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Abstract. We give criteria for deciding whether or not a triangle-free simple
graph is the presentation graph of a right-angled Coxeter group that is quasiiso-

metric to some right-angled Artin group, and, if so, producing a presentation
graph for such a right-angled Artin group.

We introduce two new graph modification operations, cloning and unfolding,

to go along with an existing operation called link doubling. These operations
change the presentation graph but not the quasiisometry type of the resulting

group. We give criteria on the graph that imply it can be transformed by
these operations into a graph that is recognizable as presenting a right-angled
Coxeter group commensurable to a right-angled Artin group.

In the converse direction we derive coarse geometric obstructions to being
quasiisometric to a right-angled Artin group, first by specializing existing
results from the literature to this setting, then by developing new approaches

using configurations of maximal product regions. In all cases we give sufficient
graphical conditions that imply these geometric obstructions.

We implemented our criteria on a computer and applied them to an enumer-

ation of small graphs. Our methods completely answer the motiving question
when the graph has at most 10 vertices.
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1. Introduction

We would like to understand the large scale geometry of right-angled Coxeter
groups (RACGs). Previous work on this problem has focused on understanding a
related collection of quasiisometry invariants (divergence, thickness, and hypergraph
index) [29, 5, 64, 65, 66], understanding certain hyperbolic and relatively hyperbolic
cases [25, 9, 30, 28, 54, 14], or certain other hyperbolic-like features [2, 48, 42, 62],
and cases with nontrivial JSJ decompositions [30, 73, 40]. See also the survey [26].

The hyperbolic and relatively hyperbolic cases have exponential divergence,
while linear divergence corresponds to being a product. This leaves the quadratic
divergence case as the simplest ‘interesting’ case orthogonal to hyperbolicity, in the
sense of having polynomial divergence. This class of RACGs is relatively unexplored
and wide open for investigation. Furthermore, this class of groups contains, up
to commensurability, all 1-ended right-angled Artin groups (RAAGs) [34], and
there is extensive work on understanding the large scale geometry of RAAGs
[3, 11, 12, 13, 55, 56, 58, 59, 69]. So, it is natural to ask when a given RACG with
quadratic divergence is quasiisometric to some RAAG, in which case we say it is
RAAGedy. By extension, we say that a simple graph Γ is RAAGedy if it is the
presentation graph of a right-angled Coxeter group WΓ that is RAAGedy.

Question 1.1. Which RACGs are RAAGedy?

Surprisingly little is known about this problem. There is a graph property CFS
characterizing quadratic divergence, which is therefore necessary for a graph to be
RAAGedy. This and other existing results are reviewed in Section 1.1. We develop
multiple criteria to address Question 1.1. These are summarized in Section 1.2. We
take a ‘hands dirty’ approach: large scale geometric features are interpreted in terms
of the presentation graph of the Coxeter group, so that our criteria are effectively
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verifiable. In fact, we have computerized1 all of the constructions, enumerated
small triangle-free CFS graphs, and then checked all of them for RAAGediness.
The results are shown in Figure 1, where the region labels are the list items from
Section 1.2.
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Figure 1. The 3938 isomorphism types of triangle-free CFS graphs
with at most 11 vertices. There are exactly 8 graphs, all with 11
vertices, for which we do not know if they are RAAGedy/non-
RAAGedy. They are listed in Section 8.

Preexisting work covers only the ‘planar’ part of the diagram, the regions labelled
‘DL’ and ‘DJ’, and a handful of isolated examples, so the figure shows that our new
constructions vastly improve the state of knowledge about Question 1.1, and almost
completely settle it for small triangle-free graphs. It also illustrates the inherent
complexity of the problem— particularly on the non-RAAGedy side we see several
overlapping but independent reasons that a graph can fail to be RAAGedy.

Practical criteria for answering Question 1.1 are an important outcome of this
work, but the techniques developed to establish these criteria also support our
broader aim of understanding the connections between the combinatorial properties
of presentation graphs and the large scale geometry of the resulting right-angled
Coxeter groups. By systematically identifying and exploiting these connections, we
establish a foundation for exploring more general questions about the quasiisometric
classification for RACGs.

1.1. Background. We summarize the current state of knowledge of Question 1.1:
There is a standard reduction of the quasiisometry problem to the case of 1–ended

factors of the Grushko–Stallings–Dunwoody decomposition of a finitely presented
group. In both the RAAG and RACG cases these are special subgroups, so they
are again RAAGs or RACGs, respectively. Thus, for RAAGs we restrict to the case
that Γ is connected with more than one vertex, and for RACGs we restrict to the
case that Γ is incomplete without separating cliques.

A RAAG A∆ has linear divergence when it is a product, which happens when ∆
is a join, and it has quadratic divergence whenever ∆ is not a join and A∆ is 1–ended
[3, Corollary 4.8]. One-ended RACGs have a richer divergence spectrum [29, 65, 66],
and the divergence can be calculated from the structure of Γ. In particular, linear
divergence corresponds to WΓ being a product of infinite subgroups, which occurs
when Γ is a thick join, and quadratic divergence occurs when Γ is not a join and
has property CFS (component of full support/constructed from squares) [29, 5, 64].

1Code available at: https://github.com/cashenchris/RACG

https://github.com/cashenchris/RACG
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Thus, for a 1–ended, irreducible RACG WΓ, the CFS property for Γ is necessary for
it to be RAAGedy.

Behrstock [2] mentions the ‘Folk Question’ of whether quadratic divergence for
RACGs implies commensurability to a RAAG and gives a counterexample, that is
not even RAAGedy, by constructing a RACG with quadratic divergence containing
a stable subgroup (see Figure 2 and Section 5.2).

Nguyen and Tran [73] show that Behrstock’s obstruction is not the only kind.
They give a complete characterization of RAAGedy graphs that are triangle-free,
have no separating cliques, and are planar. Their proof uses planarity in an essential
way to port the problem to the realm of 3–manifolds.

In the RAAGedy direction there are constructions of Davis and Januszkiewicz
[34] and Dani and Levcovitz [27] that give sufficient conditions on Γ for WΓ to be
commensurable to a RAAG.

1.2. Summary of our main results.
RAAGedy criteria: There are two existing criteria for showing WΓ is commensurable
to a RAAG:

(DJ) The graph is a ‘double’ as in Definition 2.2, so WΓ is commensurable to a
RAAG by a result of Davis and Januszkiewicz.

(DL) The graph satisfies the conditions of Dani and Levcovitz, so WΓ has a
finite-index RAAG subgroup.

There are also some graph operations that change a graph in such a way that
the resulting RACG is a finite-index subgroup of the one we started with. These
include link doubling (Section 2.1.3), as well as some others (Section 2.2.1). We
call a graph a near double if it can be turned into a double via a sequence of link
doubling operations. It turns out that there are concise criteria (Proposition 4.7)
for recognizing when a graph Γ is a near double in terms of its twin graph RpΓq
(Definition 2.1), and when a graph is a near double it is always possible to change it
into a double using only one or two link doubling steps.

We develop two more graph modification operations, cloning (Section 4.2) and
unfolding (Section 4.3) that allow us to change the graph Γ without changing the
quasiisometry type of WΓ. Cloning, in particular, leads to a nice generalization
of Proposition 4.7 as Theorem 4.16. We call graphs satisfying the hypotheses of
Theorem 4.16 coarse near doubles. These include doubles and near doubles.

(CND) If Γ is a coarse near double, then Γ is RAAGedy. A particularly simple case
is that if every vertex of Γ has a twin then Γ is RAAGedy. See Theorem 4.16.

Finally, any graph that can be changed into one of our known RAAGedy types
using a sequence of graph modification operations is also RAAGedy:

(ΞR) If Γ can be changed into a coarse near double or a graph satisfying Dani
and Levcovitz’s conditions by a sequence of link doubles, clonings, and
unfoldings, then Γ is RAAGedy. See Section 4.4.

Non-RAAGedy crietria: We also work in the opposite direction, detecting geometric
obstructions to a graph being RAAGedy.

In Section 5.1 and Section 5.2 we describe such obstructions by exploring the
Morse subgroups of 2–dimensional RACGs. The presence of 1–ended, infinite-index
Morse subgroups is a known obstruction to being RAAGedy. Having a stable cycle
in Γ is a sufficient condition for the existence of such a subgroup. We show by
example that stable cycles can appear after iterated link doubling, and recount a
condition for the Morse boundary of WΓ to be totally disconnected, which rules out
such behavior.

The results of Section 5.3 and Section 6 can be seen as two incarnations of a
general strategy that has been used often in quasiisometric rigidity arguments (see
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the survey [36, Chapter 25]): find a geometrically distinguished feature and make
a combinatorial object encoding interactions between subspaces so distinguished.
One such geometrically distinguished feature is that of being a coarsely separating
quasiline. Classes of parallel quasilines are grouped together into ‘cylinders’, and JSJ
theory organizes these cylinders into a tree, the JSJ tree of cylinders. The second
version of distinguished feature is top dimensional quasiflats. These are grouped
together into maximal product regions and there is a maximal product region graph
(MPRG) encoding their intersections. In both situations quasiisometries of the base
groups induce isomorphisms of the corresponding combinatorial objects.

In Section 5.3 we compare JSJ decompositions of RAAGs and RACGs and derive
several quasiisometry obstructions:

(NRR) If the JSJ graph of cylinders of WΓ contains a rigid vertex whose group is
not quasiisometric to a RAAG, then Γ is not RAAGedy, see Section 5.3.

(ZZ) If the JSJ graph of cylinders of WΓ contains a virtually Z2 edge incident to
a not virtually Z2 rigid vertex then Γ is not RAAGedy, by Corollary 5.14.

(CC’) If the JSJ graph of cylinders of WΓ contains a collection of cylinders forming
a cycle of cuts, as in Theorem 5.16, then Γ is not RAAGedy.

In Section 6.1 we make precise the fact that the MPRG of a RAAG is a (connected)
quasitree with a 1–bottleneck property. Then we give criteria on the presentation
graph of a RACG that show this is not always the case for RACGs.

(NS) Γ is not RAAGedy if it is not strongly CFS, Theorem 6.1, because strongly
CFS is equivalent to connectivity of the MPRG.

(L) We define a ‘ladder’ in the MPRG as a subgraph that is a coarse axis for the
action of an infinite order element of WΓ on its MPRG that is too wide to
be compatible with the 1–bottleneck property. We give sufficient conditions
for the existence of a ladder in Theorem 6.16, which therefore prevent Γ
from being RAAGedy. A novel point here is that we are really discovering
an invariant that has a fine dependence on the isometry type of the MPRG,
not just its quasiisometry type. That is, an MPRG containing a ladder
might still be a quasitree, it is just not a quasitree in precisely the same
way that the MPRG of a RAAG is.

In Section 7 we construct a bespoke obstruction that is tailored to our specific
problem comparing RACGS to RAAGs. To do this, we leverage a slight difference
between the behavior of closest point projection to standard subcomplexes in RAAGs
and RACGs: In RAAGs there is a dichotomy, the coarse intersection of two standard
subcomplexes has diameter either infinte or 0. In RACGs it can be finite and nonzero,
so many small diameter projections can add up to a large total.

It is a fact that maximal product regions are standard subcomplexes in RAAGs
and RACGs, so quasiisometries between them coarsely preserve this particular
family of standard subcomplexes. We bootstrap from this fact to inductively define
(Definition 7.1) a class of compliant subcomplexes such that quasiisometries send
them close to other compliant subcomplexes.

(CC) We deduce an obstruction to being RAAGedy if ΣΓ contains a cycle
X0, . . . , Xn´1 of compliant subcomplexes such that consecutive Xi come
close to one another and for each i ‰ 0 the diameter of the projection of
Xi to X0 is finite but the diameter of the union of all the projections is
large. Such a cycle can exist for RAAGedy Γ only if Γ satisfies some very
restrictive conditions, as described in Theorem 7.5, so if we additionally rule
these out then Γ is not RAAGedy.

It turns out that condition (CC) generalizes conditions (CC’) and (ZZ).
Finally, we reconsider the graph modification operations:
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(ΞNR) If Γ can be changed into one of the above non-RAAGedy types by a sequence
of link doubles, clonings, and unfoldings, then Γ is not RAAGedy.

The practical criteria defining conditions (CC) and, especially, (L) are designed
to take some link doubling into account, and what we actually computed for the
purpose of Figure 1 is whether there is a sequence of at most 3 link doubles after
which the presentation graph has the desired property. Even allowing this, we see
that (CC), (L), and (NRR) appear to be independent.

1.3. Comparison to Huang-Kleiner. Huang and Kleiner [59] have results on
groups quasiisometric to RAAGs, but their paper is very different. They start with a
fixed RAAG A∆, with the additional hypothesis that it has finite outer automorphism
group, and classify finitely generated groups quasiisometric to A∆. Our goal is
start with a RACG WΓ and decide whether or not it can be quasiisometric to any
RAAG whatsoever, and, if so, produce ∆ such that WΓ and A∆ are quasiisometric.
Furthermore, many of the groups we consider do not have the rigid geometry
associated with RAAGs with finite outer automorphism group. The extra flexibility
makes it harder to find obstructions to being quasiisometric to some RAAG.
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der Naturwissenschaft (Dr. rer. nat.) at the University of Vienna.

This research was funded in whole or in part by the Austrian Science Fund (FWF)
10.55776/P34214 and 10.55776/PAT7799924.

This material is based upon work supported by the National Science Foundation
under Award No. 2407104 and Award No. 2407438.

Part of this work was conducted during the Erwin Schrödinger Institute Research
in Teams program “Rigidity in Coxeter groups”, July 2023, C.C. and P.D. members.

We also thank Jingyin Huang and Sangrok Oh.

2. Preliminaries

In this section we fix terminology and notation, and recall some existing technology
that can be used in quasiisometry results, which we will apply in subsequent sections
in the special case of 2–dimensional RACGs and RAAGs. We also adapt some ideas
that are present in the literature to forms that will be useful to us later on. This
makes the paper more self-contained, and serves as a warm-up. We do not regard
this material as new.

2.1. Graphs. A simple graph, also known as a simplicial graph, is a 1–dimensional
simplicial complex, or, equivalently, it is a collection of vertices and edges such
that every edge connects distinct vertices and two edges have at most one vertex
in common. All graphs in this paper are simple. On the rare occasion that
we want to entertain the possibility of self-loops or multiple edges between a pair
of vertices we will call that structure a multigraph. A full or induced subgraph Γ1

of a graph Γ is one that has an edge between two vertices if and only if Γ does. A
spanning subgraph is one that contains every vertex of Γ. The graph is complete if
it contains an edge between every pair of distinct vertices, and incomplete otherwise.
A (possibly empty) set of vertices form a clique if they induce a complete subgraph,
and an anticlique if there is no edge between any pair of vertices in the set. The
join of nonempty Γ and Γ1, written Γ ˚Γ1, is the graph made from the disjoint union
of Γ and Γ1 by adding an edge between every vertex of Γ and every vertex of Γ1.
A graph is a cone if it can be written as the join of a subgraph with a singleton.
The singleton is then called a cone vertex. We can also cone-off a subgraph Γ1 of Γ

https://doi.org/10.55776/P34214
https://doi.org/10.55776/PAT7799924
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by adding to Γ a new vertex c connected to every vertex of Γ1. This is written as
Γ ˚Γ1 c.

A graph is a suspension if it can be written as a join of a subgraph with a 2
point anticlique. The anticlique is called the pole or the suspension points for this
particular realization of the graph as a suspension.

If Γ1 is a subgraph of Γ, an n–chord is a path of length n in Γ whose endpoints
are vertices of Γ1 whose path distance in Γ1 is strictly greater than n. Saying a
subgraph has no 1–chords is equivalent to it being an induced subgraph.

If two graphs Γ and Γ1 are isomorphic, we write Γ – Γ1.
When treating a connected graph as a metric object, we always use the path

metric induced by metrizing edges as unit intervals.

2.1.1. Twins and satellites. A vertex v ‰ w is a satellite of w if lkpvq Ă lkpwq. In
the context of RAAGs there is an existing notion of a relation between vertices
called the domination relation (of Servatius), where w dominates v if lkpvq Ă stpwq.
In a triangle-free graph w dominates v if v is a satellite of w or if v is a leaf at w.

Vertices v ‰ w are twins if lkpvq “ lkpwq.2

A module M in a graph Γ is a set of vertices such that for all v P Γ´M , either
every vertex in M is adjacent to v or no vertex in M is adjacent to v. A module is
non-trivial if it is a proper subset containing more than one vertex.

There is a general fact that any partition of Γ into modules gives a quotient graph
with one vertex for each module. For two modules M0 and M1 in the partition,
either M0 ˚M1 Ă Γ or there are no edges of Γ between M0 and M1. The quotient
graph contains an edge between M0 and M1 when M0 ˚M1 Ă Γ.

Given a vertex v of Γ, the set consisting of v and all its twins forms a module; call
this a twin module. The set of twin modules partitions Γ into disjoint anticliques.

Definition 2.1. The twin graph RpΓq of Γ is the quotient graph coming from the
decomposition of Γ into twin modules.

2.1.2. RACGs and RAAGs. Given a finite graph Γ the right-angled Artin group
with presentation graph Γ is the group AΓ whose generators are the vertices of
Γ, and whose defining relations are commutation relations corresponding to pairs
of vertices that are connected by an edge in Γ. The right-angled Coxeter group
with presentation graph Γ is the group WΓ that includes the same generators and
relations as AΓ and additional defining relations saying that each generator has
order 2. In both cases, an induced subgraph Γ1 of Γ determines a special subgroup
AΓ1 ă AΓ or WΓ1 ăWΓ. Tits’ solution to the word problem for Coxeter groups [32,
Sec. 3.4] implies that for w PWΓ1 ăWΓ, every minimal length word representing w
in WΓ uses generators only from Γ1. The same is true in RAAGs [82].

We will call a RAAG or RACG irreducible if the given presentation graph is not
a join. This is equivalent to saying that the group does not split as a direct product
of nontrivial subgroups [70, 77].

Both families of groups admit cocompact actions on CAT(0) cube complexes,
which have the additional property that the 1–skeleton is the Cayley graph corre-
sponding to the generating set defined by the presentation graph. For a RAAG
defined by ∆, this cube complex is the universal cover of the Salvetti complex,
denoted ΣpA∆q or Σ∆. For a RACG defined by Γ, the cube complex is the Davis
complex, denoted ΣpWΓq or ΣΓ. It will be clear from context whether ΣΓ refers to

2In the literature the definition given here is sometimes called ‘open twins’ or ‘false twins’
and there is another definition in which v and w are twins (‘closed twins’ or ‘true twins’) if

tvu Y lkpvq “ twu Y lkpwq, which requires twins to be adjacent. In our setting of connected,
incomplete, triangle-free graphs, if v and w are adjacent then lkpvq ´ twu ‰ lkpwq ´ tvu, so only

the definition with v and w nonadjacent is meaningful.
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a Salvetti complex or a Davis complex. We will usually use Γ for the presentation
graph of a RACG and ∆ for the presentation graph of a RAAG. A consequence of
word problem result above is that for Γ1 ă Γ there is a convex subcomplex ΣΓ1 Ă ΣΓ,
and, again, the analogue is also true in RAAGs.

For both RAAGs and RACGs, there is a bijection between join subgraphs of the
presentation graph and special subgroups that split as direct products. We will be
interested in the case where both factors of the direct product are infinite groups.
For RAAGs this is always true, but for RACGs we need an additional condition
that both factors of the join subgraph are incomplete. In the context of RACGs we
use the term thick join to mean A ˚B Ă Γ with A and B incomplete.

For further background on RAAGs and RACGs, see [18, 32, 26, 33].

2.1.3. Doubles.

Definition 2.2. Let Γ be a graph.

‚ The double DpΓq of Γ is the graph with vertex set Γˆ t0, 1u such that for
every edge v w in Γ there are four edges pv, εq pw, δq for ε, δ P t0, 1u.

‚ The link double of Γ at a vertex v is the graph:

D˝vpΓq :“ pΓˆ t0, 1u{tpw, 0q „ pw, 1q | w P lkpvquq ´ ptvu ˆ t0, 1uq

‚ The star double of Γ at a vertex v is the graph:

D˚v pΓq :“ Γˆ t0, 1u{tpw, 0q „ pw, 1q | w P stpvqu

These doubles have the following, well known, algebraic significance:

Lemma 2.3. Let Γ and ∆ be graphs.

‚ There is an exact sequence:

1 ÑWD˝vpΓq
ÑWΓ Ñ Z2 Ñ 1

The first map sends pw, 0q ÞÑ w and pw, 1q ÞÑ v´1wv for all w P Γ ´ tvu.
The second map sends v to 1 and all other generators to 0.

‚ There is an exact sequence:

1 Ñ AD˚v p∆q
Ñ A∆ Ñ Z2 Ñ 1

The maps are as in the previous case, with the addition that pv, 0q ÞÑ v2.

Theorem 2.4 (Davis and Januszkiewicz [34]). AΓ is commensurable to WDpΓq.

2.2. More finite-index subgroup constructions. Lemma 2.3 gave us one way
to pass to a finite-index RACG subgroup of a RACG, and Theorem 2.4 gave us
one way to find a commensurable RAAG. In this section we give an additional
construction of each of these types.

2.2.1. Some other finite-index RACG subgroups. In the RAAG case of Lemma 2.3
the ‘2’ is not special; one can take the kernel of the map A∆ Ñ Zn obtained by
killing the n–th power of v and all of the other generators, and express it as the
RAAG on the graph obtained by taking n–copies of ∆ and identifying them along
the star of v. Obviously, we cannot make such a short exact sequence with a RACG,
but actually we can do a similar graph construction to get an index-n subgroup if Γ
contains a pair of twins, as follows:

Proposition 2.5. Fix n ą 2 and a pair of twins v and w in Γ. Let ta0, . . . , a`´1u

be the vertices of lkpvq “ lkpwq. Consider

Γ1 :“ Γˆ t0, . . . , n´ 1u{tpx, iq „ px, 0q | x P tv, wu ˚ ta0, . . . , a`´1u, 1 ď i ă nu.

Then there is an injective homomorphism ι : WΓ1 Ñ WΓ such that ιpWΓ1q is an
index-n subgroup of WΓ.
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See Section 2.7 for a refresher on walls in cube complexes.

Proof. Let tb0, . . . , bm´1u be the vertices of Γ not in tv, wu ˚ ta0, . . . , a`´1u. Define
the homomorphism ι as follows:

pv, 0q ÞÑ v

pw, 0q ÞÑ

#

pwvqpn´1q{2wpvwqpn´1q{2 if n is odd

pwvqpn´2q{2wvwpvwqpn´2q{2 if n is even

pai, 0q ÞÑ ai

pbj , kq ÞÑ

#

pwvqk{2bjpvwq
k{2 if k is even

pwvqpk´1q{2wbjwpvwq
pk´1q{2 if k is odd

To see that the image is really an index-n subgroup, consider the vw–bicolored
geodesic Σtv,wu through the identity vertex 1 of ΣΓ. Let Hv be the wall dual to the
1 v edge, and similarly for the other generators. Consider the subsegment X of
Σtv,wu containing vertices 1, w, wv, wvw,. . . , x, where x is the alternating product
of w and v of length n ´ 1, starting with w. This is a finite convex subcomplex
of ΣΓ containing n vertices. It is a consequence of a theorem of Dyer [39] and
Deodhar [35] (in not necessarily right-angled Coxeter groups) that the reflection
subgroup of WΓ generated by reflections through walls closest to X that do not cross
X is a right-angled Coxeter group with those reflections as fundamental generators.
We work through edges incident to X and see that the walls dual to such edges
correspond to the elements described above, and commuting relations between them
correspond to the edges described for Γ1. At vertex 1 we have edges corresponding
to each of the generators except w, since the edge 1 w is contained in X. The
reflections in these walls correspond to the py, 0q for y ‰ w. For each i, ai commutes
with both v and w, so the single wall Hai runs through every ai–colored edge along
Σtv,wu. Thus, we only need one reflection, given by the image of pai, 0q. For each j,
since v and w are twins and bj does not commute with both of v and w, it commutes
with neither of them, so every bj–colored edge incident to Σtv,wu is dual to a different
wall, and we get n different walls for each j. The corresponding reflections are
bj , wbjw, wvbjvw,. . . , which are the images of pbj , 0q, pbj , 1q, pbj , 2q,. . . under the
homomorphism ι. Finally, at vertex x there is one additional edge outside of X that
continues along Σtv,wu, colored either v or w according to whether n is even or odd.
The reflection in the wall dual to this edge is the image of pw, 0q under ι.

It remains to argue that Γ1 is actually the presentation graph for the subgroup. It
is clear that the edges that are present belong there, as the corresponding elements
of WΓ commute. In the other direction, the only case of any interest is to show that
the commutator of the images of pbi, jq and pbk, `q is a nontrivial element of WΓ when
j ‰ `. However, such a commutator has incomplete cancellation of the alternating v,
w conjugating words if j ‰ `, so it is a word of the form z0biz1bkz2biz3bkz4, where
each zp is a nontrivial alternating word in v and w. Since neither bi nor bk commute
with either of v or w, and v and w do not commute with each other, there are no
elementary operations (see [32, Section 3.4]) that rearrange or shorten that word,
so it represents a nontrivial element of WΓ. �

Using the theorem of Deodhar and Dyer cited above, one can find other finite-
index RACG subgroups of WΓ by considering various finite convex subcomplexes of
ΣΓ. The challenge, from the point of view of this paper, would then be to understand
the presentation graph of the subgroup in terms of operations on Γ.

We will mention one more case in which we understand the resulting graph: sup-
pose v and w are adjacent in Γ, and take X to be the square Σtv,wu Ă ΣΓ. We claim
the presentation graph of the corresponding index-4 subgroup is D˝pw,0q ˝D

˝
vpΓq –
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D˝pv,0q ˝D
˝
wpΓq. Explicitly, vertices of those two graphs are of the form pγ, i, jq for

γ P Γ and i, j P t0, 1u, and the isomorphism exchanges the second and third coordi-
nates. When v and w are not adjacent it can happen that the graphs D˝pw,0q ˝D

˝
vpΓq

and D˝pv,0q ˝D
˝
wpΓq are not isomorphic. More generally, in higher dimensional

RACGs one can also double over larger cliques, cf. [14, Section 5].

2.2.2. Visible RAAG subgroups. Let Γ be a finite graph, and let Γc be its complement:
the graph with the same vertex set as Γ that has an edge whenever Γ does not. Let
Λ be a subgraph of Γc, and let ∆ be its commuting graph: an edge a b of Λ is a
vertex ta, bu of ∆ and vertices ta, bu and tc, du of ∆ span an edge if they commute,
which is to say, ta, bu ˚ tc, du is an induced square in Γ. Obtain a homomorphism
A∆ ÑWΓ by sending a vertex ta, bu of ∆ to the element ab of WΓ. It is easy to see
that this homomorphism need not be injective. Dani and Levcovitz [27] give criteria
on Λ that imply that the corresponding homomorphism A∆ Ñ WΓ is injective
and has finite-index image. We refer to a graph Λ satisfying their conditions as
a finite-index Dani-Levcovitz Λ (FIDL–Λ). The corresponding subgroup A∆ is a
visible RAAG subgroup. It is ‘visible’ (or ‘visual’) in the sense that we see generators
of A∆ as (products of the entries of) diagonals of squares of Γ, and we see relations
of A∆ as squares in Γ.

The simplest example is to take Γ to be a square and Λ “ Γc, so that ∆ is a
single edge whose vertices are the two diagonals of Γ. Then A∆ – Z2 includes into
WΓ – D8 ˆD8 as an index 4 subgroup.

2.3. Coarse geometry. Let X and Y be metric spaces.
For Z Ă X, let NrpZq :“ tx P X | dpx, Zq ă ru, and let N̄rpZq :“ tx P X |

dpx, Zq ď ru. Two subsets Z, Z 1 of X are coarsely equivalent if they are at finite
Hausdorff distance, where Hausdorff distance is defined as:

dHauspZ,Z
1q :“ inftr | Z Ă N̄rpZ

1q, Z 1 Ă N̄rpZqu

A subset Z Ă X is coarsely dense if it is coarsely equivalent to X.
A coarse map φ : X Ñ Y is a map from X to uniformly bounded diameter

subsets of Y . Two coarse maps φ, ψ : X Ñ Y are coarsely equivalent if there exists
C such that diampφpxq Y ψpxqq ď C for all x P X. A coarse map φ : X Ñ Y is
pL,Aq–coarse Lipschitz if diampφpxq Y φpx1qq ď Ldpx, x1q ` A for all x, x1 P X. It
is pL,Aq–coarse biLipschitz, or an pL,Aq–quasiisometric embedding, if, in addition,
p1{Lqdpx, x1q´A ď diampφpxqYφpx1qq for all x, x1 P X. It is an pL,Aq–quasiisometry
if it is pL,Aq–biLipschitz with A–coarsely dense image.

When we do coarse geometry and X and Y are graphs we take the point of view
that ‘the spaces’ are discrete metric spaces given by the vertex sets of X and Y . The
edges serve to help visualize the discrete metrics. Thus, a coarse map φ : X Ñ Y
only need be defined on vertices of X. Of course, it is possible to adjust φ to be an
actual map and then extend it to interior points of edges of the geometric realization
of X, but such choices are non-canonical, and all reasonable choices yield coarsely
equivalent maps.

The following says that coarsely inverse coarse Lipschitz maps are actually quasi-
isometries. It can be proved by using the inverse map to establish the quasiisometry
lower bounds.

Lemma 2.6. If φ : X Ñ Y and φ̄ : Y Ñ X are coarse Lipschitz and φ̄˝φ is coarsely
equivalent to the identity map on X and φ ˝ φ̄ is coarsely equivalent to the identity
map on Y , then φ and φ̄ are inverse quasiisometries.

A geodesic is an isometric embedding of an interval, and a quasigeodesic is a
quasiisometric embedding of an interval.
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Given subsets Y and Z of X, if for all sufficiently large r the sets N̄rpY qX N̄rpZq
are coarsely equivalent to one another, then we call that coarse equivalence class

the coarse intersection of Y and Z, and denote it Y
c
X Z.

Lemma 2.7. If φ : X Ñ X 1 is a quasiisometry and Y,Z ă X such that Y
c
X Z and

φpY q
c
X φpZq exist, then φpY

c
X Zq is coarsely equivalent to φpY q

c
X φpZq.

Proof. Let φ be an pL,Aq–quasiisometry. For any r ě LA:

N̄ r
L´A

pφpY qqXN̄ r
L´A

pφpZqq Ă φpN̄rpY qXN̄rpZqq Ă N̄Lr`ApφpY qqXN̄Lr`ApφpZqq

�

Lemma 2.8 (Coarse intersections of cosets exist). If X is the Cayley graph of
a finitely generated group, a and b are elements of the group, and G and H are

subgroups, then aG
c
X bH exists and is represented by aGa´1 X bHb´1.

Proof. This is an immediate corollary of [72, Lemma 2.2], which says the intersection
of subgroups represents their coarse intersection. Then observe that aG is coarsely
equivalent to aGa´1, and bH is coarsely equivalent to bHb´1. �

A tree is connected graph with no cycles. It is bushy if the set of vertices with
more than two unbounded complementary components is coarsely dense. A graph
is a quasitree if it is quasiisometric to a tree.

In a tree, if γ is a geodesic segment then every path between its endpoints touches
every point of γ. There are various ways to coarsen this property to characterize
quasitrees in terms of ‘bottleneck constants’ [67, Theorem 4.6], [68, Lemma 2.16].
The formulation we will use is that X is a quasitree if and only if there exist A, B, C
such that for every geodesic γ of length at least A there is a vertex v within distance
B of the midpoint of γ such that the C–ball about v separates the endpoints of the
geodesic in X. We refer to C as ‘the’ bottleneck constant.

The following example shows why some additional constraint on the location of
the separating ball is necessary; it is not sufficient to say a space is a quasitree if
every sufficiently long geodesic has its endpoints separated by a C–ball.

Example 2.9. Let Γ be any connected graph that is not a quasitree— the Z2 grid,
for example. Its double DpΓq is quasiisometric to Γ, so it is also not a quasitree.
However, points at distance at least 3 in DpΓq are separated by balls of radius 1:
For any x, y with dpx, yq ě 3 let z ‰ x be the vertex that has the same image as
x under the projection of DpΓq onto Γ. Then dpx, zq “ 2 and lkpxq “ lkpzq, so
x, y R N̄1pzq but every path from x to y goes through N̄1pzq. ˛

2.4. Group decompositions and model spaces. A graph of groups consists
of a finite connected multigraph, local groups associated to each vertex and edge,
and injections of each edge group into each of its two incident vertex groups. A
graph of groups has an associated fundamental group obtained by amalgamating
the vertex groups along the edge groups. Conversely, a graph of groups is said to
give a decomposition of G if G is isomorphic to its fundamental group.

