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Abstract. We investigate several quantitative generalizations of the notion of quasiconvex
subsets of (Gromov) hyperbolic spaces to arbitrary geodesic metric spaces. Some of these, such
as the Morse property, strong contraction, and superlinear divergence, had been studied before
in more specialized contexts, and some, such as contraction, we introduce for the first time. In
general, we prove that quasiconvexity is the weakest of the properties, strong contraction is the
strongest, and all of the others are equivalent. However, in hyperbolic spaces all are equivalent,
and we prove that in CAT(0) spaces all except quasiconvexity are equivalent.

Despite the fact that many of these properties are equivalent, they are useful for different
purposes. For instance, it is easy to see that the Morse property is quasiisometry invariant, but
the contraction property gives good control over the divagation behavior of geodesic rays with a
common basepoint. We exploit this control to define a boundary for arbitrary finitely generated
groups that shares some properties of the boundary of a hyperbolic group. Our boundary is a
metrizable topological space that is invariant under quasiisometries of the group, and the group
acts on it with simple dynamics.

We investigate the geometry of infinitely presented graphical small cancellation groups.
Such groups include the so-called ‘Gromov Monsters’, which were introduced as a source of
counter-examples to the Baum-Connes conjecture. We give a local-to-global characterization
of contracting geodesics in these groups, which we think of as defining ‘hyperbolic directions’.
Our characterization depends on a beautiful interplay between combinatorial and geometric
versions of negative curvature. The result shows that the geometry of these groups is reminiscent
of the geometry of relatively hyperbolic groups in the sense that there are certain well-defined
non-hyperbolic regions, and geodesics that avoid these regions behave like hyperbolic geodesics.
However, the groups are in general not relatively hyperbolic.

Armed with our understanding of geodesics in graphical small cancellation groups, we
construct examples of the wide varieties of contraction behaviors that occur: we show that every
degree of contraction can be achieved by a periodic geodesic in some finitely generated group,
that there are groups in which every element has a strongly contracting axis even though the
group is not hyperbolic, and that there are examples of finitely generated groups in which the
existence of a strongly contracting axis for a given element depends on the choice of generating
set for the group.

Since the Morse property is invariant under quasiisometries, we can say that a subgroup of a
finitely generated group is Morse (or equivalently, contracting, divergent,...) if it has this property
as a subset in some/any Cayley graph of the group. However, we could also let the group act on
some other geodesic metric space and ask which elements have a contracting/Morse/strongly
contracting axis for that particular action. In particular, we explore actions that are not cocompact.
To preserve a connection with the geometry of the group, we require the action to be metrically
proper. We also introduce a condition known as ‘complementary growth gap’ that says that there
is an orbit of the group in the space that, while metrically distorted, is not too badly distorted from
a growth-theoretic point of view. Our condition generalizes the ‘parabolic growth gap’ condition
for Kleinian groups, and includes additional examples such as the action of the mapping class
group of a hyperbolic surface on its Teichmüller space. We prove growth and cogrowth results
for the orbit pseudometric induced on the group by such an action under the hypothesis the
group has one element that acts with a strongly contracting axis. Our results generalize results
that were known for word metrics on hyperbolic groups to far more general situations. The
generality of our results is even more striking considering that there are contemporaneous papers
that achieve similar results only for actions on hyperbolic spaces.
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Preface

I. Plan of the thesis

This is a cumulative Habilitation thesis on the topic of generalizations of the geometric
notions of convexity and hyperbolicity and their applications to the study of infinite discrete
groups. The thesis includes eight papers on this topic. This Preface contains a brief Synopsis of
each paper including its abstract, publication details, and a list of works that cite it, as well as
a CV. The following chapter is a Survey of the research topic that gives an exposition of our
results, places them into context, and demonstrates the impact of our research on its field. Each
of the remaining eight chapters contains one of the papers.

Each of the papers included in this thesis has undergone successful peer review and is either
already published or accepted and in press. In all cases the version of the paper presented here
is the final author version, post-refereeing, subjected to reformatting in a consistent style. The
final version of record of each paper can be found at the listed address on the website of its
publisher, and may have formatting and editorial changes.

II. Synopsis of the Publications

A. Characterizations of Morse quasi-geodesics via superlinear divergence and sublinear
contraction,

Goulnara N. Arzhantseva, Christopher H. Cashen, Dominik Gruber, and David
Hume,

Documenta Mathematica 22 (2017), 1193–1224.
https://www.math.uni-bielefeld.de/documenta/vol-22/36.html
We introduce and begin a systematic study of sublinearly contracting projections.
We give two characterizations of Morse quasi-geodesics in an arbitrary geodesic
metric space. One is that they are sublinearly contracting; the other is that they have
completely superlinear divergence.
We give a further characterization of sublinearly contracting projections in terms of
projections of geodesic segments.

The authors were equal partners in the conception, execution, and writing of this paper.
Works citing Paper A.

[1] Carolyn Abbott, Jason Behrstock, and Matthew Gentry Durham. Largest acylindrical
actions and stability in hierarchically hyperbolic groups. preprint. 2017. arXiv: 1705.
06219v2.

[2] Tarik Aougab, Matthew Gentry Durham, and Samuel J. Taylor. Pulling back stability
with applications to Out(Fn) and relatively hyperbolic groups. J. Lond. Math. Soc. 96.3
(2017), pp. 565–583.

[3] Arthur Bartels and Mladen Bestvina. The Farrell-Jones conjecture for mapping class
groups. Invent. Math. 215.2 (2019), pp. 651–712.

[4] Jonas Beyrer and Elia Fioravanti. Cross ratios and cubulations of hyperbolic groups.
preprint. arXiv: 1810.08087.

[5] Christopher H. Cashen. Morse subsets of CAT(0) spaces are strongly contracting. Geom.
Dedicata (in press).

[6] Matthew Cordes. A survey on Morse boundaries and stability. Beyond Hyperbolicity.
London Mathematical Society Lecture Note Series. Cambridge University Press, 2019,
pp. 83–116.
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https://www.math.uni-bielefeld.de/documenta/vol-22/36.html
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[7] Matthew Cordes and David Hume. Stability and the Morse boundary. J. Lond. Math.
Soc. 95.3 (2017), pp. 963–988.

[8] Cornelia Druţu, Shahar Mozes, and Mark Sapir. Corrigendum to “Divergence in lattices
in semisimple Lie groups and graphs of groups”. Trans. Amer. Math. Soc. 370.1 (2018),
pp. 749–754.

[9] Elisabeth Fink. Morse geodesics in torsion groups. preprint. 2017. arXiv: 1710.11191.
[10] Merlin Incerti-Medici. Comparing topologies on the Morse boundary and quasi-

isometry invariance. preprint. 2019. arXiv: 1903.07048.
[11] Heejoung Kim. Stable subgroups and Morse subgroups in mapping class groups.

preprint. 2017. arXiv: 1710.11617v2.
[12] Abhijit Pal and Rahul Pandey. Acylindrical Hyperbolicity of Subgroups. preprint. 2019.

arXiv: 1903.00628v2.
[13] Abhijit Pal and Suman Paul. A Note on Strongly Contracting Geodesics in tree of spaces.

preprint. 2019. arXiv: 1904.09906.
[14] Yulan Qing and Kasra Rafi. Sub-linearly contracting boundary I: CAT(0) spaces.

preprint. 2019.
[15] Jacob Russell, Davide Spriano, and Hung Cong Tran. Convexity in Hierarchically

Hyperbolic Spaces. preprint. 2018. arXiv: 1809.09303.
[16] Hung Tran. On strongly quasiconvex subgroups. Geom. Topol. 23.3 (2019), pp. 1173–

1235.

B. Morse subsets of CAT(0) spaces are strongly contracting,
Christopher H. Cashen,
Geometriae Dedicata (in press, accepted May 7, 2019).
We prove that Morse subsets of CAT(0) spaces are strongly contracting. This
generalizes and simplifies a result of Sultan, who proved it for Morse quasi-geodesics.
Our proof goes through the recurrence characterization of Morse subsets.

The applicant is sole author of this paper and is responsible for the conception, execu-
tion, and writing of it in its entirety.

Works citing Paper B.

[1] Jacob Russell, Davide Spriano, and Hung Cong Tran. Convexity in Hierarchically
Hyperbolic Spaces. preprint. 2018. arXiv: 1809.09303.

C. Negative curvature in graphical small cancellation groups,
Goulnara N. Arzhantseva, Christopher H. Cashen, Dominik Gruber, and David

Hume,
Groups, Geometry and Dynamics 13 (2019), no. 2, 579–632.
DOI: 10.4171/GGD/498
We use the interplay between combinatorial and coarse geometric versions of
negative curvature to investigate the geometry of infinitely presented graphical
Gr′(1/6) small cancellation groups. In particular, we characterize their ‘contracting
geodesics’, which should be thought of as the geodesics that behave hyperbolically.
We show that every degree of contraction can be achieved by a geodesic in a finitely
generated group. We construct the first example of a finitely generated group
G containing an element g that is strongly contracting with respect to one finite
generating set of G and not strongly contracting with respect to another. In the case
of classical C′(1/6) small cancellation groups we give complete characterizations of
geodesics that are Morse and that are strongly contracting.
We show that many graphical Gr′(1/6) small cancellation groups contain strongly
contracting elements and, in particular, are growth tight. We construct uncountably
many quasi-isometry classes of finitely generated, torsion-free groups in which
every maximal cyclic subgroup is hyperbolically embedded. These are the first
examples of this kind that are not subgroups of hyperbolic groups.
In the course of our analysis we show that if the defining graph of a graphical Gr′(1/6)
small cancellation group has finite components, then the elements of the group have
translation lengths that are rational and bounded away from zero.

http://dx.doi.org/10.1112/jlms.12042
http://arxiv.org/abs/1710.11191
http://arxiv.org/abs/1903.07048
http://arxiv.org/abs/1710.11617v2
http://arxiv.org/abs/1903.00628v2
http://arxiv.org/abs/1904.09906
http://arxiv.org/abs/1809.09303
http://dx.doi.org/10.2140/gt.2019.23.1173
http://arxiv.org/abs/1809.09303
http://doi.org/10.4171/GGD/498
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The authors were equal partners in the conception, execution, and writing of this paper
Works citing Paper C.

[1] Carolyn R Abbott and David Hume. The geometry of generalized loxodromic elements.
Ann. Inst. Fourier (Grenoble) (in press). preprint. arXiv: 1802.03089v2.

[2] Carolyn Abbott and David Hume. Actions of small cancellation groups on hyperbolic
spaces. preprint. 2018. arXiv: 1807.10524.

[3] Tarik Aougab, Matthew Gentry Durham, and Samuel J. Taylor. Pulling back stability
with applications to Out(Fn) and relatively hyperbolic groups. J. Lond. Math. Soc. 96.3
(2017), pp. 565–583.

[4] Goulnara N. Arzhantseva and Christopher H. Cashen. Cogrowth for group actions with
strongly contracting elements. Ergodic Theory Dynam. Systems (in press).

[5] Christopher H. Cashen. Morse subsets of CAT(0) spaces are strongly contracting. Geom.
Dedicata (in press).

[6] Christopher H. Cashen and John M. Mackay. A Metrizable Topology on the Contracting
Boundary of a Group. Trans. Amer. Math. Soc. 372.3 (2019), pp. 1555–1600.

[7] Matthew Cordes and David Hume. Stability and the Morse boundary. J. Lond. Math.
Soc. 95.3 (2017), pp. 963–988.

[8] Ilya Gekhtman and Wen-yuan Yang. Counting conjugacy classes in groups with con-
tracting elements. preprint. 2018. arXiv: 1810.02969.

[9] Dominik Gruber and Alessandro Sisto. Infinitely presented graphical small cancella-
tion groups are acylindrically hyperbolic. Ann. Inst. Fourier (Grenoble) 68.6 (2018),
pp. 2501–2552. arXiv: 1408.4488.

[10] Suzhen Han and Wen-yuan Yang. Generic free subgroups and statistical hyperbolicity.
preprint. 2018. arXiv: 1812.06265.

[11] David Hume and Alessandro Sisto. Groups with no coarse embeddings into hyperbolic
groups. New York J. Math 23 (2017), pp. 1657–1670.

[12] Merlin Incerti-Medici. Comparing topologies on the Morse boundary and quasi-
isometry invariance. preprint. 2019. arXiv: 1903.07048.

[13] Wenyuan Yang. Genericity of contracting elements in groups. Math. Ann. (in press).
[14] Wen-yuan Yang. Statistically convex-cocompact actions of groups with contracting

elements. Int. Math. Res. Not. (2018).

D. Growth Tight Actions,
Goulnara N. Arzhantseva, Christopher H. Cashen, and Jing Tao,
Pacific Journal of Mathematics 278 (2015), no. 1, 1–49.
DOI:10.2140/pjm.2015.278.1
We introduce and systematically study the concept of a growth tight action. This
generalizes growth tightness for word metrics as initiated by Grigorchuk and de la
Harpe. Given a finitely generated, non-elementary group G acting on a G–space
X, we prove that if G contains a strongly contracting element and if G is not too
badly distorted in X, then the action of G on X is a growth tight action. It follows
that if X is a cocompact, relatively hyperbolic G–space, then the action of G on X
is a growth tight action. This generalizes all previously known results for growth
tightness of cocompact actions: every already known example of a group that admits
a growth tight action and has some infinite, infinite index normal subgroups is
relatively hyperbolic, and, conversely, relatively hyperbolic groups admit growth
tight actions. This also allows us to prove that many CAT(0) groups, including
flip-graph-manifold groups and many Right Angled Artin Groups, and snowflake
groups admit cocompact, growth tight actions. These provide first examples of
non relatively hyperbolic groups admitting interesting growth tight actions. Our
main result applies as well to cusp uniform actions on hyperbolic spaces and to
the action of the mapping class group on Teichmüller space with the Teichmüller
metric. Towards the proof of our main result, we give equivalent characterizations
of strongly contracting elements and produce new examples of group actions with
strongly contracting elements.

The authors were equal partners in the conception, execution, and writing of this paper.
Works citing Paper D.

http://arxiv.org/abs/1802.03089v2
http://arxiv.org/abs/1807.10524
http://dx.doi.org/10.1112/jlms.12071
http://dx.doi.org/10.1112/jlms.12071
http://dx.doi.org/10.1017/etds.2018.123
http://dx.doi.org/10.1017/etds.2018.123
http://dx.doi.org/10.1007/s10711-019-00457-x
http://dx.doi.org/10.1090/tran/7544
http://dx.doi.org/10.1090/tran/7544
http://dx.doi.org/10.1112/jlms.12042
http://arxiv.org/abs/1810.02969
http://arxiv.org/abs/1408.4488
http://arxiv.org/abs/1812.06265
http://nyjm.albany.edu/j/2017/23-73p.pdf
http://nyjm.albany.edu/j/2017/23-73p.pdf
http://arxiv.org/abs/1903.07048
http://dx.doi.org/10.1007/s00208-018-1758-9
http://dx.doi.org/10.1093/imrn/rny001
http://dx.doi.org/10.1093/imrn/rny001
http://doi.org/10.2140/pjm.2015.278.1
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[1] Goulnara N. Arzhantseva and Christopher H. Cashen. Cogrowth for group actions with
strongly contracting elements. Ergodic Theory Dynam. Systems (in press).

[2] Goulnara N. Arzhantseva, Christopher H. Cashen, Dominik Gruber, and David Hume.
Negative Curvature in Graphical Small Cancellation Groups. Groups Geom. Dyn. 13.2
(2019), pp. 579–632.

[3] Anne Broise-Alamichel, Jouni Parkkonen, and Frédéric Paulin. Equidistribution and
counting under equilibrium states in negatively curved spaces and graphs of groups.
Applications to non-Archimedean Diophantine approximation. Vol. 329. Progress in
Mathematics. preprint. Birkhäuser Basel, 2019. arXiv: 1612.06717.

[4] Christopher H. Cashen and Jing Tao. Growth Tight Actions of Product Groups. Groups
Geom. Dyn. 10.2 (2016), pp. 753–770.

[5] Rémi Coulon, Rhiannon Dougall, Barbara Schapira, and Samuel Tapie. Twisted Patterson-
Sullivan measures and applications to amenability and coverings. preprint. 2018. arXiv:
1809.10881v2.

[6] François Dahmani, David Futer, and Daniel T Wise. Growth of quasiconvex subgroups.
Math. Proc. Cambridge Philos. Soc. (2018), pp. 1–26.

[7] Shubhabrata Das and Mahan Mj. Controlled Floyd separation and non relatively
hyperbolic groups. J. Ramanujan Math. Soc. 30.3 (2015), pp. 267–294.

[8] Ilya Gekhtman, Samuel J Taylor, and Giulio Tiozzo. Counting problems in graph
products and relatively hyperbolic groups. preprint. 2017. arXiv: 1711.04177.

[9] Ilya Gekhtman and Wen-yuan Yang. Counting conjugacy classes in groups with con-
tracting elements. preprint. 2018. arXiv: 1810.02969.

[10] Suzhen Han and Wen-yuan Yang. Generic free subgroups and statistical hyperbolicity.
preprint. 2018. arXiv: 1812.06265.

[11] Ilya Kapovich, Joseph Maher, Catherine Pfaff, and Samuel J Taylor. Random outer
automorphisms of free groups: Attracting trees and their singularity structures. preprint.
2018. arXiv: 1805.12382.

[12] Katsuhiko Matsuzaki. Growth and cogrowth tightness of Kleinian and hyperbolic
groups. Geometry and Analysis of Discrete Groups and Hyperbolic Spaces. Ed. by
M. Fujii, N. Kawazumi, and K. Ohshika. Vol. B66. RIMS Kôkyûroku Bessatsu. RIMS,
2017, pp. 21–36.

[13] Mahan Mj and Parthanil Roy. Stable Random Fields, Bowen-Margulis measures and
Extremal Cocycle Growth. preprint. 2018. arXiv: 1809.08295.

[14] Kasra Rafi and Yvon Verberne. Geodesics in the mapping class group. preprint. 2018.
arXiv: 1810.12489.

[15] Wenyuan Yang. Genericity of contracting elements in groups. Math. Ann. (in press).
[16] Wen-yuan Yang. Statistically convex-cocompact actions of groups with contracting

elements. Int. Math. Res. Not. (2018).

E. Growth Tight Actions of Product Groups,
Christopher H. Cashen and Jing Tao,
Groups, Geometry and Dynamics 10 (2016), no. 2, 753–770.
DOI:10.4171/GGD/364
A group action on a metric space is called growth tight if the exponential growth rate
of the group with respect to the induced pseudo-metric is strictly greater than that
of its quotients. A prototypical example is the action of a free group on its Cayley
graph with respect to a free generating set. More generally, with Arzhantseva we
have shown that group actions with strongly contracting elements are growth tight.
Examples of non-growth tight actions are product groups acting on the L1 products
of Cayley graphs of the factors.
In this paper we consider actions of product groups on product spaces, where each
factor group acts with a strongly contracting element on its respective factor space.
We show that this action is growth tight with respect to the Lp metric on the product
space, for all 1 < p ≤ ∞. In particular, the L∞ metric on a product of Cayley graphs
corresponds to a word metric on the product group. This gives the first examples of
groups that are growth tight with respect to an action on one of their Cayley graphs

http://dx.doi.org/10.1017/etds.2018.123
http://dx.doi.org/10.1017/etds.2018.123
http://dx.doi.org/10.4171/GGD/498
http://arxiv.org/abs/1612.06717
http://dx.doi.org/10.4171/GGD/364
http://arxiv.org/abs/1809.10881v2
http://dx.doi.org/10.1017/S0305004118000440
http://arxiv.org/abs/1711.04177
http://arxiv.org/abs/1810.02969
http://arxiv.org/abs/1812.06265
http://arxiv.org/abs/1805.12382
http://arxiv.org/abs/1809.08295
http://arxiv.org/abs/1810.12489
http://dx.doi.org/10.1007/s00208-018-1758-9
http://dx.doi.org/10.1093/imrn/rny001
http://dx.doi.org/10.1093/imrn/rny001
http://doi.org/10.4171/GGD/364
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and non-growth tight with respect to an action on another, answering a question of
Grigorchuk and de la Harpe.

The authors were equal partners in the conception, execution, and writing of this paper.

Works citing Paper E.

[1] Goulnara N. Arzhantseva, Christopher H. Cashen, and Jing Tao. Growth Tight Actions.
Pacific J. Math. 278.1 (2015), pp. 1–49.

F. Cogrowth for group actions with strongly contracting elements,
Goulnara N. Arzhantseva and Christopher H. Cashen,
Ergodic Theory & Dynamical Systems (in press, accepted Oct 15, 2018).
DOI:10.1017/etds.2018.123
Let G be a group acting properly by isometries and with a strongly contracting
element on a geodesic metric space. Let N be an infinite normal subgroup of G,
and let δN and δG be the growth rates of N and G with respect to the pseudo-metric
induced by the action. We prove that if G has purely exponential growth with
respect to the pseudo-metric then δN/δG > 1/2. Our result applies to suitable
actions of hyperbolic groups, right-angled Artin groups and other CAT(0) groups,
mapping class groups, snowflake groups, small cancellation groups, etc. This
extends Grigorchuk’s original result on free groups with respect to a word metrics
and a recent result of Jaerisch, Matsuzaki, and Yabuki on groups acting on hyperbolic
spaces to a much wider class of groups acting on spaces that are not necessarily
hyperbolic.

The authors were equal partners in the conception, execution, and writing of this paper.

Works citing Paper F.

[1] Ilya Gekhtman and Arie Levit. Critical exponents of invariant random subgroups in
negative curvature. Geom. Funct. Anal. (in press). arXiv: 1804.02995.

G. Quasi-isometries need not induce homeomorphisms of contracting boundaries with
the Gromov product topology,

Christopher H. Cashen,
Analysis and Geometry in Metric Spaces 4 (2016), no. 1, 278–281.
DOI:10.1515/agms-2016-0011
We consider a ‘contracting boundary’ of a proper geodesic metric space consisting
of equivalence classes of geodesic rays that behave like geodesics in a hyperbolic
space. We topologize this set via the Gromov product, in analogy to the topology of
the boundary of a hyperbolic space. We show that when the space is not hyperbolic,
quasi-isometries do not necessarily give homeomorphisms of this boundary. Con-
tinuity can fail even when the spaces are required to be CAT(0). We show this by
constructing an explicit example.

The applicant is sole author of this paper and is responsible for the conception, execu-
tion, and writing of it in its entirety.

Works citing Paper G.

[1] Christopher H. Cashen and John M. Mackay. A Metrizable Topology on the Contracting
Boundary of a Group. Trans. Amer. Math. Soc. 372.3 (2019), pp. 1555–1600.

[2] Matthew Cordes. A survey on Morse boundaries and stability. Beyond Hyperbolicity.
London Mathematical Society Lecture Note Series. Cambridge University Press, 2019,
pp. 83–116.

[3] Matthew Cordes and David Hume. Stability and the Morse boundary. J. Lond. Math.
Soc. 95.3 (2017), pp. 963–988.

[4] Merlin Incerti-Medici. Comparing topologies on the Morse boundary and quasi-
isometry invariance. preprint. 2019. arXiv: 1903.07048.

[5] Yulan Qing and Kasra Rafi. Sub-linearly contracting boundary I: CAT(0) spaces.
preprint. 2019.

http://dx.doi.org/10.2140/pjm.2015.278.1
http://doi.org/10.1017/etds.2018.123
http://arxiv.org/abs/1804.02995
http://doi.org/10.1515/agms-2016-0011
http://dx.doi.org/10.1090/tran/7544
http://dx.doi.org/10.1090/tran/7544
http://dx.doi.org/10.1017/9781108559065.007
http://dx.doi.org/10.1112/jlms.12042
http://arxiv.org/abs/1903.07048
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H. A metrizable topology on the contracting boundary of a group,
Christopher H. Cashen and John M. Mackay,
Transactions of the American Mathematical Society, 372 (2019), no. 3, 1555–

1600.
DOI:10.1090/tran/7544
The ‘contracting boundary’ of a proper geodesic metric space consists of equiv-
alence classes of geodesic rays that behave like rays in a hyperbolic space. We
introduce a geometrically relevant, quasi-isometry invariant topology on the con-
tracting boundary. When the space is the Cayley graph of a finitely generated group
we show that our new topology is metrizable.

The authors were equal partners in the conception, execution, and writing of this paper.
Works citing Paper H.

[1] Carolyn Abbott, Jason Behrstock, and Matthew Gentry Durham. Largest acylindrical
actions and stability in hierarchically hyperbolic groups. preprint. 2017. arXiv: 1705.
06219v2.

[2] Jonas Beyrer and Elia Fioravanti. Cross ratios and cubulations of hyperbolic groups.
preprint. arXiv: 1810.08087.

[3] Jonas Beyrer and Elia Fioravanti. Cubulations and cross ratios on contracting bound-
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Survey of the topic and the impacts of this thesis

1. Introduction

A subsetZ of a geodesic metric space X is called quasiconvex if there exists Q ≥ 0 such
that every geodesic segment connecting two points inZ is contained in the Q–neighborhood
of Z. Quasiisometries between hyperbolic spaces preserve quasiconvex subsets, so it makes
sense to say that a subgroup of a hyperbolic group G is, or is not, quasiconvex, according to
whether it corresponds to a quasiconvex subset in some/every Cayley graph of G. Quasiconvex
subgroups of hyperbolic groups have many nice properties. For example, let H and H′ be
infinite quasiconvex subgroups of a hyperbolic group G. The following are all true:

(1) H is finitely generated and undistorted.
(2) H ∩ H′ is quasiconvex.
(3) H has finite height, finite width, and bounded packing.
(4) H has finite index in its commensurator.
(5) (H is hyperbolic and) The inclusion of H into G extends to an embedding ∂H ↪→ ∂G

whose image coincides with the limit set Λ(H).
(6) If H has infinite index in G then there exists g ∈ G such that 〈H, g〉 � H ∗ 〈g〉 is

quasiconvex.

When the ambient space is not hyperbolic, the quasiconvexity property loses much of its
strength. In Section 3 we describe another property, the Morse property, that is equivalent to
quasiconvexity in hyperbolic spaces, but remains interesting in nonhyperbolic spaces as well.
It is also invariant under quasiisometries of the ambient space, so again we can apply it to
subgroups, and many of the properties of quasiconvex subgroups of hyperbolic groups can be
generalized to Morse subgroups of arbitrary finitely generated groups.

Theorem 1.1. Suppose that H and H′ are infinite Morse subgroups of a finitely generated
group G.

(1) H is finitely generated and undistorted.
(2) H ∩ H′ is quasiconvex.
(3) H has finite height, finite width, and bounded packing.
(4) H has finite index in its commensurator.
(5) The inclusion of H into G extends to an embedding ∂H ↪→ ∂G whose image coincides

with the limit set Λ(H). Here ∂G and ∂H can refer to either the Morse or contracting
boundaries of G and H.

(1), (2), and (4) are true by arguments similar to the quasiconvex case in hyperbolic groups.
(3) is a result of Tran [77], and the interested reader is referred there for definitions.

For (5) to make sense we need a notion of a boundary of a finitely generated group that
plays the role of the hyperbolic boundary. This is the topic of Section 5.

Item (6) from the hyperbolic case is not true in general for Morse subgroups. In the special
case that H is cyclic, Item (6) allows us to build free subgroups of G. However, Osin, Ol′shanskii,
and Sapir [59] constructed a so-called “Tarski monster” group, which is an infinite, finitely
generated, non-virtually cyclic group with the properties that every cyclic subgroup is Morse
and every proper subgroup is cyclic. The failure of Item (6) motivates a search for even stronger
properties, some of which are described in Section 6.
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In Section 7 we focus on one of these stronger properties. We study actions of groups on
metric spaces where at least one element of the group acts as a strongly contracting element and
prove some results about growth and cogrowth of group actions.

In Section 4 we apply the innovations of Section 3 to study the geometry of infinitely
presented graphical small cancellation groups. These provide a useful source of examples for
various metric properties in groups. In particular, we show that the property of being a strongly
contracting element for an action on a Cayley graph can depend on the choice of generating set.

1.1. On the impacts of this thesis. In the coming pages we survey the constituent papers
of this thesis and related literature, which are all tied together by the broad goal, exemplified
by Theorem 1.1, of generalizing results from hyperbolic groups to arbitrary finitely generated
groups that feature limited forms of hyperbolic behavior. Here we highlight our most important
contributions.

In [Paper A]/Section 3 we introduce the contraction property and show it is equivalent to
several previously known properties, including the Morse property. We initially, in [Paper A],
proved the equivalence of contraction and the Morse property, while others extended our work
to include recurrence [5] and divergence [77]. The equivalence of all of these properties was
only known before in the case of quasigeodesics in CAT(0) spaces and quasiconvex sets in
hyperbolic spaces, but using our characterization of contraction we can now prove them for
arbitrary subsets of arbitrary geodesic metric spaces. These equivalences have been used to give
characterizations of stable subgroups of mapping class groups, outer automorphism groups of
free groups, some relatively hyperbolic groups, and right-angled Artin and Coxeter groups [5,
77], and to relate divergence to the topology of asymptotic cones [30].

The contraction property turned out to be versatile, but we original designed it specifically
for the study of infinitely presented graphical small cancellation groups. In [Paper C]/Section 4
we prove foundational results about this very interesting class of groups. Some of these results
are new even when restricted to the well-studied special case of classical small cancellation
groups. Conversely, this class of groups is a well suited to constructing exotic examples to tease
apart curvature properties in finitely generated groups.

The contraction property was also instrumental in the construction of a quasiisometry invari-
ant metrizable topology on the contracting boundary of a group, described in [Paper H]/Section 5.
Boundaries of hyperbolic groups have proven to be very useful tools, and we anticipate that our
boundary will lead to many applications for nonhyperbolic groups. Qing and Rafi [64] have
extended our construction to give a quasiisometry invariant topological model for the Poisson
boundary of CAT(0) groups.

In [Paper D]/Section 7 we initiate the study of groups acting on metric spaces with a strongly
contracting element. Such actions encompass geometric actions on hyperbolic and CAT(0)
spaces, actions of relatively hyperbolic groups on hyperbolic spaces, and actions of mapping
class groups on Teichmüller spaces. The latter two types of actions are not cocompact, and it
turns out that even in the relatively hyperbolic case the kind of growth results we would like to
prove break down if we allow arbitrary noncocompact proper actions. We introduce a property
called complementary growth gap to allow noncocompact actions that still have some control on
how badly the orbits of the group are distorted. This implies the ‘parabolic gap’ condition that
had previously been utilized in the study of Kleinian groups, but can be defined for arbitrary
proper actions, and, in particular, is satisfied by the action of a mapping class group on its
Teichmüller space with the Teichmüller metric. With these two conditions, strongly contracting
element + complementary growth gap, we are able to reprove and vastly generalize growth
[Paper D] and [Paper E] and cogrowth [Paper F] theorems that were previously known only in
the hyperbolic case, or sometimes only in the case of free groups! Yang [82] and Coulon et
al. [25] have subsequently adopted our framework to generalize famous results such as pure
exponential growth, genericity of hyperbolic elements, and the Grigorchuk amenability criterion.
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2. Preliminaries

Throughout, X is a geodesic metric space, groups are finitely generated, and actions are
isometric actions. Let En denote n–dimensional Euclidean space. We refer the reader to [16] for
standard definitions such as hyperbolic and CAT(0) spaces, quasiisometries, and quasigeodesics.

An isometric action of a finitely generated group on a geodesic metric space is geometric if
it is properly discontinuous and cocompact.

Let I ⊂ R denote some interval. A rectifiable path γ : I → X with endpoints x and y is
E–efficient if len(γ) ≤ Ed(x, y). It is (E1, E2)–efficient if len(γ) ≤ E1d(x, y) + E2. A path is
locally (E1, E2)–efficient if every bounded subpath is (E1, E2)–efficient.

• Sr(Z) := {x ∈ X | d(x,Z) = r}
• Nr(Z) := {x ∈ X | d(x,Z) < r}.
• Nc

r (Z) := X −Nr(Z).
• N̄r(Z) := {x ∈ X | d(x,Z) ≤ r}.

If φ, ψ : R → R ∪ {±∞} then we write φ ≺ ψ if there exists constants A, B,C,D > 0 such
that for all r sufficiently large we have φ(r) ≤ Aψ(Br + C) + D, and we write φ � ψ if φ ≺ ψ and
ψ ≺ φ. When φ � ψ we say the functions φ and ψ are equivalent.

We denote the identity function R→ R by Id, so for all r ∈ R we have Id(r) = r.

Lemma 2.1. Let X be a geodesic metric space. Given L ≥ 1 and A ≥ 0 there exist H ≥ 0,
E1 ≥ 1, E2 ≥ 0, and A′ ≥ 0 such that every (L, A)–quasigeodesic is Hausdorff distance at most
H from an (L, A′)–quasigeodesic, locally (E1, E2)–efficient path with the same endpoints.

Conversely, every locally (E1, E2)–efficient path, upon reparameterizing by arc length, is an
(E1, E2)–quasigeodesic.

Proof. The first claim is [16, Lemma III.H.1.11]. The second is easy. �

3. The Morse property and related properties

In this section we fix a subsetZ of a geodesic metric space X and define several analogues
of quasiconvexity ofZ. Intuitively, these properties all say that the most efficient way to travel
between points inZ is to travel in, or close to,Z, and that it is increasingly inefficient to make
progress in Z using paths that stray far from it. To each such property we associate a gauge
function quantifying it. We are interested not only in deciding if two properties are equivalent,
but also in establishing effective relations, in the sense that the gauge for one property can be
bounded in terms of the gauge for another.

Some of the properties have a long history. Indeed, Morse [56] introduced the first version
of such a property some 95 years ago. In this thesis, specifically, in [Paper A], we introduce
a new property, contraction, that ties the others together and lets us prove that many of them
are actually equivalent. A downside to this long history is that some of the properties have
become more nuanced as their scope has expanded. Some results that were first proved in
hyperbolic or CAT(0) settings, or were proved with the assumption that Z is a geodesic or a
quasigeodesic, can be extended to more general situations. Sometimes this generalization is
direct, but sometimes it comes at the cost of making the geometric hypothesis onZ stronger.
However, the terminology used in the literature can blur the distinction between such enhanced
properties. For instance, at least four of the properties we list can be found in the literature under
the name ‘contraction’, yet are distinct in general. Conversely, sometimes different authors use
different names for identical definitions. In this section we review the various properties from
the literature, including from [Paper D] and [Paper A], and impose a terminology to distinguish
them. We give a comprehensive statement of the relationships between these properties, see
Theorem 3.2 and Figure 4. Following the theorem, in Definition 3.3 we define a set to be Morse
if it satisfies a set of six equivalent properties.

We are not aware of any single source that has tackled all of these properties in this generality,
but the theorem is not a new result. Rather, Theorem 3.2 is an attempt to ‘tidy-up’ the literature
by casting all the necessary pieces in the same general setting. For completeness we have
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included a proof, which is broken into separate statements for each of the implications. These
are either easy or are adaptations of results appearing in this thesis or elsewhere in the literature,
and can be found in the appendix (Section 8). The appendix also contains computations of two
families of examples that demonstrate nonimplications between some of the properties and show
that some of the effective bounds we give are sharp.

The definitions and their history are given in Section 3.1. In Section 3.2 we comment on
quasiisometry invariance and the natural extension of these metric properties to subgroups.

Throughout this section we make the assumption that the set-valued closest point projection
map πZ(x) := {z ∈ Z | d(x, z) ≤ d(x,Z)} does not have the empty set in its image. This is for
convenience. If it is not the case, it can be arranged by choosing any ε > 0 and using the map
πε
Z

(x) := {z ∈ Z | d(x, z) ≤ d(x,Z) + ε} instead. Of course this will mean that the quantitative
equivalences between our various properties will pick up some factors of ε in the computations.
However, Lemma 8.5 shows that qualitatively the choice of ε does not matter.

3.1. Definitions. In the following definitions, the phrase “there is a function defined by. . . ”
is an assertion that the succeeding expression containing a supremum or infinum defines a
(real-valued, unless specified) function, ie. that the extremum exists.

3.1.1. Path-based definitions. We first consider the behavior of various path systems with
respect toZ:

• G the set of all geodesic segments.
• Q := ∪L≥1, A≥0Q(L, A) where Q(L, A) is the set of all (L, A)–quasigeodesic segments.
• L := ∪E1≥1, E2≥0L(E1, E2) where L(E1, E2) is the set of all locally (E1, E2)–efficient

segments.
We set up the definitions in a uniform way by defining PS(C) to be a collection of maps from
intervals of R into X satisfying some condition depending on parameters C := (C1,C2, . . . ),
and let PS be the union of the PS(C) as C varies over some space of parameters, eg.: PS =

Q, G, or L.
PS–quasiconvex: There is a function χ defined by χ(C) := supγ supw∈γ d(w,Z), where the

first supremum is taken over those γ ∈ PS(C) with both endpoints onZ.
PS–trim: For each fixed C there is a sublinear function r 7→ τ(r; C) defined by τ(r; C) :=

supγ supz d(z, γ) where the first supremum is taken over γ ∈ PS(C) such that, if γ+

and γ− are the endpoints of γ, then γ− ∈ Z and d(γ+,Z) ≤ r. The second supremum
is taken over points z ∈ πZ(γ+).

If, in addition, for each C the function τ(r; C) is bounded, then we say Z is
strongly PS–trim.

The usual notion of ‘quasiconvexity’ is ‘geodesic quasiconvexity’ in this scheme. Since
there is only one point in the parameter space for G, the quasiconvexity gauge χ has just a
single value χ(1) = C. Thus, we say ‘C–quasiconvex’ to mean geodesically quasiconvex with
quasiconvexity gauge χ(1) = C.

Notice that all of these path-based properties are preserved upon passing to sub-path systems
PS
′
⊂ PS, and, more generally, upon passing to PS′ such that for every C′ there exists C and

H such that for every γ′ ∈ PS′(C′) there exists a γ ∈ PS(C) at Hausdorff distance at most H
from γ′. An example of the former is that geodesics and, by Lemma 2.1, locally efficient paths,
are quasigeodesic, so quasigeodesic quasiconvexity implies geodesic quasiconvex and locally
efficient quasiconvexity. An example of the latter is that quasigeodesics are bounded Hausdorff
distance from locally efficient paths, as in Lemma 2.1, so locally efficient quasiconvexity
implies quasigeodesic quasiconvexity. Thus, quasigeodesic quasiconvexity and locally efficient
quasiconvexity are equivalent, although the gauge χ of course depends on the specification.

Morse [56, Lemma 8] essentially shows that geodesics in the hyperbolic plane are locally
efficiently quasiconvex. Gromov [43, Proposition 7.2.A] observed that this is true for geodesics
in any hyperbolic space. He referred to this property as ‘stability’. The term ‘stable’ continued to
be used in the early geometric group theory literature to describe quasigeodesically quasiconvex
quasigeodesics.
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Druţu and Sapir [32] talk about geodesics in relatively hyperbolic groups satisfying the
‘Morse property’ to describe quasigeodesic quasiconvexity. Druţu, Mozes, and Sapir [31] intro-
duce the terminology ‘Morse quasigeodesic’ for a quasigeodesically quasiconvex quasigeodesic.

Our paper [Paper A] characterizes the Morse property in the guise of quasigeodesic quasi-
convexity for arbitrary subsets. Subsequently, both Genevois [36] and Tran [77] reintroduced
this property. Genevois uses the terminology ‘Morse subset’. Tran says ‘Morse’ for subsets, but
‘strongly quasiconvex’ for subgroups. Note that the terminology ‘strongly quasiconvex’ has also
been used for different notions, for example, in [27].

We use the name ‘trim’ to be different from, but still call to mind, the terms ‘slim’ and ‘thin’
often used to describe hyperbolic triangles. A triangle whose base is contained in a geodesically
trim set has a waist that is small relative to its height. ‘Strongly geodesically trim’, restricted
to the case that Z is a quasigeodesic in a CAT(0) space, matches Sultan’s [74] definition of
‘slim’. Similarly, Bestvina and Fujiwara [13] prove a lemma that says a triangle in a CAT(0)
space with one contracting side is ‘thin’. In a CAT(0) space, a geodesic triangle with a strongly
geodesically trim side is slim/thin in the sense as used in hyperbolic spaces [16, III.H.1], but this
is not true in general metric spaces. Thus, the term ‘trim’ is still somewhat misleading; a triangle
with a trim base can look like a fat triangle that has over tightened its belt, as in Figure 1.

Trimness is closely related to the ‘divagation function’ of Proposition 5.4.

Figure 1. A geodesic triangle whose base is contained in a trim subset (shaded)
has a small waist.

Durham and Taylor [34] (for subgroups, see also [5] for subsets) make a different choice of
how to generalize quasigeodesic quasiconvexity to arbitrary subsets that they call ‘stability’. We
define stability as follows:

stable: There exists a family of uniformly quasigeodesically quasiconvex uniform quasi-
geodesics in X that are contained inZ and transitive onZ.

The wording here is slightly different than the original definition, where is was additionally
required that Z is an ‘undistorted’ subset of X. This presupposes that Z comes equipped
with its own metric dZ, and then requires that the inclusion of Z into X is a quasiisometric
embedding with respect to dZ and dX. The intuition is that geodesics inZ are sent to uniform
quasigeodesics by a quasiisometric embedding, and we additionally require that the image
quasigeodesics are uniformly quasigeodesically quasiconvex. The definition we have given
makes sense for arbitrary subsets, without reference to an external metric onZ, and is equivalent
to Durham and Taylor’s provided that (Z, dZ) is a quasigeodesic space. Cordes and Hume [23]
also modify the definition of stability to make sense for arbitrary subsets by saying that Z is
quasiconvex and that there is a uniformly quasigeodesically quasiconvex family of geodesics in
X that is transitive onZ. Their definition is equivalent to ours.

The initial interest in stability was to characterize convex cocompact subgroups of mapping
class groups [34]. It was subsequently shown to characterize convex cocompactness in groups
with a nontrivial Morse boundary [22], and was also used to define a quasiisometry invariant
notion of dimension [23].
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3.1.2. Efficiency based definitions. One might have also considered the path system:
• E(E) the set of all E–efficient segments, with E := ∪E≥0E(E).

This does not lend itself to a useful notion of ‘efficiently quasiconvex’. The problem is that
subsegments of E–efficient segments need not be E–efficient. Even in a tree, for example, one
can go off in some direction for distance D, then return to the starting point, then go off in some
other direction for distance 2D, to make an 2–efficient path that leaves the D–neighborhood of
the geodesic between the endpoints. However, in the tree there is a kind of reversed version
of convexity: paths do not need to stay close to the geodesic between the endpoints, but the
geodesic does have to stay close to the path. Shchur [71, 39] calls the generalization of this
property to hyperbolic spaces the ‘anti-Morse property’. Druţu, Mozes, and Sapir [31], see also
[5], generalize this idea by requiring that an efficient path with endpoints x and y onZ contains
some point that is close to some point ofZ away from x and y.
recurrent: For some N > 2 there exists a function ρ defined by ρ(E; N) := supγ d̄(γ,Z′γ),

where the supremum is taken over γ ∈ E(E) with endpoints onZ, and if γ+, γ− denote
the endpoints of γ then we define Z′γ := Z − Nd(γ+,γ−)/N({γ−, γ+}). The modified
distance d̄ is given by:

d̄(γ,Z′γ) =

d(γ+, γ−)/N ifZ′γ = ∅

infw∈γ d(w,Z′γ) otherwise

It is clear that for 2 < N < N′ we have ρ(E; N′) ≤ ρ(E; N). It is not clear from the definition,
but follows from the proof of Theorem 3.2, that if ρ(E; N′) exists then so does ρ(E; N), so
the existence of a recurrence function does not depend on the choice of N > 2, although the
equivalence class of the function ρ might. We will assume N = 3 and omit it from the notation
unless otherwise specified.

The modified distance d̄ in the definition allows us to deal with the case that some Z′γ is
empty. This degenerate case only occurs ifZ is bounded and clustered about two points; for
instance, ifZ only has two points. IfZ is unbounded or connected with more than one point
then noZ′γ is empty and d̄ is the usual distance.

3.1.3. Sphere-based definitions. For the next two definitions, we make the convention that
the infinum of the empty set is∞, and let dr be the induced length metric on Nc

r (Z) ⊂ X, with
the convention that dr takes value∞ on points from different components.
frilly:1 There is a function µ : [0,∞) → [0,∞] with limr→∞ µ(r) = ∞ defined by µ(r) :=

infx,y dr(x, y)/d(x, y), where the infinum is taken over points x, y ∈ Sr(Z) such that
diam πZ(x) ∪ πZ(y) > 2r.

Figure 2 illustrates frilliness.

Figure 2. The bottom line is a frilly geodesic.

Note that if follows from the definition that if there exists r such that µ(r) = ∞ then µ(s) = ∞

for all s > r. In particular, ifZ is bounded then µ(r) = ∞ for all r ≥ (diamZ)/2.
More generally, for each M ∈ (0, 1] and N ≥ 2 define the (possibly ∞–valued) function

µ(r; M,N) := infx,y dMr(x, y)/d(x, y), where the infinum is taken over points x, y ∈ Sr(Z) such

1This definition needs to be modified in the case that the projection map is πε
Z

for ε > 0. In this case, to
guarantee x and y are distinct the condition should be: diam πε

Z
(x) ∪ πε

Z
(y) > 2(r + ε).
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that diam πZ(x) ∪ πZ(y) > Nr. It turns out, see Proposition 8.3, that µ(r; M,N) � µ(r; M′,N′)
for all M, N, M′, and N′, so up to equivalence it is enough to consider µ(r) = µ(r; 1, 2).

Morse [56, Lemma 5] proved2 that geodesics in the hyperbolic plane are frilly as a precursor
to proving quasigeodesic quasiconvexity.

Frilliness is closely related to a particular generalized notion of ‘divergence’. The concept
of divergence has a long history, and many different definitions. The simplest is to define the
divergence of a pair of geodesic rays with common basepoint to be the function that takes a
positive number r to the infimal length of a path joining the points at distance r along the two
rays, with the condition that the path stays outside the ball of radius r about the basepoint.
This definition can easily be applied to geodesics by choosing a basepoint and considering the
geodesic to be the union of two rays. However, in this case the choice of basepoint can affect
the result if the geodesic is not periodic, so a more natural choice is to rechoose the basepoint
for each given r so as to minimize the result. This is called ‘lower divergence’ by Charney and
Sultan [19].

In hyperbolic spaces geodesics have at least exponential divergence, while in Euclidean
spaces they have linear divergence. Gromov [42, §6.B2(h)] mused that in spaces of nonpositive
curvature these could be the only possibilities. However, Gersten [38] gave a coarse geometric
definition of divergence and constructed an example of a finite nonpositively curved 2–complex
whose universal cover has rays diverging quadratically, but no faster. Gersten [37] and Kapovich
and Leeb [49] used divergence to study nonpositive curvature in 3–manifold groups. Macura
[52], and, independently, Behrstock and Druţu [10], constructed examples of CAT(0) spaces
with arbitrary polynomial degrees of divergence.

In the realm of nonpositive curvature there is a gap between geodesics with linear divergence
and those whose divergence grows faster than linear (see Corollary 3.6), even if the gap is not
quite so dramatic as Gromov had guessed. It was well understood that the ‘Euclidean like’
geodesics were those with linear divergence, and so, naturally, the geodesics with nonlinear
divergence are the ‘hyperbolic like’ ones. However, in the absence of a nonpositive curvature
hypothesis, divergence functions can have exotic behavior3, and it turns out that divergence ‘not
bounded by a linear function’, which used to be a commonly used hypothesis, is not sufficient to
imply quasigeodesic quasiconvexity. For example, Ol′shanskii, Osin, and Sapir [59] construct a
group that contains quasigeodesics whose divergence is linear on an unbounded sequence but
not bounded by any linear function. Moreover, the example has an asymptotic cone with no cut
point, hence the group has no stable quasigeodesics.

In [Paper A] we clarified this situation by saying that φ is completely superlinear if for
every choice of nonnegative constants C1, C2 the set {r ∈ [0,∞) | φ(r) ≤ C1r + C2} is bounded.
Equivalently, limr→∞ φ(r)/r = ∞. We then formulate a version of divergence for quasigeodesics,
and show that quasigeodesic quasiconvexity is equivalent to completely superlinear divergence.

Tran [79] invented a version of divergence, called ‘relative lower divergence’, that is equiva-
lent to lower divergence for geodesics but also makes sense for arbitrary subsets of a geodesic
metric space. He shows in [77] that the characterization of quasigeodesic quasiconvexity in terms
of completely superlinear divergence goes through for this generalized version of divergence.

We propose the following simplified version of relative lower divergence:

divergent: There is a function δ : [0,∞)→ [0,∞] with limr→∞ δ(r)/r = ∞ defined by δ(r) :=
infx,y dr(x, y), where the infinum is taken over points x, y ∈ Sr(Z) such that d(x, y) ≥
3r.

2What Morse actually proved is stronger. Specifically, he considered all points x and y in Sr(Z) whose
projection diameter is at least 1. In general we cannot assume that closest point projection is so well behaved—for
x ∈ Sr(Z) the set πZ(x) can have diameter 2r, so we need diam πZ(x) ∪ πZ(y) > 2r even to distinguish x and y as
distinct points.

3Gruber and Sisto [46] construct groups with even wilder behavior: for any countable collection of subexpo-
nential functions they construct a 2–generated group whose divergence exceed each of the given functions on some
subsequence, but is at most quadratic on some subsequence.



22 SURVEY OF THE TOPIC AND THE IMPACTS OF THIS THESIS

Thus we say ‘Z is divergent’ to mean that the lower divergence δ of X relative to Z is a
completely superlinear function.

As in the frilly case, it is useful to define a family of divergence functions: for all 0 < M ≤ 1
and N > 2, define δ(r; M,N) := infx,y dMr(x, y), where the infinum is taken over points x, y ∈
Sr(Z) such that d(x, y) ≥ Nr.

Also as in the frilly case, all of these functions are equivalent, see Proposition 8.4, so up to
equivalence it is enough4 to consider δ(r) = δ(r; 1, 3).

It turns out to be important in the proof of Proposition 8.4 that the ratios d(x, y)/r are bounded
away from 2, but here is a compelling geometric justification that the case of N = 2 is not suitable
for our purposes: Let X := E2, and letZ be a point in X. ThenZ is a frilly/quasigeodesically
quasiconvex subset, but Sr(Z) is just the circle of radius r in the Euclidean plane centered at the
point Z, so δ(r; M, 2) is linear. On the other hand, for N > 2 there are no points in Sr(Z) at
distance Nr from each other, so, by convention, δ(r; M,N) = ∞. The N = 2 functions are not
equivalent to the N > 2 functions, and the N = 2 functions cannot identify frilly subsets.

Worry not that this example is somehow cheating by takingZ to be a bounded set. A similar
argument applies to X the universal cover of the wedge of two flat tori, with Z a connected
component of the lift of one of the tori. In this case Z is again a frilly subset, but the N = 2
divergence functions are still linear.

3.1.4. Contraction.
contracting: There is a function κ1 : (0,∞) → (0,∞) that is continuous, unbounded, nonde-

creasing, and bounded above by the identity, such that there is a function κ2 satisfying
limr→∞

κ2(r)
κ1(r) = 0 defined by κ2(r) := supx,y diam πZ(x) ∪ πZ(y) where the supremum

is taken over points x and y such that d(x,Z) ≤ r and d(x, y) ≤ κ1(d(x,Z)).

Remark 3.1. Sometimes when we have κ1 and κ2 as in the definition it is convenient to
replace κ2 by κ′2(r) := κ1(r) · sups≥r κ2(s)/κ1(s). Then κ′2(r) ≥ κ2(r), κ′2 is nondecreasing, and

κ′2/κ1 is continuous, nonincreasing, and limr→∞
κ′2(r)
κ1(r) = 0.

Special cases of note:
sublinearly contracting: Contracting with κ1(r) := r, so that κ2 is a sublinear function.
semistrongly contracting: Contracting with κ1(r) := r/2 and κ2 bounded.
strongly contracting: Contracting with κ1(r) := r and κ2 bounded.

For brevity, we say C–strongly contracting or C–semistrongly contracting for strongly
or semistrong contraction, respectively, with κ2 bounded by C, and we say κ–contracting for
sublinear contraction with κ2 = κ. Figure 3, which is [Figure 2, Paper A], illustrates that
geodesics in H2 are strongly contracting.

Minsky [55] proved that geodesics in the thick part of Teichmüller space satisfy a ‘con-
traction property’, which is what we have called ‘strong contraction’. Masur and Minsky
[53] defined a more general contraction property which corresponds in our terminology to
(κ1, κ2)–contracting with κ1 linear and κ2 bounded. By enlarging κ2 it is easy to see that this is
equivalent to semistrong contraction. They show that the image of certain Teichmüller geodesics
in the curve complex of a surface satisfy this weaker version of contraction, and use this fact to
conclude the curve complex is hyperbolic. In the literature on mapping class groups and related
areas [9, 17, 33, 2, 65] the term ‘contraction’ continues to be used for a version of the property
we are calling semistrong contraction, where the projection map is not necessarily closest point
projection.

Bestvina and Fujiwara [13] define a contraction property for geodesics in CAT(0) spaces.
Their property is exactly strong contraction.

4In Tran’s definition [77] the divergence is the whole family of functions {δ(r; M,N)} as the parameters
0 < M ≤ 1 and 2 ≤ N vary, up to a notion of equivalence of families. Even his notion of equivalence of functions is
different than ours. However, the two notions of equivalence of functions coincide on divergence functions. This
uses the fact that δ(r) ≥ 3r and an argument similar to the proof of Proposition 8.4. Then using Proposition 8.4, it
follows that δ(r) � δ′(r) for divergence functions δ and δ′ if and only if the families {δ(r; M,N)} and {δ′(r; M,N)} are
equivalent families.
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Figure 3. Geodesics in the hyperbolic plane are strongly contracting. Even the
projection of a tangent horoball to a geodesic has bounded diameter.

Algom-Kfir [3] proves an Out(Fn) analogue of Minsky’s result by showing that the axis
of fully irreducible free group automorphisms are strongly contracting in outer space. This
marks the first use of the term ‘strong contraction’ to distinguish between this property and
the semistrong version. She also provides an explicit proof that strong contraction implies
quasigeodesic quasiconvexity.

The most general notion of ‘contraction’ given above was introduced in our paper [Paper A].
3.1.5. Relationships between the various definitions. Figure 4 shows the relationships

between the various notions defined in this section. Unlabelled arrows are implications that
follow immediately from the definitions. Double arrows are proven in this thesis. Dashed arrows
are implications that are true in CAT(0) spaces, but not in general. The boxed properties are
equivalent.

Theorem 3.2. We have the following relationships, depicted in Figure 4, between properties
of an arbitrary subsetZ of a geodesic metric space X. Furthermore, all the implications are
effective. (Effective bounds for selected properties are stated in Corollary 3.5.) Finally, this list
is complete, in the sense that implications that do not follow from those listed here are not true
in general.

À Semistrongly contracting =⇒ logarithmically contracting. (See remark following
Lemma 2.4 of [Paper D].)

Á If X is CAT(0) then geodesically trim =⇒ contracting and strongly geodesically trim
=⇒ semistrongly contracting. (Proposition 8.12)

Â Quasigeodesically quasiconvex =⇒ sublinearly contracting. ([Theorem 1.4, Pa-
per A])

Ã If X is CAT(0) then recurrent =⇒ strongly contracting. ([Paper B])
Ä Contracting =⇒ quasigeodesically trim. (Proposition 8.6)
Å Sublinearly contracting =⇒ recurrent for all N > 2. ([5, Theorem 3.2])
Æ Recurrent for some N > 2 =⇒ frilly. (Proposition 8.14)
Ç Divergent =⇒ quasigeodesically quasiconvex. (Proposition 8.15)
È Quasigeodesically trim =⇒ quasigeodesically quasiconvex, and geodesically trim

=⇒ geodesically quasiconvex. (Proposition 8.10)
É Contracting =⇒ frilly =⇒ quasigeodesically quasiconvex and divergent. (Proposi-

tions 8.7 and 8.9)
Ë frilly =⇒ divergent. (Proposition 8.8)
Ê If φ : Z → X is a quasiisometric embedding between geodesic metric spaces then

φ(Z) is stable if and only if φ(Z) is quasigeodesically quasiconvex andZ is hyperbolic.
(Proposition 8.16)

Proof. The proofs of the various positive implications are referenced in the statement of the
theorem.

It is well known that even in CAT(0) spaces geodesic quasiconvexity does not imply quasi-
geodesic quasiconvexity. To see that semistrong contraction does not imply strongly contracting



24 SURVEY OF THE TOPIC AND THE IMPACTS OF THIS THESIS

stable
Morse +

hyperbolic

strongly
contracting

semistrongly
contracting

sublinearly
contracting

contracting recurrent

frilly

quasigeodesically
trim

divergent

quasigeodesically
quasiconvex

strongly
geodesically

trim

geodesically
trim

geodesically
quasiconvex

Ê

À

Å

É

Ä

Ã if CAT(0)

Æ

Ë

É

È
Ç

Â

Á if CAT(0)

È

Á if CAT(0)

Figure 4. Relationships between the various definitions.

or strongly geodesically trim see Example 3.2 of [Paper A]. The remaining nonimplications are
demonstrated in the examples of Section 8.1. �

Definition 3.3. A subset of a geodesic metric space is Morse if it enjoys the following
equivalent properties:

• contracting
• recurrent
• frilly

• divergent
• quasigeodesically trim
• quasigeodesically quasiconvex

Corollary 3.4. If X is hyperbolic all of the properties in Figure 4 are equivalent. If X is
CAT(0) then, of the properties in Figure 4, stability is the strongest, geodesic quasiconvexity is
the weakest, and everything else is equivalent.
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Proof. The proof that quasiconvexity implies strong contraction in hyperbolic spaces is
easy and is left to the reader. Moreover, a quasiconvex subset of a hyperbolic space is itself
hyperbolic, so it is also stable.

In the CAT(0) case, we already know quasiconvex does not imply Morse. Also, if we
consider X = Z = E2, thenZ is Morse in X but not stable. �

Attributions/remarks on parts of Theorem 3.2:
Á&Ã Sultan [74] showed that in CAT(0) spaces quasigeodesically quasiconvex quasi-

geodesics are strongly contracting, but the proof does not give effective equivalence.
In later unpublished work [75] he showed effective control and also that strongly
geodesically trim quasigeodesics in CAT(0) spaces are semistrongly contracting. Á
generalizes the latter to arbitrary subsets, and to work with a weaker hypothesis. The
former we prove with the combination of Â and Ã. The advantage of this approach
over Sultan’s is that the part using the CAT(0) hypothesis, Ã, is quite easy, while
Â works in general, so we get a clearer understanding of where the hard part of the
argument is and where the part is that actually requires the CAT(0) hypothesis.

Ä [Theorem 4.8, Paper H] is equivalent to ‘sublinearly contracting implies quasigeodesi-
cally trim’. However, the proof given there is not effective.

Å&Æ Druţu, Mozes, and Sapir [31] claimed an equivalence between quasigeodesic qua-
siconvexity and recurrence for quasigeodesics. Their proof was not effective, and
involved passage through some other intermediate characterizations. Aougab, Durham,
and Taylor [5] found an error in one of these intermediate steps, and repaired it by
giving an effective equivalence between quasigeodesic quasiconvexity and recurrence.
Druţu, Mozes, and Sapir have also published their own correction [30]. Both [5] and
[30] use our implication Â in an essential way for the equivalence of quasigeodesic
quasiconvexity and recurrence.

We prove Æ in Proposition 8.14 by adapting the argument of [5] to our definition
of frilly and to arbitrary subsets.

[5, Theorem 3.2] proves Å for quasigeodesics. They divide a quasigeodesic into
‘left’, ‘middle’, and ‘right’ pieces. For a general contracting subset Z and efficient
path γ with endpoints γ+, γ− ∈ Z take the ‘left’ piece to beZl := Z∩Nd(γ+,γ−)/N(γ−),
the ‘right’ piece to be Zr := Z ∩ Nd(γ+,γ−)/N(γ+), and the ‘middle’ to be Z′ :=
Z− (Zl ∪Zr). With these definitions, the rest of their argument goes through without
change.

Ç The converse implication is proven for quasigeodesics in [Paper A] and generalized to
arbitrary subsets in [77], but these proofs are not effective.

É Algom-Kfir [3] proved strongly contracting geodesics are quasigeodesically quasi-
convex. One can generalize her argument to show contraction implies quasigeodesic
quasiconvexity. Our proof for É essentially factors the generalized argument into two
steps to involve frilliness and also optimize the two steps so that the resulting effective
bounds are sharp.

Corollary 3.5. We have the following effective bounds among the Morse properties. For
simplicity we only state the quasiconvexity gauge for (E, 0)–locally efficient paths. Shorthand
versions of these inequalities are shown in Figure 5. In the figure, double arrows indicate that
the given effective bounds are verified by example to be optimal.

(1) κ–contracting implies µ–frilly for µ � r/κ′(r), where κ′(r) := r · sups≥r κ(s)/s as in
Remark 3.1.

(2) κ–contracting implies ρ–recurrent for ρ(E) ≺ sup{r | κ
′(r)
r ≥

1
8E } for κ′ as in (1).

(3) ρ–recurrent implies µ–frilly for µ(r) � inf{s | r ≤ 1 + limt→s+ ρ(1 + 2t)}.
(4) µ–frilly implies δ–divergent for δ(r) � rµ(r).
(5) µ–frilly implies χ–L–quasiconvex for χ(E) ≤ (1 + 2E) · sup{r | µ(r) ≤ E}.
(6) δ–divergent implies χ–L–quasiconvex for χ(E) ≺ E · sup{s | δ(s) ≤ 2(E2 + 3E + 1)s}.
(7) χ–L–quasiconvex implies κ–contracting for κ(r) ≺ sup{s ≤ 4r | s ≤ 18χ( 12r

s )}.
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(8) τ–quasigeodesically trim implies χ–L–quasiconvex for χ(E) ≤ sup{r | r ≤ (E2 +

1)(τ(r; E, 0))}.

(9) κ–contracting implies τ–quasigeodesically trim for τ(r; L, A) ≺
(

Id2

κ′

)−1
(r) for κ′ as in

(1).

Example 8.2 gives a family of examples for which the relations provided by items (1), (2),
(3), and (4) are equivalences. Example 8.1 gives a family of examples for which the relations
provided by items (3), and (4), (5) are equivalences.

κ–contracting

ρ–recurrent

τ–trim µ–frilly

δ–divergent

χ–L–quasiconvex

µ(r)� r
κ(r)κ(r)≺(Id·χ−1)−1(r)

ρ(E)≺( κId )−1( 1
E )

τ(r)≺
(

Id2
κ

)−1
(r)

µ(r)�ρ−1(r)

χ(E)≺
(

Id
τ

)−1
(E2)

δ(r)�rµ(r)

χ(E)≺Eµ−1(E)

χ(E)≺E·( δId )−1(E2)

Figure 5. Effective relationships.

Since Morse subsets of CAT(0) and hyperbolic spaces are strongly contracting, Corollary 3.5
implies the following positive answer to [77, Question 1.8].

Corollary 3.6. Strongly contracting sets, in particular, Morse subsets of hyperbolic and
CAT(0) spaces, are at least linearly frilly and at least quadratically divergent.

3.2. Quasiisometry invariance and Morse subgroups. It is well-known that the property
of quasigeodesic quasiconvexity is invariant under quasiisometries, and it is easy to check that
the quasigeodesic quasiconvexity gauge is invariant, up to equivalence. By Theorem 3.2, this
implies that frilliness, divergence, contraction, etc., are also invariant. However, going back and
forth with Theorem 3.2 leads to some loss in quantitative control between these properties under
quasiisometry. In fact, it can be checked directly that the equivalence classes of the frilliness
and divergence gauges are invariant under quasiisometry.

Proposition 3.7. Let φ : X → Y be a quasiisometry between geodesic metric spaces and
let Z ⊂ X. If Z is χ–quasigeodesically quasiconvex, µ–frilly, and δ–divergent then φ(Z) is
χ′–quasigeodesically quasiconvex, µ′–frilly, and δ′–divergent, respectively, with χ � χ′, µ � µ′,
and δ � δ′.

The trick to make this proposition work for µ and δ is to use Proposition 8.3 and Propo-
sition 8.4 to consider µ(r; 1,N) and δ(r; 1,N), respectively, where N is large compared to the
quasiisometry constants, and see that these functions push forward under the quasiisometry to
give bounds on their N = 2, 3 counterparts in Y. Further details are left to the reader.

Corollary 3.8. Let X be a geodesic metric space and Q a quasiisometry type of Morse
subspace of X. For a Morse subsetZ ⊂ X in the quasiisometry class Q, let χZ, µZ, and δZ be
quasigeodesic quasiconvexity, frilliness, and divergences gauges, respectively, ofZ. Then the
following set of triples of equivalence classes of functions is a quasiisometry invariant of X:

{([χZ], [µZ], [δZ]) | Z ⊂ X Morse, withZ ∈ Q}
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Note that although we can bound any one of these gauges in terms of one of the others,
Corollary 3.5 does not determine its equivalence class, so the invariant described in Corollary 3.8
is, a priori, finer than if we replaced the triple by the equivalence class of just one of the three
types of gauges. It would be interesting to know examples where the triples actually give a
strictly finer invariant.

The case that Q consists of (quasi)geodesics and the triple is replaced by the equivalence
class of the divergence gauge is the divergence spectrum of X introduced in [78].

In contrast to Proposition 3.7, it is not so easy to argue directly that contraction is preserved
by quasiisometries. In fact, the equivalence class of the contraction gauge is not preserved, in
general: we exhibit in [Paper C] an example of a finitely generated group G and an infinite
cyclic subgroup H such that there are finite generating sets S and S ′ of G such that H is a
strongly contracting geodesic in Cay(G, S ) and a geodesic that is logarithmically but not strongly
contracting in Cay(G, S ′).

When the contraction gauge is sufficiently far from linear we can at least get a bound for the
contraction gauge of the image set. The example of the previous paragraph shows this bound is
sharp for strongly contracting sets.

Lemma 3.9. Suppose Z ⊂ X is κ–contracting with limr→∞
κ(r)·log r

r = 0. If φ : X → Y is
a quasiisometry then φ(Z) is κ′–contracting for κ′ ≺ κ · log. In particular, if Z is strongly
contracting then φ(Z) is at worst logarithmically contracting.

Corollary 3.10. Suppose G is a finitely generated group and h ∈ G is an infinite order
element. Suppose there exists a finite generating set for G in which 〈h〉 has contraction gauge κ
for κ superlogarithmic. Then there does not exist a finite generating set for G such that 〈h〉 is
strongly contracting.

Proof of Lemma 3.9. Let φ̄ be a quasiinverse to φ. Suppose that φ and φ̄ are both (L, A)–
quasiisometries. The map ψ := φ ◦ πZ ◦ φ̄ has the property that d(y, y′) ≤ d(y, φ(Z))/L2 implies
diamψ(y) ∪ ψ(y′) ≺ κ(d(y, φ(Z)). Now if d(y, y′) ≤ d(y, φ(Z)) then a geodesic between y and
y′ can be covered by log d(y, φ(Z)) many closed balls whose radii are at most 1/L2 times the
distance from their respective centers to φ(Z). Since the geodesic from y to y′ is contained in the
2d(y, φ(Z))–neighborhood of φ(Z), this implies diamψ(y)∪ψ(y′) ≺ κ(d(y, φ(Z))·log d(y, φ(Z)).
On the other hand, if we apply this argument to a point y′ ∈ πφ(Z)(y) we get an equivalent
bound for diam πφ(Z)(y) ∪ ψ(y). Similarly for y′ we get diam πφ(Z)(y) ∪ ψ(y) ≺ κ(d(y′, φ(Z)) ·
log d(y′, φ(Z)), but since d(y′, φ(Z)) ≤ 2d(y, φ(Z)), this bound is equivalent to the previous
two. Combining the three bounds gives us:

d(y, y′) ≤ d(y, φ(Z)) =⇒ diam πφ(Z)(y) ∪ πφ(Z)(y′) ≺ κ(d(y, φ(Z))) · log d(y, φ(Z))

Therefore, φ(Z) is κ′–contracting for some κ′ ≺ κ · log, which is sublinear by hypothesis. �

Proposition 3.7 immediately suggests the following definitions:

Definition 3.11. A subgroup H of a finitely generated group G is Morse if it is Morse as a
subset of some, equivalently of every, Cayley graph of G with respect to a finite generating set.

Moreover, the equivalence classes of the frilliness, divergence, and quasigeodesic quasi-
convexity gauges of H are well-defined properties of H < G, independent of the choice of
generating set of G.

We call an element g ∈ G a Morse element (resp. contracting element, divergent element) if
〈g〉 is an infinite Morse subgroup. By the example above, there is no well-defined property of
being a strongly contracting element of G, only of being a strongly contracting element with
respect to some Cayley graph. More generally, if G acts on a spaceX we say g is Morse, strongly
contracting, etc with respect to G y X if 〈g〉 has an unbounded orbit with the corresponding
property.

Let us recall some examples of nonelementary Morse subgroups. Quasiconvex subgroups
of hyperbolic groups are Morse; indeed, in any Cayley graph they are strongly contracting.
The factor groups of a free product, or, more generally, of a graph of groups with finite edge
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groups, are also strongly contracting in every Cayley graph. Druţu and Sapir [32] showed that
peripheral subgroups of relatively hyperbolic groups are Morse. We will see in Section 6 that a
more general class of subgroups called hyperbolically embedded subgroups are Morse. In large
classes of right-angled Artin groups every infinite index Morse subgroups is free (follows from
results of [51], see [77]). Free groups are hyperbolic, so in these RAAGs being infinite index
and Morse is equivalent to being stable. The same is true for mapping class groups [50]. RAAGs
and mapping class groups both belong to a class of groups called hierarchically hyperbolic
groups. Russell, Spriano, and Tran [65] show that certain hierarchically hyperbolic groups have
the property that Morse subgroups satisfy a variation of the contraction property (similar to the
one that appears in the proof of Lemma 3.9) and pose the question of characterizing when a
hierarchically hyperbolic group has the property that all of its infinite index Morse subgroups
are stable. Tran [77] and Genevois [36] characterize which special subgroups of right-angled
Coxeter groups are Morse.

The following extends [31, Lemma 3.25] from the case of cyclic subgroups:

Lemma 3.12 ([Lemma 6.6, Paper H]). Suppose φ : X → Y is a coarse Lipschitz uniformly
proper5 map between geodesic metric spaces andZ ⊂ X. If φ(X) is Morse andZ is Morse then
φ(Z) is Morse. If φ(Z) is Morse thenZ is Morse. Moreover, the quasigeodesic quasiconvexity
gauge ofZ bounds that of φ(Z), and vice versa, up to functions depending on φ.

In particular, if G is a finitely generated group acting properly on a geodesic metric space
X then the orbit map of G into X is coarse Lipschitz and uniformly proper with respect to the
word metric on G coming from any finite generating set.

Corollary 3.13. Suppose G is a finitely generated group acting properly on a based
geodesic metric space (X, o) and H < G. If G.o is Morse in X and H is Morse in G then H.o is
Morse in X. If H.o is Morse in X then H is Morse in G.

Corollary 3.13 implies the main result of [5], which is the statement that if H.o is stable in
X then H is stable in G.

Corollary 3.14. Let H be a subgroup of a finitely generated group G. If H is finitely
generated then every subgroup of H that is Morse in G is also Morse in H. If H is Morse in G
then every Morse subgroup of H is also Morse in G.

4. Application: The geometry of graphical small cancellation groups

We designed the general version of the contraction condition introduced in the previous
section as a tool for understanding the Morse directions in infinitely presented graphical small
cancellation groups. These groups generalize classical (metric) small cancellation groups as
follows: Fix a finite alphabetA and a potentially infinite sequence of directed connected graphs
(Γi). Let Γ :=

∐
i Γi. Assign to each directed edge an element ofA. Define a finitely generated

group G = G(Γ) by taking the generating set to beA, and by taking as relators the words inA
that can be read along undirected cycles in Γ, where we consider that a directed edge labelled a
traversed against its orientation contributes the letter a−1. This gives a finitely generated group
G, and X = X(Γ) := Cay(G,A) is a Cayley graph of G. The ‘classical’ case is the case that
all of the Γi are circles, so each component Γi gives a single relator, up to inversion and cyclic
permutation.

