0), (w, 1)}. In this way, remove all
T–leaves with n–value 1, until either we reach a square or have smaller Γ and T with n ≡ 2.

Suppose n ≡ 2 and Γ is not a square, so T is not a single edge. If v is a leaf of T attached to w then
(v, 1) is a satellite of (v, 0) coning-off {(w, 0), (w, 1)}. Thus, we reduce n to 1 on each of the leaves of T ,
and then rerun the case in the previous paragraph.

Iterating gives a satellite-dismantling reducing Γ to a square. Furthermore, in the dismantling we
specified for each satellite which vertex we were considering it as the satellite of, which allows an explicit
construction of Λ. It is observed that the coned-off set is Λ–convex at each step, so this is a FIDL. �

Remark. The proof relies on the fact that T is a tree because after reducing to n ≤ 2 the dismantling
proceeds by removing T–leaves. Proposition 4.8 cannot be true for arbitrary graphs ∆, as if ∆ has
a long isometrically embedded loop then so does Γ, which prevents the existence of a FIDL–Λ, by
Proposition 3.6. However, if ∆ is an arbitrary connected graph and n ≡ 2 then the Γ constructed from
∆ as above is commensurable to a RAAG, by [8].

Example 4.9. Figure 4.2 works out an example of a tree as in Proposition 4.8 in detail.

1
a

4
b

3
c

2
d

b0 c0
c1
c2

a0

b1
b2
b3

d0
d1

b0b1

c0c1

b0b2

b0b3

b0d0

b0d1

c0c2

a0c0

c1c2

a0c1
a0c2

b1b2

b1b3

b1d0

b1d1

b2b3

b2d0

b2d1

b3d0

b3d1

d0d1

Figure 4.2. An example T , Θ(Γ,Λ), and ∆ (purple) sitting in �(Γ).

5. A search algorithm

Definition 5.1. A FIDL–Λ for Γ relative to a collection of pairs of vertices {{p0, q0}, . . . , {pn, qn}} of
Γ is a FIDL–Λ that contains each of the pairs {pi, qi} as an edge of Λ.

Relative Search Algorithm 5.2. Given an incomplete, triangle-free graph Γ without separating cliques,
find a FIDL–Λ relative to {{p0, q0}, . . . , {pn, qn}} or decide that one does not exist as follows:

(1) If Γ is not strongly CFS stop; No FIDL–Λ exists.
(2) If there exists x0, x1, . . . , xn−1 such that for each i < n there exists j with {xi, xi+1} = {pj , qj},

then stop; No relative FIDL–Λ exists.
(3) Enumerate satellite-dismantling sequences reducing Γ to a square through graphs without

separating cliques. If none exist, stop; No FIDL–Λ exists.
(4) For each such satellite-dismantling sequence, check, in the notation of Theorem 4.7, if Condition

(†) is satisfied. Moreover, if we assume for each k that for all i, qk ∈ Γi =⇒ pk ∈ Γi, then
we require for each k that either {pk, qk} is a diagonal of the square Γ0 or that for i such that
qk = xi+1, we have that vi = pk is a choice for vi ∈ Vi satisfying Condition (†).

(5) If a suitable satellite-dismantling sequence is found, then Theorem 4.7 provides the relative
FIDL–Λ. Otherwise, no relative FIDL–Λ exists.
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Proof. Item (1) is Corollary 4.3. If the given {{p0, q0}, . . . , {pn, qn}} contains a cycle as described in
(2), then the resulting Λ contains a cycle, violating R1. Item (3) is Theorem 4.1. Item (4) describes
how it is possible to achieve the {pk, qk} as edges of FIDL–Λ from the argument of Theorem 4.7. �

Global Search Algorithm 5.3. Given an incomplete, triangle-free graph Γ without separating cliques,
find a FIDL–Λ or decide that one does not exist as follows:

(1) If Γ is not strongly CFS, stop; No FIDL–Λ exists.
(2) Compute the JSJ graph of cylinders for WΓ in terms of Γ as described in [10, Theorem 3.29]

(recall Theorem 2.8). If it has a hanging vertex, stop; WΓ is not even quasiisometric to a RAAG.
If it has a rigid vertex such that the corresponding subgraph is not strongly CFS, stop; No
FIDL–Λ exists.

(3) For each subgraph Γ′ corresponding to a rigid vertex of the graph of cylinders, use Relative
Search Algorithm 5.2 to find a FIDL–Λ for Γ′ relative to the pairs {p, q} ⊂ Γ′ such that Γ has a
cut

(
p
q

)
. If this search fails for any rigid vertex, stop; No FIDL–Λ exists.

(4) If all rigid vertices have relative FIDL–Λ then they can be assembled into a FIDL–Λ of Γ.

Proof. Item (1) is Corollary 4.3.
[9, Proposition 4.43], shows that if Γ′ is the subgraph corresponding to a rigid vertex, then it has no

separating cliques and is CFS. Iterating the cutting direction of Proposition 3.7 implies that if Γ has a
FIDL–Λ then its restriction to Γ′ is a FIDL–Λ for Γ′ relative to the cuts. Together with Corollary 4.3,
this explains the necessity of Items (2) and (3).

Torsion-generated groups do not surject Z, so the underlying graph of the graph of cylinders is a
tree. Iterating the assembly direction of Proposition 3.7 over the cuts combines the relative FIDL–Λ’s
of the subgraphs of the rigid vertices into a FIDL–Λ for Γ, establishing Item (4). �
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