An equivalent formulation comes from letting a group G act cocompactly and
without edge inversions on a tree T . One gets a graph of groups decomposition of
G by considering the quotient multigraph of G ñ T , and setting the local groups to
be stabilizers. In this setting, a subgroup is said to be elliptic if it fixes a vertex of
T . In the other direction, given a graph of groups with fundamental group G there
is an associated Bass-Serre tree T with a G action such that the graph of groups
coming from the action of G on T recovers the original graph of groups.

Associated to a graph of groups decomposition of G with Bass-Serre tree T we
can make a geometric model for G as a tree of spaces X over T : For each vertex and
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edge of T choose a metric space quasiisometric to the stabilizer group. The space X
is built by taking each edge space Xe crossed with a unit interval r0, 1s, and gluing
Xe ˆ t0u to the vertex space Xv of the initial vertex v “ ιpeq of e compatibly with
the group inclusion, and similarly for the terminal vertex τpeq. See [17] for details.
The resulting metric space X is quasiisometric to the group G.

The Grushko-Stallings-Dunwoody (GSD) decomposition of a finitely presented
group G is a graph of groups decomposition of G whose vertex groups are finite or
1–ended, and whose edge groups are finite. It turns out that this is well-defined, and
the quasiisometry type of G is determined by the quasiisometry types of the 1–ended
vertex groups in its GSD decomposition [76]. Thus, for quasiisometry questions we
restrict to 1–ended groups.

The next higher complexity for splittings of 1–ended, finitely presented groups
are the Jaco-Shalen-Johannson (JSJ) decompositions. In this paper we always use
“JSJ decomposition” to mean “JSJ decomposition over 2–ended subgroups”. This is
a graph of groups decomposition of G that, in a sense, captures all possible splittings
over 2–ended subgroups. The edge groups are all 2–ended. Unlike with finite edge
groups, there can be incompatible splittings over 2–ended subgroups, and these are
combined into hanging vertices in the graph of groups. The other vertices are either
2–ended or they are rigid, in the sense that they do not split further over 2–ended
subgroups relative to the existing incident 2–ended edge groups, meaning a splitting
in which all of these subgroups are elliptic.

The JSJ decomposition of a group G is not a well-defined graph of groups; instead,
it is a deformation space of graphs of groups (see [50]). However, the existence of
a non-trivial JSJ decomposition is a quasiisometry invariant [75]. One can make
a canonical graph of groups decomposition from (any) JSJ decomposition of G as
follows. Let T be the Bass-Serre tree of some nontrivial JSJ decomposition of G. A
cylinder is a maximal collection of edges of T whose stabilizers are commensurable
in G. One makes a JSJ tree of cylinders by collapsing all of the cylinders to single
vertices. These are known as cylinder vertices. Vertices of T that are contained in a
single cylinder are absorbed into that cylinder vertex; vertices that are not, which
are necessarily rigid or hanging, survive in the JSJ tree of cylinders. The quotient
of the JSJ tree of cylinders by the G action gives a graph of groups decomposition
of G known as the JSJ graph of cylinders of G. It is a bipartite multigraph where
one part consists of cylinder vertices, and the other part is rigid and hanging
vertices that are not contained in a single cylinder. It turns out that the JSJ tree
of cylinders and the JSJ graph of cylinders are well-defined, independent of the
starting JSJ decomposition of G [50] (but the edges are not necessarily 2–ended
anymore). Furthermore, it follows from [75] (see, eg, [17]) that a quasiisometry
φ : GÑ G1 between two groups induces an isomorphism φ˚ : T Ñ T 1 between their
JSJ trees of cylinders, and if X and X 1 are trees of spaces of G and G1 over T
and T 1, respectively, then the restriction of φ to each vertex space Xv is uniformly
coarsely equivalent to a quasiisometry φv : Xv Ñ X 1φ˚pvq such that for each edge e

of T incident to v, the set φvpXeq is uniformly coarsely equivalent to X 1φ˚peq.

In [17] the construction is carried out in the other direction: If X and X 1 are
trees of spaces of G and G1 over some trees T and T 1 (not necessarily related to
JSJ decompositions) and if there is an isomorphism χ : T Ñ T 1 and a collection of
uniform quasiisometries φv : Xv Ñ X 1χpvq that uniformly coarsely agree on common

edge spaces, then X and X 1 are quasiisometric by a map φ such that φ|Xv coarsely
agrees with φv for each vertex v P T . The collection of quasiisometries is called a
tree of quasiisometries over χ.

Proposition 2.10. Suppose that G and G1 are two groups that are defined by
graphs of groups on the same underlying multigraph Γ, which is a tree. Suppose for
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each vertex v of Γ there is a quasiisometry ψv from the local group Gv of G to the
local group G1v of G1. If the collection of quasiisometries tψv | v P Γu satisfies the
following conditions, then G and G1 are quasiisometric.

(1) For each edge e of Γ, ψιpeq and ψτpeq coarsely agree on Ge.
(2) For each edge e of Γ, ψιpeq induces a bijection ψ˚ιpeq between Gιpeq{Ge and

G1ιpeq{G
1
e by taking each coset of Ge in Gιpeq to within uniformly bounded

Hausdorff distance of a unique coset of G1e in G1ιpeq, and vice versa.

(3) For each edge e of Γ and each coset gGe of Ge in Gιpeq there exists h P gGe
and h1 P ψ˚ιpeqpgGeq such that h1ψιpeqh

´1 and ψιpeq coarsely agree on gGe,

and such that the coarseness constants are bounded uniformly over all cosets.

Proof. We build a tree of quasiisometries as described above. Let T be the Bass-
Serre tree corresponding to the given splitting of G, and let X be a tree of spaces

for G over T . Since Γ is a tree it admits a lift rΓ to T , such that if v
e
w is an

edge of Γ then ṽ
ẽ
w̃ is an edge of rΓ. We use all the same notation with 1s for the

corresponding concepts with respect to G1.
For each vertex v P Γ define χpṽq :“ ṽ1 and define φṽ : Xṽ Ñ X 1ṽ1 to be ψv : Gv Ñ

G1v, where we implicitly identify Xṽ with Gv and X 1ṽ1 with G1v. Condition (1) implies
that for each edge e P Γ, φιpẽq and φτpẽq coarsely agree on Xẽ, which is the intersection
of their domains.

Now we inductively expand the domain of χ, specifying local quasiisometries
between the corresponding vertex spaces as we go, in such a way that the maps on
adjacent vertex spaces coarsely agree on their intersection. Once this is done, [17,
Corollary 2.16] says the local quasiisometries patch together to give a quasiisometry.

As we will go, it will be useful for bookkeeping to define κ : T Ñ G and κ1 : T 1 Ñ
G1 such that:

‚ κpgṽq P gGv
‚ κ1pχpgṽqq P g1G1v, where g1ṽ1 “ χpgṽq
‚ φgṽ “ κ1pχpgṽqqψvκpgṽq

´1

For the base cases of vertices in rΓ and rΓ1 define κpṽq “ 1 and κ1pṽ1q “ 1. For the
initial inductive step, consider an edge e of Γ with ιpeq “ v. The edges of T incident
to ṽ and covering e are of the form giẽ, where tgiu is a set of coset representatives
of Gv{Ge. Similarly, the edges of T 1 incident to ṽ1 and covering e are translates of
ẽ1 by coset representatives of G1v{G

1
e. For each i let g1iG

1
e “ ψ˚ιpeqpgiGeq and define

χpgiẽq :“ g1iẽ
1. By Condition (2), this defines a bijection between edges of T incident

to ṽ covering e and edges of T 1 incident to ṽ1 “ χpṽq covering e. Now choose hi and
h1i as in Condition (3) with respect to giGe, and define:

φgiτpẽq :“ h1iψτpeqh
´1
i

We must check that φτpgiẽq and φιpgiẽq coarsely agree on Xgiẽ “ giGe. For k P Ge:

φτpgiẽqpgikq “ φgiτpẽqpgikq

“ h1iψτpeqh
´1
i pgikq

“ h1iψτpeqph
´1
i gikq

« h1iψιpeqph
´1
i gikq by Condition (1), since h´1

i gik P Ge

“ h1iψιpeqh
´1
i pgikq

« ψιpeqpgikq by Condition (3), since gik P giGe

“ φιpẽqpgikq “ φιpgiẽqpgikq

Define κpgiτpẽqq :“ hi and κ1pχpgiτpẽqqq :“ h1i.



14 CASHEN, DANI, EDLETZBERGER, AND KARRER

For the general inductive step, suppose χ is defined on a subtree of T containing rΓ,
and for each vertex gṽ in the subtree we have defined a quasiisometry φgṽ : Xgṽ Ñ

X 1χpgṽq and κ and κ1 as above. Suppose gṽ R rΓ is a leaf of the subtree and gṽ
gẽ
gw̃ is

an edge of T such that gw̃ is farther from rΓ than gṽ. Pull gṽ back to ṽ by applying
κpgṽq´1, which takes gẽ to some edge κpgṽq´1gẽ incident to ṽ. Then ψ˚v identifies
this with some edge incident to ṽ1 in the same orbit as ẽ1. Push this edge forward
by κ1pχpgṽqq to get an outgoing edge of T 1 at χpgṽq. Define this edge to be χpgẽq,
and define χpgw̃q to be its other endpoint. Similarly, to define φgw̃, pull back via
κpgṽq´1, do the construction of the previous paragraph, and then push forward the
result by κ1pχpgṽqq.

The key points are that all quasiisometries between vertex spaces are one of the
base quasiisometries ψv, pre- and post- composed by multiplication in the groups,
which are isometries, so the quasiisometry constants are bounded by the maxima
of the constants for the base maps. Similarly, the coarse agreement between maps
of neighboring vertex spaces on their common intersection is, up to isometry, the
same as that coarse agreement described in Condition (3), which is assumed to be
uniform for each vertex/edge pair in Γ, of which there are finitely many. �

2.4.1. JSJ decompositions of RAAGs. A graph is biconnected if it connected with no
cut vertex. By this definition, a biconnected graph either has at most two vertices,
or every vertex has valence at least 2.

It is not hard to see that a RAAG on at least two generators is 1–ended if and
only if its presentation graph is connected. According to Clay [22] and Margolis [69,
Proposition 3.6], the JSJ graph of cylinders of a RAAG A∆ can be described “visually”
in ∆: cylinders are stars of cut vertices, rigid vertices are maximal biconnected
subgraphs that either contain two cut vertices or are not contained in any cylinder,
and edges between them are intersections of the corresponding subgraphs. From this
fact and quasiisometry invariance of the JSJ tree of cylinders, several quasiisometry
invariants appear:

Lemma 2.11. RAAGs have no hanging vertices in their JSJ decompositions.

Lemma 2.12. Let ∆ be a connected graph with more than one vertex. The rigid
vertex groups of the JSJ graph of cylinders of A∆ are one-ended special subgroups
A∆1 of A∆ that do not split further over 2–ended subgroups.

Proof. A∆ is finitely presented and one-ended, so it has a JSJ decomposition. Any
rigid vertices correspond to maximal biconnected subgraphs ∆1 of ∆ that either
contain at least two cut vertices or are not contained in the star of any cut vertex.
In particular, rigid vertex groups are special subgroups. Since ∆ is connected with
more than one vertex, every vertex is contained in an edge. Edges are biconnected,
so no single vertex is a maximal biconnected subgraph. Thus, ∆1 is connected with
more than one vertex, so A∆1 is one-ended. Furthermore, since ∆1 is biconnected it
contains no cut vertex, so A∆1 has no two-ended splittings. �

2.4.2. JSJ decompositions of RACGs. Mihalik and Tschantz [71] show that in some
sense all decompositions of Coxeter groups are visual.

For RACGs it is not hard to see that splittings over finite subgroups correspond
to separating cliques in the presentation graph. We will also exclude the well
understood cases that the presentation graph Γ is complete (WΓ is finite) and Γ is a
cycle (WΓ is virtually a surface group). Assuming that Γ is triangle-free, incomplete,
with no separating clique, and is not a cycle, Edletzberger [40], extending work of
Dani and Thomas [30] from the hyperbolic case, gives a description of the JSJ graph
of cylinders in terms of subgraphs of the defining graph. In particular, 2–ended
splittings arise in two ways:



RAAGEDY RIGHT-ANGLED COXETER GROUPS 15

‚ ta, bu is a cut pair of Γ, meaning that Γ´ ta, bu is not connected.
‚ ta, bu is not a cut pair, but there is a common neighbor c P lkpaq X lkpbq

such that Γ´ ta, b, cu is not connected. In this case a c b is called a cut
2–path.

We combine the two by saying ta´bu is a cut to mean that either ta, bu is a cut pair
or that there exists c such that a c b is a cut 2–path. In the first case xaby – Z
is an index-2 subgroup of Wta,bu, and in the second case it is an index-4 subgroup of
Wta,b,cu. A cut is crossed if there is another cut containing vertices in multiple of its
complementary components, and uncrossed otherwise. Crossed cuts group together
to make hanging vertices of the JSJ graph of cylinders. Cylinder vertices of the JSJ
graph of cylinders are commensurators of uncrossed cuts, which can be described
explicitly: if ta´ bu is an uncrossed cut of Γ then there is a corresponding cylinder
vertex with vertex group Wta,bu˚plkpaqXlkpbqq. Such a group is commensurable to one

of Z, Z2, or F2 ˆ Z, according to whether | lkpaq X lkpbq| is less than 2, equal to 2,
or greater than 2, respectively.

Rigid vertices can also be described explicitly ([40, Proposiiton 3.8]), they are
subsets of size at least 4 of vertices of Γ, each with valence at least 3, that cannot be
separated by any pair of vertices or 2–path in Γ, and that are maximal with respect
to inclusion among sets with these properties.

2.4.3. Further splittings. In this paper we are always using ‘JSJ decomposition’ in
the sense of decomposition over 2–ended subgroups. JSJ theory also exists for other
classes of splittings [37, 43, 50]. In particular, Groves and Hull [49] describe the
structure of splittings of RAAGs over Abelian groups. In the 2–dimensional case, it
would therefore be interesting to consider whether the kind of invariants we develop
for 2–ended JSJ decompositions of RACGs vs RAAGs can be extended to splittings
over virtually Z2 subgroups. We leave this line of inquiry for future work.

2.5. Morse property and stability. A subspace Z of a metric space X is µ–Morse
if for every L and A we have that every pL,Aq–quasigeodesic segment γ of X with
endpoints in Z is contained in the µpL,Aq–neighborhood of Z.

A subspace is Morse if there is some µ for which it is µ–Morse.
Morseness is a quasigeodesic quasiconvexity condition on Z that describes how it

sits in X, but says nothing about the intrinsic geometry of Z. There is a further
property, stability, that, when X is a geodesic metric space, is equivalent to Z being
Morse and Z itself being a hyperbolic space.

The concept of subgroup stability was introduced by Durham and Taylor [38] as
a geometric group-theoretic interpretation of convex-cocompactness for subgroups
mapping class groups of surfaces. Another characterization of such subgroups is
that the subgroup is convex cocompact if and only if its orbit map into the curve
graph of the surface is a quasiisometric embedding [63, 53]. These results inspired
work to characterize stability in other families of groups, and then to search for a
stability recognizing space to play the role of the curve graph, in the sense that a
subgroup of the given group is stable if and only if its orbit map into the stability
recognizing space is a quasiisometric embedding.

The theory of Morse and stable subgroups of RAAGs and RACGs is well developed,
as we will briefly recall. We will return to the topic of stability recognizing spaces
in Section 6.2.

Theorem 2.13 ([24, Theorem F],[80, Corollary 7.4]3). In a 1–ended RAAG, every
Morse subset is coarsely dense or quasiisometric to a finite valence tree.

3This result also says that in a strongly CFS RACG every Morse subset is either hyperbolic or

coarsely dense.
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The Morse property is easily identifiable for special subgroups of RACGs. A
subgraph Γ1 of Γ is square complete if whenever Γ1 contains a diagonal of an induced
square it contains the whole square. An induced subgraph is minsquare if it contains
an induced square, is square complete, and is minimal with respect to inclusion
among all subgraphs that satisfy the first two conditions.

Theorem 2.14 ([81, Theorem 1.11],[44, Proposition 4.9]). A special subgroup of a
RACG is Morse if and only if its presentation subgraph is square complete.

Corollary 2.15. A special subgroup of a RACG is stable if and only if its presenta-
tion subgraph is square complete and contains no induced square.

Proposition 2.16. A 1–ended RAAGedy RACG has presentation graph that is a
join of a clique and a minsquare subgraph.

Proof. Removal of the clique factor of the join is passage to a finite-index subgroup.
The resulting RACG is still 1–ended and quasiisometric to a RAAG, so we may
assume the presentation graph has no cone vertices.

A 1–ended RAAG contains Z2, so it is not hyperbolic. Thus, the presentation
graph of the RACG contains an induced square. Given a square, the smallest square
complete subgraph containing it is a minsquare subgraph, so such subgraphs exist.
Suppose the presentation graph contains a proper subgraph that is minsquare. Its
complement does not consist of cone vertices, since there are none, so the special
subgroup defined by the subgraph is of infinite index and is Morse and 1–ended.
Its image under the quasiisometry to the RAAG is a Morse subset that is neither
coarsely dense nor quasiisometric to a tree, contradicting Theorem 2.13. Thus, the
only minsquare subgraph is the presentation graph itself. �

2.6. Maximal product regions. This section recapitulates the setup for a theorem
of Oh [74], who builds on work of Haglund and Wise [52] and Huang [57].

Definition 2.17. A weakly special square complex is a non-positively curved square
complex X such that no wall of X self-osculates or self-intersects.

Huang [57, Section 5.3] considers two families of examples of compact weakly
special cube complexes: the Salvetti complex of a RAAG and the commutator
complex 4 PΓ of a RACG WΓ. The commutator complex is a standard construction
[31, 32, 33] of a cube complex whose fundamental group is the commutator subgroup
of WΓ, so is a finite-index normal subgroup of WΓ, and whose universal cover is the
Davis complex ΣΓ.

Huang asserts that a compact weakly special cube complex has a finite cover
in which walls are 2–sided. In particular, the universal cover has 2–sided walls.
Oh makes a standing assumption that we have already passed to such a finite
cover. The examples that we care about in this paper, the Salvetti complex and
commutator complex, already have 2–sided walls, but to accurately quote Oh, we
make an auxiliary definition:

Definition 2.18. A compact cube complex is weakly special˚ if it is weakly special
with 2–sided walls.

Remark. Compared to special [52, Def. 3.1], Definition 2.18 legalizes inter-osculation.

Definition 2.19. A standard graph is a topologically nontrivial graph without
leaves. A standard product subcomplex of a compact weakly special˚ square complex
X is the image of a local isometry from the product of two standard graphs into X.
A standard product subcomplex/region of X̃ is a product subcomplex of X̃ that is a

lift to X̃ by the universal covering map of a standard product subcomplex of X.

4Davis [33] calls the complex PΓ the polyhedral product of intervals.
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The following lemma of Oh allows us to work directly with standard product
regions in X̃ without explicitly demonstrating that they are lifts of standard product
subcomplexes of X.

Lemma 2.20. [74, Lemma 2.8] Every product subcomplex of X̃ that is a product of
infinite trees without leaves is a standard product region.

Definition 2.21. The intersection graph, or maximal standard product region graph
(MPRG), ΠpXq of a compact, weakly special˚ square complex X is the graph whose

vertices are maximal standard product regions in X̃ such that two vertices are
connected by an edge if the corresponding product regions intersect in a standard
product region.

Theorem 2.22 ([74, Corollary 3.3]). For each L and A there is C such that if

X and Y are compact, weakly special˚ square complexes and φ : X̃ Ñ Ỹ is an
pL,Aq–quasiisometry between their universal covers then φ induces a bijection φ˚
between maximal standard product subcomplexes of X̃ and Ỹ such that for each
maximal standard product subcomplex P of X̃, dHauspφpP q, φ˚pP qq ď C. It follows
that P and φ˚pP q are quasiisometric.

Corollary 2.23. The maximal standard product region graph of a compact weakly
special˚ cube complex can be decorated by adding to each vertex v the quasiisometry
type of the maximal product region corresponding to v. A quasiisometry between uni-
versal covers of compact, weakly special˚ square complexes induces an isomorphism
of their maximal standard product regions graphs that respects these decorations.

Definition 2.24. The reduced intersection graph RicpXq of a compact, weakly
special˚ square complex X is the graph whose vertices are maximal standard
product subcomplexes of X such that two vertices are connected by an edge if the
corresponding product subcomplexes intersect in a standard product subcomplex.

We will work with ΠpXq and RicpXq as graphs, but actually these graphs are the
1–skeleta of higher dimensional complexes that Oh calls the intersection complex
and reduced intersection complex, respectively. Higher dimensional cells are made
by filling in a simplex whenever there is a clique of maximal standard product
subcomplexes all containing a common standard product subcomplex.

Theorem 2.25 ([74, Theorem 3.9]). If X is a compact, weakly special˚ square
complex, ΠpXq is its intersection complex, and RicpXq is its reduced intersection

complex, then the π1pXq action on X̃ by deck transformations induces an action on
ΠpXq with fundamental domain isomorphic to RicpXq. Furthermore, this isomor-
phism is compatible with the definitions of ΠpXq and RicpXq in the sense that if
v P RicpXq and ṽ is the corresponding vertex in the fundamental domain of ΠpXq

then the maximal standard product region of X̃ corresponding to ṽ is a lift to X̃ of
the maximal standard product subcomplex corresponding to v in X.

Lemma 2.26. With notation as in the previous theorem, if γ “ e0, . . . , en´1 is an
edge path in ΠpXq then there are gi P π1pXq such that γ1 “ g0e0, . . . , gn´1en´1 is
a path in RicpXq. Furthermore, vertices and edges of γ contained in RicpXq are
invariant under this projection.

Proof. By definition, an edge ẽ in ΠpXq represents a standard product region P̃ẽ
of X̃ that is the intersection of two maximal standard product regions. Standard
product regions of X̃ are, by definition, lifts to X̃ of standard product subcomplexes
of X, so there is a standard product subcomplex Pe of X and corresponding edge e of
RicpXq such that the quotient by the π1pXq–action sends P̃ẽ to Pe. Thus, identifying
RicpXq with the fundamental domain of π1pXqzΠpXq as in Theorem 2.25, for each
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of the edges ei “ vi vi`1 of γ there exists gi P π1pXq such that giei P RicpXq.
Then givi and gi`1vi are vertices of RicpXq in the same π1pXq–orbit, so they are
the same vertex, so γ1 is a path. �

Proposition 2.27 (Visibility of reduced intersection graphs for RAAGs). Let ∆ be
a connected, triangle-free graph. The reduced intersection graph Ric∆ of the Salvetti
complex of A∆ is isomorphic to the graph obtained from ∆ by taking a vertex for
each maximal join subgraph and connecting them by an edge if the join subgraphs
have an edge in common.

Proof. Edges of the universal cover Σ∆ of the Salvetti complex are colored by the
corresponding vertex of ∆. Let Θ “ Θ1 ˆΘ2 be a product region of Σ∆. Let ∆i be
the set of vertices v P ∆ such that some edge of Θi has color v. Since Θ is a product,
every edge in Θ1 spans a square with every edge in Θ2, which means that ∆1 ˚∆2 is
a join subgraph of ∆. Conversely, if ∆1 ˚∆2 is a subgraph of ∆, then Σ∆1

ˆΣ∆2
is

a product region of Σ∆, some translate of which contains Θ. If ∆11 ˚∆12 is a strictly
larger join subgraph containing ∆1 ˚∆2 then Σ∆11

ˆΣ∆12
is a product region strictly

containing Σ∆1 ˆ Σ∆2 , hence, up to translation, Θ. Thus, Θ is a maximal product
region if and only if it is a translate of Σ∆1

ˆ Σ∆2
, such that ∆1 ˚∆2 is a maximal

join in ∆.
Edges in the product region graph correspond to having a common product

sub-region, which equates to two maximal join subgraphs of ∆ having a common
join subgraph. Every join subgraph contains an edge, and edges are joins, so it
suffices to consider edges. �

Proposition 2.28 (Visibility of reduced intersection graphs for RACGs). Let Γ be
a triangle-free graph without separating cliques. The reduced intersection graph RicΓ

of the commutator complex PΓ of Γ is isomorphic to the graph obtained from Γ by
taking a vertex for each maximal thick join subgraph, and connecting them by an
edge if the join subgraphs have a square in common.

Furthermore, the action of WΓ on the Davis complex ΣΓ “ ĂPΓ induces an action
of WΓ on the maximal standard product region graph ΠpWΓq :“ ΠpPΓq that has a
fundamental domain isomorphic to RicΓ.

Proof. The argument for identifying RicΓ with the graph of thick joins in Γ is the
same as for Proposition 2.27, except that product regions are supposed to be infinite
in both factors, so we add the requirement that the join subgraphs are thick.

The content of the second part is that Theorem 2.25 tells us that RicΓ is the
fundamental domain for the action of π1pPΓq on ΣΓ, and WΓ is a supergroup of
π1pPΓq, so a priori might have had smaller fundamental domain, but it does not,
because WΓ ñ ΣΓ preserves the edge coloring. �

Definition 2.29. If Υ is the presentation graph of a RAAG/RACG, let RicΥ be a
choice of lift of the reduced intersection graph of the Salvetti complex/commutator
complex to the maximal standard product region graph ΠΥ, which gives a funda-
mental domain for the group action.

For v P RicΥ let Jv be the corresponding maximal (thick, in the RACG case)
join subgraph of Υ, as described in Proposition 2.27 and Proposition 2.28.

2.7. Convex sets and projections in CAT(0) cube complexes. Huang calls a
subcomplex of the universal cover Σ∆ of a RAAG A∆ standard if it is a translate of
Σ∆1 for some ∆1 Ă ∆. After fixing an identity vertex, thus identifying the 1–skeleton
of Σ∆ with the Cayley graph of A∆, vertex sets of standard subcomplexes are
precisely cosets of special subgroups of A∆. This description applies equally well
to RACGs, so we can also speak of standard subcomplexes of Davis complexes
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of RACGs. By Proposition 2.27 and Proposition 2.28, this is consistent with the
‘standard product subcomplex’ terminology of Oh, in the sense that standard product
subcomplexes are examples of standard subcomplexes.

In Section 7 we need some results about coarse intersections of standard subcom-
plexes. These follow from some properties of projections to convex sets in (finite
dimensional) CAT(0) cube complexes. We will work in the combinatorial metric: the
metric on the vertex set obtained by restricting the path metric on the 1–skeleton.

Lemma 2.30. Let X be a CAT(0) cube complex with its combinatorial metric,
and let Y be a convex subcomplex. There is a Lipschitz map πY : X Ñ Y sending
each vertex x P X to the vertex of Y that is closest to x. The map πY is a gate
projection: for all x P X and y P Y the vertex πY pxq is on a geodesic from x to y.

In a CAT(0) cube complex, consider the equivalence relation on edges generated by
the condition that two edges are equivalent if they are opposite edges of some square
in the complex. Dual to each equivalence class is a wall (also called a hyperplane),
which can be thought of geometrically as the union of midcube hyperplanes dual to
these edges in the cubes containing them. A wall H separates the cube complex
into two complementary sets of vertices, each of which spans a convex subcomplex,
called halfspaces and usually denoted H` and H´, such that every combinatorial
geodesic from H´ to H` contains an edge in the equivalence class defining the
wall. The number of walls separating two vertices is equal to the combinatorial
distance between them. Combinatorial geodesics cross each wall at most once, and
two combinatorial geodesics between the same points cross the same set of walls.
Two walls cross if there is a cube containing an edge dual to each of them, or,
equivalently, if all four possible intersections of their halfspaces are nonempty.

The following result is well known to experts. Similar results have been proved
and reproved several times in different settings. In the CAT(0) metric, compare [13,
Lemma 2.3], [57, Lemma 2.10], also [3]. Chatterji, Fernós, and Iozzi [20, Lemma 2.18]
prove a version of Proposition 2.31 in the combinatorial metric, but only state it for
halfspaces Y and Z. Full proofs of the more general statement appear in unpublished
sources 5 [51, Theorem 1.22], [46, Proposition 1.5.2]. A proof can also be deduced
from results of Isbell on parallelism between gate projections in discrete median
algebras [60, cf. Proclamation 2.5 and the Corollary to Theorem 5.12], together
with the well known equivalence between discrete median algebras and 0-skeleta of
CAT(0) cube complexes [47, 79, 21].

Proposition 2.31. [Bridge Lemma] Let X be a CAT(0) cube complex with its
combinatorial metric and let Y and Z be convex subcomplexes. The bridge Y Z,
consisting of the subcomplex spanned by vertices that lie on some minimal length
geodesic between Y and Z, is a combinatorially convex subcomplex isomorphic to
πY pZqˆ ry, πZpyqs, where y is any vertex in πY pZq and ry, πZpyqs is the subcomplex
spanned by vertices that lie on a combinatorial geodesic from y to πZpyq.

The walls that meet Y Z are partitioned into the set that traverse the bridge
and the set that transect the bridge. A wall traverses the bridge if and only if meets
both πZpY q and πY pZq, which is true if and only if it meets both Y and Z. A wall
transects the bridge if and only if it separates Y and Z, which is true if and only if
its intersection with Y Z separates πY pZq from πZpY q in Y Z. Every wall that
traverses the bridge crosses every wall that transects the bridge, and vice versa.

Corollary 2.32. For X, Y , Z as in Proposition 2.31, πY pZq, πZpY q, and Y Z

are coarsely equivalent and represent Y
c
X Z.

5We thank Anthony Genevois for the references.
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Proof. Coarse equivalence is the observation πY pZq Ă Y Z Ă N̄dpY,ZqpπY pZqq.

For r ě rdpY,Zq{2s, consider x P N̄rpY q X N̄rpZq ‰ H, and let y :“ πY pxq and
z :“ πZpxq. By Lemma 2.30, πZpyq is on a geodesic from y to z, so 2r ě dpy, zq ě
dpy, Y Zq ` dpz, Y Zq, so at least one of them is bounded above by r, which
implies dpx, Y Zq ď 2r. Thus, Y Z Ă N̄rpY q X N̄rpZq Ă N̄2rpY Zq. �

2.8. Coarse geometry of standard subcomplexes in RAAGs and RACGs.
The Davis complex of a RACG and the universal cover of the Salvetti complex of
a RAAG are CAT(0) cube complexes in which every edge is labelled/colored by a
generator of the group. Furthermore, since all squares correspond to commutation
relations in the group, opposite sides of any square have the same label.

Lemma 2.33. If Σ is the Davis complex of a RACG or the universal cover of the
Salvetti complex of a RAAG, X0 and X1 are convex subcomplexes, e is an edge of
πX0pX1q labelled a, and γ : r0, Ls Ñ Σ is a geodesic from ιpeq to πX1pιpeqq, then Σ
contains a subcomplex γ ˆ r0, 1s such that γp0q ˆ r0, 1s “ e, γpLq ˆ r0, 1s is an edge
of X1, every edge γpiq ˆ r0, 1s has label a, and for every 0 ă i ď L, the two edges
γpri´ 1, isq ˆ t0, 1u have the same label bi, which commutes with a.

Proof. If X0 and X1 intersect there is nothing to prove: L “ 0 and there is a single
edge e P X0 X X1 labelled a and the set of commuting bi’s is empty. Otherwise,
Proposition 2.31 implies that Σ contains a subcomplex γˆr0, 1s with γp0qˆr0, 1s “ e
and γpLqˆ r0, 1s Ă X1. Since squares are labelled by commutators, γp1qˆ r0, 1s has
label a, and γpr0, 1sq ˆ t0u and γpr0, 1sq ˆ t1u are edges with the same label, which
commutes with a. Repeat for each edge of γ. �

Proposition 2.34. Let Υ be a graph, let GΥ be either a RACG or RAAG with
presentation graph Υ, and let ΣΥ be its Davis complex or the universal cover of
its Salvetti complex, respectively. Consider S0, S1 Ă Υ and g0, g1 P GΥ. Let w be a
minimal length representative of GS0

pg´1
0 g1qGS1

, and let T be the set of generators
that appear in w. Then either T “ H, which occurs when g0ΣS0

X g1ΣS1
‰ H, or

T contains an element not in S0 and an element not in S1. Furthermore:

πg0ΣS0
pg1ΣS1

q “ g0ΣS0XS1X
Ş

tPT lkptq

In particular, projection of a standard subcomplex to a standard subcomplex is a
standard subcomplex.