The interest in such a definition is that by imposing a small cancellation condition on the
labeling one guarantees that the graph Γ ‘lives inside’ X, so we can engineer groups containing
exotic geometries. The precise small cancellation condition and the quality of the corresponding
embedding of Γ have evolved. The first version was used by Gromov [44] to construct finitely
generated groups with a Cayley graph containing an expander graph. These groups, now known
as ‘Gromov monsters’, were the first known counterexamples to the Baum-Connes conjecture
with coefficients [47]. The theory was further developed by Ollivier [58], Arzhantseva and

5We say φ is uniformly proper if there is a nondecreasing unbounded function ψ : [0,∞)→ [0,∞) such that
d(φ(x), φ(x′)) ≥ ψ(d(x, x′)) for all x, x′ ∈ X.
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Delzant [6], and Gruber [45]. There are two small cancellation conditions we are interested in
here, the Gr′(1/6) and C′(1/6) conditions. Definitions can be found in [Section 2, Paper C].
The C′(1/6) condition implies the Gr′(1/6) condition. These conditions guarantee there are
isometrically embedded copies of Γ in the Cayley graph of the group:

Theorem 4.1 ([46, Lemma 2.15]). Let Γ := (Γi) be a Gr′(1/6)–labelled graph. For every i
and every vertex v ∈ Γi there is a unique label-preserving isometric embedding of Γi into X(Γ)
sending v to the vertex corresponding to the identity element of G(Γ).

In the classical case, when Γ is finite the resulting group is hyperbolic. This remains true
for graphical small cancellation groups as well, so the ‘interesting’ case is when Γ is infinite
(more specifically, when Γ has infinitely generated first homology). In this case the group G is
not finitely presentable, so cannot be hyperbolic. For intuition, let us specialize to the case that
there are infinitely many components Γi and all are circles. The small cancellation condition
forces |Γi| → ∞ as i→ ∞, since the circles cannot have relatively long segments with common
labels. The geometry is similar to the toy model from Example 8.1: ifZ is a geodesic in the
Cayley graph X, at every vertex it encounters infinitely many loops coming from copies of the
Γi. Fix such a loop γ. Suppose that α := γ ∩ Z contains an edge and let β := γ − α. SinceZ
is geodesic and γ is isometrically embedded, α and β are segments. The segment β provides a
detour around the subsegment α of Z. The efficiency of this detour is |β|/|α|, so if we would
like to show thatZ is Morse, we must at least show that for every such γ the proportion of γ
that intersectsZ is small. It turns out that this kind of consideration gives a complete answer
to the question of which geodesics are Morse. Let us say thatZ is locally κ–contracting if for
every embedded copy of every Γi its intersection withZ is κ–contracting as a subset of Γi.

Theorem 4.2 (cf [Theorem 4.1, Paper C]). Let Γ = (Γi) be Gr′(1/6) labelled. LetZ be a
geodesic in X(Γ). Then there exists κ such thatZ is locally κ–contracting if and only if there
exists κ′ such thatZ is κ′–contracting, and when this is true we have κ′ � κ.

The motivation for graphical small cancellation was to construct monsters, but a more
positive description might be that it provides a toolset for constructing metric phenomena in
Cayley graphs. Building the desired phenomenon into a Cayley graph may be difficult because
of homogeneity. Instead, one can build the phenomenon into a graph, which should be much
easier, and then invoke small cancellation to embed that graph into a Cayley graph. Theorem 4.2
tells us that this embedding preserves directional curvature.

Using this construction, we give the first example of a finitely generated group G and an
infinite order element g such that g is strongly contracting for one choice of generating set and
not strongly contracting for another. Recall the discussion following Definition 3.11. In general,
it is difficult to tell if a Morse geodesic is strongly contracting or not, but we can build graphs
specifically to verify or negate strong contraction. The trick then is to do this for graphs that are
related in such a way that they yield isomorphic groups, see [Theorem 4.19, Paper C].

For another example of this workflow, we can verify that essentially every sublinear function
arises as the contraction function of an infinite cyclic subgroup in a finitely generated group.
Consult Example 8.1. This example can be discretized by restricting to s ∈ 2Z, rounding the
length of each γs to the nearest integer, and subdividing to make the result a graph Γ. In this
case the graph Γ has a single, infinite component. ThenZ sits as a geodesic in Γ, and we label
all edges ofZ by a letter a. Further, one can write down by hand labels for the γs in letters b
and c such that the resulting labelling on the graph Γ is Gr′(1/6). SinceZ is geodesic in Γ and
Γ isometrically embeds in X,Z is a geodesic in X, and it is rational, by construction, since the
element a acts on it by translation. Then the computations from Example 8.1 combined with
Theorem 4.2 show thatZ is κ–contracting for some sublinear κ � φ−1.

We will see more examples of this kind of construction in Section 6.
The previous example was convenient in two ways:
• We were able to easily find a rational geodesic.
• The graph was simple enough to find explicit Gr′(1/6)–labellings.

It turns out that we can replicate both of these facts for fairly general families of graphs.
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Lemma 4.3 ([Lemma 5.2, Paper C]). Let Γ = (Γi) be a disjoint union of finite connected
graphs Γi with a Gr′(1/6)–labelling by a finite alphabetA. Every infinite cyclic subgroup of
G = G(Γ) is at finite Hausdorff distance from a rational geodesic in Cay(G,A).

Along the way to proving Lemma 4.3 we also prove a result that is reminiscent of hyperbolic
groups. Recall that the translation length of an element g of a group G with respect to a finite
generating setA is τA(g) := limn→∞ |gn|/n, where | · | is word length with respect toA. Recall
further that in hyperbolic groups infinite order elements have rational translation lengths with
bounded denominators [43, 76, 29].

Theorem 4.4 ([Theorem 5.4, Paper C]). Let Γ = (Γi) be a Gr′(1/6)–labelled graph, labelled
by a finite alphabetA, such that for each i the component Γi is finite. For every infinite order
g ∈ G(Γ), τA(g) ≥ 1/3 and is rational.

The existence of small cancellation labellings is furnished by the following result of Osajda
[60]. Recall that the girth of a graph is the length of the shortest embedded cycle.

Theorem 4.5. Let Γ = (Γi) be a sequence of bounded valence, connected, finite graphs, such
that (girth(Γi)) is an unbounded sequence and the ratios diam(Γi)

girth(Γi)
are bounded. Then there exists

an infinite subsequence Γ′ := (Γi j) and a finite setA such that Γ′ admits a C′(1/6)–labelling
overA.

In [Section 6, Paper C] we give a simple method of combining two labellings, a so-called
push-out labelling, on Γ that inherits properties from both, provided these properties pass to
refined labellings. Here it is important that we use the C′(1/6) condition, as it has this inheritance
property, but the Gr′(1/6) condition does not.

An example of another property of labellings is that of being nonrepetitive, which means
that there does not exist an embedded path γ in Γ such that the label on γ can be written ww
for some word w. Graph theory techniques [4] show that a bounded valence graph admits a
nonrepetitive labelling by a finite alphabet, so by taking the push-out of such a labelling with
the Osajda labelling we get a nonrepetitive C′(1/6) labelling. For such a labelling every infinite
order element g is strongly contracting, since by Lemma 4.3, up to finite Hausdorff distance we
may assume that 〈g〉 is a geodesic, but since the labelling is nonrepetitive the longest subsegment
that intersects an embedded component of Γ has length less than 2|g|. Using this argument
we can construct many groups that have the apparently nice property that every infinite order
element is strongly contracting, but contain very strange embedded geometries. If, for example,
Γ is an expander, then this construction shows:

Corollary 4.6 (cf [Corollary 6.10, Paper C]). There exist Gromov monster groups such that
every infinite order element is strongly contracting.

5. Generalizing hyperbolic boundaries

Let X be proper hyperbolic space. One can define its Gromov boundary ∂X by picking a
basepoint o and taking Hausdorff equivalence classes of geodesic rays based at o. One can then
topologize this set of equivalence class by declaring that two points are close if representative
geodesic rays fellow travel for a long time. This topology turns out to be independent of the
choice of basepoint and invariant under quasiisometry. In particular, this means that a hyperbolic
group has a well-defined homeomorphism type of boundary, independent of the choice of
generating set of the group.

Quasiisometry invariance of the boundary fails for visual boundaries of CAT(0) groups [26];
that is, a group G can act geometrically on CAT(0) spaces X and X′ whose visual boundaries
are not homeomorphic to one another, so G does not have a well-defined CAT(0) boundary.

5.1. Morse boundaries. Charney and Sultan [19] wondered whether the flat subspaces in
CAT(0) space are responsible for the failure of quasiisometry invariance, and whether perhaps
there was a hyperbolic-like subset of the boundary that is preserved. Specifically, they define
the contracting boundary ∂cX of a proper CAT(0) space to be the subset of the visual boundary
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consisting of points whose representative geodesic rays are Morse/(strongly) contracting sets.
They ask if the subspace topology on the contracting boundary is preserved by quasiisometries.
We gave a negative answer6 to this question in [Paper G]. They go on to define a new topology
on ∂cX that they show is quasiisometry invariant. The idea of their construction is that in a
hyperbolic space geodesics are uniformly contracting, that is, there is a single sublinear function
bounding all of their contraction gauges. In CAT(0) spaces this is no longer true, but it is true
within a Hausdorff equivalence class of ray. Therefore, given a contraction function κ, one can
specify a subset ∂κcX of the contracting boundary whose points are represented by rays that
are κ–contracting. Such a subset can be topologized as in the hyperbolic case. Charney and
Sultan define a topology on ∂cX by realizing it as the direct limit of the system ∂κcX, related by
inclusion, as κ varies over all possible contraction functions, topologizing the ∂κcX as above, and
then taking the direct limit topology, DL. Their main result is that the resulting topology is
invariant under quasiisometries.

When the space is hyperbolic there is a single κ such that ∂κcX is the entire visual boundary,
and in this case the contracting boundary is exactly the hyperbolic boundary. However, in
nonhyperbolic spaces the direct limit topology is more mysterious. Murray [57] showed the
contracting boundary is nonempty and compact if and only if the space is hyperbolic, which is
true if and only if the contracting boundary is second countable. In fact, in the nonhyperbolic
case it can even fail to be first countable.

Cordes [21] generalized Charney and Sultan’s approach to work for Morse geodesic rays
in arbitrary proper geodesic metric spaces, so this boundary has become known as the Morse
boundary.

Theorem 5.1 ([19], [21]). The Morse boundary of a proper geodesic metric space is
independent of the choice of basepoint and invariant under quasiisometry. In particular,
every finitely generated group G has a well-defined Morse boundary ∂MG obtained by taking
∂MG := ∂DLc X, where X is a Cayley graph of G.

In addition to being quasiisometry invariant, Morse boundaries enjoy some other properties
reminiscent of hyperbolic boundaries. For instance [21, Proposition 4.2] implies:

Proposition 5.2. Let H be a Morse subgroup of a finitely generated group G. The inclusion
of H into G extends to an embedding ∂MH ↪→ ∂MG.

It also can be deduced from his methods that the image of ∂MH in ∂MG is precisely the
limit set Λ(H) of H acting on G (see also [77]). This proves Item (5) of Theorem 1.1 for the
case of Morse boundaries.

As a topological space, the Morse boundary provides a quasiisometry invariant of a group:
two groups with nonhomeomorphic Morse boundaries are not quasiisometric to each other. The
converse is true after equipping the Morse boundary with some additional structure:

Theorem 5.3 ([18]). Let φ : ∂MX → ∂MX
′ be a homeomorphism between nontrivial Morse

boundaries of proper geodesic metric spaces admitting geometric group actions such that φ is
quasi-Möbius and 2–stable. Then φ is induced by a quasiisometry between X and X′.

A Morse boundary is nontrivial if it contains more than two points. A homeomorphism
is quasi-Möbius if it coarsely preserves a certain version of a cross ratio defined in [18]. It is
2–stable if given χ there exists χ′ such that for every pair of points (x, y) in ∂MX that can be
connected in X by a χ–quasigeodesically quasiconvex geodesic, the points (φ(x), φ(y)) in ∂MX

′

can be connected by a χ′–quasigeodesically quasiconvex geodesic.
See Cordes’s [20] survey article on Morse boundaries for further results and references.

6The question remains open for spaces X admitting a geometric group action, as our examples are not
homogeneous.
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5.2. Contracting boundaries revisited. Despite some success, the Morse boundary can
be difficult to work with due to the definition of the topology as a direct limit. By Murray’s [57]
result, even for innocuous looking examples like Z2 ∗ Z the direct limit topology fails to be first
countable, in contrast to the boundary of a hyperbolic space, which is metrizable. This is despite
the fact that Z2 ∗ Z admits two other boundaries that would seem to capture its hyperbolic-like
behavior: the Bowditch boundary for Z2 ∗ Z viewed as a relatively hyperbolic group, and the
boundary of the Bass-Serre tree for Z2 ∗ Z viewed as an HNN extension of Z2 over the trivial
group.

This led us to consider whether there could be a coarser quasiisometry invariant topology
on the sat of Hausdorff equivalence classes of contracting geodesic rays.

The proof of quasiisometry invariance of hyperbolic boundaries uses hyperbolicity in two
key places:

• A quasiisometry between hyperbolic spaces takes geodesics to within uniformly
bounded distance of geodesics.
• There is a clear distinction between fellow-travelling and non-fellow-travelling.

The first one is not true for general spaces, and our topology will instead deal directly with
quasigeodesics. The second, however, is true in general spaces when at least one of the rays is
Morse:

Proposition 5.4 (cf [Paper H]). Given a contraction gauge κ and constants L ≥ 1, A ≥ 0
there exists a threshold distance T and superlinear function λ such that ifZ is κ–contracting
and γ is a continuous (L, A)–quasigeodesic ray with basepoint inZ then either β is contained
in the T–neighborhood ofZ or there is a first time t0 such that d(β(t0),Z) = T and for t ≥ t0
we have d(β(t),Z) ≥ λ(diam πZ(β(t)) ∪ πZ(β(t0))).

We call λ a divagation function. It quantifies the idea that a quasigeodesic ray cannot
wander slowly away from a contracting set; it can either closely fellow travel or it can move
away in an asymptotically ‘orthogonal’ direction. We can then say unambiguously how long β
fellow-travelsZ: it does so up until the point where it hits the divagation threshold and starts
moving away quickly.

IfZ is a quasigeodesic ray and β is also contracting, then proving such an estimate is easy if
we allow the divagation function λ to depend on the contracting gauges of bothZ and β. The key
point of Proposition 5.4 is that λ does not depend on a contraction function for β. This allows us
to define a new topology on ∂cX as follows: points of ∂cX are Hausdorff equivalence classes
of continuous contracting quasigeodesic rays based at a common basepoint. This set is in fact
equivalent to the underlying set in Charney and Sultan’s definition. Given [α] ∈ ∂cX represented
by a κ–contracting geodesic ray α, we say that [β] belongs to U(r) if every quasigeodesic ray
β in [β] closely fellow travels α for distance at least r, where ‘closely’ means the divagation
threshold of Proposition 5.4, which depends on κ and the quasigeodesic constants of β, but not
on α or β.

The main result of [Paper H] is:

Theorem 5.5. The sets U(r) defined above form a neighborhood basis at [α] for a topology,
the topology of fellow traveling quasigeodesics, denoted FQ, on ∂cX. This topology is inde-
pendent of the choice of basepoint and the choice of geodesic representative α of [α]. It is also
invariant under quasiisometries.

Furthermore, if X admits a geometric group action then ∂FQc X is metrizable.

Henceforth we use ‘contracting boundary’ to mean ∂CX := ∂FQc X and ‘Morse boundary’ to
mean ∂MX := ∂DLc X.

It is straightforward to prove that DL is a refinement of FQ, so the identity map on the
underlying set gives a continuous map ∂MX → ∂CX, and that both coincide with the hyperbolic
boundary when X is hyperbolic.

There are also other ‘well-understood’ cases in which our topology matches the expected
topology:
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Theorem 5.6 ([Theorem 7.6, Paper H]). If G is hyperbolic relative to subgroups that are
either hyperbolic or have empty contracting boundary, then the natural map from the contracting
boundary of G into the Bowditch boundary is an embedding.

Theorem 5.7. If G is a finitely generated group acting cocompactly on a tree T with virtually
Abelian vertex stabilizers and finite edge stabilizers then the natural map ∂CG → ∂T is an
embedding.

These two results show that for G = Z ∗ Z the topology FQ on ∂cG is the ‘right’ topology,
in the sense that it agrees with the topology coming from the other two natural hyperbolic-like
sources.

We prove the statement from Theorem 1.1 Item (5):

Proposition 5.8 (cf [Proposition 6.8, Paper H]). If H is a Morse subgroup of a finitely
generated group G then the inclusion map extends to an embedding ∂CH ↪→ ∂CG. Moreover,
the image coincides with Λ(H).

We also have analogues of Murray’s [57] dynamical results from the CAT(0) case:

Theorem 5.9 ([Corollary 8.4 and Theorem 9.4, Paper H]). If G is a finitely generated group
and ∂CG has more than two points the action of G on ∂CG is minimal and satisfies a weak
version of North-South dynamics.

Pal and Pandey [62] further investigate the dynamics, and prove:

Theorem 5.10. Let H be a finitely generated subgroup of a finitely generated group G such
that Λ(H) ⊂ ∂CG is compact and has more than two points. Then H y Λ(H) is a convergence
action and H is acylindrically hyperbolic.

As in the case of the Morse boundary, the contracting boundary of a group is nonempty
and compact if and only if the group is hyperbolic. A component of the proof of this fact is the
following statement, which is of independent interest:

Theorem 5.11 (cf [Theorem 10.1, Paper H]). Let X be a geodesic metric space admitting a
geometric action. The following are equivalent:

(1) X is hyperbolic.
(2) Geodesic segments in X are uniformly quasigeodesically quasiconvex.
(3) Every geodesic ray in X is Morse.

The implications (1) =⇒ (2) =⇒ (3) is easy. We prove (3) =⇒ (1). The implication
(2) =⇒ (1) was the main result of [15].

Note that hyperbolicity is not guaranteed if only the rational geodesics are Morse, nor if
rational geodesics are strongly contracting, eg. Corollary 4.6.

6. Stronger properties

Ballmann [8, Theorem 3.5] proved that if a proper nonelementary CAT(0) space X contains
a periodic geodesic that does not bound a half-flat, then every cocompact group of isometries
of X contains a non-Abelian free subgroup. An element acting by translation on this periodic
geodesic is strongly contracting for this action, and we might wonder if the existence of a
strongly contracting element is enough to guarantee the existence of a free subgroup if we do
not assume X is CAT(0). It turns out that this is true, by the quasitree construction of [12]. This
fits in with several other related ideas, which we now recall.

Definition 6.1 ([27]). H is a hyperbolically embedded subgroup of G if there exists a subset
S of G − H such that S t H generates G, the Cayley graph X of G with respect to the (infinite)
generating set S t H is hyperbolic, and (H, d̂) is a proper metric space, where d̂(h, h′) is the
length of the shortest path in X between h and h′ that does not use any edges of the induced
(complete) subgraph of X with vertex set H.
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Let G be a group acting on a space X and Y a subspace of X. The action is acylindrical
along Y if for every r > 0 there exist R,N > 0 such that d(y, y′) > R for y, y′ ∈ Y implies
#{g ∈ G | d(y, gy) ≤ r, d(y′, gy′) ≤ r} ≤ N. It is acylindrical if it is acylindrical along X.

An action on a hyperbolic space is elementary if the axes of all loxodromic elements are
coarsely equivalent; otherwise the action is nonelementary.

A group G is acylindrically hyperbolic if it admits a nonelementary acylindrical action on a
hyperbolic space.

An element h ∈ G is called generalized loxodromic if there exists a nonelementary acylin-
drical action G on a hyperbolic space X such that h acts loxodromically.

An element h ∈ G is a WPD element (satisfies the weak proper discontinuity condition) for
an action of G on a hyperbolic space X if for every x ∈ X and r > 0 there exists n > 0 such that
#{g ∈ G | d(x, gx) ≤ r, d(hnx, ghnx) ≤ r} < ∞. An action of G on a hyperbolic space X is called
a WPD action if it is nonelementary and every loxodromic element is WPD.

The WPD property was introduced by Bestvina and Fujiwara [14]. Acylindrical hyperbolic-
ity was systematized by Osin [61].

Theorem 6.2 ([73]). Hyperbolically embedded subgroups of finitely generated groups are
Morse.

Theorem 6.3 ([27, Theorem 8.7]). Let G be a nonelementary group acting on a hyperbolic
space such that the element h is loxodromic and WPD. Then there exists positive n such that the
normal closure of hn is a non-Abelian free group.

Definition 6.4. Given a nontrivial element h ∈ G, if h is contained in a unique maximal
virtually cyclic subgroup of G then we call that subgroup the elementary closure of h and denote
it E(h).

Theorem 6.5. Let h be an infinite order element of a nonelementary group G. Consider the
following properties.

(1) There exists an action of G on a space X such that orbits of 〈h〉 are unbounded and
strongly contracting.

(2) There exists a Cayley graph X of G (with respect to a possibly infinite generating set)
that is hyperbolic, G y X is acylindrical, and h acts loxodromically.

(3) h is generalized loxodromic.
(4) There is a nonelementary action of G on a hyperbolic space that is acylindrical along
〈h〉 orbits.

(5) There is an action of G on a hyperbolic space such that h is a WPD element.
(6) E(h) exists and is hyperbolically embedded.
(7) E(h) exists and is Morse.
(8) h is a Morse element.

Then conditions (1)–(6) are equivalent, (7) and (8) are equivalent, and (6) =⇒ (7).

Proof. It is easy to see condition (i) =⇒ (i+1). (2) =⇒ (1) since quasigeodesics in
hyperbolic spaces are strongly contracting. (1) =⇒ (4) follows from [12]. (3) =⇒ (6) is proved
in [72]. Theorem 6.2 implies (6) =⇒ (7). [61] proves the equivalence of (2), (3), (5), and (6).
(7) and (8) are equivalent because 〈h〉 is a finite index subgroup of E(h). �

By the previous two results and the existence of Tarski monsters whose elements are Morse,
we see that a generalized loxodromic element is Morse, but the converse need not be true.
By Theorem 3.2 if h is a Morse element of G then for any finite generating set of G there is
a sublinear κ such that h is κ–contracting. If κ is bounded then h is strongly contracting, so
it is generalized loxodromic. One might wonder if h must be generalized loxodromic if κ is
unbounded but grows slowly enough. The answer, however, is ‘no’:

Theorem 6.6 ([Theorem 6.4, Paper C]). For every unbounded sublinear κ there exists a
2–generator, infinitely presented graphical small cancellation group containing an infinite order
element h that is κ′–contracting for some κ′ � κ and no virtually cyclic subgroup containing h is
hyperbolically embedded.



7. APPLICATION: GROWTH OF GROUPS 35

To prove this theorem we construct examples with the property that all powers of h contain
torsion in their normal closure, ruling out the conclusion of Theorem 6.3. Abbott and Hume [1]
revisit this result and use similar methods to produce torsion-free examples.

Conversely, for a generalized loxodromic element h there exists a space (the one defining it
as a generalized loxodromic) on which it acts as a strongly contracting element. For any finite
generating set, h is Morse in the corresponding Cayley graph. One might wonder whether the
generalized loxodromic hypothesis imposes some upper bound on such contraction functions
that is better than just being sublinear. Say, logarithmic, as in Lemma 3.9? The answer to the
latter question, at least, is ‘no’: Abbott and Hume construct graphical small cancellation groups
containing generalized loxodromic elements h such that the contraction gauge κ for h satisfies
κ(r) � r/ log(r).

Let us now return to the quasitree construction mentioned at the beginning of this section.
Let G be a group acting on a geodesic metric space X with basepoint o such that there exists
an infinite order element h ∈ G such that 〈h〉.o is a strongly contracting quasigeodesic in X.
Then E(h) exists and H := E(h).o is also a strongly contracting subset, as is any translate of
H . Let Y be the set of distinct G–translates ofH . Then for Y,Y′,Y′′ ∈ Y we have πY(Y′) has
bounded diameter when Y , Y′ and we can define projection distances for Y′ , Y , Y′′:

dπ
Y

(Y′,Y′′) := diam πY(Y′) ∪ πY(Y′′)

Bestvina, Bromberg, and Fujiwara [12] axiomatize properties of these projections and projection
distances and show that whenever the axioms are satisfied there exists a quasitree encoding the
geometry of Y. As a consequence, we can prove the following.

Definition 6.7. Let G be a group acting on a based geodesic metric space (X, o) such that
there is an infinite order element h with H := E(h).o strongly contracting in X. An (A, B)–
good path is a finite concatenation of geodesics · · · + [ai, bi] + [bi, ai+1] + [ai+1, bi+1] + · · · for
1 ≤ i ≤ n − 1 such that for each 1 ≤ i ≤ n there exists gi ∈ G such that:

• ai, bi ∈ giH

• giH , gi+1H

• d(ai, bi) ≥ A
• dπgiH

(bi−1, ai) ≤ B
• dπgiH

(bi, ai+1) ≤ B

For appropriate choices of A and B, good paths are essentially the same as the admissible
paths of [13] and [81].

Lemma 6.8. With the setup as in Definition 6.7, ifH is C–strongly contracting then there
exists a C′ such that for all sufficiently large B and sufficiently small A, if γ is an (A, B)–good
path and α is a geodesic connecting g1H to gnH , then α passes within distance C′ of ai and b j
for all 2 ≤ i ≤ n and 1 ≤ j ≤ n − 1.

Corollary 6.9. There exists C′′ such that if xi and yi are points of α that are C′–close to ai
and bi, respectively, then the subsegment of α between xi and yi is within Hausdorff distance C′′

of a subsegment of giH between ai and bi.

The interiors of segments [bi, ai+1], however, do not necessarily stay close to α.
When n ≤ 3 Lemma 6.8 can be proven directly from the definition of strong contraction.

For large n some care is required because an inductive argument introduces a finite additive
error at each step, and these errors erode the buffer provided by the constant B. This can be
avoided by invoking the improved projection axioms of [11], as we do in [Paper F].

7. Application: Growth of groups

Let (X, o) be a based (pseudo)metric space, and let Y be a subset of X such that the
intersection of Y with every metric ball is finite. Then we define the exponential growth rate of
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Y to be:

δY := lim sup
r→∞

log #Y ∩ B̄r(o)
r

Let G be a finitely generated group acting metrically properly on a based geodesic metric
space (X, o), in the sense that for every r the set {g ∈ G | d(o, g.o) ≤ r} is finite. We can
define a pseudometric d on G by d(g, h) = dX(g.o, h.o), and the growth rate of a subset S ⊂ G
with respect to this pseudometric is the same as the growth rate of S .o as a subset of X.
If N is a normal subgroup of G then there is an induced pseudometric on G/N given by
d̄(gN, hN) := minn,n′∈N d(gn, hn′).

Definition 7.1. The cogrowth of G/N with respect to G y X is the ratio δN/δG, for growth
rates with respect to G y X.

Definition 7.2. Let G act metrically properly on a based geodesic metric space X. G y X
is a growth tight action if for every infinite normal subgroup N of G, the growth rate of G
with respect to d is strictly greater than the growth rate of G/N with respect to the induced
pseudometric d̄ on G/N.

When X is the Cayley graph of a finite rank free group G with respect to a basis, Grigorchuk
[40] showed that the cogrowth of every proper quotient is strictly greater than 1/2, and Grig-
orchuk and de la Harpe [41] showed G y X is growth tight. They also showed that G′ y X′ is
not growth tight if G′ = G ×G and X′ is the Cayley graph of G′ with respect to the generating
set obtained by taking the union of bases for the factors. They ask:

(1) Is the action of a nonelementary hyperbolic group on (any) one of its Cayley graphs
growth tight?

(2) Does growth tightness for actions on Cayley graphs depend on the choice of generating
set?

(3) Is the cogrowth of a quotient of a nonelementary hyperbolic group by an infinite
subgroup strictly greater than 1/2 with respect to an action on (any) one of its Cayley
graphs?

Arzhantseva and Lysenok [7] answered the first question affirmatively. Sambusetti and
collaborators [70, 69, 67, 28] proved that the action of a negatively curved Riemannian manifold
on its Riemannian universal cover is a growth tight action. Sambusetti [68] also proved that any
action on one of its Cayley graph of a nonelementary group that splits over a finite subgroup is
growth tight. Sabourau [66] proved that a geometric action of a group on a hyperbolic space is
growth tight. Note that Sabourau’s result is not implied by Arzhantseva and Lysenok’s, because
there is no result saying growth tightness is preserved by equivariant quasiisometry.

The main result of [Paper D] generalizes all of these results. A simplified statement is:

Theorem 7.3. If G is a finitely generated group acting geometrically on a geodesic metric
space X with a strongly contracting element then G y X is growth tight.

In [Paper E] we answer Grigorchuk and de la Harpe’s second question:

Theorem 7.4. Let Gi y Xi be finitely many geometric actions of finitely generated groups
on geodesic metric spaces, each with a strongly contracting element. Let G be the product of
the Gi. Let X be the product of the Xi with the Lp metric. Then G y X is not growth tight for
p = 1 and growth tight for p > 1.

In particular, if each Xi is a Cayley graph of Gi with respect to some finite generating set,
then the Lp metric on X agrees with a word metric on G when p = 1 and when p = ∞, so, for
example:

Corollary 7.5. F2 × F2 has a generating set for which it is growth tight and a generating
set for which it is not growth tight.

The answer to the third question is also ‘yes’. There are two independent results that
imply this as a special case, one of Matsuzaki, Yabuki, and Jaerisch [54], and one of ours from
[Paper F], a simplified version of which is:
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Theorem 7.6. If G is a finitely generated group acting geometrically on a geodesic metric
space X with a strongly contracting element then for every infinite normal subgroup N of G the
quotient G/N has cogrowth strictly greater than 1/2.

We have claimed that Theorem 7.3 and Theorem 7.6 are ‘simplified’ theorems. The
simplification comes by assuming that the action of G on X is geometric. Our techniques
actually work in a more general setting than that of cocompact actions, but we need a technical
condition to replace cocompactness. To see why some condition is necessary, consider, for
example Z acting parabolically on the hyperbolic plane. In the induced metric, Z has exponential
growth, but this is entirely due to the distortion of the embedding, not on any structural properties
of Z. Similarly, if G is a relatively hyperbolic group then it admits a cusp-uniform action on a
hyperbolic space, but by modifying the cusp geometry we can arrange that the growth rate of a
parabolic subgroup equals the growth rate of the entire group, and that growth tightness then
fails. In [Paper D] we introduce the following growth-theoretic measure of the distortion of the
group orbit: for constant M ≥ 0 we define the complementary growth of G y X, with respect
to parameter M, to be the growth rate of the subset of the orbit G.o consisting of points g.o such
that there exists a geodesic γ in X between o and g.o that stays outside the M–neighborhood of
G.o except near the endpoints of γ, see [Definition 6.2, Paper D] for a precise definition.

Definition 7.7. Let G be a finitely generated group acting metrically properly on a based
geodesic metric space (X, o). We say G y X has complementary growth gap if there exists
M ≥ 0 such that δG is strictly greater than the complementary growth of G y X with parameter
M.

Clearly if G y X is cobounded, or, more generally, has a quasiconvex orbit, then G y X
has zero complementary growth, so G y X has complementary growth gap as long as δG > 0.
For cusp-uniform actions on hyperbolic spaces, complementary growth gap implies the parabolic
growth gap condition of [28]. We also prove, using a theorem of Eskin, Mirzakhani, and Rafi
[35], that the action of the mapping class group of a hyperbolic surface on its Teichmüller space
with the Teichmüller metric has complementary growth gap.

Theorem 7.8 (Main theorems of [Paper D] and [Paper F]). Let G be a finitely generated
group acting metrically properly on a based geodesic metric space (X, o) with complementary
growth gap and with a strongly contracting element. Then G y X is growth tight and for every
infinite normal subgroup the quotient has cogrowth strictly greater than 1/2.

The idea of the proof of growth tightness has 3 steps:

(1) If G y X has a strongly contracting element then every infinite normal subgroup
contains a strongly contracting element, so it suffices to assume N is the normal closure
of a strongly contracting element. Moreover, by passing to a high power of the element
we may assume that its translation length is much larger then the strong contraction
constant of its elementary closure. LetH denote the orbit of the elementary closure
E(h) of the strongly contracting element h ∈ N.

(2) Take a minimal section Y of the quotient map G → G/N. Minimality implies that Y
has small projection to every translate ofH . Furthermore, the growth rate of Y in X is
the same as the growth rate of G/N in the induced quotient pseudometric.

(3) Show that there is a tree’s worth of copies ofY embedded in a metrically good way inX.
To be specific, we send tuples of Y into X by (y1, y2, . . . , yn) 7→ y1hy2h · · · ynh.o ∈ X.
To see that this is a ‘good’ metric embedding we apply the results on good paths from
the previous section. Then we argue that the growth rate of a tree’s worth of Y is
strictly greater than the growth rate of Y.

In the course of the argument, we also observe that whenever the translation length of h is
long enough with respect its contraction constant, the growth rate of the conjugacy class [h] is
exactly δG/2. This partially generalizes results of Parkkonen and Paulin [63] and Huber [48],
and inspires the cogrowth part of the theorem.
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To prove the cogrowth bound, we attempt to repeat the strategy for growth tightness using
[h] in place of Y. However, it is definitely not true as in (2) above that the projection of [h] to
translates ofH is small, and this breaks the embedding part of the argument in (3). We fix this
issue by constructing a particular subset of [h] that includes at least half of the points of [h] in
every ball about o and has the property that the desired map (y1, y2, . . . , yn) 7→ y1hy2h · · · ynh.o ∈
X is the good metric embedding we need. Since half of [h] still has growth rate δG/2 this
completes the proof.

In comparison, Matsuzaki, Yabuki, and Jaerisch study actions of a group G on a hyperbolic
space X satisfying a condition called divergence type, and one of their conclusions is the strict
cogrowth bound for actions of divergence type on hyperbolic spaces. Cocompact actions have
divergence type, so the special case of their theorem where X is the Cayley graph of a hyperbolic
group answers Grigorchuk and de la Harpe’s question. Our theorem has a stronger hypothesis if
we restrict X to be hyperbolic, but our theorem also applies to nonhyperbolic spaces.

The complementary growth gap condition seems like a very natural condition to impose for
growth-theoretic questions. Following our introduction of this property, Yang [82] embarked
on a systematic study of such actions and proved, again when the action contains a strongly
contracting element, properties similar to those for actions of hyperbolic groups such as pure
exponential growth and genericity of contracting elements [80]. Coulon, Dougall, Schapira,
and Tapie [25] also use this complementary growth gap condition to study the other end of the
cogrowth spectrum; they show when X is hyperbolic and G y X has complementary growth
gap then the cogrowth of G/N equals 1 if and only if G/N is amenable, generalizing a result of
Grigorchuk [40] in the free group case and Coulon, Dalbo, and Sambusetti [24] in the case of
hyperbolic groups.

8. Appendix

In the name of completeness, in this appendix we provide details of the proof of Theorem 3.2.
In Section 8.1 we consider two families of examples. These demonstrate that the implications
that do not follow from those depicted in Figure 4 are not true. They also verify that some
of the effective bounds in Corollary 3.5 are sharp. In Section 8.2 we show that the choice of
parameters in the various functions, eg. the frilliness and divergence gauges, does not matter,
up to equivalence of functions. In Section 8.3 we prove Theorem 3.2, one implication at
a time. With the exception of Proposition 8.6, each of the implications is either easy or is
similar to arguments that can be found in the literature, see remarks following Theorem 3.2
for attributions. We present the details in order to make effective bounds explicit, and, when
possible, optimal. The overall proof is also simplified and clarified by factoring some of the
pieces through frilliness.

8.1. Examples.

Example 8.1 (Line with detours). Let φ be a continuous increasing positive function with
φ(r) ≥ r and with limr→∞ φ(r)/r = ∞. Let X be the space built fromZ := R by attaching, for
each s ∈ [1,∞), a new segment γs of length φ(s) connecting −s/2 and s/2.

Note that Z cannot be semistrongly contracting or strongly geodesically trim because
both of these conditions imply that there is a uniform bound on the diameter of projections of
singletons, but in this example for each s the midpoint of γs has projection diameter equal to s.

Contraction gauge κ. Given r > 0, we must consider points x ∈ N̄r(Z)) and the projection
diameters of balls around such points. For s such that φ(s) > 4r and x ∈ γs ∩ N̄r(Z), the
projection of N̄r(x) to Z is a single point. Consider s such that φ(s) ≤ 4r. Let y be the point
halfway around γs, and let x be a point one quarter of the way around γs. Then d(x, y) = d(x,Z)
and diam πZ(x)∪πZ(y) = s. This is the worst case; thus, κ(r) = φ−1(4r) � φ−1(r). Superlinearity
of φ implies sublinearity of κ.
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Recurrence gauge ρ. For every s we have d(γs,Z−(Ns/3(−s/2)∪Ns/3(s/2))) = s/3, realized
by either of the two endpoints of γs. For E ≥ 1, γs is E–efficient when φ(s)/s ≤ E. Superlinearity
of φ implies there exists S := sup{s | φ(s)/s ≤ E}. Therefore, ρ(E) ≤ S/3. Continuity of φ
implies this is the least upper bound for ρ, so ρ(E) � sup{s | φ(s)/s ≤ E}.
L–quasiconvexity gauge χ. The path γs is locally (φ(s)/s)–efficient and achieves distance

φ(s)/2 fromZ. Thus, an E–locally efficient path is confined toZ∪
∐
{s|φ(s)/s≤E} γs, so χ(E) =

1
2φ(sup{s | φ(s)/s ≤ E}) � φ(sup{s | φ(s)/s ≤ E}).

Frilliness gauge µ. Superlinearity of φ implies there exists S such that for all s ≥ S we have
φ(s) ≥ 3s. Suppose s > 2r ≥ S . Then there exist x, y ∈ γs ∩ Sr(Z) such that diam πZ(x) ∪
πZ(y) = s > 2r, so µ(r) ≤ dr(x, y)/d(x, y). We know dr(x, y) = φ(s) − 2r. The definition of S
implies d(x, y) = s + 2r. Thus µ(r) ≤ (φ(s) − 2r)/(s + 2r). We have this estimate for all s > 2r,
and the infinum of these bounds occurs by substituting 2r for s, hence µ(r) ≤ 1

2 ·
φ(2r)

2r −
1
2 .

Continuity of φ implies this is the least upper bound for µ, so µ(r) � φ(r)
r . Superlinearity of φ

implies limr→∞ µ(r) = ∞.
Divergence gauge δ. By superlinearity of φ, for sufficiently large S and all s ≥ S we have

φ(s) ≥ 5s. Suppose r ≥ S , and suppose γs has points x and y in γs ∩ Sr(Z) that participate in
the definition of δ(r). This happens when d(x, y) ≥ 3r, which occurs if and only if s ≥ r. For
such x and y, we have dr(x, y) = φ(s) − 2r. Thus, δ(r) = inf s≥r φ(s) − 2r = φ(r) − 2r � φ(r).

Trimness gauge τ. Fix E ≥ 1. Consider r > 0 and a point x such that 0 < d(x,Z) ≤ r. The
point x lies on some γs. Let β be a path from x toZ. Either β goes through a point of πZ(x) or
d(x,Z) < φ(s)/2 and β goes through the point y ∈ γs ∩Z at distance s from z := πZ(x). Thus,
it suffices to consider d(x,Z) < φ(s)/2 and the path β that is the longer of the two subsegments
of γs connecting x toZ, which has length φ(s) − d(x,Z).

Let R := sup{t | φ(t) ≤ (2E + 1)t}, which exists since φ is superlinear. Notice that
d(πZ(x), β) ≤ s, so without loss of generality we may assume s > R, since otherwise we already
have a bound for d(πZ(x), β) that is independent of r.

For β to be E–efficient we need d(x,Z) ≥ φ(s)−Es
E+1 . Since φ(s)/s > 2E + 1 this implies

d(x, z) ≥ s so d(z, β) = s = d(z, y). Therefore:

τ(r; E) = max{R, sup{s | φ(s) − Es ≤ r(E + 1)}} � sup{s | φ(s) − Es ≤ r(E + 1)}

Superlinearity of φ implies τ(r; E) is sublinear.

If we assume φ(r)/r is invertible then the above computations give us:
• κ(r) � φ−1(r)
• µ(r) � φ(r)/r
• δ(r) � φ(r)
• ρ(E) � ( φId )−1(E)
• χ(E) � φ(( φId )−1(E)) = E · ( φId )−1(E)
• τ(r; E) � sup{s | φ(s) − Es ≤ r(E + 1)}

For these examples the bounds given by items (3), (4), and (5) of Corollary 3.5 are sharp.

Example 8.2 (Warped L1 half-plane). Consider the upper half Cartesian plane. We define
vertical paths to have their usual length, and rescale horizontal paths at height b by a factor of
φ(b), where φ is a nondecreasing continuous function with φ(0) = 1. Let X be this space, and
define the distance between two points to be the infinum of lengths of piecewise vertical or
horizontal paths connecting them. The conditions on φ imply this is a geodesic metric space.
Moreover, the geodesic between two points consists of Euclidean line segments going first down,
then horizontally, then up (where some of these segments may be trivial).

LetZ := {(a, 0) | a ∈ R}. It is a convex geodesic, and πZ((a, b)) = (a, 0).
If φ is bounded then X is quasiisometric to a Euclidean half-plane, soZ is not Morse.
If φ(b) = 1 for all b ≥ 0 then X is just the upper half-plane with the L1 metric, and it is easy

to check thatZ is not geodesically trim by looking at large squares.
If φ(0) < φ(b) for all b > 0 thenZ is strongly geodesically trim. In particular, if φ is also

bounded thenZ is strongly geodesically trim but not Morse.
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Now assume that φ is unbounded. We estimate the various gauges, showing that Z is
Morse. By symmetry it suffices to consider x := (0, r) and y := (a, r) as points on Sr(Z). Note
diam πZ(x) ∪ πZ(y) = a.

Frilliness gauge µ. Suppose a > 2r > 0. We have dr(x, y) = aφ(r), while a ≤ d(x, y) ≤ 2r +a,
so:

µ(r) = inf
a>2r

dr((0, r), (a, r))
d((0, r), (a, r))

� φ(r)

Since φ is nondecreasing and unbounded, it limits to∞, so µ does too.
Divergence gauge δ. If d(x, y) ≥ 3r then 2r + a ≥ d(x, y) ≥ 3r implies a ≥ r and dr(x, y) =

aφ(r) ≥ rφ(r), so δ(r) ≥ rφ(r). Conversely, for a = 5r we have d(x, y) ≥ 5r − 2r = 3r and
δ(r) ≤ dr(x, y) = 5rφ(r), so δ(r) � rφ(r).

Contraction gauge κ. Suppose v ∈ N̄d(x,Z)(x) maximizes diam πZ(x) ∪ πZ(v). A geodesic
from x to v cannot have an upward segment since in that case we could have instead extended
the preceding horizontal segment to get a point still in the ball and having projection toZ farther
from πZ(x) than πZ(v). Thus, if v = (a, b) then 0 ≤ b ≤ r, and r = d(x, v) = r − b + aφ(b). This
implies b/φ(b) = a = diam πZ(x) ∪ πZ(v), so κ(r) = sup0≤b≤r b/φ(b). To see that κ is sublinear,
suppose lim supr→∞ κ(r)/r > 0 and produce a contradiction to the fact that φ is unbounded.

Recurrence gauge ρ. For every E > 1, every r such that φ(r) < E, and every sufficiently long
a, the piecewise Euclidean-geodesic path γ connecting (0, 0), (0, r), (a, r), and (a, 0) is locally
E–efficient and d(γ,Z′γ) = r, so ρ(r) ≥ sup{r | φ(r) < E}.

For the converse, consider the points z = (0, 0) and z′ = (a, 0) ofZ, with r = a/3 = d(z, z′)/3
and Z′ := Z − (Nr(z) ∪ Nr(z′)). Consider the segment γ of Sr(Z′) from z to z′: it consists
of a concatenation of Euclidean line segments connecting the points (0, 0), (r, r), (2r, r) and
(3r, 0). Every path from z to z′ in Nc

r (Z′) projects to this segment, and the projection is length
nonincreasing, so γ is the most efficient connection between z and z′ avoidingNr(Z′). Estimate:

E ≥ len(γ)/3r ≥ (4r + rφ(r))/3r = (4 + φ(r))/3

Thus, φ(r) ≤ 3E − 4, which tells us:

sup{r | φ(r) < E} ≤ ρ(E) ≤ sup{r | φ(r) ≤ 3E − 4}

Since φ is unbounded, this supremum exists.

If we assume φ is twice differentiable with φ′′(r) ≤ 0 then the above computations give us:
• κ(r) = r/φ(r)
• µ(r) � φ(r)
• δ(r) = rφ(r)
• ρ(E) � φ−1(E)

For these examples the bounds given by items (1), (2), (3), and (4) of Corollary 3.5 are sharp.

8.2. Robustness.
8.2.1. Frilliness and divergence.

Proposition 8.3. Let µ(r; M,N) be the frilliness gauges ofZ ⊂ X. For all 0 < M ≤ M′ ≤ 1
and 2 ≤ N ≤ N′ we have µ(r; M,N) � µ(r; M′,N′).

Proof. It is immediate from the definitions that µ(r; M,N) ≤ µ(r; M′,N) and µ(r; M,N) ≤
µ(r; M,N′).

Suppose M < M′, and, given r > 0, define R := M′
M r. Suppose that µ(R; M,N) is finite,

so there exist x, y ∈ SR(Z) with diam πZ(x) ∪ πZ(y) > NR and dMR(x,y)
d(x,y) < µ(R; M,N) + 1. Let

x′′ ∈ πZ(x) and y′′ ∈ πZ(y) be points such that d(x′′, y′′) > NR. Choose a geodesic from x to
x′′ and let x′ be the unique point on it at distance r fromZ. Define y′ similarly with respect to y.
See Figure 6. Observe:

NM′

M
r = NR < d(x′′, y′′) ≤ diam πZ(x′) ∪ πZ(y′) ≤ 2r + d(x′, y′) =

(
2 +

d(x′, y′)
r

)
r
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SMr(Z)
SMR(Z) = SM′r(Z)
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x′

x′′
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y′′

Figure 6. Setup for Proposition 8.3.

This implies r/d(x′, y′) < M/(NM′ − 2M), which further implies:

(1)
R − r

d(x′, y′)
<

M′ − M
NM′ − 2M

≤
1
2

Now, since diam πZ(x′) ∪ πZ(y′) > NR > Nr, we have that x′ and y′ participate in the infinum
defining µ(r; M′,N), so we can estimate:

µ(r; M′,N) ≤
dM′r(x′, y′)

d(x′, y′)

≤
d(x′, x) + dM′r(x, y) + d(y, y′)

d(x′, y′)

=
d(x′, x) + dMR(x, y) + d(y, y′)

d(x′, y′)

≤
2(R − r) + d(x, y)(1 + µ(R; M,N))

d(x′, y′)

≤
2(R − r) + (d(x′, y′) + 2(R − r)) (1 + µ(R; M,N))

d(x′, y′)

=

(
1 +

4(R − r)
d(x′, y′)

)
+

(
1 +

2(R − r)
d(x′, y′)

)
µ(R; M,N)

≤ 3 + 2µ(R; M,N)

This argument assumed µ(R; M,N) was finite, but the same inequality is true if µ(R; M,N) = ∞,
so:

µ(r; M′,N) ≺ µ(R; M,N) = µ

(
M′

M
r; M,N

)
� µ(r; M,N)

The proof for N′ > N uses a similar argument with R := N′
N r to show µ(r; M,N′) ≺

µ(R; M,N) � µ(r; M,N). This time, the analogue of (1) is:

�(2)
R − r

d(x′, y′)
<

N′ − N
N(N′ − 2)

≤
1
2

Proposition 8.4. Let δ(r; M,N) be the lower divergence functions of X relative toZ. For
all 0 < M ≤ M′ ≤ 1 and 2 < N ≤ N′ we have δ(r; M,N) � δ(r; M′,N′).

Proof. It is immediate from the definitions that δ(r; M,N) ≤ δ(r; M′,N′).
Suppose N′ > N, and given r let R := N′−2

N−2 r. Arguing as in Proposition 8.3, we see:

δ(r; M,N′) ≤ 2(R − r) + δ(R; M,N) + 1

= 2
(

N′ − N
N − 2

)
r + δ

(
N′ − 2
N − 2

r; M,N
)

+ 1

� δ(r; M,N)

Note that the linear term disappears in the final equivalence because divergence functions
grow at least linearly by construction.
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Suppose M′ > M. Let N′′ > N be the solution of N′′−2
N−2 = M′

M , and, given r, let R := M′
M r.

Again, arguing as in Proposition 8.3 we get:

δ(r; M′,N) ≤ δ(r; M′,N′′) ≤ 2(R − r) + δ(R; M,N) + 1 � δ(r; M,N) �

8.2.2. The contraction properties. We state some robustness results for contraction. One
motivation for writing these results in terms of contraction instead of quasigeodesic quasiconvex-
ity is that then they can also be used for strong contraction. These results show that using almost
closest point projection instead of closest point projection does not change the equivalence class
of the contraction gauge, nor does exchangingZ with a Hausdorff equivalent set.

Lemma 8.5 ([Section 6, Paper A]).
• If πZ is (κ1, κ2)–contracting for κ1(r) = κ′1(r) −C, with κ′1(r) 6 r and C > 0, then πZ

is (κ′1, κ
′
2)–contracting for some κ′2 � κ2.

• Suppose ε0, ε1 ≥ 0 are constants such that the empty set is neither in the image of πε0
Z

nor in the image of πε1
Z

. If πε0
Z

is (κ1, κ2)–contracting then there exist κ′1 and κ′2 such
that πε1

Z
is (κ′1, κ

′
2)–contracting. If ε1 6 ε0 or if κ1(r) := r then we can take κ′1 = κ1 and

κ′2 � κ2.
• Let Y and Z be subspaces of a geodesic metric space X at bounded Hausdorff

distance from one another. Suppose that πε
Y

is (κ1, κ2)–contracting. Then πε
Z

is
(r, κ′2)–contracting for some κ′2. If κ1(r) = r then κ′2 � κ2.

8.3. Proof of Theorem 3.2.

Proposition 8.6 (Ä). Contracting implies quasigeodesically trim.

Proof. SupposeZ is (κ1, κ2)–contracting. By Remark 3.1, we may assume that κ2/κ1 is a
nonincreasing continuous function. There is also no loss in restricting our attention to continuous
quasigeodesics, since any geodesic can be tamed to get a continuous quasigeodesic at bounded
Hausdorff distance and with controlled quasigeodesic constants, as in Lemma 2.1. With these
simplifications, if κ2 is identically zero then a path with one endpoint x offZ must pass through
the unique point πZ(x), so we can take the trimness gauge to be 0. Therefore, we can assume κ2
is not identically zero, which, since κ2 is nondecreasing, means that for all sufficiently large r
we have κ2(r) > 0.

Fix L ≥ 1 and A ≥ 0. Throughout we assume r is large enough that κ1(r) ≥ 2A, which is
true for all sufficiently large r. For N > 0 define:

CN := sup{s | 2(N + L2)κ2(s) > κ1(s)}

This number exists since limr→∞ κ2(r)/κ1(r) = 0. Suppose that β : [0,T ]→ X is a continuous
(L, A)–quasigeodesic with d(β,Z) = d(β(T ),Z) = CN . The same argument as [Theorem 4.2,
Paper H] yields:

(3) diam πZ(β(0)) ∪ πZ(β(T )) ≤
1
N

(
L2d(β(0),Z) + (L2 + 1)CN + L2A

)
Now suppose N > 1 and β : [0,T ] → X is a continuous (L, A)–quasigeodesic with β(T ) ∈ Z
and d(β(0),Z) > CN . Let s be the first time such that d(β(s),Z) = CN , and let t be the first time
such that d(β(t),Z) = C1. Then by applying (3) twice, for N and 1, we have:

d(β,πZ(β(0))) ≤ diam πZ(β(0)) ∪ πZ(β(s)) + diam πZ(β(s) ∪ πZ(β(t)) + C1

≤
1
N

(
L2d(β(0),Z) + (L2 + 1)CN + L2A

)
+

1
1

(
L2CN + (L2 + 1)C1 + L2A

)
+ C1

=
L2

N
d(β(0),Z) +

[
L2CN +

(L2 + 1)CN + L2A
N

+ (L2 + 2)C1 + L2A
]

(4)

Let φ(N) be the bracketed expression in (4).
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Since κ2/κ1 is continuous, nonincreasing, and limits to zero, we can define:

ψ(r) :=
(

Id
κ2/κ1

)−1

(r)

Since ψ is the inverse of a strictly increasing, continuous, superlinear function it is strictly
increasing, continuous, unbounded, and sublinear.

Assume r is sufficiently large that κ1(ψ(r)) > 2L2κ2(ψ(r)), which is possible since κ1 grows
faster than κ2 and ψ is increasing and unbounded. Define:

M(r) :=
2L2

κ1(ψ(r))
2κ2(ψ(r)) − L2

Observe:

rM(r) =
2L2r

κ1(ψ(r))
2κ2(ψ(r)) − L2

=
2L2 Id

κ2/κ1
(ψ(r))

κ1(ψ(r))
2κ2(ψ(r)) − L2

=
4L2ψ(r)

1 − 2L2 κ2
κ1

(ψ(r))

� ψ(r)

Define N(r) := 2L2/M(r). Notice that φ(N(r)) � CN(r), and by backfilling the definitions
of N(r), M(r), and C, we have that CN(r) = sup{s | κ2(s)

κ1(s) >
κ2(ψ(r))
κ1(ψ(r)) }, which, since κ2/κ1 is

nonincreasing, is at most ψ(r).
For r sufficiently large, as above, suppose that β : [0,T ] → X is a continuous (L, A)–

quasigeodesic with β(T ) ∈ Z and d(β(0),Z) ≤ r. If d(β(0),Z) ≤ CN(r), then:

d(β, πZ(β(0))) ≤ d(β(0),Z) ≤ CN(r) ≤ ψ(r)

On the other hand, if d(β(0),Z) > CN(r) then we can apply (4) to get:

d(β, πZ(β(0))) ≤
L2

N(r)
d(β(0),Z) + φ(N(r))

=
M(r)

2
d(β(0),Z) + φ(N(r))

≤
rM(r)

2
+ φ(N(r))

≺ ψ(r)

We have shown that there exists a sublinear function ψ(r) such that for each fixed L and A we
have τ(r; L, A) ≺ ψ(r), so τ(r; L, A) is sublinear. This meansZ is quasigeodesically trim. �

Proposition 8.7. Contracting implies frilly.

Proof. SupposeZ is (κ1, κ2)–contracting with κ2/κ1 nonincreasing as in Remark 3.1, and
let µ(r) be the frilliness gauge. We must show limr→∞ µ(r) = ∞. Let r > 0. If µ(r) = ∞ we are
done, so suppose not, which means there exist x, y ∈ Sr(Z) with diam πZ(x) ∪ πZ(y) > 2r and
a path γ ⊂ Nc

r (Z) connecting x to y satisfying len(γ) < 1 + dr(x, y). Let x0 := x. Given xi , y,
define xi+1 to be the last point of γ at distance at most κ1(d(xi,Z)) from xi. Suppose k is such
that y = xk+1. Such a k exists because the distance between successive xi’s is at least κ1(r). Then
diam πZ(x) ∪ πZ(y) ≤

∑k
i=0 κ2(d(xi,Z)). Note that if κ2(r) = 0 then diam πZ(x) ∪ πZ(y) = 0,
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which is a contradiction, so κ2(r) > 0. Now estimate:

dr(x, y) + 1 > len(γ) ≥
k∑

i=0

d(xi, xi+1)

= d(xk, y) +

k−1∑
i=0

κ1(d(xi,Z))

= d(xk, y) − d(xk,Z) + d(xk,Z) − κ1(d(xk,Z))

+ κ1(d(xk,Z)) +

k−1∑
i=0

κ1(d(xi,Z))

> −r +

k∑
i=0

κ1(d(xi,Z))
κ2(d(xi,Z))

κ2(d(xi,Z))

≥ −r +

k∑
i=0

κ1(r)
κ2(r)

κ2(d(xi,Z))

≥ −r +
κ1(r)
κ2(r)

diam πZ(x) ∪ πZ(y)

We then have:

dr(x, y)
d(x, y)

>

κ1(r)
κ2(r) diam πZ(x) ∪ πZ(y) − r − 1

2r + diam πZ(x) ∪ πZ(y)

>

κ1(r)
κ2(r) (2r) − r − 1

4r

=
1
2
·
κ1(r)
κ2(r)

−
r + 1

4r

Since x and y were arbitrary points participating in the infinum defining µ(r), this gives:

µ(r) ≥
1
2
·
κ1(r)
κ2(r)

−
r + 1

4r
�
κ1

κ2
(r)

Since κ1 grows faster than κ2 by hypothesis, µ(r) goes to∞, as desired. �

Proposition 8.8. Frilly implies divergent.

Proof. Let µ be the frilliness gauge ofZ, and let δ be the divergence gauge. We must show
limr→∞ δ(r)/r = ∞, which will follow from showing δ(r) � rµ(r). Let r > 0. Suppose there
exist x, y ∈ Sr(Z) such that d(x, y) ≥ 5r. Then diam πZ(x) ∪ πZ(y) ≥ 5r − 2r > 2r. SinceZ is
frilly, dr(x, y) ≥ µ(r; 1, 2)d(x, y) ≥ 5rµ(r; 1, 2). Thus:

(5) δ(r; 1, 5) ≥ 5rµ(r; 1, 2)

If there are no such x and y then δ(r; 1, 5) = ∞ and (5) still holds.
Combining (5) with Proposition 8.4 and Proposition 8.3, this gives:

δ(r) = δ(r; 1, 3) � δ(r; 1, 5) ≥ 5rµ(r; 1, 2) � rµ(r; 1, 2) = rµ(r) �

Proposition 8.9. Frilly implies quasigeodesically quasiconvex.

This is easy. For the purpose of exhibiting the effectiveness we give a proof for the locally
efficient case and leave the general case to the reader.

Proof. Let µ be the frilliness gauge of Z. Fix an E ≥ 1. Since limr→∞ µ(r) = ∞, there
exists R := sup{r | µ(r) ≤ E} such that for all r > R we have µ(r) > E. Suppose γ is a locally
E–efficient path with endpoints onZ such that maxw∈γ d(w,Z) = D > R. For any R < r < D,
let α be a subsegment of γ such that α ⊂ Nc

r (Z) and such that α has endpoints x, y ∈ Sr(Z).
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If diam πZ(x) ∪ πZ(y) > 2r then x and y participate in the infinum defining µ and we get a
contradiction:

E < µ(r) ≤
dr(x, y)
d(x, y)

≤
len(α)
d(x, y)

≤ E

Thus, diam πZ(x) ∪ πZ(y) ≤ 2r, which implies d(x, y) ≤ 4r. Then:

max
w∈α

d(w,Z) ≤ r + len(α)/2 ≤ r + Ed(x, y)/2 ≤ (1 + 2E)r

Since this was true for every r > R we have thatZ is χ–locally efficiently quasiconvex for:

χ(E) ≤ (1 + 2E) · sup{r | µ(r) ≤ E} �

Proposition 8.10. Quasigeodesically trim implies quasigeodesically quasiconvex.

Proof. Suppose Z is τ–quasigeodesically trim. Fix L ≥ 1 and A ≥ 0, and let τ(r) denote
τ(r; L, A). By definition of trim, τ is sublinear, so R := sup{r | τ(r) ≥ r} exists.

Suppose γ : [0,T ] → X is an (L, A)–quasigeodesic segment with endpoints on Z. If
supw∈γ d(w,Z) ≤ R then we are done, so suppose there exists b ∈ (0,T ) such that d(γ(b),Z) >
τ(d(γ(b),Z)). Choose a point z ∈ πZ(γ(b)). Since Z is trim, there exist a ∈ [0, b) and
c ∈ (b,T ] such that d(γ(a), z) ≤ τ(d(γ(b),Z)) and d(z, γ(c)) ≤ τ(d(γ(b),Z)). Thus, c − a ≤
2Lτ(d(γ(b),Z)) + LA. On the other hand, we have:

d(γ(a),Z) ≤ d(γ(a), z) ≤ τ(d(γ(b),Z))

This implies:

d(γ(a), γ(b)) ≥ d(γ(b),Z) − d(γ(a),Z) ≥ d(γ(b),Z) − τ(d(γ(b),Z))

We have a similar bound for d(γ(c), γ(b)), and using the quasigeodesic property we get corre-
sponding bounds on c − b and b − a. Upon adding these we get:

c − a ≥
2
L

(d(γ(b),Z) − τ(d(γ(b),Z)) − A)

Combining this with the upper bound on c − a, we have:

R < d(γ(b),Z) ≤ (L2 + 1)(τ(d(γ(b),Z)) + A)

Thus, χ(L, A) ≤ sup{r | r ≤ (L2 + 1)(τ(r; L, A) + A)}, which exists since τ is sublinear. �

Corollary 8.11. Geodesically trim implies geodesically quasiconvex

In general geodesically trim does not imply quasigeodesic quasiconvexity, nor does strongly
geodesically trim (recall Example 8.2). However, this implication does hold in CAT(0) spaces:

Proposition 8.12 (Á). If X is CAT(0) andZ ⊂ X is τ–geodesically trim thenZ is (r/2, τ′)–
contracting for a function τ′ ≺ τ.

Proof. Suppose x and y are points with 2d(x, y) ≤ d(x,Z). Choose arbitrary x′ ∈ πZ(x)
and y′ ∈ πZ(y). Since 2d(x, y) ≤ d(x,Z) ≤ d(x, y′), the angle at y′ of the Euclidean comparison
triangle to xy′y is at most 30◦.

Let T := τ(d(x,Z)). Since Z is τ–trim there exists a point z on the geodesic from x to
y′ such that d(z, x′) ≤ T . For any D ≤ min{2d(z, y′)/

√
3, d(y, y′)} there exists a point u on the

geodesic from x to y′ such that 2d(u, y′) = D
√

3 and a point v on the geodesic from y to y′ such
that d(v, y′) = D. The Euclidean distance between the comparison points for u and v in triangle
xy′y is at most D/2, since the angle at y′ is at most 30◦, so d(u, v) ≤ D/2.

Now let D achieve its upper bound, which happens when either u = z or v = y.
First, consider the case that D = d(y, y′) and v = y. By Proposition 8.10,Z is Q–geodesically

quasiconvex for Q = sup{r | r ≤ 2τ(r)}, which exists since τ is sublinear. Together with the
CAT(0) hypothesis and the fact that d(z, x′) ≤ T , this gives us [z, y′] ⊂ N̄T ([x′, y′]) ⊂ N̄T+Q(Z).
Thus:

d(y,Z) ≤ d(y, u) + d(u,Z) ≤ D/2 + T + Q = d(y,Z)/2 + T + Q
The fact that d(x, y) ≤ d(x,Z)/2 then gives:

d(x,Z)/2 ≤ d(x,Z) − d(x, y) ≤ d(y,Z) ≤ 2T + 2Q
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However, this means that this case can only occur if d(x,Z) ≤ R := sup{r | r ≤ 4τ(r) + 4Q}.
Since d(x′, y′) ≤ d(x′, x) + d(x, y) + d(y, y′) ≤ 3d(x,Z), there is a uniform bound d(x′, y′) ≤ 3R
in this case.

Now consider the case that D = 2d(z, y′)/
√

3 and u = z. We have:

d(v, y′) = d(v,Z) ≤ d(v, z) + d(z,Z) ≤ d(v, z) + T ≤ D/2 + T ≤ d(v, y′)/2 + T

This implies:
2(d(x′, y′) − T )/

√
3 ≤ 2d(z, y′)/

√
3 = D = d(v, y′) ≤ 2T

This gives d(x′, y′) ≤ (1 +
√

3)T = (1 +
√

3)τ(d(x,Z)). Combining the two cases, Z is
(r/2, τ′)–contracting for τ′(r) ≤ (1 +

√
3)τ(r) + 3R � τ(r). �

In the special case that τ is bounded, we recover a result of Sultan, which in our terminology
says:

Corollary 8.13 (cf. Sultan [75, Theorem 3.4]). If X is CAT(0) andZ is strongly geodesi-
cally trim thenZ is semistrongly contracting.

Proposition 8.14. Suppose there exists N > 2 such thatZ is recurrent. ThenZ is frilly.

Proof. Let ρ be the recurrence gauge of Z with respect to parameter N, and let µ be the
frilliness gauge. We must show limr→∞ µ(r) = ∞. By Proposition 8.3, it suffices to show that
limr→∞ µ(r; 1, 2N) = ∞.

If µ(r; 1, 2N) attains the value∞ we are done, so we may suppose that for each r ≥ 1, there
exist points x, y ∈ Sr(Z) satisfying diam πZ(x) ∪ πZ(y) > 2Nr and dr(x, y) < ∞, so there is a
path γ ⊂ Nc

r (Z) from x to y with len(γ) < 1 + dr(x, y). Pick x′ ∈ πZ(x) and y′ ∈ πZ(y) such
that d(x′, y′) > 2Nr. Define α to be the concatenation of a geodesic from x′ to x, then γ, then a
geodesic from y to y′. We estimate the efficiency of α:

len(α)
d(x′, y′)

≤
dr(x, y) + 1 + 2r

d(x′, y′)

≤
1 + 2r

d(x′, y′)
+

2r + d(x′, y′)
d(x, y)

·
dr(x, y)
d(x′, y′)

≤
1 + 2r

d(x′, y′)
+

2r + d(x′, y′)
d(x′, y′)

·
dr(x, y)
d(x, y)

< 1 + (1 + 1) ·
dr(x, y)
d(x, y)

Let Z′ := Z − Nd(x′,y′)/N{x′, y′}. Suppose Z′ , ∅. The choice of 2N guarantees that
d(u,Z′) ≥ r for all u on a geodesic from x to x′ or from y to y′, and d(v,Z′) ≥ d(v,Z) ≥ r for
all v ∈ γ, so d(α,Z′) ≥ r. We get an upper bound on d(α,Z′) from recurrence: there exists a
point w ∈ α with d(w,Z′) ≤ 1 + ρ

(
1 + 2 dr(x,y)

d(x,y) ; N
)
, so:

(6) r ≤ d(α,Z′) ≤ 1 + ρ

(
1 + 2

dr(x, y)
d(x, y)

; N
)

The bound (6) also holds in the case thatZ′ = ∅, since then:

ρ

(
1 + 2

dr(x, y)
d(x, y)

; N
)
≥ d̄(α,Z′) := d(x′, y′)/N > 2r > r

Define
µ′(r) = inf{s | r ≤ 1 + lim

t→s+
ρ(1 + 2t; N)}

Since ρ is nondecreasing, limr→∞ µ
′(r) = ∞. Since x and y were an arbitrary pair participating

in the infinum defining µ(r; 1, 2N), (6) implies µ(r; 1, 2N) ≥ µ′(r). �

The next proposition is Tran’s, with some trivial adjustments to make the result explicitly
effective. For simplicity we will only consider the case of locally efficient quasiconvexity.

Proposition 8.15 ([77, Proposition 3.1] ). Divergent implies locally efficiently quasiconvex.
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Proof. Let δ(r) be the divergence gauge ofZ. Fix E ≥ 1. Since δ is completely superlinear,
there exists R ≥ 1 such that δ(r) > (2E2 + 6E + 1)r for all r > R.

Suppose there exists a locally E–efficient path γ with endpoints on Z and a point w ∈ γ
with A := d(w,Z) > 2(E + 1)R. Let r := A

2(E+1) > R. Let α be a subsegment of γ containing w
and contained in Nc

r (Z) with endpoints x, y ∈ Sr(Z).
First suppose len(α) ≤ 2E(E + 2)r. Since α goes from Sr(Z) to SA(Z) and back, len(α) ≥

2(A − r) = 2r(2E + 1). Since α is E–efficient, d(x, y) ≥ len(α)/E > 4r, which implies
δ(r) ≤ dr(x, y) ≤ len(α) ≤ 2E(E + 2)r < (2E2 + 6E + 1)r. Since r > R, this is a contradiction,
so we must have len(α) > 2E(E + 2)r.

In this case, let u ∈ α be the point such that the length of the segment of α between x and
u is exactly 2E(E + 2)r. Pick a geodesic from u to a point of πZ(u) and let v be the point of
intersection of the geodesic and Sr(Z). We have:

d(x, v) ≥ d(x, u) − d(u, v) ≥ len(α|x,u)/E − (A − r) = 2(E + 2)r − (2E + 1)r = 3r

This implies:

δ(r) ≤ dr(x, v) ≤ len(α|x,u) + d(u, v) ≤ 2E(E + 2)r + A − r = (2E2 + 6E + 1)r

Again, since r > R this contradicts the definition of R, so there is no such γ. Thus:

χ(E) ≤ 2(E + 1) · sup{r | δ(r) ≤ (2E2 + 6E + 1)r} �

The final piece of the proof of Theorem 3.2 is:

Proposition 8.16. Let φ : X → Y be a quasiisometric embedding between geodesic metric
spaces. The set φ(X) is stable in Y if and only if φ(X) is Morse and X is hyperbolic.

Proof. The ‘if’ direction is a consequence of Lemma 3.12. For the ‘only if’ direction, stable
clearly implies quasigeodesically quasiconvex. The fact that it also implies hyperbolicity is
sketched in [34, Lemma 3.3]. The idea is to pull back the transitive family on φ(X) given in
the definition of stability to get such a family in X, and argue that this implies the thin triangle
definition of hyperbolicity. �
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PAPER A

Characterizations of Morse quasi-geodesics via superlinear
divergence and sublinear contraction

Goulnara N. Arzhantseva, Christopher H. Cashen, Dominik Gruber, and David Hume
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We introduce and begin a systematic study of sublinearly contracting projections.
We give two characterizations of Morse quasi-geodesics in an arbitrary geodesic

metric space. One is that they are sublinearly contracting; the other is that they have
completely superlinear divergence.

We give a further characterization of sublinearly contracting projections in
terms of projections of geodesic segments.

1. Introduction

This paper initiates a systematic study of contracting projections. The aim is to clarify
and quantify ways in which a subspace of a geodesic metric space can ‘behave like’ a convex
subspace of a hyperbolic space.

The definition of hyperbolicity captures the notion that a space is uniformly negatively
curved on all sufficiently large scales. Following Gromov’s seminal paper [21], hyperbolic
groups and spaces have been intensively studied and many generalizations of this notion have
been considered.

One particular collection of ideas focus on finding ‘hyperbolic directions’, geodesics that
have some of the features exhibited by geodesics in hyperbolic spaces, for instance, those that
satisfy the Morse lemma, have superlinear divergence or satisfy some contraction hypothesis.
These ideas find application to Mostow rigidity in rank 1 [29], the Rank Rigidity Conjecture for
CAT(0) spaces [4, 8, 11], and hyperbolicity of the curve complex of a hyperbolic surface [24,
22]. Recently, the concept of strongly contracting projection has been a topic of intense interest
in relation to mapping class groups and outer automorphisms of free groups [1, 7], acylindrically
hyperbolic groups [16, 27], and contracting/Morse boundaries [30, 31, 13, 14, 25].

We introduce a more general version of contracting projection than has been previously
studied. Our main result is that this new version of contraction is equivalent to the Morse
property and to a certain superlinear divergence property. We give quantitative links between
these various geometric properties. We also generalize several fundamental theorems about
stronger versions of contraction to our new, more general, context.

In this paper we establish fundamental results in a very general setting, so that they will
be broadly applicable. Indeed, the novel version of contracting projections we introduce here
is essential in a subsequent paper [3], in which we explore the geometry of finitely generated
graphical small cancellation groups, a class that includes the Gromov monster groups as
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notorious examples. In that paper we engineer finitely generated groups with Cayley graphs
that mimic the surprising geometry of our examples from Section 3. In particular, the new
spectrum of contracting behaviors in geodesic metric spaces that we discover here does appear
in the setting of Cayley graphs of finitely generated groups. We also, in [3], use the equivalence
between sublinear contraction and the Morse property established here in Theorem 1.4 to
characterize Morse geodesics in certain families of graphical small cancellation groups.