Proof. The description of w is equivalent to that of a word read on the edges of
a minimal length geodesic connecting g0ΣS0 to g1ΣS1 . Proposition 2.31 implies
that the set T does not depend on the choice of such a geodesic. Using the
group action, take h P πg0ΣS0

pg1ΣS1
q Ă g0ΣS0

so that 1 P h´1πg0ΣS0
pg1ΣS1

q “

πh´1g0ΣS0
ph´1g1ΣS1

q “ πΣS0
ph´1g1ΣS1

q. Again by Proposition 2.31, every vertex

in πΣS0
ph´1g1ΣS1

q is connected to a vertex in πh´1g1ΣS1
pΣS0

q by a geodesic labelled

w, so the geodesic starting at 1 labelled w ends at w P πh´1g1ΣS1
pΣS0

q Ă h´1g1ΣS1
.

Thus, it suffices to consider the case that g0 “ 1 and g1 “ w.
The set T is empty, and w is the empty word, precisely when ΣS0 X ΣS1 ‰ H.

In this case S0 X S1 X
Ş

tPT lkptq “ S0 X S1, and πΣS0
pΣS1

q “ ΣS0XS1
.

Suppose that T is not empty and w is not the empty word. Minimality of w
implies that it does not start with an element of S0 or end with an element of S1,
so T contains an element not in S0 and an element not in S1.

Let S1 be the set of labels that occur on edges of πΣS0
pwΣS1q. By Lemma 2.33

every s P S1 commutes with every letter of w, and if e P πΣS0
pwΣS1

q is an edge

labelled s then the edge we P πwΣS1
pΣS0

q is also labelled s, so S1 Ă S0 X S1 X
Ş

tPT lkptq. Conversely, if s P S0XS1X
Ş

tPT lkptq then 1 s is an edge of ΣS0
that is
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parallel via w to the edge w ws in wΣS1 , so S1 “ S0XS1X
Ş

tPT lkptq. Furthermore,
ΣS1 Ă ΣS0

is parallel to wΣS1 Ă wΣS1
via w, so ΣS1 “ πΣS0

pwΣS1
q. �

Corollary 2.35. If X0 and X1 are standard subcomplexes in either the Davis
complex of a RACG or the universal cover of the Salvetti complex of a RAAG, then
X0 and X1 have unbounded coarse intersection if and only if there is an unbounded
standard subcomplex X2 such that X0 and X1 contain parallel copies of X2.

Proof. Corollary 2.32 and Proposition 2.34 say πX0
pX1q and πX1

pX0q are parallel

standard subcomplexes representing X0
c
X X1. �

Corollary 2.36. Two standard subcomplexes X0 and X1 of the universal cover of
the Salvetti complex of a RAAG have bounded coarse intersection if and only if the
combinatorial closest point projection map from X0 to X1 is constant.

Proof. In a RAAG, once a standard subcomplex contains an edge it contains
the entire bi-infinite monochrome geodesic containing that edge, so πX0

pX1q and
πX1

pX0q are either single vertices or unbounded. �

Lemma 2.37. If WΓ is a RACG and A,B Ă Γ then ΣB Ă ΣA
c
“ ΣB if and only if

A “ B ˚ C, where C is a clique.

Proof. If C is a clique then dHauspΣB ,ΣB˚Cq “ |C|. Conversely, if ΣB Ĺ ΣA
c
“ ΣB

and A ‰ B ˚C for a clique C, then either there is an a P A´B not adjacent to some
b P B, or there are a and b in A´B not adjacent to each other. In either case Σta,bu is
a line. Since πΣta,bu

is Lipschitz, dHauspΣA,ΣBq ě dHauspπΣta,bu
pΣAq, πΣta,bu

pΣBqq,

the latter of which is infinite, since Σta,bu Ă ΣA, but πΣta,bu
pΣBq is finite. �

Corollary 2.38. If WΓ is a RACG and S0, S1 Ă Γ then ΣS0

c
“ ΣS1

implies
dHauspΣS0 ,ΣS1q is bounded above by the size of the largest clique in Γ.

Proof. Let C be the largest clique of Γ. Let S1i be Si minus its cone vertices. By

Lemma 2.37, dHauspΣSi
,ΣS1i

q ď |C|, so ΣS0

c
“ ΣS1

ùñ ΣS10

c
“ ΣS11

. But then

ΣS10XS11 Ă ΣS10
c
“ ΣS10XS11 , so Lemma 2.37 says S10 X S

1
1 “ S10. Repeat the argument

for S11, and conclude S :“ S10 “ S11. Now every vertex of ΣSi
is distance at most |C|

from ΣS Ă ΣS0
X ΣS1

. �

Corollary 2.39. If WΓ is a RACG, g P WΓ, and S0, S1 Ă Γ then ΣS0

c
“ gΣS1

implies there exists S and cliques C0 and C1 such that S0 “ S ˚ C0, S1 “ S ˚ C1

and g centralizes S.

Proof. By Corollary 2.38, we may assume S0 and S1 have no cone vertices. By
Corollary 2.32, if if T is the set of generators appearing in minimal length elements
of WS0

gWS1
then:

ΣS0

c
X gΣS1

c
“ πΣS0

pgΣS1
q “ ΣS0XS1X

Ş

tPT lkptq

So if ΣS0

c
“ gΣS1

then:

ΣS0XS1X
Ş

tPT lkptq Ă ΣS0

c
“ pΣS0

c
X gΣS1q

c
“ ΣS0XS1X

Ş

tPT lkptq

Lemma 2.37 says S0 “ pS0XS1X
Ş

tPT lkptqq ˚C for a clique C, but S0 has no cone
vertex, so C “ H, S0 Ă S1, and S0 Ă

Ş

tPT lkptq. The same argument applies to S1,
so we conclude that S :“ S0 “ S1 and T centralizes S. �

Lemma 2.40. If A∆ is a RAAG, g P A∆, and S0, S1 Ă ∆ then ΣS0

c
“ gΣS1 implies

S :“ S0 “ S1 and g centralizes S.
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Proof. Let ΣS :“ πΣS0
pgΣS1

q. Since ΣS0

c
“ gΣS1

, ΣS0

c
“ ΣS0

c
X gΣS1

, which, by
Corollary 2.32, is coarsely equivalent to ΣS . By Proposition 2.34, S “ S0 X S1 X
Ş

tPT lkptq, where T is the letters appearing in a minimal word in AS0
gAS1

. But in a
RAAG no standard subcomplex is coarsely equivalent to one of its proper standard
subcomplexes, since generators have infinite order, so S “ S0, which implies S0 “ S1

and g centralizes S. �

3. CFS graphs

We know from Dani and Thomas [29] that an incomplete, triangle-free graph
without separating cliques is RAAGedy only if it is CFS. In this section we establish
some basic results about the structure of CFS graphs.

3.1. The diagonal graph.

Definition 3.1. The diagonal graph mpΓq of Γ is the graph with a vertex ta, bu if a
and b are vertices of Γ that are the diagonal vertices of some induced square. There
is an edge ta, bu tc, du in mpΓq when ta, bu ˚ tc, du is an induced square of Γ.

The support of a vertex ta, bu of mpΓq is the set ta, bu Ă Γ. The support of a
subset of mpΓq is the union of supports of its vertices.

Definition 3.2. 6,7 Γ is CFS if mpΓq contains a connected component whose support
is all non-cone vertices of Γ.

Γ is strongly CFS if it is CFS and mpΓq is connected.

Lemma 3.3. A triangle in mpΓq corresponds to an induced octahedron in Γ.

Corollary 3.4. A triangle-free graph has a triangle-free diagonal graph.

If A is a set, let
`

A
2

˘

be the collection of 2–element subsets of A. The following
relates joins in Γ and joins in mpΓq, and will be used later.

Lemma 3.5. Let Γ be triangle-free. If A ˚B is a thick join in Γ then
`

A
2

˘

˚
`

B
2

˘

is
a join in mpΓq. If A ˚B is a join in mpΓq then supppAq ˚ supppBq is a thick join in

Γ and
`

supppAq
2

˘

˚
`

supppBq
2

˘

is a join in mpΓq.

Proof. Suppose A ˚B is a thick join in Γ. Let ta0, a1u be any 2–element subset of
A, and let tb0, b1u be any 2–element subset of B. Since A ˚B is a join, there is a
square ta0, a1u ˚ tb0, b1u, which is induced, since Γ is triangle-free, so there is an
edge ta0, a1u tb0, b1u in mpΓq.

Conversely, suppose A ˚ B is a join in mpΓq. Let a P supppAq and b P supppBq.
Then there exists a1 and b1 such that ta, a1u P A and tb, b1u P B, so ta, a1u tb, b1u
is an edge in A ˚B, hence in mpΓq, so ta, a1u ˚ tb, b1u is an induced square in Γ. In
particular, a and b are adjacent in Γ. Since this was true for arbitrary elements of
supppAq and supppBq, Γ contains supppAq ˚ supppBq. Moreover, each factor has
size at least two, since supports of single vertices of mpΓq have size two, and since
Γ is triangle-free this implies each factor is incomplete, so this is a thick join in Γ.

Finally, by the first part of this lemma,
`

supppAq
2

˘

˚
`

supppBq
2

˘

is a join in mpΓq. �

Next we state two easy lemmas to formalize constructions that have appeared in
examples elsewhere in the literature. We use these results without further comment.

6This is equivalent to other definitions of CFS [29, 5, 4] and strongly CFS [80]. These sources
make definitions in terms of a ‘square graph’ of Γ that is slightly different than mpΓq but ultimately

contains the same information.
7It is possible [4] to produce CFS graphs with multiple components of full support.
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Lemma 3.6. Let Γ1 be a CFS graph and let V be a subset of the vertices of Γ1. Let
Γ be obtained from Γ1 by adding some new edges between vertices of V . If no new
edge connects the diagonals of a square of Γ1 then Γ is CFS.

In particular, if V is a set of vertices of Γ1 that are pairwise at distance at least 3
from one another, then no squares of Γ1 are killed, so Γ is CFS. If we space V even
wider, the new edges do not interact with squares of Γ1 at all:

Lemma 3.7. Let Γ1 be a CFS graph and let V be a subset of the vertices of Γ1

that are pairwise at distance at least 4 apart. Let Γ be obtained from Γ1 by adding
some new edges between vertices of V , and let Γ2 be the subgraph induced by the
new edges. Then Γ is CFS and mpΓq is a disjoint union of mpΓ1q and mpΓ2q.

In this way one can build all kinds of exotic examples of CFS graphs starting
from ones with sufficiently large diameter. This is the content of an example of
Behrstock [2], which can be interpreted as taking Γ1 to be the large diameter CFS
graph obtained by doubling a path graph of length at least 12 and taking V to be 5
vertices at pairwise distance at least 3 in Γ1 whose induced graph is a pentagon, see
Figure 2. Russell, Spriano, and Tran do something similar [80, Proposition 7.6].

Figure 2. The example of Behrstock of a strongly CFS graph
containing a stable cycle.

3.2. First examples.

3.2.1. Large diameter contructions. Here are some simple examples of strongly CFS
graphs that can be constructed to have large diameter. They serve as basic building
blocks for further examples.

Example 3.8. Consider the path graph Pn of length n ą 0. Doubling gives a
strongly CFS graph of diameter n.

For example DpP7q :“
Deleting a vertex from one or both ends does not change the strong CFS property:

the graphs and are both strongly CFS.
Consider a graph Γ that is a star with m ą 2 legs of length n ě 2, so that

there are m leaves that are pairwise at distance 2n from one another. Take DpΓq.
This is the pm,nq–spider. Optionally, from each foot we can either leave both
valence 2 vertices, and call this a pincer foot, or delete one of them. The result is
commensurable to a RAAG tree, and has the property that vertices on different feet
have pairwise distance 2n.

Here is the p4, 3q–spider with one pincer foot: ˛
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Proposition 3.9. Every finite connected graph Γ can be isometrically embedded in
a strongly CFS graph Γ1. Furthermore, if Γ is triangle-free then so is Γ1, and the
construction can be arranged so that v, w P Γ are the diagonal vertices of an induced
square of Γ1 if and only if they are diagonal vertices of an induced square of Γ.

Proof. Let Γ be a connected finite graph. Let ∆ be a spider with legs of length

maxt3, r diampΓq
2 su, with one single-vertex foot for each vertex of Γ that is not

contained in an induced square of Γ and one pincer foot for each component of
mpΓq. Identify each single vertex foot with its corresponding vertex of Γ. For each
component of mpΓq, choose a vertex, which is a pair of vertices of Γ that are the
diagonal of some induced square, and identify these two vertices with the two vertices
of the corresponding pincer foot of the spider. The resulting graph Γ1 contains Γ
as an isometrically embedded subgraph because the legs of the spider are long, so
we have not created any shortcuts between vertices of Γ. In particular, all of the
squares in Γ survive as squares in Γ1. Some vertices of ∆ may get identified, but
those that do come from different feet, so they have distance at least 6 in ∆; thus,
all of the squares of ∆ survive as squares in Γ1, and we did not create any triangles.

By construction, every vertex of Γ1 lies in a square, so to establish that Γ1 is
strongly CFS, it is enough to show that mpΓ1q is connected. Since ∆ is strongly CFS,
we conclude that vertices of mpΓ1q that are the diagonal of a square with edges only
from Γ or only from ∆ are contained in a common connected component of mpΓ1q.
This leaves us to consider vertices of mpΓ1q coming from squares that use edges from
both Γ and ∆. The only vertices of ∆ that attach to Γ and are at distance less than
6 from one another inside ∆ are the pincers of a foot, so we may assume a and b
are the pincers, and take d0 and d1 to be their two common neighbors in ∆. By
construction, ta, bu is also the diagonal of a square in Γ, so a and b have common
neighbors c0, c1, . . . in Γ. For any i and j, there is a square ta, bu ˚ tci, dju with
Γ–edges ci ˚ ta, bu and ∆ edges dj ˚ ta, bu. We have that tci, dju is a vertex of mpΓ1q
that does not occur in either mp∆q or mpΓq, but it is adjacent to the vertex ta, bu,
which occurs in both.

The further claim about squares follows from the construction, as the ‘mixed’
squares with edges from Γ and ∆ only occur when a pincer foot attached to the
diagonal of an existing square of Γ. �

We remark that Γ embeds isometrically in DpΓq, which is strongly CFS, but
DpΓq does not satisfy the further claim about squares.

[80, Proposition 7.6] says any graph Γ can be isometrically embedded into a CFS
graph Γ1 in such a way that Γ is square complete in Γ1. If Γ contains a square
then the Γ1 produced by that construction will not be strongly CFS, whereas the
Γ1 produced by Proposition 3.9 will not contain Γ as a square complete subgraph.
This tradeoff is unavoidable; it is not possible to embed a subgraph containing a
square into a strongly CFS graph and have it be square complete, see Corollary 5.5.

3.2.2. Blow-up graphs.

Definition 3.10. Let p∆, ωq be a weighted graph, consisting of a graph ∆ and a
weight function ω : Verticesp∆q Ñ N. The blow-up graph ∆ω is the graph with
ωpvq–many vertices pv, 0q,. . . ,pv, ωpvq´1q for each vertex v P ∆, and such that pv, iq
and pw, jq are connected by an edge in ∆ω if and only if v and w are connected by
an edge in ∆.

Remark. Γ – RpΓqω, where ωpMq is the number of vertices in the twin module M .

Remark 3.11. Without changing the graph structure of ∆ω, we may assume that
∆ is twin-free by replacing ∆ with Rp∆q and labelling each twin module by the sum
of the labels of its vertices. This only changes the labelling of vertices of ∆ω.
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Assuming ∆ is twin-free implies, in particular, that every vertex of ∆ has at most
one adjacent leaf. Furthermore, if ∆ is twin-free then for Γ :“ ∆ω we have that
RpΓq – ∆ and that ω gives the cardinality of each twin module of Γ. Thus, if ω
takes any odd values then Γ is not a graph double. On the other hand, if ω takes
only even values then Γ – Dp∆ω{2q.

Proposition 3.12. Let Γ :“ ∆ω be a blow-up graph, with the conditions that ∆ is
connected, triangle-free, twin-free, has at least two vertices, and ω takes the value
1 only on leaves of ∆, and if ∆ is a single edge then ω does not take the value 1.
Then Γ is triangle-free and strongly CFS.

Proof. Projection to the first coordinate gives a map Γ Ñ ∆ that sends edges to
edges, and the preimage of a vertex is an anticlique. It follows that, when ∆ is not
a single vertex, Γ is connected and triangle-free if and only if ∆ is.

If ∆ is a single edge then by hypothesis Γ – Km,n with m,n ě 2. It is easy to
see that this graph is strongly CFS, so assume ∆ is not a single edge.

For each edge v w in ∆ such that both of ωpvq and ωpwq are greater than
one there are induced squares tpv, iq, pv, jqu ˚ tpw, kq, pw, `qu in Γ for all i ‰ j and
k ‰ `. Also, since weight 1 only occurs on leaves, for every embedded segment
v w x in ∆ there are squares tpv, iq, px, jqu ˚ tpw, kq, pw, `qu in Γ for all k ‰ `.
Finally, if tu, vu ˚ tw, xu is an induced square in ∆ then there are induced squares
tpu, iq, pv, jqu ˚ tpw, kq, px, `qu in Γ. Conversely, each induced square in Γ projects
to either a square or a path of length 1 or 2 in ∆, so the squares constructed above
account for all of the induced squares of Γ, and this, in turn, accounts for all vertices
and edges of mpΓq. Since ∆ is not a single edge, every vertex lies on some embedded
segment of length 2, so every vertex belongs to some square. Thus, the support
of mpΓq is all of Γ. We will show that mpΓq is connected, which then implies Γ is
strongly CFS.

Since ω takes the value 1 only on leaves and ∆ is twin-free, each vertex is adjacent
to at most one vertex with weight 1. Furthermore, since ∆ is twin-free and not a
single edge, every vertex is adjacent to a non-leaf, so every vertex is adjacent to a
vertex with weight greater than 1.

Define φ : ∆ Ñ mpΓq by φpvq “ tpv, 0q, pv, 1qu if ωpvq ą 1. If ωpvq “ 1 then the
hypotheses on ∆ imply there is a unique neighbor w of v, ωpwq ą 1, and there
exist vertices at distance 2 from v. Choose any x at distance 2 from v, and define
φpvq “ tpv, 0q, px, 0qu, which is a diagonal of the induced square tpv, 0q, px, 0qu ˚
tpw, 0q, pw, 1qu of Γ. Then φ sends edges of ∆ to edges of mpΓq and is injective on
vertices; the only potential source of collisions would be if v and x are both leaves
weighted 1 at distance 2 from each other such that φpvq “ tpv, 0q, px, 0qu “ φpxq, but
this is ruled out by the assumption that ∆ is twin-free. Thus, φp∆q is connected.

We claim that every vertex of mpΓq is in φp∆q or is adjacent to a vertex of φp∆q.
Since vertices of mpΓq come from one of the three types of induced squares in Γ
enumerated above, we only need to consider the following three cases. If ωpvq ą 1
then, since v has some neighbor w not weighted 1, tpv, iq, pv, jqu tpw, 0q, pw, 1qu “
φpwq in mpΓq for all i ‰ j. Similarly, if dpv, xq “ 2 then they have a common neighbor
w, which is not a leaf, so not weighted 1, and tpv, iq, px, jqu tpw, 0q, pw, 1qu “ φpwq
in mpΓq for all i ‰ j. Finally, if tpu, iq, pv, jqu ˚ tpw, kq, px, `qu is an induced square
in Γ coming from an induced square tu, vu˚tw, xu of ∆ then none of the vertices are
leaves in ∆, so none are weighted 1, so tpv, iq, px, jqu tpw, 0q, pw, 1qu “ φpwq. �

In Section 4.2 we upgrade the conclusion of Proposition 3.12 to ‘RAAGedy’.

3.3. Enumeration of small triangle-free CFS graphs. We enumerated triangle-
free CFS graphs of small order. Table 1 gives the number of isomorphism types of
graph by number of vertices (V) and edges (E). Blank entries are 0.
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E\V 4 5 6 7 8 9 10 11 12
4 1
5
6 1
7
8 2
9 1
10 3
11 1
12 1 8
13 6
14 3 19
15 2 21
16 1 17 61
17 7 115
18 4 119 207
19 1 71 616
20 1 37 950 828
21 17 782 3820
22 7 461 8722
23 3 212 10863
24 2 103 8492
25 1 42 4856
26 19 2385
27 7 1082
28 4 477
29 1 204
30 1 89
31 38
32 17
33 7
34 3
35 2
36 1

Table 1. Number of isomorphism types of triangle-free CFS graphs
by numbers of vertices and edges. In each column the horizontal
line designates the point below which all graphs are forced to be
bipartite.

Mantel’s Theorem says that a triangle-free graph with n vertices has at most tn
2

4 u

edges, with equality if and only if the graph is Kn
2 ,

n
2

when n is even or Kn`1
2 ,n´1

2

when n is odd. A complete bipartite graph is strongly CFS when both parts are
non-singletons, so this gives us the unique largest triangle-free CFS graph for each
fixed number of vertices. Similarly, it is an exercise in extremal graph theory to

show that a triangle-free graph with n vertices and strictly greater than pn´1q2

4 ` 1
edges is bipartite. Further, it can be shown that these conditions also imply the
graph is strongly CFS.

3.4. Inductive construction. [9, Theorem II] says that the class of thick RACGs
is the class whose defining graphs belong to the smallest class of graphs containing
the square and closed under the following operations:

‚ Cone off a subgraph that is not a clique.
‚ Amalgamate two graphs Γ1, Γ2 in the class over a common subgraph Γ1

that is not a clique.
‚ Add additional edges to the previous item between vertices of Γ1 ´ Γ1 and

vertices of Γ2 ´ Γ1.

CFS graphs are thick, so they can be built iteratively as above. However:

‚ Not all thick graphs are CFS.
‚ The ‘amalgamate and add edges’ operation is useful for constructing exam-

ples, but makes inductive arguments more complicated.

We show that for CFS graphs only the cone-off operation is needed.
We say that a property P is constructible by coning from a square if for every

graph Γ with property P there exists a sequence Γ0 Ă ¨ ¨ ¨ Ă Γn where each Γi has
property P, Γ0 is a square, Γn “ Γ, and Γi`1 “ Γi ˚Ni vi is obtained from Γi by
coning off some subgraph Ni.
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Proposition 3.13. The property of being an incomplete CFS graph is constructible
by coning from a square: An incomplete CFS graph can be built from a square as a
sequence of CFS graphs such that each successive step is a cone-off of an incomplete
subgraph of the previous graph.

Proof. Let Γ be an incomplete CFS graph. Since cone vertices can be added last
and not every vertex is a cone vertex, it suffices to assume that Γ has no cone vertex.
Let C be a component of mpΓq with supppCq “ Γ.

Pick an edge ∆0 :“ ta, bu tc, du in C. By definition, this corresponds to an
induced square Γ0 :“ ta, bu ˚ tc, du in Γ. If Γ is a square there is nothing more to
prove, so assume ∆0 is not all of C.

We inductively construct a sequence of connected subgraphs ∆0 Ă ¨ ¨ ¨ Ă ∆i Ă C
and induced CFS subgraphs Γ0 Ă ¨ ¨ ¨ Ă Γi Ă Γ, such that each Γi is obtained from
Γi´1 by coning off an incomplete subgraph, and with the property that for each i
one of the following is true:

‚ ∆i is a full support connected subgraph of mpΓiq (so Γi has no cone vertex).
‚ Γi has exactly one cone vertex, v, and ∆i is a connected subgraph of mpΓiq

with support Γi ´ v.

Suppose ∆i and Γi have been constructed. Suppose ∆i is not all of C. Extend ∆i

to the largest connected subgraph ∆1i of mpΓq that contains ∆i and whose support is
contained in Γi. Suppose ∆1i is not all of C. We extend to ∆i`1 and Γi`1 according
to two (exhaustive) cases:

Case A: There is a vertex tv, wu adjacent to some te, fu P ∆1i in mpΓq such that
v R Γi and w P Γi.

Case B: There is no such vertex as in Case A, but there is a vertex tv, wu adjacent
to some te, fu P ∆1i in mpΓq such that v R Γi and w R Γi.

In Case A, let ∆i`1 :“ ∆1
i Y tv, wu, and let Γi`1 be the induced subgraph of

Γ containing Γi and v. We have Γi`1 “ Γi ˚lkΓpvqXΓi
v. Since te, fu ˚ tv, wu is an

induced square in Γ, the subset lkΓpvq X Γi Ă Γi contains the non-adjacent vertices
e and f , but does not contain w. So it is a proper, incomplete subgraph of Γi.

In Case B, supposing Γi has no cone vertex, we claim that both v and w are
adjacent to every vertex of Γi and define ∆i`1 :“ ∆1

i and Γi`1 :“ Γi ˚ v. By
construction, Γi is not a clique.

To see the claim, suppose, to the contrary, that there is a vertex x of Γi that is
not adjacent to v. Since x is not a cone vertex of Γi, there exist vertices of ∆1i with
support containing x. We may assume x and tx, yu P ∆1i have been chosen such that
that tx, yu is a closest vertex to te, fu in ∆1

i among those whose support contains
a vertex not adjacent to v or w. Take a geodesic te, fu “ te0, f0u, te1, f1u,. . . ,
ten, fnu “ tx, yu in mpΓq. The ‘closest’ hypothesis implies that for j ă n both of
ej and fj are adjacent to both of v and w, so tv, wu tej , fju is an edge in mpΓq.
Thus, by replacing te, fu with ten´1, fn´1u, we may assume tx, yu and te, fu are
adjacent in mpΓq. But this gives a join tv, w, x, yu ˚ te, fu in Γ with v not adjacent
to x, yielding an induced square tv, xu˚te, fu in Γ, which is a contradiction, because
in that case tv, xu is available for Case A.

Notice that after performing a Case B extension, the vertex tv, wu has v P Γi`1

and w R Γi`1, so the subsequent inductive step will be a Case A extension. This
justifies the supposition that Γi has no cone vertex when Case B is applied.

We now check that if the induction hypotheses are true up to stage i then they
are true at i` 1. Since the Γi are induced subgraphs of Γ, their diagonal graphs are
subgraphs of mpΓq.

Suppose Γi was obtained from Γi´1 by a Case B extension. Since we never
perform consecutive Case B extensions, the support of ∆i´1 is all of Γi´1, so the
support of ∆i is all of Γi except the cone vertex added in the last extension.
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Suppose Γi is obtained by a Case A extension and Γi´1 has no cone vertex.
Let tv, wu and te, fu be as in the description of Case A. Since Γi´1 has no cone
vertex, ∆i´1 has support all of Γi´1. Since ∆i contains ∆i´1 and tv, wu, its support
contains all vertices of Γi.

Finally, suppose Γi´1 has a cone vertex. This occurs when Γi´1 is constructed
from Γi´2 by a Case B extension. Let tv, wu and te, fu be as in the description
of Case B, so that Γi´1 “ Γi´2 ˚ v and Γi is obtained from Γi´1 by coning-off the
proper subgraph Γi´2 Ă Γi´1 to w. Since we never perform consecutive Case B
extensions, the support of ∆i´2 contains all vertices of Γi´2. Since ∆i contains
∆i´2 and tv, wu, its support is all vertices of Γi. �

Corollary 3.14. An incomplete CFS graph with n ě 4 vertices has at least 2n´ 4
edges.

Proof. The claim is true for a square. Proceed by induction on the construction by
cone-offs, each of which adds one vertex and at least two edges. �

Corollary 3.15. A triangle-free CFS graph with n ě 4 vertices has between 2n´ 4

and tn
2

4 u edges, and both extremes are realized.

Proof. The minimum number of edges occurs for the suspension K2,n´2, and the
maximum occurs for either Kn

2 ,
n
2

or Kn´1
2 ,n`1

2
, according to the parity of n. �

Corollary 3.16. The property of being a triangle-free CFS graph is constructible
by coning from a square.

Proof. If Γ is triangle-free then so are all subgraphs, so the proof of Proposition 3.13
produces a triangle-free graph at each stage. �

Example 3.17. The property of being a cone-vertex-free CFS graph is not con-
structible by coning from a square: The 1–skeleton of the octahedron is a CFS
graph with no cone vertex, but removing any vertex leaves a cone on a square. ˛

Example 3.18. The property of being strongly CFS is not constructible by coning
from a square: The graph Γ :“ circulantp11, t1, 3uq “ CaypZ11, t1, 3uq shown in
Figure 3 is the smallest example of a triangle-free strongly CFS graph such that for
every vertex v the graph Γ´ tvu is not strongly CFS. Thus, Γ cannot be built by
coning from a square while remaining strongly CFS at each step. ˛

Figure 3. circulantp11, t1, 3uq

The graph of Figure 3 turns out not to be RAAGedy. In fact, we do not know
an example of a triangle-free graph without separating cliques that is RAAGedy
but cannot be constructed by coning from a square through RAAGedy graphs.

Question 3.19. Is the property of being triangle-free and RAAGedy constructible
by coning from a square?
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4. Establishing that a graph is RAAGedy

In Section 4.1 we consider the possibility that a graph that is not a graph double
might become a graph double after applying a sequence of link doubling operations.
At the group level this corresponds to a sequence of passages to index-two subgroups,
ending with one that is commensurable to a RAAG, so the original group is also
commensurable to a RAAG. It turns out, Proposition 4.7, that if such a sequence
exists, then at most two link doubling steps are necessary, and the existence of
the sequence and identification of which vertices to double over the links of are
recognizable in the presentation graph.

In Section 4.2 and Section 4.3 we introduce two new operations, cloning and
unfolding, that change a graph Γ without changing the quasiisometry type of WΓ.
This gives us three such operations, the third being link doubling. Unlike link
doubling, for cloning and unfolding we only know that they produce quasiisometric
groups, not whether the resulting group is commensurable to the one we started
with. In Section 4.4 we explore the connections within our enumeration of small
CFS graphs given by these three graph modification operations.

4.1. Near doubles. Recall the graph constructions of doubling, link doubling, and
star doubling of Section 2.1 and that A∆ is commensurable to WDp∆q, which is
Theorem 2.4. The proof of the following is elementary and is left to the reader.
We will not use the lemma directly, but its interpretation as a statement that the
property of being a graph double is stable under link doubling inspired Definition 4.2.

Lemma 4.1. D˝pv,1qpDpΓqq – DpD˚v pΓqq, that is, they are isomorphic graphs.

Definition 4.2. A near double is a graph Γ such that there exists a sequence of
link doubles of Γ such that the result is isomorphic to some Dp∆q.

Proposition 4.3. If Γ is a near double then WΓ is commensurable to a RAAG.

Proof. Apply Lemma 2.3 and Theorem 2.4. �

We first give a characterization of graph doubles, which then enables us to give
an example of a near double that is not a double. After that we characterize near
doubles in Proposition 4.7. It turns out that the length of the necessary sequence of
link doubles is bounded by 2, but Proposition 4.7 is a more concrete description
than just testing all such bounded sequences.

Recall the definition of a twin module in Section 2.1.1.

Proposition 4.4. Let Γ be a graph. The following are equivalent:

(1) Γ is a double, ie, there exists ∆ such that Γ – Dp∆q.
(2) Every twin module in Γ has even order.
(3) Γ admits a fixed-point-free involution that fixes each twin module.

Proof. (1) ùñ (2), since vertices of a double come in pairs with equal links.
(2) ùñ (3) by choosing a pairing of the vertices within each twin module. The

map that exchanges the vertices of each such pair satisfies (3).
(3) ùñ (1) by defining a graph ∆ by taking a vertex for each orbit of the

involution φ, and connecting two vertices v and w by an edge if the twin module
of v is adjacent to the twin module of w in the twin graph RpΓq. By construction,
there is a bijection between vertices of Dp∆q and vertices of Γ; it is pv, 0q ÞÑ v
and pv, 1q ÞÑ φpvq. Every edge of Dp∆q belongs to an induced square of the form
tpv, 0q, pv, 1qu ˚ tpw, 0q, pw, 1qu, where v w is an edge of ∆, and corresponds to
an induced square tv, φpvqu ˚ tw, φpwqu of Γ. Conversely, every edge of Γ belongs
to such an induced square, since twin modules are anticliques and v w implies
v φpwq, since w and φpwq are twins. �
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Example 4.5. The graph Γ on the left in Figure 4 is not a double; vertices 6 and 7
have no twin. Two link doubles turn Γ into a doubled octagon, as shown in Figure 4.
We compactify notation by writing pv, αq as vα, pv, α, βq as vαβ , etc. ˛
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Figure 4. First link doubling example.