Since the preprint version of this article appeared there have already been other applications
of our results, including work of Cordes and Hume [15] and Cashen and Mackay [12] on
Morse boundaries of finitely generated groups and work of Aougab, Durham, and Taylor [2] on
cocompact subgroups of mapping class groups and Out(Fn).

We give detailed introductions to the three main geometric properties in Sections 1.1, 1.2,
and 1.3 and make precise statements of our results in Sections 1.4 and 1.5.

1.1. Contracting projections. Let Y be a subspace of a geodesic metric space X, and let
ε > 0. The ε–closest point projection of X to Y is the map πεY : X → 2Y sending a point x ∈ X to
the set:

πεY (x) := {y ∈ Y | d(x, y) 6 d(x,Y) + ε} ⊂ Y
We do not assume the sets πεY (x) have uniformly bounded diameter. Note that given any x ∈ X,
∅ , Y ⊂ X, and ε > 0, the set πεY (x) is non-empty.

Definition 1.1. The ε–closest point projection πεY : X → 2Y is (ρ1, ρ2)–contracting if the
following conditions are satisfied.

• The empty set is not in the image of πεY .
• The functions1 ρ1 and ρ2 are non-decreasing and eventually non-negative.
• The function ρ1 is unbounded and ρ1(r) 6 r.
• For all x, x′ ∈ X, if d(x, x′) 6 ρ1(d(x,Y)) then:

diam πεY (x) ∪ πεY (x′) 6 ρ2(d(x,Y))

• limr→∞
ρ2(r)
ρ1(r) = 0.

We say that Y is (ρ1, ρ2)–contracting if there exists ε > 0 such that πεY is (ρ1, ρ2)–contracting,
see Definition 6.4. We say a collection of subspaces {Yi}i∈I is uniformly contracting if there
exist ρ1 and ρ2 such that for all i ∈ I, the subspace Yi is (ρ1, ρ2)–contracting.

The rough idea is that, asymptotically as x gets far from Y , if B is a ball centered at x and
disjoint from Y then the diameter of its projection is negligible compared to the diameter of B.
More accurately, this is true at a specific scale — when the radius of B is ρ1(d(x,Y)). We claim
no finer control of the projection diameter when B has smaller radius.

For a simple, but conceptually useful, example, consider a circle X and an arc Y ⊂ X. Take
ρ1(r) := r, and let ρ2 be the constant function whose value is the distance between the endpoints
of Y . Then π0

Y is (ρ1, ρ2)–contracting. There is a unique point x ∈ X farthest from Y . The ball B
of radius ρ1(d(x,Y)) about x is all of X r Y , and π0

Y (B) = π0
Y (x) has diameter ρ2(d(x,Y)).

The simplest example that is not (ρ1, ρ2)–contracting for any choice of ρ1 and ρ2 is to take
X to be the Euclidean plane and take Y to be a geodesic. Then the diameter of π0

Y of any ball is
equal to the diameter of the ball, so we cannot satisfy limr→∞

ρ2(r)
ρ1(r) = 0.

The simplest contracting example with Y unbounded is to take X to be a tree and Y to
be an unbounded convex subspace. Then diam π0

Y (Bd(x,Y)(x)) = 0 for every x, so π0
Y is (r, 0)–

contracting. In more general δ–hyperbolic spaces, ε–closest point projection to a geodesic is
(r,D)–contracting for some D depending only on δ and ε. Such a case, when ρ1(r) := r and ρ2
is bounded, is called strongly contracting.

Pseudo-Anosov axes in Teichmüller space are strongly contracting [24], as are iwip axes
in the Outer Space of the outer automorphism group of a free group [1] and axes of rank 1
isometries of CAT(0) spaces [4, 8].

1The term ‘function’ always refers to a real valued function whose domain, unless otherwise noted, is the
non-negative real numbers.
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We say that πεY is semi-strongly contracting if it is (ρ1, ρ2)–contracting for ρ1(r) := r/2 and
ρ2 bounded. Related notions have been considered in the context of the mapping class group of
a hyperbolic surface [22, 5, 19].

We say that πεY is sublinearly contracting if it is (ρ1, ρ2)–contracting for ρ1(r) := r. In
this case the definition implies ρ2 is a sublinear function, see Definition 2.1. Similarly, πεY is
logarithmically contracting if it is (ρ1, ρ2)–contracting for ρ1(r) := r and ρ2 logarithmic.

A schematic diagram of different contracting behaviors is given in Figure 1. A wide range
of examples are presented in Section 3.

Not contracting Sublinearly contracting Strongly contracting

Figure 1. Types of contraction

1.2. The Morse property.

Definition 1.2. A subspace Y of a geodesic metric space X is µ–Morse for a function
µ : [1,∞) × [0,∞)→ [0,∞) if for every L > 1 and A > 0, every (L, A)–quasi-geodesic γ with
endpoints on Y remains within distance µ(L, A) of Y .

The subspace Y is called Morse, or is said to have the Morse property, if it µ–Morse for
some function µ. A collection of subspaces {Yi}i∈I is said to be uniformly Morse if there exists a
function µ such that for all i ∈ I the subspace Yi is µ–Morse.

Morse quasi-geodesics have been intensively studied: they play a key role in boundary
theory for hyperbolic and relatively hyperbolic groups. Recently, the Charney school [30, 31,
13, 14, 25] has been generalizing such boundary theories to arbitrary proper geodesic metric
spaces using the so called ‘Morse boundary’ consisting of asymptotic equivalence classes of
Morse rays.

Morse quasi-geodesics have been characterized2 in terms of cut-points in asymptotic cones
[17]: a quasi-geodesic q in X is Morse if and only if every point x in the limit q of q in any
asymptotic cone C of X is a cut-point separating ends of q; that is, C r {x} has at least two
connected components containing points of q. Cut-points in asymptotic cones are a key element
of the proof of the quasi-isometry invariance of relatively hyperbolic (asymptotically tree-graded)
spaces [18]. It remains a very important open question to determine whether a space in which
every asymptotic cone admits a cut-point necessarily admits a Morse quasi-geodesic.

As a result, it is of great interest to find and classify Morse quasi-geodesics. If a solvable
group admits a Morse quasi-geodesic then it is virtually cyclic, and the same holds for any
other group satisfying a non-trivial law, for instance, a torsion group with bounded exponent
[18]. At the other extreme, every quasi-geodesic in a hyperbolic space is Morse. There are
non-trivial classifications of Morse quasi-geodesics for relatively hyperbolic groups [28] and
CAT(0) spaces [4, 8, 31]. We use the tools of this paper to perform such a classification for
graphical small cancellation groups in [3].

2See also the related “middle recurrence” characterization of the Morse property in [17].
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1.3. Divergence. Closely related to the study of Morse quasi-geodesics is the notion of
divergence. The definition is technical, so we postpone it until Definition 5.1. The idea is that
the divergence of a quasi-geodesic γ in a space X is a function whose value at r is the minimal
length of a path in X circumventing a ball of radius r centered on γ. In our version of divergence
we allow the forbidden ball to be centered at different points of γ for different values of r. Some
authors require the balls to have fixed center at γ(0).

Morse geodesics were used to produce cut points in asymptotic cones. Divergence can
be used to rule them out [17]: if G is a finitely generated group then no asymptotic cone of
G admits a cut point if and only if there exists a constant K such that for any finite geodesic
[a, b] with midpoint c, there is a path from a to b avoiding the ball centered at c with radius
d(a, b)/4 − 2 of length at most Kd(a, b) + K. The interplay between divergence and Morse
quasi-geodesics is explored in [17] and [6].

Morally, for a quasi-geodesic γ the Morse property and linear divergence are opposites. The
Morse property says good (quasi-geodesic) paths between points of γ stay close to γ, and linear
divergence says it is easy for a path between points of γ to stray far from γ. However, there
are some subtleties. There are groups that admit quasi-geodesics with superlinear divergence,
yet have an asymptotic cone with no cut point, and therefore no Morse quasi-geodesics [26].
By construction, for each of these groups there is an unbounded sequence (rn) such that the
divergence is linear (it satisfies the above conditions for a fixed K) whenever d(a, b) = rn for
some n. We say a geodesic metric space has completely superlinear divergence if no such
unbounded sequence exists. We show in Theorem 1.5 that this is the precise divergence property
that characterizes Morse quasi-geodesics.

1.4. Main theorems. Restricted to quasi-geodesics, our main results say:

Theorem 1.3. Let X be a geodesic metric space. Let γ be a quasi-geodesic in X. The
following are equivalent:

(1) γ is sublinearly contracting.
(2) γ is Morse.
(3) γ has completely superlinear divergence.

Special cases of this theorem have appeared before. If X is hyperbolic then these conditions
are well-known properties of arbitrary quasi-geodesics, and conditions (1) and (3) can be
strengthened to ‘strongly contracting’ and ‘at least exponential divergence’, respectively. If X is
CAT(0) and γ is a geodesic then this is a recent theorem of Charney and Sultan [13]. In that
case, conditions (1) and (3) can be strengthened to ‘strongly contracting’ and ‘at least quadratic
divergence’, respectively. Our theorem establishes these equivalences in full generality.

The Morse and contraction properties make sense for subspaces of X, not just quasi-
geodesics. Our main theorem is:

Theorem 1.4. Let Y be a subspace of a geodesic metric space X. Let ε > 0 be such that πεY
does not contain the empty set in its image. The following are equivalent:

(1) There exists µ : [1,∞) × [0,∞)→ [0,∞) such that Y is µ–Morse.
(2) There exists µ′ : [1,∞) → [0,∞) such that every continuous (L, 0)–quasi-geodesic

with endpoints on Y remains in the µ′(L)-neighborhood of Y.
(3) There exists ρ such that πεY is (r, ρ)–contracting.
(4) There exist ρ1 and ρ2 such that πεY is (ρ1, ρ2)–contracting.

Moreover, in each implication we bound the parameters of the conclusion in terms of the
parameters of the hypothesis, independent of Y.

Divergence, on the other hand, is specialized to quasi-geodesics.

Theorem 1.5. Let γ be a quasi-geodesic in a geodesic metric space X. The following are
equivalent:

(1) γ is Morse.
(2) γ has completely superlinear divergence.
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Moreover, the Morse function can be bounded in terms of the divergence function, independent
of γ.

We mention a further characterization of Morse quasi-geodesics: It can be shown fairly
easily that a quasi-geodesic γ : I → X is Morse if and only if the collection of its subsegments
{γJ | J is a subinterval of I} is uniformly Morse. Moreover, the Morse functions for γ and for
the subsegments can be bounded in terms of one another and the quasi-geodesic constants of γ.
The quantitative nature of the equivalences in Theorem 1.4 then implies that γ is Morse if and
only if the collection of its subsegments is uniformly contracting.

1.5. Further applications. We consider several important theorems about strongly con-
tracting projections that have appeared in the literature, and generalize them by proving sublinear
analogues.

The first of these results is the ‘Bounded Geodesic Image Property’, cf [23, 8]. This says
that if πεY is strongly contracting then there exist constants A and B such that if γ is a geodesic
segment with d(γ,Y) > A, then diam πεY (γ) 6 B. In fact, this property is equivalent to strong
contraction. We prove, in Theorem 7.1, that πεY is (r, ρ)–contracting if and only if there exist a
constant A and a function ρ′ � ρ such that if γ is a geodesic segment with d(γ,Y) > A then

diam πεY (γ) 6 ρ′(max{d(x,Y), d(x′,Y)}),

where x and x′ are the endpoints of γ.
The second strong contraction result is one of the ‘Projection Axioms’ of Bestvina, Bromberg,

and Fujiwara [7]. It says that if πεY and πε
′

Y′ are both strongly contracting, and if Y and Y ′ are
sufficiently far apart, then diam πεY (Y ′) and diam πε

′

Y′(Y) are bounded in terms of the contraction
constants. In Proposition 8.2 we prove that if ‘strongly contracting’ is weakened to ‘(r, ρ)–
contracting’ then diam πεY (Y ′) and diam πε

′

Y′(Y) are bounded by an affine function of ρ(d(Y,Y ′)).
This is the best that can be expected, since even for a single point x we can only conclude
diam πεY (x) 6 ρ(d(x,Y)).

Finally, a theorem of Masur and Minsky [22] says, approximately and in our language, that
if for every pair of points in a geodesic metric space X there exists a path between them such that
these paths all admit semi-strongly contracting projections, with contraction constants uniform
over the family of paths, then the space X is hyperbolic. Our Corollary 8.4 says the conclusion
still holds if ‘semi-strongly contracting’ is weakened to ‘sublinearly contracting’.

1.6. Robustness. In Section 6 we investigate the following question: Let πεY be (ρ1, ρ2)–
contracting. What effect does changing ρ1, ε, or Y have on this property, in terms of ρ2?

We obtain optimal answers when ρ1(r) = r, see Lemma 6.2 and Lemma 6.3. It would be
interesting to have good quantitative results in more general cases.

The Morse property is invariant under quasi-isometry, so, by Theorem 1.5, the property of
being sublinearly contracting is also a quasi-isometry invariant. Very little is known, however,
about how the contraction parameters vary under quasi-isometry. In a subsequent paper [3] we
demonstrate that strong contraction is not preserved by quasi-isometries.

2. Preliminaries

Let Nr(y) := {x ∈ X | d(x, y) < r} and Nr(y) := {x ∈ X | d(x, y) 6 r}. If Y is a subspace of X,
let Nr(Y) := ∪y∈Y Nr(y), and Nr(Y) := ∪y∈Y Nr(y).

Let diam Y := sup{d(y, y′) | y, y′ ∈ Y}.
A geodesic is an isometric embedding of an interval. A metric space X is geodesic if for

every pair of points x, x′ ∈ X there exists a geodesic connecting them.
The Hausdorff distance between non-empty subspaces Y and Z of X is the infimal C such

that Y ⊂ NC(Z) and Z ⊂ NC(Y). Two subspaces are C–Hausdorff equivalent if the Hausdorff
distance between them is at most C.

Given L > 1 and A > 0, a map φ : X → Y between metric spaces is an (L, A)–quasi-
isometric embedding if 1

L d(x, x′) − A 6 d(φ(x), φ(x′)) 6 Ld(x, x′) + A for every x, x′ ∈ X. It is
an (L, A)–quasi-isometry if, in addition, Y = NA(φ(X)).
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An (L, A)–quasi-geodesic is an (L, A)–quasi-isometric embedding of an interval.

Definition 2.1. A function f is sublinear if it is non-decreasing, eventually non-negative,
and limr→∞

f (r)
r = 0.

We write f � g if there exist constants C1 > 0, C2 > 0, C3 > 0, and C4 > 0 such that
f (r) 6 C1g(C2r + C3) + C4 for all r. This partial order gives an equivalence relation f � g if
f � g and f � g. If f � g we say f and g are asymptotic.

3. Examples of contraction

We begin with a classical example.

Y

H

Figure 2. Contraction in H2.

Example 3.1. Let X be the hyperbolic plane, with the upper half-space model, and let Y be
the geodesic that is the upper half of the unit circle, see Figure 2. Pick any point x < Y . Up to
isometry, we may assume x sits on the y–axis above Y . The ball of radius d(x,Y) about x is
contained in the horoball H := {(a, b) ∈ R2 | b > 1}. The closest point projection of H to Y has
diameter ln(3 + 2

√
2). Thus, π0

Y is (r, ln(3 + 2
√

2))–contracting.

We now construct examples exhibiting a wider range of contracting behaviors than have
appeared previously in the literature.

Example 3.2. Let ρ = ρ1 : [0,∞) → [0,∞) be an unbounded function such that ρ(r) 6 r,
Id − ρ is unbounded, and there exists an A > 0 with ρ(A) > 0 such that 0 6 ρ(a + b) − ρ(a) < b
for all a > A and b > 0. We construct a space X and Y ⊂ X such that π0

Y is (ρ, 2)–contracting but
not strongly contracting.

The map φ : [A,∞)→ [A − ρ(A),∞) : x 7→ x − ρ(x) is a bijection by assumption. We set
σ(0) := φ(A) and, for i ∈ N, recursively define3 σ(i + 1) := φ−1(σ(i)). This is well-defined since
[A,∞) ⊂ [A − ρ(A),∞). Rearranging this expression yields ρ(σ(i + 1)) = σ(i + 1) − σ(i). Note
that σ(i + 1) −σ(i) > ρ(A) > 0 for every i ∈ N ∪ {0}, whence, in particular, σ(i)→ ∞ as i→ ∞.

Let Y := [0,∞) be a ray. For i ∈ N ∪ {0}, let Zi be a segment of length σ(i) with endpoints
labelled yi and zi. Identify yi with the point i in Y . Let Wi be a segment of length σ(i+1)−σ(i)+1
connecting zi to zi+1. Let X be the resulting geodesic metric space. See Figure 3.

Y

Z0

Z1

Z2

Z3

W0

W1

W2

y0 z0

x0
z1

x1 z2

x2 z3
y3

Figure 3. (ρ1, 2)–contraction

3 An Abel function for f is a function α such that α( f (x)) = α(x) + 1. The function σ is the inverse of an Abel
function for φ−1.
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Let xi be the point of Wi at distance 1/2 from zi+1. Clearly diam π0
Y (xi) = 1. It is easy to

see that each complementary component of X r (Y ∪ {xi}i∈N∪{0}) projects to a single point of Y .
Now consider the ball of radius ρ(d(x,Y)) about some x. First assume x ∈ Wi for some i. Our
assumptions on ρ yield:

Nρ(d(x,Y))(x) ⊆ Wi ∪ Nρ(σ(i))+1/2(zi) ∪ Nρ(σ(i+1))+1/2(zi+1)

The latter may contain xi and xi+1 but no other x j. If, on the other hand, x is in some Zi,
then Nρ(d(x,Y))(x) is contained in Zi ∪ Nρ(d(zi,Y))(zi). Therefore, for any x ∈ X, we have that
π0

Y (Nρ(d(x,Y))(x)) has diameter at most 2.
Observe that Nd(zi,Y)(zi) contains {z j, z j+1, . . . zi} for 0 6 i − j 6 σ( j). Since σ(i) → ∞ as

i→ ∞, this implies that Y is not strongly contracting.
Concrete examples include:
• ρ(r) := 2

√
r − 1 and A = 1 and σ(r) := r2.

• ρ(r) := r/2 and A = 2 and σ(r) := 2r. This is an example of semi-strong contraction.
• ρ(r) := min{r, r − log2 r} and A = 2 and σ(r) := 2 ↑↑ r.

In Knuth’s ‘up-arrow notation’ 2 ↑↑ r denotes tetration, so that 2 ↑↑ r = 2·
··
2︸︷︷︸

r times

when r ∈ N∪ {0}.

The following proposition shows that it is sometimes possible to ‘trade’ between the input
and output contraction functions, so we can use Example 3.2 to demonstrate further examples
of (ρ1, ρ2)–contraction conditions.

Proposition 3.3. Suppose that πεY is (ρ1, B)–contracting, where B is a constant and ρ = ρ1
is a non-decreasing, non-negative, unbounded function such that Id − ρ is unbounded and such
that there exists a constant A such that ρ(A) > 0 and 0 6 ρ(a + b) − ρ(a) < b for all a > A
and b > 0. Define A′ := A − ρ(A). For x ∈ [A′,∞) define4 α(x) to be the minimal non-negative
integer such that (Id − ρ)α(x)(x) ∈ [A′, A). Then πεY is (r − A, ρ2)–contracting for some ρ2 � α.

Proof. Observe as in Example 3.2 that the map φ : x 7→ x − ρ(x) is a bijection [A,∞) →
[A′,∞) and that, since φ is strictly increasing for x > A, the collection {[φk(A′), φk−1(A′)) | k 6 0}
is a partition of [A′,∞).

We show that ρ2(r) := Bα(r) will suffice. It follows from unboundedness of ρ that ρ2 is
sublinear: we have ρ2 � α. The map α is a step function with steps of height 1, so it is sufficient
to show that the lengths of the steps go to infinity, ie φ−n−1(A′) − φ−n(A′)→ ∞ as n→ ∞. As
computed in Example 3.2, we have ρ(φ−n−1(A′)) = φ−n−1(A′) − φ−n(A′). Since φ−n−1(A′)→ ∞
as n→ ∞ as argued in Example 3.2 and since ρ goes to infinity, sublinearity follows.

Let x and y be points of X such that d(x, y) 6 d(x,Y) − A. Define r0 := d(x,Y) and
while r0 − ri 6 d(x, y), define ri+1 := φ(ri). Note that this is well-defined, ie ri > A, since
r0 − ri 6 d(x, y) 6 r0 − A. Let k be the largest index such that r0 − rk 6 d(x, y). Then the fact
that φα(r0)(r0) < A and the observation we just made shows k < α(r0).

Fix a geodesic from x to y and for 0 6 i 6 k define xi to be the point at distance r0 − ri
from x along this geodesic. Define xk+1 := y. For 0 6 i 6 k we have d(xi+1, xi) 6 ρ(d(xi,Y)) by
construction, whence:

diam πεY (x) ∪ πεY (y) 6
k∑

i=0

diam πεY (xi) ∪ πεY (xi+1) 6 Bα(r0)

Thus, πεY is (r − A, ρ2)–contracting. �

Applying Proposition 3.3 to the concrete examples in Example 3.2 we see:
• (2

√
r − 1, 2)–contracting implies (r − 1, ρ2)–contracting for ρ2 �

√
·.

• (r/2, 2)–contracting implies (r − 2, ρ2)–contracting for ρ2 � log2.
• Finally, (r − log2 r, 2)–contracting implies (r − 2, ρ2)–contracting for ρ2 � superlog2.

4The function α : [A′,∞)→ N ∪ {0} is an Abel function for (Id − ρ)−1. For instance, take α to be the inverse of
σ : N ∪ {0} → σ(N ∪ {0}) from Example 3.2 extended to all of [A′,∞) by a rounding-off function.
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That the converse to Proposition 3.3 can fail follows from the next example.

Example 3.4. Let ρ2 be a sublinear function such that 0 < ρ2(r) < r. Let Y be a line. Choose
a collection of disjoint intervals {Ii}i∈N of Y such that |Ii| = ρ2(i) and let yi be the center of Ii.
Connect the endpoints of Ii by attaching a segment Ji of length 4i, and let xi be the center of this
segment. Let X be the resulting geodesic space, see Figure 4. We claim π0

Y is (r, ρ2)–contracting.

Y

x1

x2

x3

y1 y2 y3

Figure 4. (r, ρ2)–contracting

Suppose that x ∈ Ji ⊂ X and d(x,Y) < i. Then d(x, xi) > d(x,Y), and diam π0
Y (Nd(x,Y)(x)) =

0. For x ∈ Ji ⊂ X with d(x,Y) > i we have d(x, xi) 6 d(x,Y) and:

diam π0
Y (Nd(x,Y)(x)) = diam π0

Y (xi) = ρ2(i) 6 ρ2(d(x,Y))

This proves the claim. Furthermore, ρ2 is optimal, in the following sense: Since diam π0
Y (xi) =

ρ2(d(xi,Y)/2) = ρ2(i), if ρ′1 and ρ′2 are some other functions such that π0
Y is (ρ′1, ρ

′
2)–contracting

then ρ2(i) 6 ρ′2(2i) for i ∈ N.

4. The Morse property

The following two propositions establish our main result, Theorem 1.4.

Proposition 4.1. Let Y be a subspace of a geodesic metric space X. Suppose πεY is (ρ1, ρ2)–
contracting. There exists a function µ, depending only on ε, ρ1, and ρ2, such that Y is µ–Morse.

Proof. Given L′ and A′ there exist L, A, and C such that every (L′, A′)–quasi-geodesic is
C–Hausdorff equivalent to a continuous (L, A)–quasi-geodesic with the same endpoints [10,
Lemma III.H.1.11]. Thus, it suffices to show there exists a bound B, depending only on ε, ρ1
and ρ2, such that every continuous (L, A)–quasi-geodesic connecting points on Y is contained in
NB(Y). Then we set µ(L′, A′) := B + C.

Let γ be a continuous (L, A)–quasi-geodesic with endpoints on Y . Take E to be sufficiently
large so that ρ1(E) > 3A and for all r > E we have ρ2(r)

ρ1(r) <
1

3L2 .
Suppose γ * NE(Y), and let [a, b] be a maximal subinterval of the domain of γ such that

γ|[a,b] ⊂ X r NE(Y). We show there exists a T independent of γ and Y such that b − a 6 T . We
conclude by setting B := E + L · T

2 + A.
Let t0 := a. Supposing we have defined t0, . . . , ti, if d(γ(ti), γ(b)) > ρ1(d(γ(ti),Y)) define

ti+1 to be the first time that d(γ(ti), γ(ti+1)) = ρ1(d(γ(ti),Y)). Such a ti+1 exists because γ is
continuous. Since d(γ,Y) > E we have d(γ(ti), γ(ti+1)) = ρ1(d(γ(ti),Y)) > ρ1(E) > 0, so after
finitely many steps we reach an index k such that d(γ(tk), γ(b)) 6 ρ1(d(γ(tk),Y)). Applying the
contraction condition to the points γ(ti), we see:

diam πεY (γ(a)) ∪ πεY (γ(b)) 6
k∑

i=0

ρ2(d(γ(ti),Y))

This allows us to estimate:

d(γ(a), γ(b)) 6 d(γ(a), πεY (γ(a)))

+ diam πεY (γ(a)) ∪ πεY (γ(b)) + d(γ(b), πεY (γ(b)))

6 2(E + ε) +

k∑
i=0

ρ2(d(γ(ti),Y))(1)
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On the other hand, since γ is a (L, A)–quasi-geodesic, we have:

Ld(γ(a), γ(b)) + LA > b − a = b − tk +

k−1∑
i=0

(ti+1 − ti)

>
1
L

(d(γ(b), γ(tk)) − A) +

k−1∑
i=0

1
L

(d(γ(ti+1), γ(ti)) − A)

=
1
L

(d(γ(b), γ(tk)) − ρ1(d(γ(tk),Y)))

+

k∑
i=0

1
L

(ρ1(d(γ(ti),Y)) − A)

>
−d(γ(b),Y)

L
+

k∑
i=0

1
L

(ρ1(d(γ(ti),Y)) − A)

= −
E
L

+

k∑
i=0

1
L

(ρ1(d(γ(ti),Y)) − A)

Combining this with the previous inequality and rearranging terms, we have:
k∑

i=0

(
ρ1(d(γ(ti),Y)) − L2ρ2(d(γ(ti),Y)) − A

)
6 E + L2A + 2L2(E + ε)

Now, left hand side is at least L2 ∑k
i=0 ρ2(d(γ(ti),Y)), by our choice of E; combined with

(1), this gives us:

d(γ(a), γ(b)) 6
E
L2 + A + 4(E + ε)

This estimate and the fact that γ is a quasi-geodesic give us a bound for b − a. �

Proposition 4.2. Let Y be a subspace of a geodesic metric space X. Suppose there is a
non-decreasing function µ such that every continuous (L, 0)-quasi-geodesic with endpoints on Y
is contained in the closed µ(L)–neighborhood of Y. Suppose the empty set is not in the image of
πεY . Then there is a function ρ′, depending only on µ and ε, such that πεY is (r, ρ′)–contracting.

We remark that since an (L, 0)–quasi-geodesic is also an (L′, 0)–quasi-geodesic for any
L′ > L, there is no loss in requiring the Morse function to be non-decreasing.

Proof. Consider the optimal contraction function:

ρ(r) := sup
d(x,y)6d(x,Y)6r

diam πεY (x) ∪ πεY (y) 6 4r + 2ε

Our goal is define a function ρ′ depending on µ and ε that is non-negative, non-decreasing, and
sublinear and such that ρ′ is an upper bound for ρ.

Define ρ′(r) := 0 if ε = 0 and µ ≡ 0. In this case ρ′ clearly has the first three properties.
Otherwise, we first replace µ by s 7→ inft>s µ(s). The new µ still satisfies the hypotheses of the
proposition and has that additional property that it is right continuous: limt→s+ µ(t) = µ(s) for
all s > 1. Define ρ′(0) := 2ε and for r > 0 define:

ρ′(r) := sup
{

s 6 4r + 2ε | s 6 18µ
(
3(4r + 2ε)

s

)
+ 12ε

}
If µ ≡ 0 then ρ′ increases linearly from 2ε to 12ε and then remains constant, so it is

non-negative, non-decreasing, and sublinear.
If µ . 0 then ρ′(r) > 0 when r > 0, and the conditions on µ ensure ρ′ is actually a

maximum. The fact that it is non-decreasing then follows by observing that ρ′(r) participates
in the supremum defining ρ′(r′) when 0 6 r < r′. To see ρ′ is sublinear, we suppose that
lim supr→∞ ρ

′(r)/r > 0 and derive a contradiction. Suppose that there exists some δ > 0 and a
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sequence (ri) of positive numbers increasing without bound such that ρ′(ri) > δri for all i. By
definition of ρ′, for each i there exists δri < si 6 4ri + 2ε such that:

si 6 18µ
(
3(4ri + 2ε)

si

)
+ 12ε 6 18µ

(
3(4ri + 2ε)

δri

)
+ 12ε

This is a contradiction, since the left-hand side grows without bound while the right-hand side is
bounded above by 18µ( 12

δ + 1) + 12ε once i is sufficiently large.

Now we must show ρ(r) 6 ρ′(r). It suffices to check this for those r such that ρ(r) > 0. The
idea of the proof is to choose, for each such r, points x and y such that d(x, y) 6 d(x,Y) 6 r
whose projection diameters nearly realize ρ(r). Take a path γ that is a concatenation of geodesics
from a projection point of x to x, then from x to y, then from y to a projection point of y. For
L := 3(4r+2ε)

ρ(r) > 3 we show that we can make γ into an (L, 0)–quasi-geodesic γ′ by introducing
at most two shortcuts in a particular way. The Morse hypothesis implies that γ′ is contained in
the µ(L)–neighborhood of Y . We then argue that the condition d(x, y) 6 d(x,Y) implies:

(2) ρ(r) < 18µ(L) + 12ε

In the case that ε = 0 and µ ≡ 0, this gives a contradiction, which means that there is no r for
which ρ takes a positive value, and we have ρ(r) = ρ′(r) = 0 for all r. Otherwise, plugging the
value of L into (2), we conclude that ρ(r) participates in the supremum defining ρ′(r), whence
ρ(r) 6 ρ′(r).

First we show how to produce quasi-geodesics. Consider points x, y, px ∈ π
ε
Y(x), and

py ∈ π
ε
Y (y). Let γ := [px, x][x, y][y, py] be a concatenation of three geodesics. Let [p, q]γ denote

the subsegment of γ from p to q, and let |[p, q]γ| denote its length. For this part of the argument
we may use any L > |γ|

d(px,py) > 1. Consider the continuous function D(p, q) := Ld(p, q)−|[p, q]γ|
defined on points (p, q) ∈ γ × γ such that p precedes q on γ. The restriction on L implies that
D(px, py) > 0. We conclude that if [p, q]γ is a subsegment of γ that is maximal with respect
inclusion among subsegments for which D takes non-positive values on the endpoints, then
Ld(p, q) = |[p, q]γ|. We consider several cases. Each carries the additional assumption that we
are not in one of the previous cases.

Case 0: D is non-negative. Set γ′ := γ, which is an (L, 0)–quasi-geodesics by definition of
D.

Case 1: D takes a non-positive value on [px, x]γ × [y, py]γ. In this case there exist points
x′ ∈ [px, x] and y′ ∈ [py, y] such that the segment [x′, y′]γ is maximal with respect to inclusion
among subsegments of γ with the property that D takes non-positive values on endpoints.
Define γ′ by replacing [x′, y′]γ by some geodesic segment with the same endpoints; γ′ :=
[px, x′]γ[x′, y′][y′, py]γ. We claim that γ′ is an (L, 0)–quasi-geodesic. Since γ′ is a concatenation
of geodesic segments, it suffices to check that points on distinct segments are sufficiently far apart.
We check distances between arbitrary points x′′ ∈ [px, x′]γ′ , z ∈ [x′, y′]γ′ , and y′′ ∈ [y′, py]γ′ .

Suppose, for contradiction, that Ld(x′′, y′′) < |[x′′, y′′]γ′ |. Since [x′, y′]γ has been replaced
by a geodesic segment, Ld(x′′, y′′) < |[x′′, y′′]γ′ | 6 |[x′′, y′′]γ|, so D(x′′, y′′) < 0. Since
D(x′, y′) = 0 we have x′′ ∈ [px, x′)γ or y′′ ∈ (y′, py]γ, but then [x′′, y′′]γ is a subsegment of
γ strictly containing [x′, y′]γ such that D takes a non-positive value on its endpoints. This

contradicts maximality of [x′, y′]γ among such subsegments, so d(x′′, y′′) ≥
|[x′′,y′′]γ′ |

L .
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Suppose, for contradiction, that Ld(x′′, z) < |[x′′, z]γ′ |. This implies x′′ , x′, because x′ and
z lie on a geodesic subsegment of γ′. We estimate:

d(x′′, y′) 6 d(x′′, z) + d(z, y′)

<
|[x′′, z]γ′ |

L
+ d(z, y′)

=
d(x′′, x′) + d(x′, z)

L
+ d(x′, y′) − d(x′, z)

=
|[x′′, x′]γ|

L
+
|[x′, y′]γ|

L
−

(
L − 1

L

)
d(x′, z)

6
|[x′′, y′]γ|

L
Since x′′ ∈ [px, x′)γ, we have exhibited a subsegment [x′′, y′]γ strictly containing [x′, y′]γ such
that D takes a non-positive value on its endpoints. This contradicts maximality of [x′, y′]γ
among such subsegments, so d(x′′, z) >

|[x′′,z]γ′ |
L .

A symmetric argument shows d(y′′, z) >
|[y′′,z]γ′ |

L , so γ′ is an (L, 0)–quasi-geodesic.

Case 2: D takes a non-positive value on an element of [px, x]γ × (x, y]γ. Let [x′, qx]γ
be a subsegment of γ maximal with respect to inclusion among subsegments for which D
takes non-positive values on endpoints, with x′ ∈ [px, x]γ. Since we are not in Case 1, qx ∈

(x, y)γ. Now consider whether or not [qx, py]γ is an (L, 0)–quasi-geodesic. If so, define γ′ :=
[px, x′]γ[x′, qx][qx, py]γ. Otherwise, D takes a negative value on an element of [qx, y)γ × (y, py]γ.
Let [qy, y′]γ be a maximal subsegment of [qx, py]γ, with qy ∈ [qx, y)γ and y′ ∈ (y, py] on which
D takes non-positive values on endpoints. We claim that qy ∈ (qx, y)γ and D(qy, y′) = 0, because
if D(qy, y) < 0 and qy , qx then we can enlarge the subsegment, contradicting maximality, while
if qy = qx then D(x′, y′) 6 0, contradicting the assumption that we are not in Case 1.

In either of these cases, we claim γ′ is an (L, 0)–quasi-geodesic. This follows by verifying
that the distance between points in distinct geodesic components of γ′ have distance at least
equal to the length of the subsegment of γ′ they bound divided by L. The strategy is to suppose
D attains a strictly negative value and then either derive a contradiction to maximality of [x′, qx]γ
or [qy, y′]γ or to the assumption that we are not Case 1. The arguments are substantially similar
to the computations in Case 1 and are left to the reader.

Case 3: D takes a non-positive value on an element of [x, y)γ × [y, py]γ. The argument here
is symmetric to the subcase of Case 2 in which only a corner at x is cut short.

We have shown how to produce an (L, 0)–quasi-geodesic γ′ from γ. We now proceed to
show ρ(r) 6 ρ′(r) for any r such that ρ(r) > 0. Since ρ(r) > 0 there exist x and y such that
d(x, y) 6 d(x,Y) 6 r and diam πεY (x) ∪ πεY (y) > 2

3ρ(r). Choose px ∈ π
ε
Y (x), py ∈ π

ε
Y (y) such that

d(px, py) > 2
3ρ(r).

Let γ := [px, x][x, y][y, py]. Let L := 12r+6ε
ρ(r) > 2 |γ|

d(px,py) , and let γ′ be the (L, 0)–quasi-
geodesic produced from γ as above. By the Morse hypothesis, γ′ is contained in the µ(L)–
neighborhood of Y .

Case a: γ′ comes from Case 0 or Case 3. In this case x ∈ γ′, so d(x,Y) 6 µ(L), so
ρ(r) < 3

2 d(px, py) 6 3
2 (4µ(L) + 2ε).

Case b: γ′ comes from Case 1. In this case px ∈ π
ε
Y (x′) and py ∈ π

ε
Y (y′), so d(x′, px) 6

µ(L) + ε and d(y′, py) 6 µ(L) + ε. Also, by definition of L we have:

d(x′, y′) =
|[x′, y′]γ|

L
6
|γ|

L
6

4r + 2ε
3(4r+2ε)
ρ(r)

=
ρ(r)

3

Since d(px, py) > 2
3ρ(r), we conclude d(x′, px) + d(y′, py) > ρ(r)

3 , so that ρ(r) < 6µ(L) + 6ε.
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Case c: γ′ comes from Case 2. In this case γ′ contains a geodesic segment from a point
x′ ∈ [px, x]γ to a point qx ∈ [x, y]γ. As in the previous case, d(x′, qx) =

|[x′,qx]γ
L 6 |γ|L 6

ρ(r)
3 .

Consider a point w ∈ πεY(qx). Since d(x, y) 6 d(x,Y), we have d(qx, y) 6 d(qx,Y) 6 µ(L),
which implies d(w, py) 6 4µ(L) + 2ε. Thus d(px,w) > 2

3ρ(r) − (4µ(L) + 2ε). We also have
d(x′,Y) 6 µ(L) and d(qx,Y) 6 µ(L), since both these points belong to γ′, so:

ρ(r)
3
> d(x′, qx) > d(px,w) − d(x′, px) − d(qx,w) >

2
3
ρ(r) − (6µ(L) + 4ε)

The resulting bound on ρ(r) is the largest of the three cases, and establishes the bound of (2),
completing the proof. �

5. Divergence

In this section we relate divergence to contraction and the Morse property, thereby proving
Theorem 1.5.

There is a link between the Morse property and superlinear divergence via asymptotic cones
[17]. Although this principle is well-known, there are competing definitions of ‘superlinear’
and ‘divergence’, so we give a detailed proof of Theorem 1.5 in terms of our definitions. Our
analysis actually yields more. In the introduction we claimed that for a quasi-geodesic the Morse
property, hence, sublinear contraction, is morally the opposite of high divergence. We prove a
precise technical formulation of this claim in Proposition 5.5. Roughly speaking, the result we
obtain is that if divergence of a quasi-geodesic γ is greater than a function f then almost closest
point projection to γ is (r, f −1)–contracting.

Definition 5.1. Let X be a geodesic metric space and let γ : R → X be an (L, A)–quasi-
geodesic. Let λ ∈ (0, 1], and let κ > L + A. Let Λγ(r, s; L, A, λ, κ) be the infimal length
of a path from γ(s − r) to γ(s + r) that is disjoint from the ball of radius λ(L−1r − A) − κ
centered at γ(s), or∞ if no such path exists. The (L, A, λ, κ)–divergence of γ evaluated at r is
∆γ(r; L, A, λ, κ) := inf s Λγ(r, s; L, A, λ, κ).

Notice that if γ is a geodesic, λ := 1/2, and κ := 2 we recover the definition of divergence
we gave in the introduction.

We make the convention that∞ 6 ∞.
In light of the following lemma, γ has a well defined divergence, up to equivalence of

functions, and we use ∆γ(r) to denote the equivalence class of ∆γ(r; L, A, λ, κ).

Lemma 5.2. Let γ be an (L, A)–quasi-geodesic. Suppose γ is also an (L′, A′)–quasi-geodesic.
Let λ, λ′ ∈ (0, 1], κ > L + A, and κ′ > L′ + A′. Then ∆γ(r; L, A, λ, κ) � ∆γ(r; L′, A′, λ′, κ′).

Proof. Take 0 < M < 1 small enough that λ
L −

λ′

L′ M > 0. Then for any sufficiently large
C > 0 the affine function θ : r 7→ Mr −C satisfies:

λ′((L′)−1θ(r) − A′) − 2κ′ 6 λ(L−1r − A) − κ

Fix s ∈ R and let P be any path from γ(s − r) to γ(s + r) that is disjoint from the ball of
radius λ(L−1r − A) − κ centered at γ(s). By the above inequality it is also disjoint from the ball
of radius λ′((L′)−1θ(r) − A′) − 2κ′ about γ(s).

Let {x0, x1, . . . , xl} be the set [s−r, s−θ(r)]∩ (Z∪{s−r, s−θ(r)}) in descending order and let
P− be the path from γ(s − θ(r)) to γ(s − r) obtained by concatenating geodesics [γ(xi), γ(xi+1)].
Define a path P+ from γ(s + r) to γ(s + θ(r)) similarly. Since κ′ > L′ + A′, the paths P− and P+

are disjoint from the ball of radius λ′((L′)−1θ(r) − A′) − κ′ centered at γ(s).
Define P′ to be the path from γ(s − θ(r)) to γ(s + θ(r)) obtained by concatenating P−, P,

and P+.
Now, for each r choose s and P so that |P| 6 1+∆γ(r; L, A, λ, κ). Then ∆γ(θ(r); L′, A′, λ′, κ′) 6

|P| + 2(L(r − θ(r)) + A). Since γ is quasi-geodesic, r 6 L|P| + LA, so the right-hand side can be
bounded by an affine function of ∆γ(r; L, A, λ, κ). This proves one direction of the equivalence.
The other follows immediately by reversing the roles in the above argument. �

We first give an example of the relationship between divergence and contraction.
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Example 5.3. Let f (r) > r be an increasing, invertible function. Consider the space X
constructed in Example 3.4, but this time take |Ii| := 2i and |Ji| := f (i) for i ∈ N. Let γ
be a geodesic whose image is Y . Then Λγ(i, γ−1(yi); 1, 0, 1, 1) = f (i), and this is optimal
for radius i, so ∆γ � f . On the other hand, the computation of Example 3.4 shows that
diam π0

Y (xi) = 2 f −1(4r). Thus, π0
Y is sublinearly contracting if and only if f −1 is sublinear, and,

in this case, it is (r, ρ)–contracting for ρ � f −1.

Our next proposition proves the implication (2) =⇒ (1) of Theorem 1.5. It also gives a
quantitave link between high divergence and contraction.

Definition 5.4. We say a function g is completely super– f if for every choice of C1 > 0,
C2 > 0, C3 > 0, and C4 > 0 the collection of r ∈ [0,∞) such that g(r) 6 C1 f (C2r + C3) + C4 is
bounded.

Proposition 5.5. Let γ be a quasi-geodesic in a geodesic metric space X. Suppose the
empty set is not in the image of πεγ. Let f (r) > r be an increasing, invertible function. If γ has
completely super– f divergence, then there exists a function ρ such that πεγ is (r, ρ)–contracting
and limr→∞

ρ(r)
f −1(r) = 0.

In particular, if γ has completely superlinear divergence then there exists a sublinear
function ρ such that πεγ is (r, ρ)–contracting.

Proof. Let γ be an (L, A)-quasi-geodesic. Define:

ρ(r) := sup
d(x,y)6d(x,γ)6r

diam πεγ(x) ∪ πεγ(y)

To see that πεγ is (r, ρ)–contracting we must show that ρ is sublinear. Since f (r) > r, it suffices
to prove the second claim:

lim
r→∞

ρ(r)
f −1(r)

= 0

Suppose for a contradiction that lim supr→∞
ρ(r)

f −1(r) > 0. Then there exist c > 0; sequences
(xn) and (yn) with xn, yn ∈ X, d(xn, γ) > n, and d(xn, yn) 6 d(xn, γ); and x′n ∈ π

ε
γ(xn) and

y′n ∈ π
ε
γ(yn) such that:

(3) c f −1(d(xn, γ)) 6 d(x′n, y
′
n)

Let an and bn be such that γ(an − bn) = x′n and γ(an + bn) = y′n. Define mn := γ(an) and
Rn := bn

L − A. Since γ is an (L, A)–quasi-geodesic, d(mn, {x′n, y
′
n}) > Rn and bn >

d(x′n,y
′
n)−A

2L . By
(3) and the facts that f −1 is unbounded and increasing, limn→∞ Rn = ∞.

Choose 0 < λ < 1
4 and κ := L + A.

If there is a geodesic from xn to yn containing a point z such that d(z,mn) 6 λRn, then:

Rn 6 d(y′n,mn)

6 d(y′n, yn) + d(yn, z) + d(z,mn)
6 d(yn, γ) + ε + d(yn, z) + d(z,mn)
6 ε + 2(d(yn, z) + d(z,mn))
6 ε + 2λRn + 2d(yn, z)
= ε + 2λRn + 2(d(xn, yn) − d(z, xn))
6 ε + 2λRn + 2(d(xn, γ) − (d(xn, γ) − λRn))
= ε + 4λRn

Thus, Rn 6
ε

1−4λ .
If there is a geodesic from xn to x′n or from yn to y′n containing a point z such that d(z,mn) 6

λRn, then a similar argument shows Rn 6
ε

1−2λ .
Since Rn → ∞, for all sufficiently large n and any choice of path pn that is a concatenation

of geodesics [x′n, xn], [xn, yn], [yn, y′n], the path pn remains outside the ball of radius λRn about
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mn. This gives us a path of length at most 4d(xn, γ) + 2ε from γ(an − bn) to γ(an + bn) that
remains outside the ball of radius λ

(
bn
L − A

)
about γ(an).

On the other hand, (3) implies:

d(xn, γ) 6 f
(
1
c

d(x′n, y
′
n)
)
6 f

(
2bnL + A

c

)
We conclude that for all sufficiently large n the (L, A, λ, κ)–divergence of γ evaluated at bn is
at most 2ε + 4 f

(
2bnL+A

c

)
, which contradicts the hypothesis that the divergence is completely

super– f . �

The previous result can be strengthened to the statement:

Proposition 5.6. Let f be an increasing, invertible, completely superlinear function satisfy-
ing the following additional condition:

For every C there exists some D such that for all r > 1 and k > D we have f (kr) >
C f (Cr + C) + C.(∗)

If the divergence of γ is at least f then γ is (r, ρ)–contracting for some function ρ � f −1.

Proof. For a contradiction we suppose that ρ � f −1 and replace (3) with d(x′n, y
′
n) >

n f −1(d(xn, γ)). Using the same method as in the proof of Proposition 5.5, we deduce that for all
sufficiently large n the (L, A, λ, κ)–divergence of γ evaluated at bn is at most 2ε + 4 f

(
2bnL+A

n

)
.

Thus, f (bn) 6 2ε + 4 f
(

2bnL+A
n

)
. Let cn := bn/n and M := max{2ε, 4, 2L, A}. Then, since f is

increasing:

(4) f (ncn) 6 M f (Mcn + M) + M

The left-hand side is unbounded as n grows, so we immediately obtain a contradiction if the
sequence (cn)n∈N is bounded. If the sequence is unbounded then, by passing to a subsequence,
we may assume cn > 1 for all n. In this case the inequality (4) holds for all n, which contradicts
condition (∗). �

Suitable functions f for Proposition 5.6 include f (r) := rd, rd/ log(r), r log(r) and dr for

any d > 1. The function f (r) := 2221+blog2 log2 rc

is completely superlinear, but does not satisfy (∗),
since f (n22n−1

) = f (22n−1
) for all n ∈ N.

Corollary 5.7. If a quasi-geodesic γ has divergence at least rk then γ is (r, r1/k)–contracting.
If it has exponential divergence, then γ is logarithmically contracting. Finally, if it has infinite
divergence, then it is strongly contracting.

Here infinite divergence means ∆γ(r) = ∞ for all r large enough. Example 5.3 shows these
conclusions are optimal.

We now address the implication (1) =⇒ (2) of Theorem 1.5. In this direction we can show
that the Morse property implies completely superlinear divergence, but we do not get explicit
control of the divergence function in terms of the Morse function, see Proposition 5.10.

There is one special case in which we can say more. Charney and Sultan [13] recently gave
a proof5 that if α is a Morse geodesic in a CAT(0) space then α has at least quadratic divergence.
Essentially the same argument gives a general result:

Proposition 5.8. Let α be a geodesic in a geodesic metric space X. If α is (ρ1, ρ2)–
contracting with ρ2 bounded, then ∆α(r) � rρ1(r).

Lemma 5.9. Let X be a geodesic metric space. Let a, b, c, d ∈ X and r > 0 satisfy the
following conditions:

(1) d(a, d) > r

5The original proof of this fact is due to Behrstock and Druţu [6], by different methods.
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(2) There exists a path γ from a to d passing through b and c such that the length of γ
is at most Cr and such that [a, b]γ, [b, c]γ, and [c, d]γ are continuous (L, 0)–quasi-
geodesics.

(3) The path γ does not contain a point within distance λr of e, where e is the midpoint of
a geodesic from a to d.

For any L′ > max{L,C,C/λ} > 1 there exists a continuous (L′, 0)–quasi-geodesic γ′ from a to d
of length at most |γ| such that γ′ does not contain a point within distance λr/2 of e.

Proof. The construction of γ′ is exactly as in Proposition 4.2 with L replaced by L′. This
involves finding points p and q on γ such that L′d(p, q) = |[p, q]γ| and replacing [p, q]γ by a
geodesic with the same endpoints. Now, d(p, q) 6 |γ|/L′ < λr, so for any point z on a newly
introduced geodesic segment we have d(z, e) > d(γ, e) − d(p, q)/2 > λr/2. �

Proposition 5.10. Let γ be a Morse quasi-geodesic in a geodesic metric space X. Then the
divergence of γ is completely superlinear.

Proof. We prove the contrapositive. Let γ be an (L, A)–quasi-geodesic and suppose its
divergence is not completely superlinear. Then there exists C > 0 for which there exists an
unbounded sequence of numbers rn > 1 and paths pn such that:

(1) There exists a sequence of real numbers sn such that the endpoints of pn are xn =

γ(sn − rn) and yn = γ(sn + rn).
(2) |pn| 6 Crn.
(3) pn does not intersect the ( rn

2L − A)–neighborhood of γ(sn).
We may assume all rn > 4AL so point (3) can be replaced by:

3′. pn does not intersect the ( rn
4L )–neighborhood of mn := γ(sn).

Our goal is to construct uniform quasi-geodesics γn from xn to yn that avoid increasingly
large balls around mn.

Set xn,0 := xn and define xn,1 to be the last point on pn for which we have d(xn,0, xn,1) =

rn/8L.
Similarly define xn,i to be yn if d(xn,i−1, yn) < rn/4L or to be the last point on pn satisfying

d(xn,i−1, xn,i) = rn/8L otherwise.
Note that yn = xn,kn for some kn 6 8CL. By construction, if i , j then d(xn,i, xn, j) > rn/8L.
Let γ1

n be a concatenation of geodesics [xn,0, xn,1] . . . [xn,kn−1, yn]. We have that |γ1
n| 6 Crn

and d(γ1
n,mn) > rn/8L.

Applying Lemma 5.9 for each 1 6 i 6 bkn/3c there are (L2, 0)–quasi-geodesics (where
L2 does not depend on n) from xn,3(i−1) to xn,3i such that the concatenation γ2

n of these with
[xn,3bkn/3c, yn]γ1

n
satisfies d(γ2

n,mn) > rn/16L.
Repeating this procedure at most d = dlog3 8CLe times we obtain an (Ld, 0) quasi-geodesic

γd
n from xn to yn satisfying d(γd

n ,mn) > rn/(2d+2L). Again, Ld does not depend on n.
If γ is µ–Morse, then the γd

n are µ′–Morse for some µ′ that does not depend on n. Then
d(γd

n ,mn) 6 µ′(K,C), which is bounded, contradicting the lower bound above. �

A finitely generated group is called constricted if all of its asymptotic cones have cut points
[18].

Corollary 5.11. Suppose there exists a quasi-geodesic γ with completely superlinear
divergence in a geodesic metric space X. In every asymptotic cone of X every point of the
ultralimit of γ is a cut point.

In particular, a finitely generated group is constricted if one of its Cayley graphs contains a
quasi-geodesic with completely superlinear divergence.

Olshanskii, Osin, and Sapir [26, Corollary 6.4] build a group that has an asymptotic cone
with no cut point such that the group has a Cayley graph with geodesics of superlinear divergence.
These geodesics are therefore not Morse. They explicitly state that their construction yields
geodesics that are not completely superlinear. Corollary 5.11 shows that this will be the case in
any such construction.
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6. Robustness

Suppose that πεY is (ρ1, ρ2)–contracting. In this section we investigate the extent to which ρ2
is affected by changes to ρ1, ε, or Y .

Clearly πεY is (ρ′1, ρ2)–contracting for ρ′1 6 ρ1. From Theorem 1.4 we know that πεY is
(r, ρ′2)–contracting for some ρ′2 depending on ρ1 and ρ2. For this ρ′2, it follows that πεY is
(ρ′1, ρ

′
2)–contracting for every ρ1 6 ρ

′
1 6 r.

In general ρ2 and ρ′2 are not asymptotic. For example, if πεY is (r/2, B1)–contracting it is
(r, ρ2)–contracting for ρ2 � log2, as in Proposition 3.3, but not necessarily (r, B2)–contracting for
some constant B2, by Example 3.2. One well-known special case is that (r/M, B1)–contracting
for M > 1 and B1 bounded implies (r/2, B2)–contracting for some bounded B2, see, eg, [30].

The output contraction functions are asymptotic when the input function is changed by an
additive constant:

Lemma 6.1. If πεY is (ρ1, ρ2)–contracting for ρ1(r) = ρ′1(r) − C, with ρ′1(r) 6 r and C > 0,
then πεY is (ρ′1, ρ

′
2)–contracting for some ρ′2 � ρ2.

Proof. Let C′ := sup{r | ρ1(r) 6 C}. Suppose that x and y are points with d(x, y) 6
ρ′1(d(x,Y)). If d(x, y) 6 ρ1(d(x,Y)) = ρ′1(d(x,Y)) − C then we have diam πεY (x) ∪ πεY (y) 6
ρ2(d(x,Y)). Otherwise, let z be a point on a geodesic from x to y such that d(x, z) = ρ1(d(x,Y)).
This implies d(y, z) 6 C. Now:

diam πεY (x) ∪ πεY (y) 6 diam πεY (x) ∪ πεY (z) + diam πεY (z) ∪ πεY (y)

6 ρ2(d(x,Y)) + diam πεY (z) ∪ πεY (y)

If d(z, y) > ρ1(d(z,Y)) then d(z,Y) 6 C′, so diam πεY (z) ∪ πεY (y) 6 2(C + C′ + ε). If
d(z, y) 6 ρ1(d(z,Y)) then diam πεY (z) ∪ πεY (y) 6 ρ2(d(z,Y)) 6 ρ2(2d(x,Y)). Combining these
cases, we see that d(x, y) 6 ρ1(d(x,Y)) implies:

diam πεY (x) ∪ πεY (y) 6 ρ2(d(x,Y)) + ρ2(2d(x,Y)) + 2(C + C′ + ε)

Thus, it suffices to take ρ′2(r) := 2ρ2(2r) + 2(C + C′ + ε). �

Next, consider changes to the projection parameter.

Lemma 6.2. Suppose ε0 and ε1 are constants such that the empty set is neither in the image
of πε0

Y : X → 2Y nor in the image of πε1
Y : X → 2Y . If πε0

Y is (ρ1, ρ2)–contracting then there exist
ρ′1 and ρ′2 such that πε1

Y is (ρ′1, ρ
′
2)–contracting. If ε1 6 ε0 or if ρ1(r) := r then we can take

ρ′1 = ρ1 and ρ′2 � ρ2.

Proof. When ε1 6 ε0 we have πε1
Y (x) ⊂ πε0

Y (x), so the result is clear. In this case ρ′1 = ρ1 and
ρ′2 = ρ2 will suffice.

The fact that πε1
Y is sublinearly contracting follows from Theorem 1.4, since Y is Morse. It

remains only to prove the asymptotic statement in the case that ρ1(r) := r, so suppose πε0
Y is

(r, ρ2)–contracting.
For any x ∈ XrY and each i ∈ {0, 1}, consider a point xi ∈ π

εi
Y (x) and a point zi on a geodesic

from x to xi with d(x, zi) = d(x,Y). Then:

d(x0, x1) 6 d(x0, z0) + d(z0, π
ε0
Y (z0)) + diam πε0

Y (z0) ∪ πε0
Y (x)

+ diam πε0
Y (x) ∪ πε0

Y (z1) + d(πε0
Y (z1), z1) + d(z1, x1)

6 ε0 + 2ε0 + ρ2(d(x,Y)) + ρ2(d(x,Y)) + ε0 + ε1 + ε1

= 4ε0 + 2ε1 + 2ρ2(d(x,Y))

If d(x, y) 6 d(x,Y) then:

diam πε1
Y (x) ∪ πε1

Y (y) 6 diam πε1
Y (x) ∪ πε0

Y (x) + diam πε0
Y (x) ∪ πε0

Y (y)

+ diam πε0
Y (y) ∪ πε1

Y (y)
6 4ε0 + 2ε1 + 2ρ2(d(x,Y)) + ρ2(d(x,Y))

+ 4ε0 + 2ε1 + 2ρ2(d(y,Y))
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Since d(y,Y) 6 2d(x,Y), this means that πε1
Y is (r, ρ′2)–contracting for:

ρ′2(r) := 8ε0 + 4ε1 + 3ρ2(r) + 2ρ2(2r) � ρ2(r) �

Finally, consider changes to the target of the projection map.

Lemma 6.3. Let Y and Y ′ be subspaces of a geodesic metric space X at bounded Haus-
dorff distance from one another. Suppose that πεY is (ρ1, ρ2)–contracting. Then πεY′ is (r, ρ′2)–
contracting for some ρ′2. If ρ1(r) = r then we can take ρ′2 � ρ2.

Proof. Let C be the Hausdorff distance between Y and Y ′.
For every x ∈ X we have πεY′(x) ⊂ NC(πε+2C

Y (x)). The result now follows easily from
Lemma 6.2. �

In light of Lemma 6.2, we can speak of the set Y being a contracting set if some ε–closest
point projection to Y is contracting.

Definition 6.4. We say Y is (ρ1, ρ2)–contracting if there exists an ε > 0 such that the
ε–closest point projection πεY : X → 2Y is (ρ1, ρ2)–contracting.

Equivalently, Y is (ρ1, ρ2)–contracting if for all sufficiently small ε > 0, if πεY does not have
the empty set in its image, then πεY is (ρ1, ρ2)–contracting.

7. Geodesic image theorem

In this section we give an additional characterization of sublinear contraction in terms of
projections of geodesic segments.

Theorem 7.1. Let Y be a subspace of a geodesic metric space X. Suppose the empty set is
not in the image of πεY . The following are equivalent:

(1) There exist a sublinear function ρ and a constant C > 0 such that for every geodesic
segment γ ⊂ X, with endpoints denoted x and y, if d(γ,Y) > C then diam πεY (γ) 6
ρ(max{d(x,Y), d(y,Y)}).

(2) There exist a sublinear function ρ′ and a constant C′ > 0 such that for every geodesic
segment γ ⊂ X, if d(γ,Y) > C′ then diam πεY (γ) 6 ρ′(maxz∈γ d(z,Y)).

(3) There exists a sublinear function ρ′′ such that πεY is (r, ρ′′)–contracting.
Moreover, ρ � ρ′ � ρ′′.

See Figure 3, letting γ be a subsegment of ∪iWi.
The case that Y is strongly contracting, that is, ρ′′ is bounded, recovers the well-known

‘Bounded Geodesic Image Property’, cf [23, 8].

Corollary 7.2. If Y is strongly contracting, R2 > 1 is a constant greater than twice the
bound on the contraction function for Y, and γ is a geodesic segment that does not enter the
R2–neighborhood of Y then diam πεY (γ) is bounded, with bound depending only on ε and ρ′′.

Alternatively, one could read Theorem 7.1 as saying that if πεY is sublinearly contracting
and γ is a geodesic ray that is far from Y , but such that πεY (γ) is large, then d(γ(t),Y) grows
superlinearly with respect to diam πεY (γ([0, t])).

Proof of Theorem 7.1.
(1) =⇒ (3): Define ρ1(r) := r − C and ρ2(r) = ρ(2r − C). By Lemma 6.1, it suffices to show
that πεY is (ρ1, ρ2)–contracting.

Suppose x and y are points of X with d(x, y) 6 ρ1(d(x,Y)), and let γ be a geodesic from x to
y. Then γ remains outside the C–neighborhood of Y , by the definition of ρ1, so:

diam πεY (x) ∪ πεY (y) 6 diam πεY (γ)
6 ρ(max{d(x,Y), d(y,Y)})
6 ρ(2d(x,Y) −C) = ρ2(d(x,Y))

This proves (1) =⇒ (3), and a similar argument proves (2) =⇒ (3).
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Now assume (3). If d(x, y) 6 d(x,Y) + d(y,Y) then both (1) and (2) follow easily, so assume
not. Let z0 be the point of γ at distance d(x,Y) from x. Our assumption says d(z0, y) > d(y,Y).
Define points zi+1 inductively as follows: if d(zi, y) > d(y,Y) + d(zi,Y) define zi+1 to be the point
of γ between zi and y at distance d(zi,Y) from zi. Let k be the last index so defined. From these
choices we estimate:

diam πεY (γ) 6 diam πεY (Nd(x,Y)(x)) +

k∑
i=0

diam πεY (Nd(zi,Y)(zi))

+ diam πεY (Nd(y,Y)(y))

6 2

ρ′′(d(x,Y)) +

k∑
i=0

ρ′′(d(zi,Y)) + ρ′′(d(y,Y))

(5)

Since γ is a geodesic:

d(x, y) = d(x, z0) +

k−1∑
i=0

d(zi, zi+1) + d(zk, y)

= d(x,Y) +

k−1∑
i=0

d(zi,Y) + d(zk, y)(6)

We can also bound d(x, y) in terms of the projections to Y:

d(x, y) 6 d(x, πεY (x)) + diam πεY (x) ∪ πεY (y) + d(πεY (y), y)

6 d(x, πεY (x)) + diam πεY (x) ∪ πεY (z0) +

k−1∑
i=0

diam πεY (zi) ∪ πεY (zi+1)

+ diam πεY (zk) ∪ πεY (y) + d(πεY (y), y)

6 d(x,Y) + ε + ρ′′(d(x,Y)) +

k−1∑
i=0

ρ′′(d(zi,Y))(7)

+ ρ′′(d(zk,Y)) + ρ′′(d(y,Y)) + d(y,Y) + ε

Combining (6) and (7) gives us the estimate:

(8)
k−1∑
i=0

d(zi,Y) − ρ′′(d(zi,Y)) 6

2ε + ρ′′(d(x,Y)) + ρ′′(d(zk,Y)) + ρ′′(d(y,Y)) + d(y,Y) − d(zk, y)

Define Rn > 0 such that for all r > Rn we have 0 6 ρ′′(r) 6 r/n. Suppose that d(γ,Y) > R2
so that d(zi,Y) − ρ′′(d(zi,Y)) > ρ′′(d(zi,Y)) for all i. These bounds, along with (8), (5), and
E := d(zk, y) − d(y,Y) give:

diam πεY (γ) 6 2
(
2
(
ε + ρ′′(d(x,Y)) + ρ′′(d(zk,Y)) + ρ′′(d(y,Y))

)
− E

)
By construction, E > 0, so to prove (2) it suffices to take C′ := R2 and ρ(r) := 4ε + 12ρ′′(r).

To prove (1) we suppose d(γ,Y) > C := R4 > R2 and bound 2ρ′′(d(zk,Y)) − E in terms of
ρ′′(d(y,Y)). There are two cases to consider. If d(zk,Y) 6 4d(y,Y) then 2ρ′′(d(zk,Y)) − E 6
2ρ′′(4d(y,Y)). Otherwise, d(zk,Y) > 4d(y,Y) implies E > d(zk,Y)/2, so:

2ρ′′(d(zk,Y)) − E < 2
d(zk,Y)

4
−

d(zk,Y)
2

= 0

Thus, it suffices to take ρ′(r) := 4ε + 12ρ′′(4r). �
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8. Further applications

First, we prove a general result.

Proposition 8.1. Let X be a geodesic metric space. Suppose subspaces Y and Y ′ of X are
µ–Morse. Let ε > 0 be a constant such that there exist points p ∈ Y and p′ ∈ Y ′ such that
d(p, p′) 6 d(Y,Y ′) + ε. Then there exist a constant B and a sublinear function ρ, each depending
only on µ and ε, satisfying the following conditions:

• If d(Y,Y ′) 6 2µ(4, 0) then Y ∪ Y ′ is B–quasi-convex.
• If d(Y,Y ′) > 2µ(4, 0) then for every geodesic α from Y to Y ′ with |α| 6 d(Y,Y ′) + ε and

every geodesic γ from Y to Y ′ we have d(α, γ) < ρ(d(Y,Y ′)).

Proof. Take geodesics α and γ as hypothesized. Let β be a geodesic from α to γ with |β| =
d(α, γ). See Figure 5. Let δ := [p, x]αβ[y, q]γ and δ′ := [p′, x]αβ[y, q′]γ. (Recall that [p, x]α

Y Y ′

α

γ

β

p

q q′

p′
u u′x

y
v v′

Figure 5. Setup for Proposition 8.1

denotes the subsegment of α from p to x.) Suppose that δ fails to be a (k, 0)–quasi-geodesic for
some k > 3. Both [p, x]αβ and β[y, q]γ are (3, 0)–quasi-geodesics, by minimality of d(x, y), so
there exist points u ∈ [p, x]α and v ∈ [y, q]γ such that kd(u, v) < d(u, x) + d(x, y) + d(y, v). Now,
d(v, y) 6 d(v, u) + d(u, x) + d(x, y), so:

(k − 1)d(x, y) 6 (k − 1)d(u, v) < 2(d(u, x) + d(x, y))

Whence:

(9) d(α, γ) = d(x, y) <
2d(u, x)

k − 3
6

2|α|
k − 3

6
2(d(Y,Y ′) + ε)

k − 3
If d(Y,Y ′) 6 2µ(4, 0) and δ is not a (4, 0)–quasi-geodesic then d(α, γ) < 4µ(4, 0) + 2ε, by (9).

This means [y, q]γ is a geodesic with one endpoint on Y and one within distance 6µ(4, 0) + 2ε
of Y . Since Y is µ–Morse there is a B0 depending on µ such that such a geodesic segment is
contained in the B0–neighborhood of Y .

If δ is a (4, 0)–quasi-geodesic it is contained in the µ(4, 0)–neighborhood of Y .
The same arguments apply for δ′, and γ ⊂ δ ∪ δ′, so if d(Y,Y ′) 6 2µ(4, 0) then Y ∪ Y ′ is

B–quasi-convex for B := max{B0, µ(4, 0)}.
Now suppose d(Y,Y ′) > 2µ(4, 0). Then δ and δ′ cannot both be (4, 0)–quasi-geodesics. By

(9):

d(α, γ) <
2(d(Y,Y ′) + ε)

sup{k ∈ R | δ or δ′ is not a (k, 0)–quasi-geodesic} − 3

6
2(d(Y,Y ′) + ε)

sup{k ∈ R | d(Y,Y ′) > 2µ(k, 0)} − 3
Define:

ρ(r) :=
2(r + ε)

sup{k ∈ R | r > 2µ(k, 0)} − 3
We interpret ρ(r) to be 0 if {2µ(k, 0)}k∈R is bounded above by r. For r > ε we have:

ρ(r)
r
6

4
sup{k ∈ R | r > 2µ(k, 0)} − 3
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The denominator is unbounded and non-decreasing as a function of r, so we have limr→∞
ρ(r)

r =

0. �

We first give an application of the second part of Proposition 8.1.

Proposition 8.2. Let X be a geodesic metric space and let Y and Y ′ be µ–Morse subspaces
of X. Let ε > 0 be a constant such that the image of πεY does not contain the empty set, and such
that there exist points p ∈ Y and p′ ∈ Y ′ such that d(p, p′) 6 d(Y,Y ′) + ε.

Suppose d(Y,Y ′) > 2µ(6, 0). Then there is a sublinear function ρ depending only on µ such
that diam πεY (Y ′) 6 ρ(d(Y,Y ′)).

Proof. Since Y is µ–Morse, there is a sublinear function ρ′ depending only on µ such that
Y is (r, ρ′)–contracting, by Proposition 4.2.

Note that p ∈ πεY (p′). Choose q′ ∈ Y ′ and q ∈ πεY (q′). Let γ be a geodesic from q to q′, let α
be a geodesic from p to p′, and let x ∈ α and y ∈ γ be points such that d(x, y) = d(α, γ). The
setup is the same as in Proposition 8.1, and we make the corresponding definitions of δ, δ′, etc.

Suppose δ′ is not a (5, 0)–quasi-geodesic. Define u′ and v′ as in Proposition 8.1, so that
d(u′, x) + d(x, y) + d(y, v′) > 5d(u′, v′). We have p ∈ πεY(u′) and q ∈ πεY(v′). By definition of
x and y, we know d(x, y) 6 d(u′, v′), so d(u′, x) + d(y, v′) > 4d(u′, v′). In particular, we have
2d(u′, v′) < d(u′, x) or 2d(u′, v′) < d(v′, y). We suppose the former, the other case being similar.

First, suppose that d(u′,Y) < ε. Then:

d(p, q) 6 d(p, v′) + d(v′, q)

6 2d(p, v′) + ε

6 2(d(p, u′) + d(u′, v′)) + ε

6 2d(p, u′) + d(u′, x) + ε

6 3(d(u′,Y) + ε) + ε < 7ε

Otherwise, if d(u′,Y) > ε, then we have:

d(u′, v′) <
1
2

d(u′, x) 6
1
2

(d(u′,Y) + ε) 6 d(u′,Y)

By the contraction property:

d(p, q) 6 diam πεY (u′) ∪ πεY (v′) 6 ρ′(d(u′,Y)) 6 ρ′(d(Y,Y ′) + ε)

Suppose instead that δ′ is a (5, 0)–quasi-geodesic. Then δ is not a (6, 0)–quasi-geodesic,
since d(Y,Y ′) > 2µ(6, 0). By (9) we have:

d(x, y) <
2
3

(d(x, u)) 6
2
3

(d(x,Y) + ε)

If d(x,Y) 6 2ε it follows that d(x, y) 6 2ε. Thus d(y,Y) 6 d(y, x) + d(x,Y) 6 4ε, and:

d(p, q) 6 d(q, y) + d(y, x) + d(x, p) 6 d(y,Y) + ε + 2ε + d(x,Y) + ε 6 10ε

Otherwise d(x,Y) > 2ε and it follows that d(x, y) 6 d(x,Y). We then use the contraction
property to see:

d(p, q) 6 diam πεY (x) ∪ πεY (y) 6 ρ′(d(x,Y)) 6 ρ′(d(Y,Y ′) + ε)

Since q′ was an arbitrary point in Y ′ and q was an arbitrary point of πεY(q′), we conclude
diam πεY (Y ′) 6 2(ρ′(d(Y,Y ′) + ε) + 10ε). �

We also have the following applications of the first part of Proposition 8.1:

Corollary 8.3. A geodesic triangle in which two of the sides are µ–Morse is δ–thin, with δ
depending only on µ.

Corollary 8.4. Suppose X is a geodesic metric space and P is a collection of (ρ1, ρ2)–
contracting paths such that for every pair of points x, y ∈ X there exists a γ ∈ P with endpoints
x and y. Then X is δ–hyperbolic, with δ depending only on ρ1 and ρ2.
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Corollary 8.4 is an analogue of [22, Theorem 2.3], which is roughly the same statement
when the paths in P are all semi-strongly contracting with uniform contraction parameters.

Corollary 8.5. Let G be a group generated by a finite set S. Suppose there exist functions
ρ1 and ρ2 and, for each g ∈ G, a path αg from 1 to g in Cay(G,S) that is (ρ1, ρ2)–contracting.
Then G is hyperbolic.