In Proposition 4.7 below, we describe twin modules as even/odd according to
their orders. We refer to the link lkpMq of a twin module M , which we take to
mean lkpMq :“ lkRpΓqpMq, that is, the link of the vertex M in the twin graph RpΓq
(recall Definition 2.1). Let MΓpvq denote the twin module of Γ containing v.

Lemma 4.6. Let Γ be an incomplete triangle-free graph without separating cliques.
For v P Γ, the twin modules of D˝vpΓq are as follows:

‚ If A “MΓpvq and |A| ą 1 then there is a single twin module corresponding
to A in D˝vpΓq of size 2p|A| ´ 1q, given by pA´ tvuq ˆ t0, 1u.

‚ If A is a satellite of MΓpvq in RpΓq then there is a single twin module
corresponding to A in D˝vpΓq of size 2|A|, given by Aˆ t0, 1u.

‚ If A P lkRpΓqMΓpvq then there is a single twin module corresponding to A
in D˝vpΓq of size |A|, given by Aˆ t0u “ Aˆ t1u.

‚ Otherwise, there are two distinct twin modules of size |A| corresponding to
A in D˝vpΓq, given by Aˆ t0u and Aˆ t1u.

Proof. The link of every vertex of Γ is an anticlique of size at least 2.
If w P MΓpvq ´ tvu, i.e., w ‰ v and lkΓpvq “ lkΓpwq, then w R lkΓpvq, so w

has distinct preimages pw, 0q and pw, 1q in D˝vpΓq, but they have the same link,
lkD˝vpΓq

pw, 0q “ lkD˝vpΓq
pw, 1q “ lkΓpvq ˆ t0u, so the twin module MD˝vpΓq

pw, 0q
contains 2 copies of each vertex in MΓpvq ´ tvu.

If lkΓpwq Ĺ lkΓpvq, then w R lkΓpvq, but all of its neighbors are, so there are
two copies pw, 0q and pw, 1q of w whose links are both lkΓpwq ˆ t0u. Suppose u is
another vertex of MΓpwq, so pu, 0q has the same link as pw, 0q in D˝vpΓq. Then u ‰ v,
since lkΓpwq Ĺ lkΓpvq is proper containment, and u R lkΓpvq by our hypotheses
on Γ, since if it were then u would be adjacent only to v, or to something also in
lkΓpvq, contradicting either that Γ is connected without cut vertices, or that it is
triangle-free. Therefore, u R lkΓpvq, so u contributes vertices pu, 0q and pu, 1q to
MD˝vpΓq

pw, 0q. Thus, MD˝vpΓq
pw, 0q contains 2 copies of each vertex in MΓpwq.

If w P lkΓpvq then there is only one vertex pw, 0q in the preimage of w. The fact
that Γ is triangle-free and connected without cut vertices implies that lkΓpwq contains
only v and a nonempty set of vertices from outside lkΓpvq. Choose u P lkpwq ´ tvu,
so pw, 0q is adjacent to a distinct pair pu, 0q and pu, 1q. Now, a vertex px, 0q in D˝vpΓq
is adjacent to pu, 0q if and only if x and u are adjacent in Γ, but px, 0q and pu, 1q
are adjacent if and only if x and u are adjacent in Γ and x P lkΓpvq. So, the vertices
adjacent to both pu, 0q and pu, 1q are plkΓpuq X lkΓpvqq ˆ t0u. Thus, vertices with
the same link as pw, 0q are of the form px, 0q with x P lkΓpvq, where lkΓpwq “ lkΓpxq.
That is, MD˝vpΓq

pw, 0q “MΓpwq ˆ t0u.
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The remaining case is that w R lkΓpvq and w is adjacent to at least one vertex x R
lkΓpvq. Then pw, 0q is adjacent to px, 0q but not to px, 1q. Suppose lkD˝vpΓq

pw, 0q “
lkD˝vpΓq

pu, εq. This implies lkΓpwq “ lkΓpuq ´ tvu. However, it also implies pu, εq is
adjacent to px, 0q but not px, 1q, which does not happen if u P lkΓpvq, so, actually,
lkΓpwq “ lkΓpuq. Furthermore, ε “ 0, and pu, 1q is adjacent to px, 1q but not
px, 0q, so pu, 1q R MD˝vpΓq

pw, 0q; we have that MD˝vpΓq
pw, 0q “ MΓpwq ˆ t0u and

MD˝vpΓq
pw, 1q “MΓpwq ˆ t1u are distinct twin modules. �

Proposition 4.7 (Recognizing near doubles). A triangle-free graph Γ without
separating cliques is a near double if and only if one of the following is true:

(0) There are no odd twin modules.
(1) There exists a twin module A of Γ such that every odd twin module of Γ is

either A or a satellite of A in RpΓq.
(2) There exist twin modules A and B of Γ such that A and B are adjacent

in RpΓq and such that every odd twin module of Γ is either A or B or a
satellite of A or B in RpΓq.

Proof. Clearly (0) ùñ (1) ùñ (2), but the conditions provide case distinctions.
If Γ is complete then it is either empty, a single vertex, or a single edge, and it is

reduced to the empty graph by |Γ|–many link doublings. The empty graph is the
double of itself, so the proposition is true in this case. Now assume Γ is incomplete
so that we can apply Lemma 4.6.

In case (2), pick v P A and consider D˝vpΓq. From Lemma 4.6 we see that the
only possible odd modules of D˝vpΓq come from odd modules of Γ that are not A or
one of its satellites in RpΓq. By (2) the only possible choices are B or a satellite of
B. Since B is adjacent to A in RpΓq there is a unique module B ˆ t0u “ B ˆ t1u in
D˝vpΓq corresponding to B. If C is a satellite of B in RpΓq then for every c P C and
every b P B we have lkpcq Ă lkpbq, so for every ` P lkpcq there are edges c ` b in
Γ. If ` “ v then it does not appear in D˝vpΓq. Otherwise, D˝vpΓq contains edges:

pc, 0q p`, 0q pb, 0q “ pb, 1q p`, 1q pc, 1q

Thus any module of D˝vpΓq corresponding to a satellite of B in RpΓq is a satellite of
B ˆ t0u in RpD˝vpΓqq. In particular, every odd module of D˝vpΓq is either B ˆ t0u or
a satellite of B ˆ t0u, so D˝vpΓq belongs to case (1).

In case (1), pick v P A, and consider D˝vpΓq. Again, by Lemma 4.6 the possible
odd modules of D˝vpΓq come from odd modules of Γ that are not A or one of its
satellites in RpΓq. But (1) says there are none of these, so D˝vpΓq belongs to case (0)

In case (0) there are no odd modules, so Γ is a double by Proposition 4.4.

In the other direction we show that if there exists v P Γ such that (2) is true
for D˝vpΓq then (2) was already true in Γ. Thus, by induction on the link doubling
sequence, if (2) is false in Γ then it remains false in any iterated link double of Γ.
Therefore, every iterated link double of Γ contains odd twin modules, so is not a
graph double, so Γ is not a near double.

Suppose there is v P Γ such that (2) is true for D˝vpΓq. Let σ : D˝vpΓq Ñ D˝vpΓq
be the involution that fixes the first coordinate and exchanges 0 and 1 in the
second coordinate. Let π : D˝vpΓq Ñ Γ be projection to the first coordinate. By
construction of D˝vpΓq, the map π sends edges to edges. It follows that π sends twin
modules to twin modules, so it induces π : RpD˝vpΓqq Ñ RpΓq that sends vertices to
vertices and edges to edges.

Furthermore, π preserves the satellite relationship, as follows. Suppose B is a
satellite of A in RpD˝vpΓqq. Then lkpBq Ă lkpAq, so πplkpBqqq Ă πplkpAqq Ă lkpπpAqq.
However, it is possible that πplkpBqq Ĺ lkpπpBqq, which happens when tvu “
MΓpvq P lkpπpBqq, so that π´1pMΓpvqq “ H. To show πpBq is a satellite of πpAq
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we must rule out the possibility that tvu “MΓpvq P lkpπpBqq ´ lkpπpAqq. Suppose
this is the case. Clearly πpAq R stpMΓpvqq. We cannot have πpAq as a satellite of
MΓpvq, because that would mean that lkpπpBqq ´ tvu Ă lkpπpAqq Ă lkpMΓpvqq, but
then triangle-freeness implies lkpπpBqq “ tvu, which would make v a cut vertex of
Γ, which is a contradiction. By Lemma 4.6, the remaining option is that A and
σpAq are distinct. The condition πpBq P lkpMΓpvqq implies σ fixes the vertices in
B. For any C P lkpBq Ă lkpAq we have πpCq R stpMΓpvqq by triangle-freeness, so
for all a P A, b P B, and c P C there are segments a c b and σpbq σpcq σpaq,
with b “ σpbq, σpcq ‰ c, and σpaq ‰ a. By construction of D˝vpΓq, if a ‰ σpaq
and c ‰ σpcq and there exist edges a c and σpaq σpcq then there do not exist
edges a σpcq and c σpaq. This contradicts σpcq P lkpbq Ă lkpaq. Thus, πpBq is a
satellite of πpAq.

Now we argue that (2) for D˝vpΓq implies (2) for Γ. Since (2) is true for D˝vpΓq,
there are modules A and B of D˝vpΓq that are neighbors in RpD˝vpΓqq, and such that
every odd module of D˝vpΓq is either A or B or a satellite of A or B in RpD˝vpΓqq.
Since π : RpD˝vpΓqq Ñ RpΓq preserves satellites, the potential odd modules of Γ are,
according to Lemma 4.6, either MΓpvq or one of its satellites, or the projection of
an odd module of D˝vpΓq, which by hypothesis must be πpAq or πpBq or a satellite
of one of these two.

Since A and B are adjacent, so are πpAq and πpBq. By triangle-freeness, they
cannot both be in lkpMΓpvqq. Suppose πpBq is not in lkpMΓpvqq. The alternatives
are πpBq “MΓpvq, πpBq is a satellite of MΓpvq, or πpBq is neither in stpMΓpvqq nor
a satellite of MΓpvq.

If πpBq “MΓpvq or πpBq is a satellite of MΓpvq then since A and B are adjacent,
πpAq P lkpMΓpvqq. If C is a satellite of B then lkpπpCqq Ă lkpπpBqq Ă lkpMΓpvqq,
so πpCq is a satellite of MΓpvq, so every odd module of Γ is either MΓpvq or πpAq
or a satellite of one of these. Since πpAq P lkpMΓpvqq, vertices πpAq and MΓpvq are
adjacent in RpΓq so (2) is true for Γ.

Suppose πpBq is neither in stpMΓpvqq nor a satellite of MΓpvq. Then πpBqˆt0u ‰
πpBq ˆ t1u are distinct and symmetric, so we may assume B “ πpBq ˆ t0u. We
will show that B and its satellites are even. Suppose C is an odd satellite of B.
Since C is odd, πpCq is not MΓpvq or a satellite of MΓpvq, by Lemma 4.6. Since
C is a satellite of B and π preserves satellites, MΓpvq R lkpπpBqq Ą lkpπpCqq, so
πpCq ˆ t0u ‰ πpCq ˆ t1u are distinct odd modules. Triangle-freeness implies that
πpBq ˆ t0u, πpBq ˆ t1u, and satellites of either of these two are distinct from A and
satellites of A. So, by property (2) for D˝vpΓq, both of πpCq ˆ t0u and πpCq ˆ t1u
are satellites of B. However, for πpCq ˆ t1u to be a satellite of B “ πpBq ˆ t0u
implies lkpπpCq ˆ t1uq Ă π´1plkpMΓpvqqq, so πpCq is a satellite of MΓpvq in RpΓq,
a contradiction, as we have already ruled this out. Similarly, if B is odd then
πpBq ˆ t1u is a satellite of B “ πpBq ˆ t0u, so the same argument implies πpBq
is a satellite of MΓpvq in RpΓq, which contradicts that B is odd. Thus, B and its
satellites are even.

The same arguments apply after swapping the roles of A and B.
In conclusion, if one of πpAq or πpBq is equal to or a satellite of MΓpvq then (2)

is true for Γ and we are done. Otherwise, since πpAq and πpBq cannot both be in
lkpMΓpvqq, we may assume that πpBq is not, which implies that B and its satellites
are even. If πpAq is also not in lkpMΓpvqq then A and its satellites are also even,
leaving only MΓpvq and its satellites as possible odd modules of Γ, so (1) is true for
Γ. On the other hand, if πpAq P lkpMΓpvqq then the potential odd modules of Γ are
MΓpvq, πpAq, or a satellite of one of these adjacent vertices, so (2) is true for Γ. �

4.2. Cloning.
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Definition 4.8. Let v be a vertex of a graph Γ. To clone v means to add a new
vertex v1 and connect it by an edge to each vertex of lkpvq to make a new graph
Γ1 :“ Γ ˚lkpvq v

1 in which v and v1 are twins.

Definition 4.9. A vertex of a graph is a singleton if it has no twins. A vertex is
clonable if it is a satellite of at least two other vertices, and unclonable otherwise.

Proposition 4.10. Let v be a clonable vertex of a connected, triangle-free graph Γ.
Cloning v produces a quasiisometric RACG: the Davis complex ΣΓ is quasiisometric
to ΣΓ˚lkpvqv1 by a quasiisometry that restricts to a color preserving isomorphism on
each translate of ΣΓ´tvu.

The proof of Proposition 4.10 has two parts: we define base quasiisometries in
Lemma 4.11 that are designed to facilitate an application of Proposition 2.10.

Lemma 4.11. For every n ě 2 there is a quasiisometry φ between the pn ` 1q–
valent tree Tn`1 with edges colored a, b, c, x1,. . . ,xn´2 (with exactly one edge of
each color at each vertex) and the pn` 2q–valent tree Tn`2 with edges colored a, b,
c, d, x1,. . . ,xn´2 with the following properties:

‚ φ is bijective on vertices.
‚ φ induces a bijection between the set of S–colored components of Tn`1 and

the set of S–colored components of Tn`2, where S :“ ta, b, x1, . . . , xn´2u is
the set of ‘static’ colors.

‚ φ restricts to a color-preserving isomorphism on each S–colored component.

In the proofs of Lemma 4.11 and Lemma 4.22 we use without further explanation
the following well-known construction. If p, q, r are vertices of a tree such that
q P lkprq is between p and r then the map that replaces the edge q r with an edge
p r is p1` dpp, qqq–biLipschitz. To see this, consider a geodesic v0, . . . , vn in the
original tree structure such that vm “ q and vm`1 “ r, for some 0 ď m ă n. In the
new tree structure there is a path from v0 to vn given by v0, . . . , vm followed by a
geodesic from vm “ q to p, then the new edge p r “ vm`1, then continuing with
vm`2,. . . ,vn. Thus, the distance from v0 to vn increased by at most an additive factor
of dpp, qq. Since vertex distances are integral, distances increase by a multiplicative
factor of at most 1 ` dpp, qq. The other inequality can be proved by making the
same argument for the inverse map.

In the literature this map is sometimes described as an ‘edge-slide’ move, where
it is imagined that the target of the initial incidence map for q r continuously
‘slides’ along a specified edge path, which in this case is the geodesic from q to
p. More generally, we can make infinitely many such edge-slides simultaneously
without compounding the biLipschitz constant, provided that no edge-to-be-slid is
contained in the slide path of another.

Proof of Lemma 4.11. Pick a base vertex w0 in Tn`1. Given a vertex v we speak of
‘incoming’ and ‘outgoing’ edges with respect to the chosen basepoint; ie, an outgoing
edge at v leads farther from w0. Since we are working in a tree, for every vertex
v and every word in letters a, b, c, x1,. . . there is a unique edge path in the tree
starting from v whose edges are colored by successive letters of the given word.
Words without repeated successive letters are geodesics, and if we identify w0 with
the empty word, then every vertex can be described uniquely by a geodesic word.

Each S–colored component has a unique vertex wi closest to w0. We assume that
the vertices wi are ordered by increasing distance from w0; that is, if i ă j, then the
distance from wj to w0 is greater than or equal to the distance from wi to w0. For
phase 1 of the construction, consider the following map that fixes all of the vertices
and rearranges the c–colored edges. All of the vertices w1, w2, . . . have an incoming
c–edge, and every other vertex has an outgoing c–edge. Working inductively with
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increasing distance from w0, for every vertex v with an outgoing c–edge, remove
the c–edge between vca and vcac and connect v and vcac by a c–edge. This map
is 3–biLipschitz on the vertex set. In the new tree structure, w1, w2, . . . still have
one incoming c–edge, the vertices w1a,w2a, . . . have either zero or two c–edges, and
every other vertex has two outgoing c–edges.

For phase 2 of the construction, for each i ě 1 consider the two geodesic rays
wi, wib, wiba, wibab, . . . and wi, wia,wiab, wiaba, . . . based at wi. On the first ray,
let every vertex after wi pass one of its c–edges to its predecessor. On the second ray,
if wia has two c–edges, do nothing, and if it has no c–edges, then let every vertex
after wia pass both of its c–edges its predecessor. Thus, wi receives one additional
c–edge and passes none, wia already has or receives two c–edges and passes none,
and every other vertex receives the same number of c–edges from its successor as it
passes to its predecessor. Hence, every vertex now has two incident c–edges. The
phase 2 map is 2–biLipschitz on the vertex set.

The composition of the two phases is a 6–biLipschitz map on the vertex set taking
Tn`1 to an pn` 2q–valent tree such that every vertex in the image has exactly two
incident c–edges and one of each color from S. By construction, the map is a color
preserving isometry on each S–colored component. The tcu–colored components of
the image are biinfinite geodesics. On each such geodesic, recolor the edges so that
they alternate c and d. The result is isomorphic to Tn`2 as colored trees. �

Proof of Proposition 4.10. Since Γ is connected, H ‰ L :“ lkpvq. Since v is clonable,
C :“ tc P Γ´ tvu | L Ă lkpcqu contains at least two vertices. Since Γ is triangle-free
and L ‰ H, C Y tvu is an anticlique. Since |C| ě 2, there is a quasiisometry
ψ : ΣCYtvu Ñ ΣCYtv,v1u given by Lemma 4.11 that restricts to color preserving
isomorphisms on each copy of ΣC . We may assume, up to pre-composing by
translation in WCYtvu, that ψ fixes ΣC . Crossing with the identity on ΣL gives
a quasiisometry IdΣL

ˆ ψ from ΣL ˆ ΣCYtvu “ ΣLYCYtvu to ΣL ˆ ΣCYtv,v1u “

ΣLYCYtv,v1u that preserves edge colors for all edges colored by LYC. In particular,
the map matches up translates of ΣLYC bijectively, and restricts to a color-preserving
isomorphism on each such translate.

If the vertex set of Γ is tvu Y C Y L, we are done. Otherwise, we can write WΓ

and WΓ˚Lv1 as amalgams:

WΓ “WΓ´tvu ˚WLˆWC
pWL ˆ pWC ˚Wtvuqq

WΓ˚Lv1 “WΓ´tvu ˚WLˆWC
pWL ˆ pWC ˚Wtv,v1uqq

Apply Proposition 2.10 with base maps IdWΓ´tvu
and IdΣL

ˆψ on the vertex groups
of the given splittings. We check that the hypotheses of Proposition 2.10 are
satisfied for IdΣL

ˆ ψ. The check for IdWΓ´tvu
is similar. The construction has

been arranged so that Conditions (1) and (2) Proposition 2.10 are satisfied. For
(3), note that WLYC acts by color preserving isomorphisms of ΣLYC , freely and
transitively on vertices. Thus, if pIdΣL

ˆ ψqpp1, gqΣLYCq “ p1, g
1qΣLYC then let

h1 “ pIdΣL
ˆ ψqpp1, gq1q P p1, g1qWLYC so that IdΣL

ˆ ψ and h1pIdΣL
ˆ ψqp1, gq´1

are color preserving isomorphisms of p1, gqΣLYC that agree on one vertex, hence on
all. �

Proposition 4.12. Let Γ be a triangle-free graph without separating cliques. Then
WΓ is quasiisometric to WΓ1 , where Γ1 is the blow-up graph RpΓqω

1

for the weight
function ω1 derived from the weight function ωpMq :“ |M | of RpΓq as follows:

‚ ω1pMq “ 1 if M is an unclonable singleton.
‚ ω1pMq “ 2 if M :

– is a clonable singleton, or
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– ωpMq “ 2, or
– ωpMq ą 2 and M is a satellite in RpΓq.

‚ ω1pMq “ 4 otherwise.

Proof. We will change Γ into Γ1 by cloning or retiring clones in such a way that WΓ

and W 1
Γ are quasiisometric by Proposition 4.10.

If M is an unclonable singleton or if |M | “ 2, then no change is necessary.
If M “ tvu is a clonable singleton then cloning v creates a graph in which v

belongs to a twin module of size 2.
If M is a twin module of Γ containing a vertex v where |M | ą 2 and M is a

satellite of N in RpΓq then for any vertex w P N , v is a satellite of w and has at
least two twins v1 and v2. Delete v2. In the resulting graph v is clonable, since it is
a satellite of v1 and w. Cloning v is therefore a quasiisometry on the level of Coxeter
groups, and results in a graph isomorphic to Γ, so deleting v2 induces the inverse
quasiisometry on the level of Coxeter groups. Iterating this process, we can arrange
ω1pMq “ 2. Similarly, if M is not a satellite but |M | ą 4 then deleting a vertex from
M induces a quasiisometry of Coxeter groups, so we can arrange ω1pMq “ 4.

Finally, if |M | “ 3 but M is not a satellite in RpΓq then we can clone a vertex of
M without changing the quasiisometry type of WΓ, so we make ω1pMq “ 4. �

Corollary 4.13. If Γi and pRpΓiq, ω
1
iq for i “ 1, 2 are as in Proposition 4.12 and

pRpΓ1q, ω
1
1q and pRpΓ2q, ω

1
2q are isomorphic as weighted graphs then WΓ1

and WΓ2

are quasiisometric.

Corollary 4.14. A triangle-free graph with no separating cliques and no unclonable
singletons is RAAGedy.

Proof. Let Γ1 :“ RpΓqω
1

as in Proposition 4.12, so that WΓ is quasiisometric to WΓ1

and ω1 does not take the value 1. Since ω1 takes only even values, Γ1 is isomorphic
to the graph double of the blow-up graph RpΓqω

1
{2. Apply Theorem 2.4. �

As an application, we upgrade the conclusion of Proposition 3.12:

Corollary 4.15. Let p∆, ωq be a weighted graph such that ∆ is connected, has more
than one vertex, is triangle-free and twin-free, and such that ω takes the value 1 only
on leaves of ∆, and if ∆ is a single edge then ω does not take the value 1. Then the
blow-up graph ∆ω is triangle-free without separating cliques and is RAAGedy.

Proof. Apply Corollary 4.14. This requires showing that ∆ω is triangle-free without
separating cliques or unclonable singletons. By Proposition 3.12, ∆ω is triangle-free
and strongly CFS, and the latter implies there are no separating cliques.

Singletons of ∆ω come from vertices of ∆ with weight 1. By hypothesis, any such
vertex is a leaf of ∆. Suppose u is a leaf in ∆ with weight 1 and v is the vertex
of ∆ adjacent to u. By hypothesis, u v is not all of ∆. Since ∆ is connected, v
has some neighbor w ‰ u. The vertex w is not a leaf, since if it were then u and w
would be twins, but ∆ is twin-free. Hence ωpwq ą 1. In ∆ω, pu, 0q is a satellite of
all the vertices pw, 0q, . . . , pw,ωpwq ´ 1q, of which there are at least two, so pu, 0q is
clonable. Thus, ∆ω has no unclonable singletons. �

If we assume the ∆ is twin-free then a blow-up graph Γ “ ∆ω is a graph double
precisely when ω takes only even values. In [16] it is shown that when Γ contains
an induced cycle of length greater than 6 with no 2–chord, then Γ does not admit
a FIDL–Λ. Thus, by taking ∆ to be twin-free containing a long cycle without
2–chords and taking ω to be uneven we get many examples of blow-up graphs ∆ω

to which neither the Davis-Januszkiewicz nor Dani-Levcovitz conditions apply, but
that are RAAGedy by Corollary 4.15.
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Finally, we give an analogue of the ‘near-double’ construction to describe when
passing to link doubles can eliminate unclonable singletons:

Theorem 4.16. A triangle-free graph Γ without separating cliques is RAAGedy if
any of the following are true:

‚ There are no unclonable singletons.
‚ There is a vertex v such that the set of unclonable singletons is contained

in the set consisting of v and its satellites.
‚ There are adjacent vertices v and w such that the set of unclonable singletons

is contained in the set consisting of v and w and their satellites.

Definition 4.17. We call a graph satisfying Theorem 4.16 a coarse near double.

Proof. As in Proposition 4.12, without changing the quasiisometry type of WΓ we
may replace Γ by a graph Γ1 in which all twin modules are even except those coming
from unclonable singletons of Γ. The hypotheses control the relative arrangement
of those unclonable singletons and match the hypothesis of Proposition 4.7, so Γ1 is
a near double. Thus, WΓ is quasiisometric to WΓ1 , by Proposition 4.10, and WΓ1 is
commensurable to a RAAG, by Proposition 4.3 �

Figure 5. Some coarse near doubles Γ (top row) and graphs ∆
(bottom row) such that WΓ is quasiisometric to A∆, respectively.

Example 4.18. The top row of Figure 5 shows the only three triangle-free CFS
graphs with at most 9 vertices that are not near doubles and for which Dani-Levcovitz
does not produce a finite-index RAAG subgroup, but to which Theorem 4.16 applies.
These are the smallest examples that we know for which WΓ is quasiisometric to a
RAAG, but we do not know if WΓ is commensurable to some RAAG.

In each case there is an adjacent pair of unclonable singletons (the extreme left
and right vertices, in red) and one other odd module, which consists of clonable
vertices (blue). Clone a vertex from this module to make it even. The remaining
odd modules are a pair of adjacent singletons. Doubling over these two vertices
produces a graph that is a double of the corresponding graph in the bottom row. ˛

4.3. Unfolding. We introduce a new operation on graphs that induces a quasi-
isometry of their respective RACGs. We first state a result, then give motivating
examples, then prove the result.

Proposition 4.19. Suppose Γ is triangle-free with a separating join E ˚ F . Let G
be a union of connected components of Γ´ pE ˚ F q, and let H :“ pΓ´ E ˚ F q ´G.
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Let Ḡ be the union of F and G and the neighbors of G in E. Let H̄ be the union of
F and H and the neighbors of H in E. Partition E as follows:

A :“ E X ḠX H̄c “ ta0, a1, . . . , a`u

B :“ E X Ḡc “ tb0, b1, . . . , bmu

C :“ E X ḠX H̄

Suppose that A and B are nonempty and C “ tcu is a single vertex.
Then WΓ is quasiisometric to WΓ1 , where Γ1 is a graph constructed as follows.

The vertex set is the vertex set of Γ plus one new vertex d, with D :“ tdu. Add
edges so that pD \ Eq ˚ F Ă Γ1. If x y is an edge in Ḡ then add an edge from x
to y in Γ1. If x y is an edge of H̄ such that x ‰ c ‰ y then add an edge from x to
y in Γ1. If x c is an edge of H̄ then add an edge from x to d in Γ1.

The quasiisometry can be constructed so that each copy of ΣḠ in ΣΓ is sent to
within uniformly bounded Hausdorff distance of a copy of ΣḠ in ΣΓ1 , and each copy
of ΣḠ in ΣΓ1 is Hausdorff close to the image of a copy from ΣΓ.

Furthermore, on each copy of ΣḠ in ΣΓ the quasiisometry restricts to a map that
is uniformly bounded distance from a color preserving cubical isomorphism.

Similar statements are true for ΣH̄ , except that c–edges are sent to d–edges.

Example 4.20. Consider the graphs Γ and Γ1 of Figure 6.

c ba

f0 f1

g0 g1 h0 h1

(a) Γ

dc

ba

f0 f1

g0
g1 h1

h0

(b) Intermediate

c

ba f0

f1

g0

g1

h0

h1d

(c) Γ1

Figure 6. Unfolding visualized as a continuous deformation.

Γ1 is obtained from Γ by unfolding as in Proposition 4.19 with A :“ tau, B :“ tbu,
C :“ tcu, E :“ A\ B \ C, F :“ tf0, f1u, G :“ tg0, g1u, and H :“ th0, h1u, so WΓ

and WΓ1 are quasiisometric. ˛

In the previous example Γ is a near double and admits a FIDL–Λ, so we already
knew it was RAAGedy. In the next example unfolding is the only way that we know
to say that the graph is RAAGedy.

Example 4.21. Consider the graphs Γ and Γ1 of Figure 7.
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(a) Γ

f1
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b2

h1

b1b0
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(b) Γ1 (c) ∆

Figure 7. Unfolding example.

As in the previous example, the sets for Proposition 4.19 are indicated by their
lowercase vertex labels, and we conclude that WΓ is quasiisometric to WΓ1 .
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In Γ, vertices h0, h1, b0, c, and a are all unclonable singletons, since a and b0 are
only satellites of c, and vertices h0, h1, and c are not satellites at all. The graph is
not a near double. It also contains an odd cycle, so it does not admit a FIDL–Λ.

In Γ1, d and b0 are twins and c and a are twins. The only unclonable singletons
are h0 and h1, which are adjacent. So, clone g and then link double over h0 and h1.
Conclude that WΓ and WΓ1 are quasiisometric to A∆, for the ∆ of Figure 7c. ˛

For the proof of Proposition 4.19 we need a variation of Lemma 4.11.

Lemma 4.22. For every m,n ě 0 there is a quasiisometry φ between the pm`n`3q–
valent tree Tm`n`3 with edges colored a0,. . . , am, b0,. . . ,bn, c (with exactly one edge
of each color at each vertex) and the pm ` n ` 4q–valent tree Tm`n`4 with edges
colored a0,. . . , am, b0,. . . ,bn, c, d with the following properties:

‚ φ sends each ta0, . . . , am, cu–colored component of Tm`n`3 within uniformly
bounded Hausdorff distance of a unique ta0, . . . , am, cu–colored component
of Tm`n`4, and every such component of Tm`n`4 is the coarse image of a
unique component of Tm`n`3. Furthermore, for each such component the
quasiisometry restricts to a color-preserving isomorphism except at a single
vertex.

‚ φ takes every tb0, . . . , bn, cu–colored component of Tm`n`3 within uniformly
bounded Hausdorff distance of a unique tb0, . . . , bn, du–colored component
of Tm`n`4, and every such component of Tm`n`4 is the coarse image of a
unique component of Tm`n`3. Furthermore, for each tb0, . . . , bn, cu–colored
component of Tm`n`3 the quasiisometry restricts, except at a single vertex,
to an isomorphism that preserves bj–edges for each j and takes c–edges to
d–edges.

Proof. As in Lemma 4.11, choose a base vertex w0 of Tm`n`3and describe vertices
according to colored paths.

For phase 1 of the construction, consider every vertex v with an outgoing c–edge.
Add a new edge labelled d at v, and call its opposite vertex vd. For each j, delete
the edge between vc and vcbj and instead connect vcbj to vd by an edge labelled bj .
The effect is to ‘unfold’ all of the c–edges, leaving the ai–edges in place at the end
of the c–edge and moving the bj–edges to the end of the new d–edge. See Figure 8.
Call the result φ1. It is a coarse map, in the sense that some vertices are sent
to a set of 2 vertices at uniformly bounded distance 2 from one another. φ1 is a
p3, 2q–quasiisometry. It may be easier to visualize the inverse of the (coarse) map in
Figure 8: it ‘folds’ co-incident edges v vc and v vd together to make a single
edge v vc. This is actually a map, but is not 1 to 1 on vertices.