We must assume uniform contraction in Corollary 8.5, even for finitely presented groups.
Druţu, Mozes, and Sapir [17] show that if H is a finitely generated subgroup of a finitely
generated group G and h ∈ H is a Morse element in G, that is, 〈h〉 is Morse in some, hence,
every, Cayley graph of G, then h is a Morse element in H. Thus, if H is a finitely generated
subgroup of a torsion-free hyperbolic group then every element of H is Morse. However, Brady
[9] constructed an example of a finitely presented subgroup H of a torsion-free hyperbolic group
G such that H is not hyperbolic.

Fink [20] claims that if all geodesics in a homogeneous proper geodesic metric space are
Morse, then the space is hyperbolic. First is an assertion, [20, Proposition 3.2], that if every
geodesic is Morse then the collection of geodesics is uniformly Morse, ie, there exists a µ such
that every geodesic is µ–Morse. Then an asymptotic cone argument is used to conclude the
space is hyperbolic. This second step can now be accomplished via our Corollary 8.4 without
resort to the asymptotic cone machinery.
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We prove that Morse subsets of CAT(0) spaces are strongly contracting. This
generalizes and simplifies a result of Sultan, who proved it for Morse quasi-geodesics.
Our proof goes through the recurrence characterization of Morse subsets.

In this note we give a short proof of the following technical result:

Proposition 0.1. If Z is a ρ–recurrent subset of a CAT(0) space X and the empty set is
not in the image of the map πZ(x) := {z ∈ Z | d(x, z) = d(x,Z)} then Z is 12ρ(21)–strongly
contracting.

This is the final piece of the following theorem, which says that a number of properties
that are equivalent to quasi-convexity in hyperbolic spaces are also equivalent to one another in
CAT(0) spaces:

Theorem 0.2. Let X be a geodesic metric space. LetZ be an unbounded subset of X such
that the empty set is not in the image of πZ. The following are equivalent:
Z is Morse: There is a function µ : [1,∞) × [0,∞)→ [0,∞) defined by:

µ(L, A) := sup
γ

sup
w∈γ

d(w,Z)

The first supremum is taken over (L, A)–quasi-geodesic segments γ with both endpoints
onZ.

Z is contracting: There is a function σ : [0,∞)→ [0,∞) with limr→∞ σ(r)/r = 0 defined by:

σ(r) := sup
d(x,y)≤d(x,Z)≤r

diam πZ(x) ∪ πZ(y)

Z is recurrent: There is a function ρ : [1,∞)→ [0,∞) defined by:

ρ(q) := sup
∆(γ)≤q

inf
w∈γ

d(w,Z′)

The first supremum is taken over rectifiable segments γ with distinct endpoints onZ
such that ∆(γ) := len(γ)

d(γ+,γ−) ≤ q, where γ+ and γ− are the endpoints of γ and Z′ is Z
with the open balls of radius d(γ+, γ−)/3 about γ+ and γ− removed.

If X is hyperbolic or CAT(0) then these conditions are equivalent to:
Z is strongly contracting: Z is contracting and the contraction gauge σ is a bounded func-

tion.

Corollary 0.3. Morse subsets of CAT(0) spaces are strongly contracting.

We refer the reader to [3] for background on hyperbolic and CAT(0) spaces.
The Proposition and the Theorem can be extended to arbitrary non-empty subsets Z by

suitable modification of the definitions. Specifically, if the empty set is in the image of πZ
then redefine πZ(x) := {z ∈ Z | d(x, z) ≤ d(x,Z) + 1}. Extra bookkeeping is then required to
compute an explicit contraction bound in the proof of the proposition. For bounded sets the
four properties are trivially satisfied, with the possible exception that the given definition of
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recurrence does not make sense if someZ′ is empty, which occurs, for instance, whenZ is a
two point set. We could redefine ρ to be the diameter ofZ in this case.

The corollary confirms a conjecture of Russell, Spriano, and Tran [7] and generalizes a
result of Sultan [8], who proved that Morse quasi-geodesics in CAT(0) spaces are strongly
contracting.

Genevois [6] proved that Morse subsets of a finite dimensional CAT(0) cube complex X are
strongly contracting in the combinatorial metric. While this is quasi-isometric to the CAT(0)
metric, the property of being a strongly contracting subset is not, in general, preserved by
quasi-isometries [2], so Genevois’s result and our theorem are independent. However, since the
Morse property is preserved by quasi-isometries, and since Morse equals strongly contracting in
both metrics, X has the same strongly contracting subsets regardless of whether it is endowed
with the CAT(0) or the combinatorial metric.

Proof of the theorem. The contraction condition was introduced in [1], where it was shown
to be equivalent to the Morse condition. The recurrence condition was used to characterize
Morse quasi-geodesics in [5], and this characterization can be extended to arbitrary subsets, as
in [4, Theorem 2.2]. Strong contraction obviously implies contraction. It is easy to see that
all of these properties are equivalent to quasi-convexity in hyperbolic spaces. The proposition
supplies the remaining implication. �

There is extensive literature making use of the Morse property and equivalent characteriza-
tions in various settings, but a complete exposition would be longer than this paper, so we will
not attempt it. Sultan’s result uses a characterization of the images of Morse quasi-geodesics in
asymptotic cones due to Druţu, Mozes, and Sapir [5]. Loosely speaking, this characterization
depends on there being a sensible notion of one point being between two others, which we have
for quasi-geodesics but not, at least in an obvious way, for arbitrary subsets. We avoid the use of
asymptotic cones and instead use recurrence (which also comes from [5]). We construct curves
in essentially the same way as Sultan, but our argument, in addition to applying to general
subsets, is simpler and gives an explicit strong contraction bound.

Proof of the proposition. Define D := ρ(21). Supposing the contraction gauge σ ofZ is
not bounded by 12D, we derive a contradiction. Failure of the contraction bound means there
exist points x, y ∈ X such that d(x, y) ≤ d(x,Z) and such that diam πZ(x) ∪ πZ(y) > 12D. We
may assume d(x,Z) ≥ d(y,Z), because otherwise d(x, y) ≤ d(y,Z) and we can swap the roles
of x and y. Choose x′ ∈ πZ(x) and y′ ∈ πZ(y) such that P := d(x′, y′) > 12D. LetZ′ denote the
setZ with the open balls of radius P/3 about x′ and y′ removed.

For points a, b ∈ X, let [a, b] : [0, 1] → X denote the geodesic segment from a to b,
parameterized proportional to arc length. Concatenation is denoted ‘+’.

(∗) If d(w,Z′) ≤ D for some w ∈ X then w < [x′, x] + [x, y] + [y, y′].

To see this, first suppose w ∈ [x′, x]. Then x′ ∈ πZ(w), so P/3 ≤ d(x′,Z′) ≤ d(x′,w) +

d(w,Z′) = d(w,Z) + d(w,Z′) ≤ 2d(w,Z′) ≤ 2D, which is a contradiction, since P > 12D.
Similarly, w < [y′, y]. If w ∈ [x, y] then:

d(x,w) + d(w, y) = d(x, y) ≤ d(x,Z) ≤ d(x,w) + D

Thus, d(w, y) ≤ D, which implies:

P/3 ≤ d(y′,Z′) ≤ d(y′, y) + d(y,Z′) ≤ 2d(y,Z′) ≤ 2(d(y,w) + d(w,Z′)) ≤ 4D

Again, this contradicts the hypothesis that P > 12D, so (∗) is verified.
Now there are three cases to consider.
Case 1, d(x, x′) ≤ 6P: Define γ := [x′, x] + [x, y] + [y, y′]. Then len(γ) ≤ 18P < 21P, so

recurrence says there is a point w ∈ γ such that d(w,Z′) ≤ D. By (∗), this is impossible.
Case 2, d(x, x′) > 6P and d(y, y′) ≤ 4P: Let a := [x′, x]( 6P

d(x,x′) ) and b := [y, x]( 6P
d(x,x′) ), so

that:

d(a, x′) =
6P

d(x, x′)
· d(x, x′) = 6P and d(b, y) =

6P
d(x, x′)

· d(x, y) ≤ 6P
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x

x′

y

y′

Case 1

x

x′

y

y′

a

b

Case 2

x

x′

y

y′

a c
e

b

Case 3

Since d(x′, y) ≤ 5P, the CAT(0) condition implies d(a, b) < 5P. Define γ := [x′, a] + [a, b] +

[b, y] + [y, y′]. Since len(γ) < 6P + 5P + 6P + 4P = 21P, recurrence says there is a point w ∈ γ
with d(w,Z′) ≤ D. By (∗), the only possibility is w ∈ [a, b], but this is impossible because
d([a, b],Z) ≥ d(a,Z) − d(a, b) > 6P − 5P = P > D.

Case 3, d(x, x′) > 6P and d(y, y′) > 4P: Let a := [x′, x]( 4P
d(x,x′) ) and let c := [y′, x]( 4P

d(x,x′) ).
Then d(x′, a) = 4P and:

4P ≤ d(y′, c) =
4P

d(x, x′)
· d(y′, x) ≤

4P
d(x, x′)

· (d(x, x′) + P) <
14
3

P

Let b be the point of [y′, y] at distance 4P from y′, and let e be the point of [y′, x] at
distance 4P from y′, so d(c, e) < 2

3 P. The CAT(0) condition implies that d(a, c) < P and, since
d(x, y) ≤ d(x, y′), that d(e, b) ≤ 4

√
2P.

Define γ := [x′, a]+ [a, c]+ [c, e]+ [e, b]+ [b, y′]. Then len(γ) < 4P+P+ 2
3 P+4

√
2P+4P <

21P, so recurrence demands a point w ∈ γ with d(w,Z′) ≤ D. By (∗), w < [x′, a], [b, y′]. We
cannot have w ∈ [a, c] + [c, e] because d([a, c] + [c, e],Z) ≥ d(a,Z) − (d(a, c) + d(c, e)) >
4P− P− 2

3 P > D. Thus, w ∈ [e, b], so d(e, b) = d(e,w) + d(w, b). However, d(w, b) ≥ d(b,Z)−
d(w,Z) ≥ 4P−D > 47

12 P. By the same reasoning, 47
12 P < d(a,w), but d(a,w) < P + 2

3 P + d(e,w),
so d(e,w) > 27

12 P. This gives us the desired contradiction:

6P <
74
12

P < d(e,w) + d(w, b) = d(e, b) ≤ 4
√

2P < 6P

Since all three cases ended in contradiction, we conclude 12D bounds σ. �
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We use the interplay between combinatorial and coarse geometric versions of
negative curvature to investigate the geometry of infinitely presented graphical
Gr′(1/6) small cancellation groups. In particular, we characterize their ‘contracting
geodesics’, which should be thought of as the geodesics that behave hyperbolically.

We show that every degree of contraction can be achieved by a geodesic in a
finitely generated group. We construct the first example of a finitely generated group
G containing an element g that is strongly contracting with respect to one finite
generating set of G and not strongly contracting with respect to another. In the case
of classical C′(1/6) small cancellation groups we give complete characterizations of
geodesics that are Morse and that are strongly contracting.

We show that many graphical Gr′(1/6) small cancellation groups contain strongly
contracting elements and, in particular, are growth tight. We construct uncountably
many quasi-isometry classes of finitely generated, torsion-free groups in which every
maximal cyclic subgroup is hyperbolically embedded. These are the first examples
of this kind that are not subgroups of hyperbolic groups.

In the course of our analysis we show that if the defining graph of a graphical
Gr′(1/6) small cancellation group has finite components, then the elements of the
group have translation lengths that are rational and bounded away from zero.

1. Introduction

Graphical small cancellation theory was introduced by Gromov as a powerful tool for
constructing finitely generated groups with desired geometric and analytic properties [25]. Its
key feature is that it produces infinite groups with prescribed subgraphs in their Cayley graphs.
The group properties are thus derived from the combinatorial or asymptotic properties of the
embedded subgraphs. Over the last two decades, graphical small cancellation theory has become
an increasingly prominent and versatile tool of geometric group theory with a wide range of
striking examples and applications.

In this paper, we provide a thorough investigation of the hyperbolic-like geometry of
graphical small cancellation constructions. Our theorems show that the constructed groups
behave strongly like groups hyperbolic relative to their defining graphs. This contrasts the
fact that in general they need not be Gromov hyperbolic or even relatively hyperbolic. With
this geometric analogy in mind, we produce a variety of concrete examples and determine the
spectrum of negative curvature possible in the realm of finitely generated groups.

Graphical small cancellation theory was first used by Gromov [25] in the description of
the groups now known as ‘Gromov monsters’, which are finitely generated groups that contain
sequences of expander graphs in their Cayley graphs. These monster groups do not coarsely
embed into a Hilbert space, whence they are not coarsely amenable (i.e. do not have Yu’s
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author is supported by the Austrian Science Fund (FWF):M1717-N25. The third author is supported by the Swiss
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property A), and they give counterexamples to the Baum-Connes conjecture with coefficients
[31]. Graphical small cancellation theory is currently the only means of proving the existence of
finitely generated groups with any of these three properties.

Since Gromov’s initial impetus, the theory has gained in significance and variety of applica-
tions. Indeed, the construction is very versatile: every countable group embeds into a 2-generated
graphical small cancellation group [28, Example 1.13], and graphical small cancellation theory
has been used, for instance, to give many new groups without the unique product property [7,
46, 29], the first examples of non-coarsely amenable groups with the Haagerup property [6,
39], and new hyperbolic groups with Kazhdan’s Property (T) [25, 43, 38], as well as to build a
continuum of Gromov monsters [32], the first examples of finitely generated groups that do not
coarsely embed into Hilbert space and yet do not contain a weakly embedded expander [8], and
to analyze the Wirtinger presentations of prime alternating link groups [17]. Moreover, since the
class of graphical small cancellation groups contains all classical small cancellation groups, it
contains, for example, groups having no finite quotients [41], groups with prescribed asymptotic
cones [51, 21], and groups with exceptional divergence functions [30].

Our paper has two purposes. The first purpose is to study geometric aspects of graphical
small cancellation groups. An important property we focus on is the existence of subspaces
that ‘behave like’ subspaces of a negatively curved space. We quantify this phenomenon by
considering contraction properties of a subspace. Intuitively, this measures the asymptotic
growth of closest point projections of metric balls to the subspace. In a recent work [3], we
defined a general quantitative spectrum of contraction in arbitrary geodesic metric spaces
and used it to produce new results on the interplay between contraction, divergence, and the
property of being Morse. Our definitions generalize prior notions of contraction that have been
instrumental in the study of numerous examples of finitely generated groups of current interest,
such as mapping class groups [34, 9, 22], outer automorphism groups of free groups [36, 1],
and, more generally, acylindrically hyperbolic groups [18]. In the present paper, we completely
determine the contraction properties of geodesics in graphical small cancellation groups through
their defining graphs. En route, we describe geodesic polygons and translation lengths in these
groups.

The second purpose of this paper is to detect the range of possible contracting behaviors
in finitely generated groups. To this end, we use graphical small cancellation theory to show
that every degree of contraction can be achieved by a geodesic in a suitable group. Moreover,
we give the first examples of strongly contracting geodesics that are not preserved under quasi-
isometries of groups. These results further establish the graphical small cancellation technique
as a fundamental source of novel examples of finitely generated groups.

Our main technical result is a local-to-global theorem for the contraction properties of
geodesics in graphical small cancellation groups. It states that the contraction function of a
geodesic is measured by its intersections with the defining graph. This confirms the analogy with
relatively hyperbolic spaces and their peripheral subspaces. Beyond the applications alluded to
above, the theorem also enables us to prove the general result that many infinitely presented
graphical small cancellation groups contain strongly contracting elements and, in particular,
are growth tight, and to provide a characterization of Morse geodesics in classical C′(1/6) small
cancellation groups. Furthermore, using the fact that strongly contracting elements give rise to
hyperbolically embedded virtually cyclic subgroups, we produce the first examples of torsion-
free groups in which every element is contained in a maximal virtually cyclic hyperbolically
embedded subgroup but that are not subgroups of hyperbolic groups.

The proof of our local-to-global theorem rests on a meticulous analysis of the geometry of
the Cayley graphs of graphical Gr′(1/6) small cancellation groups. In particular, we provide a
complete classification of the geodesic quadrangles in the Cayley graphs of these groups, which
is of independent interest and is new even for classical C′(1/6)–groups.

The general tools that we establish have additional applications. For instance, we show
that in many infinitely presented graphical small cancellation groups, the translation lengths of
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infinite order elements are rational and bounded away from zero. These tools will undoubtedly
be useful towards further applications of this very interesting class of groups.

In the remainder of this introduction we explain the key concepts and main results of this
paper in more detail, and give a brief overview of the proof of our local-to-global theorem.

Acknowledgements. A part of this work was developed during the program Measured
group theory held at the Erwin Schrödinger Institute for Mathematics and Physics in Vienna
in 2016. We thank its organizers and the institute for its hospitality. We also thank the Isaac
Newton Institute for Mathematical Sciences for support and hospitality during the program
Non-positive curvature: group actions and cohomology. This work is partially supported by
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1.1. Contracting subspaces. In the following we shall assume that X is a geodesic metric
space such that for every closed Y ⊂ X and x ∈ X, the set π(x) := {y ∈ Y | d(x, y) = d(x,Y)} is
non-empty. This is true for a proper space X, but also for a connected graph (i.e. a connected
1-dimensional CW-complex) X. We call π closest point projection to Y . We do not assume the
sets π(x) have uniformly bounded diameter.

Definition 1.1 (Contracting). Let Y be a closed subspace of X, and denote by π the closest
point projection to Y . Let ρ1 and ρ2 be non-decreasing, eventually non-negative functions, with
ρ1(r) 6 r and ρ1 unbounded. We say that Y is (ρ1, ρ2)–contracting if the following conditions
are satisfied for all x, x′ ∈ X:

• d(x, x′) 6 ρ1(d(x,Y)) =⇒ diam π(x) ∪ π(x′) 6 ρ2(d(x,Y))
• limr→∞

ρ2(r)
ρ1(r) = 0

If ρ1(r) = r, then we say Y is sublinearly contracting, if ρ1(r) = r and ρ2(r) = C for some
constant C we say it is strongly contracting, and if ρ1(r) = r/2 and ρ2(r) = C for some constant
C we say it is semi-strongly contracting

We say a function f is sublinear if it is non-decreasing, eventually non-negative, and
limr→∞

f (r)
r = 0.

The most basic example of a strongly contracting subspace is a geodesic in a tree or, more
generally, a geodesic in a δ–hyperbolic space. The opposite extreme occurs in a Euclidean space
where there are no contracting geodesics (for any choice of ρ1 and ρ2). The contrast between
hyperbolic and Euclidean type behavior is evident in the following well-known examples of
contraction:

• A geodesic in a CAT(0) space is strongly contracting if and only if it is Morse [13, 48].
• A geodesic in a relatively hyperbolic space is strongly contracting if for every C >

0 there exists a B > 0 such that the geodesic spends at most time B in the C–
neighborhood of a peripheral subset [44].

The common idea in these situations is that the given space has certain regions that are
not hyperbolic, but geodesics that avoid these non-hyperbolic regions behave very much like
geodesics in a hyperbolic space. Similar phenomena occur for pseudo-Anosov axes in the
Teichmüller space of a hyperbolic surface and iwip axes in the Outer Space of the outer
automorphism group of a free group. Such axes avoid the ‘thin parts’ of their respective spaces
and therefore are strongly contracting [36, 1].

A version of semi-strong contraction, where the projection is not necessarily closest point
projection, occurs for pseudo-Anosov axes in the mapping class group of a hyperbolic surface
[34, 9, 22].

1.2. Local-to-global theorem. Given a directed graph Γ whose edges are labelled by
the elements of a set S, the group defined by Γ, denoted G(Γ) is given by the presentation
〈S | labels of embedded cycles in Γ〉. The graphical Gr′(1/6) small cancellation condition, see
Section 2.1, is a combinatorial requirement on the labelling of Γ, whose key consequence is that
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the connected components of Γ isometrically embed into Cay(G(Γ),S). In the case that Γ is a
disjoint union of cycle graphs labelled by a set of words R, the graphical Gr′(1/6)–condition for
Γ corresponds to the classical C′(1/6)–condition for R.

We show that, similar to the situations described above, geodesics in Cayley graphs of
graphical Gr′(1/6) small cancellation groups behave like hyperbolic geodesics as long as they
avoid the embedded components of the defining graph. In fact, a geodesic is as hyperbolic as its
intersections with the embedded components of Γ:

Theorem (Theorem 4.1). Let Γ be a Gr′(1/6)–labelled graph. There exist ρ′1 and ρ′2 such that
a geodesic α in X := Cay(G(Γ),S) is (ρ′1, ρ

′
2)–contracting if and only if there exist ρ1 and ρ2

such that for every embedded component Γ0 of Γ in X such that Γ0 ∩ α , ∅, we have that Γ0 ∩ α
is (ρ1, ρ2)–contracting as a subspace of Γ0.

Moreover, ρ′1 and ρ′2 can be bounded in terms of ρ1 and ρ2, and when ρ1(r) > r/2 we can
take ρ′1 = ρ1 and ρ′2 � ρ2.

Here � denotes a standard notion of asymptotic equivalence, see Section 2. Our theorem
gives the following explicit application to classical C′(1/6)–groups. We denote by | · | the number
of edges of a path graph or cycle graph.

Theorem (Corollary 4.14). Let Γ be a Gr′(1/6)–labelled graph whose components are cycle
graphs. Let α be a geodesic in X := Cay(G(Γ),S). Define ρ(r) := max|Γi |6r |Γi ∩ α|, where the Γi
range over embedded components of Γ in X. Then α is sublinearly contracting if and only if ρ is
sublinear, in which case α is (r, ρ)–contracting. In particular, α is strongly contracting if and
only if ρ is bounded.

1.3. Morse geodesics. A classically more well-studied notion of what it means to behave
like a subspace of a hyperbolic space is the property of being Morse.

Definition 1.2 (Morse). A subspace Y of a geodesic metric space X is µ–Morse if every
(L, A)–quasi-geodesic in X with endpoints on Y is contained in the µ(L, A)–neighborhood of Y .
A subspace is Morse if there exists some µ such that it is µ–Morse.

The property of being Morse is invariant under quasi-isometries, and the fact that quasi-
geodesics in a Gromov hyperbolic space are Morse is known as the ‘Morse Lemma’. These
two results are main ingredients in the proof that hyperbolicity is preserved by quasi-isometries.
Morse geodesics are of further interest due to their close connection with the geometry of
asymptotic cones and relations with other important geometric concepts such as divergence, see
for example [20, 10, 3] and references therein. In [3], we prove that being contracting is, in fact,
equivalent to being Morse.

Theorem 1.3 ([3, Theorem 1.4]). If Y is a subspace of a geodesic metric space such that the
empty set is not in the image of closest point projection to Y, then Y is Morse if and only if Y is
(ρ1, ρ2)-contracting for some ρ1 and ρ2.

Thus, in the case of classical C′(1/6)–groups, Theorem 4.1 and Theorem 1.3 enable us to
provide a complete characterization of Morse geodesics in the Cayley graph.

Theorem (Corollary 4.14). Let Γ be a Gr′(1/6)–labelled graph whose components are cycle
graphs. Let α be a geodesic in Cay(G(Γ),S). Define ρ(r) := max|Γi |6r |Γi ∩ α|, where the Γi
range over embedded components of Γ. Then α is Morse if and only if ρ is sublinear.

1.4. Range of contracting behaviors. As mentioned, in a CAT(0)-space, a geodesic is
Morse if and only if it is strongly contracting. Thus, Theorem 1.3 says that in a CAT(0) space a
geodesic is either strongly contracting or not contracting at all. We show that in finitely generated
groups, the spectrum of contraction is, in fact, much richer: every degree of contraction can be
attained.

Theorem (Theorem 4.15). Let ρ be a sublinear function. There exists a group G with finite
generating set S and a sublinear function ρ′ � ρ such that there exists an (r, ρ′)–contracting
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geodesic α in Cay(G,S), and ρ′ is optimal, in the sense that if α is (r, ρ′′)–contracting for some
other function ρ′′ then lim supr→∞

ρ′′(2r)
ρ(r) > 1.

Furthermore α can be chosen to be within finite Hausdorff distance of a cyclic subgroup of
G.

Our current examples are not finitely presentable. The contraction spectrum for finitely
presented groups remains largely unexplored. Indeed, if one restricts to geodesics within finite
Hausdorff distance of a cyclic subgroup, finitely presented groups can only display countably
many degrees of contraction.

Question 1.4. For which functions ρ do there exist finitely presented groups G containing a
geodesic in some Cayley graph that is (r, ρ)–contracting?

1.5. Non-stability of strong contraction. While the property of being Morse is stable
under quasi-isometries, it has remained unknown whether the property of being strongly con-
tracting is. We provide a negative answer by providing the first examples of spaces X and X̃ and
geodesics γ and γ̃ such that there exists a quasi-isometry X → X̃ mapping γ to γ̃ and such that γ
is not strongly contracting, but γ̃ is strongly contracting.

Theorem (Theorem 4.19). There exists a group G with finite generating sets S ⊂ S̃ and an
infinite geodesic γ in X := Cay(G,S) labelled by the powers of a generator such that γ is not
strongly contracting, but its image γ̃ in X̃ := Cay(G, S̃) obtained from the inclusion S ⊂ S̃ is an
infinite strongly contracting geodesic.

Indeed, in many familiar settings, such as hyperbolic groups, CAT(0) groups, or toral
relatively hyperbolic groups, such examples could not be obtained, since in those contexts,
strong contraction is equivalent to the Morse property.

1.6. Strongly contracting elements and growth tightness. Another of our main results
is the existence of strongly contracting elements in many graphical small cancellation groups:

Theorem (Theorem 5.1). Let Γ be a Gr′(1/6)–labelled graph whose components are finite,
labelled by a finite set S. Assume that G(Γ) is infinite. Then there exists an infinite order element
g ∈ G(Γ) such that 〈g〉 is strongly contracting in Cay(G(Γ),S).

The element g is, in fact, the WPD element for the action on the hyperbolic coned-off space
in Gruber and Sisto’s proof of acylindrical hyperbolicity of these groups [30]. Theorem 5.1 has
the following consequence (which does not follow from acylindrical hyperbolicity):

Arzhantseva, Cashen, and Tao [4] have shown that the action of a finitely generated group
G on a Cayley graph X is growth tight if the action has a strongly contracting element, that
is, an element g such that 〈g〉 is strongly contracting in X. Growth tightness means that the
exponential growth rate of an orbit of G in X is strictly greater than the growth rate of an orbit
of G/N in N\X, for every infinite normal subgroup N. Theorem 5.1 therefore implies:

Theorem (Theorem 5.2). Let Γ be a Gr′(1/6)–labelled graph whose components are finite,
labelled by a finite set S. Then the action of G(Γ) on Cay(G(Γ),S) is growth tight.

This has raised our interest in the following question, first asked by Grigorchuk and de la
Harpe for hyperbolic fundamental groups of closed orientable surfaces [23]:

Question 1.5. Let Γ be a Gr′(1/6)–labelled graph whose components are finite, labelled by a
finite set S. Does G(Γ) attain its infimal growth rate with respect to the generating set S?

Together with Theorem 5.2, a positive answer, even for the subclass of classical C′(1/6)–
groups, would establish small cancellation theory as an abundant source of Hopfian groups.

1.7. Contraction and hyperbolically embedded subgroups. An important application
of the notion of strong contraction is the fact that an infinite order element whose orbit in the
Cayley graph is strongly contracting is contained in a virtually cyclic hyperbolically embedded
subgroup [18], see Definition 6.1. In particular, our proof of Theorem 5.1 gives a new argument
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that the WPD elements of [30] produce hyperbolically embedded subgroups. Furthermore, our
methods detect strongly contracting elements that need not be hyperbolic elements for the action
on the coned-off space of [30], see Example 4.18 and Remark 5.8. Admitting a proper infinite
hyperbolically embedded subgroup is equivalent to being acylindrially hyperbolic [40], which
implies a number of strong group theoretic properties.

Not all hyperbolically embedded virtually cyclic subgroups are strongly contracting; see [4]
for an example. However, every hyperbolically embedded subgroup of a finitely generated group
is Morse [45]. In light of Theorem 1.3, a natural question is whether there exists some critical rate
of contraction that guarantees a subgroup is hyperbolically embedded. That is, does there exist
an unbounded sublinear function ρ2 such that every element g with a (r, ρ2)–contracting orbit in
some Cayley graph has a hyperbolically embedded virtually cyclic elementary closure? The
elementary closure of g is the subgroup generated by all virtually cyclic subgroups containing g.
We prove no such ρ2 exists.

Theorem (Theorem 6.4). Let ρ2 be an unbounded sublinear function. There exists a Gr′(1/6)–
labelled graph Γ with set of labels S := {a, b} whose components are all cycles such that G(Γ)
has the following properties: Any virtually cyclic subgroup E of G(Γ) containing 〈a〉 is (r, ρ′2)–
contracting in the Cayley graph Cay(G(Γ),S) for some ρ′2 � ρ2, but E is not hyperbolically
embedded in G(Γ).

1.8. Hyperbolically embedded cycles. In a subgroup of a hyperbolic group, every infinite
order element is contained in a maximal virtually cyclic, hyperbolically embedded subgroup,
whence we define the following:

Definition 1.6 (HEC property). A group has the hyperbolically embedded cycles property
(HEC property) if the elementary closure E(g) of every infinite order element g is virtually
cyclic and hyperbolically embedded.

It is natural to ask whether this property characterizes subgroups of hyperbolic groups.
While torsion presents an obvious complication, see Section 6.2, we also present a negative
answer to our question in the torsion-free case.

Theorem (Theorem 6.6). There exist 2ℵ0 pairwise non-quasi-isometric finitely generated
torsion-free groups in which every non-trivial cyclic subgroup is strongly contracting and which,
therefore, have the HEC property.

These are the first examples of groups of this kind that do not arise as subgroups of
hyperbolic groups. Our examples include exotic specimens such as Gromov monsters.

1.9. Translation lengths. Let | · | be the word length in G(Γ) with respect to S. The
translation length of an element g ∈ G(Γ) is:

τ(g) := lim
n→∞

|gn|

n
Conner [15] calls a group whose non-torsion elements have translation length bounded

away from zero translation discrete. Hyperbolic groups [49], CAT(0) groups [16], and finitely
presented groups satisfying various classical small cancellation conditions [33] are translation
discrete.

We show that many (possibly infinitely presented) graphical small cancellation groups are
also translation discrete:

Theorem (Theorem 5.4). Let Γ be a Gr′(1/6)–labelled graph whose components are finite,
labelled by a finite set S. Then every infinite order element of G(Γ) has rational translation
length, and translation lengths are bounded away from zero.

1.10. The idea of the proof of the local-to-global theorem. In a tree, geodesic quadran-
gles are degenerate, as seen in Figure 1. In a hyperbolic space, geodesic quadrangles can be
approximated by geodesic quadrangles in a tree. If the base is a fixed geodesic α, the top is
some given geodesic γ, and the sides are given by closest point projection from the endpoints
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Figure 1. Tree quadrangles

of the top to the bottom, then the resulting geodesic quadrangle is either ‘short’ or ‘thin’, as in
Figure 2.

α

γ

α

γ

Figure 2. Hyperbolic quadrangles from closest point projection

In Proposition 3.20, we show a combinatorial version of this dichotomy through an analysis
of van Kampen diagrams in graphical Gr′(1/6) small cancellation groups. Specifically, if X :=
Cay(G(Γ),S) and α ⊂ X is a (ρ1, ρ2)–contracting geodesic, γ ⊂ X is another geodesic, and each
endpoint of γ is connected via a geodesic to a closest point of α, then the boundary word of the
resulting geodesic quadrangle admits a van Kampen diagram that is either ‘short’ or ‘thin’ in
terms of number of faces, as depicted in Figure 3.

γ

α

Short

γ

α

Short

Π1 Π2 Πk−1 Πk

γ

α

Thin (k 6 6)

Figure 3. Combinatorially short and thin quadrangles

The main ingredient in establishing this dichotomy is a classification of ‘special combinato-
rial geodesic quadrangles’, see Theorem 3.18, that extends Strebel’s classification of geodesic
bigons and triangles in small cancellation groups, see Theorem 3.13. This classification is of
independent interest, and is novel even within the class of classical small cancellation groups.

These combinatorial versions of short and thin quadrangles do not immediately imply their
metric counterparts, because the faces in the van Kampen diagrams may have boundary words
that are arbitrarily long relators. In Section 4 we use the fact that α is (ρ1, ρ2)–contracting to
show that even if the faces have long boundaries, their projections to α are small with respect to
their distance from α.

The essential trick that is used repeatedly is to play off the small cancellation condition
against the contraction condition. Specifically, if Π is a face of the van Kampen diagram with
few sides, one of which sits on α, we use the small cancellation condition to show that |α ∩ ∂Π|

is bounded below by a linear function of |∂Π|. Then we use the contraction condition to say that
|α ∩ ∂Π| is bounded above by a sublinear function of |∂Π|. Thus, we have a sublinear function
of |∂Π| that gives an upper bound to a linear function of |∂Π|. This is only possible if |∂Π| is
smaller than some bound depending on the two functions.

2. Preliminaries

We set notation. Let S be a set.
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• 〈S〉 is the group generated by S. If S is a subset of a group G then 〈S〉 is the subgroup
of G generated by S. If S is a set of formal symbols then 〈S〉 is the free group freely
generated by S.
• If S is a set of formal symbols then S− := {s−1 | s ∈ S} is the set of formal inverses,

and S± := S ∪ S−.
• S∗ is the free monoid over S.
• 2S is the set of subsets of S.
• SN is the set of infinite sequences with terms in S.

We write f � g if there exist C1 > 0, C2 > 0, C3 > 0, and C4 > 0 such that f (x) 6
C1g(C2x + C3) + C4 for all x. If f � g and g � f then we write f � g.

Note that if f � g and g is bounded then f is bounded, and if f is non-decreasing and
eventually non-negative and f � g for a function g such that limr→∞

g(r)
r = 0, then f is sublinear.

The girth of a graph is the length of its shortest non-trivial cycle.

2.1. Graphical small cancellation. Graphical small cancellation theory is a generalization
of classical small cancellation theory. The main application is an embedding of a desired
sequence of graphs into the Cayley graph of a group. It was introduced by Gromov [25],
and was later clarified and expanded by Ollivier [37], Arzhantseva and Delzant [5], and, in a
systematic way, by Gruber [26].

2.1.1. Basic facts. Let Γ be a directed graph with edges labelled by a set S. We allow paths
to traverse edges against their given direction, with the convention that the label of an oppositely
traversed edge is the formal inverse of the given label. Thus, given a finite path in Γ we can read
a word in (S±)∗ by concatenating the labels of the edges along the path.

We require that the labelling is reduced, in the sense that no vertex has two incident outgoing
edges with the same label, and no vertex has two incident incoming edges with the same label.
This implies that the word read on an immersed path is freely reduced and, hence, an element of
〈S〉. Also, the word read on an immersed cycle is cyclically reduced.

Let R be the set of words in 〈S〉 read on embedded cycles in Γ. Note that this definition
implies that elements of R are cyclically reduced and that R is closed under inversion and cyclic
permutation of its elements.

Definition 2.1 (Group defined by a labelled graph). The group G defined by a reduced
S–labelled graph Γ is the group G(Γ) := 〈S | R〉.

The notion of a group defined by a labelled graph first appeared in Rips and Segev’s
construction of torsion-free groups without the unique-product property [42].

Definition 2.2 (Piece). A piece is a labelled path graph p that admits two distinct label-
preserving maps φ1, φ2 : p → Γ such that there is no label-preserving automorphism ψ of Γ

with φ2 = ψ ◦ φ1.

Definition 2.3 (Gr′(λ) and C′(λ) conditions). Let Γ be a reduced labelled graph, and let
λ > 0.

Γ is Gr′(λ)–labelled if whenever p is a piece contained in a simple cycle c of Γ then
|p| < λ|c|.

Γ is C′(λ)–labelled if it is Gr′(λ)–labelled and, in addition, every label-preserving automor-
phism of Γ restricts to the identity on every connected component with non-trivial fundamental
group.

A presentation 〈S | R〉 satisfies the classical C′(λ)-condition if the disjoint union of cycle
graphs labelled by the elements of R is a Gr′(λ)-labelled graph.

Actually, every group is defined by a Gr′(1/6)–labelled graph: simply take Γ to be its Cayley
graph with respect to any generating set of the group [26, Example 2.2]. Therefore, general
statements about groups defined by Gr′(1/6)–labelled graphs either require that some additional
condition be imposed on Γ or are tautologically true when Γ = Cay(G(Γ),S).

A subspace Y of a geodesic metric space is convex if every geodesic segment between points
of Y is contained in Y .
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Lemma 2.4 ([30, Lemma 2.15]). Let Γ be a Gr′(1/6)–labelled graph. Let Γi be a component
of Γ. For any choice of a vertex x ∈ X := Cay(G(Γ),S) and any vertex y ∈ Γi there is a unique
label-preserving map Γi → X that takes y to x, and this map is an isometric embedding with
convex image.

Definition 2.5 (Embedded component). An embedded component Γ0 of Γ refers to the
image of an isometric embedding of some Γi into X := Cay(G(Γ),S) via a label-preserving map.
Equivalently, it is a G(Γ)–translate in X of the image of Γi under the unique label-preserving
map determined by an arbitrary choice of basepoints in X and Γi.

We consider a graph Γ as a sequence (Γi)i of its connected components.

2.2. Contraction terminology. Recall Definition 1.1. In [3] we considered, more gener-
ally, almost closest point projections x 7→ {y ∈ Y | d(x, y) 6 d(x,Y) + ε} to ensure the empty set
is not in the image of the projection. That is unnecessary in this paper as we are in the case that
Y is a subgraph of a graph X, which guarantees ∅ < Im π. Here, and from now on, π : X → 2Y

denotes closest point projection to Y .
We say a geodesic α in Cay(G(Γ),S) is locally (ρ1, ρ2)–contracting if, for each embedded

component Γ0 of Γ such that Γ0 ∩ α is non-empty, closest point projection in Γ0 of Γ0 to Γ0 ∩ α
is (ρ1, ρ2)–contracting.

We say a geodesic is uniformly locally contracting if there exist ρ1 and ρ2 such that it is
locally (ρ1, ρ2)–contracting. We add ‘uniform’ here to stress that the intersection of the geodesic
with each embedded component of Γ is contracting with respect to the same contraction
functions. Similarly, a geodesic is uniformly locally sublinearly contracting if it is locally
(r, ρ2)–contracting, and is uniformly locally strongly contracting is it locally (r, ρ2)–contracting
for ρ2 bounded.

3. Classification of quadrangles

In this section, we establish geometric results that will let us prove our theorems about
contraction in graphical small cancellation groups. In particular, we provide a complete classifi-
cation of the geodesic quadrangles in the Cayley graph of a group defined by a Gr′(1/6)–labelled
graph. The main technical result to be used in our subsequent investigation will be recorded in
Proposition 3.20.

3.1. Combinatorial geodesic polygons. One of the main tools of small cancellation theory
are so-called ‘van Kampen diagrams’.

Definition 3.1 (Diagram). A (disc) diagram is a finite, simply-connected, 2–dimensional
CW complex with an embedding into the plane, considered up to orientation-preserving homeo-
morphisms of the plane. It is S–labelled if its directed edges are labelled by elements in S. It is
a diagram over R if it is S–labelled and the word read on the boundary of each 2–cell belongs
to R. A diagram is simple if it is homeomorphic to a disc.

If D is a diagram over R, b is a basepoint in D, and g is an element of G = 〈S | R〉, then
there exists a unique label-preserving map from the 1–skeleton of D into Cay(G,S) taking b to
g. In general, this map need not be an immersion.

An arc in a diagram D is a maximal path of length at least 1 all of whose interior vertices
have valence 2 in D. An interior arc is an arc whose interior is contained in the interior of
D. An exterior arc is an arc contained in the boundary of D. A face is the image of a closed
2-cell of D. If Π is a face, its interior degree i(Π) is the number of interior arcs in its boundary.
Likewise, its exterior degree e(Π) is the number of exterior arcs. An interior face is one with
exterior degree 0; an exterior face is one with positive exterior degree.

If D is a finite, simply connected, planar, 2–dimensional CW-complex whose boundary is
written as a concatenation of immersed subpaths γ1, . . . , γk, which we call sides of D, then there
is a unique, up to orientation-preserving homeomorphism of R2, embedding φ : D→ R2 such
that the concatenation of the φ(γi) is the positively oriented boundary ∂φ(D). This claim follows
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easily from the Schoenflies Theorem. Thus, (D, (γi)i) uniquely determines a (not necessarily
simple) diagram φ(D). We call φ the canonical embedding of (D, (γi)i). Having said this once,
we omit φ from the notation and conflate D and the γi with their φ–images.

Definition 3.2 ((3, 7)–diagram). A (3, 7)–diagram is a diagram such that every interior
vertex has valence at least three and every interior face has interior degree at least seven.

Definition 3.3 (Combinatorial geodesic polygon [30, Definition 2.11]). A combinatorial
geodesic n–gon (D, (γi)i) is a (3, 7)–diagram D whose boundary is a concatenation of immersed
subpaths γ0, . . . , γn−1 such that each boundary face whose exterior part is a single arc that is
contained in one of the sides γi has interior degree at least 4. A valence 2 vertex that belongs to
more than one side is called a distinguished vertex. A face whose exterior part contains an arc
not contained in one of the sides is a distinguished face.

The ordering of the sides of a combinatorial geodesic n–gon is considered up to cyclic
permutation, with subscripts modulo n. We also refer to ‘the combinatorial geodesic n–gon D’
when the sides are clear from context or irrelevant. We can also say ‘combinatorial geodesic
polygon’ when the number of sides is irrelevant. Following common usage, 2–gons, 3–gons,
and 4–gons will respectively be denominated bigons, triangles, and quadrangles.

If D is a simple combinatorial geodesic n–gon then every distinguished face contains a
distinguished vertex, so there are at most n distinguished faces.

We record the following crucial fact about diagrams over graphical small cancellation
presentations. In the following, R is the set of labels of simple cycles on a Gr′(1/6)–graph Γ

labelled by the set S, and X := Cay(G(Γ),S).

Lemma 3.4 ([26, Lemma 2.13]). Let Γ be a Gr′(1/6)–labelled graph, and let w ∈ 〈S〉 represent
the identity in G(Γ). Then, there exists an S-labelled diagram over R with boundary word w in
which every interior arc is a piece.

The sides of a combinatorial geodesic polygon are not assumed to be geodesic. The
definition and choice of terminology are motivated by the following proposition. An n–gon P in
X is a closed edge path that decomposes into immersed simplicial subpaths γ′0, . . . , γ

′
n−1, which

are called sides of P.

Proposition 3.5. If P is an n–gon in X with sides γ′0, . . . , γ
′
n−1 that are geodesics then there

is an S–labelled diagram D over R with sides γ0, . . . , γn−1 such that for each 0 6 i < n the word
of 〈S〉 read on γi is the same as the word read on γ′i . Furthermore, we can choose D in such
a way that after forgetting interior vertices of valence 2, we obtain a combinatorial geodesic
n–gon (D, (γi)i)

Here, forgetting one interior vertex of valence 2 means replacing its two incident edges by a
single one. Note that, when performing this operation, we consider D merely as (unlabelled)
diagram, i.e. we ignore the orientations and labels of edges. Forgetting interior vertices of
valence 2 means iterating this operation, such that we end up with a diagram without interior
vertices of valence 2.

Proof. The existence of an S–labelled diagram over R whose boundary label matches the
label of P is the well-known van Kampen Lemma. Lemma 3.4 guarantees that the diagram can
be chosen such that all interior arcs are pieces. The small cancellation condition then implies
interior faces have interior degree at least 7. If there is a face Π with e(Π) = 1 whose exterior
part is contained in a single γi, then the exterior part is a geodesic. Thus, the length of the interior
part is at least half of the length of ∂Π. Since interior arcs are pieces, the small cancellation
condition implies there must be at least four of them to account for half the length of ∂Π. Now if
we forget interior vertices of valence 2, we have the desired combinatorial geodesic polygon. �

Remark 3.6. The word w ∈ 〈S〉 read on a cycle in X represents the trivial element in G(Γ).
The combinatorial geodesic n–gon of Proposition 3.5 is a special type of van Kampen diagram
witnessing the triviality of the word w labelling an n–gon in X whose sides are geodesics. In the
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remainder of Section 3 we make combinatorial arguments about arbitrary (3, 7)–diagrams, not
necessarily S–labelled diagrams over R. In Section 4 we use Proposition 3.5 to apply results of
this section to graphical small cancellation groups.

We record an equivalent formulation of the Euler characteristic formula for certain diagrams.
Recall that for a face Π of a diagram, e(Π) is the exterior degree of Π, which is the number of
exterior arcs in its boundary. Similarly, i(Π) is the interior degree of Π.

Lemma 3.7 (Strebel’s curvature formula, [47, p.253]). Let D be a simple diagram without
vertices of degree 2. Then:

6 = 2
∑

v

(3 − d(v))

+
∑

e(Π)=0

(6 − i(Π)) +
∑

e(Π)=1

(4 − i(Π)) +
∑

e(Π)>2

(6 − 2e(Π) − i(Π)).

Here d(v) denotes the degree of a vertex v.

It readily follows from Lemma 3.7 that any (3, 7)–diagram with more than one face has at
least 2 faces with exterior degree 1 and interior degree at most 3. (This is usually known as
Greendlinger’s lemma.) Therefore:

Lemma 3.8. The sides of a combinatorial geodesic polygon are embedded, and every
combinatorial geodesic polygon has at least two sides.

The same argument gives the following well-known fact, which greatly simplifies many
considerations:

Lemma 3.9. Let D be a (3, 7)–diagram. Then any face is simply connected.

We also state an immediate consequence of [27, Lemma 4.14]:

Lemma 3.10. If Π is a face of a combinatorial geodesic polygon D and α is a side of D then
Π ∩ α is empty or connected. If Π1, . . . ,Πk is a sequence of faces of a combinatorial geodesic
polygon D such that Πi ∩ Πi+1 , ∅ for all 1 6 i < k and α is a side of D such that Πi ∩ α , ∅
for all i then ∪16i6kΠi ∩ α is connected.

Definition 3.11 (Degenerate). A combinatorial geodesic n–gon (D, (γi)i) is degenerate if
there exists an i such that D, γ0, . . . , γiγi+1, . . . , γn−1 is a combinatorial geodesic (n− 1)–gon. In
this case the terminal vertex of γi is called a degenerate vertex.

It will be useful to minimize the number of sides of a diagram D by replacing a degenerate
combinatorial geodesic n–gon (D, (γi)i) with a non-degenerate combinatorial geodesic k–gon
(D, (γ′i )i) for some k < n.

3.2. Reducibility. In this section we define operations for combining and reducing combi-
natorial geodesic n–gons. We stress that the setting is only combinatorial — these operations
need not preserve the property of being a diagram over R.

First note that if (D, (γi)i) is a combinatorial geodesic n–gon, and if D′ is obtained from
D by subdividing an edge, then (D′, (γi)i) is still a combinatorial geodesic n–gon. The new
vertex produced by subdivision is a non-distinguished vertex of valence 2. Conversely, if v is
a non-distinguished vertex of valence 2 then we can ‘forget’ it by replacing the two incident
edges with a single edge.

If D is simple and non-degenerate then by forgetting all non-distinguished vertices of
valence 2 we can arrange that the distinguished vertices are exactly the vertices of valence 2 and
all other vertices have valence at least 3.

Definition 3.12 (Reducible). A combinatorial geodesic l–gon P is reducible if it admits a
vertex, edge, or face reduction, as defined below, see Figure 4. It is irreducible otherwise.

In all of the following cases, let (D, (γi)i) be a combinatorial geodesic n–gon, and let
(D′, (γ′i )i) be a combinatorial geodesic n′–gon.



88 C. NEGATIVE CURVATURE IN GRAPHICAL SMALL CANCELLATION GROUPS

vertex red.

vertex comb.

edge red.

edge comb.
face red.face comb. edge collapseedge blow-up

add edge

forget edge

Figure 4. Combination and reduction

3.2.1. Vertex reduction. Suppose v ∈ D is a separating vertex that is in the boundary of
exactly two faces and that these two faces are the only maximal cells containing v. Suppose
that there are exactly two sides, γi and γ j, containing v, which is necessarily true if (D, (γi)i) is
non-degenerate. Let γ−v

i denote the initial path of γi ending at v, and let γv+
i denote the terminal

path of γi beginning at v, and similarly for γ j. Define the vertex reduction of (D, (γi)i) at v to be
the two combinatorial geodesic polygons whose underlying CW-complexes are each D minus
one of the complementary components of D r v, respectively, and whose sides are, respectively,
γv+

i , γi+1, . . . , γ j−1, γ
−v
j and γv+

j , γ j+1, . . . γi−1, γ
−v
i .

Note that each of the resulting combinatorial polygons contains a distinguished vertex
corresponding to v.

The inverse operation of vertex reduction we denominate a vertex combination. Suppose
that v ∈ D is a distinguished vertex that is contained in the boundary of a single face and is
not contained in any other maximal cell. Then there is some i such that v = γi ∩ γi+1. Make
corresponding assumptions for v′ = γ′i′ ∩ γ

′
i′+1 ⊂ D′. The vertex combination of (D, (γi)i)

and (D′, (γ′i )i) at v and v′ is the combinatorial geodesic (n + n′ − 2)–gon whose underlying
CW-complex is the wedge sum of D and D′ at v and v′, and whose sides are:

γ0, . . . , γi−1, γiγ
′
i′+1, γ

′
i′+2, . . . , γ

′
i′−1, γ

′
i′γi+1, γi+1, . . . , γn−1

This is the unique way to define the sides so that the canonical embeddings of (D, (γi)i) and
(D′, (γ′i )i) factor through inclusion into the wedge sum and the canonical embedding of the
resulting combinatorial geodesic (n + n′ − 2)–gon.

3.2.2. Edge reduction. Suppose e ⊂ D is an interior edge of D such that the boundary of e
is contained in the boundary of D. Suppose further that the only maximal cells that intersect
e are the two faces that intersect its interior. The hypotheses imply that e separates D into
two components, and the (3, 7)–condition implies that e has two distinct boundary vertices.
Suppose that each of these boundary vertices belongs to exactly one side, which is necessarily
true if (D, (γi)i) is non-degenerate. Define the edge reduction of (D, (γi)i) at e to be the two
combinatorial geodesic polygons obtained by collapsing e to a vertex and then performing vertex
reduction at the resulting vertex.

The inverse operation to edge reduction we denominate edge combination. Suppose each
of v ∈ D and v′ ∈ D′ is a distinguished vertex that is contained in a single face and in no other
maximal cell. First perform a vertex combination at v and v′ and then blow up the wedge point
to an interior edge, while keeping the same sides. As before, we require that v and v′ each
belong to a single face and no other maximal cell, which implies that the resulting combinatorial
geodesic polygon is uniquely determined.

3.2.3. Face reduction. Suppose Π ⊂ D is a face with e(Π) > 2. Suppose that there are
boundary edges e and e′ of Π that are boundary edges of D such that removing the union of
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the interiors of Π, e, and e′ separates D into two components, D1 and D2. Suppose that e and
e′ each intersect only one side of D, which is necessarily true if (D, (γi)i) is non-degenerate.
Finally, suppose that D1 and D2 each contain a distinguished vertex. Define the face reduction
of (D, (γi)i) at (Π, e, e′), or at Π, when e and e′ are clear, to be the two combinatorial geodesic
polygons obtained by subdividing e and e′, subdividing Π by adding a new edge connecting the
subdivision points of e and e′, and then performing an edge reduction on this new edge.

The inverse operation to face reduction, which we denominate face combination, is to first
perform edge combination, which results in a new interior edge in the boundary of exactly two
faces, and then forget this new edge, replacing the two incident faces by a single face, and
replacing the four resulting edges by two.

3.3. Combinatorial geodesic bigons and triangles. We state Strebel’s classification of
combinatorial geodesic bigons and triangles. Let us stress again that we are working in the
combinatorial setting, cf Remark 3.6. Strebel’s original statement includes that the diagram
D comes from a small cancellation presentation, but what is actually used in the proof are the
properties of the diagram that we have encapsulated in the definition of ‘combinatorial geodesic
polygon’, Definition 3.3. This observation was first made in [30, Section 2.5 and Remark 4.7]
and [27, Lemma 4.7].

Theorem 3.13 (Strebel’s classification1, [47, Theorem 43]). Let D be a simple diagram that
is not a single face.

• If D is a combinatorial geodesic bigon, then D has shape I1 in Figure 5.
• If D is a combinatorial geodesic triangle, then D has one of the shapes I2, I3, II, III1,

IV, or V in Figure 5.

I1 I2 I3

II III1 IV V

Figure 5. Strebel’s classification of combinatorial geodesic bigons and triangles.

Note that shapes I2 and I3 degenerate to combinatorial geodesic bigons.
Each of these shapes represents an infinite family of combinatorial geodesic bigons or

triangles obtained by performing face combination at a non-degenerate, distinguished vertex
with a shape I1 bigon arbitrarily many times. Figure 6 shows alternate examples of each shape.

I1 I2 I3

II III1 IV V

Figure 6. Alternate examples of each shape.

1Strebel also considers a second definition of combinatorial geodesic polygon that yields one additional shape
III2. This is not relevant for us, but we retain the subscript for shape III1 for consistency with Strebel’s notation.
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3.4. Special combinatorial geodesic quadrangles. In this section diagram faces are la-
belled with their contribution to the curvature sum (Lemma 3.7) if this contribution is non-zero.

Definition 3.14 (Special). A combinatorial geodesic n–gon, for n > 2, is special if it is
simple, non-degenerate, irreducible, and every non-distinguished vertex has valence 3.

The only special combinatorial geodesic triangles are the representatives of shapes IV and
V pictured in Figure 5. In this section we classify special combinatorial geodesic quadrangles.

Let D be a special combinatorial geodesic polygon. Simplicity and trivalence imply that
Π ∩ ∂D is a disjoint union of arcs, for each face Π. Irreducibility implies Π ∩ ∂D consists
of at most one arc. Non-degeneracy implies that every distinguished face has exactly one
distinguished vertex and either 2 or 3 interior arcs.

The curvature formula of Lemma 3.7 can be simplified as follows.

Lemma 3.15 (Special curvature formula). Let D be a special combinatorial geodesic polygon
that is not a single face. Then:

6 =
∑

e(Π)=0

(6 − i(Π)) +
∑

e(Π)=1

(4 − i(Π))

Proof. By definition, every non-distinguished vertex has valence 3. To apply Lemma 3.7,
we must address the possible existence of degree 2 vertices in the boundary: we may iteratively
remove such vertices, always replacing the two adjacent edges by a single edge. Since D is
not a single face, this makes sense for every degree 2 vertex, and we thus remove all degree 2
vertices. Since the degree of a face counts arcs, not edges, the operation does not alter the sum.
The formula follows by applying Lemma 3.7, and noting, as a consequence of irreducibility,
that every face has exterior degree at most 1. �

For the remainder of this section, let D be a special combinatorial geodesic quadrangle.
Then D has exactly four distinguished faces, each of which contributes either 1 or 2 to the
curvature sum, and every other face makes a non-positive contribution. Let Dk refer to the
set of distinguished faces of D that contribute k to the curvature sum, ie, with e(Π) = 1 and
i(Π) = 4 − k.

An ordinary face will refer to a non-distinguished face Π with e(Π) = 1 and i(Π) = 4, which
contributes 0 to the curvature sum. An extraordinary face will refer to a non-distinguished face
Π with e(Π) = 0 or with e(Π) = 1 and i(Π) > 4. Note that if i(Π) > 6, we must have e(Π) = 0.

3.4.1. Zippers. Ordinary faces can fit together to make arbitrarily long sequences of subse-
quent faces we call zippers, as in Figure 7.

Figure 7. A zipper.

The ordinary faces in a zipper are called teeth. We define a zipper Z with zero teeth to be
three consecutive interior edges that separate the diagram into two parts, each of which contains
two distinguished faces. For example, the bold edges of Figure 8 form a zipper with zero teeth.
Since D is special, the two interior edges incident to the interior vertices of Z and not belonging
to Z must be contained in opposite complementary components of Z, otherwise D would admit
a face reduction.

Using a symmetry argument, we show that the portions of the diagram on opposite sides of
a zipper each contribute 3 to the curvature sum: first, consider a zipper Z of length 0. Then the
two interior edges incident at Z are not on the same side of Z, for otherwise we would have a
face with exterior degree at least 2 (and hence face-reducibility) or only one distinguished face
on that side. Now assume that one of the two sides S contributes k , 3 to the curvature sum.
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1

2 1

2

Figure 8. Zipper with zero teeth (in bold).

Then we may rotate a copy of S by 180 degrees and attach it to S by identifying the respective
copies of Z, thus obtaining a special combinatorial quadrangle for which the curvature formula
amounts to 2k , 6; a contradiction. The case of an arbitrary zipper Z now follows similarly
by attaching a rotated (or in the case that Z has an odd number of faces reflected) copy of S to
S ∪ Z.

We need to see how to terminate a zipper. Let Π be the face with two edges on the zipper.
If Π is ordinary then the zipper just gets longer, so assume not. One possibility is that Π is
distinguished, in which case it is a D1 and there is only one other face, which is a D2. Otherwise,
since the end of the zipper containing Π must contribute 3 to the curvature sum, we must have
i(Π) = 5 and e(Π) = 1, both distinguished faces must be D2’s, and the other two faces sharing
edges with Π must be ordinary.

The two possibilities are shown in Figure 9. In conclusion:

Lemma 3.16. There are six infinite families of configurations of special combinatorial
geodesic quadrangles containing zippers, determined by the choice of two zipper ends from
Figure 9 and the parity of the number of teeth.

Π
1

2

(1) Zipper end 1.

Π
−1

2

2

(2) Zipper end 2.

Figure 9. Terminating a zipper

3.4.2. Extraordinary configurations.

Lemma 3.17. The six configurations shown in Figure 10 are the only special combinatorial
geodesic quadrangles containing an extraordinary face and no zipper.

2

2 2

2
−1

−1

E5

2

2 2

2−2

E6

−1

2

2 2

1

E7a

−1 −1

2

2 2

2

E7b

−1 −1

2

2 2

2

E7c

2

2

2

2

−2

E8

Figure 10. Extraordinary special combinatorial geodesic quadrangles.

Proof. Let D be a special combinatorial geodesic quadrangle without zippers. First, suppose
that D contains no interior faces.
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Case E5: D contains an extraordinary face Π with i(Π) = 5. In this case Π contributes −1 to
the curvature sum. Consider the third interior edge e of Π. Let Π′ be the face on the opposite
side of e. If e is the second interior edge of Π′ then we get a zipper, so it must be at least the
third. (It cannot be the first, for this would give a vertex of degree at least 4.)

By symmetry, we see that i(Π′) > 5. As Π′ contributes at least −1 to the curvature sum and
is not interior, we deduce i(Π′) = 5 and e(Π′) = 1, with e the third interior edge of Π′. This then
implies that the distinguished faces are all D2’s, and every other face is ordinary. There are two
ordinary faces bordering both Π and Π′. Since no face has more than one exterior edge, we
must then fill in the four D2’s on the corners.

Case E6: D contains an extraordinary face Π with i(Π) = 6. In this case Π contributes −2
to the curvature sum, so the distinguished faces are all D2’s, and every other face is ordinary.
Consider the third interior vertex of Π. Let e be the edge incident to this vertex that does not
belong to Π. If e does not have a vertex on the boundary then there is a zipper contained in the
boundary of Π ∪ Π′, where Π′ is either one of the ordinary faces with side e. Since we have
assumed no zippers, e does have a boundary vertex, and there is a unique way to fill in the rest
of D with ordinary faces and D2’s.

Now we move on to the interior face cases. According to the curvature formula of
Lemma 3.7, interior faces have either 7 or 8 sides.

Case E8: D contains an extraordinary face Π with i(Π) = 8. In this case, e(Π) = 0, and Π

contributes −2 to the curvature sum, so all four distinguished faces are D2 and every other face
is ordinary. Since the interior sides of a D2 have a vertex on the boundary, they cannot share an
edge with Π, so every face sharing an edge with Π is ordinary. There is only one way to pack 8
ordinary faces around Π, up to symmetry, and this determines the placement of the four D2’s.

Case E7: D contains an extraordinary face Π with i(Π) = 7. In this case, e(Π) = 0, and Π

contributes −1 to the curvature sum. The distinguished faces are therefore either three D2’s and
one D1 or four D2’s. If there are three D2’s and one D1 then every other face is ordinary. A D2
cannot share an edge with an interior face, so Π has at least 6 edges that are shared by ordinary
faces.

If there are four D2’s then none of them share a face with Π, and there is exactly one other
face that is not ordinary.

In either case, Π has at least 6 edges that are shared by ordinary faces. Let Π1, . . . ,Π7 be
the consecutive faces sharing an edge with Π, and assume all except possibly Π7 are ordinary.
Let e be the edge shared by Π1 and Π7. If e has a vertex on the boundary then there is only one
way to fit 6 ordinary faces around Π. In this case, Π7 is a D1, and the configuration is shown in
Figure 11(1).

If e does not have a vertex on the boundary then, again, there is only one way to fit six
ordinary faces around Π, shown in Figure 11(2). We see that i(Π7) > 5. Since Π7 contributes at
least −1 to the curvature sum, the two possibilities are i(Π7) = 7 and e(Π7) = 0 or i(Π7) = 5 and
e(Π7) = 1. In both cases, the remaining distinguished faces are D2’s, all other faces are ordinary,
and there is a unique way to complete the 4–gon. These are types E7b and E7c, respectively, of
Figure 10. �

−1

2

2 2

1Π1

Π2

Π3

Π4 Π5

Π6

Π7

e

(1) Case e does have boundary vertex.

−1

2

2

Π2

Π3

Π4

Π5 Π6

Π7

Π1
e

(2) Case e does not have boundary vertex.

Figure 11. Interior 7–gon.

3.4.3. Classification of special combinatorial geodesic quadrangles.
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Theorem 3.18. Every special combinatorial geodesic quadrangle is either one of the six
extraordinary configurations of Lemma 3.17 or belongs to one of the six zippered families of
Lemma 3.16.

The theorem is proven by Lemma 3.17, Lemma 3.16, and the following:

Lemma 3.19. Every special combinatorial geodesic quadrangle contains an extraordinary
face or a zipper.

Proof. Suppose D is a special combinatorial geodesic quadrangle that does not contain an
extraordinary face. Then no face makes a negative contribution to the curvature sum, so D is
composed of two D2’s, two D1’s, and some number of ordinary faces.

Pick a side of the quadrangle. Let S be the union of faces along the side. Let A be the union
of interior edges separating S from D r S . Since every vertex has valence 3, both S and D r S
are connected, and each contains two distinguished faces.

Consider the edges incident to interior vertices of A. Each one is contained either in S or in
DrS . At least one is contained in S and one in DrS , since each side contains two distinguished
vertices and no face separates D. Two consecutive edges cannot point into D r S , because the
face Π ⊂ S containing the edge between them would either be extraordinary, contradicting
the hypothesis, or a distinguished face with interior degree at least four, contradicting non-
degeneracy.

Two consecutive edges cannot point into S , because the face Π ⊂ S between them would
be non-distinguished with i(Π) = 3. Therefore the edges along A alternate, and A has length at
least 3.

If A consists of 3 edges then it is a zipper, and we are done, so suppose it consists of at least
4 edges.

If the first face Π adjacent to A on the D r S side is distinguished then we get a zipper, so
suppose it is not. Let Π′ be the next face along A on the D r S side. The two possibilities are
shown in Figure 12(1) and Figure 12(2).

S D r S
Π

Π′

(1) Case 1

S D r S

Π

Π′

(2) Case 2

S D r S

Π

Π′

Π′′

(3) Case 2 - next level

Figure 12. Quadrangle with no zipper or extraordinary face.

Since Π is not distinguished, the edge shared by Π and Π′ does not contain a boundary
vertex. In the first case i(Π′) > 5, using that A has length at least 4, contrary to hypothesis. In
the second case, i(Π) > 4 and i(Π′) > 4, so both are ordinary, and we have the situation in
Figure 12(3). Let Π′′ be the face of D r S adjacent to Π and Π′. Either Π′′ contains more than
one boundary arc, or Π′′ is distinguished and contains two distinguished vertices, but both of
these are contrary to hypothesis. �

3.5. Quadrangle dichotomy. The following proposition says that a combinatorial geo-
desic quadrangle must be either short, conditions (1) or (2), or thin, (3).

Proposition 3.20. Let D be a simple combinatorial geodesic quadrangle with boundary
path γ1δ1γ

−1
2 δ−1

2 . Then one of the following holds:
(1) There exists a face Π that intersects both γ1 and γ2 in edges with 2 = e(Π) = i(Π).
(2) There exist faces Π intersecting γ1 in edges, and Π′ and Π′′, both intersecting γ2 in

edges, such that 1 = e(Π) = e(Π′) = e(Π′′), 4 = i(Π) = i(Π′) = i(Π′′), and any two of
Π, Π′ and Π′′ pairwise intersect in edges. Moreover, Π′ ∩ Π′′ is an arc connecting γ2
to Π, and Π ∩ (Π′ ∪ Π′′) is connected.
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(3) There exist k 6 6 and faces Π1,Π2, . . . ,Πk, each intersecting γ1 in edges, such that
Π1 ∩ δ1 , ∅ and Πk ∩ δ2 , ∅ and, for each 1 6 i < k, we have Πi ∩ Πi+1 , ∅.

The three cases are pictured in Figures 13(1), 13(2), and 13(3), respectively.
Lemma 3.10 implies that in case (3) of Proposition 3.20 the set

⋃k
i=1 Πi ∩ γ1 is a path

subgraph of γ1.

Π

γ1

γ2

δ1 δ2

(1) Short (quadrangle)

Π

Π′ Π′′

γ1

γ2

δ1 δ2

(2) Short (zipper)

Π1 Π2 Πk−1 Πk

γ1

γ2

δ1 δ2

(3) Thin

Figure 13. Quadrangle dichotomy

Proof of Proposition 3.20. If D is a single face we are done, so suppose not.
Suppose that the first two conditions do not hold. Let k > 0 be minimal such that Π1, . . . ,Πk

is a sequence of faces satisfying condition (3). Minimality is equivalent to requiring Πi ∩ δ1 = ∅

and Πi ∩ δ2 = ∅ for all 1 < i < k.
We may also assume D is non-degenerate, since for triangles we have k 6 3, by Theo-

rem 3.13.
Since D is a simple (3, 7)–diagram it has no valence 1 vertices. If it has non-distinguished

valence 2 vertices we can forget them. We then arrange that non-distinguished vertices of D
have valence 3 as follows.

Suppose v is a vertex of valence greater than 3. Since D is simple, for any two faces Π and
Π′ that contain v in their boundaries and do not share an edge incident to v, there is a unique
way to blow up v to an interior edge ev in such a way that the images of Π and Π′ are the faces
with ev in their boundaries. Let β denote the blow-up map. Since Π and Π′ do not share an edge
incident to v, the two vertices of ev each have valence at least 3 and strictly less than that of v.

The only effect of this blow-up on faces is to increase the interior degrees of Π and Π′ by 1
each, so β(D) is still a simple combinatorial geodesic quadrangle. The faces β(Π1), . . . , β(Πk)
still satisfy condition (3), since β only introduces an interior edge. We now check that β does
not produce a diagram satisfying conditions (1) or (2) and not condition (3).

We argue for the face Π. The same arguments apply for Π′. Since D is simple Π cannot
have e(Π) = 2 and i(Π) = 1, so β(Π) does not satisfy condition (1).

If e(Π) > 1 then e(β(Π)) = e(Π) > 1, so β(Π) cannot be one of the faces satisfying condition
(2). Suppose now that e(Π) = 1. The blow-up does not change the boundary of D, so Π is
distinguished if and only if β(Π) is distinguished. If Π is distinguished with i(Π) > 3 then
β(Π) is distinguished with i(β(Π)) > 4, so β(D) degenerates to a triangle, which implies k 6 3,
and we are done. Otherwise, if Π is distinguished then i(β(Π)) < 4, so β(Π) cannot be one
of the faces satisfying condition (2). Finally, if Π is non-distinguished then the combinatorial
geodesic polygon condition requires i(Π) > 4, so i(β(Π)) > 5, and β(Π) cannot be one of the
faces satisfying condition (2).

We conclude that k 6 3, in which case we are done, or β(D) is a simple non-degenerate
combinatorial geodesic quadrangle not satisfying conditions (1) or (2) and containing a sequence
β(Π1), . . . , β(Πk) of faces satisfying the requirements of condition (3). Moreover, since β only
introduced an interior edge, β(Πi)∩β(δ j) = ∅ for all 1 < i < k and j ∈ {1, 2}, so β(Π1), . . . , β(Πk)
is a minimal length sequence satisfying condition (3) in β(D).

We now repeat blowing up higher valence vertices until either the quadrangle becomes
degenerate, and we are done, or there are no higher valence vertices left. Thus, we may assume
non-distinguished vertices of D have valence 3.
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If D is irreducible then it is special. If D is special and has no zipper then k 6 5, by
considering the possibilities given by Theorem 3.18.

If D is special and has a zipper then, by considering the possible zippered configurations of
Lemma 3.16, k is at most four plus the number of teeth of the zipper adjacent to γ1. Since D
does not satisfy condition (2), there can be at most two teeth of the zipper adjacent to γ1, so
k 6 6. In fact, k = 6 can occur, so 6 is the best possible bound for k.

The remaining possibility is that D is reducible. It is not vertex reducible, since it is simple.
If an edge reduction is possible then so is a face reduction, so suppose Π is a face with edges
e, e′ ⊂ ∂Π such that D admits a face reduction at (Π, e, e′). Since D is non-degenerate there are
four distinguished faces.

Suppose the face reduction separates one distinguished face from the other three, which
occurs when one of e or e′ is an edge of one of the γi’s and the other is an edge of one of the
δi’s. Then D is a union of a bigon and a quadrangle with fewer faces than D. By minimality of
k, either Π = Π1 or Π = Πk or Π , Πi. Therefore Π1, . . . ,Πk corresponds to a sequence of faces
in the new quadrangle still satisfying condition 3.

Repeat the argument for the new quadrangle. Since the number of faces in the quadrangle
decreases, this process stops after finitely many steps, so we may assume that D is not reducible
into a bigon and a quadrangle. Since D is non-degenerate, this implies that every distinguished
face has one exterior arc and either 2 or 3 interior arcs, and the distinguished faces are the only
ones that intersect both one of the δi’s and one of the γi’s.

Suppose there is a face Π containing edges e ⊂ ∂Π∩ δ1 and e′ ⊂ ∂Π∩ δ2. Face reduction at
(Π, e, e′) sends the Πi’s to a minimal length sequence of faces along one side of a combinatorial
geodesic triangle connecting the other two sides. Thus, k 6 3.

Next, suppose there is an edge e that meets both γ1 and γ2. Then e separates δ1 from δ2, so
there is some i < k such that Π1, . . . ,Πi are on one side of e and Πi+1, . . . ,Πk are on the other.
Edge reduction of D at e results in two combinatorial geodesic triangles. In one of these triangles
there is a sequence of faces corresponding to Π1, . . . ,Πi that run along the side corresponding
to γ1 and connect the side corresponding to δ1 to the opposite distinguished vertex. Since we
were not in case (1), i(Πi) > 2, so the face corresponding to Πi in the triangle has more than one
interior arc. It follows that i 6 3. The same argument applied to Πi+1 shows k − i 6 3, so k 6 6.
(The lower right diagram in Figure 4 shows k = 6 can be achieved in this case.)

Finally, suppose D has a separating face Πi and no separating edge. Face reduction of D at
Πi yields two combinatorial geodesic triangles. Since D has no separating edge, each of these
triangles has a distinguished face corresponding to Πi with interior degree greater than one. The
same argument as in the previous case then tells us i 6 3 and k − i + 1 6 3, so k 6 5. �

4. Contraction in Gr′(1/6)–groups

In this section, we study contraction in groups defined by Gr′(1/6)–labelled graphs. We
give a characterization of strongly contracting geodesics in the Cayley graph in terms of their
intersections with embedded components of the defining graph. Throughout this section, Γ is an
arbitrary Gr′(1/6)–labelled graph with a set of labels S, and X := Cay(G(Γ),S).

Recall that a geodesic α in X is locally (ρ1, ρ2)–contracting if for every embedded component
Γ0 of Γ such that Γ0 ∩α , ∅, closest point projection in Γ0 of Γ0 to Γ0 ∩α is (ρ1, ρ2)–contracting.

We will prove the following theorem:

Theorem 4.1. A geodesic α in X is locally (ρ1, ρ2)–contracting if and only if there exist ρ′1
and ρ′2 such that α is (ρ′1, ρ

′
2)–contracting.

Moreover, ρ′1 and ρ′2 can be bounded in terms of ρ1 and ρ2, and when ρ1(r) > r/2 we can
take ρ′1 = ρ1 and ρ′2 � ρ2.

Consequently, α is strongly contracting if and only if it is uniformly locally strongly contract-
ing, α is semi-strongly contracting if and only if it is locally uniformly semi-strongly contracting,
and α is sublinearly contracting if and only if it is uniformly locally sublinearly contracting.

Remark 4.2. Theorem 4.1 provides an analogy with the geometry present in many of the
preeminent examples of spaces with a mixture of hyperbolic and non-hyperbolic behavior, such
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as Teichmüller space, the Culler-Vogtmann Outer Space, or relatively hyperbolic spaces. The
simplest situation is that geodesics that avoid spending a long time in a non-hyperbolic region
behave like hyperbolic geodesics. The analogy here is strongest with relatively hyperbolic spaces,
with the embedded components of the defining graph corresponding to the peripheral regions
of a relatively hyperbolic space. The peripheral regions are not necessarily non-hyperbolic, so
hyperbolic geodesics do not necessarily have to avoid them completely. Rather, a geodesic is
roughly as hyperbolic as its intersections with peripheral regions.

Our original motivation for the present paper was to make this analogy precise, and,
in particular, to determine whether graphical small cancellation groups contained strongly
contracting elements, and therefore fit into the scheme of groups with growth tight actions
introduced by Arzhantseva, Cashen, and Tao [4], see Section 5.

In concrete terms, this analogy was first suggested by results of Gruber and Sisto, who
proved that the Cayley graph of a graphical small cancellation group is weakly hyperbolic
relative to the embedded components of the defining graph [30] in the sense of [18], see also
Section 5.2.

Note, however, that in general the groups we consider in the present paper need not be
non-trivially relatively hyperbolic [11, 30].

4.1. Contraction and Morse quasi-geodesics. We quote some of our technical results
from [3] that let us simplify and reformulate the contraction conditions.

Lemma 4.3 ([3, Lemma 6.3]). Let Y and Y ′ be closed subspaces of X at bounded Hausdorff
distance from one another. Suppose Y is (r, ρ2)–contracting. Then Y ′ is (r, ρ′2)–contracting for
some ρ′2 � ρ2. In particular, if Y is strongly contracting then so is Y ′.

Theorem 4.4 ([3, Theorem 1.4, Theorem 7.1]). Let Y be a closed subspace of X. Then the
following are equivalent:

(1) Y is Morse.
(2) Y is sublinearly contracting.
(3) There exist ρ1 and ρ2 such that Y is (ρ1, ρ2)–contracting.
(4) There exist a constant C > 0 and a sublinear function ρ such that if γ is a geodesic

segment then d(γ,Y) > C implies diam π(γ) 6 ρ(maxz∈γ d(z,Y)).

Moreover, for each implication the function of the conclusion depends only on the function of
the hypothesis, not on Y.

We remark that in the case ρ1(r) := r the proof of ‘(3) implies (4)’ yields ρ � ρ2. When, in
addition, ρ2 is bounded, which is the strongly contracting case, this recovers the well-known
‘Bounded Geodesic Image Property’, cf [35, 13].

Corollary 4.5. If Y is strongly contracting then every geodesic segment that stays suffi-
ciently far from Y has uniformly bounded projection diameter.

4.2. Proof of Theorem 4.1.

Lemma 4.6. Let α be a geodesic in X, and let x be a vertex not in α. Let γ be a path from x
to a vertex of α such that |γ| = d(x, α). Then, if p is a path from x to a vertex of α such that p is
a piece, then p = γ. In particular, the closest point projection of p to α is p ∩ α.

Proof. If p has the same terminal vertex as γ and if p , γ, then there exist subpaths γ′ of
γ and p′ of p, each of length at least 1, such that c := γ′p′−1 is a simple cycle. Since γ′ is a
geodesic, we have |γ′| 6 |c|/2. Since p′ is a piece we have |p′| < |c|/6. This is a contradiction.

If p has a different terminal vertex, then there exist terminal subpaths p′ of p and γ′ of γ,
respectively, each having length at least 1, and a path α′ contained in α such that c := γ′α′p′−1

is a simple cycle. By assumption on γ, we have |γ′| 6 |p′| and |α′| 6 |c|/2 , whence we conclude
|p′| > |c|/4, contradicting the fact that p′ is a piece.

The final claim follows from the fact that a subpath of a piece is a piece. �



4. CONTRACTION IN GR′(1/6)–GROUPS 97

Lemma 4.7. Let Γ0 be an embedded component of Γ in X, and let α be a geodesic in X such
that Γ0 intersects α. Closest point projection of Γ0 to α in X agrees with closest point projection
to Γ0 ∩ α in Γ0.

Proof. Consider a vertex x ∈ Γ0rα such that there exists a point v ∈ α with d(x, α) = d(x, v)
and v < Γ0. Let γ be a geodesic from x to v, let p be a path in Γ0 from x to a vertex v′ of α.
Let D be a diagram over R as in Lemma 3.4 filling the triangle γ[v, v′]p−1, where [v, v′] is the
reduced path in α from v to v′.

Among all possible choices of x, v, v′, γ, p, and D as above, make the choice for which D
has the minimal possible number of edges. Note that, by minimality, D is a simple disc diagram.

Let Π be a face of D that intersects the side of D corresponding to p in an arc a. Then a
has a lift to Γ via being a subpath of (a copy of) p, and one via being a subpath of ∂Π. If the
lifts coincide (up to a label-preserving automorphism of Γ), then we can remove the edges of a
from D, thus obtaining a path p′ in Γ0 as above, contradicting minimality. Hence, a is a piece.
Therefore, Lemma 4.6 implies that the side of D corresponding to p is not contained in a single
face of D.

We make a diagram D′ by attaching a new face Π′ to D by identifying a proper subpath of
the boundary of Π′ with the side of D corresponding to p. This operation is purely combinatorial,
the boundary of Π′ is not labelled. Note that if Π is a face of D with e(Π) = 1 whose exterior
arc is contained in p then, by the previous paragraph, that exterior arc is a piece. Since interior
arcs of D are pieces, i(Π) > 6 in D. Thus, Π becomes an interior face of D′ with i(Π) > 7. It
follows that D′ is a combinatorial geodesic bigon.

Apply Theorem 3.13 to D′: it has at most two distinguished faces, one is Π′ and the other, if
it exists, is at the vertex corresponding to v. Any other face of D′ came from D, and, in particular,
the side of D corresponding to p is contained in a single face of D. This is a contradiction. �

Lemma 4.7 immediately implies the global-to-local direction of Theorem 4.1.

Lemma 4.8. Let α be a geodesic in X. Let p1 p2 be a simple path starting at a vertex y in α
and terminating at a vertex x ∈ X such that p1 p2 is contained in some embedded component Γ0
and such that each pi is a piece that is not a single vertex. Then d(x, α) > max{|p1|, |p2|}.

Proof. Let q be a path starting at x and terminating at a vertex y′ in α such that |q| = d(x, α).
If y′ = y, then the claim follows from the convexity of Γ0, noting that any simple path that is
a concatenation of two pieces must be a geodesic. Similarly, if q ∩ p1 , ∅ then Lemma 4.6
implies q = p1 p2. Hence, assume that q ∩ p1 = ∅.

Without loss of generality, we may assume q ∩ p2 = x. Consider a diagram D over R as
in Lemma 3.4 filling the embedded geodesic quadrangle p1 p2q[y′, y]. We may stick onto the
2-complex D two 2-cells Π1 and Π2 by identifying proper subpaths of their boundaries with
p1 and p2, respectively. By construction, this yields a combinatorial geodesic triangle, and by
Theorem 3.13, it has shape III1, where Π1 and Π2 are the distinguished faces intersecting each
other only in a valence 4 vertex. Using Lemma 4.6, there are no faces with exterior degree 2, so
D is a single face.

This shows that there exists a simple cycle of the form c := p1 p2q[y′, y] in some embedded
component Γ1. Since |p1|, |p2| < |c|/6 and |[y′, y]| 6 |c|/2, we have |q| > |c|/6 > max{|p1|, |p2|}. �

Lemma 4.9. Let α be a geodesic in X. Let Γ0 be an embedded component of Γ intersecting α.
Suppose α∩ Γ0 is (ρ1, ρ2)–contracting in Γ0. Let c be a simple cycle in Γ0 such that c = p1 p2qa,
where each pi is a piece, q realizes the distance of the terminal vertex x of p2 to α, and a is a
subpath of α. Then |c| is bounded, with bound depending only on ρ1 and ρ2.

Proof. Let x := p2 ∩ q, and let y := p2 ∩ p1. Since any subpath of a piece is a piece itself,
we may assume without loss of generality that x is the point of p2 maximizing diam π(x) ∪ π(y),
where π denotes closest point projection to α in X. By Lemma 4.6, we have |a| 6 diam π(x)∪π(y).

Since p1 p2 is a path from α to x and q minimizes distance, |q| 6 |p1| + |p2| < |c|/3, which
implies |a| = |c| − |p1| − |p2| − |q| > |c|/3.
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Let C > 0 be as Theorem 4.4 (4). If |p1| < C, then |q| 6 |p1| + |p2| < C + |c|/6, which implies
|c| < 12C.

Otherwise, Lemma 4.8 implies that for every point z ∈ p2 we have d(z, α) > C, so p2
is a geodesic that stays outside the C–neighborhood of α. Theorem 4.4 (4) says diam π(p2)
is bounded by a sublinear function of maxz∈p2 d(z, α) < |c|/3. Thus, |c|/3 < |a| 6 diam π(p2) is
bounded above by a sublinear function of |c|, which implies |c| is bounded. �

Lemma 4.10. Let α be a geodesic in X. Let Γ0 be an embedded component of Γ intersecting
α. Suppose α ∩ Γ0 is (ρ1, ρ2)–contracting in Γ0. Let c be a simple cycle in Γ0 of the form
c = p1 p2 p3 p4a, where each pi is a piece and a is a subpath of α. Then |c| is bounded, with
bound depending only on ρ1 and ρ2.

Proof. Let x := p2 ∩ p3. Let y1 := p1 ∩ α. Let y2 := p4 ∩ α. By Lemma 4.7, there is a path
q ⊂ Γ0 such that |q| = d(x, α). Let y′ := q ∩ α.

By symmetry, we may suppose q ∩ p3 = x. Apply Lemma 4.9 to see that |q| + |p3| + |p4| +

d(y2, y′) is uniformly bounded. If q coincides with p1 p2 we are done. Otherwise it must be that
q ∩ p1 = ∅, for otherwise we would have a simple cycle composed of a geodesic and one or two
pieces, which is impossible. Let p′2 := p2 r q, and let q′ := q r p2. Apply Lemma 4.9 to see
|q′| + |p′2| + |p1| + d(y1, y′) is uniformly bounded. Thus, |c| is uniformly bounded. �

Lemma 4.11. Let α be a geodesic in X. Let Γ0 be an embedded component of Γ intersecting
α. Suppose α ∩ Γ0 is (ρ1, ρ2)–contracting in Γ0. Let c be a simple cycle in Γ0 such that
c = q1 pq3a, where p is a piece, q1 and q3 are geodesics realizing the closest point projections of
the endpoints of p to α, and a is a subpath of α. Then there is a sublinear function ρ′2 depending
only on ρ1 and ρ2 such that diam π(c) 6 ρ′2(|c|). If ρ1(r) > r/2 then we can take ρ′2 := 2ρ2.

Proof. Among all path subgraphs of p, consider those with maximal projection diameter.
Among those, choose one, p′, with minimal length, and let x′ and y′ be its endpoints. Let
x′′ ∈ π(x′) and y′′ ∈ π(y′) be vertices such that d(x′′, y′′) = diam π(x′) ∪ π(y′). By Lemma 4.7
there are geodesics q′1 ⊂ Γ0 connecting x′ to x′′ and q′3 ⊂ Γ0 connecting y′ to y′′. Let a′

be the subpath of α from x′′ to y′′. Let c′ := q′1 p′q′3a′. The maximality hypothesis on p′

implies π(p′) ⊂ a′ and diam π(p′) = diam π(p). It is immediate from the definitions that
diam π(c) = diam π(p), so it suffices to bound d(x′′, y′′).

Let x and y be the endpoints of p, and note that |q′1|+ |q
′
3| 6 |q1|+d(x, x′)+d(y, y′)+ |q3| 6 |c|.

If there exists a vertex z ∈ q′1 ∩ q′3 then both x′′ and y′′ are in π(z), so d(x′′, y′′) 6 ρ2(d(z, α)) 6
ρ2(|q′1|) 6 ρ2(|c|), and we are done. Otherwise, minimality of |p′| implies c′ is a simple cycle.

Since p′ is a piece and a′ is geodesic, we have |q′1| + |q
′
3| >

|c′ |/3 > 2|p′|, so there exists a
point z′ ∈ p′ such that d(x′, z′) 6 |q′1 |/2 and d(z′, y′) 6 |q′3 |/2.

If ρ1(r) > r/2, then take ρ′1 := ρ1 and ρ′′2 := ρ2. Otherwise, by Theorem 4.4 (2) there exists a
sublinear function ρ′′2 such that α∩Γ0 is (ρ′1, ρ

′′
2 )–contracting in Γ0 for ρ′1(r) := r. Let ρ′2 := 2ρ′′2 .

Since π(p′) ⊂ a′, we conclude:

d(x′′, y′′) 6 diam π(x′) ∪ π(z′) + diam π(y′) ∪ π(z′)

6 ρ′′2 (d(x′, α)) + ρ′′2 (d(y′, α))

= ρ′′2 (|q′1|) + ρ′′2 (|q′3|) 6 2ρ′′2 (|c|) = ρ′2(|c|) �

Lemma 4.12. Let α be a locally (ρ1, ρ2)–contracting geodesic in X. Let Y ⊂ X be either an
embedded component of Γ, a piece, or a single vertex. Then there is a sublinear function ρ′2
depending only on ρ1 and ρ2 such that if Y is disjoint from α then diam π(Y) 6 ρ′2(d(Y, α)).

If ρ1(r) > r/2 we can take ρ′2 � ρ2.

Proof. Suppose Y is disjoint from α and choose a vertex y ∈ Y such that d(y, α) = d(Y, α).
Let y′ be a point in π(y). It suffices to show that there exists a sublinear function ρ′′2 such that for
every x′ ∈ π(Y) we have d(x′, y′) 6 ρ′′2 (d(Y, α)). Given such a ρ′′2 , set ρ′2 := 2ρ′′2 , and the lemma
follows from the triangle inequality.

If π(Y) = {y′} we are done. Otherwise, let x′ be an arbitrary point in π(Y) r {y′}. Let α′ be
the subpath of α from x′ to y′.
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Choose x ∈ Y such that x′ ∈ π(x). Choose a path p from x to y in Y , and geodesics β1 and
β2 connecting x to x′ and y to y′, respectively. Choose a diagram D over R as in Lemma 3.4
filling α′β−1

2 p−1β1. Assume that we have chosen x, p, β1, β2, and D so that D has the minimal
number of edges among all possible choices.

In the case that β1 and β2 intersect, let D′ be the disc component of D intersecting the side
corresponding to α. Then D′ is a combinatorial geodesic triangle. Apply Theorem 3.13 to D′.
Since β1 and β2 are geodesics realizing closest point projection, the only possibilities are that
D′ is:

(1) a single face,
(2) shape I2, where α′ is the side joining two vertices in the same distinguished face,
(3) shape IV with exactly three faces incident to α′, two corners with interior degree 2

each and one ordinary face, or
(4) shape V with exactly two faces incident to α′, the two corners with interior degree 2

each.

In all cases, d(x′, y′) is bounded by a sublinear function ρ′′2 of d(Y, α) that depends only on ρ1
and ρ2: For case (1) this follows from the fact that α is uniformly locally contracting. For case
(3) this follows from Lemma 4.9 and Lemma 4.10, and for case (4) this follows from Lemma 4.9.
In these two cases, the bounds are in fact constants depending only on ρ1 and ρ2. Now consider
case (2). Let Π be the face of D′ containing α′. Let c be the embedded quadrangle in X whose
sides are α′, a subpath q1 of β1, a piece p′, and a subpath q2 of β2. Apply Lemma 4.11 to c, and
observe that ||q1| − |q2|| 6 |p′| < |c|/6, and |q1| + |q2| > |c|/3, whence d(Y, α) = |β2| > |q2| > |c|/6.

Now suppose that β1 and β2 do not intersect. In this case minimality of D and the fact that y
minimizes the distance from Y to α imply that D is simple. If Y is an embedded component of
Γ, it follows as in the proof of Lemma 4.7 that any arc in the side of D corresponding to p is a
piece. The same is true if Y is a piece since subpaths of pieces are pieces. Thus, we can stick a
new face onto p to obtain a combinatorial geodesic triangle D′, and we make the same argument
as above, noting this time that case (1) cannot hold, for it would imply that Y intersects α. �

Proof of Theorem 4.1. Recall that the global-to-local direction of Theorem 4.1 follows
from Lemma 4.7.

Suppose that α is locally (ρ1, ρ2)–contracting.
Let x and y be points of X such that d(x, y) 6 ρ1(d(x, α)). Let γ be a geodesic from x to y.

Let x′ ∈ π(x) and y′ ∈ π(y) be points realizing diam π(x) ∪ π(y). Let δ1 be a geodesic from x′ to
x, and let δ2 be a geodesic from y′ to y. Let α′ be the path subgraph of α from x′ to y′.

First, assume that α′ does not enter the C-neighborhood of γ, where C is the constant from
Theorem 4.4 (4) associated to (ρ1, ρ2).

If δ1 and δ2 intersect, Lemma 4.12 yields the claim, whence we will assume that they do
not. Moreover, by removing initial and terminal subpaths of γ that do not increase the size
of the closest point projection to α, we may assume that γ, δ1, δ2 and α′ can be concatenated
to a simple closed path c0. Let D be a diagram as in Lemma 3.4 for the label of c0, and, by
identifying ∂D with c0, we can consider γ, δ1, δ2 and α′ as subpaths of ∂D. As the interior arcs
of D are pieces and its four sides are geodesics, we can apply Proposition 3.20.

The first possibility is that there is a face Π with e(Π) = 2 and i(Π) = 2. Its boundary is a
cycle c = p1qp3a in some embedded component such that the pi are pieces, a is a path subgraph
of α, and q is a path subgraph of γ. We have |c|/6 < |a| 6 |c|/2. Therefore, maxz∈c d(z, α) 6 5|c|/12.

We now choose R2 > 0 so that for all r > R2 we have 2ρ2(r) < ρ1(r). Suppose γ does not
enter the R2–neighborhood of α.

By Theorem 4.4 (4), |c|/6 < |a| is bounded by a sublinear function of maxz∈c d(z, α) 6 5|c|/12.
This implies |c| is uniformly bounded, as are |p1|, |p3| < |c|/6. Therefore, γ enters a uniformly
bounded neighborhood of α.

The second possibility is that D contains a zipper with two teeth on α. By Lemma 4.10, the
boundary lengths of the two teeth on α are uniformly bounded. It follows that the boundary
length of the upper tooth is also uniformly bounded, since its intersection with the bottom
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teeth accounts for more than 1/6–th of its length. Therefore, γ enters a uniformly bounded
neighborhood of α.

Let C′ be larger than C, R2, and the bounds from the first two cases. Let z be the first point
of γ such that d(z, α) 6 C′, if such a point exists. Otherwise let z := y. The projection diameter
of γ is at most the projection diameter of the path subgraph of γ from x to z plus the projection
diameter of the path subgraph from z to y. The latter is at most 4C′, since every point of this path
is within 2C′ of α, so it suffices to bound the former. Thus, we may assume that the geodesic
from x to y does not enter the C′ neighborhood of α.

By our choice of C′, we conclude that D must fall into the third case of Proposition 3.20.
Therefore, there exist k 6 6 and a path graph p := p0 p1 p2 . . . pk pk+1 (recall Lemma 3.10) from
δ1 to δ2 such that:

• If 1 6 i 6 k, then pi is a path subgraph of γ ∩ Πi, and
• p0 is empty or a piece in Π1, and pk+1 is empty or a piece in Πk.

The second claim follows since, in D, the corner that is separated from the rest of D by removing
Π1 is either empty, a face, or has shape I1. The same observation holds for the corner at Πk.

Notice that every point of γ is within d(x, α) + ρ1(d(x, α)) 6 2d(x, α) of α.
For 1 6 i 6 k, the path graph pi is a geodesic subsegment of γ that is outside the R2–

neighborhood of α. If pi is contained in an embedded component Γ0 of Γ disjoint from α, then
diam π(pi) is bounded by a sublinear function of d(Γ0, α) 6 d(pi, α) < 2d(x, α), by Lemma 4.12.
If pi is not contained in an embedded component disjoint from α, then Theorem 4.4 (4) says
diam π(pi) is bounded by a sublinear function of maxz∈pi d(z, α) 6 2d(x, α). When i ∈ {0, k + 1},
the diameter of π(pi) is bounded by a sublinear function of d(pi, α) by Lemma 4.12.

We have that diam π(x)∪π(y) 6
∑k+1

i=0 diam π(pi), and each of the at most 8 terms is bounded
by a sublinear function of d(x, α), so diam π(x) ∪ π(y) is bounded by a sublinear function ρ′2 of
d(x, α). Thus, α is (r, ρ′2)–contracting. Moreover, each of the constituent sublinear functions of
ρ′2 is determined by ρ1 and ρ2 and, when ρ1(r) > r/2, is either bounded or asymptotic to ρ2, so ρ′2
depends only on ρ1 and ρ2, and we can take ρ′2 � ρ2 when ρ1(r) > r/2. �

4.3. First applications of Theorem 4.1. Theorem 4.1 and Theorem 4.4 show:

Theorem 4.13. A geodesic in X is Morse if and only if it is uniformly locally contracting.

In the classical small cancellation case we have more explicit criteria:

Corollary 4.14. Let Γ be a Gr′(1/6)–labelled graph whose components are cycle graphs.
Let α be a geodesic in X. Define ρ(r) := max|Γi |6r |Γi ∩ α|, where the Γi range over embedded
components of Γ. Then α is Morse if and only if ρ is sublinear, and α is strongly contracting if
and only if ρ is bounded.

In hyperbolic spaces and in CAT(0) spaces Morse geodesics are known to be strongly
contracting. In graphical small cancellation groups we build the first examples with a wide
range of degrees of contraction:

Theorem 4.15. Let ρ be a sublinear function. There exists a group G with finite generating
set S and a function ρ′ � ρ such that there exists an (r, ρ′)–contracting geodesic α in the Cayley
graph X of G with respect to S.

Furthermore, ρ′ is optimal, in the following sense: If α is (r, ρ′′)–contracting for some ρ′′

then lim supr→∞
ρ′′(2r)
ρ(r) > 1.

If λ > 0, a C′(λ)-collection of words W is a subset of 〈S〉 such that the disjoint union of
cycle graphs labelled by the elements of W satisfies the graphical C′(λ)-condition.

Proof. We may assume ρ is unbounded and integer valued. Since ρ is sublinear, there exists
an R such that 5ρ(r) 6 2r for all r > R. Let S := {a, b, c}. Let I ⊂ {z ∈ Z | z > R} be an infinite
set such that there exists a C′(1/12)-collection {wi}i∈I of words wi ∈ 〈b, c〉 with |wi| = 4i. For i ∈ I,
define Ri := aρ(i)wi.
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Let Γ := (Γi)i∈I be a disjoint union of S–labelled cycle graphs, with Γi labelled by Ri. Let
G := G(Γ) and X := Cay(G,S). There are no non-trivial label-preserving automorphisms of
any component Γi because of the unique a–labelled path subgraph. There are no non-trivial
label-preserving automorphisms of Γ that exchange components since {wi}i∈I have distinct
lengths.

If p is a piece contained in Γi and labelled by l then l can be written l = l′ + l′′ + l′′′ where l′

is a suffix of wi, l′′ is a subword of aρ(i), and l′′′ is a prefix of wi. If l′ or l′′′ is non-empty then
l′l′′′ is a piece for {wi}i∈I . Therefore |p| < ρ(i) + |wi |/12. Since 5ρ(i) 6 2i this implies |p| < |Ri |/6, so
Γ is C′(1/6)–labelled.

Let α be the geodesic with all edge labels a. By construction, α is locally (r, ρ)–contracting,
so Theorem 4.1 says there exists ρ′ � ρ such that α is (r, ρ′)–contracting.

Conversely, if α is (r, ρ′′)–contracting then it is locally (r, ρ′′)–contracting. By construction,
for i ∈ I there exists a point xi such that d(xi, α) = 2i and diam π(xi) = ρ(i), so we must have
ρ(i) 6 ρ′′(2i). �

Theorem 4.16 shows that in classical small cancellation groups the geometry of cycle
graphs dictates that only the output contraction function ρ2 plays a role. In Theorem 4.19 we
construct a graphical example for which the input contraction function ρ1 also carries non-trivial
information.

Theorem 4.16. Let Γ be a Gr′(1/6)–labelled graph whose components are cycle graphs. A
geodesic α in X that is (ρ1, ρ2)–contracting is (r, ρ′2)–contracting for ρ′2 � ρ2.

Proof. Let Γ0 be an embedded component of Γ. Since Γ0 is a cycle graph and Γ0 ∩ α is
connected, there is a unique point y for which the closest point projection π(y) in Γ0 has positive
diameter, and diam π(y) = diam π(Γ0 ∩ α) 6 ρ2(d(y, α)).

Let x be a point of Γ0 equidistant from y and α. Then d(x, y) = d(x, α) and:

diam π(x) ∪ π(y) = diam π(y) 6 ρ2(d(y, α)) = ρ2(2d(x, α)) = ρ′2(d(x, α))

This is the worst case, since for x′ closer to α the ball of radius d(x′, α) about x′ does not include
y. We conclude that α is locally (r, ρ2(2r))–contracting. Now apply Theorem 4.1 to see that α is
(r, ρ′2)–contracting for some ρ′2(r) � ρ2(2r) � ρ2(r). �

Corollary 4.17. Let Γ be a Gr′(1/6)–labelled graph whose components are cycle graphs. A
geodesic α in X that is (ρ1, ρ2)–contracting with ρ2 bounded is strongly contracting.

Having uniformly bounded intersection with every embedded component of Γ is a sufficient
condition for a geodesic α in the Cayley graph of a Gr′(1/6)–group to be strongly contracting. It
is not a necessary condition. Consider the following example:

Example 4.18. We start with a simple example of an infinite classical C′(1/6)–small cancel-
lation presentation: 〈a, b |Rn : n ∈ N 〉 where, for each n > 0 we define:

Rn = ab20n+1ab20n+2 · · · ab20n+19ab−(20n+20)

The graphs Γi for i > 1 are defined by taking the disjoint union of oriented cycles Rn for
(i − 1)(i) 6 2n 6 −2 + i(i + 1) and identifying the unique subpath with label b20k in Rk−1 to
the unique subpath in Rk with label b20k which is preceded by a and succeeded by ba. This
means we identify the paths labelled by the bold words ab20(k−1)+1ab20(k−1)+2 . . . ab−20k and
ab20kba . . . ab−(20k+20).

The {a, b}–labelled graph ti∈NΓi satisfies the Gr′(1/6)–condition and gives rise to the same
Cayley graph as 〈a, b |Rn : n ∈ N〉. Consider a path α in the Cayley graph labelled by the powers
of a. For every i, there exists an embedded copy Γ′i of Γi with |α ∩ Γ′i | = i. Since paths in Γi
labelled by powers of a are geodesic, this implies that α is a geodesic. It has intersection of
length at most 1 with relators Rn, so it is strongly contracting, but we have |α ∩ Γ′i | = i.

We also provide the first examples spaces X and X̃ and geodesics γ and γ̃ such that there
exists a quasi-isometry X → X̃ mapping γ to γ̃ and such that γ is not strongly contracting, but γ̃
is strongly contracting.



102 C. NEGATIVE CURVATURE IN GRAPHICAL SMALL CANCELLATION GROUPS
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y
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Figure 14. The graphs Γi and Γ̃i.

Theorem 4.19 (Non-stability of strong contraction). There exists a group G with finite
generating sets S ⊂ S̃ and an infinite geodesic γ in X := Cay(G,S) labelled by the powers of a
generator such that γ is not strongly contracting, but its image γ̃ in X̃ := Cay(G, S̃) obtained
from the inclusion S ⊂ S̃ is an infinite strongly contracting geodesic.

The idea is to turn [3, Example 3.2] into a Gr′(1/6)–labelled graph Γ. By construction, Γ will
contain a non-strongly contracting geodesic γ that will be labelled by the powers of a generator
y. Theorem 4.1 then ensures that the image of γ in the Cayley graph is not strongly contracting.
By adding additional edges, corresponding to new generators, to Γ and cutting the resulting
graph apart into cycle graphs, we obtain a classical C′(1/6)–presentation of the same group in
which no relator contains more than one occurrence of the letter y. Thus, a geodesic labelled
by the powers of y will be strongly contracting in the Cayley graph with respect to the new
generating set.

Proof of Theorem 4.19. Assume the sets {y}, {a, b}, {x1, x2}, S1, S2 are pairwise disjoint
sets, and |S1| > 2 and |S2| > 2. A classical piece with respect to a set of words is the label of a
piece in the disjoint union of cycle graphs labelled by the words. It is an exercise to explicitly
construct words with the following properties:

Let ω := {w1,w2} ⊂ 〈S1〉 be a C′(1/6)-collection of words (as defined for the proof of
Theorem 4.15) such that |w1| = |w2| > 24. Moreover, assume that the words w1w2, w1w−1

2 , and
w−1

1 w2 are freely reduced.
Let µ(a, b) := {µi(a, b) | i ∈ N} ⊂ 〈{a, b}〉 be a C′(1/6)-collection of words such that there

exists C ∈ N, C > 6 with |µi(a, b)| = (C/|w1 |) · 2i. Note that by our assumptions on ω, the set
µ(w1,w2) also satisfies the classical C′(1/6)–condition: Since no two w±1

1 and w±2
2 start with the

same letter, any piece with respect to µ(w1,w2) comes from a piece with respect to µ(a, b).
Let ν := {νi : i ∈ N} ⊂ 〈S2〉 be a C′(1/12)-collection of words such that |νi| = C · 2i + 1.
The graph Γ labelled over S := {y} ∪ S1 ∪ S2 is obtained by taking the disjoint union of the

Γi as in Figure 14 and, for each i, identifying the ‘top’ of Γi with the ‘bottom’ of Γi+1. These
both have the same label. Note that any simple closed path γ in Γ is a path going around a finite
union Γi ∪ Γi+1 ∪ · · · ∪ Γ j for i 6 j, i.e., the label of γ is, up to inversion and cyclic shift, of the
form:

µi(w1,w2)νiνi+1 . . . ν jµ j+1(w1,w2)−1yi− j−1

A piece that is a simple subpath of a cyclic shift of γ has a label that is a subword of one of
the following words.

• A piece in some µk(w1,w2) or a product of two pieces in some νk or νkνk+1 (since,
by gluing together words νk when constructing Γ, new pieces may have arisen, each
labelled by a product of two pieces in ν), or
• yi− j−1, or
• a product of two words from the first bullet, or a product pyi− j−1q, where p and q are

pieces in µ j+1(w1,w2) and µi(w1,w2) respectively.
Here, a piece in µi(w1,w2) means a classical piece with respect to the collection of words
µ(w1,w2), a piece in νi means a piece with respect to ν, and so on. A piece may also be the
empty word.
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Note that any piece p in the first bullet has length less than 1/6 of its ambient word µk(x1, x2)
or νk or νkνk+1, and that 6|i − j − 1| 6 C2 j < |ν j|. Therefore, Γ satisfies the Gr′(1/6)-condition.

Let α be the geodesic ray in Γ labelled by positive powers of y. Let β be the geodesic ray in
Γ labelled by ν1ν2 · · · . The ray β leaves every bounded neighborhood of α, but has unbounded
image under the closest point projection to α in Γ. By Corollary 4.5, α is not strongly contracting
in Γ. Thus, by Theorem 4.1, the geodesic ray labelled by positive powers of y is not strongly
contracting in Cay(G(Γ),S).

We now define a graph Γ̃ labelled over S̃ := {y} ∪ {x1, x2} ∪ S1 ∪ S2 as follows: Let c1 be a
cycle graph labelled by x1w−1

1 and c2 a cycle graph labelled by x2w−1
2 . Set:

Γ̃ := c1 t c2 t
⊔
i∈N

Γ̃i

where the Γ̃i are given in Figure 14. Note that while, in this new graph, the paths labelled
by µi(x1, x2) are pieces, no path labelled by µ−1

i+1(x1, x2)y−1 or y−1µi(x1, x2) is a piece.
By construction, |µi(x1, x2)|, |µi+1(x1, x2)| < |νi |/12, and any piece in νi has length less than

|νi |/12. This, together with observations as above and the fact that any simple piece in c1 or c2
has length less than |ci |/6 by construction, shows that Γ̃ satisfies the Gr′(1/6)–condition. Since its
components are cycle graphs, the geodesic ray labelled by the positive powers of y is strongly
contracting in Cay(G(Γ̃), S̃), by Theorem 4.1.

The presentation for G(Γ̃) coming from Γ̃ includes the generators and relations of the
presentation of G(Γ) coming from G(Γ), as well as generators x1 and x2 and relations x1w−1

1 and
x2w−1

2 . Rewriting the presentation by Tietze transformations, we see G(Γ) � G(Γ̃). In particular,
the inclusion Cay(G(Γ),S) ↪→ Cay(G(Γ̃), S̃) is a quasi-isometry. �

We record the following consequence of Theorem 4.1 and Lemma 4.3 for reference:

Corollary 4.20. Let α and α′ be infinite geodesic rays in Cay(G(Γ),S), where Γ is a
Gr′(1/6)–labelled graph labelled by S, such that dHausdorff(α, α′) < ∞. Then α is uniformly
locally strongly contracting if and only if α′ is.

5. Strongly contracting elements

In this section, we show the existence of strongly contracting elements in graphical small
cancellation groups.

Theorem 5.1. Let Γ be a Gr′(1/6)–labelled graph whose components are finite, labelled by a
finite set S. Assume that G(Γ) is infinite. Then there exists an infinite order element g ∈ G(Γ)
such that 〈g〉 is strongly contracting in Cay(G(Γ),S).

The element g is the WPD element for the action of G(Γ) on the hyperbolic coned-off space
of Gruber and Sisto [30] (see also Section 5.2).

A recent theorem of Arzhantseva, Cashen, and Tao [4] says that if G is a group acting
cocompactly on a proper metric space X, and if g ∈ G is an infinite order element such that
closest point projection to an orbit of 〈g〉 is strongly contracting, then the action of G on X is
growth tight. This means that the rate of exponential growth of G with respect to the pseudo-
metric induced by the metric of X is strictly greater than the growth rate of a quotient of G by
any infinite normal subgroup, with respect to the induced pseudo-metric on the quotient group.
Thus, a corollary of Theorem 5.1, is:

Theorem 5.2. Let Γ be a Gr′(1/6)–labelled graph whose components are finite, labelled by a
finite set S. Then the action of G(Γ) on Cay(G(Γ),S) is growth tight.

5.1. Infinite cyclic subgroups are close to periodic geodesics. In the previous section
we deduced contraction results for geodesics in a group defined by a Gr′(1/6)-labelled graph. In
order to show that cyclic subgroups are strongly contracting, we show that they are actually
close to bi-infinite geodesics. As a by-product, we also obtain a result about translation lengths
in graphical small cancellation groups.

We glean from [27] the following:
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Lemma 5.3. Let Γ be a Gr′(1/6)-labelled graph whose components are finite, labelled by a
finite set S. Every infinite cyclic subgroup of G := G(Γ) is at bounded Hausdorff distance from
a periodic bi-infinite geodesic in Cay(G,S).

Recall that a bi-infinite path graph α in Cay(G,S) is periodic if there is a cyclic subgroup of
G that stabilizes α and acts cocompactly on it. In the proof we have surjections 〈S〉� H � G.
Let | · |H denote the word length in H with respect to the image of S. Similarly, let | · |G denote
the word length in G with respect to the image of S.

Recall that the translation length of an element g ∈ G is defined by:

τG(g) := lim
n→∞

|gn|G

n
This limit always exists since the map n 7→ |gn|G is subadditive.

Proof of Lemma 5.3. Let x be an infinite order element of G.

Claim. There exist w ∈ 〈S〉 and N ∈ N such that w represents an element g ∈ G such that x is
conjugate to gN and the following property is satisfied: There exist a hyperbolic group H, also
a quotient of 〈S〉, and an epimorphism φ : H � G induced by the identity on S such that, if
h denotes the element of H represented by w, then φ restricts to an isometry 〈h〉 → 〈g〉 with
respect to the subspace metrics in H and G, respectively.

We show how to deduce the statement of the lemma from the claim: By a theorem of
Swenson [49, Theorem 8], since H is hyperbolic, there exist h0 ∈ H and M ∈ N such that hM is
conjugate to h0 and such that |hn

0|H = n|h0|H for all n > 0. Therefore, τH(hM) = |h0|H , and the
bi-infinite path graph in H labelled by the powers of a shortest element w0 ∈ 〈S〉 representing
h0 is geodesic. Consider g0 := φ(h0), the element of G represented by w0. Then gM is conjugate
to g0 by construction, and we have τG(g0) = τG(gM) = τH(hM) = |w0| since 〈h〉 → 〈g〉 is an
isometry. This implies |gnM |G = n|w0| for every n, i.e., the bi-infinite path graph in Cay(G,S)
starting at 1 and labelled by the powers of w0 is geodesic. This proves the lemma, assuming our
claim.

It remains to show the claim: By [27, Section 4], there exists g ∈ G such that x is conjugate
to gN for some N and such that, if w is a shortest word representing g, we have the following
possibilities: Any bi-infinite periodic path graph γ labelled by the powers of w is a convex
geodesic (Case 1 in [27, Section 4]), or there exists some C0 such that for any copy c in
Cay(G,S) of a simple cycle in Γ, the length of the intersection of c with γ is at most C0 (Cases
2a and 2b in [27, Section 4]). If the first possibility is true, then the claim holds for H = 〈S〉.

Assume there exists a C0 as in the second possibility. Then we have the following property
by [27, Proof of Theorem 4.2 in Case 2a] and [27, Lemma 4.17]: Whenever v is a geodesic
word representing gn for some n, then the equation v = wn already holds in G(Γ<6C0), where
Γ<6C0 denotes the subgraph of Γ that is the union of all components with girth less than 6C0.
Therefore, the epimorphism G(Γ<6C0)� G induced by the identity on S restricts to an isometry
on the cyclic subgroup generated by the element of G(Γ<6C0) represented by w. The graph Γ<6C0

is (up to identifying isomorphic components) a finite Gr′(1/6)–labelled graph, so G(Γ<6C0) is a
hyperbolic group. �

A result on translation lengths. We record another application of our investigations. We
show:

Theorem 5.4. Let Γ be a Gr′(1/6)–labelled graph whose components are finite, labelled by
a finite set S. Then every infinite order element of G(Γ) has rational translation length, and
translation lengths are bounded away from zero.

Recall that similar theorems are true for hyperbolic groups [24, 49, 19] and for the action of
the mapping class group of a surface on its curve complex [14].

The rationality statement is a direct consequence of Lemma 5.3. We prove the remaining
statement:
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Proposition 5.5. Let Γ be a Gr′(1/6)–labelled graph whose components are finite, labelled
by a finite set S. Every infinite order element x of G := G(Γ) has τG(x) > 1/3.

Proof. Let x be an infinite order element of G. By [27, Section 4], there exists g ∈ G such
that x is conjugate to gN for some N and such that, if w is a shortest word representing g, we
have the following possibilities: Any bi-infinite periodic path graph γ labelled by the powers
of w is a convex geodesic (Case 1 in [27, Section 4]), or, for each n and any shortest word gn
representing gn, there exists a diagram Bn over Γ whose boundary word is gnw−n, such that Bn
is a combinatorial geodesic bigon with respect to the obvious decomposition of ∂Bn (Cases 2a,
2b in [27, Section 4]). In particular, every disk component of Bn is a single face, or has shape I1.

If the first possibility is true, then τG(g) = |w| > 1. Now consider the second possibility. In
Case 2a, it follows from [27, Proof of Theorem 4.2 in Case 2a] that any face Π of Bn, the length
of the intersection of Π with the side of Bn corresponding to gn (the bottom) is more than 1/3
times the length of its intersection with the side corresponding to wn (the top). Therefore, in this
case, |gn| > n|w|/3 > n/3. In Case 2b, if a face Π intersects the top in at most |∂Π|/2, then it intersects
the bottom in more than |∂Π|/6 by the small cancellation condition. If Π intersects the top in more
than |∂Π|/2, then [27, Lemma 4.8] implies that the intersection of Π with the top has length less
than 2|w|. The intersection with the bottom has length at least 1, since every disk component
of Bn has shape I1. Therefore, we have |gn| > n|w| ·min{ 13 ,

1
2|w| } >

n
3 . We conclude τG(g) > 1/3.

Hence, τG(x) = τG(gN) = |N |τG(g) > N/3 > 1/3. �

5.2. The coned-off space. In [30], Gruber and Sisto prove that non-elementary groups
defined by Gr(7)-labelled graphs, which, in particular, includes those defined by Gr′(1/6)-labelled
graphs, are acylindrically hyperbolic. They prove this result by studying the action of G(Γ) on
what we call the coned-off space Y defined as follows: given a graph Γ labelled by S, letW
denote the set of all elements of G(Γ) represented by words read on (not necessarily closed!)
paths in Γ. We set Y := Cay(G(Γ),S ∪W). Thus, we obtain Y from X := Cay(G(Γ),S) by
attaching to every embedded component of Γ in X a complete graph.

The proof in [30] shows hyperbolicity of the space Y and existence of an element of G(Γ)
whose action on Y is hyperbolic and weakly properly discontinuous (WPD). By a theorem of
Osin [40], this yields acylindrical hyperbolicity.

Lemma 5.6. Let Γ be a Gr′(1/6)–labelled graph. Let g be an infinite-order element of
G := G(Γ). Let X := Cay(G,S), and let Y be the coned-off space. Let γ be a bi-infinite geodesic
in X that is at finite Hausdorff distance (in X) from 〈g〉. Then g is hyperbolic for the action of G
on Y if and only if there exists C > 0 such that for every embedded component Γ0 of Γ in X we
have diamX(γ ∩ Γ0) < C.

Combining this with Lemma 4.3 and Theorem 4.1, we obtain the following.

Corollary 5.7. If 〈g〉 is within bounded Hausdorff distance of a bi-infinite geodesic in X
and acts hyperbolically on Y, then 〈g〉 is strongly contracting in X.

Remark 5.8. The converse of Corollary 5.7 fails. Consider the group defined by ti∈NΓi
constructed in Example 4.18. The subgroup 〈a〉 is strongly contracting, but in the coned-off

space Y its orbit has diameter at most 2, so a does not act hyperbolically on Y . Thus, the methods
of [30] do not detect that 〈a〉 is strongly contracting.

Proof of Lemma 5.6 . Let γ be a bi-infinite geodesic in X whose Hausdorff distance from
〈g〉 is equal to ε < ∞.

Suppose for every n ∈ N there exists an embedded component Γn of Γ in X such that
diamX(Γn ∩ γ) > n. Denote by γn the path graph Γn ∩ γ. (This is a connected set since each Γn
is convex by [30, Lemma 2.15].) Let ιγn and τγn denote, respectively, the initial and terminal
vertices of γn. Then, by assumption, for each n, there exist mn and ln such that dX(ιγn, gmn) < ε
and dX(τγn, gln) < ε and, since |γn| → ∞, we have |mn − ln| → ∞. We have dY (gmn , gln) < 2ε + 1,
since the vertex set of Γn has diameter at most 1 in the metric of Y . Therefore, the map
Z→ Y : z 7→ gz is not a quasi-isometric embedding.
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On the other hand, suppose there exists C such that, for every embedded component Γ0 of
Γ, we have diamX(γ ∩ Γ0) < C. Then, by [30, Proposition 3.6], we have, for any k and l, that
dY (gk, gl) > 1

C (dX(gk, gl) − 2ε) − 2ε. Since 〈g〉 is undistorted in G by [27, Theorem 4.2], this
gives the lower quasi-isometry bound for the map Z→ Y : z 7→ gz. Since this map is obviously
Lipschitz, it is, in fact, a quasi-isometric embedding, whence g is hyperbolic. �

We will use the following result of [30]:

Proposition 5.9 ([30, Section 4]). Let Γ be a Gr′(1/6)-labelled graph. Suppose that Γ has at
least two non-isomorphic components that each contain an embedded cycle of length at least 2.
Then G(Γ) contains a hyperbolic element g for the action of G(Γ) on the coned-off space Y.

5.3. Proof of Theorem 5.1. If Γ has only finitely many pairwise non-isomorphic compo-
nents with non-trivial fundamental groups, then G(Γ) is Gromov hyperbolic [37, 26] and, hence,
the result holds.

If Γ has infinitely many pairwise non-isomorphic components with non-trivial fundamental
groups, then, since S is finite, there exist at least two such components each containing an
embedded cycle of length at least 2. Therefore, by Proposition 5.9, there exists a hyperbolic
element g for the action of G(Γ) on Y . Since the components of Γ are finite, Lemma 5.3
yields that 〈g〉 is within bounded Hausdorff distance of a bi-infinite geodesic in X. Therefore,
Corollary 5.7 implies the result. �

6. Hyperbolically embedded subgroups

6.1. Contracting subgroups and hyperbolically embedded subgroups. We recall a def-
inition of hyperbolically embedded subgroups from [18].

Definition 6.1 (Hyperbolically embedded subgroup). Let G be a group and H a subgroup.
Then H is hyperbolically embedded in G if there exists a subset S of G with the properties
below. We denote by XH the Cayley graph of H with respect to H, considered as subgraph of
X := Cay(G,H t S), and by d̂ the metric on H obtained as follows: we define d̂(x, y) to be the
length of a shortest path from x to y in X that does not use any edges of XH . If no such path
exists, set d̂(x, y) = ∞. The required properties are:

• H t S generates G (i.e. X is connected).
• X is Gromov hyperbolic.
• The metric d̂ is proper on H, i.e. d̂–balls are finite.

Note that if s ∈ H ∩S, then it is our convention that Cay(G,H tS) will have a double-edge
corresponding to s (once considered as element of H and once considered as element of S);
hence the symbol t for disjoint union.

One approach to finding hyperbolically embedded subgroups is provided by [12, Theo-
rem H]. A special case of this theorem states that if G is a finitely generated group and a
hyperbolic element g ∈ G has a strongly contracting orbit in a Cayley graph of G, then the
elementary closure E(g) of g is an infinite, virtually cyclic, hyperbolically embedded subgroup
of G.

Combining this with Lemma 4.3 and Theorem 4.1, we obtain the following.

Theorem 6.2. Let G := G(Γ) be the group defined by a Gr′(1/6)–labelled graph Γ. Let g ∈ G
be of infinite order, and let γ be a bi-infinite geodesic at finite Hausdorff distance from 〈g〉. If γ
is uniformly locally strongly contracting, then 〈g〉 is strongly contracting and, in particular, the
elementary closure E(g) of g is a virtually cyclic hyperbolically embedded subgroup.

Remark 6.3. By [12, Theorem H], we can also view Theorem 5.1 as an alternative proof
of acylindrical hyperbolicity for the groups considered in that theorem. The initial proof of
acylindrical hyperbolicity of these groups in [30] relies on the hyperbolicity of the coned-off

space and on showing that the element g satisfies a certain weak proper discontinuity condition
(and, in fact, applies to a larger class of groups). Our Theorem 6.2 gives an alternative proof
that the element g from [30] gives rise to a hyperbolically embedded virtually cyclic subgroup.
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Every hyperbolically embedded subgroup of a finitely generated group is Morse [45], and
every element with a strongly contracting orbit has a virtually cyclic hyperbolically embedded
elementary closure. In graphical small cancellation groups, Morse and strongly contracting
elements have been classified in terms of the defining graph, by our results in Section 4. It
is natural to ask whether the collection of cyclic hyperbolically embedded subgroups can be
classified in a similar way. We give one negative result in this direction.

Theorem 6.4. Let ρ2 be an unbounded sublinear function. There exists a Gr′(1/6)–labelled
graph Γ with set of labels S := {a, b} whose components are all cycles such that the group
G := G(Γ) has the following properties: Any virtually cyclic subgroup E of G containing
〈a〉 is (r, ρ′2)–contracting in the Cayley graph X := Cay(G,S) for some ρ′2 � ρ2, but E is not
hyperbolically embedded in G.

Proof. For every r > 0, choose Nr > 6 such that ρ2
(1

2 (1 + r)Nr
)
> r. This is possible

because ρ2 is unbounded. For every r > 0, let Rr := (arbarb−1)Nr , and consider the graph Γ that
is the disjoint union of cycles γr labelled by the Rr. Any reduced path that is a piece in γr has
length at most 2r +1, which is less than |γr |/6. Therefore, Γ satisfies the Gr′(1/6)-condition. Denote
by α a bi-infinite path in X labelled by the powers of a. For every copy γ of a γr embedded in X,
we have diamα ∩ γ < |γ|/6. Therefore, it is readily seen from considering diagrams of shape I1
that α is a bi-infinite geodesic. Also note that γ intersects α in a path of length at most r.

Suppose γ is a relator intersecting α, and x is a point in γ with δ := d(x, α). If |γ| > 4δ,
then, for any point y in γ with d(x, y) 6 δ, we have π(y) = π(x), and π(x) is a singleton,
where π denotes closest point projection to α. Now assume |γ| 6 4δ, and y ∈ γ. Then
diam π(x) ∪ π(y) 6 diam γ ∩ α 6 ρ2(δ), by construction, since ρ2 is non-decreasing. Therefore,
α is locally (r, ρ2)-contracting and, hence, by Theorem 4.1 and Lemma 4.3 there exists ρ′2 with
ρ′2 � ρ2 such that any virtually cyclic subgroup E of G containing 〈a〉 is (r, ρ′2)-contracting.

If E is a hyperbolically embedded subgroup then, by [18, Theorem 5.3], there exists
r > 0 such that the normal closure N of ar is a free group. By construction, the element of
G represented by arbarb−1 is non-trivial and has finite order, whence N is not torsion-free.
Therefore, E is not hyperbolically embedded. �

Another natural question is the following.

Question 6.5. Let G be a group generated by a finite set S, and suppose g ∈ G has a
(ρ1, ρ2)–contracting orbit in X := Cay(G,S) where ρ2 is bounded. Is the elementary closure
E(g) a hyperbolically embedded virtually cyclic subgroup of G?

Is the statement true if G := G(Γ) for a Gr′(1/6)–labelled graph Γ whose components are
finite, with finite set of labels S?

In the case of classical C′(1/6)-groups, an affirmative answer follows from Theorem 4.16.

6.2. Hyperbolically embedded cycles. Recall that a group has the hyperbolically embed-
ded cycles property (HEC property) if the elementary closure E(g) of every infinite order element
g is virtually cyclic and hyperbolically embedded. Hyperbolic groups have this property: E(g)
is the stabilizer of a g-axis. The HEC property in fact passes to any subgroup of a hyperbolic
group G using the action of the subgroup on a Cayley graph of G.

It is therefore very natural to ask whether this classifies subgroups of hyperbolic groups.
Torsion presents one complication: A free product of infinite torsion groups, or, more generally,
a group hyperbolic relative to infinite torsion subgroups, has the HEC property but cannot be a
subgroup of a hyperbolic group. We show that even among torsion-free groups there are many
examples of groups with the HEC property that are not subgroups of any hyperbolic group.

Theorem 6.6. There exist 2ℵ0 pairwise non-quasi-isometric finitely generated torsion-free
groups in which every non-trivial cyclic subgroup is strongly contracting and which, therefore,
have the HEC property.

Since there are only countably many finitely generated subgroups of finitely presented
groups, most of the groups of Theorem 6.6 do not occur as subgroups of hyperbolic groups.
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We show in Corollary 6.10 that there are even exotic examples of groups with the HEC
property such as the Gromov monster groups.

The theorem is proven by building small cancellation groups in which no power of any ele-
ment has long intersection with an embedded component of the defining graph. In Theorem 6.7
we give a condition on the labelling that guarantees this property. In Theorem 6.8 we show that
this condition can be satisfied. Then we construct specific examples satisfying our condition and
apply a version of a construction of Thomas and Velickovic [51], proven in Proposition 6.13, to
show that we get uncountably many quasi-isometry classes of groups.

A labelling of the edges of an undirected graph is said to be non-repetitive if there does
not exist a non-trivial embedded path graph that is labelled by a word of the form ww. (Here,
the label of a path is just the concatenation of the labels of the edges in the free monoid on
the labelling set.) The Thue number of a graph is the minimal cardinality of a labelling set for
which the graph admits a non-repetitive labelling.

We define a labelling of a directed graph to be non-repetitive if there does not exist a
non-trivial embedded path graph γ = e1, . . . , e2n such that for all 1 6 i 6 n the label of the
directed edge ei is equal to the label of the directed edge ei+n. Note that, given an undirected
graph with a non-repetitive labelling, any choice of orientation gives rise to a non-repetitive
labelling of the resulting oriented graph.

Theorem 6.7. Let S be a finite set and let Γ be a graph with finite components and a labelling
by S that is both Gr′(1/6) and non-repetitive. Let G := G(Γ). Every infinite cyclic subgroup H of
G is strongly contracting in X := Cay(G,S). Thus, G has the HEC property.

Proof. By Lemma 5.3, every infinite cyclic subgroup is bounded Hausdorff distance from a
periodic geodesic α. By Lemma 4.3, it is enough to show α is strongly contracting, so we may
assume that H = 〈h〉 acts cocompactly on α, and that h is represented by a cyclically reduced
word v whose powers label α.

Suppose α intersects some embedded component Γ0 in more than a single vertex. Since α is
geodesic, Γ0 ∩ α is an embedded path graph. Since the labelling of Γ is non-repetitive, the label
of this path does not contain a subword of the form ww. However, the labelling of α is repetitive
— it is · · · vv · · · . Thus, |Γ0 ∩ α| < 2|v|. We conclude α is strongly contracting by Theorem 4.1.

By [12, Theorem H], the elementary closure of H is a virtually cyclic hyperbolically
embedded subgroup. �

Suppose that Γ is a directed graph with two labellings L1 : EΓ → S1 and L2 : EΓ → S2.
We define the push-out labelling L : EΓ→ S, where S = S1×S2, by L(e) := (L1(e), L2(e)). We
will write S1 alphabetically and S2 as numerical index, i.e. S± = {aεn | ε ∈ ±1, a ∈ S1, n ∈ S2}.

If L2 : EΓ→ S2 is a non-repetitive labelling of Γ, then for any labelling L1 : EΓ→ S1 the
push-out labelling is a non-repetitive labelling of Γ. Similarly, if L1 : EΓ → S1 satisfies the
C′(1/6)-condition, then so does the push-out labelling.

Theorem 6.8. Let Γ = (Γi)i∈N be a sequence of finite, connected graphs satisfying the
following conditions:

• Γ has bounded valence.
• (girth(Γi))i∈N is an unbounded sequence.
• The ratios girth(Γi)

diam(Γi)
are bounded, uniformly over i, away from 0.

Then there exist an infinite subsequence (Γi j) j∈N of graphs and a finite set S such that (Γi j) j∈N
admits an labelling by S that is both C′(1/6) and non-repetitive.

Proof. A theorem of Osajda [39] says that, given the hypotheses on Γ, there exists an
infinite subsequence (Γi j) j∈N that admits a choice of orientation and a labelling by a finite set
S1 satisfying the C′(1/6)-condition. Alon, et al. [2] show that the Thue number of a bounded
valence undirected graph is bounded by a polynomial function of the valence bound. Since Γ

has bounded valence, there exists a finite set of labels S2 such that Γ admits a non-repetitive
S2–labelling (as undirected graph and, hence, also as directed graph). The push-out of these
two labellings satisfies the theorem. �
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Combining this with Theorem 6.7, we have:

Corollary 6.9. If Γ is as in Theorem 6.8 then G(Γ) has the HEC property.

Corollary 6.10. There exist Gromov monster groups with the HEC property.

More generally, if Γ is a bounded valence graph with a labelling satisfying some property
P such that P is preserved upon passing to a refinement of the labelling, then Γ admits a
labelling that is both P and non-repetitive. For instance, Arzhantseva and Osajda [6] introduced
a ‘lacunary walling condition’ to produce first examples of non-coarsely amenable groups2 with
the Haagerup property. This condition is preserved upon passing to refinements of the labelling,
so the same argument as in Theorem 6.8 yields:

Corollary 6.11. There exist finitely generated, non-coarsely amenable groups with the
Haagerup property and the HEC property.

Not every interesting property of labellings is preserved upon passing to refinements. For
example, the Gr′(λ) condition is not preserved, because in the original labelling there may be a
long labelled path p with distinct label-preserving maps φ1, φ2 : p→ Γ and a label-preserving
automorphism ψ of Γ such that φ2 = ψ ◦ φ1. If ψ fails to be a label-preserving automorphism of
Γ with the refined labelling then p may be too long a piece.

For another example, passing to a refinement can yield a group with non-trivial free factors.
In particular, no property of a labelling that implies the resulting group has Kazhdan’s Property
(T) is preserved by passing to refinements.

Both of the factor labellings in the proof of Theorem 6.8 are produced probabilistically
using the Lovász Local Lemma. For the purpose of proving Theorem 6.6 we construct explicit
examples of labelled graphs satisfying Theorem 6.7, so we get concrete examples of groups
satisfying Theorem 6.6. To construct such examples we use the fact, first observed by Alon, et
al. [2], that a cycle graph has Thue number at most 4, as follows:

Definition 6.12 (Thue-Morse sequence). Define σ : {0, 1}∗ → {0, 1}∗ by σ(0) := 01,
σ(1) := 10. The sequence (xi)i∈N := σ∞(0) is called the Thue-Morse sequence3.

The Thue-Morse sequence famously does not contain any subword of the form www. The
‘first difference’ sequence4 (yi)i∈N ∈ {−1, 0, 1}N defined by yi := xi+1 − xi, where (xi)i∈N is the
Thue-Morse sequence, does not contain any subword of the form ww, which means that it gives
a non-repetitive labelling of the ray graph. Both of these facts are due to Thue [52].

A cycle graph of length n with edges e0, e1, . . . , en−1 admits a non-repetitive labelling by
{−1, 0, 1,∞} by labelling edge e0 with∞ and labelling edge ei for i > 0 with term yi of the first
difference of the Thue-Morse sequence.

Define Γ := (Γn)n∈N to be a disjoint union of cycle graphs such that |Γn| = 11(44n−19). Give
each of these cycles the non-repetitive {−1, 0, 1,∞}–labelling defined above. Also give Γn the
{a, b}–labelling Rn :=

∏22n
i=22n−21 abi. This is a C′(1/6)–labelling. There are no label-preserving

automorphisms of Γ since the components are cycles of different lengths and are labelled by
positive words that are not proper powers. If p is a piece contained in Γn then, since the gaps
between a’s in the Ri are all different, p contains at most one edge labelled a. The longest
subword of Rn containing at most one a is b22n−1ab22n of length 44n. For n ∈ N, the ratio

44n
11(44n−19) takes maximum value 4/25 < 1/6 at n = 1.

The push-out of these two labellings is an S–labelling of Γ that is both non-repetitive and
C′(1/6), with S := {a−1, a0, a1, a∞, b−1, b0, b1, b∞}.

For each subset I ⊂ N define ΓI := (Γn)n∈I . All of these graphs have non-repetitive, C′(1/6)–
labellings inherited from Γ. By Theorem 6.7, every non-trivial cyclic subgroup of the group GI
defined by ΓI is strongly contracting. The proof of Theorem 6.6 is completed by the following
proposition and the fact that groups defined by C′(1/6)-labelled graphs are torsion-free [26].

2These are groups G whose reduced C∗–algebra C∗red(G) is not exact.
3Sequence A010060 of [50].
4Sequence A029883 of [50].

GSC:http://oeis.org/A010060
GSC:http://oeis.org/A029883
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Proposition 6.13 ([51]). There is a subset I ⊆ 2N of cardinality 2ℵ0 such that given I, J ∈ I,
the groups GI and GJ are quasi-isometric if and only if I = J.

Proof. Choose I to be a collection of infinite subsets of {22n
| n ∈ N} with infinite pairwise

symmetric difference.
Let I, J ∈ I be distinct. Without loss of generality, assume I r J is infinite, and let µ be a

non-atomic ultrafilter on N with µ(I) = 1 and µ(J) = 0.
The asymptotic cone of GJ over µ with scaling sequence (|Rn|)n∈I is an R-tree, while the

asymptotic cone of GI over µ with the same scaling contains a loop of length 1.
If GI and GJ are quasi-isometric then their asymptotic cones are bi-Lipschitz equivalent.

Thus these groups are not quasi-isometric. �
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We introduce and systematically study the concept of a growth tight action. This
generalizes growth tightness for word metrics as initiated by Grigorchuk and de la
Harpe. Given a finitely generated, non-elementary group G acting on a G–space
X, we prove that if G contains a strongly contracting element and if G is not too
badly distorted in X, then the action of G on X is a growth tight action. It follows
that if X is a cocompact, relatively hyperbolic G–space, then the action of G on X
is a growth tight action. This generalizes all previously known results for growth
tightness of cocompact actions: every already known example of a group that admits
a growth tight action and has some infinite, infinite index normal subgroups is
relatively hyperbolic, and, conversely, relatively hyperbolic groups admit growth
tight actions. This also allows us to prove that many CAT(0) groups, including
flip-graph-manifold groups and many Right Angled Artin Groups, and snowflake
groups admit cocompact, growth tight actions. These provide first examples of
non relatively hyperbolic groups admitting interesting growth tight actions. Our
main result applies as well to cusp uniform actions on hyperbolic spaces and to
the action of the mapping class group on Teichmüller space with the Teichmüller
metric. Towards the proof of our main result, we give equivalent characterizations
of strongly contracting elements and produce new examples of group actions with
strongly contracting elements.

0. Introduction

The growth exponent of a setA ⊂ X with respect to a pseudo-metric d is

δA,d := lim sup
r→∞

log #{a ∈ A | d(o, a) 6 r}
r

where # denotes cardinality and o ∈ X is some basepoint. The limit is independent of the choice
of basepoint.

Let G be a finitely generated group. A left invariant pseudo-metric d on G induces a left
invariant pseudo-metric d̄ on any quotient G/Γ of G by d̄(gΓ, g′Γ) := d(gΓ, g′Γ).

Definition 0.1. G is growth tight with respect to d if δG,d > δG/Γ,d̄ for every infinite normal
subgroup Γ P G.

One natural way to put a left invariant metric on a finitely generated group is to choose a
finite generating set and consider the word metric. More generally, pseudo-metrics on a group
are provided by actions of the group on metric spaces. Let X be a G–space, that is, a proper,
geodesic metric space with a properly discontinuous, isometric G–action G y X. The choice
of a basepoint o ∈ X induces a left invariant pseudo-metric on G by dG(g, g′) := dX(g.o, g′.o).

The first two authors supported by the European Research Council (ERC) grant of Goulnara ARZHANTSEVA,
grant agreement #259527 and the Erwin Schrödinger Institute workshop “Geometry of Computation in Groups”.
The second author partially supported by the Austrian Science Fund (FWF):M1717-N25. The third author supported
by NSF grant DMS-1311834.
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Define the growth exponent δG of G with respect to X to be the growth exponent of G with
respect to an induced pseudo-metric dG. This depends only on the G–space X, since a different
choice of basepoint in X defines a pseudo-metric that differs from dG by an additive constant.
Likewise, let δG/Γ denote the growth exponent of G/Γ with respect to a pseudo-metric on G/Γ
induced by dX.

Definition 0.2. G y X is a growth tight action if δG > δG/Γ for every infinite normal
subgroup Γ P G.

Some groups admit growth tight actions for the simple reason that they lack any infinite,
infinite index normal subgroups. For such a group G, every action on a G–space with positive
growth exponent will be growth tight. Exponentially growing simple groups are examples, as, by
the Margulis Normal Subgroup Theorem [41], are irreducible lattices in higher rank semi-simple
Lie groups.

Growth tightness1 for word metrics was introduced and studied by Grigorchuk and de la
Harpe [32], who showed, for example, that a finite rank free group equipped with the word
metric from a free generating set is growth tight. On the other hand, they showed that the
product of a free group with itself, generated by free generating sets of the factors, is not growth
tight. Together with the Normal Subgroup Theorem, these results suggest that for interesting
examples of growth tightness we should examine ‘rank 1’ type behavior. Further evidence for
this idea comes from the work of Sambusetti and collaborators, who in a series of papers [52, 51,
49, 26] prove growth tightness for the action of the fundamental group of a negatively curved
Riemannian manifold on its Riemannian universal cover.

In the study of non-positively curved, or CAT(0), spaces there is a well established idea that
a space may be non-positively curved but have some specific directions that look negatively
curved. More precisely:

Definition 0.3 ([7]). A hyperbolic isometry of a proper CAT(0) space is rank 1 if it has an
axis that does not bound a half-flat.

In Definition 2.17, we introduce the notion for an element of G to be strongly contracting
with respect to G y X. In the case that X is a CAT(0) G–space, the strongly contracting
elements of G are precisely those that act as rank 1 isometries of X (see Theorem 9.1).

In addition to having a strongly contracting element, we will assume that the orbit of G in X
is not too badly distorted. There are two different ways to make this precise.

We say a G–space is C–quasi-convex if there exists a C–quasi-convex G–orbit (see Defi-
nition 1.3 and Definition 1.4). This means that it is possible to travel along geodesics joining
points in the orbit of G without leaving a neighborhood of the orbit.

Theorem ((Theorem 6.4)). Let G be a finitely generated, non-elementary group. Let X be a
quasi-convex G–space. If G contains a strongly contracting element then G y X is a growth
tight action.

Alternatively, we can assume that the growth rate of the number of orbit points that can be
reached by geodesics lying entirely, except near the endpoints, outside a neighborhood of the
orbit is strictly smaller than the growth rate of the group:

Theorem ((Theorem 6.3)). Let G be a finitely generated, non-elementary group. Let X be a
G–space. If G contains a strongly contracting element and there exists a C > 0 such that the
C–complementary growth exponent of G is strictly less than the growth exponent of G, then
G y X is a growth tight action.

See Definition 6.2 for a precise definition of the C–complementary growth exponent.
The proof of Theorem 6.4 is a special case of the proof of Theorem 6.3.
Using Theorem 6.4, we prove:

1Grigorchuk and de la Harpe define growth tightness in terms of ‘growth rate’, which is just the exponentiation
of our growth exponent. The growth exponent definition is analogous to the notion of ‘volume entropy’ familiar in
Riemannian geometry, and is more compatible with the Poincaré series in Section 1.2.
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Theorem ((Theorem 8.6)). If X is a quasi-convex, relatively hyperbolic G–space and G
does not coarsely fix a peripheral subspace then G y X is a growth tight action.

This generalizes all previously known results for growth tightness of cocompact actions:
every already known example of a group that admits a growth tight action and has some infinite,
infinite index normal subgroups is relatively hyperbolic, and, conversely, relatively hyperbolic
groups admit growth tight actions [4, 50, 61, 51, 48, 26].

We also use Theorem 6.4 to prove growth tightness for actions on non relatively hyperbolic
spaces. For instance, we prove that a group action on a proper CAT(0) space with a rank 1
isometry is growth tight:

Theorem ((Theorem 9.2)). If G is a finitely generated, non-elementary group and X is a
quasi-convex, CAT(0) G–space such that G contains an element that acts as a rank 1 isometry
on X, then G y X is a growth tight action.

Two interesting classes of non relatively hyperbolic groups to which Theorem 9.2 applies
are non-elementary Right Angled Artin Groups, which are non relatively hyperbolic when the
defining graph is connected, and flip-graph-manifolds. These are the first examples of non
relatively hyperbolic groups that admit non-trivial growth tight actions.

Theorem ((Theorem 9.3)). Let Θ be a finite graph that is not a join and has more than one
vertex. The action of the Right Angled Artin Group G defined by Θ on the universal cover X of
the Salvetti complex associated to Θ is a growth tight action.

Theorem ((Theorem 9.4)). Let M be a flip-graph-manifold. Let G and X be the fundamental
group and universal cover, respectively, of M. Then the action of G onX by deck transformations
is a growth tight action.

We even exhibit an infinite family of non relatively hyperbolic, non-CAT(0) groups that
admit cocompact, growth tight actions:

Theorem ((Theorem 11.1)). The Brady-Bridson snowflake groups BB(1, r) for r > 3 admit
cocompact, growth tight actions.

We prove growth tightness for interesting non-quasi-convex actions using Theorem 6.3.
We generalize a theorem of Dal’bo, Peigné, Picaud, and Sambusetti [26] for Kleinian groups
satisfying an additional Parabolic Gap Condition, see Definition 8.8, to cusp-uniform actions on
arbitrary hyperbolic spaces satisfying the Parabolic Gap Condition:

Theorem ((Theorem 8.9)). Let G be a finitely generated, non-elementary group. Let G y X
be a cusp uniform action on a hyperbolic space. Suppose that G satisfies the Parabolic Gap
Condition. Then G y X is a growth tight action.

Once again, our theorems extend beyond actions on relatively hyperbolic spaces, as we use
Theorem 6.3 to prove:

Theorem ((Theorem 10.2)). The action of the mapping class group of a hyperbolic surface
on its Teichmüller space with the Teichmüller metric is a growth tight action.

Mapping class groups, barring exceptional low complexity cases, are neither relatively
hyperbolic nor CAT(0).

In the first seven sections of this paper we prove our main results, Theorem 6.3 and
Theorem 6.4. We show in Proposition 3.1 that if there exists a strongly contracting element for
G y X then every infinite normal subgroup Γ contains a strongly contracting element h. We
prove growth tightness by bounding the growth exponent of a subset that is orthogonal, in a
coarse sense, to every translate of an axis for h.

A dual problem, which is of independent interest, is to find the growth exponent of the
conjugacy class of h. In Section 7 we show that the growth exponent of the conjugacy class of
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a strongly contracting element is exactly half the growth exponent of the group, provided the
strongly contracting element moves the base point far enough.

In Sections 8–11 we produce new examples of group actions with strongly contracting
elements. These include groups acting on relatively hyperbolic metric spaces (Section 8),
certain CAT(0) groups (Section 9), mapping class groups (Section 10), and snowflake groups
(Section 11). Our main theorems imply that all these groups admit growth tight actions. These
are first examples of growth tight actions and groups which do not come from and are not
relatively hyperbolic groups.

0.1. Invariance. Growth tightness is a delicate condition. A construction of Dal’bo, Otal,
and Peigné [25], see Observation 8.1, shows that there exist groups G and non-cocompact,
hyperbolic, equivariantly quasi-isometric G–spaces X and X′ such that G y X is growth tight
and G y X′ is not.

In subsequent work [21], we extend the techniques of this paper to produce the first examples
of groups that admit a growth tight action on one of their Cayley graphs and a non-growth tight
action on another. This answers in the affirmative the following question of Grigorchuk and de
la Harpe [32]:

Question 0.4. Does there exist a word metric for which F2 × F2 is growth tight?

Recall that F2 × F2 is not growth tight with respect to a generating set that is a union of free
generating sets of the two factors.