The coarse map φ1 has the additional property that for any ta0, . . . , am, cu–
component C there is a unique color preserving isomorphism φC1 such that for
all vertices v P C we have φC1 pvq P φ1pvq. The same is true for tb0, . . . , bn, cu–
components, except that edges colored c are sent to edges colored d. This is to say
that at the level of trees there is not a canonically nice way to make choices of image
points such that φ1 is an honest map instead of a coarse map, but at the level of
ta0, . . . , am, cu–component and tb0, . . . , bn, cu–component there is, and it is unique,
so we will not further belabor the point, and simply speak of the restriction of φ1

to C as a well defined map. So in Figure 8, we would say that φ1 sends the unique
a0c (red-green) colored geodesic through the basepoint on the left isomorphically to
the unique a0c (red-green) colored geodesic through the basepoint on the right, and
sends the unique bc (blue-green) colored geodesic through the basepoint on the left
isomorphically to the unique bd (blue-olive) colored geodesic through the base point
on the right.
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Figure 8. Phase 1 coarse map φ1, with a0 red, b0 blue, c green, d
olive

Vertices with an incoming c–edge have outgoing ta0, . . . , amu–edges, but no
incident tb0, . . . , bn, du–edges. Vertices with an incoming d–edge have outgoing
tb0, . . . , bnu–edges, but no incident ta0, . . . , am, cu–edges. All other vertices have
one incident edge of each color.

For phase 2 of the construction, define a map φ2 inductively with increasing
distance to w0, as follows. See also Figure 9. Our map φ2 will be injective on
vertices, but rearrange the placement of some edges.

Suppose v is a vertex of less than full valence (of valence less than m` n` 4)
and its incoming edge is colored c. Then v has no tb0, . . . , bn, du–edges. The vertex
va0db0a0 had full valence at the end of phase 1, since it has incoming edge colored a0.
We claim it still has full valence now, so we can take all of its tb0, . . . , bn, du–edges
and donate them to v. We further claim that none of the other phase 2 moves affect
an edge on the geodesic between v and va0db0a0.

Now suppose v has less than full valence with incoming a0–edge. This could
happen if it had full valence at the end of phase 1, but donated its tb0, . . . , bn, du–
edges to a predecessor earlier in phase 2. The vertex vca0b0a0 has full valence,
because it did at the end of phase 1 and its last four edges are not a0db0a0, so
it was not called upon to donate to a vertex with incoming c–edge. Take its
tb0, . . . , bn, du–edges and donate them to v.

The construction for v with incoming d– or b0–edges is similar, swapping the
roles of a0 and b0 and those of c and d.

Figure 9. Choices of donors for phase 2 map.

Now we confirm the claim that these four types of donations do not interfere
with one another. Given a vertex u, let δpuq denote its donor, if any. Suppose v is a
predecessor of w and let w1 be the immediate predecessor of w. For the geodesic
rv, δpvqs to end on rw, δpwqs, and thus potentially have the donation to v interfere
with the donation to w, would require a terminal segment of rv, δpvqs to coincide
with an initial segment of rw1, δpwqs. The four possible labels of rv, δpvqs are:

a0db0a0 ca0b0a0 b0ca0b0 db0a0b0

The four possible labels of rw1, δpwqs are:

ca0db0a0 a0ca0b0a0 db0ca0b0 b0db0a0b0

The maximal overlap between a suffix of the former and a prefix of the latter is a
single letter, which means that rv, δpvqs X rw, δpwqs is empty unless w “ δpvq. Even
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in this case we have arranged that the edges donated to v by w are not one of the
first edges on rw, δpwqs, since when w donates tb0, . . . , bn, du–edges, rw, δpwqs starts
with c, and when w donates ta0, . . . , an, du–edges, rw, δpwqs starts with d.

The new edges added connect vertices that were at distance at most 8 after
phase 1, so the map φ2 of phase 2 is 8–biLipschitz on vertices.

Consider a tb0, . . . , bn, du–component in the tree before phase 2, and suppose w
is its closest vertex to w0. Suppose that during phase 2 a predecessor v of w took
the tb0, . . . , bn, du–edges from w. By construction, all predecessors of v are already
full valence, so no vertex of tb0, . . . , bn, du–component at w other than w will be
called upon to donate tb0, . . . , bn, du–edges. Thus, for any nontrivial geodesic word
u in letters tb0, . . . , bn, du, φ2pwuq “ vu. However, φ2pwq “ w. So φ2 restricted to
the tb0, . . . , bn, du–component based at w is a color preserving isomorphism except
at the vertex w, since an isomorphism of this component would have sent w to v.

Similarly, each ta0, . . . , am, cu–component is sent to within bounded Hausdorff
distance of an ta0, . . . , am, cu–component, and the map restricts to a color preserving
isomorphism except possibly at the unique vertex closest to w0. �

Proof of Proposition 4.19. Since Γ is triangle-free, E “ AYB Y C is an anticlique,
so ΣE is a tree, as is ΣE1 for E1 :“ A Y B Y C Y D. By Lemma 4.22 there is a
quasiisometry ψ : ΣAYBYC Ñ ΣAYBYCYD that coarsely takes ΣAYC–components
to ΣAYC–components, ΣBYC–components to ΣBYD–components, and on each such
component restricts to a color preserving isomorphism except at a single vertex,
and except for the fact that in the second case c–edges are sent to d–edges. Define:

ψ1 :“ IdΣF
ˆ ψ : ΣF˚E “ ΣF ˆ ΣAYBYC

Ñ ΣF ˆ ΣAYBYCYD “ ΣF˚E1

Because this map is just a product, the good behavior of ψ on colored components
carries over. Specifically, if the restriction of ψ to the pAY Cq–component of ΣE

based at vertex w sends it to the pAY Cq–component of ΣE1 based at v then the
restriction of ψ is a color preserving isomorphism on that component, except at w if
ψpwq ‰ v, and the distance from v to ψpwq is uniformly bounded. Then ψ1 restricted
to the ΣF˚pAYCq–component of ΣF˚E based at p1, wq sends it to the ΣF˚pAYCq–
component of ΣF˚E1 based at p1, vq, and is a color preserving cubical isomorphism
except along ΣF ˆ twu, which is sent to ΣF ˆ tψpwqu instead of ΣF ˆ tvu. But
these two sets are parallel at distance dpv, ψpwqq, which was uniformly bounded, so
the restriction of ψ1 to an pAY Cq–component is uniformly bounded distance from
a color preserving cubical isomorphism.

Similar statements hold for copies of ΣF˚pBYCq, except that c–edges change to
d–edges.

According to our setup, Γ “ ḠY H̄ and ḠX H̄ “ F YC Ă F ˚E. This gives the
following splittings of WΓ and WΓ1 as graphs of groups, where each edge group is
simply the intersection of its two vertex groups.

WΓ “WḠ
WF˚pAYCq

WF˚E
WF˚pBYCq

WH̄

WΓ1 “WḠ
WF˚pAYCq

WF˚E1
WF˚pBYDq

WH̄1

Now apply Proposition 2.10 to get a quasiisometry between WΓ and WΓ1 as a
tree of quasiisometries with respect to the given splittings, with base maps:

‚ The identity on WḠ.
‚ ψ1 : WF˚E ÑWF˚E1

‚ The isomorphism WH̄ ÑWH̄1 fixing each bj and sending c to d. �

The check that the hypotheses of Proposition 2.10 are satisfied is similar to the one
in the proof of Proposition 4.10: Condition (2) has been established explicitly, and
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Conditions (1) and (3) follow from the fact that ψ1 is uniformly bounded distance
from a color preserving isomorphism on each coset.

Here is an application of Proposition 4.19.

Proposition 4.23. For every triangle-free CFS graph Γ there is a triangle-free
CFS graph Γ1 with no cut 2–paths, such that WΓ and WΓ1 are quasiisometric.

The proof will require the following lemma.

Lemma 4.24. Suppose Γ is incomplete, triangle-free, and CFS. Suppose C is a cut,
either an anticlique ta, bu or a 2–path a c b, such that Γ´ C is not connected.
Then every component of Γ´ C contains a vertex in lkpaq X lkpbq.

Proof. Let X be a component of Γ´ C, and let X̄ :“ X Y C.
Suppose there is a vertex tx, yu of mpΓq such that x P X and y P Γ´ X̄. Then x

and y are the diagonals of a square. The other diagonal of that square consists of
two nonadjacent vertices in lkpxqX lkpyq, but every path from x to y passes through
C, and the only nonadjacent points of C are a and b, so the square is ta, bu ˚ tx, yu.
In this case we are done: x P X X lkpaq X lkpbq.

Now we show there must be such a vertex of mpΓq containing a point each from
X and Γ´ X̄. Choose any x P X and y P Γ´ X̄. Since Γ is incomplete, triangle-free,
and CFS, it has no cone vertices and mpΓq contains a component whose support is
all of Γ, so there is a nontrivial path in mpΓq from a vertex with x in its support to a
vertex with y in its support. The path corresponds to a chain of squares S0, . . . , Sn
in Γ such that consecutive squares share a diagonal and x P S0 and y P Sn. Let m
be the least index such that Sm contains a vertex of Γ ´ X̄. Call that vertex y1.
If Sm contains a vertex from X we are done, so assume not. This implies m ą 0
Consider Sm´1. It is contained in X̄, so it contains some x1 P X, since |Sm´1| “ 4
and |X̄ ´X| ď 3. We have that Sm´1 does not contain y1 and Sm does not contain
x1. The shared diagonal of Sm´1 and Sm consists of two nonadjacent vertices in
lkpx1qX lkpy1q Ă C, which must be ta, bu. Conversely, x1 and y1 are then nonadjacent
vertices in lkpaq X lkpbq, so ta, bu ˚ tx1, y1u is a square with a diagonal containing
vertices from X and Γ´ X̄. �

Proof of Proposition 4.23. Suppose Γ has a cut 2–path x c y. Take a component
C of Γ ´ tx, y, cu. Since Γ is CFS it does not have separating cliques, and, by
definition of cut 2–paths, tx, yu is not a cut pair, so C contains vertices adjacent
to x and y and c and to no other vertices of Γ´ C. Let C̄ :“ C Y tx, y, cu. By the
same reasoning C̄c contains vertices adjacent to x and y and c. By Lemma 4.24,
A :“ CX lkpxqX lkpyq ‰ H and B :“ C̄cX lkpxqX lkpyq ‰ H. Apply Proposition 4.19
with A, B, F “ tx, yu and C :“ tcu. In the resulting graph Γ1 the set tx, yu becomes
a cut pair. If Γ1 has other cut 2–paths repeat the argument until they have all
been unfolded into cut pairs. By construction, Γ1 is triangle-free, as a triangle in Γ1

would give a triangle in Γ under the natural map collapsing Γ1 to Γ. Finally, WΓ1

has quadratic divergence, since it is quasiisometric to WΓ, and Γ is CFS, so Γ1 is
CFS as well. �

Illustrating Proposition 4.23, in both Example 4.20 and Example 4.21, the graph
Γ contains a cut 2–path f0 ´ c ´ f1 that becomes a cut pair tf0, f1u in Γ1 after
unfolding.

Example 4.25. One might wonder whether the restriction |C| “ 1 in Proposi-
tion 4.19 is a limitation of the proof or of the concept. Here is an example with
|C| ą 1 that shows the analogue of Proposition 4.19 is not true. Consider the graphs
Γ and Γ1 in Figure 10.
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f0

f1c1

c0
g

h b0

a0

(a) Γ

f0

f1

c1

c0

d1

d0

g

h

b0

a0

(b) Γ1

Figure 10. Graphs showing that unfolding is not a quasiisometry
when |C| ą 1.

As in Example 4.21, the labelling of vertices in Figure 10 suggests the sets to
which they belong in the statement of Proposition 4.19. It appears that Γ1 is
obtained from Γ by an unfolding-like operation on F ˚ C, but WΓ and WΓ1 are not
quasiisometric, because their JSJ decompositions are incompatible, according to
Section 2.4.2: WΓ does not split over a 2–ended subgroup, since Γ has no cut pairs
or cut 2–paths, while WΓ1 splits over Wtf0,f1u. ˛

4.4. Equivalence classes under the graph modification operations. Consider
the graph Ξ whose vertices represent the triangle-free CFS graphs with at most 12
vertices, with an edge between vertices if the graph of one can be obtained from the
other by either link doubling, cloning, or unfolding. If two graphs Γ and Γ1 are in
the same connected component of Ξ, then WΓ and WΓ1 are quasiisometric.

Example 4.26. Consider the graphs Γ and Γ1 shown in Figure 11. They are
contained in the same component of Ξ, and each is a local minimum in Ξ with
respect to number of vertices.

0

1

2

3 4

5 6

7 8

9

x

(a) Γ

0

1 2 3

4 5

67

8

(b) Γ1

Figure 11. Two graphs in the same Ξ component.

Γ is not a coarse near double: 5, 6, 7, and 8 are all unclonable singletons. It does
not admit a FIDL–Λ since it is not bipartite.

Γ1 is a near double: it has a pair of adjacent singletons, 4 and 5, and one additional
singleton, 8, that is a satellite of 4, so D˝p5,0q ˝D

˝
4pΓ

1q is a graph double.

Γ and Γ1 are connected in Ξ by a cloning edge and a link doubling edge; specifically,
the graph obtained by cloning vertex x of Γ is isomorphic to D˝7pΓ

1q. ˛

4.5. Inductive construction revisited. Recall that Question 3.19 asks if every
RAAGedy, triangle-free graph without separating cliques is constructible by coning
from a square. It seems implausible that this should be true in light of the fact that
the unfolding and cloning operations add vertices, but in fact we can computationally
verify an affirmative answer for triangle-free CFS graph with at most 12 vertices
that are known to be RAAGedy by the results of this paper so far. For graphs of
any finite cardinality that are RAAGedy by virtue of satisfying Dani and Levcovitz’s
or Davis and Januszkiewicz’s conditions, the question has a positive answer, even if
we strengthen the condition ‘RAAGedy’ to ‘commensurable to a RAAG’:

Proposition 4.27. If Γ is a triangle-free graph without separating cliques that is
either a graph double or admits a FIDL–Λ, then Γ is constructible by coning from a
square through graphs that define RACGs commensurable to RAAGs.
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Proof. For graphs admitting a FIDL–Λ, this is the main result of [16]; the idea is to
use the fact that Λ is a forest and show that there is a Λ–leaf that can be removed
first, and then induct on the number of vertices. Here we prove the graph double
case, also by induction on the number of vertices.

Suppose Γ is a graph double. If it is a square we are done, so suppose not. Then
Γ “ DpΘq where Θ is a connected, triangle-free, incomplete graph. Recall that the
vertex set of Γ is identified with Θˆ t0, 1u.

Since Θ is finite it contains some vertex v that is not a cut vertex. Let Θ1 :“ Θ´tvu
and Γ1 “ DpΘ1q Ă Γ. Let L :“ lkΓppv, 0qq “ lkΓppv, 1qq “ lkΘpvq ˆ t0, 1u. Let
Γ2 :“ Γ ´ tpv, 1qu, so that Γ “ Γ2 ˚L pv, 1q and Γ2 “ Γ1 ˚L pv, 0q. Since Θ1 is
connected and triangle-free, it follows that Γ1 and Γ2 are triangle-free, incomplete
graphs without separating cliques. Since pv, 0q is the only vertex of Γ2 with no twin,
apply Proposition 4.7 to see Γ2 is a near double, so defines a RACG commensurable
to a RAAG, by Proposition 4.3.

Now Γ is constructible from a square by coning through graphs defining RACGs
commensurable to RAAGs, first by applying the induction hypothesis to Γ1, which
is a graph double with fewer vertices than Γ, then coning once to get Γ2 and once
more to get Γ. �

5. Obstructions to being RAAGedy

We now work from the other direction to find reasons that a right-angled Coxeter
group cannot be quasiisometric to any right-angled Artin group.

5.1. Minsquare versus CFS. Recall that for incomplete triangle-free graphs Γ
without separating cliques, an obstruction to WΓ being RAAGedy is provided by Γ
not being minsquare (see Proposition 2.16) or not being CFS (see Section 3). In
fact, we show in Theorem 6.1 that Γ must be strongly CFS if WΓ is RAAGedy. In
light of these results, we now explore the relationships between these properties.

Lemma 5.1. Let Γ be a graph. Minsquare subgraphs of Γ are in bijection with
collections C of connected components of mpΓq satisfying:

(1) C is nonempty.
(2) If tv, wu Ă

Ť

CPC supppCq and tv, wu is a vertex of mpΓq contained in
connected component C0, then C0 P C.

(3) C is minimal with respect to inclusion among collections of connected com-
ponents of mpΓq satisfying the previous two conditions.

Proof. If C is a collection of connected components of mpΓq and ∆ is a subgraph
of Γ, let ΦpCq be the span of

Ť

CPC supppCq in Γ and let Ψp∆q be the collection
of connected components C of mpΓq such that ∆ contains an induced square with
vertices in supppCq. We claim that Φ and Ψ give inverse bijections between the
set of minsquare subgraphs of Γ and collections of connected components of mpΓq
satisfying the conditions in the statement of the lemma.

Since mpΓq has no isolated vertices, C is nonempty if and only if ΦpCq contains
an induced square of Γ, and ∆ contains an induced square of Γ if and only if Ψp∆q
is a nonempty collection.

Now we want to show that Condition (2) describes square completeness. If C
satisfies Condition (2) then whenever tv, wu Ă ΦpCq is a vertex of mpΓq contained
in a connected component C0, we have C0 P C. Since C0 is a connected component
of mpΓq, every vertex adjacent to tv, wu is also contained in C0, so every induced
square of Γ with diagonal tv, wu is contained in supppC0q Ă ΦpCq. Thus, ΦpCq is
square complete.

Conversely, if ∆ is a square complete subgraph of Γ and if tv, wu Ă ∆ is a vertex
of mpΓq contained in connected component C0, then every neighbor tx, yu of tv, wu,
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of which there is at least one, corresponds to an induced square tv, wu ˚ tx, yu of Γ.
By square completeness, tx, yu Ă ∆, so C0 P Ψp∆q. Furthermore, by induction on
distance to tv, wu in C0, supppC0q Ă ∆. Applying this reasoning to each component
in Ψp∆q, we see that ΦpΨp∆qq Ă ∆. This shows that Ψp∆q satisfies Condition (2), as
follows. If tv, wu Ă

Ť

CPΨp∆q supppCq is a vertex of mpΓq contained in a component

C0, then tv, wu Ă ∆, since
Ť

CPΨp∆q supppCq induces the graph ΦpΨp∆qq Ă ∆, so

by the first part of this paragraph, C0 P Ψp∆q.
Now observe that every collection C satisfying p2q fulfills ΨpΦpCqq “ C. Indeed,

C0 P ΨpΦpCqq means that ΦpCq contains an induced square with vertices in supppC0q,
so Condition (2) gives C0 P C, ie. ΨpΦpCqq Ď C. Conversely, if C0 P C then
C0 P ΦpsupppC0qq, hence, C0 P ΨpsupppC0qq Ď ΨpΦpCqq.

Finally, we show that Condition (3) is the analogue of the minimality condition
in the definition of minsquare. Suppose C satisfies all three conditions, and define
∆ :“ ΦpCq. By the previous two steps of the argument, ∆ is square complete
and contains a square. Suppose that ∆1 is a square complete subgraph of ∆ that
contains a square. Then Ψp∆1q is a subcollection of Ψp∆q that satisfies the first two
conditions, so by minimality Ψp∆1q “ Ψp∆q. Now:

∆1 Ă ∆ “ ΦpCq “ ΦpΨp∆qq “ ΦpΨp∆1qq Ă ∆1

Thus, ∆ is square complete and contains a square, and there is no proper subgraph
of ∆ with both properties, so ∆ is minsquare.

Conversely, if ∆ is minsquare then it is square complete and contains a square,
so Ψp∆q is a collection of connected components of mpΓq that satisfies the first two
conditions. Suppose C is a subcollection of Ψp∆q satisfying the first two conditions.
Then ΦpCq is a square complete subgraph of ∆ that contains a square. By minimality
of ∆, we have ΦpCq “ ∆. But then C Ă Ψp∆q “ ΨpΦpCqq “ C. Thus, Ψp∆q is
minimal with respect to inclusion among collections of components of mpΓq satisfying
the first two conditions. �

Genevois [45, Example 7.3] showed by example that the minsquare and CFS
properties are independent. Using Lemma 5.1, we give triangle-free examples.

Example 5.2 (minsquare does not imply CFS). Consider the strongly CFS graph

Γ0 :“
0 1 2 3

54

6 , which contains an isometrically embedded path P :“ p0, 1, 2, 3q

that contains a pair t0, 2u of vertices that is not the diagonal of any square and a
pair t1, 3u that is. Construct Γ by taking two copies of Γ0 and identifying the two
copies of P with opposite orientations:

Γ :“ 0
1

2
3

4

6

5

7

9

8

m pΓq “ p0, 2q

p1, 9q

p8, 9q p0, 7q

p0, 6q p1, 4q p0, 5q

p1, 8q
p1, 3q

p2, 6q

p2, 5qp5, 6q

p2, 7q p3, 9qp3, 8q

p3, 4q

No induced square of Γ enters both copies of Γ0 ´ P , so mpΓq consists of two
disjoint copies of mpΓ0q, as shown. Thus, Γ is not CFS. On the other hand, t0, 2u is
in the support of the top component of mpΓq and also appears as a vertex in the
bottom component. Similarly, t1, 3u is in the support of the bottom component
and appears as a vertex in the top component. Since neither component has square
complete support, Lemma 5.1 says Γ is minsquare. ˛
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Example 5.3 (CFS does not imply minsquare). Consider the graphs:

Γ0 “

7

1

0

9

1 3

4 6

8

5

2

Γ :“

7

1

0

9

1 3

4 6

8

5

2

Γ0 is (strongly) CFS and contains a path γ :“ p0, 3, 6, 9q that is isometrically
embedded and does not contain a diagonal of any square. Adding the edge 0 9 to
make Γ does not disturb the CFS property, since the new edge does not kill any
square. The square spanned by t0, 3, 6, 9u in Γ does not share a diagonal with any
other square, so it is a proper minsquare subgraph of a CFS graph. ˛

Example 5.4 (minsquare and CFS does not imply strongly CFS). Let Γ0 be as in
Example 5.2. Let Γ1 be a p6, 2q–spider with one pincer foot (recall Example 3.8).
Identify the non-pincer feet of the spider with vertices t1, 3, 4, 5, 6u, and the two
vertices of the pincer foot with vertices 0 and 2. See Figure 12. All edges of the
resulting graph Γ come from either Γ0 or Γ1. The spider Γ1 is strongly CFS and
contains all vertices of Γ, so Γ is CFS.

0 1 2 3

4 5

6

Figure 12. A spider attacking a small graph.

We claim that mpΓq consists of one component isomorphic to mpΓ0q, and one
component consisting of mpΓ1q with two additional leaf vertices attached, coming
from the two possible squares that use the segment p0, 1, 2q of Γ0 and one of the
common neighbors of 0 and 2 in Γ1. This uses the fact that t0, 2u is not the diagonal
of any square in Γ0, so we do not create any connection between the copies of mpΓ0q

and mpΓ1q in mpΓq. Since mpΓq has two components, Γ is not strongly CFS.
Γ is minsquare because neither component of mpΓq satisfies Lemma 5.1. ˛

Corollary 5.5. Strongly CFS with no cone vertices implies minsquare.

Proof. If Γ is strongly CFS with no cone vertices then mpΓq is connected, so the
lone component C “ mpΓq has supppCq “ Γ and the collection tCu satisfies the
conditions of Lemma 5.1, so Γ “ ΦptCuq is minsquare. �

5.2. Stable subspaces and Morse boundaries. By a stable cycle we mean a
simple cycle in Γ of length at least 5 that is square complete. The corresponding
special subgroup is stable and 1–ended; it is virtually a hyperbolic surface group. If
Γ is RAAGedy it cannot have stable cycles, by Theorem 2.13. Indeed, this is exactly
the construction used by Behrstock [2] to give the first example of a non-RAAGedy
CFS graph (recall Figure 2). Since passing to iterated link double of Γ induces a
quasiisometry on the level of RACGs, if Γ is RAAGedy then no link double of Γ
can contain a stable cycle. In this subsection we address the possibility of finding
stable cycles in iterated link doubles.

A conjecture proposed in [81] suggested that if a graph Γ contains no stable
cycles, then none would appear in any of its link doubles. This was disproven
by a counterexample provided by Graeber et al. [48]. Their example was initially
constructed by link-doubling a graph with triangles to produce a triangle-free graph
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without stable cycles [61][Sec. 5.5]. A second link-doubling of this graph, however,
resulted in the emergence of a stable cycle. Notably, none of the three graphs in this
construction are CFS, prompting the question of whether a similar phenomenon
could occur in CFS graphs. Furthermore, the example raised the guess that one
doubling might always suffice to produce stable cycles in the triangle-free case. As
the following example shows, both assumptions are false—even within the class of
triangle-free, strongly CFS graphs.

Example 5.6 (Deeply buried stable cycle). Figure 13a gives a triangle-free, strongly
CFS graph Γ that has a deeply buried stable cycle; specifically:

(1) Γ contains no stable cycle.
(2) @v P Γ, D˝vpΓq contains no stable cycle.
(3) Dv, w P Γ, D˝pw,0qpD

˝
vpΓqq contains a stable cycle.

The first two claims are verified by enumerating and checking the possibilities. The
third is achieved by doubling first over vertex 0 and then over vertex p2, 0q. Consider
the cycle pp9, 0q, 0q, pp8, 0q, 0q, pp4, 0q, 1q, ppx, 0q, 1q, pp4, 1q, 1q, pp3, 1q, 0q, pp5, 0q, 0q,
shown in red in Figure 13b. It is induced and has a 2–chord pp4, 0q, 1q pp3, 0q, 0q
pp5, 0q, 0q, but there is no other 2–path between vertices of the cycle that is not a
subsegment of the cycle, so it is square complete. ˛
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Figure 13. A graph with a deeply buried stable cycle for Exam-
ple 5.6

We also know an example where a stable cycle appears only after performing
three link doubles, so it seems unlikely that there should be any universal bound on
how deeply stable cycles can be buried. These examples were found by computer in
our enumeration of small graphs; we do not know how to build them on demand.

Question 5.7. Can stable cycles be buried arbitrarily deeply? That is, given n,
does there exist a (triangle-free, strongly) CFS graph Γ such that for all m ă n, no
m–fold iterated link double of Γ that contains a stable cycle, but there is an n–fold
iterated link double of Γ that does?

There is a notion of Morse boundary of a group [23], which is a boundary at
infinity made of equivalence classes of Morse geodesic rays. Its topological type is
quasiisometry invariant.

Theorem 5.8 ([19]). The Morse boundary of a RAAG is totally disconnected.

A stable cycle appearing in some iterated link double of Γ implies that the Morse
boundary of WΓ contains a circle, so is an obstruction to WΓ being quasiisometric
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to a RAAG. However, as discussed in [48], the 1–skeleton of a 3–cube does not have
stable cycles in any link double, but it does have circles in its Morse boundary. Thus,
connectivity in the Morse boundary is a better obstruction to being RAAGedy than
the existence of buried stable cycles.

Fioravanti and Karrer [42] show that a group has totally disconnected Morse
boundary if it splits as amalgam of groups with totally disconnected boundaries
(including, possibly, the empty set) over a subgroup with empty relative Morse
boundary, generalizing the results in [62]. For our purposes it is enough to say that
if Γ is a thick join then WΓ has empty Morse boundary, and if ∆ ă Γ is a subgraph
contained in a thick join subgraph of Γ then the relative Morse boundary of W∆ in
WΓ is empty.

Proposition 5.9 (Base sufficient criteria for t.d. Morse boundary, cf [42, 62]).

(1) If Γ is a clique or a thick join then WΓ has empty Morse boundary.
(2) If Γ contains a subgraph ∆ such that all of the following are true:

(a) Γ´∆ has more than one component.
(b) ∆ is a clique or is contained in a thick join subgraph of Γ.
(c) For each component C of Γ´∆, WCY∆ has totally disconnected Morse

boundary.
Then WΓ has totally disconnected Morse boundary.

Definition 5.10. A decomposition-sequence of Γ is a rooted tree T of graphs where:

‚ The graph associated to the root is Γ.
‚ The graph associated to a vertex equals the union of the graphs of its

descendants, and the intersection of its descendants is contained in a thick
join subgraph or a clique of Γ.

‚ Every non-leaf vertex of T has at least 2 descendants.

Corollary 5.11 (Inductive sufficient criteria for t.d. Morse boundary). If Γ admits
a decomposition-sequence such that the graphs associated to the leaves are either
cliques or thick joins, then WΓ has totally disconnected Morse boundary.

If Corollary 5.11 is satisfied then we save ourselves the work of iterating link
doubles of Γ and searching for stable cycles; none exist.

Corollary 5.12. If Γ satisfies Corollary 5.11 then no iterated link double of Γ
contains a stable cycle.

Forthcoming work of Cordes, Karrer, and Ruane will show that the conditions of
Corollary 5.11 are also necessary. This will imply, in the 2–dimensional case, that a
RAAGedy Γ must admit a decomposition-sequence.

5.3. Obstructions from JSJ Decompositions. Recall from Section 2.4.1 that
we know some properties of the JSJ graph of cylinders of a RAAG. For instance,
it has no hanging vertices (Lemma 2.11), and rigid vertices are special subgroups
that admit no finite or 2–ended splittings (Lemma 2.12). From the quasiisometry
invariance of JSJ trees of cylinders we can conclude that Γ is not RAAGedy if the
JSJ graph of cylinders of WΓ has any of the following:

‚ A hanging vertex group.
‚ A rigid vertex group that splits over a finite or 2–ended subgroup.
‚ A rigid vertex group that is not quasiisometric to any RAAG.

Here is another obstruction that requires a little more work to justify.

Lemma 5.13 (Cf [41, Proposition 4.44]). Let ∆ be a connected, triangle-free graph
that contains a cut vertex v, and let A∆ be the RAAG defined by ∆. Let ṽ be the
cylinder vertex in the JSJ tree of cylinders T of A∆ whose stabilizer is Astpvq. Let r̃
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be a rigid vertex adjacent to ṽ in T , such that r̃ is stabilized by A∆r , where ∆r is
some maximal biconnected subgraph of ∆ containing v. Then:

‚ ṽ has infinite valence in T .
‚ If ∆r is a single edge v w then r̃ has valence 2 in T , and its stabilizer

and that of its two incident edges are Atv,wu – Z2.
‚ If ∆r is not a single edge then r̃ has infinite valence in T and the stabilizers

of r̃ and all of its incident edges are RAAGs of rank at least 3.

Proof. Partition lkpvq into subsets P1, P2,... according to which component of
∆ ´ tvu each vertex belongs. There are at least two such parts, since v is a cut
vertex. For each Pi there is a maximal biconnected subgraph ∆i containing Pi as
well as v, and containing no vertex from any other Pj . For each i such that ∆i is
either not an edge or is an edge v w where w is a cut vertex of Γ, there is a rigid
vertex r̃i in T adjacent to ṽ whose stabilizer is A∆i

. The stabilizer of the edge ẽi
between r̃i and ṽ is A∆i

X Astpvq “ AtvuYPi
. By assumption, there is at least one

rigid vertex r̃i. For this i, since lkpvq ´ Pi is nonempty, AtvuYPi
has infinite index

in Astpvq, so there are infinitely many distinct translates of ẽi in T incident to ṽ.
Now consider a rigid vertex r̃i adjacent to ṽ in T . If Pi “ twu is a singleton,

then w is necessarily also a cut vertex and ∆i is the single edge w v.
Then r̃i has incident edges in T , connecting it to ṽ and w̃, and r̃i as well as both

of these edges are stabilized by Av,w – Z2.
If Pi is not a singleton then ∆i X stpvq contains at least three vertices, since it

contains Pi and v, so the stabilizer of r̃i and the edge ẽi connecting it to ṽ are
RAAGs of rank at least 3.

Finally, since ∆ is triangle-free, Pi is an anticlique. This implies that the
biconnected subgraph ∆i contains an additional vertex that is not in stpvq, so
AstpvqX∆i

has infinite index in A∆i
, which implies there are infinitely many edges in

the orbit of ẽi incident to r̃i. �

Corollary 5.14. If Γ is an incomplete, triangle-free graph with no separating clique
and the JSJ graph of cylinders for WΓ contains a rigid vertex group that is not
virtually Z2, but has an incident edge that is virtually Z2, then Γ is not RAAGedy.