More generally, a product of infinite groups acting on the l1 product of their Cayley graphs
is not growth tight. Such l1 products and the Dal’bo, Otal, Peigné examples are the only known
general constructions of non-growth tight examples. It would be interesting to have a condition
to exclude growth tightness. One can not hope to bound the growth exponents of quotients away
from that of the group, as Shukhov [55] and Coulon [23] have given examples of hyperbolic
groups and sequences of quotients whose growth exponents limit to that of the group. At present,
growth tightness can only be excluded for a particular action by exhibiting a quotient of the
group by an infinite normal subgroup whose growth exponent is equal to that of the group.

0.2. The Hopf Property. A group G is Hopfian if there is no proper quotient of G isomor-
phic to G.

Let D be a set of pseudo-metrics on G that is quotient-closed, in the sense that if Γ is a
normal subgroup of G such that there exists an isomorphism φ : G → G/Γ, then for every d ∈ D,
the pseudo-metric on G obtained by pulling back via φ the pseudo-metric on G/Γ induced by d
is also in D. For example, the set of word metrics on G coming from finite generating sets is
quotient-closed.

Suppose further thatD contains a minimal growth pseudo-metric d0, i.e., δG,d0 = infd∈D δG,d,
and that G is growth tight with respect to d0.

Proposition 0.5. Let G be a finitely generated group with a bound on the cardinalities of its
finite normal subgroups. Suppose that there exists a quotient-closed set D of pseudo-metrics on
G that contains a growth tight, minimal growth element d0 as above. Then G is Hopfian.

The hypothesis on bounded cardinalities of finite normal subgroups holds for all groups of
interest in this paper, see Theorem 1.12.

Proof. Suppose that Γ is a normal subgroup of G such that G � G/Γ. Let d be the pseudo-
metric on G obtained from pulling back the pseudo-metric on G/Γ induced by d0. Since D
is quotient-closed, d ∈ D. By minimality, δG,d0 6 δG,d, but by growth tightness, δG,d 6 δG,d0 ,
with equality only if Γ is finite. Thus, the only normal subgroups Γ for which we could have
G � G/Γ are finite. However, if G � G/Γ for some finite Γ then G has arbitrarily large finite
normal subgroups, contrary to hypothesis. �

Grigorchuk and de la Harpe [32] suggested this as a possible approach to the question of
whether a non-elementary Gromov hyperbolic group is Hopfian, in the particular case that D is
the set of word metrics on G. Arzhantseva and Lysenok [4] proved that every word metric on a
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non-elementary hyperbolic group is growth tight. They conjectured that the growth exponent
of such a group achieves its infinum on some finite generating set and proved a step towards
this conjecture [3]. Sambusetti [50] gave an examples of a (non-hyperbolic) group for which
the set of word metrics does not realize its infimal growth exponent. In general it is difficult to
determine whether a given group has a generating set that realizes the infimal growth exponent
among word metrics. Part of our motivation for studying growth tight actions is to open new
possibilities for the set D of pseudo-metrics considered above.

Torsion free hyperbolic groups are Hopfian by a theorem of Sela [54]. Reinfeldt and
Weidmann [47] have announced a generalization of Sela’s techniques to hyperbolic groups with
torsion, and concluded that all hyperbolic groups are Hopfian.

0.3. The Rank Rigidity Conjecture. The Rank Rigidity Conjecture [20, 8] asserts that if
X is a locally compact, irreducible, geodesically complete CAT(0) space, and G is an infinite
discrete group acting properly and cocompactly on X, then one of the following holds:

(1) X is a higher rank symmetric space.
(2) X is a Euclidean building of dimension at least 2.
(3) G contains a rank 1 isometry.

In case (1), the Margulis Normal Subgroup Theorem implies that G is trivially growth tight,
since it has no infinite, infinite index normal subgroups. Conjecturally, the Margulis Normal
Subgroup Theorem also holds in case (2). Our Theorem 9.2 says that if X is proper then G y X
is a growth tight action in case (3). Thus, a non-growth tight action of a non-elementary group
on a proper, irreducible CAT(0) space as above would provide a counterexample either to the
Rank Rigidity Conjecture or to the conjecture that the Margulis Normal Subgroup Theorem
applies to Euclidean buildings.

The Rank Rigidity Conjecture is known to be true for many interesting classes of spaces,
such as Hadamard manifolds [6], 2–dimensional, piecewise-Euclidean cell complexs [7], Davis
complexes of Coxeter groups [19], universal covers of Salvetti complexes of Right Angled Artin
Groups [9], and finite dimensional CAT(0) cube complexes [20], so Theorem 9.2 provides many
new examples of growth tight actions.

It is unclear when growth tightness holds if X is reducible. A direct product of infinite
groups acting via a product action on a product space with the l1 metric fails to be growth tight.
However, there are also examples [18] of infinite simple groups acting cocompactly on products
of trees. In [21] we find partial results in the case that the group action is a product action.

0.4. Outline of the Proof of the Main Theorems. Sambusetti [50] proved that a non-
elementary free product of non-trivial groups has a greater growth exponent than that of either
factor. Thus, a strategy to prove growth tightness is to find a subset of G that looks like a free
product, with one factor that grows like the quotient group we are interested in. Specifically:

(1) Find a subset A ⊂ G ⊂ X such that δA = δG/Γ. We will obtain A as a coarsely dense
subset of a minimal section of the quotient map G → G/Γ, see Definition 4.4.

(2) Construct an embedding of a free product set A ∗ Z2 into X. The existence of a
strongly contracting element h ∈ Γ is used in the construction of this embedding, see
Proposition 5.1.

(3) Show that δG/Γ = δA,dX < δA∗Z/2Z,dX 6 δG. In this step it is crucial that A is divergent,
see Definition 1.7 and Lemma 6.1. We use quasi-convexity/complementary growth
exponent to establish divergence.

This outline, due to Sambusetti, is nowadays standard. Typically step (2) is accomplished
by a Ping-Pong argument, making use of fine control on the geometry of the space X. Our
methods are coarser than such a standard approach, and therefore can be applied to a wider
variety of spaces. We use, in particular, a technique of Bestvina, Bromberg, and Fujiwara [11]
to construct an action of G on a quasi-tree. Verifying that the map from the free product set into
X is an embedding amounts to showing that elements in A do not cross certain coarse edges of
the quasi-tree.
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1. Preliminaries

Fix a G–space X. From now on, d is used to denote the metric on X as well as the induced
pseudo-metric on G and G/Γ. Since there will be no possibility of confusion, we suppress d
from the growth exponent notation.

We denote by Br(x) the open ball of radius r about the point x and by Br(A) := ∪x∈ABr(x)
the open r–neighborhood about the set A. The closed r–ball and closed r–neighborhood are
denoted Br(x) and Br(A), respectively.

1.1. Coarse Language. All of the following definitions may be written without specifying
C to indicate that some such C > 0 exists: Two subsetsA andA′ ofX are C–coarsely equivalent
if A ⊂ BC(A′) and A′ ⊂ BC(A). A subset A of X is C–coarsely dense if it is C–coarsely
equivalent to X. A subsetA of X is C–coarsely connected if for every a and a′ inA there exists
a chain a = a0, a1, . . . , an = a′ of points inA with d(ai, ai+1) 6 C.

A pseudo-map φ : X → Y assigns to each point inX a subset φ(x) ofY. A pseudo-map is C–
coarsely well defined if for every x ∈ X the set φ(x) of Y has diameter at most C. Pseudo-maps
φ and φ′ with the same domain and codomain are C–coarsely equivalent or C–coarsely agree
if φ(x) is C–coarsely equivalent to φ′(x) for every x in the domain. A C–coarsely well defined
pseudo-map is called a C–coarse map. From a C–coarse map we can obtain a C–coarsely
equivalent map by selecting one point from every image set. Conversely:

Lemma 1.1. If φ : X → Y is coarsely G–equivariant then there is an equivariant coarse
map coarsely equivalent to φ.

Proof. Suppose there is a C such that d(g.φ(x), φ(g.x)) 6 C for all x ∈ X and g ∈ G. Define
φ′(x) :=

⋃
g∈G g−1.φ(g.x). Then φ′ is G–equivariant and C–coarsely equivalent to φ. �

Definition 1.2. If φ : X → Y is a pseudo-map andA andA′ are subsets ofX, let dφ(A,A′)
denote the diameter of φ(A) ∪ φ(A′).

Definition 1.3. A subset A ⊂ X is C–quasi-convex if for every a0, a1 ∈ A there exists
a geodesic γ between a0 and a1 such that γ ⊂ BC(A). It is C–strongly quasi-convex if every
geodesic with endpoints inA stays in BC(A).

Definition 1.4. A G–space X is C–quasi-convex if it contains a C–quasi-convex G–orbit.

For convenience, if X is a quasi-convex G–space we assume we have chosen a basepoint
o ∈ X such that G.o is quasi-convex.

A group is elementary if it has a finite index cyclic subgroup.

Definition 1.5. Let g ∈ G. The elementary closure of g, denoted by E(g), is the largest
virtually cyclic subgroup containing g, if such a subgroup exists.

A map φ : X → Y is an (M,C)–quasi-isometric embedding, for some M > 1 and C > 0, if,
for all x0, x1 ∈ X:

1
M

d(x0, x1) −C 6 d(φ(x0), (x1)) 6 Md(x0, x1) + C

A map φ is C–coarsely M–Lipschitz if the second inequality holds, and is a quasi-isometry if it
is a quasi-isometric embedding whose image is C–coarsely dense.

An (M,C)–quasi-geodesic is an (M,C)–quasi-isometric embedding of a coarsely connected
subset of R. If γ : I → X is a quasi-geodesic we let γt denote the point γ(t), and let γ denote the
image of γ in X.

Definition 1.6. A quasi-geodesic Q is Morse if for every M > 1 there exists a K > 0 such
that every (M,M)–quasi-geodesic with endpoints on Q is contained in the K–neighborhood of
Q.

We will use notation to simplify some calculations. Let C be a ‘universal constant’. For us
this will usually mean a constant that depends on G y X and a choice of o ∈ X, but not on the
point in X at which quantities a and b are calculated.
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• For a 6 Cb we write a
∗

≺ b.
• For 1

C b 6 a 6 Cb we write a ∗
� b.

• For a 6 b + C we write a
+

≺ b.
• For b −C 6 a 6 b + C we write a +

� b.
• For a 6 Cb + C we write a ≺ b.
• For 1

C b −C 6 a 6 Cb + C we write a � b.

1.2. Poincaré Series and Growth. Let (X, o, d) be a pseudo-metric space with choice of
basepoint. Let |x| := d(o, x) be the induced semi-norm. Define the Poincaré series ofA ⊂ X to
be

ΘA(s) :=
∑
a∈A

exp(−s|a|)

Another related series is:

Θ′A(s) :=
∞∑

n=0

#(Bn(o) ∩A) · exp(−sn)

The series ΘA and Θ′
A

have the same convergence behavior, since ΘA(s) = Θ′
A

(s) · (1 −
exp(−s)). It follows that the growth exponent ofA is a critical exponent for Θ′

A
and ΘA: the

series converge for s greater than the critical exponent and diverge for s less than the critical
exponent.

Definition 1.7. A ⊂ X is divergent if ΘA diverges at its critical exponent.

Since point stabilizers are finite, if A < G and we setA := A.o then ΘA
∗
� ΘA and Θ′A

∗
� Θ′

A
.

This implies δA = δA, so we can compute the growth exponent of A with respect to the pseudo-
metric on A induced by G y X by computing the growth exponent of the A–orbit as a subset of
X.

1.3. The Quasi-tree Construction. We recall the method of Bestvina, Bromberg, and
Fujiwara [11] for producing group actions on quasi-trees. A quasi-tree is a geodesic metric
space that is quasi-isometric to a simplicial tree. Manning [40] gave a characterization of
quasi-trees as spaces satisfying a ‘bottleneck’ property. We use an equivalent formulation:

Definition 1.8 ((Bottleneck Property)). A geodesic metric space satisfies the bottleneck
property if there exists a number ∆ such that for all x and y in X, and for any point m on a
geodesic segment from x to y, every path from x to y passes through B∆(m).

Theorem 1.9 ([40, Theorem 4.6]). A geodesic metric space is a quasi-tree if and only if it
satisfies the bottleneck property.

Let Y be a collection of geodesic metric spaces, and suppose for each X, Y ∈ Y we
have a subset πY(X) ⊂ Y , which is referred to as the projection of X to Y . Let dπY (X,Z) :=
diam πY (X) ∪ πY (Z).

Definition 1.10 ((Projection Axioms)). A set Y with projections as above satisfies the
projection axioms if there exist ξ > 0 such that for all distinct X,Y,Z ∈ Y:

(P0) diam πY (X) 6 ξ
(P1) At most one of dπX(Y,Z), dπY (X,Z), or dπZ(X,Y) is strictly greater than ξ.
(P2) |{V ∈ Y | dπV (X,Y) > ξ}| < ∞

For a motivating example, let G be the fundamental group of a closed hyperbolic surface,
and let H be the axis in H2 of h ∈ G. Let Y be the distinct G–translates of H , and for each
Y ∈ Y let πY be closest point projection to Y . In this example, projection distances arise as
closest point projection in an ambient space containing Y. Bestvina, Bromberg, and Fujiwara
consider abstractly the collection Y and projections satisfying the projection axioms, and build
an ambient space containing a copy of Y such that closest point projection agrees with the given
projections, up to bounded error:
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Theorem 1.11 ([11, Theorem A and Theorem B]). Consider a set Y of geodesic metric
spaces and projections satisfying the projection axioms. There exists a geodesic metric space Y
containing disjoint, isometrically embedded, totally geodesic copies of each Y ∈ Y, such that
for X, Y ∈ Y, closest point projection of X to Y in Y is uniformly coarsely equivalent to πY (X).

The construction is equivariant with respect to any group action that preserves the pro-
jections. Also, if each Y ∈ Y is a quasi-tree, with uniform bottleneck constants, then Y is a
quasi-tree.

The basic idea is that Z is ‘between’ X and Y in Y if dπZ(X,Y) is large, and X and Y are
‘close’ if there is no Z between them. Essentially, Y is constructed by choosing parameters C
and K and connecting every point of πY (X) to every point of πX(Y) by an edge of length K if
there does not exist Z ∈ Y with dπZ(X,Y) > C. For technical reasons one actually must perturb
the projection distances a bounded amount first. Then, if C is chosen sufficiently large and K is
chosen sufficiently large with respect to C, the resulting space is the Y of Theorem 1.11.

1.4. Hyperbolically Embedded Subgroups. Dahmani, Guirardel, and Osin [24] define
the concept of a hyperbolically embedded subgroup. This is a generalization of a peripheral
subgroup of a relatively hyperbolic group. We will not state the definition, as it is technical
and we will not work with this property directly, but it follows from [24, Theorem 4.42] that
E(h) is hyperbolically embedded in G for any strongly contracting element h. The proof of this
theorem proceeds by considering the action of E(h) on a quasi-tree constructed via the method
of Bestvina, Bromberg, and Fujiwara.

We state some results on hyperbolically embedded subgroups that are related to the work in
this paper. These are not used in the proofs of the main theorems.

Theorem 1.12 ([24, Theorem 2.23]). If G has a hyperbolically embedded subgroup then G
has a maximal finite normal subgroup.

Recall that this theorem guarantees one of the hypotheses of Proposition 0.5.

Theorem 1.13. If G contains an infinite order element h such that E(h) is hyperbolically
embedded then G has an infinite, infinite index normal subgroup.

Proof. By [24, Theorem 5.15], for a sufficiently large n, the normal closure of 〈hn〉 in G is
the free product of the conjugates of 〈hn〉. �

This theorem says that our main results are true for interesting reasons, not simply for lack
of normal subgroups.

Minasyan and Osin [42] produce hyperbolically embedded subgroups in certain graphs of
groups. We use these to produce growth tight examples in Theorem 9.5.

Theorem 1.14 ([42, Theorem 4.17]). Let G be a finitely generated, non-elementary group
that splits non-trivially as a graph of groups and is not an ascending HNN-extension. If there
exist two edges of the corresponding Bass-Serre tree whose stabilizers have finite intersection
then G contains an infinite order element h such that E(h) is hyperbolically embedded in G.

2. Contraction and Constriction

In this section we introduce properties called ‘contracting’ and ‘constricting’ that generalize
properties of closest point projection to a geodesic in hyperbolic space, and verify that the ‘strong’
versions of these properties are sufficient to satisfy the projection axioms of Definition 1.10.
These facts are well known to the experts2, but as there is currently no published general
treatment of this material, we provide a detailed account.

2For example, [56] shows the projection axioms are satisfied for constricting elements, without assuming that X
is proper.
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2.1. Contracting and Constricting. In this section we define contracting and constricting
maps and show that the strong versions of these properties are equivalent.

Definition 2.1. A C–coarse map π : X → A is C–coarsely a closest point projection if for
all x there exists an a ∈ A with d(x,A) = d(x, a) such that diam{a} ∪ π(x) 6 C.

Recall dπ(x0, x1) := diam π(x0) ∪ π(x1).

Definition 2.2. π : X → A is (M,C)–contracting for C > 0 and M > 1 if
(1) π and IdA are C–coarsely equivalent onA, and
(2) d(x0, x1) < 1

M d(x0,A) −C implies dπ(x0, x1) 6 C for all x0, x1 ∈ X.
We say π is strongly contracting if it is (1,C)–contracting and d(x, π(x)) − d(x,A) 6 C for all
x ∈ X.

Another formulation of strong contraction says that geodesics far from A have bounded
projections toA:

Definition 2.3. A coarse map π : X → A has the Bounded Geodesic Image Property if
there is a constant C such that for every geodesic L, if L ∩ BC(A) = ∅ then diam(π(L)) 6 C.

Lemma 2.4. If d(x, π(x)) − d(x,A) is uniformly bounded then π has the Bounded Geodesic
Image Property if and only if it is strongly contracting.

Proof. First, assume that π has the Bounded Geodesic Image Property, for some constant
C. Let x be any point in X r BC(A). For any y such that d(x, y) < d(x,A) −C, every geodesic
from x to y remains outside BC(A), so its projection has diameter at most C.

For the converse, suppose π : X → A is a C–coarse map that is (1,C)–contracting and
d(x, π(x)) − d(x,A) 6 C for all x ∈ X. If C = 0 then balls outside of BC(A) project to a single
point, and we are done, so assume C > 0. Let L : [0,T ]→ X be a geodesic that stays outside
B3C(A). Let t0 := d(L0,A)−C, and let s := T − d(LT ,A) +C. If s 6 t0 then dπ(L0,LT ) 6 2C.
Otherwise, define ti+1 := ti + d(Lti ,A) −C, provided ti+1 < s. Each ti+1 − ti > 2C, so we have a
partition of [0,T ] into subintervals [0, t0], [t0, t1], . . . , [tk−1, tk], [tk, s], [s,T ] with k < s−t0

2C , and if
[a, b] is one of these intervals then dπ(La,Lb) 6 C, by strong contraction.

Now,

d(L0,LT ) 6 d(L0, π(L0)) + d(π(L0), π(Lt0)) + d(π(Lt0), π(Ls))
+ d(π(Ls), π(LT )) + d(π(LT ),LT )

6 d(L0, π(L0)) + d(π(LT ),LT ) + C(3 +
s − t0
2C

),

and

d(L0,LT ) = d(L0,Lt0) + d(Lt0 ,Ls) + d(Ls,LT )
= d(L0,A) −C + s − t0 + d(LT ,A) −C,

so
s − t0 6 2(5C + d(L0, π(L0)) − d(L0,A) + d(LT , π(LT )) − d(LT ,A)) 6 14C.

This means k < 7, so dπ(L0,LT ) 6 C(3 + k) < 10C. �

If π is only (M,C)–contracting then a similar argument shows that dπ(L0,LT ) is bounded
in terms of C and log M+1

M−1
(d(L0,A)d(LT ,A)).

We now introduce the notion of a constricting map. Using constricting maps will simplify
some of our proofs, but it turns out that the strong versions of constricting and contracting are
equivalent.

Definition 2.5. A path system is a transitive collection of quasi-geodesics with uniform
constants that is closed under taking subpaths.

A path system is minimizing if, for some C > 0, it contains a path system consisting of
(1,C)–quasi-geodesics.
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Definition 2.6. Let PS be a path system. A coarse map π : X → A is (M,C)–PS–
constricting3 for M > 1 and C > 0 if:

(1) PS contains a path system consisting of (M,C)–quasi-geodesics,
(2) π and IdA are C–coarsely equivalent onA, and
(3) for every P ∈ PS with endpoints x0 and x1, if dπ(x0, x1) > C then d(π(xi),P) 6 C for

both i ∈ {0, 1}.
A coarse map is constricting if it is (M,C)–PS–constricting for some path system PS and
strongly constricting if it is (1,C)–constricting for the path system consisting of all geodesics.

Lemma 2.7. If π : X → A is constricting then it is contracting.

Proof. Suppose π is (M,C)–PS-constricting C–coarse map for a path systemPS consisting
of (M,C)–quasi-geodesics. Suppose P : [0,T ]→ X is a path in PS with P0 = x and PT = y,
and suppose z = Ps ∈ BC(A). Using the fact that P is an (M,C)–quasi-geodesic on the intervals
[0,T ], [0, s], and [s,T ], one sees that d(x, y) > 1

M2 (d(x,A) + d(y,A) − 4C). Therefore, if
d(x, y) < 1

M2 d(x,A) − 4C
M2 then P can not enter BC(A). This would contradict the constricting

property, unless dπ(x, y) 6 C. Therefore π is (M2,max{C, 4C
M2 })–contracting. �

Lemma 2.8. Let π : X → A be an C–coarse map that is (1,C)–PS–constricting. For all
x ∈ X and all r > 0 we have {a ∈ A | d(x, a) 6 d(x,A) + r} ⊂ {a ∈ A | d(a, π(x)) 6 r + 5C}.

In particular, setting r = 0 shows that closest point projection toA is coarsely well defined
and coarsely equivalent to π.

Proof. For x ∈ X and r > 0, let a ∈ A be a point such that d(x, a) 6 d(x,A) + r. Let
P be a (1,C)–quasi-geodesic from x to a in PS. If d(a, π(x)) > 2C then dπ(a, x) > C, so
there is a point z ∈ P ∩ BC(π(x)). Now d(x, z) + C > d(x, π(x)) > d(x,A) > d(x, a) − r.
Since P is a (1,C)–quasi-geodesic, d(x, a) > d(x, z) + d(z, a) − 3C, so d(z, a) 6 r + 4C, and
d(a, π(x)) 6 r + 5C. �

Proposition 2.9. Let π : X → A. The following are equivalent:
(1) π is strongly constricting.
(2) π is constricting for some minimizing path system.
(3) π is strongly contracting.
(4) π has the Bounded Geodesic Image Property and d(x, π(x)) − d(x,A) is uniformly

bounded.

Proof. (1) implies (2) is immediate.
Suppose π is (1,C)–PS–constricting for a minimizing path system PS consisting of (1,C)–

quasi-geodesics. Lemma 2.7 shows π is (1,C′)–contracting. By Lemma 2.8, π is coarsely a
closest point projection, so d(x, π(x)) − d(x,A) is uniformly bounded. Thus, (2) implies (3).

Now suppose π is (1,C)–contracting and d(x, π(x)) − d(x,A) 6 C for all x ∈ X. Take any
geodesic L : [0,T ] → X. If dπ(L0,LT ) > 10C then L ∩ B3C(A) , ∅, as in Lemma 2.4. Let
t = t0, t1 be the first and last times, respectively, such that d(Lt,A) 6 3C. By Lemma 2.4,
dπ(L0,Lt0) 6 10C. Thus, d(π(L0),Lt0) 6 dπ(L0,Lt0) + d(π(Lt0),Lt0) 6 14C. The same
argument shows d(π(LT ),Lt1) 6 14C, so π is (1, 14C)–constricting for the path system of all
geodesics. Thus, (3) implies (1).

(3) is equivalent to (4) by Lemma 2.4. �

2.2. Additional Properties of Contracting and Constricting Maps. We establish some
properties of contracting and constricting maps that will be useful in the sequel.

Lemma 2.10. If π is a (1,C)–strongly constricting C–coarse map and dπ(x, y) > C then
d(x, y) > d(x, π(x)) + dπ(x, y) + d(π(y), y) − 6C.

3Sisto [56] calls this property ‘PS–contracting’. We change the name to avoid conflict with the better established
‘contracting’ terminology of Definition 2.2.



2. CONTRACTION AND CONSTRICTION 123

Proof. Let L be a geodesic from x to y. By strong constriction, there exist s and t such that
d(Ls, π(x)) 6 C and d(Lt, π(y)) 6 C. The lemma follows from the triangle inequality and the
fact that π(x) and π(y) have diameter at most C. �

Lemma 2.11. If π : X → A is strongly constricting then it is coarsely 1–Lipschitz.

Proof. Let π be an C–coarse map that is (1,C)–constricting on the path system of geodesics.
Let x0 and x1 be arbitrary points, and let L be a geodesic from x0 to x1. If dπ(x0, x1) > 4C then
L∩BC(xi) , ∅ for each i, which implies d(x0, x1) > d(x0, π(x0)) + dπ(x0, x1) + d(π(x1), x1)−8C.
Thus, for all x0 and x1, we have dπ(x0, x1) 6 d(x0, x1) + 8C. �

Lemma 2.12. Let π : X → A be an (M,C)–contracting C–coarse map such that d(x, π(x))−
d(x,A) 6 C for all x ∈ X. Fix K > 1. For all sufficiently large D there exists a Tmax such that if
Q : [0,T ]→ X is a (K,K)–quasi-geodesic with d(Q0, A) = D = d(QT ,A) and Q ∩ BD(A) = ∅

then T 6 Tmax.

Proof. Let D > M(K2C + C + K). Let t0 := 0 and let ti+1 be the last time that d(Qti ,Qtt+1) =
1
M d(Qti ,A) − C, provided ti+1 < T . This subdivides [0,T ] into at most 1 + T K

D
M−C−K

intervals
[t0, t1], . . . , [tk,T ], each of which has endpoints whose π–images are distance at most C apart.

Since Q is a quasi-geodesic, T 6 Kd(Q0,QT ) + K2. On the other hand:

d(Q0,QT ) 6 2D + 2C + dπ(Q0,QT ) 6 2D + 2C + C

1 +
T K

D
M −C − K


Combined with the condition on D, this yields an upper bound on T . �

Corollary 2.13. If π : X → A is contracting and d(x, π(x))−d(x,A) is uniformly bounded,
then for all M > 1 and D > 0 there exists a K such that every (M,M)–quasi-geodesic with
endpoints at distance at most D fromA is contained in BK(A).

In particular, ifA is a quasi-geodesic then it is Morse.

Lemma 2.14. Let Q : R → X be a quasi-geodesic, and let π : X → Q be a strongly
contracting projection. For all D > 0 there exists a K such that if P : [0,T ]→ X is a geodesic
and t0 and t1 are such that d(P0,Qt0) 6 D and d(PT ,Qt1) 6 D then Q[t0,t1] ⊂ BK(P).

Proof. By Proposition 2.9, π is strongly constricting, so P passes close to every point in
π(P). Let i and j be numbers in the domain of P, with 0 < j − i 6 1. Let si and s j be such
that Qsi ∈ π(Pi) and Qs j ∈ π(P j). Then si and s j are boundedly far apart, since π is coarsely
1-Lipschitz, by Lemma 2.11, and Q is a quasi-geodesic. Therefore, the diameter of Q[si,s j] is
bounded, and we have already noted that Q(si) and Q(s j) are close to P, since they are in the
image of π. �

Lemma 2.15. Let A and A′ be coarsely equivalent subsets of X. Let σ : A → A′ and
σ̄ : A′ → A be C–coarse maps such that d(a, σ(a)) 6 C for all a ∈ A and d(a′, σ̄(a′)) 6 C for
all a′ ∈ A′. Then πA : X → A is strongly contracting if and only if πA′ := σ ◦ πA : X → A′ is
strongly contracting.

Proof. Suppose πA is (1,C)–contracting and d(x, π(x)) − d(x,A) 6 C for all x ∈ X. If
d(x, y) 6 d(x,A′) − 2C 6 d(x,A) − C then dπ

A′
(x, y) 6 dπ

A
(x, y) + 2C 6 3C, so πA′ is (1, 3C)–

contracting.
Take a point x and let a′ ∈ A′ such that d(x,A′) = d(x, a′). Then d(x, σ̄(a′))−C 6 d(x, a′) 6

d(x, πA′(x)) 6 d(x, πA(x))+2C, so d(x, σ̄(a′)) 6 d(x,A)+3C. By Proposition 2.9, πA is strongly
constricting, so by Lemma 2.8, there is a constant D such that d(πA(x), σ̄(a′)) 6 3C + D. Thus,
πA′ is (5C + D)–coarsely a closest point projection, hence, strongly contracting. �

Lemma 2.16. Let π : X → A be strongly constricting. There exists a number K such that if
d(A, gA) > K then diam π(gA) is bounded, independent of g.

Proof. Let π be (1,C)–strongly constricting. By Proposition 2.9, π is strongly contracting,
so by Corollary 2.13 there is a constant K such that a geodesic with endpoints inA stays in the
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(K −C)–neighborhood ofA. Therefore, a geodesic with endpoints in gA stays in BK−C(gA).
Choose x ∈ gA such that d(x,A) = d(gA,A). For all y ∈ gA, if dπ(x, y) > C then a geodesic
from x to y passes within distance C of π(x) and π(y). This means BC(A) ∩ BK−C(gA) , ∅, so
d(A, gA) 6 K. Thus, if d(A, gA) > K, then dπ(x, y) 6 C, so diam π(gA) 6 2C. �

2.3. Strongly Contracting Elements. We have defined contraction and constriction for
maps. We now give definitions for group elements:

Definition 2.17. An element h ∈ G is called contracting, with respect to G y X, if i 7→ hi.o
is a quasi-geodesic and if there exists a subsetA ⊂ X on which 〈h〉 acts cocompactly and a map
π : X → A that is contracting.

An element h ∈ G is called constricting, with respect to G y X, if i 7→ hi.o is a quasi-
geodesic and if there exists a subsetA ⊂ X on which 〈h〉 acts cocompactly, a G–invariant path
system PS, and a map π : X → A that is PS–constricting.

An element is strongly contracting or strongly constricting if the projection π is, respectively,
strongly contracting or strongly constricting.

For π andA as in the definition, Proposition 2.9 says π is strongly contracting if and only
if it is strongly constricting. Thus, Lemma 2.8 says closest point projection to A is coarsely
well defined and coarsely equivalent to π. Lemma 2.15 says that the choice of the setA only
affects the constants of strong contraction. It follows that an element h is strongly contracting
if and only if i 7→ hi.o is a quasi-geodesic and closest point projection to 〈h〉.o is strongly
contracting. In the remainder of this section we produce more finely tailored choices forA and
π. In particular, we would like π to be compatible with the group action, see Remark 2.22.

Proposition 2.18 ((cf. [24, Lemma 6.5])). Let G be a finitely generated group, and let X
be a G–space. Let h ∈ G be an infinite order element. If there exists a strongly constricting
π : X → 〈h〉.o then:

E(h) = H := {g ∈ G | g〈h〉.o is coarsely equivalent to 〈h〉.o}

Proof. H is a group containing every finite index supergroup of 〈h〉. Let D be the constant
of Lemma 2.16, and let S := {g ∈ G | d(g〈h〉.o, 〈h〉.o) 6 D}. Then Lemma 2.16 implies H ⊂ S .
Since G y X is properly discontinuous, S is contained in finitely many h–orbits, so 〈h〉 < H
has finite index. Therefore, E(h) exists and is equal to H. �

Definition 2.19. If h is a strongly contracting element, define the (quasi)-axis of h, with
respect to the basepoint o, to beH := E(h).o.

Lemma 2.20. If h is a strongly contracting element then there exists an E(h)–equivariant,
strongly contracting coarse map πH : X → H .

Proof. By Proposition 2.9, Lemma 2.8, and Lemma 2.15 any choice of closest point
projection map toH is strongly contracting and coarsely E(h)–equivariant, so, by Lemma 1.1,
we can replace it by a coarsely equivalent, E(h)–equivariant coarse map, which will still be
strongly contracting, by Lemma 2.15. �

Definition 2.21. From the projection πH of Lemma 2.20 define strongly contracting projec-
tions onto each translate ofH by πgH : X → gH : x 7→ g.πH (g−1.x).

If g′H = gH then g−1g′ ∈ E(h) so Lemma 2.20 implies πg′H (x) = πgH (x) for all x ∈ X.

Remark 2.22. The projections of Definition 2.21 satisfy g.πH (x) = πgH (g.x) for all x ∈ X
and g ∈ G.

2.4. Strongly Contracting Elements and the Projection Axioms. Let h ∈ G be a strongly
contracting element with respect to G y X. Let H be a quasi-axis of h defined in Defini-
tion 2.19. We wish to apply Theorem 1.11 to the collection of G–translates of H with the
projections of Definition 2.21. To see that the hypotheses of the theorem are satisfied, we first
embedH into a geodesic metric space and then verify the projection axioms of Definition 1.10.
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Choose representatives 1 = g0, . . . , gn−1 for 〈h〉\E(h), so that for each i we have d(gi.o, o) =

ming∈〈h〉gi d(g.o, o). Let gn := h. Let Ĥ be the Cayley graph of E(h) with respect to the
generating set {g1, . . . , gn}. The graph Ĥ becomes a geodesic metric space by assigning each
edge length one, and it is a quasi-tree since E(h) is virtually cyclic.

Choose representatives 1 = f0, f1, . . . for G/E(h). Let Y be a disjoint union of copies of
Ĥ , one for each fiE(h) ∈ G/E(h), denoted fiĤ . The orbit map fiĤ → fiH := fie 7→ fie.o
is a quasi-isometric embedding, so its inverse φ fiH : fiH → fiĤ is a coarse map that is a
quasi-isometry. Define π fiĤ

( f jĤ) := φ fi(π fiH ( f jH)). Since φ fi is a quasi-isometry it suffices to
check the projection axioms on translates ofH in X.

Lemma 2.23 (Axiom (P0)). There is a uniform bound on the diameter of πH (gH) for
g < E(h).

Proof. Let πH : X → H be (1,C′)–strongly constricting. Let Q : R� H be an (M,C′′)–
quasi-geodesic parameterization that agrees with i 7→ hi.o on the integers. Replace C′ and C′′

by C := max{C′,C′′}.
Let D := diam〈h〉\H . Let K be large enough so that if P is a geodesic with d(Ps0 ,Qt0) 6 C

and d(Ps1 ,Qt1) 6 C then P[s0,s1] ⊂ BK(Q[t0,t1]) and Q[s0,s1] ⊂ BK(P[t0,t1]), as in Corollary 2.13
and Lemma 2.14.

Suppose g < E(h). For a pair of points x0, x1 ∈ gH , take t0 and t1 such that Qti ∈ πH (xi) for
each i. Let P be a geodesic connecting x0 to x1. If dπ

H
(x0, x1) > C then for each i there exists si

such that d(Psi ,Qti) 6 C.
NowQ[t0,t1] is K–close toP[s0,s1], which in turn is K–close to a subinterval of gH . Therefore,

for each integer i ∈ [t0, t1] there is an integer αi such that d(hi.o, ghαig−1.o) 6 2K + D.
If for some i , j we have h−ighαig−1.o = h− jghα jg−1.o, then h j−i = ghα j−αig−1, which

implies 〈h〉 and 〈ghg−1〉 are commensurable. However, this would imply g ∈ E(h), contrary
to hypothesis. Therefore, for each integer i in [t0, t1] we get a distinct point h−ighαig−1.o ∈
B2K+D(o). Since the action of G is properly discontinuous, the number of orbit points in
B2K+D(o) is finite, so diam πH (gH) is bounded, independent of g. �

Lemma 2.24 (Axiom (P1)). For all sufficiently large ξ and for any X, Y, Z ∈ Y, at most one
of dπX(Y,Z), dπY (X,Z), and dπZ(X,Y) is greater than ξ.

Proof. Suppose πY is (1,C)–strongly constricting. Let ξ′ be the constant from Lemma 2.23.
Let ξ > 2ξ′+14C. Suppose that dπX(Y,Z) > ξ. We show dπX(Y,Z) 6 ξ; the inequality dπZ(X,Y) 6 ξ
follows by a similar argument.

Take any point z ∈ Z, and let y ∈ Y be a point such that d(z, y) = d(z,Y). Let L : [0,T ]→ X
be a geodesic from z to y. For every point of L, y is the closest point of Y . By Lemma 2.8,
πY (L) ⊂ B5C(y). Now, dπX(Y,Z) > ξ implies dπX(L0,LT ) > C, so there is a z′ ∈ L and x ∈ X
with d(x, z′) 6 D. By Lemma 2.11, πY is 8C–coarsely 1–Lipschitz, which means dπY (x, z′) 6 9C.
Thus, dπY (X,Z) 6 2ξ′ + dπY (x, z) 6 2ξ′ + 5C + dπY (x, z′) 6 2ξ′ + 14C 6 ξ. �

Lemma 2.25 (Axiom (P2)). For all sufficiently large ξ and for all X, Y ∈ Y, the set {V ∈ Y |
dπV (X,Y) > ξ} is finite.

Proof. Let ξ′ be the constant of Lemma 2.23. Suppose πH is (1,C)–strongly constricting.
Let ξ > C + 2ξ′. Take arbitrary X, Y ∈ Y, and let L be a geodesic from some point in πX(Y) to
some point in πY(X). If dπV(X,Y) > ξ then dπV (L0,LT ) > C, so L comes within distance C of
V . By proper discontinuity of the action, there are only finitely many elements of Y that come
within distance C of the finite geodesic L. �

Definition 2.26. Let Y be the quasi-tree produced by Theorem 1.11 from Y. Let ? ∈ Y
be the vertex corresponding to o ∈ X. Let π̂gĤ : Y → gĤ be closest point projection to the

isometrically embedded copy of gĤ in Y, which the theorem says coarsely agrees with πgĤ .
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Definition 2.27. Define uniform quasi-isometric embeddings φgH : gH → Y for each
translate gH ofH by sending gH to fiĤ via φ fi , where g ∈ fiE(h), and postcomposing by the
isometric embedding of fiĤ into Y provided by Theorem 1.11.

Proposition 2.28. If there is a strongly contracting element for G y X then G has non-zero
growth exponent.

Proof. [11, Proposition 3.23] says G contains a free subgroup, so it has exponential growth.
�

3. Abundance of Strongly Contracting Elements

In this section we show that strongly contracting elements are abundant:

Proposition 3.1. If G contains a strongly contracting element for G y X then so does every
infinite normal subgroup.

In effect, the proposition reduces the problem of growth tightness for arbitrary quotients of
G to quotients by the normal closure of a strongly contracting element.

Given a strongly contracting element h ∈ G and an infinite normal subgroup Γ of G we find
an element g ∈ Γ such that f := ghng−1h−n ∈ Γ is strongly contracting for all sufficiently large n.
To prove f is strongly contracting we follow a standard strategy by showing that an axis for f
has ‘long’ (� n) segments in contracting sets, separated by ‘short’ (= d(o, g.o)) hops between
such segments. For each x ∈ X there is, coarsely, a unique one of these segments such that the
projection of x transitions from landing at the end of the segment to landing at the beginning of
the segment. We use this transition point to define the projection to the f –axis, and verify that
this projection is strongly contracting.

We first prove some preliminary lemmas.

Lemma 3.2. Let h ∈ G be an infinite order element and π : X → 〈h〉.o a contracting coarse
map such that d(x, π(x)) − d(x,A) is uniformly bounded. Then i 7→ hi.o is a quasi-geodesic.

Proof. Take any α < β in Z. By the triangle inequality, d(hα.o, hβ.o)
∗

≺ (β − α). We
now prove the opposite inequality. Let L : [0,T ] → X be a geodesic from hα.o to hβ.o. By
Corollary 2.13, there exists a D such that for every i ∈ [0,T ] ∩ Z there exists an α 6 αi 6 β
such that d(Li, hαi.o) 6 D. Since the action of G on X is properly discontinuous, there exists
a maximum γ such that d(o, hγ.o) 6 2D + 1, so αi+1 − αi 6 γ for all i. Setting α0 := α and
αdT e := β, we have β − α =

∑dT e−1
i=0 αi+1 − αi 6 γdT e 6 γ(d(hα.o, hβ.o) + 1). �

Fix a strongly contracting element h, and let Y be the quasi-tree of Definition 2.26, with
bottleneck constant ∆.

Lemma 3.3. There exists K > 0 such that dπ
H

(o, g1.o)− dπ
H

(g1.o, g0.o) > K implies g0.? and
g1.? are contained in the same component of Y r B∆(?).

Proof. Let D := diam〈h〉\Ĥ in Y. For each i ∈ {0, 1}, choose an mi such that we have
d(hmi.?, π̂

Ĥ
(gi.?)) 6 D. Choose a geodesic L from ? to h.?. Take M > 0 such that hm.L ∩

B∆(?) = ∅ when |m| ≥ M.
For each i, |mi| � d(hmi.?, ?) � K, so for sufficiently large K we have d(hmi.?, ?) > 2∆ + D

and |mi| > M. Furthermore, m0 and m1 must have the same sign if K is large enough: by
Lemma 2.14, the interval ofH between hm0.o and hm1.o stays close to a geodesic between hm0.o
and hm1.o, so if m0 and m1 have different signs:

dπ
H

(g0.o, g1.o) +
� d(hm0.o, hm1.o) +

� d(o, hm0.o) + d(o, hm1.o) +
� dπ

H
(o, g0.o) + dπ

H
(o, g1.o)

However, dπ
H

(g0.o, g1.o) 6 dπ
H

(o, g1.o) − K, so this would imply

K
+

≺ dπ
H

(o, g0.o)
+

≺ −K,

which is false for sufficiently large K.
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No geodesic between gi.? and hmi.? enters B∆(?), since this would imply:

d(hm1.?, ?) 6 2∆ + D

For min{m0,m1} 6 m 6 max{m0,m1} − 1 the geodesic hm.L stays outside B∆(?) since m0
and m1 have the same sign and magnitude at least M, which implies |m| > M.

By concatenating such geodesics, we construct a path from g0.? to g1.? in Y r B∆(?). �

Corollary 3.4. There exists an N > 0 such that for all n > N the points hn.? and hN.? are
in the same component of Y r B∆(?).

Proof. Take N large enough so that dπ
H

(o, hn.o) > K + d(o, h.o) + 2C for all n > N. Then
dπ
H

(o, hn+1.o) − dπ
H

(hn.o, hn+1.o) > K. Apply Lemma 3.3. �

Definition 3.5. Call the component of Y r B∆(g.?) containing ghn.? for all sufficiently
large n the gh∞ component and the component containing gh−n.? for all sufficiently large n the
gh−∞ component.

Lemma 3.6. For some K > 0 suppose g0 and g1 are elements of G such that g0H , g1H

and dπg0H
(g0.o, g1.o) 6 K and dπg1H

(g0.o, g1.o) 6 K. Then there exists an N > 0 such that for all
n > N, ε0, ε1 ∈ {±1}, and f0, f1 ∈ {g0, g1}

• the ballsB∆( f0hε0n/2.?) andB∆( f1hε1n/2.?) inY are disjoint unless f0 = f1 and ε0 = ε1,
• f0.? and f1.? are in the f0h−ε0∞ component of Y r B∆( f0hε0n/2.?), and
• f0hε0n.? and f0hε0n f1.? are in the f0hε0∞ component of Y r B∆( f0hε0n/2.?).

Proof. B∆( f0hn/2.?) and B∆( f0h−n/2.?) are disjoint for all sufficiently large n since i 7→ hi.?

is a quasi-geodesic. In the other cases, f0H and f1H are distinct axes, so f0Ĥ and f1Ĥ
are disjoint. For each i ∈ {0, 1}, the bounds dπfiH ( fi.o, f1−i.o) 6 K imply that the closest point

projection π̂ fiĤ
( f1−iĤ) of f1−iĤ to fiĤ is contained in a bounded neighborhood of fi.?. For any

point y.? ∈ B∆( f1hε1n/2.?) r f1Ĥ , we have that π̂ f1Ĥ
(yĤ) is 2∆–close to f1hε1n/2.?. Therefore

dπ
f1Ĥ

( f0Ĥ , yĤ) +
� d( f1.?, f1hε1n/2.?) � n,

so for n sufficiently large we can make dπ
f1Ĥ

( f0Ĥ , yĤ) larger then the constant ξ of projection

axiom (P1), which implies dπ
f0Ĥ

( f1Ĥ , yĤ) 6 ξ. On the other hand, B∆( f0hε0n/2.?) projects close

to f0hε0n/2.? in f0Ĥ , so for large enough n the balls have disjoint projections, which means the
balls are disjoint.

For the second statement, suppose N is large enough so that for all n > N we have
d(o, hn/2.o) > K′ + K + 2C, where K′ is the constant of Lemma 3.3. Then

dπf0H ( f0hε0n/2.o, f0.o) − dπf0H ( f0.o, f1.o) > K′,

so Lemma 3.3 implies f0.? and f1.? are in the same component of Y r B∆( f0hε0n/2.?). If, in
addition, N is at least twice the constant of Corollary 3.4, then this is the f0h−ε0∞ component.

The proof of the third statement is similar. �

Proof of Proposition 3.1. Strongly constricting is the same as strongly contracting, by
Proposition 2.9, so suppose h is a (1,C)–strongly constricting element. By Lemma 2.8, there
exists a D such that πH is D–coarsely equivalent to closest point projection. Recall that D > C.
By Lemma 2.11, there exists a D′ such that πH is D′–coarsely 1-Lipschitz.

Let Γ be an infinite normal subgroup of G. Every infinite order element of E(h) is strongly
contracting, so if Γ contains such an element we are done. Otherwise, Γ ∩ E(h) is finite. Since Γ

is infinite, there exists an element g ∈ Γ such that g < E(h). We claim that for sufficiently large
n the element f := ghng−1h−n ∈ Γ is strongly constricting.

For brevity, let f i+1/2 denote f ighn. Let Âi := f i/2Ĥ and Ai := f i/2H . Define B0 :=
B∆(hn/2.?), B1 := B∆( f 1/2h−n/2.?), and B2k+i := f kBi for k ∈ Z. Let Ẑi := f i/2h(−1)in.? ∈ Y

andZi := f i/2h(−1)in.o ∈ X. Let V̂i := f i/2.? ∈ Y andVi := f i/2.o ∈ X. See Figure 1.
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Bi−1
Bi Bi+1

Bi+2

Âi

Âi+1

Âi+2

Âi−1

Ẑi V̂i Ẑi+2

V̂i−1 Ẑi+1 V̂i+1

Figure 1. Disjoint balls in Y.

By repeated applications of Lemma 3.6, for large enough n the balls Bi are pairwise
disjoint. There are two orbits of these balls under the f –action, so f is an infinite order element.
Furthermore, the balls are linearly ordered by separation, consistent with the subscripts, since
for all i we have that B j is contained in the f i/2h(−1)i+1∞ component of Y r Bi for all j > i, and
in the f i/2h(−1)i∞ component for all j < i.

For any i and any j < i−1 the ball Bi−1 separates Â j from Âi inY, so π̂Âi
(Â j) is contained

in a bounded neighborhood of π̂Âi
(Âi−1), which in turn we know is contained in a bounded

neighborhood of Ẑi. Conversely, π̂Âi
(Â j) is contained in a bounded neighborhood of V̂i for

j > i. Since π̂Âi
agrees with πAi up to bounded error, the same statements are true for the axes

in X. That is, there exists a K, independent of n, such that for all i we have
• dπ

Ai
(Zi,A j) 6 K if j < i, and

• dπ
Ai

(Vi,A j) 6 K if j > i.
Define K′ := 2K + C + 2D + D′.

Suppose that for some x ∈ X there exists an i such that dπ
Ai

(x,Vi) > K′. Then for any j > i
we have d(πAi(x), πAi(A j)) > D > C. Let y be a point ofA j closest to x. On any given geodesic
from x to y there is a point z ∈ BC+K(Vi), since dπ

Ai
(x, y) > C. Now πA j is D–coarsely equivalent

to closest point projection, and y is closest to both x and z, so dπ
A j

(x, z) 6 2D. However, z is
(C + K)–close toVi, and dπ

A j
(Vi,Z j) 6 K, so dπ

A j
(x,Z j) 6 2D + C + K + D′ + K = K′.

We have shown that dπ
Ai

(x,Vi) > K′ implies dπ
A j

(x,Z j) 6 K′ for all j > i. A similar
argument shows that dπ

Ai
(x,Zi) > K′ implies dπ

A j
(x,V j) 6 K′ for all j < i.

Assume that n is large enough so that dπ
A0

(Z0,V0) = dπ
H

(hn.o, o) > 2K′+2C+2D+d(o, g.o).
Define F := ∪i∈Z{Vi}. We wish to define πF : X → F by sending a point x to the point Vα

where α is the greatest integer such that dπ
Aα

(x,Vα) 6 K′, but we must verify that such an α
exists. Fix an x ∈ X, and suppose that ι ∈ Z is such that d(x,Aι) = min j∈Z d(x,A j). Such
an ι exists since the action is properly discontinuous. Suppose that dπ

Aι
(x,Vι) 6 K′. By the

assumption on n, dπ
Aι

(x,Zι) > K′, so dπ
A j

(x,Vι) 6 K′ for all j < ι. A brief computation shows
that dπ

Aι+1
(x,Zι+1) 6 d(x,Aι+1) + d(o, g.o) + K′ + 2C + D. By Lemma 2.8, d(Zι+1, πAι+1(x)) 6

d(o, g.o) + K′ + 2C + 2D, which, again by our assumption on n, implies dπ
Aι+1

(x,Vι+1) > K′. We
conclude that α 6 ι. The previous paragraph then tells us that dπ

A j
(x,Z j) 6 K′ for all j > α + 1.

BK′ (Zi+1) BK′ (Vi+1) BK′ (Zi+3)

BK′ (Vi) BK′ (Zi+2) BK′ (Vi+2)
x○y○ x○ y○

x○ y○ x○y○

Figure 2. Projections x○ of x and y○ of y to each axis.

Now suppose x and y are points with πF (x) = Vi and πF (y) = V j for j > i + 1. Then for
each i + 2 6 k 6 j we have dπ

Ak
(x, y) > dπ

Ak
(Zk,Vk) − 2K′ > C. Figure 2 depicts a situation

with j = i + 2 that shows j > i + 1 is necessary, since the projections toAi+1 may be close. By
the strong constriction property for eachAk, every geodesic from x to y passes (C + K′)–close
to Zk and Vk. So every geodesic passes within C + K′ of πF (y) = V j and within C + K′ of
Zi+2, which boundedly close to πF (x) = Vi.
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Therefore, πF is (1,max{d(V0,V2),C+K′+d(V0,Z2)})–strongly constricting. Lemma 3.2
says i 7→ f i.o is a quasi-geodesic, so f ∈ Γ is a strongly contracting element. �

4. A Minimal Section

Let X be a G–space with basepoint o. Suppose that there exists a strongly contracting
element for G y X. Let Γ be an infinite normal subgroup of G. By Proposition 3.1, there exists
a strongly contracting element h ∈ Γ. LetH = E(h).o be an axis for h, and define equivariant
projections to translates ofH as in Definition 2.21. Suppose πH is a (1,C)–strongly constricting
C–coarse map.

Definition 4.1. For each element gΓ ∈ G/Γ choose an element ḡ ∈ gΓ such that d(o, ḡ.o) =

d(o, gΓ.o) = d(Γ.o, gΓ.o). Let Ḡ := {ḡ | gΓ ∈ G/Γ}. We call Ḡ a minimal section, and let Ḡ
denote Ḡ.o.

Observe that Θ′G/Γ(s) = Θ′
Ḡ

(s), so δG/Γ = δḠ.
The next lemma says, coarsely, that the minimal section is orthogonal to translates ofH .

Lemma 4.2. For every ḡ ∈ Ḡ and for every f ∈ G we have dπfH (o, ḡ.o) 6 8C + D, where
D := diam〈h〉\H .

Proof. Suppose not. Then there exists an n , 0 such that:

D > d(π fH (o), f hn f −1.π fH (ḡ.o))

> dπfH (o, f hn f −1ḡ.o) − 2C

Thus, dπfH (o, ḡ.o) − dπfH (o, f hn f −1ḡ.o) > 6C. However:

d(o, f hn f −1ḡ.o)

6 d(o, π fH (o)) + dπfH (o, f hn f −1ḡ.o) + d(π fH ( f hn f −1ḡ.o), f hn f −1ḡ.o)

< d(o, π fH (o)) + dπfH (o, ḡ.o) + d(π fH ( f hn f −1ḡ.o), f hn f −1ḡ.o) − 6C

= d(o, π fH (o)) + dπfH (o, ḡ.o) + d(π fH (ḡ.o), ḡ.o) − 6C

6 d(o, ḡ.o) (by Lemma 2.10)

This contradicts minimality of Ḡ, since f hn f −1ḡ = ḡḡ−1 f hn f −1ḡ ∈ ḡΓ. �

Corollary 4.3. If d(ḡ.o, ḡ′.o) > 18C + 2D for ḡ, ḡ′ ∈ Ḡ then there is no f ∈ G such that
ḡ.o ∈ fH and ḡ′.o ∈ fH .

Proof. If there were such an f , we would have dπfH (ḡ.o, ḡ′.o) > 2(8C + D), which means
either ḡ or ḡ′ would contradict Lemma 4.2. �

In light of Corollary 4.3, it will be convenient to pass to a coarsely dense subset of Ḡ whose
elements yield distinct translates ofH :

Definition 4.4. Let K > 18C + 2D, and let A be a maximal subset of Ḡ such that 1 ∈ A and
d(ḡ.o, ḡ′.o) > K for all distinct ḡ, ḡ′ ∈ A. LetA := A.o.

By maximality, for every ḡ ∈ Ḡ there is some a ∈ A such that d(a.o, ḡ.o) 6 K. There are
boundedly many points of Ḡ in a ball of radius K, so ΘḠ(s) is bounded below by ΘA(s) and
above by a constant multiple of ΘA(s). In particular, ΘA(s) has the same convergence behavior
as ΘḠ(s), so δA = δḠ = δG/Γ.

Corollary 4.3 implies aH , a′H for distinct a, a′ ∈ A.
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5. Embedding a Free Product Set

Let A ⊂ Ḡ as in Definition 4.4, and let A∗ := A r {1}. Consider the free product set
A∗∗ Z2 :=

⋃∞
k=1{(a1, . . . , ak) | ai ∈ A∗}. For any n > 0 we can map the free product set into G

by φn : (a1, . . . , ak) 7→ a1hna2hn· · · akhn. Our goal is to show δφn(A∗∗Z2) > δA. We establish the
inequality in the next section. In this section we show φn is an injection for all sufficiently large
n. In fact, we prove something stronger:

Proposition 5.1. The map A∗∗ Z2 → G : (a1, . . . , ak) 7→ a1hn· · · anhn.o is an injection for
all sufficiently large n.

The map is an injection because we have an action of G on the quasi-tree Y, and for large
enough n we have “quasi-edges” of the form [y, yhn]. We have set things up so that the a’s do
not backtrack across such edges. See Figure 3. We make this precise:

Proof. Let a = (a1, . . . , ak) ∈ A∗ ∗ Z2.
By Lemma 4.2, there is a K such that dπfH (o, ḡ.o) 6 K for every f ∈ G and every ḡ ∈ Ḡ.

The choice of A ⊂ Ḡ in Definition 4.4 guarantees that the axes aH for a ∈ A are distinct. Let N
be the constant of Lemma 3.6 for this K, and choose n > N.

Note that the proof of Lemma 3.6 includes the fact that d(o, hn/2.o) > K′ + K + 2C, where
K′ is the constant of Lemma 3.3. Therefore, if φn(a).o = φn(a′).o then

dπφn(a)H (φn(a).o, φn(a)h−n/2.o) − dπφn(a)H (φn(a).o, φn(a′).o) ≥ K′ + C > K′,

so Lemma 3.3 implies φn(a).? and φn(a′).?, though they might not be equal, are at least
contained in the same component of Y r B∆(φn(a)h−n/2.?).

hn.?
?

a1.?

a′1.?
a1hna2.?

a1hn.?

a1hna2hn.?

a′1hn.?

B∆(a1hna2hn/2.?)

B∆(hn/2.?)B∆(h−n/2.?)

B∆(a′1hn/2.?)

B∆(a1hn/2.?)

Figure 3. A does not cross hn quasi-edges

DefineVi(a) to be the a1hn · · · aih∞ component ofYrB∆(a1hn · · · aihn/2.?) for i 6 k (recall
Definition 3.5). Lemma 3.6 implies thatVi(a) ⊃ Vi+1(a) and φn(a).? ∈ Vk(a). Moreover, for
i ≤ min{k, k′},Vi(a) andVi(a′) are disjoint unless a j = a′j for all j 6 i.

If φn(a).o = o then Lemma 3.3 implies ? ∈ Vk(a) ⊂ V1(a). This contradicts the fact that ?
is contained in the a1h−∞ component of Y r B∆(a1hn/2.?). The same argument shows that if a
is a proper prefix of a′, that is, if a = (a1, . . . , ak) and a′ = (a1, . . . , ak, a′k+1, . . . , a

′
k′) with k′ > k,

then φn(a).o , φn(a′).o.
Suppose φn(a).o = φn(a′).o with k 6 k′. Lemma 3.3 implies φn(a).? ∈ Vk′(a′), so ai = a′i

for all i 6 k. Since a cannot be a proper prefix of a′, k = k′. Hence, φn(a).o = φn(a′).o implies
a = a′ for all sufficiently large n. �

6. Growth Gap

A free product of groups has greater growth exponent than the factor groups, with respect to
a word metric, so we expect that φn(A∗∗ Z2) should have a larger growth exponent than A. To
verify this intuition, one must show that the Poincaré series for φn(A∗∗ Z2) diverges at δA + ε for
some ε > 0. A clever manipulation of Poincaré series yields the following criterion:
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Lemma 6.1 ([26, Criterion 2.4],[50, Proposition 2.3]). If the map

φn : A∗∗ Z2 → G : (a1, . . . , ak) 7→ a1hn· · · akhn

is an injection, and if exp(|hn| · δA) < ΘA(δA), then δφn(A∗∗Z2) > δA.

Because our methods are coarse we have passed to a high power hn of h and therefore do not
have control over |hn|. However, the criterion is satisfied automatically if A, or, equivalently, Ḡ,
is divergent, which, recalling Definition 1.7, means ΘA diverges at δA. The following definition
will be used in a condition to guarantee divergence of Ḡ.

Definition 6.2. Let CompG
Q, r ⊂ G.o be the set of points g.o such that there exists a geodesic

[x, y] of length r with x ∈ BQ(o) and y ∈ BQ(g.o) whose interior is contained in X r BQ(G.o).
Define the Q–complementary growth exponent of G to be:

δc
G := lim sup

r→∞

log #CompG
Q, r

r

Theorem 6.3. Let G be a finitely generated, non-elementary group. LetX be a G–space. If G
contains a strongly contracting element and there exists a Q > 0 such that the Q–complementary
growth exponent of G is strictly less than the growth exponent of G, then G y X is a growth
tight action.

The proof of Theorem 6.3 follows in part the proof of [26, Theorem 1.4] for geometrically
finite Kleinian groups. For the divergence part of the proof, the Kleinian group ingredients of
[26, Theorem 1.4] are inessential, and our changes are mostly cosmetic. The real generalization
is in the use of Proposition 5.1 instead of a Ping-Pong argument.

Proof. Let Γ be an infinite, infinite index normal subgroup of G. By Proposition 3.1, there
is a strongly contracting element in Γ. Let Ḡ be a minimal section of G/Γ. If δḠ 6 δ

c
G then we

are done, since δc
G < δG, so suppose δḠ > δc

G.

Claim 6.3.1. Ḡ is divergent.

Assume the claim, and let A be a maximal separated set in Ḡ as in Definition 4.4. Then
A and Ḡ have the same critical exponent, and are both divergent. By Proposition 5.1, for
sufficiently large n the map φn : A∗∗ Z2 → G is an injection. By Lemma 6.1, δA < δφn(A∗∗Z).
Thus, δG/Γ = δA < δφn(A∗∗Z2) 6 δG.

It remains to prove the claim.
Let r > 0, and suppose d(o, ḡ.o) = r. Let 0 6 M0 6 r and M1 = r − M0. Choose a geodesic

[o, ḡ.o] from o to ḡ.o, and let [o, ḡ.o](M0) denote the point of [o, ḡ.o] at distance M0 from o.

BQ(o)

o ḡ.og0.o g1.o

x0 x1

[o, ḡ.o]

Figure 4. Splitting a geodesic into three subsegments

First, we suppose that [o, ḡ.o](M0) ∈ X r BQ(G.o). Let [x0, x1] ⊂ [o, ḡ.o] be the largest
subsegment containing [o, ḡ.o](M0) such that (x0, x1) ⊂ X r BQ(G.o). Let m0 = d(o, x0), and
let m1 = d(x1, ḡ.o). There exist group elements gi ∈ G such that d(gi.o, xi) 6 Q. See Figure 4.
We have ḡ.o = g0 · g−1

0 g1 · g−1
1 ḡ.o. Now m0 − Q 6 d(o, ḡ0.o) 6 d(o, g0.o) 6 m0 + Q, and

m1 − Q 6 d(o, g−1
1 ḡ.o) 6 d(o, g−1

1 ḡ.o) 6 m1 + Q. Furthermore, g−1
0 g1 ∈ CompG

Q, r−(m0+m1). Thus,
the point ḡ.o can be expressed as a product of an element of Ḡ of length m0 ± Q, an element of
Ḡ of length m1 ± Q, and the quotient of an element of CompG

Q, r−(m0+m1).
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(†)
The same is also true if [o, ḡ.o](M0) ∈ BQ(G.o), in which case we can take m0 = M0
and m1 = r − m0. Then choose g0 = g1 so that the contribution from CompG

Q, r−(m0+m1)
is trivial.

Let Vr,Q := #
(
Ḡ.o ∩ Br+Q(o) r Br−Q(o)

)
. For every M0 + M1 = r we have:

Vr,Q
∗

≺

M0∑
m0=0

M1∑
m1=0

Vm0,Q · Vm1,Q · #CompG
Q, r−(m0+m1)

Choose ξ > 0 such that δḠ > 2ξ + δc
G. Since

#CompG
Q, r−(m0+m1)

∗

≺ exp((r − (m0 + m1))(δḠ − ξ))

whenever r − (m0 + m1) is sufficiently large, it follows that:

(1) Vr,Q · exp(−r(δḠ − ξ))
∗

≺ M0∑
m0=0

Vm0,Q · exp(−m0(δḠ − ξ))

 ·
 M1∑

m1=0

Vm1,Q · exp(−m1(δḠ − ξ))


Set wi := Vi,Q · exp(−i(δḠ − ξ)) and Wi :=

∑i
j=1 wi. Then (1) and [26, Lemma 4.3] imply that∑

i wi · exp(−is) diverges at its critical exponent, which is:

lim sup
i

log wi

i
=

(
lim sup

i

log Vi,Q

i

)
− (δḠ − ξ) = ξ

So∞ =
∑

i wi · exp(iξ) =
∑

i Vi,Q · exp(−iδḠ) ∗
� ΘḠ(δḠ). �

Theorem 6.4. Let G be a finitely generated, non-elementary group. Let X be a quasi-convex
G–space. If G contains a strongly contracting element then G y X is a growth tight action.

Proof. The proof is an easier special case of the proof of Theorem 6.3. If X is Q–quasi-
convex then we can always choose to be in case (†) of the proof. �

7. Growth of Conjugacy Classes

Parkkonen and Paulin [46] ask: given a finitely generated group G with a word metric
and an element h ∈ G, what is growth rate of the conjugacy class [h] of h? In a hyperbolic
group G there is a finite subgroup, the virtual center, consisting of elements whose centralizer is
finite index in G. The growth exponent of a conjugacy class in the virtual center is clearly zero.
Parkkonen and Paulin show that for every element h not in the virtual center, δ[h] = 1

2δG. This
generalized an old result of Huber [38] for the case of G acting cocompactly on the hyperbolic
plane and h loxodromic.

Since strongly contracting elements behave much like infinite order elements in hyperbolic
groups, it is natural to ask whether the growth exponent of the conjugacy class of a strongly
contracting element h also satisfies δ[h] = 1

2δG.
We show that the lower bound holds, and the upper bound holds if h moves the basepoint

sufficiently far with respect to the contraction constant for the axis.

Theorem 7.1. Let G be a non-elementary, finitely generated group, and let X be a G–space.
Let h be a strongly contracting element for G y X. Then δ[h] >

1
2δG.

Let D := diam Z(h)\H , where Z(h) is the centralizer of h in G. Suppose πH is a (1,C)–
strongly constricting, C–coarse map. If d(o, h.o) > 15C + 2D then δ[h] = 1

2δG.

Corollary 7.2. For h strongly contracting, δ[hn] = 1
2δG for all sufficiently large n.

Proof. For n nonzero, E(hn) = E(h) and Z(hn) ⊃ Z(h), so the same C and D work for hn

as work for h. On the other hand, 〈h〉 is quasi-isometrically embedded, so d(o, hn.o) � n. Thus,
d(o, hn.o) > 15C + 2D for large enough n. �

It would be interesting to know whether the restriction on d(o, h.o) is really necessary:
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Question 7.3. Does there exist an action G y X such that h is a strongly contracting
element with δ[h] >

1
2δG?

Proof of Theorem 7.1. Define K := 6C + D and F := {g ∈ G | dπgH (o, g.o) 6 K}.
First, we will show δF = δG. Then, we will relate δ[h] to δF .
For any r > 0 consider φ : { f ∈ F r E(h) | d(o, f .o) 6 r} → {gH | g ∈ G r E(h) and gH ∩

Br(o) , ∅} defined by φ( f ) := fH . For each axis gH meeting Br(o) there exists a g′ ∈ gE(h)
such that d(o, g′.o) = d(o, gH) 6 r. Since πgH is within 5C of closest point projection, by
Lemma 2.8, we have dπg′H (o, g′.o) 6 6C 6 K. Therefore, g′ ∈ F with φ(g′) = gH , so φ is
surjective.

We estimate:

#axes meeting Br(o) >
|G.o ∩ Br(o)| × #axes per orbit point

maximum number of orbit points per axis

The basepoint belongs to [StabG(o) : E(h) ∩ StabG(o)] distinct translates ofH , so the number
of axes per orbit point is constant. The maximum number of orbit points in Br(o) contained in a
single axis is proportional to r, since each axis is a quasi-isometrically embedded image of a
virtually cyclic group. Combined with surjectivity of φ this gives:

|F.o ∩ Br(o)|
∗

�
|G.o ∩ Br(o)|

r
Thus:

δF = lim sup
r→∞

1
r

log |F.o ∩ Br(o)|

> lim sup
r→∞

1
r

log
|G.o ∩ Br(o)|

r

= lim sup
r→∞

1
r

log |G.o ∩ Br(o)| = δG

The reverse inequality is trivial, since F ⊂ G, so δF = δG.
Now consider the map ψ : F r E(h) → [h] r E(h) defined by ψ( f ) := f h f −1. Choose

minimal length representatives e1, . . . , em of Z(h)\E(h). For each g ∈ G r E(h) there exists
a g′ ∈ gE(h) such that d(o, gH) = d(o, g′.o). There exist z ∈ Z(h) and i such that g′ = gzei.
Let f := g′e−1

i , so that f h f −1 = gzeiei
−1heiei

−1z−1g−1 = ghg−1. Since ei has length at most
D and πgH is 5C–close to closest point projection, it follows that f ∈ F, so ψ is surjective.
Furthermore, d(o, f h f −1.o) 6 2d(o, f .o) + d(o, h.o), by the triangle inequality.

On the other hand, ψ is boundedly many-to-one, since if f h f −1 = f ′h f ′−1 then f ′ ∈ f E(h),
so fH = f ′H . By definition of F, we then have dπfH (o, f .o) 6 K and dπfH (o, f ′.o) 6 K, so
d( f .o, f ′.o) 6 2(C + K). There are uniformly boundedly many such f ′ for each f .

Hence, ψ is a surjective, boundedly-many-to-one map such that d(o, ψ( f ).o)
+

≺ 2d(o, f .o)
for all f . We excluded E(h) from the domain and range, but its growth exponent is zero, since it
embeds quasi-isometrically into X, so δ[h] = δ[h]rE(h) >

1
2δFrE(h) = 1

2δF = 1
2δG.

Now, dπfH ( f h.o, f h f −1.o) = dπfH (o, f .o) 6 K for f ∈ F, so dπfH (o, f h f −1.o) > d( f .o, f h.o)−
2(C+K). If d(o, h.o) > 15C+2D = C+2(C+K) then we have dπfH (o, f h f −1.o) > C, so by strong

constriction, d(o, f h f −1.o) > 2d(o, f .o) + d(o, h.o) − 4(C + K). Thus, d(o, ψ( f ).o) +
� 2d(o, f .o)

and δ[h] = 1
2δG. �

8. Actions on Relatively Hyperbolic Spaces

Yang [61] proved that the action of a finitely generated group G with a non-trivial Floyd
boundary on any of its Cayley graphs is growth tight. Relatively hyperbolic groups have non-
trivial Floyd boundaries by a theorem of Gerasimov [31], so the action of a relatively hyperbolic
group on any of its Cayley graphs is growth tight. It is an open question whether there exists a
group with a non-trivial Floyd boundary that is not relatively hyperbolic.
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There is also a notion of relative hyperbolicity of metric spaces, which we will review
in Section 8.1. One motivating example of a relatively hyperbolic metric space is a Cayley
graph of a relatively hyperbolic group. Another is the universal cover M̃ of a complete, finite
volume hyperbolic manifold M. The fundamental group π1(M) of such a manifold is a relatively
hyperbolic group, so the action of π1(M) on any of its Cayley graphs is growth tight by Yang’s
theorem. However, this does not tell us whether the action of π1(M) on M̃ is growth tight. This
question was addressed for a more general class of manifolds by Dal’bo, Peigné, Picaud, and
Sambusetti [26], who proved growth tightness results for geometrically finite Kleinian groups.
Using our main theorems, Theorem 6.3 and Theorem 6.4, we generalize their results to all
groups acting on relatively hyperbolic metric spaces.

8.1. Relatively Hyperbolic Metric Spaces.
Definition 8.1 (cf. [27, 57]). Let X be a geodesic metric space and let P be a collection of

uniformly coarsely connected subsets of X. We say X is hyperbolic relative to the peripheral
sets P if the following conditions are satisfied:

(1) For each A there exists a B such that diam(BA(P0)∩BA(P1)) 6 B for distinct P0, P1 ∈

P.
(2) There exists an ε ∈ (0, 1

2 ) and M > 0 such that if x0, x1 ∈ X are points such that for
some P ∈ P we have d(xi,P) 6 ε · d(x0, x1) for each i, then every geodesic from x0 to
x1 intersects BM(P).

(3) There exist σ and δ so that for every geodesic triangle either:
(a) there exists a ball of radius σ intersecting all three sides, or
(b) there exists a P ∈ P such that Bσ(P) intersects all three sides and for each corner

of the triangle, the points of the outgoing geodesics from that corner which first
enter Bσ(P) are distance at most δ apart.

We say X is hyperbolic if it hyperbolic relative to P = ∅.

If X is hyperbolic in the sense of Definition 8.1 then the only non-trivial condition is 3a,
which is equivalent to the usual definition of hyperbolic metric space.

Definition 8.2. A group G is hyperbolic relative to a collection of finitely generated
peripheral subgroups if a Cayley graph of G is hyperbolic relative to the cosets of the peripheral
subgroups.

Sisto [57] shows Definition 8.2 is equivalent to Bowditch’s [13] definition of relatively
hyperbolic groups.

Definition 8.3 (cf. [35]). Let X be a connected graph with edges of length bounded below.
A combinatorial horoball based on X with parameter a > 0 is a graph whose vertex set is
VertX × ({0} ∪ N), contains an edge of length 1 between (v, n) and (v, n + 1) for all v ∈ VertX
and all n ∈ {0} ∪ N, and for each edge [v,w] ∈ X contains an edge [(v, n), (w, n)] of length
e−an · length([v,w]).