Example 5.15. Consider the graph Γ of Figure 14. The JSJ graph of cylinders is:

WΓ “Wt0,1u˚t2,7,8u
Wt0,1u˚t2,7u

Wt0,1,2,3,4,5,6,7u

The vertex on the left is a cylinder; the vertex on the right is rigid. The graph Γ
is not RAAGedy, by Corollary 5.14, since the JSJ graph of cylinders of WΓ has a
non-virtually–Z2 rigid vertex group with an incident virtually Z2 edge. ˛

01 2

3 4

56 7

8

Figure 14. The blue/violet subgraph corresponds to a cylinder in
the JSJ graph of cylinders of the RACG. The red/violet subgraph
corresponds to a non-virtually–Z2 rigid vertex. Their intersection
(violet) corresponds to a virtually–Z2 edge.

We state another kind of obstruction to being RAAGedy that one can derive
from the JSJ decomposition. We will not give a proof here, as Theorem 5.16 is a
special case of Theorem 7.5.
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Theorem 5.16 (No cycles of cuts). Let Γ be a triangle-free graph without separating
cliques. Suppose for some n ě 3 there is an anticlique ta0, . . . , an´1u such that for
all i there is a cut tai ´ api`1qu, for subscripts modulo n. Then Γ is not RAAGedy.

6. The maximal product region graph

In this section we use the maximal product region graph to distinguish some
RACGs from RAAGs. Recall Section 2.6. In Section 6.1 we show that RAAGedy
graphs are strongly CFS and establish connectivity properties of the MPRG. In
Section 6.2 we show that in the strongly CFS case the MPRG is equivariantly
quasiisometric to the stability recognizing space of Abbott, Behrstock, and Durham.
In Section 6.3 we define ladders in the MPRG as an obstruction to being RAAGedy,
and give sufficient conditions for their presence. In Section 6.4 we give examples
and non-examples.

6.1. Connectivity properties of the MPRG. In this section we establish con-
nectivity properties of the maximal product region graph. As a corollary:

Theorem 6.1. If Γ is a triangle-free, RAAGedy graph with no separating clique
then it is strongly CFS.

The proof of Theorem 6.1 is to apply quasiisometry invariance of the MPRG
(Corollary 2.23) and compare the following result (Theorem 6.2, which says the
MPRG of a 1–ended, 2–dimensional RAAG is connected), to the subsequent Propo-
sition 6.3 about connectivity of the MPRG for RACGs.

Theorem 6.1 appeared as [41, Proposition 4.52]. The proof here is similar.
[4] asserts that it is possible to deduce the same result without the triangle-free
hypothesis using results from [10].

Theorem 6.2 ([74, Corollary 4.9]). The MPRG of a 1–ended, irreducible, 2–
dimensional RAAG is an unbounded quasitree. In particular, it is connected.

Recall Definition 2.29: Denote the MPRG by ΠΓ and let RicΓ “WΓzΠΓ. Each
vertex v of RicΓ corresponds to a maximal thick join Jv of Γ, and WJv is the
stabilizer of v for WΓ ñ ΠΓ, since it is the stabilizer of ΣJv for WΓ ñ ΣΓ.

Proposition 6.3. Let Γ be a triangle-free CFS graph. The following are equivalent:

‚ ΠΓ is connected.
‚ RicΓ is connected.
‚ mpΓq is connected.
‚ Γ is strongly CFS.

Proof. Since Γ is CFS, being strongly CFS is equivalent to mpΓq being connected.
In addition, Γ is triangle-free, so every vertex belongs to some square, hence to some
maximal thick join subgraph. Thus, every generator s of WΓ fixes at least one vertex
of RicΓ, so RicΓXs.RicΓ ‰ H. By induction on word length, for every word w
whose i–th prefix is wi there is a chain RicΓ “ w0.RicΓ, . . . , wn.RicΓ “ w.RicΓ such
that wi.RicΓXwi`1.RicΓ ‰ H. If RicΓ is connected this implies ΠΓ is connected.
Conversely, Lemma 2.26 implies that if ΠΓ is connected then RicΓ is too.

The proof is completed by establishing a bijection between connected components
of RicΓ and connected components of mpΓq.

By Lemma 3.5, we can define maps φ from thick joins of Γ to joins of mpΓq by

φpA ˚Bq :“
`

A
2

˘

˚
`

B
2

˘

and ψ from joins of mpΓq to thick joins of Γ by ψpA ˚Bq :“

supppAq ˚ supppBq. Consider the two compositions: ψ ˝ φpA ˚Bq “ ψp
`

A
2

˘

˚
`

B
2

˘

q “

A ˚B and φ ˝ ψpA ˚Bq “ φpsupppAq ˚ supppBqq “
`

supppAq
2

˘

˚
`

supppBq
2

˘

, which is a
join subgraph of mpΓq containing A ˚B.
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By Proposition 2.28, a vertex v P RicΓ corresponds to a maximal thick join
Jv Ă Γ, and v w is an edge of RicΓ when Jv and Jw contain a common square. If
v w is an edge of RicΓ then φpJvq and φpJwq are joins in mpΓq with at least one
edge in common, so φ takes components of RicΓ into components of mpΓq.

Conversely, if ta, bu tc, du is an edge in mpΓq then ψpta, bu˚tc, duq “ ta, bu˚tc, du
is a square in Γ, and the set of maximal thick joins containing ta, bu ˚ tc, du is a
nonempty clique in RicΓ. Moreover, if ta, bu te, fu is another edge in mpΓq then

ψpta, bu ˚ ttc, du, te, fuuq “ ta, bu ˚
`

tc,d,e,fu
2

˘

is a thick join containing ta, bu ˚ tc, du
and ta, bu ˚ te, fu, so the set of maximal thick joins containing it is a nonempty
clique in the intersection of the clique of those containing ta, bu ˚ tc, du and the
clique of those containing ta, bu ˚ te, fu. Thus, ψ takes connected components of
mpΓq into connected components of RicΓ.

Finally, by the observation on compositions of φ and ψ, we have that φ and ψ
induce inverse bijections between connected components of RicΓ and connected
components of mpΓq. �

In the next results we will need to go between paths in the maximal product
region graph and paths in the square complex. Let Υ be a triangle-free graph, let GΥ

be the RACG or RAAG presented by Υ, let ΣΥ be its Davis complex or universal
cover of its Salvetti complex, respectively. Let RicΥ “ GΥzΠΥ be the fundamental
domain for the action on the MPRG. Let γ : r0, Ls Ñ ΠΥ be a combinatorial path.
We construct a path γ1 in ΣΓ shadowing it as follows. For each i P r0, Lq, the
maximal standard product regions γpiq and γpi` 1q intersect in a standard product
region, by definition of ΠΥ. Further, RicΥ corresponds to maximal standard product
regions of ΣΥ containing the vertex 1. Choose vertices a in the maximal standard
product region γp0q and b in the maximal standard product region γpLq. Let γ10 be
a path in ΣΥ starting at a, contained in the maximal standard product region γp0q,
and ending in γp0q X γp1q. For i` 1 P p0, Lq, let γ1i`1 be a path in ΣΥ that starts
where γ1i ended, is contained in γpi` 1q, and ends in γpi` 1q X γpi` 2q. Let γ1L be
a path in ΣΥ contained in γpLq that starts at the end of γ1L´1 and ends at b. Then
the concatenation γ1 of the γ1i is a path from a to b in ΣΥ composed of subsegments
that are contained in product regions corresponding to successive vertices of γ.

The next results Lemma 6.4 and Corollary 6.5 are implicit in [74], but we need
more precise statements than what appear there explicitly.

Lemma 6.4 (cf. [74, Section 4.1],[41, Theorem 2.35]). Let ∆ be a connected, triangle-
free, incomplete graph without a cut vertex, and that is not a join. Let Σ∆ be the
universal cover of the Salvetti complex of the RAAG A∆, and let Ric∆ “ A∆zΠ∆ be
the fundamental domain of its action on its maximal standard product region graph
as in Definition 2.29. Let Ha be the wall in Σ∆ dual to the edge 1 a for a P ∆. Let
σpHaq P Ric∆Xa.Ric∆ Ă Π∆ be the vertex corresponding to the maximal standard
product region ΣlkpaqˆΣtbP∆|lkpaqĂlkpbqu. If g and h are separated by Ha in Σ∆ then
g.Ric∆ and h.Ric∆ are separated by stpσpHaqq in Π∆.

Proof. There is a unique maximal join subgraph lkpaq ˚ tb P ∆ | lkpaq Ă lkpbqu of ∆
containing stpaq, so σpHaq P Ric∆ is well-defined. Furthermore, since a P stpaq, this
vertex is a–invariant, so σpHaq P Ric∆Xa.Ric∆.

The set of edges dual to the wall Ha is Alkpaqp1 aq. For ` P Alkpaq, any standard
product region containing an edge `p1 aq contains a square `p1 aˆ 1 bq for
some b P lkpaq, thus contains the flat `Σta,bu Ă Σstpaq. Thus, any maximal standard
product region distinct from σpHaq that contains an edge dual to Ha is adjacent to
σpHaq in Π∆.

A path γ in Π∆ from g.Ric∆ to h.Ric∆ can be shadowed by a path γ1 in Σ∆ from
g to h, which must cross Ha, by hypothesis, so γ contains a vertex corresponding to
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a maximal standard product region that contains an edge dual to Ha. These are all
in stpσpHaqq, so stpσpHaqq separates g.Ric∆ from h.Ric∆ in Π∆. �

As a corollary we make precise the way in which Π∆ is a quasitree. If it were
actually a tree we would have the statement that for every combinatorial geodesic
γ : r0, Ls Ñ Π∆ and every t P r0, Ls, the vertices γp0q and γpLq are not in a common
component of Π∆ ´ tγptqu: either γptq coincides with one of the other two or it
separates them. The actual situation is weaker in two ways:

‚ We will need stars of vertices to separate Π∆, not just single vertices.
‚ Ric∆ Ă Π∆ could be highly connected, so if γ X stpγptqq Ă g.Ric∆ then it

might be possible to detour around stpγptqq in g.Ric∆. It will turn out that
the bottlenecks appear at transition points between different translates of
Ric∆, so instead of looking at γptq we should shift to such a transition point
on γ near to γptq, where ‘near’ « diampRic∆q.

Corollary 6.5. With notation as in Lemma 6.4, let γ : r0, Ls Ñ Π∆ be a combi-
natorial geodesic. For every t P r0, Ls there is a vertex v P Π∆ such that γp0q and
γpLq are not contained in the same connected component of Π∆ ´ stpvq, and such
that dΠ∆

pv, γptqq ď diampRic∆q ` 2.

Proof. We may assume that no translate of Ric∆ contains both γp0q and γpLq, since
otherwise choosing v :“ γp0q satisfies the corollary vacuously.

Given t, by translating by the A∆ action, if necessary, we may assume γptq P Ric∆.
Take any g, h P A∆ with γp0q P g.Ric∆ and γpLq P h.Ric∆. By assumption, g ‰ h.
The 1–skeleton of a CAT(0) cube complex is a median graph, so there exists a unique
vertex m of Σ∆ that is the median of t1, g, hu. This implies that, with respect to
m, every wall H has a ‘majority side’ containing m and a complementary ‘minority
side’ containing at most one of 1, g, and h, counted with multiplicity.

We will use the fact that the map σ can be extended A∆–equivariantly to all
walls of Σ∆. Furthermore, for distinct b, c P A∆ let Hb,c be any wall dual to the
first edge of any geodesic from b to c in Σ∆. Then σpHb,cq P b.Ric∆, which follows
from equivariance and the fact that σpHaq P Ric∆Xa.Ric∆ for all a P ∆.

We estimate that dΠ∆pγptq,m.Ric∆q ď 2. If m “ 1 then the distance is 0, so the
estimate holds. Otherwise, let Hm,1 be a wall dual to the first edge on a geodesic
from m to 1 in Σ∆. We have σpHm,1q P m.Ric∆. Since 1 is on the minority
side of Hm,1, vertices g and h are on the majority side, so Hm,1 separates 1 from
tg, h,mu in Σ∆. By Lemma 6.4, stpσpHm,1qq separates Ric∆ from both g.Ric∆ and
h.Ric∆. Thus, t ě t0 :“ mintt1 | γpt1q P stpσpHm,1qqu and t ď t1 :“ maxtt1 | γpt1q P
stpσpHm,1qqu. Since γ is geodesic, t1´ t0 ď 2, so dΠ∆pγptq, tγpt0q, γpt1quq ď 1. This
gives dΠ∆pγptq,m.Ric∆q ď dΠ∆pγptq, σpHm,1qq ď 2.

Suppose m ‰ g and let Hm,g be a wall in Σ∆ dual to the first edge of some
geodesic from m to g. Then it suffices to take v :“ σpHm,gq P m.Ric∆, as follows.
The desired distance bound is satisfied, since:

dΠ∆pv, γptqq ď diampm.Ric∆q ` dpm.Ric∆, γptqq ď diampRic∆q ` 2

By definition, g is on the minority side of Hm,g, so Hm,g separates g from h
in Σ∆, which, by Lemma 6.4, implies stpσpHm,gqq separates g.Ric∆ from h.Ric∆.
Since γp0q P g.Ric∆ and γpLq P h.Ric∆, vertices γp0q and γpLq are not contained
in a common component of Π∆ ´ stpvq.

If m “ g ‰ h apply the same argument for v :“ σpHm,hq. �

Lemma 6.6. With notation as in Lemma 6.4, diampRic∆q ď diamp∆q ` 2.

Proof. Pick vertices r and s in Ric∆ with dpr, sq “ diampRic∆q. They correspond
to maximal joins Jr and Js of ∆. Take a shortest geodesic γ : r0, Ls Ñ ∆ from a
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vertex in Jr to a vertex in Js. For each integer i P r0, Ls there is a maximal join Ji
containing stpγpiqq, and Ji X Ji`1 contains the edge γpiq γpi` 1q, so Ji and Ji`1

correspond to vertices of Ric∆ whose distance is at most 1. Furthermore, Jr contains
γp0q, so it has edges in common with J0, so r is at distance at most 1 in Ric∆ from
the vertex corresponding to J0. Similarly, s is distance at most 1 from the vertex of
Ric∆ corresponding to JL. Thus, diampRic∆q ď L` 2 ď diamp∆q ` 2. �

Corollary 6.7. If Π is a graph containing sequences of vertices pxiq and pyiq such

that dpxi, yiq
iÑ8
ÝÑ 8 and for all sufficiently large i there does not exist a vertex v at

distance at least 3 from each of xi and yi whose star separates xi and yi, then Π is
not the MPRG of an irreducible, 1–ended, 2–dimensional RAAG.

Proof. Suppose ∆ is a finite, connected, triangle-free graph and x and y are vertices
in Π∆ that are not separated by the star of any vertex that is not in the 2–
neighborhood of one of them. By Corollary 6.5, if dpx, yq is large enough then
there is an approximate midpoint m of x and y whose star separates x from y, and
together with Lemma 6.6 it follows that dpm, tx, yuq ě dpx, yq{2 ´ diamp∆q ´ 4.
But dpm, tx, yuq ď 2 by hypothesis, so dpx, yq ď 2 diamp∆q ` 12. For any fixed ∆,

eventually dpxi, yiq
iÑ8
ÝÑ 8 exceeds this bound, so Π fl Π∆. �

Oh [74, Lemma 4.13] characterizes cut vertices of the MPRG of a RAAG A∆:
a cut vertex of Π∆ contained in Ric∆ is either a cut vertex of Ric∆ or is fixed by
an element of A∆ that does not fix any of its neighbors in Ric∆. Lemma 6.8 is the
analogous result for a RACG WΓ. It is more complicated because WΓ ñ ΠΓ is more
complicated than A∆ ñ Π∆. Specifically, nonadjacent vertices in RicΓ can have
common elements in their stabilizers, and Γ may contain edges that do not belong
to any maximal thick join. Both of these phenomenon give rise to loops in ΠΓ that
are not visible in RicΓ. This observation will be key in Section 6.3.

Lemma 6.8. Let Γ be a triangle-free strongly CFS graph that is not a join. One of
the following conditions hold if and only if v P RicΓ is a cut vertex of ΠΓ.

(1) There are induced subgraphs R0 and R1 of RicΓ properly containing tvu with
R0 XR1 “ tvu and EdgespRicΓq “ EdgespR0q Y EdgespR1q, and such that
for i P t0, 1u and Γi defined to be the subgraph of Γ spanned by

Ť

uPRi
Ju,

we have Γ0 X Γ1 “ Jv and EdgespΓq “ EdgespΓ0q Y EdgespΓ1q.
(2) There is a vertex s of Γ such that stpsq Ă Jv and s is not contained in any

other maximal thick join.

Proof. Since Γ is a triangle-free strongly CFS graph that is not a join, RicΓ and ΠΓ

are connected and are not single vertices, by Proposition 6.3.
Suppose v P RicΓ is a cut vertex of ΠΓ. If v separates RicΓ in ΠΓ then choose a

complementary component and take R0 to be the subgraph of RicΓ spanned by the
union of tvu and vertices of RicΓ in that connected component of ΠΓ ´ tvu. Let R1

be the subgraph of RicΓ spanned by v and RicΓ´R0. By construction, tvu Ĺ R0,
tvu Ĺ R1, R0 XR1 “ tvu and EdgespRicΓq “ EdgespR0q Y EdgespR1q.

There are two ways for (1) to fail, and we show that from either of them we can
produce a contradictory path that connects R0 to R1 in ΠΓ while avoiding v. We
conclude that v separating RicΓ in ΠΓ implies (1).

The first way for (1) to fail is if there exists s P Γ0 X Γ1 ´ Jv. Then s.v ‰ v but
s fixes vertices in R0 ´ tvu and R1 ´ tvu. Let γ be a shortest path in RicΓ from the
fixed set of s in R0 to the fixed set of s in R1. Since v separates R0 from R1 in ΠΓ,
γ goes through v. The path s.γ does not go through v, since s.v ‰ v, and it has the
same endpoints as γ, so it connects R0 to R1 in ΠΓ and avoids v.

The other way for (1) to fail is if there is an edge of Γ from a vertex s0 P Γ0 ´ Γ1

to a vertex s1 P Γ1´Γ0. By construction, this means there are vertices ui P Ri´tvu
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such that si P Jui ´ Jv. Furthermore, s0, s1 R Jv implies Wts0,s1u XWJv “ t1u.
Let γ be a minimal length path in RicΓ from u0 to u1. The concatenation of s0.γ,
s1s0.γ “ s0s1.γ, and s1.γ connects R0 and R1 in ΠΓ and avoids v.

Suppose v does not separate RicΓ in ΠΓ. Then there is some translate w.RicΓ

such that RicΓXw.RicΓ “ tvu and v separates RicΓ from w.RicΓ in ΠΓ. We induct
on the word length of w after considering what happens for generators. Consider
s P Jv not satisfying (2), so either s fixes a vertex us P RicΓ´tvu, or s only fixes v
but is adjacent in Γ to a vertex t that fixes ut P RicΓ´tvu but does not fix v. We
claim in both cases that v does not separate RicΓ and s.RicΓ in ΠΓ. In the first case
v ‰ us P RicΓXs.RicΓ. In the second case take a shortest path γ in RicΓ from v
to ut. Then t.γ contains ut and t.v but not v, and st.γ contains s.ut P s.RicΓ´tvu
and st.v “ ts.v “ t.v but not s.v “ v. Thus, there is a path in ΠΓ from s.RicΓ´tvu
to RicΓ´tvu that avoids tvu. Now write w as a minimal length word s1 ¨ ¨ ¨ sn for
si P Jv. If every si P Jv fails to satisfy (2) then every pair RicΓ and si.RicΓ are not
separated by v in ΠΓ. But then s1 ¨ ¨ ¨ si.RicΓ is not separated from s1 ¨ ¨ ¨ sisi`1.RicΓ

by v in ΠΓ, so all of RicΓ´tvu, s1.RicΓ´tvu,. . . ,s1 ¨ ¨ ¨ sn.RicΓ´tvu “ w.RicΓ´tvu
are in the same component of ΠΓ ´ tvu, contradicting the choice of w. Thus, there
is some s P Jv satisfying (2).

In the other direction we suppose (1) or (2) and produce a cut vertex v of ΠΓ.
First suppose (1). Consider the splitting WΓ “ WΓ0

˚WJv
WΓ1

. Let T be its
Bass-Serre tree. Edges of T belong to a single orbit and they are in bijection with
cosets of WJv . There are two orbits of vertices in T corresponding to cosets of WΓ0

and WΓ1
. We define a WΓ–equivariant map φ : WΓˆRicΓ Ñ VerticespT qYEdgespT q

and then check it actually defines a map on ΠΓ “WΓ.RicΓ.

φpw.uq :“

$

’

&

’

%

the vertex wWΓ0
if u P R0 ´ tvu

the vertex wWΓ1
if u P R1 ´ tvu

the edge wWJv if u “ v

Suppose u P R0 ´ tvu and w1.u “ w.u. Then w1 P wWJu Ă wWΓ0
, so φpw.uq “

wWΓ0
“ w1WΓ0

“ φpw1.uq. Similar arguments hold for R1 ´ tvu and v, so φ is
well-defined on vertices of ΠΓ.

Every edge in ΠΓ is a translate of one in RicΓ (recall Lemma 2.26), so it can be
written w.u0 w.u1 where u0 u1 Ă RicΓ. If u0, u1 are both in R0 ´ tvu or both
in R1 ´ tvu then they map to the same vertex of T . If u P Ri is adjacent to v then
φpvq “ 1WJv is an edge incident to the vertex φpuq “ 1WΓi

. By hypothesis, there
are no edges between a vertex of R0 ´ tvu and a vertex of R1 ´ tvu. Conclude that
edge paths in ΠΓ are sent by φ to connected subsets of T .

Consider the edge of T corresponding to the coset 1WΓ0XΓ1 . Its two vertices are
1WΓ0 and 1WΓ1 . Consider any path in ΠΓ from a vertex of R0 ´ tvu to a vertex
of R1 ´ tvu. Its φ–image is a connected set in T that contains 1WΓ0

and 1WΓ1
, so

it contains a vertex w.u such that φpw.uq is the edge 1WJv . The definition of φ
requires u “ v and wWJv “ 1WJv , so w P WJv , which gives w.v “ v. Thus, every
path in ΠΓ from R0 ´ tvu to R1 ´ tvu passes through v, so v is a cut vertex of ΠΓ.

Now suppose (2). Let γ : r0, Ls Ñ ΠΓ be a combinatorial path from RicΓ´tvu
to s.RicΓ´tvu, and let γ1 be a path from 1 to s in ΣΓ shadowing it. Since γ1

starts and ends on opposite sides of the wall Hs dual to the edge 1 s, it contains
some edge crossing Hs. The condition of (2) saying s is not contained in any
other maximal thick join implies that ΣJv is the only maximal standard product
subcomplex containing the edge 1 s. The condition that lkpsq Ă Jv implies that
every square containing the edge 1 s is contained in ΣJv . It follows that every edge
crossing Hs is contained in ΣJv and not in any other maximal standard product
subcomplex, so γ1 can only cross Hs if v P γ. Thus, v is a cut vertex of ΠΓ. �
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6.2. Relation to hierarchical hyperbolic structures. This section is predomi-
nantly to relate the maximal product region graph to other results in the literature,
but, having done this, Corollary 6.10 gives us an easy way to guarantee that the
orbit map gives a quasiisometric embedding of certain subgroups of WΓ into ΠΓ,
which will be useful in the next subsection.

The definition of hierarchically hyperbolic spaces and groups (HHS/HHG) is
complicated, and we will not repeat it; see [8, 7, 6, 10]. There is a hyperbolic graph
coming from the hierarchical hyperbolic structure, and quasiisometries between
HHSs induce quasiisometries of these hyperbolic graphs. We will show that if Γ is
strongly CFS then ΠΓ is WΓ–equivariantly quasiisometric to the HHS graph for
WΓ. For RAAGs the HHS graph is a quasitree and the MPRG is a quasitree with
bottleneck constant 1. In the next subsection we construct wide ladders in the
MPRGs of certain RACGs. This allows the possibility that they are still quasitrees,
but the bottleneck constant is at least half the width of the ladder, so must be
larger than 1. To conclude that these groups are not quasiisometric to a RAAG we
really need the finer control that quasiisometries induce isomorphisms of MPRGs,
not just that they induce quasiisometries between the HHS graphs.

For RAAGs the relevant hyperbolic graph from the standard HHS structure is
just the contact graph. For RACGs some modifications must be made. Abbott,
Behrstock, and Durham [1, Theorems A,B] show that a HHG G admits an action
on a hyperbolic space ABDpGq with the following properties. The structure of
ABDpWΓq will be described in the course of the proof of Theorem 6.9.

‚ G ñ ABDpGq is a largest acylindrical action.
‚ In certain cases, including when G is RACG, G ñ ABDpGq is universal, in

the sense that every generalized loxodromic element of G acts loxodromically
in this particular action.

‚ ABDpGq is a stability recognizing space: a finitely generated subgroup
H of G is stable if and only if any orbit map of H into ABDpGq is a
quasiisometric embedding.

Theorem 6.9. Let Γ be a triangle-free, strongly CFS graph. Then ΠΓ is WΓ–
equivariantly quasiisometric to ABDpWΓq.

Proof. Let X0 :“ ΣΓ, X1 :“ ABDpWΓq, X2 be the graph obtained from X0 by
coning off each maximal standard product region, and X3 :“ ΠΓ. We will construct
WΓ–equivariant quasiisometries:

X3
φ
Ñ X2

ι
Ñ X1

The standard HHS structure on WΓ is pX0,Sq, where S is the projection closure
of hyperplane carriers, and for S P S, the hyperbolic space CS associated to S is
its contact graph. To construct ABDpGq, Abbott, Behrstock, and Durham modify
this HHS structure [1, Theorem 3.7] by replacing the top level hyperbolic space as
follows. Start with X0. For S P S not the maximal element, if there exists T,U P S
with S Ă T and T K U with both CT and CU of infinite diameter, then cone off
S by adding a new vertex cS attached to each vertex of S. The resulting space is
X1 :“ ABDpWΓq.

The inclusion map ι : X2 Ñ X1 is WΓ–equivariant and Lipschitz. The idea for
showing it is a quasiisometry is that while there may be more cone vertices in X1,
the extra ones are coning off subsets of X0 that were already coned off in X2, so
they are not making much difference. To see this precisely, we will define a coarse
inverse ῑ : X1 Ñ X2 to be the identity on X0 and extend it to X1 ´ X0.

First we characterize S such that there is a cone vertex cS P X1 ´ X0. Such a
cone vertex comes from a convex subcomplex S of some hyperplane carrier, for a
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hyperplane dual to edges labelled by some s P Γ. Up to the WΓ–action, we may
assume 1 P S Ă Σstpsq Any T containing S is a convex subcomplex of the full
hyperplane carrier Σlkpsq ˆ Σs “ Σstpsq with T Ă ΣτYtsu Ă Σstpsq, where τ Y tsu
is the set of edge labels that occur in T . Now, ΣτYtsu has unbounded associated
hyperbolic space when Wτ is infinite and not a product, which, since Γ is triangle-free,
is simply the case that τ has at least two vertices. In the other direction, if U K T
then U K ΣτYtsu, but, by triangle-freeness, the biggest subcomplex perpendicular
to ΣτYtsu is Συ, where υ is the set of common neighbors of τ . This has infinite
associated hyperbolic space when υ has more than one vertex. Thus, we have a
cone vertex cS P X1 when there exists a subset of lkpsq that contains the non-s edge
labels in S, has at least 2 vertices, and has at least one common neighbor other than
s. This is equivalent to saying that S is contained in a standard product region.

For cS P X1´X0 define ῑpcSq to be the set of cone vertices cS1 of X2 such that S1

is a maximal standard product region containing S. Then ῑ ˝ ι “ IdX2
, and we have

H ‰ lkpcSq Ă
Ş

cS1Pι˝ῑpcSq
lkpcS1q, which implies that ι ˝ ῑ is at distance at most 2

from IdX1
and that distances between points in X0 are the same in X1 as in X2.

Now apply Lemma 2.6 to see that ι and ῑ are inverse quasiisometries.
Define:

φ : X3 Ñ X2 : S ÞÑ cS

φ̄ : X2 Ñ X3 :

#

cS ÞÑ S for cS P X2 ´ X0

x ÞÑ tS | x P Su for x P X0

By construction , φ is WΓ–equivariant. If distinct maximal standard product regions
S1 and S2 intersect in a standard flat S0 then in X1 there are cone vertices cSi

with
H ‰ lkpcS0q Ă lkpcS1qX lkpcS2q, so dX2pφpS1q, φpS2qq “ dX2pcS1 , cS2q “ 2. Since X3

is connected, by Proposition 6.3, this implies φ is 2–Lipschitz.
The maximal standard product regions containing 1 correspond to maximal

nontrivial joins in Γ. There are finitely many of these, and there do exist some,
since the CFS property implies Γ contains a square. Thus, φ̄p1q is a non-empty set
that is finite. Since X3 is connected, finite sets have finite diameter. By definition,
φ̄ is WΓ–equivariant, so φ̄ is a well defined map from X2 to nonempty subsets of
X3 of uniformly bounded diameter. When x P X0 and cS P X2 ´ X0 is an adjacent
cone vertex then x P S, so φ̄pcSq P φ̄pxq. Similarly, the CFS property implies
that for adjacent vertices in X0, say across an edge labelled s, there is a standard
2–flat containing both, since the vertex s P Γ is in the support of a square of Γ.
Thus, adjacent vertices in X0 Ă X2 have intersecting φ̄–images. It follows that φ̄
is pdiam φ̄p1q,diam φ̄p1qq–coarsely Lipschitz. Clearly, φ̄ ˝ φ “ IdX3 . The map φ ˝ φ̄
agrees with IdX2 on X2´X0 and sends x P X0 to the set of its cone vertex neighbors,
which are all adjacent to x. Apply Lemma 2.6. �

Corollary 6.10. Let Γ be triangle-free and strongly CFS. Then ΠΓ is a hyperbolic
graph, and it is a stability recognizing space for WΓ.

Corollary 6.11. Let Γ be triangle-free and strongly CFS. If WΓ contains a 1–ended
stable subgroup then ΠΓ is not a quasitree.

6.3. Ladders. In this subsection we introduce an obstruction to a graph being the
MPRG of a RAAG by the presence of a ‘ladder’, which will be a 2–ended subgraph
whose ends are not separated by stars of vertices, allowing us to apply Corollary 6.7.
While this formulation is conceptually clear, it is a large-scale geometric condition in
a locally infinite graph, so it is not tangible. We therefore develop explicit, computer
verifiable conditions, described purely in terms of the presentation graph Γ, that
are sufficient to imply the geometric condition.
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The idea for building a ladder is to find a highly connected subset Q of the
fundamental domain RicΓ “ WΓzΠΓ and a pair of generators r and s of WΓ such
that s.QXQ and r.QXQ are large enough. Then the ‘ladder’ will be xr, sy.Q. The
precise conditions for r, s, and Q appear in Theorem 6.16.

Lemma 6.12. Suppose Π is a graph that contains a sequence of connected subgraphs
Θi Ă Π such that:

‚ diamΠpΘiq ě i
‚ For all i and all v P Π, Θi ´ stpvq has exactly one non-singleton component.

Then Π is not the MPRG of an irreducible, one-ended, 2–dimensional RAAG.

Proof. Pick xi, yi P Θi realizing the diameter. Since Θi is connected, xi has
neighbors, and if dpxi, vq ą 2 then no neighbor of xi is in stpvq, so xi is contained
in the unique non-singleton component of Θi ´ stpvq. The same is true for yi, so
xi and yi are not separated by stpvq except possibly if dpv, txi, yiuq ď 2. Apply
Corollary 6.7. �

Our prototypical example for Lemma 6.12 is to construct an infinite graph Θ
by taking a square Q of side length at least three contained in RicΓ “ WΓzΠΓ,
such that there are nonadjacent r and s in Γ that act as reflections fixing opposite
sides of Q. The Θi of Lemma 6.12 are an increasing nested sequence of consecutive
translates of Q, with Θ as their infinite union. See Figure 15.

Q

r s

Figure 15. Prototypical ladder.

A variant is shown in Figure 16. The variant highlights the reason that in
Lemma 6.12 we say that the graph minus a star has one non-singleton component,
rather than saying the graph minus a star is connected. The ladder of Figure 16 does
obstruct Π from being the MPRG of a RAAG, because even though it is separated
by the star of a vertex v (red), its ends are not.

v

Figure 16. A non-prototypical example of a ladder

Definition 6.13 (wide ladder). A wide ladder L in a graph Π is a graph satisfying:

(a) There is a connected graph C, each vertex of which is associated to a
connected subgraph Q of Π, and the subgraphs associated with adjacent
vertices of C intersect. L is a graph of infinite diameter that is the union of
these subgraphs.

(b) The ladder has wide rungs, in the sense that if Q and Q1 are adjacent in C,
then diamΠpQXQ

1q ě 3.
(c) For all Q P C and all vertices v P Π, there is exactly one non-singleton

component of Q´ stpvq.
(d) There do not exist adjacent Q and Q1 in C and v P Π such that every vertex

of pQXQ1q´ stpvq is a singleton component of either Q´ stpvq or Q1´ stpvq.
See Figure 17.
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v
v

Figure 17. In each picture Q is blue, Q1 is red, any edges in their
intersection are violet. These satisfy Definition 6.13 (b) and (c) but
not (d), and there is a vertex v whose star separates their union
into multiple non-singleton components.

Lemma 6.14. A graph containing a wide ladder is not the MPRG of a RAAG.

Proof. Let Π be a graph containing a wide ladder L defined by C as in Definition 6.13.
The goal is to show that L satisfies the hypotheses of Lemma 6.12. If there is a
sequence of vertices ci of C such that the corresponding graphs Qci have diameters
that grow without bound then we can apply Lemma 6.12 with Θi “ Qci . Otherwise,
we choose nested connected subgraphs Ci of C such that the graphs Θi :“

Ť

cPCi
Qc

have diameters growing without bound. This is possible since L “
Ť

cPC Qc has
infinite diameter. We show by induction on the size of the subgraph of C that
such a Θi satisfies the condition that it has a unique non-singleton complementary
component for every star.

Suppose Q and Q1 are adjacent elements in C and v is some vertex of Π. Con-
dition (d) says for every v P Π there is a u P pQXQ1q ´ stpvq such that u is not a
singleton component of Q´ stpvq and u is not a singleton component of Q1 ´ stpvq.
Condition (c) says Q´ stpvq and Q1 ´ stpvq have unique non-singleton components
U and U 1, respectively, so u P U X U 1. Thus, U Y U 1 is connected. Every vertex of
pQYQ1q ´ pU YU 1Y stpvqq is a singleton component of pQYQ1q ´ stpvq, so U YU 1

is the unique non-singleton component of pQYQ1q ´ stpvq.
Now, suppose that every connected subset A Ă C of size at most n has the

property that for all v P Π,
Ť

aPAQa ´ stpvq has a unique non-singleton component
containing the non-singleton component of Qa ´ stpvq for all a P A. Add one more
graph Q such that the corresponding vertex of C is adjacent to a0 P A. For any v P Π,
QYQa0´stpvq and

Ť

aPAQa´stpvq have unique non-singleton components, and they
both contain the non-singleton component of Qa0 ´ stpvq, so QY

Ť

aPAQa ´ stpvq
has a unique non-singleton component. �

Next we would like to give sufficient conditions in terms of the graph structure of
Γ for ΠΓ to contain a wide ladder. In the proof we will need the following lemma.

Lemma 6.15. Let Γ be an incomplete, triangle-free graph without a separating
clique. Suppose Z “ tz1, . . . , zku Ă stpv1q X RicΓ for some v1 P ΠΓ ´ RicΓ. Let v be

the unique vertex in WΓ.v
1 X RicΓ. Then Z Ă stpvq and

`
Şk
i“1 Jzi

˘

´ Jv ‰ H.

Proof. By Lemma 2.26, for each i there exists gi P WΓ such that g´1
i .zi “ zi and

g´1
i .v1 “ v. This shows Z Ă stpvq. Furthermore, giv “ v1 for each i, so giΣJv is the

maximal standard product region of ΣΓ corresponding to v1 P ΠΓ. In particular,
giΣJv “ g1ΣJv for all i.

Since RicΓ corresponds to the maximal standard product regions of ΣΓ containing
the identity vertex, H ‰ ΣJv X

Ş

i ΣJzi
. Thus, for all i, H ‰ gipΣJzi

X ΣJv q “

ΣJzi X g1ΣJv . The Helly Property for CAT(0) cube complexes says that since the

convex subcomplexes tg1ΣJv ,ΣJz1
, . . . ,ΣJzk u pairwise have nonempty intersection,

their mutual intersection contains a vertex w P ΣΓ. Now, w P ΣJzi
implies that



58 CASHEN, DANI, EDLETZBERGER, AND KARRER

every minimal expression of w as a word in WΓ uses only generators from Jzi . On
the other hand, g1ΣJv and ΣJv are disjoint, so w R ΣJv , which means that w cannot
be written using only generators from Jv. Thus, every minimal expression of w uses
only generators from

Ş

i Jzi , and uses at least one that is not in Jv. �

Theorem 6.16. Let Γ be triangle-free and strongly CFS. Suppose there exist r, s P Γ
and maximal thick joins J0, . . . , Jn´1 of Γ satisfying the following conditions:

(1) The graph Q with a vertex qi for each Ji, and such that qi and qj span an
edge when Ji X Jj contains a square, is connected.

(2) Let J be any maximal thick join of Γ. Let I be a subset of tqi | J X
Jqi contains a squareu that is either the whole set or is a subset for which
`
Ş

qiPI
Jqi

˘

´J ‰ H. Then Q´ I has exactly one non-singleton component,

B, and diamQpQ´Bq ď 2.
(3) The vertices r and s are not adjacent and not contained in a common thick

join of Γ.
(4) There are indices ar, br, as, bs P t0, . . . , n´ 1u, necessarily distinct, with:

‚ r P Jar X Jbr
‚ Jar and Jbr do not share a square, and no maximal thick join of Γ

shares a square with both of them.
‚ s P Jas X Jbs
‚ Jas and Jbs do not share a square, and no maximal thick join of Γ

shares a square with both of them.

Then ΠΓ contains a wide ladder. Consequently, Γ is not RAAGedy.

Proof. By the description in Item (1), we may regard Q as an induced subgraph of
RicΓ, which itself is induced in ΠΓ, by Lemma 2.26.

Item (3) says Wtr,su is an infinite dihedral group that does not act elliptically
on ΠΓ. By Corollary 2.15 it is stable, so by Corollary 6.10 its orbit map into ΠΓ

is a quasiisometric embedding. We will take C to be the Cayley graph of Wtr,su

with respect to tr, su, which is a line, and associate to vertex g the subgraph g.Q in
ΠΓ. The ladder L :“

Ť

gPWtr,su
g.Q is unbounded, since the orbit map of Wtr,su is a

quasiisometric embedding. So far, we have shown that condition (a) of Definition 6.13
is satisfied. Item (4) gives condition (b), since it implies 3 ď dRicΓ

pqar , qbr q and
Lemma 2.26 implies dRicΓ

pqar , qbr q “ dΠpqar , qbr q, and analogously for s.
To show that condition (c) is satisfied, we claim that the intersection of the star

of a vertex of ΠΓ with Q is one of the sets I as described in Item (2). When the
vertex is v P RicΓ, then stpvq X Q “ tqi | Jv X Ji contains a squareu. When the
vertex is v1 R RicΓ, let tvu “WΓ.v

1XRicΓ; then Lemma 6.15 says I :“ stpv1qXQ Ă
tqi | Jv X Ji contains a squareu and that

`
Ş

iPI Jqi
˘

´ Jv ‰ H.
Finally, we show that condition (d) of Definition 6.13 is satisfied. Neighboring

elements of C differ by the action of r or s, so, up to a symmetric argument and
the group action, it suffices to consider that the adjacent translates of condition (d)
are Q and r.Q. We know that Q X r.Q contains qar and qbr , so the negation of
condition (d) requires, up to reversing the roles of qar and qbr , that there is a vertex
v P ΠΓ such that either qar and qbr are both singleton components of Q ´ stpvq,
or qar is a singleton component of Q ´ stpvq and qbr is a singleton component of
r.Q´ stpvq. Suppose the latter is true. Let v1 be the unique vertex in WΓ.v XRicΓ.
For w P lkQpqar q Ă stpvq, either w “ v or there is an element of WΓ taking the edge
w v to w v1 in RicΓ by Lemma 2.26. Similarly, for w1 P lkr.Qpqbr q Ă stpvq, either
w1 “ v and r.w1 “ r.v “ v1 or there is an element of WΓ taking the edge w1 v to
r.w1 v1 in RicΓ. Thus, lkQpqar q Y lkQpqbr q Ă stpv1q, so qar and qbr are singleton
components of Q´ stpv1q. The second claim of Item (2) forces a contradiction:

dQpqar , qbr q ď 2 ă 3 ď dΠpqar , qbr q ď dQpqar , qbr q �
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The original ladder example in [41] was constructed by hand directly for the
graph Γ of Example 6.17. Theorem 6.16 applies to an iterated link double of Γ.

6.4. Examples.

Example 6.17. Figure 18a depicts a graph Γ with its maximal thick join subgraphs
shadowed in different colors. The RicΓ for WΓ ñ ΠΓ is shown in Figure 18b.

(a) Γ (b) RicΓ

Figure 18. The graph Γ of Example 6.17 with its maximal thick
joins colored and RicΓ “WΓzΠΓ with vertices of matching colors.

There is one edge of Γ that does not belong to any thick join, and each of its
endpoints belongs to a unique maximal join, corresponding to the two ends of RicΓ.
The orbit of RicΓ by the action of the order 4 subgroup represented by that edge
makes a 16–cycle in ΠΓ. We can see this more clearly by passing to the finite-index
subgroup obtained by link doubling over the two vertices of the extraordinary edge.
The 16–cycle Q is the fundamental domain for the action of the subgroup on ΠΓ,
as seen in Figure 20. Notice that all vertices with first coordinate 2 belong to five
consecutive maximal join subgraphs; pick two on opposite sides, say r :“ 200 and
s :“ 211. Then r, s, and Q satisfy Theorem 6.16.

0 12

34

56 7

8

“

0

1

2

3

4

5

6

7

8
D˝p50q ˝D

˝
4

ÝÑ

000

200

001

201

210

211600

601

610

611800

801

810

811

100

300

301

700

110

710

Figure 19. Link doubling of Γ in example Example 6.17.

Note also that WΓ is strongly CFS, has no 2–ended splittings, contains no
compliant cycle as in Theorem 7.5, and has totally disconnected Morse boundary,
by Proposition 5.9, so contains no 1–ended stable subgroups. The ladder is the only
way we know to say Γ is not RAAGedy. ˛

Example 6.18. Figure 21 shows the other 9–vertex graph that is strongly CFS,
has no 2–ended splittings, contains no compliant cycle as in Theorem 7.5, and has
totally disconnected Morse boundary, by Proposition 5.9, so contains no 1–ended
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Figure 20. Fundamental domain for the action of the subgroup
on the MPRG of Example 6.17.

stable subgroups. It has an edge not contained in a thick join. Link double over the
two vertices of this edge, as in the previous example.
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Figure 21. The Γ of Example 6.18 and an iterated link double.

The fundamental domain for the action of the finite-index subgroup is shown in
Figure 22. Take Q to be the entire fundamental domain. There are choices r “ 201

and s “ 200 that satisfy Theorem 6.16 for this Q, so Γ is not RAAGedy.
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Figure 22. Fundamental domain of the MPRG in Example 6.18.

In this example we cannot take Q to be just the outer boundary of the fundamental
domain as drawn in Figure 22 because that would not be an induced subgraph,
and we also cannot take just the interior octagon to be Q, since then neighboring
translates of Q would only intersect in paths of length 2. ˛

7. Compliant cycles

In this section we will show that certain cycles of subgraphs in Γ give an obstruc-
tion to being RAAGedy. Recall Corollary 2.36: In RAAGs there is a dichotomy, the
closest point projection of one standard subcomplex to another has diameter either
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zero or infinite, while in RACGs it is possible to have finite, nonzero projection
diameter. We show that for some RACGs it is possible to build cycles X0,. . . ,Xm´1

of standard subcomplexes such that consecutive pairs are close, the projection of
any single Xi to X0 is small, and the projection of Ym´1

i“1 Xi to X0 is large. Then
we would like to say that if such a RACG were quasiisometric to a RAAG we could
derive a contradiction, based on the dichotomy for projection diameters in RAAGs.
This is accomplished in Theorem 7.5. For the plan to make sense we need to know
that these particular standard subcomplexes Xi in the RACG are sent by quasi-
isometry close to standard subcomplexes of the RAAG. This additional hypothesis
is formalized in the first subsection, where we bootstrap from the quasiisometry
invariance of maximal standard product subcomplexes to define a class of ‘compliant’
subcomplexes.

7.1. Compliant sets and subcomplexes. The reader should refresh their memory
of the background material on the coarse geometry of standard subcomplexes of
RAAGs and RACGs established in Section 2.7 and Section 2.8. We will use it now.

The next statement defines compliant sets of the presentation graph, and corre-
sponding compliant subcomplexes of ΣΥ. In terms of subcomplexes, the first two
bullet points say the collection is closed under adding or removing a finite direct
factor. Recalling Proposition 2.34, (a) says the collection is closed under projection,
which includes intersection in the special case that T “ H. Finally, (b) says the
collection is closed under passing to the R factor of a treeˆ R subcomplex.

Definition 7.1. Let GΥ be a 2–dimensional, 1–ended RACG or RAAG, and let
ΣΥ be its Davis complex or the universal cover of its Salvetti complex, respectively.
We recursively define strata CnΥ of subsets of the vertex set of Υ, inductively extend
to higher strata, and finally take CΥ :“

Ť8

n“0 CnΥ.
Seed C0

Υ by taking the collection of subsets of vertices of Υ that consists of the
empty set and the vertex set of each maximal (thick, in the RACG case) join of Υ.

Recursive Phase: Having defined some subsets of CnΥ, join and ‘unjoin’ spherical8

factors; that is, if S0 ˚ S1 Ă Υ and S0 is spherical then:

‚ If S1 P CnΥ set CnΥ :“ CnΥ Y tS0 \ S1u.
‚ If S0 \ S1 P CnΥ set CnΥ :“ CnΥ Y tS1u.

Repeat until CnΥ stabilizes, which happens in finitely many steps since Υ only has
finitely many subgraphs.

Inductive Phase: Seed Cn`1
Υ by taking CnΥ and all subsets of the following forms:

(a) If S0, S1 P CnΥ and T is a set of vertices of Υ such that either T “ H or
T Ć S0 and T Ć S1, then S0 X S1 X

Ş

tPT lkptq P Cn`1
Υ .

(b) If S0 \ S1 P CnΥ with S0 ˚ S1 Ă Υ such that ΣS0 is a line and ΣS1 is a bushy
tree then S0 P Cn`1

Υ .

Perform the Recursive Phase, joining and unjoining spherical factors to elements of
Cn`1

Υ until Cn`1
Υ stabilizes.

For S P CΥ, let its index be indpSq :“ mintn | S P CnΥu.
We call CΥ the compliant subsets of Υ and call the standard subcomplexes gΣS ,

for g P GΥ and S P CΥ, the compliant subcomplexes of ΣΥ.

Proposition 7.2. For all L, A, N , and n there exists Cn with the following
property. Let GΥ be a 2–dimensional, 1–ended RACG or RAAG, and let ΣΥ be
its Davis complex or the universal cover of its Salvetti complex, respectively, and
define GΥ1 and ΣΥ1 similarly. Suppose |Υ| ď N . For every g P GΥ, S P CnΥ, and

8A subset of vertices of the presentation graph of a Coxeter group is spherical if the special
subgroup they generate is finite. For RACGs this happens if and only if the vertex set is a clique.

For RAAGs no nontrivial special subgroup is finite, so this phase does not apply.
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pL,Aq–quasiisometry φ : ΣΥ Ñ ΣΥ1 there exists g1 P GΥ1 and S1 P CnΥ1 such that
dHauspφpgΣSq, g

1ΣS1q ď Cn.
Furthermore, CΥ “ C2N

Υ , so we can take C :“ maxtCn | 0 ď n ď 2Nu as a
uniform Hausdorff distance bound for all of CΥ.

Proof. Let C 10 be the constant of Theorem 2.22 with respect to L and A. Let
C0 :“ maxtC 10, 2L ` Au. Consider gΣS for g P GΥ and S P C0

Υ. If S is the vertex
set of a maximal (thick) join of Υ then Theorem 2.22 and Lemma 2.20 combine to
say there exist g1 P G1 and S1 the vertex set of a maximal (thick) join of Υ1 such
that dHauspφpgΣSq, g

1ΣS1q ď C 10 ď C0. By definition S1 P C0
Υ1 . If S is such that

GS is finite then the diameter of ΣS is 0 if GΥ is a RAAG or at most 2 if GΥ is
a 2–dimensional RACG. Thus, for any g1 P GΥ1 such that g1ΣH P φpgΣSq we have
H P C0

Υ1 and dHauspφpgΣSq, g
1ΣHq ď 2L`A ď C0. In the RAAG case this is all of

C0
Υ. In the RACG case it is also all of C0

Υ, since the triangle-free hypothesis implies
that we cannot add a cone vertex to a maximal thick join.

Now induct on index: supposing the proposition is true for all indices up to and
including n, we extend it to n` 1.

Induction step (a) corresponds to projection between subcomplexes. Suppose
S :“ S0 X S1 X

Ş

tPT lkptq P Cn`1
Υ for some S0, S1 P CnΥ and T either empty or not

contained in either of S0 or S1. If T “ H define h “ 1 P GΥ. Then S “ S0 X S1,
so ΣS “ ΣS0 X ΣS1 “ πΣS0

phΣS1q. If T ‰ H then there exists t0 P T ´ S0 and
t1 P T ´ S1. Let h P GΥ be any shortest word that begins with t0 and ends with
t1 and uses every letter in T at least once. So |h| “ |T | if |T | “ 1 or t0 ‰ t1, and
|h| “ |T | ` 1 if |T | ą 1 but t0 “ t1. Again we have ΣS “ πΣS0

phΣS1
q. Define

h0 :“ 1 P GΥ and h1 :“ h.
By the induction hypothesis, for every g P GΥ and every pL,Aq–quasiisometry

φ : ΣΥ Ñ ΣΥ1 there are S10, S
1
1 P CnΥ1 and g10, g

1
1 P GΥ1 such that:

dHauspφpghiΣSi
q, g1iΣS1iq ď Cn

Let g1 be a shortest element of GS10ppg
1
0q
´1g11qGS11 , so |g1| “ dΣΥ1

pg10ΣS10
, g11ΣS11

q

and if g1 is nontrivial then it begins with a letter not in S10 and ends with a letter not in
S11. Let T 1 be the letters appearing in g1, so that for S1 :“ S10XS

1
1X

Ş

tPT 1 lkptq P C
n`1
Υ1

we have g10ΣS1 “ πg10ΣS10

pg11ΣS11q.

Corollary 2.32 says gΣS “ gπΣS0
phΣS1

q
c
“ pgΣS0

c
X ghΣS1

q, and Lemma 2.7
says φ sends this coarse intersection to within bounded Hausdorff distance of

φpgΣS0q
c
X φpghΣS1q. But using the induction hypothesis and Corollary 2.32 gives:

φpgΣS0
q
c
X φpghΣS1

q
c
“ g10ΣS10

c
X g11ΣS11

c
“ πg10ΣS10

pg11ΣS11q

“ g10ΣS1

Moreover, the coarse equivalences provided by Corollary 2.32 and Lemma 2.7 depend
on L and A and the distances between the sets of the coarse intersections, so on
dpgΣS0

, ghΣS1
q “ |h| ď |T | ` 1 ď |Υ| ` 1 and on:

dpg10ΣS10 , g
1
1ΣS11q ď 2Cn ` dpφpgΣS0q, φpghΣS1qq ď 2Cn `A` Lp|Υ| ` 1q

Thus, dHauspφpgΣSq, g
1ΣS1q is bounded by a constant C 1n`1 depending on L, A, Cn,

and |Υ|, hence on L, A, N , and n.
For induction step (b), suppose that S0 P Cn`1

Υ is obtained from S P CnΥ by
virtue of S decomposing as S “ S0 \ S1, with S0 ˚ S1 Ă Υ where ΣS0 is line
and ΣS1 is a bushy tree. By the induction hypothesis, for every g P GΥ and
every pL,Aq–quasiisometry φ : ΣΥ Ñ ΣΥ1 there are g1 P GΥ1 and S1 P CnΥ1 such
that dHauspφpgΣSq, g

1ΣS1q ď Cn. Then πg1ΣS1
˝ φ|gΣS

is a quasiisometry from a
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(bounded valence bushy tree)ˆ R to g1ΣS1 whose quasiisometry constants depend
only on L, A, and Cn. Thus, ΣS1 is also a (bounded valence bushy tree)ˆR, which
implies S1 “ S10\S

1
1, where S10˚S

1
1 Ă Υ1, with ΣS10 a line and ΣS11 a bushy tree. Thus,

S10 P Cn`1
Υ1 . Furthermore, since the R–factor defines the only coarse equivalence

class of separating quasiline in a (bounded valence bushy tree)ˆ R, it follows from
[75] that up to post-composition by an element of GS11 , we have that gΣS0 is sent

C2n`1–Hausdorff close to g1ΣS10 , with C2n`1 depending on L, A, and Cn, hence on L,
A, N , and n.

In the RAAG case this is all of Cn`1
Υ . In the RACG case the Recursive Phase

allows for the possibility of taking joins with spherical subsets, which, since n`1 ą 0
and Υ is triangle-free, simply means adding or removing a cone vertex. Corollary 2.38
says that if S0 ˚ S1 Ă Υ and S10 ˚ S1 Ă Υ with ΣS0 and ΣS10 finite then ΣS1 , ΣS0˚S1 ,
ΣS10˚S1

are pairwise at Hausdorff distance at most 2. Suppose we know that one

of these sets is in Cn`1
Υ by one of the previous constructions, so its φ–image is

maxtC 1n`1, C
2
n`1u close to some g1ΣS1 for g1 P GΥ1 and S1 P CnΥ1 . Then the φ–images

of the other two are within Hausdorff distance 2L`A`maxtC 1n`1, C
2
n`1u of the

same g1ΣS1 .
We have shown it suffices to take Cn`1 :“ 2L`A`maxtC 1n`1, C

2
n`1u.

For the further statement, in a RAAG there are no nontrivial spherical subsets
so there is no Recursive Phase, only operations (a) and (b) of the Inductive Phase
of Definition 7.1 apply, and these both decrease the size of the sets involved, so the
sequence C0

Υ Ă C1
Υ Ă ¨ ¨ ¨ stabilizes after a number of steps bounded above by the

size of largest set in C0
Υ, which is the largest join in Υ, whose size is at most |Υ| ď N .

In a RACG we can add a cone vertex, increasing the size of a compliant set without
changing its index. For operation (b), it takes at least three generators to make a
bushy tree, so if ΣS0

is a line and ΣS1
is a bushy tree and ΣS0˚S1

is compliant then
S0 is compliant and contains fewer elements than S0 \ S1, and a cone on S0 is also
compliant and contains fewer elements than S0 \ S1.

Now consider the case that S0, S1 P CnΥ and S :“ S0XS1X
Ş

tPT lkptq P Cn`1
Υ ´CnΥ

and S1 “ S ˚ tcu is a cone on S. Since Υ is triangle-free, S is an anticlique. Suppose
|S1| ě |S0| and |S1| ě |S1|. Neither of these can be strict, since S R CnΥ implies
S Ĺ S0 and S Ĺ S1. So S0 “ S Y ta0u and S1 “ S Y ta1u. Furthermore, S R CnΥ
implies ai is not a cone vertex of Si, which implies Si contains no cone vertex, since
S is an anticlique. Thus, we entertain the notion that |S1| “ |S0| “ |S1|, but such
an inconvenience does not propagate any further, since this S1 having a cone vertex
means it cannot be the S0 or S1 in an iterate of this paragraph. Thus, we conclude
that the size of a set in Cn`2

Υ is strictly less than the sets of CnΥ from which it is
derived. Thus, CΥ “ C2N

Υ . �

Remark. One might guess a more general definition of ‘compliant subcomplex’
as one that is sent uniformly Hausdorff close to a standard subcomplex by any
quasiisometry. Definition 7.1 represents the only examples we know that satisfy this
property, but the conclusion of Proposition 7.2 is stronger: images are not just close
to standard, they are close to the specific standard subcomplexes coming from CΥ1 .

Remark. There is a sense in which the class of products of trees is quasiisometrically
rigid [78], but this involves projection to the factors. If S0\S1 P CΥ with S0˚S1 Ă Υ,
ΣS0

a bushy tree, and ΣS1
a tree, then we cannot automatically conclude S0 P CΥ. For

example, the automorphism x ÞÑ xz, y ÞÑ y, z ÞÑ z of the RAAG F2ˆZ “ xx, yyˆxzy
does not send the standard subcomplex Σtx,yu close to a standard subcomplex.

7.2. Coarse geometry of compliant cycles. We would like the next result to say
that if a configuration of compliant subcomplexes exists in a RACG then it is not
RAAGedy, but the actual outcome is more subtle: it says if the configuration exists
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and if there is a quasiisometry to a RAAG then there exists a subcomplex X 1 with a
particular set of properties. The trailing corollary says if there is no such subcomplex
then the group was not RAAGedy. In Theorem 7.5 we will translate these conditions
to Γ, with one set of conditions describing the configuration of compliant sets, and
a second set of conditions implying that the mystery subcomplex X 1 does not exist.
If both sets of conditions are true then the group is not RAAGedy.

Theorem 7.3 (Compliant cycles). Let Γ be an incomplete triangle-free graph without
separating cliques. Suppose there exists B ě 0 such that for every sufficiently large r
there are compliant subcomplexes X0, X1, . . . , Xn´1 of the Davis complex ΣΓ, for
some n ě 3, such that for all 0 ď i ă n there is a vertex bi P Xi X N̄BpXpi`1q%nq

and the following conditions are satisfied:

(i) dpb0, bn´1q ě r.
(ii) X0 has bounded coarse intersection with every other Xi.

If Γ is RAAGedy, then for all sufficiently large r there is a quasiisometry ψ : ΣΓ Ñ

ΣΓ taking X0 to within bounded Hausdorff distance of a compliant subcomplex X 1

that contains a quasigeodesic edge path γ̄1 such that:

(1) γ̄1 is contained in a bounded neighborhood of X0.
(2) γ̄1 comes close to bi0 for some 1 ď i0 ď n´ 2.

Furthermore, the quasiisometry constants of ψ, the quasigeodesic constants of γ̄1,
dHauspX

1, ψpX0qq, and dpγ̄1, bi0q are independent of r.

In applications we will arrange that for all 1 ď i ď n´ 2, dpbi, X0q ě r, since if
some bi is close to X0 we could take ψ “ IdΣΓ

, and the theorem would be vacuous.

Corollary 7.4. Suppose the hypotheses of Theorem 7.3 are satisfied and there does
not exist a quasiisometry ψ : ΣΓ Ñ ΣΓ taking X0 to within bounded Hausdorff
distance of a compliant subcomplex that has unbounded coarse intersection with X0

and comes within the required distance of some bi. Then Γ is not RAAGedy.

Proof of Theorem 7.3. Suppose that φ : WΓ Ñ A∆ and φ̄ : A∆ Ñ WΓ are coarse
inverse pL,Aq–quasiisometries between WΓ and some RAAG A∆. Let C be the
constant of Proposition 7.2 for this L and A and N “ maxt|Γ|, |∆|u.

Assume r is large compared to A, B, C, and L; specifically, r ą Lp6C`4A`3LBq
is the estimate that will be needed later. Choose Xi and bi with respect to this r.

Since each Xi is compliant, by Proposition 7.2 there is a compliant subcomplex
Yi of Σ∆ at Hausdorff distance at most C from φpXiq. Let δi be a path in Yi from
a point δ´i of Yi closest to φpbpi´1q%nq to a point δ`i of Yi closest to φpbiq. Let εi
be a geodesic from δ`i to δ´

pi`1q%n
. Note that |εi| ď 2C ` LB ` A for all i, and

that δ0 and the concatenation ε0 ` δ1 ` ε1 ` δ2 ` ε2 ` ¨ ¨ ¨ ` δn´1 ` εn´1 are paths
with the same endpoints δ`0 and δ´0 . From the assumptions dpb0, bn´1q ě r and
dpbn´1, X0q ď B we get an estimate:

dpδ`0 , δ
´
0 q ě dpφpb0q, φpbn´1qq ´ LB ´A´ 2C ě r{L´ LB ´ 2A´ 2C

Combinatorial closest point projection to Y0 in Σ∆ is a Lipschitz, hence com-
binatorial, map, so its sends the concatenation of δ and ε paths to an edge path

in Y0 from δ`0 to δ´0 . Since Xi
c
X X0 is bounded, so is Yi

c
X Y0, but for standard

subcomplexes of a RAAG this means that πY0pYiq is a single vertex. Thus, for all
i ‰ 0, πY0

pδiq is a single vertex.
Since we assumed r ą Lp6C ` 4A` 3LBq, we have:

dpδ´0 , δ
`
0 q ą 2p2C ` LB `Aq ě |ε0| ` |εn´1| ě |πY0pε0q| ` |πY0pεn´1q|

This means that πY0
pε0q and πY0

pεn´1q alone are not long enough to reach from δ`0
to δ´0 , so πY0

pδ1 ` ε1 ` ¨ ¨ ¨ ` εn´2 ` δn´1q is a nontrivial edge path in Y0. All of the
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Figure 23. Quasiisometry carrying compliant cycle into a RAAG.
Each compliant set Xi on the left, visualized as complementary
regions of a tree in the plane, is sent by φ close to a compliant
subcomplex Yi. Consecutive Yi, Yi`1 may no longer come B–close
to each other, but they both come close to φpbiq, so the path εi
crossing between them is uniformly short.

δi project to single vertices, so there exists some 1 ď i0 ď n´ 2 such that εi0 has
nontrivial projection to Y0. Thus, there are parallel edges e P Y0 and e1 P εi0 .

Recalling Lemma 2.33, let b P A∆ be represented by a word labelling a geodesic
from e to e1. The fact that e and e1 are parallel means that that they have the
same label a, and that a and b commute. Up to translation, we may assume that
e is the edge between the vertices labelled 1 and a in Σ∆, in which case, e1 “ be.
Let Y 1 :“ bY0. Since it is standard, Y 1 contains the entire standard geodesic γ1

containing e1, just as Y0 contains the entire standard geodesic γ containing e, and
these geodesics are parallel, since every edge in both geodesics is labelled a and we
have an element b commuting with a realizing the parallel translation.

Compliance of subcomplexes is preserved by group translation, by definition, so
applying Proposition 7.2 to Y 1 gives a compliant subcomplex X 1 of ΣΓ at Hausdorff
distance at most C from φ̄pY 1q. Define ψ :“ φ̄˝pb¨q˝φ, where b¨ is left-multiplication
by b, so that ψ : ΣΓ Ñ ΣΓ is a quasiisometry taking X0 within bounded Hausdorff
distance of X 1. The quasiisometry constants of ψ only depend on L and A, while
dHauspψpX0q, X

1q depends only on L, A, and C.
Push the vertices of γ1 first to ΣΓ via φ̄, and then into X 1 via πX1 . Since X 1

is convex and dHauspX
1, φ̄pY 1qq ď C, a standard connect-the-dots argument says

there is a quasigeodesic edge path γ̄1 contained in X 1 whose quasigeodesic constants
depend only on L, A, and C, and that is bounded Hausdorff distance from φ̄pγ1q

and φ̄pγq, hence contained in a bounded neighborhood of X0
c
“ φ̄pY0q.

The following estimate shows that dpγ̄1, bi0q is bounded above, independent of r:

dpγ̄1, bi0q ď dpπX1pφ̄pγ
1qq, bi0q

ď C ` dpφ̄pγ1q, bi0q

ď C `A` dpφ̄pγ1q, φ̄φpbi0qq

ď C ` 2A` Ldpγ1, φpbi0qq

ď C ` 2A` LC ` Ldpγ1, δ`i0q

ď C ` 2A` LC ` L|εi0 |

ď C ` 2A` LC ` Lp2C ` LB `Aq �
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7.3. Graphical criteria. The next result gives practical, graphical criteria for
applying Theorem 7.3. The point is that conditions (1)–(5) imply the hypotheses of
Theorem 7.3, but conditions (a)–(b) say that there is no possible target subcomplex
for a quasiisometry as in Corollary 7.4, so Γ cannot be RAAGedy.