Let X be hyperbolic relative to P. An augmented space is a space obtained from X as
follows. By definition, there exists a constant C such that each P ∈ P is C–coarsely connected.
For each P ∈ P choose a maximal subset of points that pairwise have distance at least C
from one another. Let these points be the vertex set of a graph. For edges, choose a geodesic
connecting each pair of vertices at distance at most 2C from each other. Use this graph as the
base of a combinatorial horoball with parameter aP > 0. The augmented space is the space
obtained from the union of X with horoballs XP for each P ∈ P by identifying the base of XP
with the graph constructed in P.

Definition 8.4. Let X be a hyperbolic G–space, and let P be the collection of maximal
parabolic subgroups of G. Suppose there exists a G–invariant collection of disjoint open
horoballs centered at the points fixed by the parabolic subgroups. The truncated space is X
minus the union of these open horoballs. We say G y X is cusp uniform if G acts cocompactly
on the truncated space.



8. ACTIONS ON RELATIVELY HYPERBOLIC SPACES 135

If G acts cocompactly on a G–spaceX′ that is hyperbolic relative to a G–invariant peripheral
system P, then an augmented space X can be constructed G–equivariantly, and G y X will be
a cusp uniform action.

Several different versions of the following theorem occur in the literature on relatively
hyperbolic groups:

Theorem 8.5 ([13, 34, 57]). If X is hyperbolic relative to P then any augmented space with
horoball parameters bounded below is hyperbolic.

If G y X is a cusp uniform action then G is hyperbolic relative to the maximal parabolic
subgroups and the truncated space is hyperbolic relative to boundaries of the deleted horoballs.

8.2. Quasi-convex Actions.

Theorem 8.6. If X is a quasi-convex, relatively hyperbolic G–space and G does not coarsely
fix a peripheral subspace then G y X is a growth tight action.

Proof. It follows from [57, Lemma 5.4] that every infinite order element of G that does not
coarsely fix a peripheral subspace is strongly constricting. We conclude by Theorem 6.4. �

Theorem 8.6 unifies the existing proofs of growth tightness for cocompact actions on
hyperbolic spaces [48] and for actions of a relatively hyperbolic group on its Cayley graphs [61],
and extends to actions on a more general class of spaces.

Corollary 8.7. The action of a finitely generated group G with infinitely many ends on any
one of its Cayley graphs is growth tight.

Proof. Stallings’ Theorem [59] says that G splits non-trivially over a finite subgroup. G is
hyperbolic relative to the factor groups of this splitting. Since the splitting is non-trivial, G does
not fix any factor group, so the result follows from Theorem 8.6. �

Corollary 8.7 generalizes a result of Sambusetti [50, Theorem 1.4], who proved it with
additional constraints on the factor groups.

8.3. Cusp Uniform Actions. Theorem 8.6 and Theorem 8.5 show that if G y X is a cusp
uniform action on a hyperbolic space then the action of G on the truncated space is a growth
tight action. A natural question is whether G y X is a growth tight action. This action is not
quasi-convex if the parabolic subgroups are infinite, as geodesics in X will travel deeply into
horoballs, and, indeed, an example of Dal’bo, Otal, and Peigné [25] shows G y X need not be
growth tight.

To see how growth tightness can fail, consider the combinatorial horoball from Definition 8.3.
If X is, say, the Cayley graph of some group and we build the combinatorial horoball with
parameter a > 0 based on X, then the r–ball about a basepoint o ∈ X in the horoball metric
intersected with X × {0} contains the ball of radius C · exp( ar

2 ) in the X–metric, for a constant
C depending only on a. Thus, if the number of vertices of balls in X grows faster than
polynomially in the radius, then the growth exponent with respect to the horoball metric will be
infinite. Furthermore, even if growth in X is polynomial we can make the growth exponent in
the horoball be as large as we like by taking a to be sufficiently large. Dal’bo, Otal, and Peigné
construct non-growth tight examples of relatively hyperbolic groups with two cusps by taking
one of the horoball parameters to be large enough so that the corresponding parabolic subgroup
dominates the growth of the group; that is, the growth exponent of the parabolic subgroup is
equal to the growth exponent of the whole group. Quotienting by the second parabolic subgroup
then does not decrease the growth exponent, so this action is not growth tight.

Not only does this provide an example of a non-growth tight action on a hyperbolic space,
but since augmented spaces with different horoball parameters are equivariantly quasi-isometric
to each other, we have:

Observation 8.1. Growth tightness is not invariant among equivariantly quasi-isometric
G–spaces.
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Dal’bo, Peigné, Picaud, and Sambusetti [26, Theorem 1.4] show that this is essentially the
only way that growth tightness can fail for cusp uniform actions. Their proof is for geometrically
finite Kleinian groups, but our Theorem 6.3 generalizes this result.

Definition 8.8. Let G y X be a cusp uniform action on a hyperbolic space. Let P be the
collection of maximal parabolic subgroups of G. Then G y X satisfies the Parabolic Gap
Condition if δP < δG for all P ∈ P.

Theorem 8.9. Let G be a finitely generated, non-elementary group. Let G y X be a
cusp uniform action on a hyperbolic space. Suppose that G y X satisfies the Parabolic Gap
Condition. Then G y X is a growth tight action.

Proof. Let Q be the diameter of the quotient of the truncated space. The Q–complementary
growth exponent is the maximum of the parabolic growth exponents, which, by the Parabolic
Gap Condition, is strictly less than the growth exponent of G. Apply Theorem 6.3. �

Theorem 8.10. Let G be a finitely generated group hyperbolic relative to a collection P of
virtually nilpotent subgroups. Then there exists a hyperbolic G–space X such that G y X is
cusp uniform and growth tight.

Proof. Construct X as an augmented space by taking a Cayley graph for G and attaching
combinatorial horoballs to the cosets of the peripheral subgroups. Since the peripheral groups
are virtually nilpotent, they have polynomial growth in any word metric [33]. It follows that the
growth exponent of each parabolic group with respect to the horoball metric is bounded by a
multiple of the horoball parameter. By choosing the horoball parameters small enough, we can
ensure G y X satisfies the Parabolic Gap Condition, and apply Theorem 8.9. �

8.4. Non Relative Hyperbolicity. In subsequent sections we provide further examples of
growth tight actions. To show these are not redundant we will verify that the groups are not
relatively hyperbolic.

In this section we recall a technique for showing that a group is not relatively hyperbolic, due
to Anderson, Aramayona, and Shackleton [2]. Another approach to non relative hyperbolicity,
contemporaneous to and more general than [2], and also implying Theorem 8.12, was developed
by Behrstock, Druţu, and Mosher [10].

Theorem 8.11 ([2, Theorem 2]). Let G be a finitely generated, non-elementary group, and
let S be a (possibly infinite) generating set consisting of infinite order elements. Consider the

‘commutativity graph’ with one vertex for each element of S and an edge between vertices s and
s′ if some non-trivial powers of s and s′ commute. If this graph is connected and there is at
least one pair s, s′ ∈ S such that 〈s, s′〉 contains a rank 2 free abelian subgroup, then G is not
hyperbolic relative to any finite collection of proper finitely generated subgroups.

To prove this theorem, one shows that the subgroup generated by S is contained in one of
the peripheral subgroups. Since S generates G this gives a contradiction, because the peripheral
subgroups are proper subgroups of G.

We will actually use a mild generalization of Theorem 8.11 to the case when S generates a
proper subgroup of G:

Theorem 8.12. Let G be a finitely generated, non-elementary group. Let S be a set of
infinite order elements whose commutativity graph is connected and such that there is a pair
s, s′ ∈ S such that 〈s, s′〉 contains a rank 2 free abelian subgroup. Consider the ‘coset graph’
whose vertices are cosets of 〈S 〉, with an edge connecting g〈S 〉 and h〈S 〉 if g〈S 〉g−1 ∩ h〈S 〉h−1

is infinite. If this graph is connected, then G is not hyperbolic relative to any finite collection of
proper finitely generated subgroups.

Proof. Suppose G is hyperbolic relative to {P1, . . . , Pk}. As in the proof of Theorem 8.11,
〈S 〉 is contained in a conjugate of some Pi. We assume, without loss of generality, that 〈S 〉 ⊂ P1.
Condition (1) of Definition 8.1 implies Pi ∩ gPig−1 is finite for g < Pi. Thus, for g〈S 〉 adjacent
to 〈S 〉 in the coset graph, g ∈ P1 and g〈S 〉g−1 ⊂ P1. Connectivity of the coset graph implies
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that every element of G is contained in P1, contradicting the hypothesis that P1 is a proper
subgroup. �

We also note that Theorem 8.11 and Theorem 8.12 imply the, a priori, stronger result that G
has trivial Floyd boundary.

9. Rank 1 Actions on CAT(0) Spaces

A metric space is CAT(0) if every geodesic triangle is at least as thin as a triangle in
Euclidean space with the same side lengths. An isometry φ of a CAT(0) space X is hyperbolic if
infx∈X d(x, φ(x)) is positive and is attained. See, for example, [17] for more background.

Let X be a CAT(0) G–space. Recall that our definition of ‘G–space’ includes the hypothesis
that X is proper, so an element is strongly contracting if and only if it acts as a rank 1 isometry:

Theorem 9.1 ([12, Theorem 5.4]). Let h be a hyperbolic isometry of a proper CAT(0) space
X with axisA. Closest point projection toA is strongly contracting if and only ifA does not
bound an isometrically embedded half-flat in X.

Theorem 9.1 and Theorem 6.4 show:

Theorem 9.2. If G is a non-elementary, finitely generated group and X is a quasi-convex,
CAT(0) G–space such that G contains an element that acts as a rank 1 isometry on X, then
G y X is a growth tight action.

Recall from Section 0.3 that there are many interesting classes of CAT(0) spaces that admit
rank 1 isometries. In the remainder of this section we highlight a few examples.

Let Θ be a simple graph. The Right Angled Artin Group G(Θ) defined by Θ is the group
defined by the presentation 〈gv for v ∈ Vert(Θ) | gvgwg−1

v g−1
w = 1 for [v,w] ∈ Edge(Θ)〉. The

graph Θ also determines a cube complex constructed by taking a rose with one loop for each
vertex of Θ, and then gluing in a k–cube to form a k–torus for each complete k–vertex subgraph
of Θ. The resulting complex is called the Salvetti complex, and its fundamental group is G(Θ).
The universal cover of the Salvetti complex turns out to be a CAT(0) cube complex. See [22] for
more background on Right Angled Artin Groups.

If Θ is a single vertex then G(Θ) � Z is elementary. If Θ is a join, that is, if it is a complete
bi-partite graph, then G(Θ) is a direct product of Right Angled Artin Groups defined by the two
parts. In all other cases, we find a growth tight action:

Theorem 9.3. Let Θ be a finite simple graph that is not a join and has more than one vertex.
The action of the Right Angled Artin Group G(Θ) defined by Θ on the universal cover X of the
Salvetti complex associated to Θ is a growth tight action.

Proof. The universal cover X of the Salvetti complex of Θ is a cocompact, CAT(0) G(Θ)–
space. If Θ is not connected then X is hyperbolic relative to subcomplexes defined by the
components of Θ, so G(Θ) y X is growth tight by Theorem 8.6. If Θ is connected then G(Θ)
contains a rank 1 isometry by a theorem of Behrstock and Charney [9]. The result follows from
Theorem 9.2. �

The defining graph of a Right Angled Artin Group is a commutativity graph. If this graph is
connected then the group is not relatively hyperbolic by Theorem 8.11.

A flip-graph-manifold is a compact three dimensional manifold M with boundary obtained
from a finite collection of Seifert fibered pieces that are each a product of a circle with a compact
oriented hyperbolic surface with boundary. These are glued together along boundary tori by a
map exchanging the fiber and base directions. Such manifolds were studied by Kapovich and
Leeb [39], who show that the universal cover of M admits a CAT(0) metric, and that an element
of π1(M) that acts hyperbolically is rank 1 if and only if it is not represented by a loop contained
in a single Seifert fibered piece. Thus, Theorem 9.2 implies:

Theorem 9.4. The action of the fundamental group of a flip-graph-manifold by deck trans-
formations on its universal cover with its natural CAT(0) metric is a growth tight action.
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To see that the fundamental group of a flip-graph-manifold is not-relatively hyperbolic,
apply Theorem 8.12 where S is the set of elliptic elements for the action of G on the Bass-Serre
tree of the defining graph of groups decomposition.

Theorem 9.3 and Theorem 9.4 give the first non-trivial examples of growth tight actions on
spaces that are not relatively hyperbolic.

The idea of the proof for flip-graph-manifolds generalizes to other CAT(0) graphs of groups
via Theorem 1.14:

Theorem 9.5. Let G be a non-elementary, finitely generated group that splits non-trivially
as a graph of groups and is not an ascending HNN-extension. Suppose that the corresponding
action of G on the Bass-Serre tree of the splitting has two edges whose stabilizers have finite
intersection. Suppose there exists a cocompact, CAT(0) G–space X. Then G y X is a growth
tight action.

Proof. By Theorem 1.14, G contains an infinite order element h such that E(h) is hyperbol-
ically embedded. A theorem of Sisto [58] implies that any axis of h is a Morse quasi-geodesic.
An element with an axis that bounds a half-flat is not Morse, so h is rank 1, and the result follows
by Theorem 9.2. �

10. Mapping Class Groups

Let S = Sg,p be a connected and oriented surface of genus g with p punctures. We require
S to have negative Euler characteristic.

Given two orientation-preserving homeomorphisms φ, ψ : S → S, we will consider φ and ψ
to be equivalent if φ ◦ ψ−1 is isotopic to the identity map on S. Each equivalence class is called
a mapping class of S, and the set Mod(S) of all equivalence classes naturally forms a group
called the mapping class group of S.

A mapping class f ∈ Mod(S) is called reducible is there exists an f –invariant curve system
on S and irreducible otherwise. By the Nielsen-Thurston classification of elements of Mod(S),
a mapping class is irreducible and infinite order if and only if it is pseudo-Anosov [60].

Let X be the Teichmüller space of marked hyperbolic structures on S, equipped with the
Teichmüller metric. See [37] and [45] for more information.

Theorem 10.1 ([43]). Every pseudo-Anosov element is strongly contracting for Mod(S) y
X.

For each ε > 0 there is a decomposition of X into a ‘thick part’ X>ε and a ‘thin part’ X<ε

according to whether the hyperbolic structure on S corresponding to the point x ∈ X has any
closed curves of length < ε. This decomposition is Mod(S)–invariant, and Mod(S) y X>ε is
cocompact, see [44] and [30]. Geodesics between points in the thick part can travel deeply into
the thin part, so the action of Mod(S) on Teichmüller space is not quasi-convex. To prove growth
tightness need a bound on the complementary growth exponent. Such a bound is provided by a
recent theorem of Eskin, Mirzakhani, and Rafi [29, Theorem 1.7].

Theorem 10.2. The action of the mapping class group Mod(S) ofS = Sg,p on its Teichmüller
space X with the Teichmüller metric is a growth tight action.

Proof. Let ζ = 6g − 6 + 2p > 2. The growth exponent of Mod(S) with respect to its action
on X is ζ [5]. (We remark that the result of [5] is stated for closed surfaces, but their proof works
in general. For our interest, it is enough that the growth exponent of Mod(S) is bounded below
by ζ. This can be obtained from [36] and [29].)

Choose an r0 and a maximal r0–separated set in moduli space Mod(S)\X, and letA be its
full lift to X. Given r0 as above and δ = 1

2 , let ε be sufficiently small as in [29, Theorem 1.7].
Let Q be the smallest number such that the ε–thick part of X is contained in BQ(Mod(S).o).
Choose a finite subset {a1, . . . , an} ⊂ A such that:

BQ(o) r BQ(Mod(S).o) ⊂
n⋃

i=1

Br0(ai)
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Suppose that g ∈ Mod(S) is such that there exists a geodesic [x, y] between BQ(o) and
BQ(g.o) whose interior stays in X r BQ(Mod(S).o). Then there are indices i and j such that
x ∈ Br0(ai) and y ∈ Br0(g.a j). This means that every element contributing to CompMod(S)

Q, r of
Definition 6.2 also contributes to some N1(Q1,ε , ai, a j, r) of [29, Theorem 1.7]. The conclusion
of [29, Theorem 1.7] is that N1(Q1,ε , ai, a j, r) 6 G(ai)G(a j) exp(r · (ζ − 1

2 )) for all sufficiently
large r, where G is a particular function on X. There are finitely many such sets, and the function
G is bounded on {a1, . . . , an}, so there is a constant C such that CompMod(S)

Q, r 6 C · exp(r · (ζ − 1
2 ))

for all sufficiently large r. Thus, the Q–complementary growth exponent is at most ζ − 1
2 < ζ.

The theorem now follows from Theorem 10.1 and Theorem 6.3. �

When the genus of S is at least 3 then there does not exist a cocompact, CAT(0) Mod(S)–
space [16]. The fact that such an Mod(S) is not relatively hyperbolic (in fact, has trivial Floyd
boundary) is an application of Theorem 8.11 appearing in [2]. Therefore, Theorem 10.2 does
not follow from the results of the previous sections.

A natural question is whether the action of a mapping class group on its Cayley graphs
is growth tight. There is also a combinatorial model for the mapping class group known as
the marking complex. Finally, a mapping class group acts cocompactly on a thick part of
Teichmüller space. All of these spaces are quasi-isometric, and Duchin and Rafi [28] show that
pseudo-Anosov elements are contracting for the action of a mapping class group on any one of
its Cayley graphs, but we do not know whether one of these actions admits a strongly contacting
element.

Question 10.3. Is the action of a mapping class group of a hyperbolic surface on one of its
Cayley graphs/marking complex/thick part of Teichmüller space growth tight?

The outer automorphism group of a finite rank non-abelian free group, Out(Fn) is often
studied in analogy with Mod(S). Algom-Kfir [1] has proven an analogue of Minsky’s theorem
that says that a fully irreducible outer automorphism class is strongly contracting for the action
of Out(Fn) on its Outer Space, which is the analogue of the Teichmüller space. However, we lack
the analogue of the Eskin-Mirzakhani-Rafi theorem that was used to control the complementary
growth exponent in the mapping class group case.

There is also an analogue of the thick part of Teichmüller space called the spine of the Outer
Space, on which Out(Fn) acts cocompactly.

Question 10.4. Is the action of Out(Fn) on one of its Cayley graphs/Outer Space/spine of
Outer Space growth tight?

11. Snowflake Groups

Let G := BB(1, r) = 〈a, b, s, t | aba−1b−1 = 1, s−1as = arb, t−1at = arb−1〉 be a Brady-
Bridson snowflake group with r > 3. Let L := 2r. These groups have an interesting mixture
of positive and negative curvature properties. G splits as an amalgam of Z2 = 〈a, b〉 by two
cyclic groups 〈arb〉 and 〈arb−1〉, and the action of G on the Bass-Serre tree T of this splitting
satisfies Theorem 1.14, so G has hyperbolically embedded subgroups. However, we can not
automatically conclude that such a hyperbolically embedded subgroup gives rise to a strongly
contracting element, as there does not exist a cocompact, CAT(0) G–space. If such a space
existed, then the Dehn function of G would be at most quadratic, but Brady and Bridson [14]
have shown that the Dehn function of BB(1, r) is n2 log2 L > n2.

We will fix a G–space X and demonstrate two different elements of G that act hyperbolically
on T such that the pointwise stabilizer of any length 3 segment of their axes is finite. One of
these elements will be strongly contracting for the action on X, and the other will not. Hence:

Theorem 11.1. G admits a cocompact growth tight action.

Observe that Theorem 8.12 with S := {a, b} shows that G is not relatively hyperbolic.
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11.1. The Model Space X. Let X be the Cayley graph for G with respect to the generating
set {a, arb, arb−1, s, t}, where the edges corresponding to arb and arb−1 have been rescaled
to have length L := 2r. The point of scaling these edges is that arb, arb−1, and a2r form an
equilateral triangle of side length L, which will facilitate finding geodesics in this particular
model.

It is also useful to consider G as the fundamental group of the topological space obtained
from a torus by gluing on two annuli. Choose a basepoint for the torus and for each boundary
component of the annuli. For one annulus, the s–annulus, glue the two boundary curves to the
curves a and arb in the torus, gluing basepoints to the basepoint of the torus. For the other
annulus, the t–annulus, glue the two boundary curves to the curves a and arb−1 of the torus. The
resulting space is a graph of spaces [53] associated to the given graph of groups decomposition
of G. The fundamental group of this space is G, which acts freely by deck transformations
on the universal cover X′. Choose the basepoint o of X′ to be a lift of the basepoint of the
torus. The correspondence between a vertex g ∈ X and the point g.o ∈ X′ inspires the following
terminology: A plane is a coset g〈a, b〉 ∈ G/〈a, b〉, which corresponds to a lift of the torus at
the point g.o ∈ X′. An s-wall is the set of outgoing s–edges incident to a coset g〈a〉 ∈ G/〈a〉.
This corresponds to a lift of the s–annulus at the point g.o ∈ X′. A t-wall is the set of outgoing
t–edges incident to a coset g〈a〉 ∈ G/〈a〉. This corresponds to a lift of the t–annulus at the point
g.o ∈ X′. Each wall separates X (and X′) into two complementary components. Notice that the
origins of consecutive edges in an s–wall are connected by a single a–edge of length 1, while the
termini of those edges are connected by a single arb–edge of length L. We say that crossing an
s–wall in the positive direction scales distance by a factor of L. The same is true for the t–walls.

11.2. Geodesics Between Points in a Plane. We will define a family of X–geodesics
joining 1 to every point of 〈a, b〉. This is similar to the argument of [14].

From the fact that 〈a, b〉 is abelian, for every point axby there is a geodesic from 1 to axby of
the form:

[1, (arb)m] + (arb)m[1, (arb−1)n] + (arb)m(arb−1)n[1, ap]

where [g, h] indicates a geodesic from g to h.
For a point of the form (arb)m there is an arb–edge path from 1 to (arb)m of length mL. This

path is clearly inefficient, as it lies along the boundary of an s−1–wall that scales distance by
1/L, so we can push the original edge path across the wall to a path s−1ams of length 2 + m. We
claim there is a geodesic from 1 to (arb)m of the form [1, s−1] + s−1[1, am] + s−1am[s−1, 1]. We
have already exhibited a wall-crossing path of length 2 + m, which is shorter than any path from
1 to (arb)m that stays in the plane 〈a, b〉. Thus, a geodesic must cross some walls. Every path
from 1 to (arb)m can, by rearranging subsegments and eliminating backtracking, be replaced by
a path of at most the same length and having the form γs + γt + γ′ where:

• γs = [1, s−1] + s−1[1, an] + s−1an[s−1, 1] if non-trivial.
• γt = s−1ans[1, t−1] + s−1anst−1[1, ap] + s−1anst−1ap[t−1, 1] if non-trivial.
• γ′ = s−1anst−1apt[1, aq] if non-trivial.

The path γ = γs + γt + γ′ is a path from 1 to s−1anst−1aptaq = (arb)n(arb−1)paq =

ar(n+p)+qbn−p = armbm, so p = n−m and q = −Lp. Since p and q are proportional, γt and γ′ are
either both trivial or both non-trivial. Suppose they are non-trivial. There is a symmetry that
exchanges γt with a path γ′t = s−1ans[1, s−1] + s−1anss−1[1, a−p] + s−1anss−1a−p[s−1, 1] of the
same length. However, γ′t and γt + γ′ have the same endpoints, and γ′t is shorter, so γ could not
have been geodesic if γt and γ′ are non-trivial. Thus, if γ is geodesic then γ = γs. This reduces
the problem of finding a geodesic from 1 to (arb)m to finding a geodesic from 1 to an.

A similar argument holds for geodesics from 1 to (arb−1)m, so we can find geodesics from 1
to any point in 〈a, b〉 if we know geodesics from 1 to powers of a.

For powers of a the idea is that amL, (arb)m, and (arb−1)m form an equilateral triangle in the
plane, but the latter two can be shortened by a factor of L by pushing across a wall. Since L ≥ 6,
the savings of a factor of L/2 in length outweighs the added overhead from crossing walls.
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For small powers of a we can find geodesics by inspection of the Cayley graph. For
0 6 |p| 6 L/2 + 3, the edge path ap from 1 to ap is a geodesic of length |p|. For L/2 + 3 6 p 6 L
the edge path s−1ast−1atap−L is a geodesic from 1 to ap of length 6 + L − p. We conclude that
for m > 0 and −L/2 + 3 ≤ p ≤ L/2 + 3 there is a geodesic from 1 to amL+p of the form:

[1, s−1] + s−1[1, am] + s−1am[s−1, 1]

+ s−1ams[1, t−1] + s−1amst−1[1, am] + s−1amst−1am[t−1, 1]

+ s−1amst−1amt[1, ap]

We can now find geodesics from 1 to powers of a by induction, and from these we know a
geodesic from 1 to any axby. We see an example in Figure 5, where trapezoids are walls and
triangles are contained in planes. The top half boundary and bottom half boundary of the figure
each give geodesics of length 5 · 25 − 4 between 1 and aL5

. (This form of geodesic loop bears
witness to the Dehn function [14], and inspired the name ‘snowflake group’ [15].)

1 aL5

(arb)L4

(arb−1)L4

s−1

s−1aL4

t−1

t−1aL4

Figure 5. Snowflake - The boundary is a geodesic loop of length 2(5 · 25 − 4)

11.3. Projections to Geodesics in X. In this section we consider two different geodesics:
α(2n) = (s−1t)n and β(n) = s−n. These are geodesics since for each of these paths, every edge
crosses a distinct wall. Let T be the Bass-Serre tree of G, and let o ∈ T be the vertex fixed by
the subgroup 〈a, b〉. The orbit map g 7→ g.o sends each of α and β isometrically to a geodesic in
T . We will use πα to denote closest point projection to α, both in X and in T , and similarly for
β.

Both of these geodesics have the property that for any vertices at distance at least three in the
corresponding geodesic of the Bass-Serre tree, the pointwise stabilizers of the pair of vertices is
trivial. We might hope, in analogy to Theorem 9.5, that these would be strongly contracting
geodesics. As in Theorem 9.5, 〈s−1t〉 and 〈s〉 are hyperbolically embedded subgroups in G, but,
of the two, we will see only s−1t is strongly contracting.

11.3.1. α. We claim that closest point projection πα : X → α is coarsely well defined and
strongly contracting. First, consider πα on 〈a, b〉. The geodesic α enters 〈a, b〉 through the
incoming t–wall V at 1, and exits through the outgoing s−1–wall W at 1.
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Lemma 11.2. For every v ∈ V and every w ∈ W there exists a geodesic from v to w that
includes the vertex 1.

Proof. The lemma follows from the discussion of geodesics in Section 11.2. �

Lemma 11.3. The orbit map X → T : g 7→ g.o coarsely commutes with closest point
projection to α. In particular, closest point projection to α in X is coarsely well defined.

Proof. Suppose z ∈ X is some vertex that is separated from 1 by V , and suppose there is
an n > 0 such that α(n) ∈ πα(z). Let σ be a geodesic from z to α(n). Write σ = σ1 + σ2 + σ3,
where σ2 is the subsegment of σ from the first time σ crosses V until the first time σ reaches W.
By Lemma 11.2, we can replace σ2 by a geodesic segment σ′2 + σ′′2 where the concatenation
point is 1. This means that z is connected to 1 = α(0) by a path σ1 + σ′2. By hypothesis, the
length of this path is at least the length of σ, so σ′′2 and σ3 are trivial and n = 0. It follows
immediately that the orbit map X → T commutes with πα up to an error of 4. (In fact, a little
more work will show the error is at most 2.) �

Lemma 11.4 (Bounded Geodesic Image Property for πα). For any geodesic σ in X, if the
diameter of πα(σ.o) is at least 5, then σ ∩ α , ∅.

Proof. Suppose α([−1, 3]).o ⊂ πα(σ.o). Then σ crosses the walls V , W, s−1tV and s−1tW.
Write σ as a concatenation of geodesic subsegments σ1 + σ2 + σ3 + σ4 + σ5, where σ1 is
all of σ prior to the first V crossing, σ2 is the part of σ between the first V crossing and the
last W crossing, σ3 is the part between the last W crossing and the first s−1tV crossing, which
included edges labeled s−1 and t, σ4 is the part from the first s−1tV crossing until the last s−1tW
crossing, and σ5 is the remainder of σ. We can apply Section 11.2 to replace σ2 by a geodesic
σ′2 + σ′′2 with the same endpoints and concatenated at 1. Similarly, we can replace σ4 by a
geodesic σ′4 + σ′′4 with the same endpoints and concatenated at s−1t. But then we can replace
the subsegment σ2 + σ3 + σ4 of σ by the path σ′′2 + [1, s−1t] + σ′′4 with the same endpoints.
This path is strictly shorter unless σ′′2 and σ′′4 are trivial. This means that [1, s−1t] ⊂ σ ∩ α. �

By Proposition 2.9, this means:

Corollary 11.5. The element s−1t is strongly contracting for G y X.

Together with Theorem 6.4, this proves Theorem 11.1.
11.3.2. β. Using out knowledge of geodesics from Section 11.2, we see that the closest

point of the s−1–wall at 1 to the point aLk
is (arb)Lk−1

, which is the midpoint of a geodesic from 1
to aLk

. This geodesic coincides with β on the interval from 1 to s−k. It follows that πβ(aL j
) = β( j)

for all j > 0.
For 0 < j < k there is a geodesic σ j,k from aL j

to aLk
such that d(σ j,k, β) = d(aL j

, β). See
Figure 6. Letting j and k − j grow large, the geodesics σ j,k for stay outside large neighborhoods
of β but have large projections to β. Therefore, πβ is not strongly contracting, since it does not
enjoy the Bounded Geodesic Image Property.
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A group action on a metric space is called growth tight if the exponential growth rate
of the group with respect to the induced pseudo-metric is strictly greater than that
of its quotients. A prototypical example is the action of a free group on its Cayley
graph with respect to a free generating set. More generally, with Arzhantseva we
have shown that group actions with strongly contracting elements are growth tight.

Examples of non-growth tight actions are product groups acting on the L1

products of Cayley graphs of the factors.
In this paper we consider actions of product groups on product spaces, where

each factor group acts with a strongly contracting element on its respective factor
space. We show that this action is growth tight with respect to the Lp metric on
the product space, for all 1 < p ≤ ∞. In particular, the L∞ metric on a product
of Cayley graphs corresponds to a word metric on the product group. This gives
the first examples of groups that are growth tight with respect to an action on one
of their Cayley graphs and non-growth tight with respect to an action on another,
answering a question of Grigorchuk and de la Harpe.

1. Introduction

The growth exponent of a set A with respect to a pseudo-metric d is

δA,d = lim sup
r→∞

1
r
· log #{a ∈ A | d(o, a) ≤ r}

where # denotes cardinality and o ∈ A is some basepoint. The limit is independent of the choice
of basepoint.

Let G be a finitely generated group, and let (X, d, o) be a proper, based, geodesic metric
space on which G acts properly discontinuously and cocompactly by isometries.

The metric d induces a left invariant pseudo-metric d̄ on any quotient G/N of G by
d̄(gN, g′N) = minn,n′∈N d(gn.o, g′n′.o). When (X, d, o) is clear we let δG/N denote δG/N,d̄ and let
δG denote δG/{1},d̄.

Definition 1.1 ([1]). G y X is a growth tight action if δG > δG/N for every infinite normal
subgroup N E G.

If S is a finite generating set of G, we say G is growth tight with respect to S if the action of
G via left multiplication on the Cayley graph of G with respect to S is growth tight.

The first examples of such actions were given by Grigorchuk and de la Harpe [9], who
showed that a finite rank, non-abelian free group F is growth tight with respect to any free
generating set S . In the same paper, they observe that the product F × F is not growth tight with
respect to the generating set S × {1} ∪ {1} × S , and ask whether there exists a finite generating
set with respect to which F × F is growth tight.

The first author is supported by the European Research Council (ERC) grant of Goulnara ARZHANTSEVA,
grant agreement #259527 and the Erwin Schrödinger Institute workshop “Geometry of Computation in Groups”.
The second author is partially supported by NSF grant DMS-1311834.
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We answer this question affirmatively. This is the first example of a group that is growth
tight with respect to one generating set and not growth tight with respect to another.

Our main result is for growth tightness of product groups G1×· · ·×Gn. We require that each
factor Gi acts cocompactly with a strongly contracting element on a space Xi, see Definition 2.2.
Examples include actions of hyperbolic or relatively hyperbolic groups by left multiplication on
any of their Cayley graphs, and groups acting cocompactly on proper CAT(0) spaces with rank
1 isometries. With Arzhantseva [1], we have shown that such actions are growth tight.

Theorem 1.2. For 1 ≤ i ≤ n, let Gi be a non-elementary, finitely generated group acting
properly discontinuously and cocompactly by isometries on a proper, based, geodesic metric
space (Xi, di, oi) with a strongly contracting element. Let G = G1×· · ·×Gn. LetX = X1×· · ·×Xn,
with o = (o1, . . . , on) and let d be the Lp metric on X for some 1 ≤ p ≤ ∞. Let G y X be the
coordinate-wise action. Then G y X is growth tight unless p = 1 and n > 1.

Remark 1.3. Cocompactness of the factor actions is not strictly necessary. We use it to
prove a subadditivity result, Lemma 4.4. There are weaker conditions than cocompactness of
the action that can be used to prove such a result. These are discussed in [1, Section 6]. For
simplicity, we will stick to cocompact actions in this paper, since this suffices for our main
applications.

In the case that Xi is the Cayley graph of Gi with respect to a finite, symmetric generating
set S i, there is a natural bijection between vertices of X and elements of G. This bijection is
an isometry between vertices of X with the L1 metric and elements of G with the word metric
corresponding to the generating set:

S 1 =
⋃

1≤i≤n

{(s1, . . . , sn) | s j = 1 for j , i and si ∈ S i}

The same bijection is also an isometry between vertices of X with the L∞ metric and elements
of G with the word metric corresponding to the generating set:

S∞ =
{
(s1, . . . , sn) | si ∈ S i ∪ {1}

}
Corollary 1.4. For 1 ≤ i ≤ n, let Gi be a non-elementary group with a finite, symmetric

generating set S i. Let Xi be the Cayley graph of Gi with respect to S i, and suppose that the
action of Gi on Xi by left multiplication has a strongly contracting element. When n ≥ 2,
the product G = G1 × · · · × Gn admits a finite generating set S 1 for which the action on the
corresponding Cayley graph is not growth tight and another finite generating set S∞ for which
the action on the corresponding Cayley graph is growth tight.

Non-elementary, finitely generated, relatively hyperbolic groups, and finite rank free groups
in particular, act with a strongly contracting element on any one of their Cayley graphs, so:

Corollary 1.5. If F is a finite rank free group and S is a finite, symmetric free generating
set of F then F × F is growth tight with respect to the generating set (S ∪ {1}) × (S ∪ {1}).

Another common way to think of F × F is as the Right Angled Artin Group with defining
graph the join of two sets of vertices of cardinality equal to the rank of F. The universal cover of
the corresponding Salvetti complex is the product of Cayley graphs of F with respect to free
generating sets. There are two natural metrics to consider on the vertex set of the universal
cover of the Salvetti complex: the induced length metric from the piecewise Euclidean structure,
which is the restriction of the L2 metric on the product, and the induced length metric in the
1–skeleton, which is the restriction of the L1 metric on the product.

Corollary 1.6. The action of F × F on the universal cover of its Salvetti complex is growth
tight with respect to the piecewise Euclidean metric but not growth tight with respect to the
1–skeleton metric.

We sketch a direct proof of Corollary 1.5. The proof of Theorem 1.2 follows the same
outline.
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Sketch proof of Corollary 1.5. Let X be the Cayley graph of F with respect to S . Let
G = F × F be generated by (S ∪ {1}) × (S ∪ {1}), which induces the L∞ metric on X × X. We
have δG = 2δF > 0.

Let N be a non-trivial normal subgroup of G. If N has trivial projection to, say, the first
factor, then G/N = F × (F/π2(N)). Since F is growth tight with respect to every word metric,
δF/π2(N) < δF, so δG/N = δF + δF/π2(N) < 2δF = δG.

If N has non-trivial projection to both factors, then there is an element (h1, h2) ∈ N with
both coordinates non-trivial. For each (a1, a2)N ∈ (F × F)/N = G/N, choose an element
(a′1, a

′
2) ∈ (a1, a2)N such that

d
(
(a′1, a

′
2), (1, 1)

)
= d

(
(a1, a2)N, (1, 1)

)
.

Let A = {(a′1, a
′
2) | (a1, a2)N ∈ G/N}. We call A a minimal section of the quotient map. We have

δA,d = δG/N,d̄.
Given a non-trivial, reduced word f , let W( f ) be the subset of elements of F whose

expression as a reduced word in S contains f as a subword. Denote by a the inverse of a word a
in F. If (a′1, a

′
2) ∈ W(h1) ×W(h2) then there exist bi and ci such that a′i = bihici for i = 1, 2, and

(a′1, a
′
2) = (b1h1c1, b2h2c2) = (b1c1, b2c2) · (c1h1c1, c2h2c2)

So (b1c1, b2c2)N = (a′1, a
′
2)N, but this contradicts the fact that (a′1, a

′
2) ∈ A, since |(b1c1, b2c2)|∞ <

|(a′1, a
′
2)|∞. Therefore, A ⊂ (F −W(h1)) × F ∪ F × (F −W(h2)). However, for any non-trivial f

the growth exponent of F −W( f ) is strictly less than that of F, so the growth exponent of A is
strictly less than that of F × F. �

The fact that the growth exponent of F −W( f ) is strictly less than that of F has analogues
in formal language theory. A language L over a finite alphabet is known as ‘growth-sensitive’
or ‘entropy-sensitive’ if for every finite set of words in L, called the forbidden words, the
sub-language of words that do not contain one of the forbidden words as a subword has strictly
smaller growth exponent than L. It has been a topic of recent interest to decide what kinds of
languages are growth-sensitive [5, 6, 10].

Our approach to growth tightness is to prove a coarse-geometric version of growth sensitivity,
where the forbidden word is a power of a strongly contracting element.

The first coarse-geometric version of growth sensitivity was used by Arzhantseva and
Lysenok [2] to prove growth tightness for hyperbolic groups. With Arzhantseva, [1] we gave
a more general construction that applied to group actions with strongly contracting elements.
The idea is that the action of a strongly contracting element closely resembles the action of an
infinite order element of a hyperbolic group on a Cayley graph.

In [1] we proved a coarse-geometric version of the statement that the growth exponent of the
set of reduced words in F that do not contain f or f as subwords is strictly less than the growth
exponent of F. For products this is not enough, since, for example, if ( f , f ) ∈ N E F × F we
cannot make the element ( f , f ) shorter by applying powers of ( f , f ). We really want to forbid
only positive occurrences of f in each coordinate, so we need to strengthen our coarse-geometric
statement to take orientation into account.

After preliminaries in Section 2, we show in Section 3 that an infinite normal subgroup of G
that has infinite projection to each factor contains an element h for which each coordinate is
strongly contracting for the action of the factor group on the factor space.

In Section 4 we prove the main technical lemma, Lemma 4.7, which is our oriented growth
sensitivity result.

In Section 5 we complete the proof of Theorem 1.2.

2. Preliminaries

For any group G, we use g to denote the multiplicative inverse of g ∈ G.
A group is elementary if it is finite or has an infinite cyclic subgroup of finite index.
A quasi-map π : X → Y between metric spaces assigns to each point x ∈ X a subset

π(x) ⊂ Y of uniformly bounded diameter.
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2.1. Strongly Contracting Elements. We define strongly contracting elements following
Sisto1 [11]. See also [1] for additional reference.

Definition 2.1. Let (X, d) be a proper geodesic metric space, and let A ⊂ X be a subset.
Given a constant C > 0, a map πA : X → A is called a C–strongly contracting projection if πA
satisfies the following properties:

• For every a ∈ A, d
(
a, πA(a)

)
≤ C.

• For every x, y ∈ X, if d
(
πA(x), πA(y)

)
> C, then for every geodesic segment P with

endpoints x and y, we have d(πA(x),P) ≤ C and d(πA(y),P) ≤ C.
We say the map πA is a strongly contracting projection if it is C–strongly contracting for

some C > 0.

Fix a base point o ∈ X. Let G be a finitely-generated group that admits a proper, cocompact,
and isometric action on X.

Definition 2.2. An element h ∈ G is C–strongly contracting if i 7→ hi.o is a quasi-geodesic
and if there exists C > 0 such that, for every geodesic segment P with endpoints on 〈h〉.o, there
exists a C–strongly contracting projection πP : X → P.

An element h ∈ G strongly contracting if there exists a C > 0 such that h is C–strongly
contracting.

The property of strongly contracting is independent of the base point o. Since the action is
by isometries, a conjugate of a strongly contracting element is strongly contracting.

Let h ∈ G be a strongly contracting element. Let E(h) < G be the subgroup such that
g ∈ E(h) if and only if the Hausdorff distance between 〈h〉.o and g〈h〉.o is bounded. Then E(h)
is hyperbolically embedded in the sense of Dahmani-Guirardel-Osin [7], and E(h) is the unique
maximal virtually cyclic subgroup containing h [7, Lemma 6.5]. Thus, E(h) is the subgroup that
often called the elementarizer or elementary closure of 〈h〉.

Definition 2.3. Given a strongly contracting element h ∈ G and a point o ∈ X, the set
H = E(h).o is called a quasi-axis in X for h.

Lemma 2.4 ([1, Lemma 2.20]). If h ∈ G is strongly contracting, then there exists a strongly
contracting projection quasi-map πH : G → H such that πH is E(h)–equivariant.

Definition 2.5. If h ∈ G is strongly contracting and g < E(h) define πgH : X → gH by
πgH (x) = g.πH (g.x).

Combining Lemma 2.4 and Definition 2.5, we may assume that the strongly contracting
projection quasi-maps πgH to translates ofH are G–equivariant.

Lemma 2.6. If h ∈ G is C–strongly contracting there exist non-negative constants λ, ε, and
µ such that i→ hi.o is a (λ, ε)–quasi-geodesic and for 0 ≤ α ≤ β every geodesic from o to hβ.o
passes within distance µ of hα.o.

Proof. There exist λ and ε such that i → hi.o is a (λ, ε)–quasi-geodesic by definition of
contracting element. Let γ be a geodesic segment from o to hβ.o. Then γ is Morse, by [11,
Lemma 2.9]. Thus, there is a µ depending only on C, λ, and ε such that every (λ, ε)–quasi-
geodesic segment with endpoints on γ is contained in the µ–neighborhood of γ. But i 7→ hi.o
for i ∈ [0, β] is such a (λ, ε)–quasi-geodesic, so there is a point of γ at distance at most µ from
hα.o. �

2.2. Actions on Quasi-trees. Let h be a contracting element for G y X as in the previous
section, and letH be the quasi-axis of h.

In Lemma 4.7 we will consider a free product subset

Z∗∗ hm =

∞⋃
i=1

{
z1hm · · · zihm | z j ∈ Z − {1}

}
1Sisto considers ‘PS–contracting projections’. We use ‘strong’ to indicate the special case that PS is the

collection of all geodesic segments in X.
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for a certain subset Z ⊂ G and a sufficiently large m. We wish to know that the orbit map from
G into X is an embedding on this free product set.

This statement recalls the following well known result:

Proposition 2.7 (Baumslag’s Lemma [3]). If z1, . . . , zk and h are elements of a free group
such that h does not commute with any of the zi, then z1hm1 · · · zkhmk , 1 if all the |mi| are
sufficiently large.

A convenient way to prove such an embedding result is to work in a tree, so that the global
result, that z1hm1 · · · zkhmk , 1, can be certified by a local ‘no-backtracking’ condition. In our
situation, we do not have an action on a tree to work with, but a construction of Bestvina,
Bromberg, and Fujiwara [4] produces an action of G on a quasi-tree, a space quasi-isometric to
a simplicial tree, from the action of G on the G–translates ofH . In [1] we use this quasi-tree
construction and a no-backtracking argument to prove that the orbit map is an embedding of a
certain free product subset. The proof of Lemma 4.7 consists of choosing an appropriate free
product set to which we can apply the argument from [1]. The details of the construction of the
quasi-tree and the proof of the free product subset embedding are somewhat technical, so we
will not repeat them here (see [4, Section 3] and [1, Section 2.4] for more details). However, we
will make use of some of Bestvina, Bromberg, and Fujiwara’s ‘projection axioms’, which hold
for quasi-axes of contracting elements by work of Sisto [11], as recounted below.

Let Y be the collection of all distinct G–translates of H . For each Y ∈ Y, let πY be the
projection map from the above. Set

dπY (x, y) = diam{πY (x), πY (y)}.

Lemma 2.8 ([1, Section 2.4], cf [11, Theorem 5.6]). There exists ξ > 0 such that for all
distinct X,Y,Z ∈ Y:

(P0) diam πY (X) 6 ξ
(P1) At most one of dπX(Y,Z), dπY (X,Z) and dπZ(X,Y) is strictly greater than ξ.
(P2) |{V ∈ Y | dπV (X,Y) > ξ}| < ∞

3. Elements that are Strongly Contracting in each Coordinate

Let G be a finitely generated, non-elementary group acting properly discontinuously and
cocompactly by isometries on a based proper geodesic metric space (X, d, o) such that there
exists an element h ∈ G that is strongly contracting for G y X. LetH = E(h).o. Let C be the
contraction constant for πH from Lemma 2.4, and let ξ be the constant of Lemma 2.8. For any
x ∈ X and any r > 0), denote by Br(x) the open ball of radius r about x.

Lemma 3.1. Let p be a point of H . Let g be an element of G. There exists a constant
D such that either some non-trivial power of g is contained in 〈h〉 or for all n > 0 we have
dπ
H

(gn.p, p) ≤ 2d(p, g.p) + D.

Proof. Since 〈h〉 is a finite index subgroup of E(h), if some non-trivial power of g is
contained in E(h) then some non-trivial power of g is contained in 〈h〉, and we are done. Thus,
we may assume that no non-trivial power of g is contained in E(h). This implies that if m , n
then gmH , gnH .

Let z be a point on a geodesic from p to g.p in BC(πH (g.p)). Let ξ be the constant of
Lemma 2.8. Axiom (P0) of Lemma 2.8 says diam πH (gH) ≤ ξ.

d(p, g.p) = d(p, z) + d(z, g.p)

≥ d
(
p, πH (g.p)

)
−C + d(z, g.p)

≥ dπ
H

(p, gH) −C − ξ + d(z, g.p)

≥ dπ
H

(p, gH) −C − ξ

By a similar argument, for every k , 0,±1,

d(p, g.p) ≥ dπgkH
(H , g±1H) − 2C − 2ξ
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Using the above we obtain that, for any n > 1,

dπḡH (H , gn−1H) = dπ
H

(gH , gnH) ≥ dπ
H

(gnH , p) − dπ
H

(gH , p)

≥ dπ
H

(gnH , p) − d(g.p, p) −C − ξ

Suppose that dπ
H

(gnH , p)−d(g.p, p)−C−ξ > ξ. The previous inequality says dπḡH (H , gn−1H) >
ξ, so (P1) of Lemma 2.8 implies ξ ≥ dπ

H
(gH , gn−1H), hence:

ξ ≥ dπ
H

(gH , gn−1H) ≥ dπ
H

(gnH , p) − dπ
H

(p, gH) − dπ
H

(gnH , gn−1H)

≥ dπ
H

(gnH , p) − dπ
H

(p, gH) − dπḡnH
(H , gH)

≥ dπ
H

(gnH , p) − 2d(g.p, p) − 3C − 3ξ

Thus, dπ
H

(gnH , p) ≤ 2d(g.p, p) + D for D = 3C + 4ξ. �

Lemma 3.2. For every g ∈ G there exists an l > 0 and an n′ ≥ 0 such that for all m > 0 and
all n ≥ n′, except possibly one, the elements glmhn and hnglm are strongly contracting.

Proof. Suppose there exists a minimal a > 0 and b such that ga = hb. If b > 0 let l = a and
let n′ = 0, so that glmhn = hbm+n is a positive power of h. If b = 0 let l = a and n′ = 1 so that
glmhn = hn is a positive power of h. If b < 0 let l = a, n′ = 0, and n ≥ n′ such that n , −mb.
Then glmhn is a non-zero power of h.

If no non-trivial power of g is contained in 〈h〉, let l = 1. By Lemma 3.1, there exists a
D′ such that for every p ∈ H and every m > 0 we have dπ

H
(gm.p, p) ≤ 2d(p, g.p) + D′. Let D

be the maximum of D′ and the constant D from [11, Lemma 5.2]. Let p ∈ H be a point such
that d(p, g.p) is minimal. Let n′ be large enough so that d(p, hn′.p) ≥ 4d(p, g.p) + 3D. Then
for n ≥ n′ we have d(p, hn.p) ≥ d(πH (gm.p), p) + d(p, πH (gm.p)) + D. This implies glmhn is
strongly contracting by [11, Lemma 5.2]. hnglm is also strongly contracting as it is conjugate to
glmhn. �

For i = 1, . . . , n, let Gi be a non-elementary group acting properly discontinuously and
cocompactly by isometries on a proper, based, geodesic metric space (Xi, di, oi). Assume, for
each i, that Gi y Xi has a strongly contracting element. Let G = G1×· · ·×Gn. Let χi : G → Gi
be projection to the i–th coordinate.

Lemma 3.3. Let N be an infinite normal subgroup of G such that χi(N) is infinite for all i.
There exists an element h = (h1, . . . , hn) ∈ N such that hi is a strongly contracting element for
Gi y Xi.

Proof. χi(N) is an infinite normal subgroup of Gi, so it contains a strongly contracting
element by [1, Proposition 3.1]. For each i, let g

i
= (ai,1, . . . , ai,n) ∈ N such that ai,i is a strongly

contracting element for Gi y Xi.
We will show by induction that there is a product of the g

i
that gives the desired element h.

The element g
1

has a strongly contracting element in its first coordinate. Suppose that there is a
product f = ( f1, . . . , fn) of g

1
, . . . , g

i
such that the first i coordinates are strongly contracting

elements in their coordinate spaces.
For 1 ≤ j ≤ i there exists an l j and an n′j as in Lemma 3.2 such that for all m and all n ≥ n′j,

except possibly one, we have al jm
i+1, j f n

j is strongly contracting. Similarly, there are li+1 and n′i+1

such that an
i+1,i+1 f li+1m

i+1 is strongly contracting for all m > 0 and n ≥ n′i+1.
Let l be the least common multiple of l1, . . . , li. Let m be large enough so that ml ≥ n′i+1.

Let λk = li+1(k + max j=1,...,i n′j), where k ≥ 0 varies.
Consider gml

i+1
f λk . For 1 ≤ j ≤ i, the j-th coordinate is strongly contracting for all except

possibly one value of k, since ml is a multiple of l j and λk ≥ n′j. Similarly, the (i + 1)–st
coordinate is strongly contracting for all except possibly one value of k since λk is a multiple of
li+1 and ml ≥ n′i+1. By choosing a k that is not among the at most i + 1 forbidden values, we have
that the first i + 1 coordinates of gml

i+1
f λk are strongly contracting in their coordinate space. �
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We will say an element g ∈ Gi has a K–long hi–projection if there exists an f ∈ Gi such
that dπfHi

(oi, g.oi) ≥ K.

Lemma 3.4. Given h as in Lemma 3.3, there exists an element h′ = (h′1, . . . , h
′
n) ∈ N such

that h′i is strongly contracting for each Gi y Xi and there exists a K such that powers of h′i
have no K–long hi–projections and powers of hi have no K–long h′i–projections.

Proof. For each i, the group Gi is non-elementary, so there exists a gi ∈ Gi − E(hi). Let
g = (g1, . . . , gn). [1, Proposition 3.1] shows that h′ = ghmgh

m
∈ N is strongly contracting in each

coordinate for any sufficiently large m, so K can be taken to be maxi dπgiHi
(Hi, gihm

i giHi) + 2ξi,
where ξi is chosen by Lemma 2.8. �

4. Elements without Long, Positive Projections

In the following, let G be any finitely generated, non-elementary group (not necessarily
a product) acting properly discontinuously and cocompactly by isometries on a based proper
geodesic metric space (X, d, o). Suppose there exists a strongly contracting element h ∈ G for
G y X. LetH = E(h).o and let C be the contraction constant for πH .

Let D = diam(G\X) and let D′ = diam
(
〈h〉 \H

)
.

Definition 4.1. For x0 and x1 in X, the ordered pair (x0, x1) has a K–long, positive h–
projection if there exists a k ∈ G such that dπkH (x0, x1) ≥ K and d(k.o, πkH (x0)) ≤ D′ and there
exists α > 0 such that d(khα.o, πkH (x1)) ≤ D′.

It is immediate that the property of having a K–long, positive h–projection is invariant under
the G–action. We also remark that the ‘positive’ restriction is vacuous if K > 2D′ and there
exists an element of G that flips the ends ofH .

Definition 4.2. Let Ĝ(K) be the elements g ∈ G such that there exist points x ∈ BD(o) and
y ∈ BD(g.o) and a geodesic γ from x to y such that no subsegment of γ has a K–long, positive
h–projection.

For any g ∈ G, set |g| = d(o, g.o).

Lemma 4.3. For all sufficiently large K and for every g ∈ G − Ĝ(K) there exists a k ∈ G
and an interval [α′, α′′] ⊂ Z+ such that |kh−αkg| < |g| for all α′ ≤ α ≤ α′′. The lower bound α′

depends only on h and the upper bound α′′ depends linearly on K.

Proof. Let γ be a geodesic from γ(0) = o to γ(T ) = g.o. Since g < Ĝ(K), there are times t0
and t1 in [0,T ] such that (γ(t0), γ(t1)) has a K–long, positive h–projection. Let k ∈ G such that
dπkH (γ(t0), γ(t1)) ≥ K and d(πkH (γ(t0)), k.o), and let β > 0 be such that d(khβ, πkH (γ(t1))) ≤ D′.

Let λ, ε, and µ be the constants of Lemma 2.6 for h. Let ξ be the constant of Lemma 2.8 Since
i 7→ hi.o is (λ, ε)–quasi-geodesic and d(1, hβ.o) ≥ K − 2D′ − 2ξ we have β ≥ 1

λ (K − 2D′ − 2ξ)− ε.
Set α′′ = β and α′ = λ(4(C + D′ + ξ) + ε + 2µ + 1)). We assume that K is large enough so

that α′′ ≥ α′. For all α′ ≤ α ≤ α′′ we have:

d(k.o, khβ.o) ≥ d(k.o, khα.o) + d(khα.o, khβ.o) − 2µ

Rearranging, and using the quasi-geodesic condition for kH :

d(khα.o, khβ.o) ≤ d(k.o, khβ.o) − d(k.o, khα.o) + 2µ
≤ d(k.o, khβ.o) − (α/λ − ε) + 2µ
< d(k.o, khβ.o) − 4(C + D′ + ξ)

Now we use the fact that γ passes C + D′ + ξ close to k.o and khβ.o:

|g| = d
(
γ(0), γ(t0)) + d

(
γ(t0), γ(t1)

)
+ d

(
γ(t1), γ(T )

)
≥ d

(
γ(0), γ(t0)

)
+ d

(
γ(t0), k.o

)
+ d(k.o, khβ.o)

+ d
(
khβ.o, γ(t1)

)
+ d

(
γ(t1), γ(T )

)
− 4(C + D′ + ξ)
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So:

|kh−αkg| ≤ d(γ(0), γ(t0)) + d(γ(t0), k.o) + d(k.o, kh−αkkhβ.o)

+ d(kh−αkkhβ.o, kh−αkγ(t1)) + d(kh−αkγ(t1), kh−αkγ(T ))

= d(γ(0), γ(t0)) + d(γ(t0), k.o) + d(khα.o, khβ.o)

+ d(khβ.o, γ(t1)) + d(γ(t1), γ(T ))

≤ |g| + 4(C + D′ + ξ) − d(k.o, khβ.o) + d(khα.o, khβ.o)
< |g| �

Lemma 4.4. Fix K and let P(r) = #(Br(o) ∩ Ĝ(K).o). The function log P(r) is subadditive in
r, up to bounded error.

Proof. Let g.o ∈ Br(o) ∩ Ĝ(K).o. Let x, y, and γ be as in Definition 4.2. Let m + n = r. If
d(x, y) > m let z be the point on γ at distance m from x. Otherwise, let z = y. There exists an
f ∈ G such that d(z, f .o) ≤ D.

We claim that f contributes to P(m + 2D) and f g contributes to P(n + 2D). This is
because d(o, f .o) ≤ m + 2D, and the subsegment of γ from x to z is a geodesic for f satisfying
Definition 4.2. Similarly, d(o, f g.o) = d( f .o, g.o) ≤ n + 2D, and the subsegment of f .γ from f .z
to f .y is a geodesic for f g satisfying Definition 4.2.

This shows that for any m + n = r we have P(r) ≤ P(m + 2D) · P(n + 2D). Applying this
relation for (m − 2D) + 4D = m + 2D and (n − 2D) + 4D = n + 2D yields:

P(r) ≤ (P(6D))2 · P(m) · P(n)

Thus:
log P(m + n) ≤ log P(m) + log P(n) + 2 log P(6D). �

There is a result known as Fekete’s Lemma that says if (ai) is a subadditive sequence then
limi→∞

ai
i exists and is equal to infi

ai
i . We will need the following generalization for almost

subadditive sequences:

Lemma 4.5. Let (ai) be an unbounded, increasing sequence of positive numbers. Suppose
there exists b such that am+n ≤ am + an + b for all m and n. Then L = limi→∞

ai
i exists and

ai ≥ Li − b for all i.

Proof. Let L+ = lim supi
ai
i . Let L− = lim infi

ai
i . Suppose that L+ > L−. Let ε = L+−L−

3 .
Since the sequence is increasing and unbounded, there exists an I such that for all i > I we

have ai+b
ai

<
√

L+−ε
L−+ε . Fix an i > I such that ai

i < L− + ε. Choose a j such that a j
j > L+ − ε and

q+1
q <

√
L+−ε
L−+ε , where qi ≤ j < (q + 1)i.

L+ − ε <
a j

j
≤

a j

qi
<

(q + 1)(ai + b)
qi

<
L+ − ε

L− + ε
·

ai

i
≤

L+ − ε

L− + ε
(L− + ε) = L+ − ε

This is a contradiction, so L = L+ = L−.
If for some i we have ai < Li − b then

L = lim
j→∞

ai j

i j
≤ lim

j→∞

j(ai + b)
i j

=
ai + b

i
< L,

which is a contradiction. �

4.1. Divergence. For any subset A ⊂ G, define:

ΘA(s) =

∞∑
r=0

#
(
Br(o) ∩ A.o

)
e−rs

The growth exponent δA is the critical exponent of ΘA, that is, ΘA diverges for all s < δA and
converges for all s > δA. We say A is divergent if ΘA diverges at δA.
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Lemma 4.6. Ĝ(K) is divergent.

Proof. Let P(r) = #(Br(o) ∩ Ĝ(K).o). By Lemma 4.4 and Lemma 4.5, log P(r) ≥ rδĜ(K) −

2 log P(6D) for all r. Thus:

ΘĜ(K)(δĜ(K)) =

∞∑
r=0

P(r) exp(−rδĜ(K)) ≥
∞∑

r=0

1
P(6D)2 = ∞. �

Lemma 4.7. For sufficiently large K, the growth exponent of Ĝ(K) is strictly smaller than
the growth exponent of G.

Proof. Let h′ ∈ G and D be the element and constant, respectively, of Lemma 3.4 (in this
case the product has only one factor). Let K > D.

Define a map φ on Ĝ(K) as follows.

φ(g) =


h′gh′ if dπ

H
(o, g.o) ≥ K and dπgH (o, g.o) ≥ K

h′g if dπ
H

(o, g.o) ≥ K
gh′ if dπgH (o, g.o) ≥ K

g otherwise

Then for all g ∈ Ĝ(K) we have dπ
H

(
o, φ(g).o

)
< K and dπ

φ(g)H
(
o, φ(g).o

)
< K.

Let Ĝ′(K) be the image of φ. Then φ is a bijection between Ĝ(K) and Ĝ′(K), and for all
g ∈ Ĝ(K) we have |g| = |φ(g)| ± 2|h′|. It follows that δĜ(K) = δĜ′(K) and Ĝ′(K) is divergent.

Let Z be a maximal 2K–separated subset of Ĝ′(K). Then δZ = δĜ′(K) and Z is divergent.
For z and z′ in Z, if zH = z′H then since dπzH (o, z.o) < K and dπz′H (o, z′.o) < K we have
d(z.o, z′.o) < 2K, so z = z′.

Consider the free product set

Z∗∗ hm =

∞⋃
i=1

{
z1hm · · · zihm | z j ∈ Z − {1}

}
.

By the same arguments as [1, Proposition 4.1], for all sufficiently large m, the orbit map is an
injection of Z∗∗ hm into X. This fact, together with divergence of Z, implies that δZ < δG, by [8,
Criterion 2.4]. �

5. Proof of the Main Theorem

Let (X1, d1, o1), . . . , (Xn, dn, on) a finite collection of proper geodesic metric spaces. Let
X = X1 × · · · × Xn, and let o = (o1, . . . , on). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be any
points in X. For any 1 ≤ p < ∞, the Lp metric on X is defined to be:

dp(x, y) =

 n∑
i=1

(di(xi, yi))p

1/p

The L∞ metric on X is:
d∞(x, y) = max

i
di(xi, yi)

Proposition 5.1. For i = 1, . . . , n, let Gi be a non-elementary, finitely generated group
acting properly discontinuously and cocompactly by isometries on a proper geodesic metric
space Xi. Let G = G1 × · · · × Gn. For each i, let Ai be a subset of Gi such that log Pi(r) is
subadditive in r, up to bounded error, for Pi(r) = #(Br(oi) ∩ Ai.oi). Let δi = δAi.oi be the growth
exponent of Ai. For 1 ≤ p ≤ ∞, the growth exponent δA of A =

∏n
i Ai with respect to the Lp

metric on X is the Lq–norm of (δ1, . . . , δn), where 1/p + 1/q = 1, and 1
∞

is understood to be 0.

Proof. For each g ∈ Gi let |g|i = di(oi, g.oi). For g = (g1, . . . , gn) ∈ G, let |g|p = dp(o, g.o).
Let Bp

r be the closed r–ball with respect to the Lp metric.
Let P(r) = #Bp

r (o) ∩ A.o.
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Let Rn be equipped with the Lp norm || · ||p, and let S p
r be the vectors of norm r. Let

φ : Rn → R be the linear function φ(x1, . . . , xn) =
∑n

i=1 δixi. For every r > 0 the duality of Lq

and Lp implies:

||(δ1, . . . , δn)||q = ||φ||p = sup
(x1,...,xn)∈S p

r

|φ(x1, . . . , xn)|
r

Since δi ≥ 0 for all i, the supremum can be restricted to the positive sector of S p
r . Further-

more, letting
Zp

r =
{
(r1, . . . , rn) | ||(r1, . . . , rn)||p ≤ r, ri ∈ N

}
,

we have:
||φ||p = lim

r→∞
max

(r1,...,rn)∈Zp
r

φ(r1, . . . , rn)
r

Given two positive valued functions f (r) and g(r), we write f (r) ∼ g(r) if limr→∞
log f (r)
log g(r) = 1.

Lemma 4.4 and Lemma 4.5 imply Pi(r) ∼ eδir for each i = 1, . . . , n, so:

||φ||p = lim
r→∞

max
(r1,...,rn)∈Zp

r

φ(r1, . . . , rn)
r

= lim
r→∞

max
(r1,...,rn)∈Zp

r

log
∏n

i=1 Pi(ri)
r

For any fixed r there is (zr,1, . . . , zr,n) ∈ Zp
r such that:

n∏
i=1

Pi(zr,i) = max
(r1,...,rn)∈Zp

r

n∏
i=1

Pi(ri)

We also note that:
n∏

i=1

Pi(zr,i) ≤ P(r) ≤
∑

(r1,...,rn)∈Zp
r

n∏
i=1

Pi(ri) ≤ #Zp
r ·

n∏
i=1

Pi(zr,i)

Since #Zp
r ≤ rn, this means P(r) ∼

∏n
i Pi(zr,i).

Therefore:

δA = lim sup
r→∞

log P(r)
r

= lim
r→∞

log
∏n

i=1 Pi(zr,i)
r

= lim
r→∞

max
(r1,...,rn)∈Zp

r

log
∏n

i=1 Pi(ri)
r

= ||φ||p = ||(δ1, . . . , δn)||q �

Proof of Theorem 1.2. The existence of a strongly contracting element implies that each
factor group has strictly positive growth exponent, and the main theorem of [1] says that
Gi y Xi is growth tight, so we are done if n = 1.

Assume n > 1 and let 1 ≤ q ≤ ∞ be such that 1/p + 1/q = 1. If p = 1, then by Proposition 5.1
the growth exponent of G is the maximum of the growth exponents of the Gi. Thus, we may
kill the slowest growing factor without changing the growth exponent, and the action of G on X
with the L1 metric is not growth tight.

Now assume p > 1. Let χi : G → Gi be projection to the i–th coordinate. Let N be an
infinite normal subgroup of G.

First we assume that χi(N) is infinite for all i.
By Lemma 3.3, there exists an element h = (h1, . . . , hn) ∈ N such that hi is a strongly

contracting element for Gi y Xi for each i.
Let A be a minimal section of the quotient map G → G/N. That is, A consists of a

representative for each coset gN and d(o, a.o) = d(N.o, aN.o) for all a ∈ A, where d is the Lp

metric on X.

Proposition 5.2. For all sufficiently large K and for all a = (a1, . . . , an) ∈ A there exists an
index 1 ≤ i ≤ n such that ai ∈ Ĝi(K).
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Proof. For each i, let Ĝi(K) be as in Definition 4.2 for each Gi. Assume K is greater than
the constants K from Lemma 4.7 and Lemma 4.3 applied to each Gi.

Suppose a is such that for all i we have ai ∈ Gi − Ĝi(K). For each i, let ki ∈ Gi and [α′i , α
′′
i ]

be the k and interval, respectively, from Lemma 4.3 applied to ai. The α′i depend only on their
respective hi, while the α′′i depend linearly on K. By choosing K large enough, we may choose
α such that maxi α

′
i ≤ α ≤ mini α

′′
i , so that α ∈ [α′i , α

′′
i ] for all i. Let k = (k1, . . . , kn). The

i–th coordinate of kh
α
ka is kihi

αkiai, which is shorter than ai by Lemma 4.3. But this means
that kh

α
ka is shorter than a. This contradicts the fact that a belongs to a minimal section, since

kh
α
ka = a(akh

α
ka) ∈ aN. �

Continuing the proof of Theorem 1.2, by Proposition 5.2,

A ⊂
n⋃

i=1

G1 × · · · × Ĝi × · · · ×Gn,

where Ĝi = Ĝi(K) for some sufficiently large K. By Proposition 5.1, the growth exponent of
G1 × · · · × Ĝi × · · · ×Gn is ||(δ1, . . . , δ̂i, . . . , δn)||q, where δi is the growth exponent of Gi and δ̂i

is the growth exponent of Ĝi. Thus, the growth exponent of A is maxi ||(δ1, . . . , δ̂i, . . . , δn)||q. By
Lemma 4.7, δ̂i < δi for each i, so, since q < ∞:

δG/N = δA = max
i
||(δ1, . . . , δ̂i, . . . , δn)||q < ||(δ1, . . . , δn)||q = δG

It remains to consider the case that some χi(N) is finite. By reordering, if necessary, we
may assume χi(N) is finite for i ≤ m and infinite for i > m. Since N is infinite, m < n. Let
G1 = G1 × · · · × Gm with χ1 = χ1 × · · · × χm : G → G1. Let G∞ = Gm+1 × · · · × Gn with
χ∞ = χm+1 × · · · × χn : G → G∞.

Now ker(χ1) ∩ N is a finite index subgroup of N that is normal in G, so G/N is a quotient
of G/(ker(χ1) ∩ N) by a finite group, and they have the same growth rates. Replacing N with
ker(χ1) ∩ N, we can assume that χi(N) is trivial for 1 ≤ i ≤ m and infinite for m < i ≤ n. The
theorem applied to G∞ shows that δG∞/χ∞(N) < δG∞ , so, since q < ∞:

δG/N = ||(δG1 , δG∞/χ∞(N))||q < ||(δG1 , δG∞)||q = δG �

In the case that the normal subgroup has infinite projection to each factor, our proof uses
the existence of a contracting element in each factor in an essential way. One wonders if the
theorem is still true without this hypothesis:

Question. If, for 1 ≤ i ≤ n, Gi is a non-elementary, finitely generated group acting properly
discontinuously and cocompactly by isometries on a proper geodesic metric space Xi, and if, for
all i, Gi y Xi is growth tight, is it still true that the product group is growth tight with respect
to the action on the product space with the Lp metric for some/all p > 1?
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Let G be a group acting properly by isometries and with a strongly contracting
element on a geodesic metric space. Let N be an infinite normal subgroup of G,
and let δN and δG be the growth rates of N and G with respect to the pseudo-metric
induced by the action. We prove that if G has purely exponential growth with
respect to the pseudo-metric then δN/δG > 1/2. Our result applies to suitable
actions of hyperbolic groups, right-angled Artin groups and other CAT(0) groups,
mapping class groups, snowflake groups, small cancellation groups, etc. This
extends Grigorchuk’s original result on free groups with respect to a word metrics
and a recent result of Jaerisch, Matsuzaki, and Yabuki on groups acting on hyperbolic
spaces to a much wider class of groups acting on spaces that are not necessarily
hyperbolic.

1. Introduction

We consider the exponential growth rate δG of the orbit of a group G acting properly on a
geodesic metric space X. In various notable contexts this asymptotic invariant is related to the
Hausdorff dimension of the limit set of G in ∂X and to analytical and dynamical properties of
G\X such as the spectrum of the Laplacian, divergence rates of random walks, volume entropy,
and ergodicity of the geodesic flow.

In some cases of special interest, the value of half the growth rate of the ambient space X is
distinguished. For example, when X = Hn and H is a torsion free discrete group of isometries of
X, the Elstrodt-Patterson-Sullivan formula [24] for the bottom of the spectrum of the Laplacian
of H\X has a phase change when the ratio of δH to the volume entropy of X is 1/2. Similarly,
if X is a Cayley tree of a finite rank free group Fn and H is a subgroup, then the Grigorchuk
cogrowth formula [13] for the spectral radius of H\X has a phase change at δH/δFn = 1/2. Our
main result says that, in great generality, normal subgroups land decisively on one side of this
distinguished value:

Theorem 1.1. Suppose G is a group acting properly by isometries on a geodesic metric space
X with a strongly contracting element and with purely exponential growth. If N is an infinite
normal subgroup of G then δN/δG > 1/2, where the growth rates δG and δN are computed with
respect to G y X.

The ratio δN/δG is known as the cogrowth of Q := G/N. The hypotheses will be explained
in detail in the next section. Briefly, the existence of a strongly contracting element means that
some element of G acts hyperbolically on X, though X itself need not be hyperbolic, and pure
exponential growth is guaranteed if the action has a strongly contracting element and an orbit of
G in X is not too badly distorted.

This research was partially supported by the European Research Council (ERC) grant of Goulnara Arzhantseva,
“ANALYTIC” grant agreement no. 259527. The second author is supported by the Austrian Science Fund (FWF):
P 30487-N35.
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In negative curvature, the strict lower bound on cogrowth has been shown in various special
cases [23, 21, 5, 16]. For X = G = Fn, the strict lower bound on cogrowth is due to Grigorchuk
[13].

Grigorchuk and de la Harpe [14, page 69] (see also [15, Problem 36]) asked whether the
strict lower cogrowth bound also holds when Fn is replaced by a non-elementary Gromov
hyperbolic group, and X is one of its Cayley graphs. This long-open problem was recently
answered affirmatively by Jaerisch, Matsuzaki, and Yabuki [19] (see also a survey by Matsuzaki
[18]). Their result applies more generally to groups of divergence type acting on hyperbolic
spaces. Theorem 1.1 gives an alternative proof of the positive answer to Grigorchuk and de la
Harpe’s question, and goes much beyond. In comparison, Jaerisch, Matsuzaki, and Yabuki’s
result applies to more general actions if one restricts to actions on hyperbolic spaces, while
Theorem 1.1 applies to many renowned non-hyperbolic examples.