Theorem 7.5. Let Γ be an incomplete triangle-free graph without separating cliques,
and let CΓ be the compliant subsets of Γ, as in Definition 7.1. Suppose there exist,
for q ě 1 and all 0 ď i ď q ´ 1, sets Si P CΓ and paths Pi :“ pai,0, ai,1, . . . , ai,`piq´1q

in Γ, containing `piq ě 1 vertices, such that all of the following hold (for Sj, Pj,
and aj,k we always implicitly take j mod q and k mod `pjq):

(1) The paths Pi are disjoint, and P :“
Ť

j Pj is an induced subgraph of Γ.

(2) @i, Si X P “ tai´1,`pi´1q´1, ai,0u, which are the last vertex of Pi´1 and the
first vertex of Pi.

(3) If q “ 1 then P0 Ć S0.
(4) @i ‰ 0, Si X S0 is a clique.
(5) @pi, jq R tp0, 0q, pq ´ 1, `pq ´ 1q ´ 1qu, lkpai,jq X S0 is a clique.

Assume that no proper subset of S0 belongs to CΓ and contains the first and last
vertices a0,0 and aq´1,`pq´1q´1 of P . Let Γ0 be the subgraph of Γ induced by S0. If
either of the following are true then Γ is not RAAGedy:

(a) Γ0 is square-free.
(b) No S1 P CΓ spans a subgraph Γ1 satisfying all of the following conditions:

(I) Γ0 X Γ1 is incomplete.
(II) Γ1 X P is incomplete.

(III) ta0,0, aq´1,`pq´1q´1u Ć Γ1.

(IV) There exists a quasiisometry ψ : ΣΓ Ñ ΣΓ with ψpΣΓ0q
c
“ ΣΓ1 .

The minimality condition on S0 is justified because a proper subset of S0 belonging
to CΓ and containing ta0,0, aq´1,`pq´1q´1u satisfies hypotheses (1)–(5) for the same
choices of Si and Pi.

In Section 7.4 we give some ways to rule out condition (IV).

Proof. Let Cm be the cycle graph of length m ě 3. Its commutator complex is a
closed surface, since it is a connected square complex such that the link of every
vertex is a circle. Its Euler characteristic is 2m ´m2m´1 `m2m´2 “ 2m´2p4´mq.

Think of P “ \iPi as a subgraph of Cm for m :“
řq´1
i“0 `piq, where the vertices ai,j

are ordered lexicographically, so that for each i there is an edge ai,`piq´1 ai`1,0

of Cm that is not an edge of P . Thus, the commutator complex of P is homotopy
equivalent to the commutator complex of Cm after puncturing each square labelled
by a commutator rai,`piq´1, ai`1,0s. There are q2m´2 such squares, so the Euler

characteristic of the commutator complex of P is 2m´2p4 ´ m ´ qq. We claim
this is a negative number, so WP is a virtually a nonAbelian free group. To see
this, consider that the alternative is that either q “ 1 and `p0q ď 3 or q “ 2 and
`p0q “ `p1q “ 1. If q “ 1 then Hypothesis (3) says `p0q ą 2, but it cannot be that
q “ 1 and `p0q “ 3 because this would either give a triangle in Γ or contradict
Hypothesis (5). We cannot have q “ 2 and `p0q “ `p1q “ 1 because this would
either violate Hypothesis (1), if a0,0 and a1,0 are adjacent, or Hypothesis (4) if not.

ΣP is the universal cover of a closed surface with some open faces removed, so ΣP
admits a planar embedding in which all of its vertex links are copies of P ordered as
in Cm or its reverse, and whose boundary components are the bicolored geodesics
whose colors are ai,`piq´1ai`1,0, for each i; that is, the boundary components are
the lifts of the boundaries of the missing faces.

If tau “ Pi is an isolated vertex of P then edges of ΣP labelled a belong to two
different components of BΣP , one bicolored with a and the last vertex of Pi´1 and
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one bicolored with a and the first vertex of Pi`1. If ai,0 is the first vertex of a
non-singleton component Pi of P then an edge e of ΣP labelled ai,0 is contained in
a unique component of BΣP and is a face of a unique square whose sides are colored
ai,0 and ai,1. The opposite face of this square is the unique edge of ΣP parallel to e.

Fix an identity vertex 1 of ΣP , let γ0 be the a0,0aq´1,`pq´1q´1 bicolored geodesic
through 1, parameterized by arclength with γ0p0q “ 1. For any r ą 0, consider the
following set, where the overbar means closure in the 1–skeleton:

Σ̂P :“ N̄rpγ0q X π
´1
γ0 pγ0p0, rqq

This should be imagined as an r–tubular neighborhood in ΣP of the subsegment
of γ0 of length r starting at 1. We specify a collection of components of BΣP that
contains all of the vertices of Σ̂P . First, include every boundary component of ΣP
that contains an edge in Σ̂P . Then, for each vertex x of Σ̂P that is not contained
in one of these boundary components, choose any one of the components of BΣP

containing x. Clockwise with respect to the planar embedding, starting from γ0,
consecutively number these boundary components γ0, γ1,. . . ,γn´1. Orient each
boundary component γi accordingly, i.e. choose a parametrization of γi so that the
vertex at which γi enters Σ̂P appears, in the clockwise ordering, before the vertex
at which γi leaves Σ̂P . Let bi be the last vertex of γi in Σ̂P . Every vertex of ΣP

lies on some boundary component. Thus, the consecutive ordering of the boundary
components γi and the choice of the vertices bi yield B :“ 2 ě dpbi, γi`1q. See
Figure 24 and Figure 25.

Next we argue that all the bi with i R t0, n´ 1u are at distance r from γ0. More

specifically we show that the first vertex of γ1 X Σ̂P is 1-close to γ0, the last vertex
bn´1 of γn´1 X Σ̂P is 1-close to γ0 and all the other endpoints of γi X Σ̂P with i ‰ 0
are at distance r from γ0.

The region Σ̂P is bounded, so each geodesic γi intersects it in a bounded subin-
terval (possibly a single vertex). By construction, the extreme vertices of Σ̂P are
those that project to either γ0p0q or γ0prq and those that are at distance r from

γ0. In particular, each endpoint of each γi X Σ̂P either is at distance r from γ0 or
projects to one of the endpoints of γ0 X Σ̂P . By construction, if γ0p0q P πγ0

pγiq
then πγ0pγiq contains the edge γ0p0, 1q. This edge is either not a face of a square
of ΣP , in which case it is also contained in γ1, or it is a face of a unique square
whose opposite face is a boundary edge, so is contained in γ1. Thus, γ1 is the only
γi for i ‰ 0 with γ0p0q P πγ0

pγiq. Similarly, γn´1 is the only γi for i ‰ 0 such that

γ0prq P πγ0pγiq. Accordingly, the first vertex of γ1 X Σ̂P and bn´1 are 1-close to γ0

and any other endpoint of any γi X Σ̂P with i ‰ 0 leaves the bounded region Σ̂P
through a vertex at distance r from γ0.

S0

S1S2

v “ a1,0

r “ a0,0

g “ a0,1

b “ a0,2a2,0 “ o

a2,1 “ c

Figure 24. Example cycle S0, P0, S1, P1, S2, P2.

The inclusion of ΣP into ΣΓ is an isometric embedding, by Hypothesis (1).
Hypothesis (2) implies that for each γi there is a unique translate Xi of one of the
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b0

b12

b10 b11b9b7 b8b5 b6b4b1 b2 b3

γ0

γ1

γ3

γ4

γ5

γ7

γ8 γ9 γ10 γ11

γ12

Figure 25. Σ̂P for r “ 2 and P as in Figure 24.

ΣSj that contains γi, since for each j only Sj contains both aj,0 and aj´1,`pj´1q´1.
This also implies that Xi X ΣP “ γi. Furthermore, bi P Xi and B ě dpbi, γi`1q ě

dpbi, Xi`1q and dpb0, bn´1q is either r or r ` 1. We have also arranged the bi for
i R t0, n ´ 1u to be far from X0, since X0 X ΣP “ γ0 and dΣP

pbi, γ0q “ r imply
dΣΓ

pbi, X0q “ r. This follows because X0XΣP ‰ H, so the projection of the convex
subcomplex ΣP to the convex subcomplex X0 is just their intersection, which is γ0,
so the closest point of X0 to bi is a point of γ0.

To see that the hypotheses of Theorem 7.3 are satisfied, it remains to show that
X0 has bounded coarse intersection with every other Xi.

By Hypothesis (2), if H is a wall dual to an edge colored by some aj,k that is not
on γi then H is not dual to any edge in Xi.

First, suppose γ0 and γi are disjoint, so there is a nontrivial shortest ΣP –path
connecting them. Let H be the wall dual to the first edge of that path, let H` be the
halfspace of H containing 1, let H´ be the complementary halfspace. Then X0 Ă H`.
By Proposition 2.31, H separates X0 and Xi, so Xi Ă H´. By Hypothesis (5),
the label of H commutes with at most one edge label of X0. It then follows from

Corollary 2.32 and Lemma 2.33, that X0
c
X H´ is bounded, so X0

c
X Xi is bounded.

If γ0 and γi are distinct but not disjoint, then Xi is a translate of ΣSj for some

j ‰ 0, in which case X0
c
X Xi is bounded as a consequence of Hypothesis (4).

We have shown the hypotheses of Theorem 7.3 are satisfied, so if Γ is RAAGedy
then there is a quasiisometry ψ : ΣΓ Ñ ΣΓ taking X0 to within bounded Hausdorff
distance of a compliant subcomplex X 1 containing a quasigeodesic edge path γ̄1

that is contained in a bounded neighborhood of X0 and also comes close to bi0 for
some 1 ď i0 ď n´ 2. We will show that either of Hypotheses (a) or (b) leads to a
contradiction, so Γ cannot have been RAAGedy.

Suppose X 1 “ wΣS1 for some w PWΓ and S1 P CΓ, and let Γ1 be the subgraph of
Γ induced by S1. Since ψ : ΣΓ Ñ ΣΓ takes X0 to within bounded Hausdorff distance
of X 1 and they are both convex, hence undistorted, X0 and X 1 are quasiisometric.
Adjusting by the group action, we have a quasiisometry pw´1¨q˝ψ : ΣΓ Ñ ΣΓ taking
ΣΓ0 Hausdorff close to ΣΓ1 , so Γ1 satisfies (IV).

The fact that X 1 and X0 have unbounded coarse intersection, since their coarse
intersection contains γ̄1, means Γ0 X Γ1 is incomplete. So Γ1 satisfies (I).

Theorem 7.3 gives us that dpγ̄1, bi0q is bounded, independent of r, so by taking
r large we can make r ´ dpγ̄1, bi0q as large as we like. Assume r ´ dpγ̄1, bi0q ě 3.
Consider a shortest path ζ in ΣP from γ0 to bi0 P γi0 . Let H1, H2, and H3 be the
walls dual to the first three edges of ζ. For k P t1, 2, 3u, let zk be the generator
labelling Hk, and let H´k be the halfspace of Hk containing bi0 .
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By minimality of ζ, z1 R S0, so X0 Ă H`1 . If H1 and H2 cross then z1 and z2

commute and the first two edges of ζ travel along the boundary of a square with
opposite side pairs labelled by z1 and z2. By replacing the first two edges of ζ by
the other two edges of this square we get a path ζ 1 with the same endpoints and
length as ζ that crosses H2 first and then H1. If H1 crosses both H2 and H3 then
z1 commutes with z2 and z3 and since ΣP is 2-dimensional, z2 cannot commute
with z3. Thus, up to exchanging H1 and H2 we may assume that either H1 does
not cross H2 or H1 crosses H2 but not H3.

In the first case X0 Ă H`1 Ă H`2 . As argued previously, X0 has bounded coarse

intersection with H´1 . Likewise X0
c
X H´2 is bounded, since H´2 Ă H´1 . In particular,

both ends of γ̄1 are contained in H`1 , as otherwise we would have an unbounded
subset of H´1 contained in a bounded neighborhood of X0, contradicting that their
coarse intersection is bounded. We conclude that γ̄1 enters H`1 . However, as γ̄1

comes close to bi0 , it enters H´2 as well. Accordingly, γ̄1 crosses walls H1 and H2.
Since γ̄1 Ă X 1, the set S1 contains z1 and z2, with z1 P P ´ S0 and z2 P P not
adjacent to z1.

In the second case we reach the same conclusions for z1 and z3. In either case,
S1 contains z1 and a non-adjacent vertex (z2 or z3), so Γ1 X P is incomplete. Thus
Γ1 satisfies (II).

If Hypothesis (b) is true then since Γ1 satisfies (I), (II), and (IV), it does not
satisfy (III), so ta0,0, aq´1,`pq´1q´1u Ă Γ1. Since S1 P CΓ, the minimality condition
on S0 demands S0 X S

1 “ S0. So S0 Ď S1 is contained in a join of two anticliques
Θ0˚Θ1. Suppose z1 P Θ1. Since z1 P pS

1XP q´S0, Hypothesis (5) implies S0Xlkpz1q

is at most one vertex. But S0 X lkpz1q “ S0 XΘ0, so the anticlique Θ1 contains all
but at most one vertex of S0. This shows Hypothesis (a) is true.

If Hypothesis (a) is true then X0 and X 1 are hyperbolic.
There are only finitely many isometry types of standard subcomplex in ΣΓ, so

there is a uniform bound on hyperbolicity constants that occur, independent of
r. The quasigeodesic constants of γ̄1 are also independent of r. Thus, there is
a stability constant, independent of r, bounding the distance between γ̄1 and a
geodesic γ2 Ă X 1 asymptotic to it. Taking r ´ dpγ̄1, bi0q larger than this stability
constant forces the geodesic γ2 to enter H´1 , but it still has both ends in H`1 , since
γ̄1 does. This is a contradiction: walls are convex, so γ2 cannot cross from H`1 to
H´1 and back to H`1 . �

Observe that Theorem 5.16 is a consequence of Theorem 7.5 and Proposition 7.2,
with the poles of the cuts being the compliant sets and their intersections the
(singleton) connecting paths.

7.4. Subcomplexes not in the same quasiisometry orbit. For WΓ a RACG
and Γ1 an induced subgraph of Γ, let JΓ1K denote the quasiisometry type of ΣΓ1 .
Similarly, if S is a set of vertices of Γ, let JSK denote the quasiisometry type of the
special subgroup defined by S.

We first state a result that we will use to rule out (IV) of Hypothesis (b) in
certain applications of Theorem 7.5. Recall that this condition says there exists a
quasiisometry ψ : ΣΓ Ñ ΣΓ with ψpΣΓ0

q
c
“ ΣΓ1 . In other words, we wish to show

that ΣΓ0 and ΣΓ1 are not in the same orbit of the quasiisometry group of ΣΓ for its
action on coarse equivalence classes of subsets of ΣΓ.

Corollary 7.6 will be a corollary of the subsequent, more general, Lemma 7.7.

Corollary 7.6. Let Γ be an incomplete triangle-free graph without separating cliques,
and let ΣΓ be the Davis complex of WΓ. Suppose φ : ΣΓ Ñ ΣΓ is a quasiisometry.
Suppose S0 and T0 are vertex sets of maximal thick joins of Γ such that φpΣS0

q
c
“ ΣT0

.
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Then JS0K “ JT0K and for every neighbor S2 of S0 in RicΓ there is a neighbor T2 of
T0 in RicΓ such that JS2K “ JT2K and JS0 X S2K “ JT0 X T2K.

Lemma 7.7. Let Γ be an incomplete triangle-free graph without separating cliques,
and let ΣΓ be the Davis complex of WΓ. Suppose φ : ΣΓ Ñ ΣΓ is a quasiisometry.
Suppose S0, S1, S2 P CΓ such that S0 Ă S1, and each of S0 and S1 X S2 contains
vertex sets of squares of Γ. Suppose φpΣS0

q
c
“ ΣT0

. Then T0 P CΓ and there exist
T1, T2 P CΓ such that for i P t0, 1, 2u:

‚ Some translate of ΣTi
is coarsely equivalent to φpΣSi

q.
‚ JSiK “ JTiK
‚ indpSiq “ indpTiq
‚ T0 X T1 is either all of T0 or all but a cone vertex of T0.
‚ JS1 X S2K “ JT1 X T2K

Proof. For any sets A and B of vertices of Γ, if φpΣAq
c
“ wΣB then πΣB

˝ pw´1¨q ˝

φ|ΣA
: ΣA Ñ ΣB is a quasiisometry, so JAK “ JBK. By Proposition 7.2, for all i

there exist wi PWΓ (and we take w0 “ 1) and Ti P CΓ with indpSiq “ indpTiq and

φpΣSiq
c
“ wiΣTi , which implies JSiK “ JTiK.

We may assume that all of the Si and Ti have no cone vertex, since removing a
cone vertex does not change the coarse equivalence class of the special subgroup,
the index in CΓ, or the fact that S0 and S1 X S2 contain vertex sets of squares.

As in the proof of Proposition 7.2, for Vij defined as the set of generators occurring

in minimal length elements of WSipw
´1
i wjqWSj we have:

φpΣSiXSj q
c
“ πwiΣTi

pwjΣTj q “ wiΣTiXTjX
Ş

vPVij
lkpvq

Thus, JSi X SjK “ JTi X Tj X
Ş

vPVij
lkpvqK. Since Γ is triangle-free, links of vertices

are anticliques, so if Vij ‰ H then Ti X Tj X
Ş

vPVij
lkpvq is an anticlique and

JTi X Tj X
Ş

vPVij
lkpvqK is one of ‘point’, ‘line’, or ‘bushy tree’. But ΣS0

“ ΣS0XS1

and ΣS1XS2 contain 2–flats, so JSi X SjK is not one of these, so V01 and V12 are
empty, which gives JS0K “ JS0 X S1K “ JT0 X T1K “ JT0K and JS1 X S2K “ JT1 X T2K.

Finally, S0 Ă S1 implies ΣT0

c
“ πΣT0

pw1ΣT1
q “ ΣT0XT1X

Ş

vPV01
lkpvq “ ΣT0XT1

.

By Lemma 2.37 and the assumption that T0 has no cone vertex, T0 “ T0 X T1. �

Proof of Corollary 7.6. Being a maximal thick join is the same as being a non-clique
of C0

Γ. Suppose there is a T0 that is in the quasiisometry orbit of S0. Take S1 :“ S0

and any neighbor S2 of S0 in RicΓ, which shares a square with S0 by definition of
RicΓ. Apply Lemma 7.7 to get T1 and T2, which are maximal thick joins since S1

and S2 were. Since T0 has no cone vertex, T0 Ă T1, but T0 is maximal, so T0 “ T1

and:
JS0 X S2K “ JS1 X S2K “ JT1 X T2K “ JT0 X T2K �

There are some other ways to rule out standard subcomplexes being in the
same quasiisometry orbit. Instead of only considering single neighbor intersection
quasiisometry types as in Corollary 7.6, one can consider the pattern of intersection
of ΣS0 with all of its neighbors in ΠΓ. Something like this is done in [15]. In another
direction, we can use automorphism orbits of ΠΓ to distinguish maximal product
regions. For instance, if there are two maximal standard product regions and one
gives a cut vertex of ΠΓ and the other does not then a quasiisometry of ΣΓ cannot
take one to the other. Recall that we characterized cut vertices in Lemma 6.8.

7.5. Examples. We give some example applications of Theorem 7.5. Example 7.8
gives some of the smallest triangle-free strongly CFS graphs with compliant cycles.
It turns out that all three are already known to be non RAAGedy for other reasons.
After that we will give examples highlighting different aspects of the theorem.
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Example 7.8. Figure 26 shows the smallest triangle-free CFS graphs with compliant
cycles, which are therefore not RAAGedy, by Theorem 7.5. In each of these examples,
S0, S1, and S2 are the three possible pairs of red vertices and the Pi are single red
vertices that are the intersections of consecutive Si, so P :“ \iPi is an anticlique. In
the first two the Si are cut pairs. In the third they are poles of maximal suspensions.

(a) Planar with cycle of
cuts.

(b) Nonplanar with cycle of
cuts.

(c) Nonplanar, with cycle of
suspension poles.

Figure 26. Some CFS graphs with compliant cycles where the Si
are pairs and P is an anticlique.

The graph in Figure 26a is planar, so the fact that it is not RAAGedy could have
also been deduced by applying a theorem of Nguyen and Tran [73]. The graph in
Figure 26b is nonplanar, so Nguyen-Tran does not apply, but it can be shown to
be non-RAAGedy by Theorem 5.16. The graph in Figure 26c has a JSJ graph of
cylinders with a single cylinder and single non-virtually Z2 rigid subgroup connected
by a virtually Z2 edge group, so is not RAAGedy by Lemma 5.13. ˛

Example 7.9. Consider the graph Γ of Figure 27. The hypotheses of Theorem 7.5
are satisfied for the path P “ P0 :“ p0, 4, 5, 1q and the compliant set:

S0 :“ t2u ˚ t0, 1u “ t2, 6u ˚ t0, 1, 7u X t2, 8u ˚ t0, 1, 3u P C1
Γ ˛

0

1

2

3

4

5

6

7
8

Figure 27. An example Γ such that Theorem 7.5 can be satisfied
by a single compliant subset S0 and a single path P “ P0.

Example 7.10. Consider the graph Γ of Figure 28. By computer search, there is no
single compliant set S0 and connected P satisfying the hypotheses of Theorem 7.5.
For example, consider the maximal thick join S0 :“ t0, 3u ˚ t1, 7, 8, 9u. We would
need a path P whose endpoints are nonadjacent vertices of S0 and whose interior
vertices have link intersecting S0 in a clique. The possible interior vertices are 4, 5,
and x, which would mean the endpoints of P would be adjacent vertices 0 and 9.

Instead, consider the maximal thick join S1 :“ t0, 2, 6u ˚ t1, 4, 5u, which intersects
S0 in a clique, and paths P0 :“ p9,x, 4q and P1 :“ p1q.

In this example, no other method discussed in this paper works in order to show
that it is not RAAGedy. ˛

In the next two examples we use the considerations of Section 7.4 rule out
condition (IV) of Theorem 7.5.

Example 7.11. Consider the graph Γ in Figure 29. Take S0 :“ t0, 5u ˚ t2, 6, 7u,
which is a maximal thick join that is a non-square suspension. Consider T :“
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0

1
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5

6

7

8

9 x

Figure 28. A graph with no compliant cycle with connected P ,
but having a compliant cycle consisting of two compliant sets and
two connecting paths.

t2, 6u ˚ t0, 4, 5u and T 1 :“ t0, 4u ˚ t1, 2, 3, 6u, which are the two maximal thick joins
that intersect S0 in a non-clique. Both are non-square suspensions. The set of
distinct pairs pJΥK, JΥ X S0Kq, where Υ ranges over the neighbors of S0 in RicΓ

consists of a single pair ptree ˆ line,E2q. For T we get the same result, but for
T 1 the answer is different: T 1 has a neighbor in RicΓ such that pJΥK, JΥX T 1Kq “
ptreeˆ tree, treeˆ lineq, coming from Υ “ t1, 2, 3u ˚ t0, 4, 9u. Thus, we can see by
Corollary 7.6 that ΣS0 and ΣT 1 are not in the same orbit under the quasiisometry
group of ΣΓ. Thus, we look for a compliant cycle based on S0 such that P
avoids the vertex t4u “ T ´ S0, but we are not forced to avoid t1, 3u “ T 1 ´ S0.
P “ P0 “ p2, 9, 1, 8, 7q works.

In this example, no other method discussed in this paper works in order to show
that it is not RAAGedy. ˛

0

1 2

3

4

5
6

7

8

9

Figure 29. A graph with a compliant cycle where we need to
recognize different quasiisometry orbits to verify the hypotheses of
Theorem 7.5 are satisfied.

Example 7.12. Consider the graph Γ of Figure 30. Let S0 :“ t2, 3u ˚ t0, 1, 4, 5u
and S1 :“ t6, 7u ˚ t4, 5, 8, 9, 14, 15u, which are maximal thick joins, and let P :“
p0, 14, 12,e, 13, 15, 1q be a path. For this S0 and P , conditions (1)–(5) of Theorem 7.5
are satisfied. Condition (a) is not true; S0 contains squares. To conclude that Γ is
not RAAGedy we show that condition (b) is satisfied. The only potential problem
is S1, which fulfills (I)-(III) of (b), so we need to show that (IV) is false by showing
that ΣS0

and ΣS1 are not in the same orbit of the quasiisometry group of ΣΓ.
In this example Lemma 7.7 does not help, but Lemma 6.8 does.
Take R0 and R1 to be subgraphs of RicΓ induced by vertex sets tv23, v45, v67u

and tv67, v89, vxeu, respectively. As in Lemma 6.8 for i P t0, 1u let Γi be the
subgraph of Γ induced by

Ť

vPRi
Jv, so that Γ0 is the red/violet subgraph and Γ1

is the violet/blue subgraph, where the violet subgraph Jv67
is their intersection.

According to Lemma 6.8, the only cut vertices of ΠΓ are those in the WΓ–orbit of
v67. Quasiisometries of ΣΓ induce automorphisms of ΠΓ, which preserve cut vertices,
so the WΓ–orbit of v67 coincides with its orbit under the action of the quasiisometry
group of ΣΓ. Since S0 corresponds to v23 and S1 corresponds to v67 we conclude
that ΣS0 and ΣS1 are not in the same orbit of the quasiisometry group of ΣΓ. Thus,
(IV) fails. ˛
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v23 =
2 3
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Figure 30. A graph Γ and RicΓ such that RicΓ contains a cut
vertex of ΠΓ. The corresponding splitting of Γ is illustrated by the
red/violet and blue/violet subgraphs. The cut vertex property is
used to distinguish quasiisometry orbits of maximal product regions
in the construction of a compliant cycle.

Sometimes passing to a link double is necessary to satisfy Theorem 7.5:

Example 7.13. For the graph Γ on the left of Figure 31, a computer search finds
no configurations satisfying Theorem 7.5. After passing to D˝7pΓq there is a good
choice: S0 :“ t30, 40u ˚ t00, 20, 50, 80u and P “ P0 :“ p00,e0,x1, 61, 91, 20q. ˛

01

2

3

456

7

8

9

x

e

D˝7
ÝÑ

0010 01 1130 31

40 4160 61

e0

50 51
90 91

x0 x1

20

80

Figure 31. An example where taking a link double is necessary
to satisfy the conditions of Theorem 7.5.

Example 7.14 (Compliant cycle vs Morse boundary.). The graph of Figure 26a has
a compliant cycle, but its Morse boundary is totally disconnected, by Corollary 5.11.

The graph of Figure 32 displays a stable cycle (red), so its Morse boundary
contains circles, but it has no compliant cycle (even after passing to a link double).

˛

0

12

34
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7

8
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x

e

Figure 32. Graph with a stable cycle but no compliant cycle.

8. Further questions

Question 8.1. Quasiisometry versus commensurability:

‚ We have only shown that cloning and unfolding produce groups quasiisomet-
ric to the one we started with. Are they actually commensurable?

‚ Does there exist a RACG that is not commensurable to any RAAG, but is
quasiisometric to some RAAG?

Question 8.2. There are many other finite-index subgroups of RACGs than the ones
we have considered. Would using these give any new results about commenurability
between RACGs or between RACGs and RAAGs?
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Question 8.3. Generalize the dimension restrictions:

‚ Is Oh’s theorem true when there are no 3–quasiflats (which is the case that
Γ is icosahedron-free)?

‚ If yes, do all of our arguments generalize to this case?
‚ Oh’s theorem is not true in full generality in higher dimensions. What

additional hypotheses on Γ or WΓ would we need to make to make it be true?
Compare Huang assuming OutpA∆q is finite.

Question 8.4. So far, we can answer RAAGedy/non-RAAGedy for all of the 533
triangle-free CFS graphs with at most 10 vertices, and all but the following 8 of the
3405 with 11 vertices. Which of them are RAAGedy?
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[36] C. Druţu and M. Kapovich, Geometric group theory, American Mathematical Society Collo-
quium Publications, vol. 63, American Mathematical Society, Providence, RI, 2018, With an
appendix by Bogdan Nica.

[37] M. J. Dunwoody and M. E. Sageev, JSJ-splittings for finitely presented groups over slender
groups, Invent. Math. 135 (1999), no. 1, 25–44.

[38] M. G. Durham and S. J. Taylor, Convex cocompactness and stability in mapping class groups,

Algebr. Geom. Topol. 15 (2015), no. 5, 2839–2859.
[39] M. Dyer, Reflection subgroups of Coxeter systems, J. Algebra 135 (1990), no. 1, 57–73.

[40] A. Edletzberger, Quasi-isometries for certain right-angled Coxeter groups, Groups Geom.

Dyn. 18 (2024), no. 3, 1037–1098.
[41] A. Edletzberger, Quasi-isometries for two-dimensional right-angled Coxeter groups, Ph.D.

thesis, University of Vienna, 2024.

[42] E. Fioravanti and A. Karrer, Connected components of Morse boundaries of graphs of groups,
Pacific J. Math. 317 (2022), 339–361.

[43] K. Fujiwara and P. Papasoglu, JSJ-decompositions of finitely presented groups and complexes
of groups, Geom. Funct. Anal. 16 (2006), 70–125.

https://doi.org/10.2140/gt.2008.12.1653
https://doi.org/10.2140/gt.2008.12.1653
http://dx.doi.org/10.1090/proc/14743
http://dx.doi.org/10.1515/jgth-2024-0109
http://dx.doi.org/10.1515/jgth-2024-0109
http://dx.doi.org/10.1017/S0305004116000530
http://dx.doi.org/10.1007/s10711-007-9148-6
http://dx.doi.org/10.4171/ggd/669
http://dx.doi.org/10.4171/ggd/669
http://dx.doi.org/10.1112/jtopol/jtu025
http://dx.doi.org/10.1112/jtopol/jtu025
http://dx.doi.org/10.1006/aama.1999.0677
https://doi.org/10.1142/S0218196714500350
http://dx.doi.org/10.4171/GGD/429
http://dx.doi.org/10.1112/jlms.12042
http://dx.doi.org/10.1090/S0002-9939-08-09213-7
http://dx.doi.org/10.1090/S0002-9939-08-09213-7
http://dx.doi.org/10.2140/agt.2024.24.755
http://dx.doi.org/10.2140/agt.2024.24.755
http://dx.doi.org/10.4171/GGD/469
http://dx.doi.org/10.4171/GGD/469
https://doi.org/10.1090/S0002-9947-2014-06218-1
https://arxiv.org/abs/1402.6224
https://arxiv.org/abs/1402.6224
http://dx.doi.org/10.1007/978-3-031-48443-8
https://doi.org/10.1016/S0022-4049(99)00175-9
https://doi.org/10.1016/S0022-4049(99)00175-9
http://dx.doi.org/10.1007/BF01199813
http://dx.doi.org/10.1007/s002220050278
http://dx.doi.org/10.1007/s002220050278
http://dx.doi.org/10.2140/agt.2015.15.2839
http://dx.doi.org/10.1016/0021-8693(90)90149-I
http://dx.doi.org/10.4171/GGD/779
http://dx.doi.org/10.25365/thesis.76555
http://dx.doi.org/10.2140/pjm.2022.317.339


76 CASHEN, DANI, EDLETZBERGER, AND KARRER

[44] A. Genevois, Hyperbolicities in CATp0q cube complexes, Enseign. Math. 65 (2019), no. 1-2,
33–100.

[45] A. Genevois, Quasi-isometrically rigid subgroups in right-angled Coxeter groups, Algebr.

Geom. Topol. 22 (2022), no. 2, 657–708.
[46] A. Genevois, Algebraic properties of groups acting on median graphs, draft version 3 (2023),

http://drive.google.com/file/d/1skDmnCz9EHHLgMaz1XwQZyRb8CI1QVaF/view.

[47] V. N. Gerasimov, Semi-splittings of groups and actions on cubings, Algebra, geometry, analysis
and mathematical physics (Russian) (Novosibirsk, 1996), Izdat. Ross. Akad. Nauk Sib. Otd.

Inst. Mat., Novosibirsk, 1997, pp. 91–109, 190.

[48] M. Graeber, A. Karrer, N. Lazarovich, and E. Stark, Surprising circles in Morse boundaries
of right-angled Coxeter groups, Topology Appl. 294 (2021), Paper No. 107645, 3.

[49] D. Groves and M. Hull, Abelian splittings of right-angled Artin groups, Hyperbolic geometry
and geometric group theory, Adv. Stud. Pure Math., vol. 73, Math. Soc. Japan, Tokyo, 2017,
pp. 159–165.

[50] V. Guirardel and G. Levitt, JSJ decompositions of groups, Astérisque (2017), no. 395, vii+165.
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