Corollary 1.2. For the following G y X, for every infinite normal subgroup N of G we
have δN/δG > 1/2.

(1) G is a non-elementary hyperbolic group acting cocompactly on a hyperbolic space X.
(2) G is a relatively hyperbolic group, and X is hyperbolic such that G y X is cusp

uniform and satisfies the parabolic gap condition.
(3) G is a right-angled Artin group defined by a finite simple graph that is neither a single

vertex nor a join, and X is the universal cover of its Salvetti complex.
(4) X is a CAT(0) space, and G acts cocompactly with a rank 1 isometry on X.
(5) G is the mapping class group of a surface of genus g and p punctures, with 6g−6+2p >

2, and X is the Teichmüller space of the surface with the Teichmüller metric.

Results (3)-(5) are new, only known as consequences of Theorem 1.1. Further new examples
include wide classes of snowflake groups [2] and of infinitely presented graphical and classical
small cancellation groups [1], hence, many so-called infinite ‘monster’ groups.

The generality of Theorem 1.1 is striking. Previous successes in showing the strict lower
bound on cogrowth have relied on fairly sophisticated results concerning Patterson-Sullivan
measures on the boundary of a hyperbolic space or ergodicity of the geodesic flow on G\X.
These tools are not available in our general setting. Instead, we use the geometry of the group
action directly to estimate orbit growth. The idea of our argument is as follows.

(1) If G contains a strongly contracting element for G y X then so does every infinite
normal subgroup N of G. Let c ∈ N be such an element.

(2) By passing to a high power of c, if necessary, we may assume that its translation length
is much larger than the constants describing its strong contraction properties. In this
case the growth δ[c] of the set [c] of conjugates of c is exactly δG/2.

(3) A ‘tree’s worth’ of copies of [c] injects into the normal closure 〈〈c〉〉 of c, which is a
subgroup of N. It follows that the growth rate of 〈〈c〉〉, hence of N, is strictly greater
than δ[c] = δG/2. In this step we use the ‘hyperbolicity’ of the action of c, as quantified
by strong contraction, to provide geometric separation between copies of [c].

We used this strategy in our paper with Tao [2] (see also references therein) to prove growth
tightness of G y X for actions having a strongly contracting element. The key point was to
estimate the growth rate of the quotient of G by the normal closure of c. We chose a section
A of the quotient map and built a tree’s worth of copies of it by translating by a high power of
c. By construction, the set A did not contain words containing high powers of c as subwords,
so translates of A by powers of c were geometrically separated. There is a serious difficulty in
applying step (3) for cogrowth, because [c] does contain words with arbitrarily large powers of
c as subwords. Indeed, any word of G can occur as a subword of an element of [c], so we do not
get the same nice geometric separation as hoped for in step (3), and consequently our abstract
tree’s worth of copies of [c] does not inject into G. We overcome this difficulty by quantifying
how this mapping fails to be an injection. We show there is asymptotically at least half of [c] for
which the map is an injection, and we use this half of [c] to complete step (3).
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For an example where the conclusion of the theorem does not hold, consider the group
G = F2 × F2 acting on its Cayley graph X with respect to the generating set (S ∪ 1) × (S ∪ 1),
where S is a free generating set of F2. The F2 factors are normal and have growth rate exactly
half the growth rate of G. The action G y X does not have a strongly contracting element.

We thank the referee for the careful reading and helpful comments.

2. Preliminaries

We write x
∗

≺ y, x
+

≺ y, or x ≺ y if there is a universal constant C > 0 such that x < Cy,
x < y + C, or x < Cy + C, respectively. We define

∗

�,
+

�, �, ∗�, +
�, and � similarly.

Throughout, we let (X, d, o) be a based geodesic metric space and let G be a group acting
isometrically on X. For Y ⊂ X and r > 0, let Br(Y) := {x ∈ X | ∃y ∈ Y, d(x, y) < r} and
B̄r(Y) := {x ∈ X | ∃y ∈ Y, d(x, y) 6 r}. Let Br := Br(o), and let S ∆

r := Br+∆ − Br.
There are induced pseudo-metric and semi-norm on G given by d(g, h) := d(g.o, h.o) and

|g| := d(o, g.o).

2.1. Growth. The (exponential) growth rate of a subset Y ⊂ X is:

δY := lim sup
r→∞

log #Y ∩ B̄r

r

The Poincaré series of a countable subset Y of X is:

ΘY (s) :=
∑
y∈Y

exp(−sd(y, o))

For any ∆ > 0 we also consider the series:

Θ
S ,∆
Y (s) :=

∞∑
i=0

(#Y ∩ S ∆(i+1)
∆i ) exp(−s∆i)

Θ
B,∆
Y (s) :=

∞∑
i=0

(#Y ∩ B̄∆i) exp(−s∆i)

The series Θ
B,∆
Y (s) and Θ

S ,∆
Y (s) agree with ΘY (s) up to multiplicative error depending on ∆ and

s, so they all converge and diverge together. Now, ΘY (s) converges for s > δY and diverges for
s < δY . The set Y is said to be divergent, or of divergent type, if ΘY (s) diverges at s = δY .

We say that Y ⊂ X has purely exponential growth if there exist δ > 0 and ∆ > 0 such that
#Y ∩ S ∆

r
∗
� exp(δr). Recall this means there is a constant C > 0, independent of r, such that

exp(δr)/C 6 #Y ∩ S ∆
r 6 C exp(δr).

An action G y X is (metrically) proper if for all x ∈ X and r > 0 the set {g ∈ G | d(x, g.o) 6
r} is finite. When G y X is proper we extend all the preceding definitions to subsets H of G by
taking Y = H.o, e.g.:

δH := lim sup
r→∞

log #H.o ∩ B̄r

r
= lim sup

r→∞

log #{h ∈ H | |h| 6 r}
r

When G y X is cocompact, or, more generally, has a quasi-convex orbit, the growth of
#S ∆

r ∩G.o is coarsely sub-multiplicative, which, when δG > 0, implies an exponential lower
bound on #S ∆

r ∩ G.o. Conversely, if G y X contains a strongly contracting element then
the growth of #S ∆

r ∩ G.o is coarsely super-multiplicative, which implies the corresponding
exponential upper bound. For instance, Coornaert [9] proved that a quasi-convex-cocompact,
exponentially growing subgroup of a hyperbolic group has purely exponential growth. More
generally, in [2] we introduced the following condition that implies the pseudo-metric induced
by a group action behaves like a word metric for growth purposes: the complementary growth
of G y X is the growth rate of the set of points of G.o that can be reached from o by a geodesic
segment in X that stays completely outside of a neighborhood of G.o, except near its endpoints.
We say that G y X has complementary growth gap if the complementary growth is strictly
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less than δG. Yang [25] proved that if G acts properly with a strongly contracting element and
0 < δG < ∞ then complementary growth gap implies purely exponential growth.

For relatively hyperbolic groups the complementary growth gap specializes to the parabolic
growth gap of [11], which requires that the growth of parabolic subgroups of a relatively
hyperbolic group is strictly less than the growth rate of the whole group. For another non-
cocompact example, we showed in [2] that the action of the mapping class group of a hyperbolic
surface on its Teichmüller space has complementary growth gap.

For a non-example, consider the integers Z acting parabolically on the hyperbolic plane.
Hyperbolic geodesics connecting o to n.o for large n travel deeply into a horoball at the fixed
point of Z on ∂H2, far from the orbit of Z. Although Z has 0 exponential growth in any word
metric, in terms of this action on H2 it has exponential growth due entirely to the distortion of
the orbit.

2.2. Contraction. A subset Y of X is C–strongly contracting, for a ‘contraction constant’
C > 0, if for all x, x′ ∈ X, if d(x, x′) 6 d(x,Y) then the diameter of πY (x) ∪ πY (x′) is at
most C, where πY (x) := {y ∈ Y | d(x, y) = d(x,Y)}. A set is called strongly contracting if
there exists a C > 0 such that it is C–strongly contracting. The projection distance in Y is
dπY (x, x′) := diam πY (x)∪πY (x′). We extend these definitions to sets Z ⊂ X by πY (Z) := ∪z∈ZπY (z)
and dπY (Z,Z′) := diam πY (Z) ∪ πY (Z′).

Strong contraction of Y is equivalent [2, Lemma 2.4] to the bounded geodesic image
property: For all C > 0 there exists C′ > C such that if Y is C–strongly contracting then for
every geodesic γ in X, if γ ∩ BC′(Y) = ∅ then diam πY (γ) 6 C′.

Corollary 2.1. Suppose Y is C–strongly contracting and C′ is as above. Suppose γ is a
geodesic defined on an interval [a, b], possibly infinite. Let t0 := inf{t | d(γ(t),Y) < C′}, and
let t1 := sup{t | d(γ(t),Y) < C′}. Then diam πY (γ([a, t0])) 6 C′ and diam πY (γ([t1, b])) 6 C′,
while γ([t0, t1]) ⊂ B̄3C′(Y). If a and b are finite and diam πY (γ(a)) ∪ πY (γ(b)) > C′ then
πY (γ(a)) ⊂ B̄2C′(γ(t0)) and πY (γ(b)) ⊂ B̄2C′(γ(t1)).

An infinite order element c ∈ G is said to be a strongly contracting element for G y X if the
set 〈c〉.o is strongly contracting. In this case Z→ X : i 7→ ci.o is a quasi-isometric embedding
and c is contained in a maximal virtually cyclic subgroup E(c). This subgroup, which is
alternately known as the elementarizer or elementary closure of c, can also be characterized as
the maximal subgroup consisting of elements g ∈ G such that g−1〈c〉g is at bounded Hausdorff
distance from 〈c〉. Since E(c).o is coarsely equivalent to 〈c〉.o, the set E(c).o is also strongly
contracting. Note that E(c) = E(cn) for every n , 0. Thus, when considering E(c).o, we can
pass to powers of c freely without changing the set E(cn).o, and in particular without changing
its contraction constant.

For a strongly contracting element c, let E := E(c).o, and let Y be the collection of
distinct G–translates of E. Bestvina, Bromberg, and Fujiwara [4] axiomatized the geometry of
projection distances in Y. With Sisto [3] they showed that by a small change in the projections
and projection distances, a cleaner set of axioms is satisfied—these will allow us to make an
inductive argument in the next section. The following is [3, Theorem 4.1] applied to Y. We
list here only those axioms that we will make use of and that are not immediate from our
particular definitions of Y, πY, and dπ

Y
. A detailed verification that Y satisfies the hypotheses of

[3, Theorem 4.1] can be found in [2].

Theorem 2.2. There exists θ > 0 such that for each Y ∈ Y there is a projection π′
Y

taking
elements of Y to subsets of Y such that for all X ∈ Y and g ∈ G we have π′

Y
(X) ⊂ Bθ(πY(X))

and π′gY(gX) = gπ′
Y

(X). Furthermore, there are distance maps dY(X,Z) = diam π′
Y

(X) ∪
π′
Y

(Z) with |dY − dπ
Y
| 6 2θ such that, for θ′ := 11θ, the following axioms are satisfied for all

X, Y, Z,W ∈ Y:
(P 0): dπ

Y
(X,X) 6 θ when X , Y.

(P 1): If dπ
Y

(X,Z) > θ then dπ
X

(Y,Z) 6 θ for all distinct X, Y,Z.
(SP 3): If dY(X,Z) > θ′ then dZ(X,W) = dZ(Y,W) for allW ∈ Y − {Z}.
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(SP 4): dY(X,X) 6 θ′ when X , Y.

For more details on strongly contracting elements and many examples, see [2].

Proposition 2.3 ([3, Lemma 2.2 and Proposition 2.3]). With θ′ as in Theorem 2.2, for eachX
andZ in Y define Y(X,Z) := {Y ∈ Y − {X,Z} | dY(X,Z) > 2θ′} and Y[X,Z] := Y(X,Z) ∪
{X,Z}. There is a total order < on Y[X,Z] such if Y0 < Y1 < Y2 then dY1(Y0,Y2) =

dY1(X,Z). The relation Y0 < Y1 is defined by each of the following equivalent conditions:
• dY0(X,Y1) > θ′

• dY1(X,Y0) 6 θ′
• dY1(Y0,Z) > θ′

• dY0(Y1,Z) 6 θ′

3. Embedding a tree’s worth of copies of [c]

For a subset H ⊂ G, let H∗ := H − {1}, and consider Ĥ :=
⋃∞

k=1(H∗)k. We consider Ĥ to
be a ‘tree’s worth of copies of H’ in allusion to the case of the free product H ∗ Z/2Z when
H is a group. The group H ∗ Z/2Z acts on a tree with vertex stabilizers conjugate to H, and
every element that is not equal to 1 or the generator z of Z/2Z has a unique expression as
zαh1zh2z · · · hkzβ for some k ∈ N, α, β ∈ {0, 1}, and hi ∈ H∗.

The naïve map Ĥ → X : (h1, . . . , hk) 7→ h1c · · · hkc.o, where c is a strongly contracting
element, is clearly not an injection for H = [c], as it gives collisions (h−1, h) 7→ h−1chc.o ← [
(h−1ch). To avoid collisions we remove a fraction of [c] in four steps, and use a slightly different
map. The main technical result is:

Proposition 3.1. Under the hypothesis of Theorem 1.1, let c be a strongly contracting
element. After possibly passing to a power of c, there is a subset G4 ⊂ [c] that is divergent, has
δG4 = δG/2, and for which the map Ĝ4 → X : (g1, . . . , gk) 7→ (

∏k
i=1 gic2).o is an injection.

The main theorem follows by an argument analogous to the one we used in [2], which we
reproduce for the reader’s convenience.

Proof of Theorem 1.1. Let c′ ∈ G be a strongly contracting element for G y X. Suppose
that N < E(c′). Since N is infinite, it has a finite index subgroup in common with 〈c′〉. But
conjugation by an element of G fixes N, so it moves 〈c′〉 by a bounded Hausdorff distance,
which means G = E(c′) is virtually cyclic and N is a finite index subgroup of G. However,
〈c′〉 has an undistorted orbit in X. Since this is a finite index subgroup of G, the growth of
G is only linear, contradicting the exponential growth hypothesis. Thus, we may assume that
G is not virtually cyclic and that N contains an element g that is not in E(c′). We showed in
[2, Proposition 3.1] that for sufficiently large n the element c := g−1(c′)−ng(c′)n is a strongly
contracting element of N.

Consider G4 as provided by Proposition 3.1 with respect to c. Then Ĝ4 injects into X, and,
moreover, the image is contained in 〈〈c〉〉.o ⊂ N.o. Therefore, the growth rate of N is at least as
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large as the growth rate of the image of Ĝ4, which we estimate using its Poincaré series:

ΘĜ4
(s) =

∞∑
k=1

∑
(g1,...,gk)∈(G∗4)k

exp(−s|g1c2 · · · gkc2|)

>
∞∑

k=1

∑
(g1,...,gk)∈(G∗4)k

exp

−sk|c2| − s
k∑

i=1

|gi|


=

∞∑
k=1

exp(−sk|c2|)
∑

(g1,...,gk)∈(G∗4)k

k∏
i=1

exp(−s|gi|)

=

∞∑
k=1

exp(−sk|c2|)

∑
g∈G∗4

exp(−s|g|)


k

=

∞∑
k=1

(
exp(−s|c2|)ΘG∗4(s)

)k

Since G4 is divergent, for sufficiently small positive ε we have ΘG∗4(δG4+ε) > exp((δG4+ε)|c
2|), so

ΘĜ4
(δG4 +ε) diverges, which implies δĜ4

> δG4 +ε. Thus, δN > δĜ4
> δG4 +ε > δG4 = δG/2. �

The remainder of this section is devoted to the construction of the set G4 satisfying the
conclusion of Proposition 3.1. Here is a brief overview. We need a subset of [c] such that the
given map is an injection. It would be preferable if we could take conjugates of c by elements g
that have no long projection to any element of Y. It is easy to build an injection based on such
elements, but, unfortunately, there are too few of them in our setting—the growth rate of the set
of such elements is strictly smaller than δG, so the growth rate of c–conjugates by such elements
is strictly smaller than δG/2. Instead, we consider elements g that do not have long projections
to E and gE; in a sense, these are elements ‘orthogonal to Y at their endpoints’, rather than
‘orthogonal to Y’ throughout. The desired condition can be achieved with a small modification
near the ends of g, so this does not change the growth rate. We call this set of elements G1 and
the conjugates of (a power of) c by these elements G2. We define G3 by passing to a maximal
subset of G2 such that elements are sufficiently far apart. This does not change the set much; in
particular, the growth rate is unchanged. However, it will be an important point for the injection
argument, because we show in Lemma 3.5 that if g and h are in G3 then gE = hE implies g = h.
The final refinement is to pass to the subset G4 of G3 of elements that are not ‘in the shadow’ of
some other element of G3, that is to say, elements g such that there does not exist h such that a
geodesic from o to g.o passes close to h.o. The crux of the argument, Lemma 3.6, is to show
that at least half of G3 is unshadowed, so G4 is divergent with growth rate δG/2. Finally, in
Lemma 3.7, we check that G4 gives the desired injection.

Fix an element f0 ∈ G such that f0E is disjoint from E, o ∈ πE( f0.o), and f0.o ∈ π f0E(o). To
see that such an element exists, first note that there exists g ∈ G − E(c), for instance, as in the
first paragraph of the proof of Theorem 1.1. If E and gE are disjoint, let f1 and f2 be elements
of G such that f1.o ∈ E and f2.o ∈ gE realize the minimum distance between E and gE. Then
the element f0 := f −1

1 f2 satisfies our requirements. If gE and E are not disjoint consider gE and
cngE, for some n. If they intersect then, by (P 0):

2θ > dπ
E

(gE, gE) + dπ
E
(cngE, cngE) > dπ

E
(gE, cngE) > |cn|

This is impossible once n is sufficiently large as c is strongly contracting. So, gE and cngE are
disjoint for such n, and we get f0 by the previous argument after replacing g with g−1cng.

Since E and f0E are disjoint and o and f0.o are contained in one another’s projections, strong
contraction of c, and hence of E, gives a constant C > 0 such that:

(1) dπf0E(o, f0.o) = diam π f0E(o) 6 C and dπ
E

(o, f0.o) = diam πE( f0.o) 6 C
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In the sequel, we use the following notation: | f0| is the length of the element f0 just defined;
∆ is as in the definition of purely exponential growth of G; C is a contraction constant for E; C′

is the corresponding constant from Corollary 2.1; θ and θ′ are as in Theorem 2.2; K is a fixed
constant strictly greater than max{C, θ + θ′/2}. We call these, collectively, ‘the constants’. The
terms ‘small’ and ‘close’ mean bounded by some combination of the constants. When possible
we decline to compute these explicitly since only finitely many such combinations appear in
the proof, except where noted. Furthermore, ∆ depends only on G, and the others depend only
on E = E(c).o. Since E(c) = E(cp) for all p , 0, we can, and will, pass to high powers of c to
make |cp| much larger than all of the constants and combinations of them that we encounter.

Set G1 := {g ∈ G | dπ
E
(o, g.o) 6 2K and dπgE(o, g.o) 6 2K and gE , E}. This is a subset of

G that is closed under taking inverses.

Lemma 3.2. For every g ∈ G at least one of the elements g, f0g, g f0, or f0g f0 belongs to G1.

Proof. First, consider g < E(c) with |g| 6 K. Recall g ∈ E(c) if and only if gE = E. By
definition, πE(g.o) is the set of points of E minimizing the distance to g.o. By hypothesis,
o is a point of E at distance at most K from g.o so d(g.o, πE(g.o)) 6 K, and dπ

E
(o, g.o) =

diam {o} ∪ πE(g.o) 6 2K. The same argument for o projecting to gE gives dπgE(o, g.o) 6 2K.
Thus, elements g of this form already belong to G1.

Next, consider an element g ∈ E(c) such that |g| 6 K. Since g ∈ E(c), we have f0gE =

f0E , E and πE(g.o) = g.o, so dπ
E

(o, g.o) = d(o, g.o) 6 K. Using this estimate and (1), we see:

dπf0gE(o, f0g.o) 6 dπf0gE(o, f0.o) + dπf0gE( f0.o, f0g.o) = dπf0E(o, f0.o) + dπ
E
(o, g.o) 6 C + K < 2K

In the other direction, using the fact that o ∈ πE( f0.o) ⊂ πE( f0E), along with (P 0):

dπ
E

(o, f0g.o) 6 dπ
E
(o, f0E) 6 dπ

E
( f0E, f0E) 6 θ < K

Note that we did not use dπ
E
(o, g.o) 6 K for this direction—the inequality is valid for any

g ∈ E(c).
Suppose g < E(c) and dπ

E
(o, g.o) > K then:

θ < K < dπ
E

(o, g.o) = dπf0E( f0.o, f0g.o) 6 dπf0E(E, f0gE)

This contradicts (P 0) if E = f0gE, since, by hypothesis, f0E , E and f0gE , f0E. Thus, E, f0E,
and f0gE are distinct, and we can apply (P 1) to get:

dπ
E

(o, f0g.o) 6 dπ
E

( f0E, f0gE) 6 θ < K

For |g| 6 K we are done, either g or f0g is in G1, and for |g| > K we have shown that there
is at least one choice of g′ ∈ {g, f0g} such that g′E , E and dπ

E
(o, g′.o) 6 K. If dπg′E(o, g′.o) 6 K

then we are done, so suppose not. Consider the possibility that g′ f0E = E. Then g′ f0.o ∈ E, so
o ∈ πE( f0.o) implies g′.o ∈ πg′E(g′ f0.o) ⊂ πg′E(E). Since g′E , E, (P 0) says dπg′E(E,E) 6 θ, so:

K < dπg′E(o, g′.o) 6 dπg′E(E,E) 6 θ < K

This is a contradiction, so E, g′E, and g′ f0E are distinct. Observe, since g′.o ∈ πg′E(g′ f0.o):

dπg′E(E, g′ f0E) > dπg′E(o, g′ f0.o) > dπg′E(o, g′.o) > K > θ

Thus, by (P 1) and the fact that g′ f0.o ∈ πg′ f0E(g′.o), we have dπg′ f0E(o, g′ f0.o) 6 dπg′ f0E(E, g′E) 6
θ < K.

To check that the first inequality has not been spoiled, use the fact that dπg′E(E, g′ f0E) > θ,
so (P 1) implies dπ

E
(g′E, g′ f0E) 6 θ, which gives:

dπ
E

(o, g′ f0.o) 6 dπ
E

(o, g′.o) + dπ
E

(g′.o, g′ f0.o) 6 K + dπ
E
(g′E, g′ f0E) < K + θ < 2K �

Define φ0 : G → G1 by fixing G1 and sending an element g ∈ G − G1 to an arbitrary
element of the nonempty set { f0g, g f0, f0g f0} ∩G1. The map φ0 is surjective, at most 4-to-1,
and changes norm by at most 2| f0|.

For each p ∈ N, define G2,p := {g−1cpg | g ∈ G1} and φ1,p : G1 → G2,p : g 7→ g−1cpg.
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Lemma 3.3. If p is sufficiently large then for every g ∈ G1 we have:

2|g| + |cp| − 8C′ − 8K 6 |φ1,p(g)| 6 2|g| + |cp|

Proof. The upper bound is clear. We derive a lower bound from strong contraction. From
the definition of G1 it follows that πg−1E(o) ⊂ B̄2K(g−1.o) and πg−1E(g−1cpg.o) ⊂ B̄2K(g−1cp.o),
so:

(2) |cp| − 4K 6 dπg−1E
(o, g−1cpg.o) 6 |cp| + 4K

Let γ be a geodesic from o to g−1cpg.o. Its endpoints have projection to g−1E at distance at least
|cp| − 4K � C′ from one another, for p sufficiently large, as c is strongly contracting. Thus, for
t0 and t1 as in Corollary 2.1, we have d(γ(t0), πg−1E(o)) 6 2C′, so d(γ(t0), g−1.o) 6 2C′ + 2K,
and, similarly, d(γ(t1), g−1cp.o) 6 2C′ + 2K.

|φ1,p(g)| = |γ| = d(o, γ(t0)) + d(γ(t0), γ(t1)) + d(γ(t1), g−1cpg.o)

>
(
d(o, g−1.o) − (2C′ + 2K)

)
+

(
d(g−1.o, g−1cp.o) − 2(2C′ + 2K)

)
+

(
d(g−1cp.o, g−1cpg.o) − (2C′ + 2K)

)
= 2|g| + |cp| − 8C′ − 8K �

The following lemma also follows from (2).

Lemma 3.4. Let g−1cpg = φ1,p(g) ∈ G2,p. If p is sufficiently large then g−1E ∈ Y(E, g−1cpgE).

We also claim φ1,p is bounded-to-one, independent of p. To see this, fix g ∈ G1 and consider
h ∈ G1 such that φ1,p(g) = φ1,p(h). Then gh−1 commutes with cp, so gh−1 ∈ E(cp) = E(c).
Thus:

|gh−1| = dπ
E
(o, gh−1.o)

6 dπ
E
(o, g.o) + dπ

E
(g.o, gh−1.o)

= dπ
E
(o, g.o) + dπhg−1E

(h.o, o)

= dπ
E
(o, g.o) + dπ

E
(h.o, o)

6 4K

So, h satisfies h−1.o ∈ B̄4K(g−1.o). By properness of G y X, #G.o∩ B̄4K(g−1.o) = #G.o∩ B̄4K(o)
is finite.

Let G3,p be a maximal (6K + 1)–separated subset of G2,p, that is, a subset that is maximal
for inclusion among those with the property that d(g.o, h.o) > 6K + 1 for distinct elements g and
h. Let φ2,p : G2,p → G3,p be a choice of closest point. This map is surjective. By maximality,
φ2,p moves points a distance less than 6K + 1. Thus, by properness of G y X, the map φ2,p is
bounded-to-one, independent of p.

Lemma 3.5. If p is sufficiently large then g−1cpgE = h−1cphE for g−1cpg and h−1cph in G3,p
implies g−1cpg = h−1cph.

Proof. Since g ∈ G1, dπgE(o, g.o) 6 2K, and:

dπg−1cpgE(o, g−1cpg.o) 6 dπg−1cpgE(o, g−1cp.o) + dπg−1cpgE(g−1cp.o, g−1cpg.o)

6 dπg−1cpgE(E, g−1E) + 2K

Furthermore, g ∈ G1 implies E , g−1E , g−1cpgE. By (2), dπ
g−1E

(E, g−1cpgE) > |cp|−4K �

θ, so by (P 0), E , g−1cpgE. Thus E, g−1E, and g−1cpgE are distinct and we can apply (P 1) to
see dπ

g−1cpgE
(E, g−1E) 6 θ < K. Plugging this into previous inequality gives:

(3) dπg−1cpgE(o, g−1cpg.o) < 3K
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The same computation applies for h, so πg−1cpgE(o) ⊂ B̄3K(g−1cpg.o)∩ B̄3K(h−1cph.o). Thus,
g−1cpg and h−1cph are elements at distance at most 6K in a (6K + 1)–separated set; hence, they
are equal. �

For each D > 0, consider the set G′4,p,D consisting of elements g−1cpg ∈ G3,p such that there
exists a different element h−1cph ∈ G3,p such that h−1cphc2p.o is within distance D of a geodesic
γ from o to g−1cpg.o. Define G4,p,D := G3,p −G′4,p,D.

Lemma 3.6. For all D > 0, for p sufficiently large, G4,p,D is divergent and δG4,p,D = δG/2.

Proof. The maps φ2,p, φ1,p, and φ0 are surjective and bounded-to-one, with bound indepen-
dent of p, so their composition is as well. Furthermore, we know how they change norm: φ0
moves points at most 2| f0|, φ2,p moves less than 6K + 1, and |φ1,p(g)| is estimated in Lemma 3.3.
Putting these together, for any r > 0 and g ∈ G ∩ S ∆

r we have:

(4) 2r + |cp| − 4| f0| − 8C′ − 14K − 1 6 |φ2,p ◦ φ1,p ◦ φ0(g)| < 2r + |cp| + 2∆ + 4| f0| + 6K + 1

Let t := 2r + |cp| − 4| f0| − 8C′ − 14K − 1, E := 4| f0| + 4C′ + 10K + 1, and ∆′ := 2(∆ + E), so
that (4) shows:

φ2,p ◦ φ1,p ◦ φ0(G ∩ S ∆
r ) ⊂ G3,p ∩ S ∆′

t ⊂ φ2,p ◦ φ1,p ◦ φ0(G ∩ S ∆+2E
r−E )

This lets us compare the size of spherical shells in G3,p and G:

(5) #G ∩ S ∆+2E
r−E > #G3,p ∩ S ∆′

t
∗

� #G ∩ S ∆
r

Pure exponential growth of G says that #G ∩ S ∆
r
∗
� exp(rδG). Combining this with (5), we have:

(6) #G3,p ∩ S ∆′

t
∗
� exp(δGr) ∗

� exp(−δG |cp|/2) exp(tδG/2)

This tells us that δG3,p = δG/2 and G3,p is divergent.
Now we will estimate an upper bound for #G′4,p,D ∩ S ∆′

r and see that for large p and r it is
less than half of #G3,p ∩ S ∆′

r . Thus, to get G4,p,D we threw away less than half of G3,p, at least
outside a sufficiently large radius. We conclude that δG4,p,D = δG/2 and G4,p,D is divergent.

Consider g−1cpg ∈ G′4,p,D ∩ S ∆′

r for any r > 7|cp|. By definition of G′4,p,D, there exists
h−1cph ∈ G3,p such that h−1cph , g−1cpg and h−1cphc2p.o is close to a geodesic γ from o to
g−1cpg.o.

Let < be the order of Proposition 2.3 on Y[E, g−1cpgE]. The first step of the proof is to
show that E, g−1E, g−1cpgE, h−1E, and h−1cphE are distinct elements of Y[E, g−1cpgE], and
that the ordering is one of the two possibilities shown in Figure 1 and Figure 2.

g−1cpg.o

h−1.o h−1cp.o

g−1.o g−1cp.o

h−1cph.o
h−1cphc2p.o

γ

a

g g

h h

Figure 1. h−1cphE before g−1E, that is, h−1cphE < g−1E

g−1cpg.o

h−1.o h−1cp.o g−1.o g−1cp.o

h−1cph.o h−1cphc2p.o

γb b′

g g

h h

Figure 2. h−1cphE after g−1E, that is, g−1E < h−1cphE
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By Lemma 3.4, E < g−1E < g−1cpgE, so these three are distinct. Similarly, E, h−1E, and
h−1cphE are distinct. Lemma 3.5 implies g−1cpgE , h−1cphE.

We have |cp| + 2|g| > |g−1cpg|
+

� |h−1cphc2p| since h−1cphc2p.o is close to a geodesic from o
to g−1cpg.o. On the other hand, any geodesic from o to h−1cphc2p.o has projection to h−1cphE
of diameter greater than |c2p| − 3K by (3). This is much larger than C′ when p is large, so
|h−1cphc2p|

+
� |h−1cph| + |c2p|

+

� 3|cp| + 2|h| by Corollary 2.1 and Lemma 3.3. Thus:

(7) |g|
+

� |h| + |cp|

However, by definition of G1, if h−1E = g−1E, then:

4K > dπg−1E
(o, g−1.o) + dπh−1E

(o, h−1.o) > d(g−1.o, h−1.o) > |g| − |h|
+

� |cp|

This is a contradiction for sufficiently large p. Similar considerations show h−1E , g−1cpgE,
since o projects close to h−1.o in h−1E, by definition of G1, and close to g−1cpg.o in g−1cpgE,
by (3), but |h| � |g−1cpg|, by Lemma 3.3 and (7).

Next we show that h−1E and h−1cphE belong to Y[E, g−1cpgE], and in the course of the proof
we will observe g−1E , h−1cphE. By hypothesis, there exists t such that d(γ(t), h−1cphc2p.o) 6
D. This implies dπ

h−1cphE
(γ(t), h−1cphc2p.o) 6 2D. Since dπ

h−1cphE
(o, h−1cph.o) < 3K, by (3), we

have dπ
h−1cphE

(o, γ(t)) > |c2p| − 2D − 3K, which is large for p sufficiently large. Let t0 and t1
be the first and last times γ is distance C′ from h−1cphE, as in Corollary 2.1 with respect to
h−1cphE. We cannot have t 6 t0, since then dπ

h−1cphE
(o, γ(t)) 6 C′, which is a contradiction for

large p.
If t > t1 then dπ

h−1cphE
(γ(t), g−1cpg.o) 6 C′, so:

dπh−1cphE(o, g−1cpg.o) > dπh−1cphE(o, γ(t)) − dπh−1cphE(γ(t), g−1cpg.o)

> |c2p| − 3K − 2D −C′

If t0 < t < t1 then we use Corollary 2.1 to say dπ
h−1cphE

(o, g−1cpg.o) > |γ(t0, t1)| − 4C′, and
then estimate:

|γ(t0, t1)| > d(γ(t0), γ(t))

> d
(
πh−1cphE(γ(t0)), πh−1cphE(γ(t))

)
−C′ − D

> dπh−1cphE(γ(t0), γ(t)) − diam πh−1cphE(γ(t0)) − diam πh−1cphE(γ(t)) −C′ − D

> dπh−1cphE(γ(t0), γ(t)) − 2C −C′ − D

> dπh−1cphE(o, γ(t)) − dπh−1cphE(γ(t0), o) − 2C −C′ − D

> |c2p| − 2D − 3K −C′ − 2C −C′ − D

Thus, h−1cphE ∈ Y[E, g−1cpgE] once p is sufficiently large. Additionally, this shows g−1E ,

h−1cphE because, by (2) and (P 0), we have dπ
g−1E

(E, g−1cpgE) +
� |cp|, while from the estimates

above we have dπ
h−1cphE

(E, g−1cpgE)
+

� |c2p|, and these are incompatible for sufficiently large p.
Thus, the five axes are distinct.

From Corollary 2.1 we deduce that:

d(h−1cphc2p.o, h−1E)
+

� dπh−1cphE(h−1cphc2p.o, h−1E) +
� |c2p|

Thus, for large enough p we have d(h−1cphc2p.o, h−1E) > D > d(γ(t), h−1cphc2p.o), so strong
contraction of h−1E implies dπ

h−1E
(γ(t), h−1cphc2p.o) 6 C. Since o projects close to h−1.o in h−1E

and h−1cphc2p.o ∈ h−1cphE projects close to h−1cp.o, Corollary 2.1 says γ must pass close to
h−1cp.o. Now we can run the same argument as for h−1cphE to see h−1E ∈ Y[E, g−1cpgE] once
p is sufficiently large.

The first step of the proof is completed by observing that g−1E < h−1E implies |h| +
� |g|+ |cp|,

which cannot be true when p is sufficiently large, by (7). Thus, h−1E comes before g−1E and
h−1cphE under <, and we are left with the possibilities that h−1cphE < g−1E, as in Figure 1, or
the converse, as in Figure 2.
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In the case of Figure 1, we have h−1cphE < g−1E, so the projection of h−1cphc2p.o to g−1E

is close to the projection of o, which we know to be close to g−1.o. Write g−1.o = h−1cphc2pa.o
as in Figure 1 with |g| +

� 2|h| + 3|cp| + |a|.
In the case of Figure 2, we have h−1E < g−1E and g−1E < h−1cphE. The former implies the

projection of h−1cp.o to g−1E is close to the projection of o, which we know to be close to g−1.o,
while the latter implies the projection of h−1cph.o to g−1E is close to the projection of g−1cpg.o,
which we know to be close to g−1cp.o. Write g−1.o = h−1cpb.o with |g| +

� |h|+ |cp|+ |b| and write
h.o = bcpb′.o as in Figure 2 with |h| +

� |b| + |cp| + |b′|; together these give |g| +
� 2|b| + 2|cp| + |b′|.

Suppose we are in the case of Figure 2, so there are elements b and b′ such that (r−|cp|)/2 +
�

|g| +
� 2|b|+ 2|cp|+ |b′|. Since G has purely exponential growth, if i 6 |b| < i + 1 there are, up to a

bounded multiplicative error independent of p, r, and i, at most exp(δGi) possible choices for
b and at most exp(δG( r−5|cp |

2 − 2i)) choices of b′, so there is an upper bound for the number of
possible elements g by a multiple of:

(8)

r−5|cp |
4∑

i=0

exp(δGi) exp
(
δG

(
r − 5|cp|

2
− 2i

))
<

exp(rδG/2)
exp (5δG |cp|/2) (1 − exp(−δG))

The case of Figure 1 is similar, but gives an even smaller upper bound1. Thus, for all sufficiently
large p and r:

(9) #G′4,p,D ∩ S ∆′

r
∗

≺ exp(−5δG |cp|/2) exp(rδG/2)

Combining (6) and (9) gives:

(10) #G′4,p,D ∩ S ∆′

r
∗

≺ exp(−2|cp|δG) · #G3,p ∩ S ∆′

r

Crucially, the multiplicative constant in this asymptotic inequality does not depend on p, so
for p sufficiently large, exp(2|cp|δG) is more than twice the multiplicative constant, and (10)
becomes a true inequality #G′4,p,D ∩ S ∆′

r < 1
2 #G3,p ∩ S ∆′

r . We conclude that to get G4,p,D from
G3,p we threw away fewer than half of the points of G3,p in each spherical shell S ∆′

r such that
r > 7|cp|. �

Lemma 3.7. For all sufficiently large D, for all sufficiently large p, the map Ĝ4,p,D → X :
(g1, . . . , gk) 7→ (

∏k
i=1 gic2p).o is an injection.

Proof. Consider a point (
∏k

i=1 gic2p).o in the image. Set g0 := c−2p. Suppose that for
each i we have gi = e−1

i cpei for ei ∈ G1. For 0 6 i 6 k set z′2i := (
∏i

j=0 g jc2p).o, z2i :=
(
∏i

j=0 g jc2p)c−2p.o, and Z2i := (
∏i

j=0 g jc2p)E. For 0 < i 6 k set z2i−1 := (
∏i−1

j=0 g jc2p)e−1
2i−1.o,

z′2i−1 := (
∏i−1

j=0 g jc2p)e−1
2i−1cp.o, andZ2i−1 := (

∏i−1
j=0 g jc2p)e−1

2i−1E. See Figure 3.

z0 = c−2p.o z′0 = o

z1 = e−1
1 .o z′1 = e−1

1 cp.o

z2 z′2

z2k−1 z′2k−1

z2k (
∏k

i=1 gic2p).o = z′2k

Z0 = E

Z1 = e−1
1 E

Z2 = e−1
1 cpe1E = g1E

Z2k−1

Z2k = (
∏k

i=1 gic2p)E
Figure 3. (

∏k
i=1 gic2p).o

Let us complete the proof assuming the following claim, to which we shall return:

(11) ∀0 6 i < j 6 2k, dπ
Zi

(z′i ,Z j) < 5K and dπ
Z j

(z j,Zi) < 5K

When p is sufficiently large, d(zi, z′i) � 10K for all i, so (11) implies thatZi < Z j for all
0 6 i < j 6 2k, where < is the order of Proposition 2.3 on Y[Z0,Z2k].

1Replace each ‘5’ in (8) with a ‘7’. This accounts for the restriction that r − 7|cp| > 0.
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Suppose that the map Ĝ4,p,D → X is not an injection; there exist distinct elements
(g1, . . . , gm) and (h1, . . . , hn) of Ĝ4,p,D with the same image z ∈ X. Suppose m + n is mini-
mal among such tuples. If h1E = g1E then h1 = g1 by Lemma 3.5. This contradicts minimality
of m + n, so we must have h1E , g1E. Let Z0, . . . ,Z2m be as in Figure 3 for (g1, . . . , gm).
By definition, o ∈ Z0 and z ∈ Z2m. By (11), πZ2m(o) is close to z2m. By Corollary 2.1, any
geodesic from o to z ends with a segment that stays close to the subsegment ofZ2m between
z2m and z = z′2m. However, if Z′0, . . . ,Z

′
2n are as in Figure 3 for (h1, . . . , hn), then the same

is true for Z′2n, which implies dπ
Z2m

(Z′2n,Z
′
2n)

+

� d(z2m, z′2m) = |c2p|. Once p is sufficiently
large, (P 0) requires Z2m = Z′2n. Thus, Y[Z0,Z2m] = Y[Z′0,Z

′
2n], and all of the Zi and Z′j

are comparable in the order < on Y[Z0,Z2m]. In particular, Z′2 = h1E , g1E = Z2, so one
of them comes before the other. Suppose, without loss of generality, that h1E < g1E. Then
dh1E(g1E,Z2m) 6 θ′, by Proposition 2.3, and dπh1E

(Z2m, h1c2p.o) < 5K by (11), so:

dπh1E
(g1.o, h1c2p.o) 6 dπh1E

(g1E,Z2m) + dπh1E
(Z2m, h1c2p.o)

< θ′ + 2θ + 5K < 7K

On the other hand, dπh1E
(o, h1.o) < 3K, by (3), so dπh1E

(o, g1.o) > |c2p| − 10K � C′. By
Corollary 2.1, any geodesic from o to g1.o passes within distance 2C′ of πh1E(g1.o), which is less
than 7K from h1c2p.o. This means g1 ∈ G′4,p,(7K+2C′), which is a contradiction if D > 7K + 2C′.
Thus, if D > 7K + 2C′ then for sufficiently large p the map is injective.

We prove (11) by induction on m = j − i. For each 0 6 i < 2k we have that z′i and zi+1
differ by an element of G1, so Zi , Zi+1 and dπ

Zi+1
(zi+1, z′i) 6 2K. Furthermore, by (P 0),

dπ
Zi+1

(Zi,Zi) 6 θ. Thus:

dπ
Zi+1

(zi+1,Zi) 6 dπ
Zi+1

(zi+1, z′i) + dπ
Zi+1

(z′i ,Zi) 6 dπ
Zi+1

(zi+1, z′i) + dπ
Zi+1

(Zi,Zi) 6 2K + θ < 3K

Similarly, dπ
Zi

(z′i ,Zi+1) < 3K.
Now extend m to m + 1: Suppose that for some m > 1 and all 0 < j − i 6 m we have

dπ
Z j

(z j,Zi) < 5K and dπ
Zi

(z′i ,Z j) < 5K. (Note that this implies Zi , Z j.) Then for all
0 6 i 6 2k − m − 1:

dZi+1(Zi+m+1,Zi) > dπ
Zi+1

(Zi+m+1,Zi) − 2θ > d(zi+1, z′i+1) − 10K − 2θ � θ′

The final inequality is true for sufficiently large p, because the distance between zi+1 and z′i+1 is
either |cp| or |c2p|

+
� 2|cp|, according to whether i is even or odd. Thus, by (SP 3) and (SP 4):

dπ
Zi

(Zi+m+1,Zi+1) 6 dZi(Zi+m+1,Zi+1) + 2θ = dZi(Zi+1,Zi+1) + 2θ 6 θ′ + 2θ < 2K

which implies:

dπ
Zi

(z′i ,Zi+m+1) 6 dπ
Zi

(z′i ,Zi+1) + dπ
Zi

(Zi+1,Zi+m+1) < 3K + 2K = 5K

A similar argument gives dπ
Zi+m+1

(zi+m+1,Zi) < 5K. This completes the induction. �

Proof of Proposition 3.1. Take D and p as in Lemma 3.7. For this D, enlarge p if necessary
to satisfy the hypotheses of Lemma 3.6. Set G4 := G4,p,D. �

4. Questions

Question 4.1. Can we replace purely exponential growth of G by divergence of G in
Theorem 1.1?

By [19], the answer is ‘yes’ when X is hyperbolic.

Recall in (5) we showed ΘG(s) is comparable to ΘG3,p(s/2), while it is clear that ΘG3,p(s/2) 6
ΘN(s/2). If G is divergent then ΘG(s) diverges at s = δG, which means ΘN(t) diverges at
t = δG/2. There are two possible circumstances in which ΘN(t) diverges at t = δG/2:

(12) Either δN > δG/2, or δN = δG/2 and N is divergent.
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We proved the first case of (12) directly, with the additional assumption of purely exponential
growth of G. The approach of [19] is to prove, if X is hyperbolic, that δN = δG when N is
divergent, so, since δG > δG/2, the second case of (12) is impossible. Thus, a positive answer to
Question 4.1 would be implied by a positive answer to the following question, which is also
interesting in its own right.

Question 4.2. If G is a group acting properly by isometries with a strongly contracting
element on a geodesic metric space X and G y X is divergent, is it true that for every divergent
normal subgroup N of G we have δN = δG?

Jaerisch and Matsuzaki [17] show that if F is a finite rank free group and N is a non-trivial
normal subgroup of F then, with respect to a word metric defined by a free generating set of F,
there is a inequality δN + 1

2δF/N > δF . Notice, δN > δF/2 by the lower cogrowth bound, and
δF/N < δF by growth tightness of F.

Question 4.3. Is there an analogue of Jaerisch and Matsuzaki’s inequality for G acting with
a strongly contracting element and complementary growth gap? Note that we know both growth
tightness, by [2], and lower cogrowth bound, by Theorem 1.1, for such actions.

For G = X = Fn [13, 20, 7] and X = H2 and G a closed surface group [5], there exists a
sequence (Ni)i∈N of normal subgroups of G such that δNi/δG limits to 1/2, so the lower cogrowth
bound is optimal.

Question 4.4. Is the lower cogrowth bound optimal in Theorem 1.1?

We must mention that the upper cogrowth bound is also very interesting. Grigorchuk [13]
and Cohen [8] showed that when F is a finite rank free group, with respect to a word metric
defined by a free generating set the upper cogrowth bound δN/δF = 1 is achieved for N � F
if and only if F/N is amenable. There have been several generalizations [6, 21, 22, 12, 10] to
growth rates defined with respect to an action G y X, but the most general to date [10] still
requires G to be hyperbolic, the action to be cocompact, and X to be either a Cayley graph of G
or a CAT(-1) space. In the vein of our theorem, it would be very interesting to generalize such a
result to a non-hyperbolic setting.
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Quasi-isometries need not induce homeomorphisms of contracting
boundaries with the Gromov product topology

Christopher H. Cashen
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We consider a ‘contracting boundary’ of a proper geodesic metric space consisting
of equivalence classes of geodesic rays that behave like geodesics in a hyperbolic
space. We topologize this set via the Gromov product, in analogy to the topology of
the boundary of a hyperbolic space. We show that when the space is not hyperbolic,
quasi-isometries do not necessarily give homeomorphisms of this boundary. Con-
tinuity can fail even when the spaces are required to be CAT(0). We show this by
constructing an explicit example.

1. Introduction

In an extremely influential paper, Gromov [7] introduced hyperbolic spaces and their
boundaries. Among myriad applications, the topological type of the boundary provides a
quasi-isometry invariant of the space, since quasi-isometries of hyperbolic spaces extend to
homeomorphisms of their boundaries.

Recently Charney and Sultan [4] introduced a quasi-isometry invariant ‘contracting bound-
ary’ for CAT(0) spaces, consisting of those equivalence classes of geodesic rays that are
‘contracting’, which is to say that they behave like geodesic rays in a hyperbolic space in a
certain quantifiable way. As a set, the contracting boundary of a CAT(0) space can be naturally
viewed as a subset of the visual boundary of the space. A quasi-isometry does induce a bijection
of this contracting subset, even though it does not necessarily induce a homeomorphism of
the entire visual boundary. Charney and Sultan were unable to determine if this bijection is a
homeomorphism with respect to the subspace topology. Instead, they define a finer topology that
they show to be quasi-isometrically invariant. We answer their question in the negative: quasi-
isometries of CAT(0) spaces do not, in general, induce homeomorphisms of the contracting
boundary with the subspace topology. We do so by constructing an explicit example.

2. The contracting boundary and Gromov product topology

Let X be a proper geodesic metric space. Let γ be a geodesic ray in X, and define the closest
point projection map πγ : X → 2X by πγ(x) := {y ∈ γ | d(x, y) = d(x, γ)}. Properness of X
guarantees that the empty set is not in the image of πγ.

A geodesic ray γ in X is contracting if there exists a non-decreasing, eventually non-negative
function ρ such that limr→∞ ρ(r)/r = 0 and such that for all x and y in X, if d(x, y) ≤ d(x, γ)
then diam πγ(x) ∪ πγ(y) ≤ ρ(d(x, γ)). The ray is strongly contracting if the function ρ can be
chosen to be bounded.

A geodesic ray γ in X is Morse if there exists a function µ such that if α is a (λ, ε)–quasi-
geodesic with endpoints on γ, then α is contained in the µ(λ, ε)–neighborhood of γ.

It is not hard to show that a contracting ray is Morse. Cordes [5] generalizes the Charney-
Sultan construction by building a ‘Morse boundary’ consisting of equivalence classes of Morse
geodesic rays in an arbitrary geodesic metric space. In fact, the Morse and contracting properties
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are equivalent in geodesic metric spaces [1], so we can just as well call Cordes’s construction the
contracting boundary, where we allow rays satisfying the more general version of contraction
defined above.

Let us describe the points of the contracting boundary. For points x, y, z ∈ X, the Gromov
product of x and y with respect to z is defined by:

(x · y)z :=
1
2

(d(x, z) + d(y, z) − d(x, y))

Fix a basepoint o ∈ X and consider contracting geodesic rays based at o. Define an
equivalence relation by α ∼ β if limi, j→∞(α(i) · β( j))o = ∞. This relation is transitive on
contracting geodesic rays because contracting rays are Morse and Morse rays are related if
and only if they are at bounded Hausdorff distance from one another. Define the contracting
boundary ∂cX to be the set of equivalence classes. It is easy to see that a quasi-isometry φ of X
induces a bijection ∂cφ of ∂cX. It remains to define a topology on ∂cX and check continuity of
∂cφ.

The topology is defined by restricting to ∂cX the usual construction of the ‘ideal’ or ‘Gromov’
boundary (cf. [7, 2, 3]). Extend the Gromov product to ∂cX by:

(η · ζ)o := sup
α∈η, β∈ζ

lim inf
i, j→∞

(α(i) · β( j))o

Given η ∈ ∂cX and r > 0, define U(η, r) := {ζ ∈ ∂cX | (η · ζ)o ≥ r}. Define the Gromov product
topology on ∂cX to be the topology such that a set U ⊂ ∂cX is open if for every η ∈ U there
exists an r > 0 such that U(η, r) ⊂ U. Denote the contracting boundary with this topology
∂

Gp
c X.

When X is hyperbolic ∂Gp
c X is the usual Gromov boundary. When X is CAT(0) ∂Gp

c X is
homeomorphic to the contracting subset of the visual boundary with the subspace topology.

Note that Uη := {U(η, r) | r > 0} is not necessarily a neighborhood basis at η in this
topology. We do not need this fact for the conclusions of Section 3, but, as it may be of separate
interest, we give a sufficient condition. Some spaces satisfy a contraction alternative in the
sense that every geodesic ray is either strongly contracting or not contracting. We will say
that such a space is CA. By [1], CA is equivalent to “every Morse geodesic ray is strongly
contracting.” Examples of CA spaces include hyperbolic spaces, in which geodesic rays are
uniformly strongly contracting, and CAT(0) spaces [8].

Proposition 2.1. If X is a proper geodesic CA metric space then for all η ∈ ∂cX the setUη

is a neighborhood basis at η in ∂Gp
c X.

Proof. A standard topological argument shows thatUη is a neighborhood basis at η if and
only if:

∀r > 0, ∃Rη > r, ∀ζ ∈ U(η,Rη), ∃Rζ > 0 such that U(ζ,Rζ) ⊂ U(η, r)(})

Suppose α is a contracting geodesic ray based at o. By the contraction alternative it is
strongly contracting, so there exists a C ≥ 0 bounding its contraction function. For brevity,
let us say that α is ‘C–strongly contracting’. The Geodesic Image Theorem (GIT), [1, cf.
Theorem 7.1], implies that if β is a geodesic segment that stays at least distance 2C from α then
the diameter of πα(β) is at most 4C. It follows easily that if β is a geodesic ray based at o then α
and β are asymptotic if and only if β is contained in the closed 6C–neighborhood of α. In fact,
this can be improved to 5C by a further application of the definition of strong contraction.

If A is a contracting set and B is bounded Hausdorff distance from A then B is also con-
tracting, with contraction function determined by that of A and the Hausdorff distance [1,
Lemma 6.3]. In particular, if α is C–strongly contracting then there exists a C′ depending only
on C such that every geodesic ray α′ based at o and asymptotic to α is C′–strongly contracting.
Thus, for a given η ∈ ∂cX there exists a Cη such that every geodesic ray α ∈ η is Cη–strongly
contracting.

Claim: Given η ∈ ∂cX there exists Kη ≥ 0 such that for all ζ ∈ ∂cX r {η} and all α ∈ η,
β ∈ ζ, if T (α, β) := max{t | d(β(t), α) = 2Cη} then |T (α, β) − (η · ζ)o| ≤ Kη.
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Assuming the Claim, we show that condition (}) is satisfied. Let η ∈ ∂cX and r > 0. Set
Rη := r + 2Kη + 13Cη. For ζ ∈ U(η,Rη), set Rζ := (ζ · η)o + Kη + Kζ + 6Cη + 4Cζ . Suppose that
ξ ∈ U(ζ,Rζ). Choose α ∈ η, β ∈ ζ, and γ ∈ ξ. Let x := γ(T (β, γ)) and let y be a point of β at
distance 2Cη from x. Let z := β(T (α, β)). Let w := γ(T (α, γ)).

d(y, α) ≥ d(y, z) − 6Cη by the GIT
= d(o, y) − d(o, z) − 6Cη

≥ d(o, x) − d(o, z) − 6Cη − 2Cζ

≥ (ξ · ζ)o − (ζ · η)o − Kη − Kζ − 6Cη − 2Cζ by the Claim, twice
≥ Rζ − (ζ · η)o − Kη − Kζ − 6Cη − 2Cζ since ξ ∈ U(ζ,Rζ)
= 2Cζ = d(x, y)

Since d(x, y) ≤ d(y, α), the contraction property for α says the diameter of πα(x) ∪ πα(y) is at
most Cη. With the GIT, this tells us the diameter of πα(β([T (α, β),∞))) ∪ πα(γ([T (α, γ),∞)))
is at most 9Cη. Thus, d(w, z) ≤ 13Cη. The Claim gives us d(o, z) ≥ Rη − Kη, so d(o,w) ≥
d(o, z)− 13Cη ≥ Rη −Kη − 13Cη > r + Kη, which, by the Claim again, yields (ξ · η)o ≥ r. Hence,
U(ζ,Rζ) ⊂ U(η, r).

It remains to prove the claim. Let α, α′ ∈ η and β, β′ ∈ ζ be arbitrary.
Consider s, t � T (α, β). Let γ be a geodesic from α(s) to β(t). Let z be the last point on

γ at distance 2Cη from α. Let y ∈ πα(β(t)). Let x := β(T (α, β)). The GIT says the projection
of the subsegment of β between x and β(t) has diameter at most 4Cη, as does the projection
of the subsegment of γ from z to β(t). Thus d(x, y) ≤ 6Cη and d(y, z) ≤ 6Cη. It follows that
|(α(s) · β(t))o − d(o, y)| ≤ 6Cη, so:

(1) |(α(s) · β(t))o − T (α, β)| ≤ 12Cη

Consider the effect of replacing α with α′. For every t we have d(β(t), α) ≥ t−T (α, β)−6Cη,
and α and α′ have Hausdorff distance at most 5Cη, so d(β(t), α′) ≥ t − T (α, β) − 11Cη. Since
d(β(T (α′, β)), α′) = 2Cη we have T (α′, β) ≤ T (α, β) + 13Cη. The argument is symmetric in α
and α′, so we conclude:

(2) |T (α, β) − T (α′, β)| ≤ 13Cη

Now consider the effect of replacing β with β′. The Hausdorff distance between them is at
most 5Cζ . This does not admit any a priori bound in terms of Cη. However, eventually points
of β are closer to β′ than they are to α, so we can invoke strong contraction of α and the GIT,
twice, to say:

diam πα(β([T (α, β),∞))) ∪ πα(β′([T (α, β′),∞))) ≤ 9Cη

Which tells us:

(3) |T (α, β) − T (α, β′)| ≤ 13Cη

Combining equations (1), (2), and (3), we have, for all s, s′, t, t′ sufficiently large, that |(α(s) ·
β(t))o − (α′(s′) · β′(t′))o| ≤ 50Cη. Thus, for any α ∈ η and β ∈ ζ and for all sufficiently large s
and t we have |(α(s) · β(t))o − (η · ζ)o| ≤ 50Cη. A further application of equation (1) completes
the proof of the Claim with Kη := 62Cη. �

3. Pathological Examples

Construct a proper geodesic metric space X from rays α, β, and γi for i ∈ N as follows.
Identify α(0) and β(0), and take this to be the basepoint o. For each i connect γi(0) to α(i) and
β(i) by segments of length 2i. Then the γi are strongly contracting, and α and β are contracting
rays whose contracting function ρ can be taken to be logarithmic. The essential point is that the
projection of γi(0) to α ∪ β has diameter 2i, while the distance from γi(0) to α ∪ β is 2i.

The contracting boundary of X consists of one point for each of the rays α, β, and γi, which
we denote α(∞), β(∞), and γi(∞), respectively. Compute the Gromov products of boundary
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points: (α(∞) · γi(∞))o = i = (β(∞) · γi(∞))o, while (α(∞) · β(∞))o = 0. The sequence (γi(∞))i

converges to both α(∞) and β(∞) in ∂Gp
c X. In this example ∂Gp

c X is compact but not Hausdorff.
Now consider the space Y obtained from X by redefining, for each i, the length of the

segment connecting γi(0) to β to be 2i − 2i. The identity map is a quasi-isometry, but in the new
metric (α(∞) · γi(∞))o = 0. The sequence (γi(∞))i does not converge to α(∞) in ∂Gp

c Y . Thus,
∂cId : ∂Gp

c X → ∂
Gp
c Y is not continuous.

Next, we construct a CAT(0) example. Let X′ be the universal cover of the Euclidean
plane minus a ball of radius one. Parameterize X′ by polar coordinates R × [1,∞). Let
α : [0,∞) → X′ : t 7→ (t, 1) and β : [0,∞) → X′ : t 7→ (−t, 1). Each of these geodesic rays is
π–strongly contracting.

Let X be the proper CAT(0) space obtained from X′ by attaching, for each i ∈ N, a geodesic
ray γi with γi(0) = (i, 2i) ∈ X′. These rays are also strongly contracting.

The contracting boundary of X consists of points corresponding to the γi(∞) and the two
points α(∞) and β(∞). Since α is strongly contracting, it follows that (α(∞) · γi(∞))o = i up to
bounded error. Thus, the sequence (γi(∞))i converges to α(∞) in ∂Gp

c X.
Let Y be the proper CAT(0) space obtained from X′ by attaching, for each i ∈ N, a geodesic

ray γ′i with γ′i (0) = (0, 2i) ∈ X′. Define φ to be the map (t, r) 7→ (t − log2(r), r) on X′, so
that φ(γi(0)) = γ′i (0). This is a variation of the well-known logarithmic spiral quasi-isometry
of the Euclidean plane. Extend φ to all of X by isometries γi → γ′i for each i. This gives
a quasi-isometry φ : X → Y , but points in ∂Gp

c Y are isolated, so ∂cφ : ∂Gp
c X → ∂

Gp
c Y is not

continuous.

Interesting open questions remain: If φ : X → Y is a quasi-isometry between proper
geodesic spaces that have cocompact isometry groups and such that X and Y are CAT(0) (or,
more generally, CA), must ∂cφ : ∂Gp

c X → ∂
Gp
c Y be a homeomorphism? Must ∂Gp

c X and ∂Gp
c Y

be homeomorphic? Note that for visual boundaries of CAT(0) spaces the second question is
much harder than the first [6].
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The ‘contracting boundary’ of a proper geodesic metric space consists of equivalence
classes of geodesic rays that behave like rays in a hyperbolic space. We introduce a
geometrically relevant, quasi-isometry invariant topology on the contracting bound-
ary. When the space is the Cayley graph of a finitely generated group we show that
our new topology is metrizable.

1. Introduction

There is a long history in geometry of attaching a ‘boundary at infinity’ or ‘ideal boundary’
to a space. When a group acts geometrically on a space we might wonder to what extent the
group and the boundary of the space are related. In the setting of (Gromov) hyperbolic groups
this relationship is very strong: the boundary is determined by the group, up to homeomorphism.
In particular, the boundaries of all Cayley graphs of a hyperbolic group are homeomorphic, so it
makes sense to call any one of these boundaries the boundary of the group. This is not true, for
example, in the case of a group acting geometrically on a non-positively curved space: Croke
and Kleiner [19] gave an example of a group acting geometrically on two different CAT(0)
spaces with non-homeomorphic visual boundaries, so there is not a well-defined visual boundary
associated to the group.

Charney and Sultan [14] sought to rectify this problem by defining a ‘contracting boundary’
for CAT(0) spaces. Hyperbolic boundaries and visual boundaries of CAT(0) spaces can be
constructed as equivalence classes of geodesic rays emanating from a fixed basepoint. These
represent the metrically distinct ways of ‘going to infinity’. Charney and Sultan’s idea was to
restrict attention to ways of going to infinity in hyperbolic directions: They consider equivalence
classes of geodesic rays that are ‘contracting’, which is a way of quantifying how hyperbolic
such rays are. They topologize the resulting set using a direct limit construction, and show
that this topology is preserved by quasi-isometries. However, their construction has drawbacks:
basically, it has too many open sets. In general it is not first countable.

In this paper we define a bordification of a proper geodesic metric space by adding a
contracting boundary with a quasi-isometry invariant topology. When the space is a Cayley
graph of a finitely generated group, we prove that the topology on the boundary is metrizable,
which is a significant improvement over the direct limit topology. (See Example 1.1 for a
motivating example.) Furthermore, our topology more closely resembles the topology of the
boundary of a hyperbolic space, which we hope will make it easier to work with.

Our contracting boundary consists of equivalence classes of ‘contracting quasi-geodesics’.
The definition of contraction we use follows that of Arzhantseva, Cashen, Gruber, and Hume [4];
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The second author was supported in part by the National Science Foundation under Grant DMS-1440140 while
visiting the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2016 semester, and in
part by EPSRC grant EP/P010245/1.
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this is weaker than that of Charney and Sultan, so our construction applies to more general
spaces. For example, we get contracting quasi-geodesics from cyclic subgroups generated
by non-peripheral elements of relatively hyperbolic groups [23], pseudo-Anosov elements of
mapping class groups [32, 24], fully irreducible free group automorphisms [2], and generalized
loxodromic elements of acylindrically hyperbolic groups [35, 20, 8, 39]. On CAT(0) spaces the
two definitions agree, so our boundary is the same as theirs as a set, but our topology is coarser.

Cordes [16] has defined a ‘Morse boundary’ for proper geodesic metric spaces by applying
Charney and Sultan’s direct limit construction to the set of equivalence classes of Morse geodesic
rays. This boundary has been further studied by Cordes and Hume [18], who relate it to the
notion of ‘stable subgroups’ introduced by Durham and Taylor [25]; for a recent survey of these
developments1, see Cordes [15]. It turns out that our notion of contracting geodesic is equivalent
to the Morse condition, and our contracting boundary agrees with the Morse boundary as a set,
but, again, our topology is coarser.

If the underlying space is hyperbolic then all of these boundaries are homeomorphic to the
Gromov boundary. At the other extreme, all of these boundaries are empty in spaces with no
hyperbolic directions. In particular, it follows from work of Drutu and Sapir [23] that groups that
are wide, that is, no asymptotic cone contains a cut point, will have empty contracting boundary.
This includes groups satisfying a law: for instance, solvable groups or bounded torsion groups.

The boundary of a proper hyperbolic space can be topologized as follows. If ζ is a point
in the boundary, an equivalence class of geodesic rays issuing from the chosen basepoint, we
declare a small neighborhood of ζ to consist of boundary points η such that if α ∈ ζ and β ∈ η are
representative geodesic rays then β closely fellow-travels α for a long time. In proving that this
topology is invariant under quasi-isometries, hyperbolicity is used at two key points. The first is
that quasi-isometries take geodesic rays uniformly close to geodesic rays. In general a quasi-
isometry only takes a geodesic ray to a quasi-geodesic ray, but hyperbolicity implies that this is
within bounded distance of a geodesic ray, with bound depending only on the quasi-isometry
and hyperbolicity constants. The second use of hyperbolicity is to draw a clear distinction
between fellow-travelling and not, which is used to show that the time for which two geodesics
fellow-travel is roughly preserved by quasi-isometries. If α and β are non-asymptotic geodesic
rays issuing from a common basepoint in a hyperbolic space, then closest point projection sends
β to a bounded subset α([0,T0]) of α, and there is a transition in the behavior of β at time T0.
For t < T0 the distance from β(t) to α is bounded and the diameter of the projection of β([0, t])
to α grows like t. After this time β escapes quickly from α, that is, d(β(t), α) grows like t − T0,
and the diameter of the projection of β([T0, t]) is bounded.

We recover the second point for non-hyperbolic spaces using the contraction property. Our
definition of a contracting set Z, see Definition 3.2, is that the diameter of the projection of
a ball tangent to Z is bounded by a function of the radius of the ball whose growth rate is
less than linear. Essentially this means that sets far from Z have large diameter compared to
the diameter of their projection. In contrast to the hyperbolic case, it is not true, in general,
that if α is a contracting geodesic ray and β is a geodesic ray not asymptotic to α then β has
bounded projection to α. However, we can still characterize the escape of β from α by the
relation between the growth of the projection of β([0, t]) to α and the distance from β(t) to
α. The main technical tool we introduce is a divagation estimate that says if α is contracting
and β is a quasi-geodesic then β cannot wander slowly away from α; if it is to escape, it must
do so quickly. More precisely, once β exceeds a threshold distance from α, depending on the
quasi-geodesic constants of β and the contraction function for α, then the distance from β(t) to
α grows superlinearly compared to the growth of the projection of β([0, t]) to α. In fact, for the
purpose of proving that fellow-travelling time is roughly preserved by quasi-isometries it will
be enough to know that the this relationship is at least a fixed linear function.

1In even more recent developments, Behrstock [6] produces interesting examples of right-angled Coxeter
groups whose Morse boundaries contain a circle, and Charney and Murray [13] give conditions that guarantee that a
homeomorphism between Morse boundaries of CAT(0) spaces is induced by a quasi-isometry.
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The first point cannot be recovered, and, in fact, the topology as described above, using
only geodesic rays, is not quasi-isometry invariant for non-hyperbolic spaces [12]. Instead, we
introduce a finer topology that we call the topology of fellow-travelling quasi-geodesics. The
idea is that η is close to ζ if all quasi-geodesics tending to η closely fellow-travel quasi-geodesics
tending to ζ for a long time. See Definition 5.3 for a precise definition. Using our divagation
estimates we show that this topology is quasi-isometry invariant.

The use of quasi-geodesic rays in our definition is quite natural in the setting of coarse
geometry, since then the rays under consideration do not depend on the choice of a particular
metric within a fixed quasi-isometry class. Geodesics, on the other hand, are highly sensitive
to the choice of metric, and it is only the presence of a very strong hypothesis like global
hyperbolicity that allows us to define a quasi-isometry invariant boundary topology using
geodesics alone.

Example 1.1. Consider H := 〈a, b | [a, b] = 1〉 ∗ 〈c〉, which can be thought of as the
fundamental group of a flat, square torus wedged with a circle. Let X be the universal cover,
with basepoint o above the wedge point.

Connected components of the preimage of the torus are Euclidean planes isometrically
embedded in X. Geodesic segments contained in such a plane behave more like Euclidean
geodesics than hyperbolic geodesics. In fact, a geodesic ray α based at o is contracting if and
only if there exists a bound Bα such that α spends time at most time Bα in any one of the planes.
Let α(∞) denote the equivalence class of this ray as a point in the contracting boundary.

In Charney and Sultan’s topology, if (αn)n∈N is a sequence of contracting geodesic rays
with the Bαn unbounded, then (αn(∞)) is not a convergent sequence in the contracting boundary.
Murray [33] uses this fact to show that the contracting boundary is not first countable.

In the topology of fellow-travelling quasi-geodesics it will turn out that (αn(∞)) converges
if and only if there exists a contracting geodesic α in X such that the projections of the αn to
geodesics in the Bass-Serre tree of H (with respect to the given free product splitting of H)
converge to the projection of α.

From another point of view, H is hyperbolic relative to the Abelian subgroup A := 〈a, b〉. We
show in Theorem 7.6 that this implies that there is a natural map from the contracting boundary
of H to the Bowditch boundary of the pair (H, A), and, with the topology of fellow-travelling
quasi-geodesics, that this map is a topological embedding. The embedding statement cannot be
true for Charney and Sultan’s topology, since it is not first countable.

After some preliminaries in Section 2, we define the contraction property and recall/prove
some basic technical results in Section 3 concerning the behavior of geodesics relative to
contracting sets. In Section 4 we extend these results to quasi-geodesics, and derive the key
divagation estimates, see Corollary 4.4 and Lemma 4.7.

In Section 5 introduce the topology of fellow-travelling quasi-geodesics and show that it
is first countable, Hausdorff, and regular. In Section 6 we prove that it is also quasi-isometry
invariant.

We compare other possible topologies in Section 7.
In Section 8 we consider the case of a finitely generated group. In this case we prove that

the contracting boundary is second countable, hence metrizable.
We also prove a weak version of North-South dynamics for the action of a group on its

contracting boundary in Section 9, in the spirit of Murray’s work [33].
Finally, in Section 10 we show that the contracting boundary of an infinite, finitely generated

group is non-empty and compact if and only if the group is hyperbolic.

We thank the referee for a careful reading of our paper.

2. Preliminaries

Let X be a metric space with metric d. For Z ⊂ X, define:
• NrZ := {x ∈ X | ∃z ∈ Z, d(z, x) < r}
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• Nc
r Z := {x ∈ X | ∀z ∈ Z, d(z, x) ≥ r}

• N̄rZ := {x ∈ X | ∃z ∈ Z, d(z, x) ≤ r}
• N̄c

r Z := {x ∈ X | ∀z ∈ Z, d(z, x) > r}
For L ≥ 1 and A ≥ 0, a map φ : (X, dX)→ (X′, dX′) is an (L, A)–quasi-isometric embedding

if for all x, y ∈ X:
1
L

dX(x, y) − A ≤ dX′(φ(x), φ(y)) ≤ LdX(x, y) + A

If, in addition, N̄Aφ(X) = X′ then φ is an (L, A)–quasi-isometry. A quasi-isometry inverse φ̄ of
a quasi-isometry φ : X → X′ is a quasi-isometry φ̄ : X′ → X such that the compositions φ ◦ φ̄
and φ̄ ◦ φ are both bounded distance from the identity map on the respective space.

A geodesic is an isometric embedding of an interval. A quasi-geodesic is a quasi-isometric
embedding of an interval. If α : I → X is a quasi-geodesic, we often use αt to denote α(t),
and conflate α with its image in X. When I is of the form [a, b] or [a,∞) we will assume, by
precomposing α with a translation of the domain, that a = 0. We use α + β and ᾱ to denote
concatenation and reversal, respectively.

A metric space is geodesic if every pair of points can be connected by a geodesic.
A metric space if proper if closed balls are compact.
It is often convenient to improve quasi-geodesics to be continuous, which can be accom-

plished by the following lemma.

Lemma 2.1 (Taming quasi-geodesics [11, Lemma III.H.1.11]). If X is a geodesic metric
space and γ : [a, b]→ X is an (L, A)–quasi-geodesic then there exists a continuous (L, 2(L+A))–
quasi-geodesic γ′ such that γa = γ′a, γb = γ′b and the Hausdorff distance between γ and γ′ is at
most L + A.

Proof. Define γ′ to agree with γ at the endpoints and at integer points of [a, b], and then
connect the dots by geodesic interpolation. �

A subspace Z of a geodesic metric space X is A–quasi-convex for some A ≥ 0 if every
geodesic connecting points in Z is contained in N̄AZ.

If f and g are functions then we say f � g if there exists a constant C > 0 such that
f (x) ≤ Cg(Cx + c) + C for all x. If f � g and g � f then we write f � g.

We will give a detailed account of the contracting property in the next section, but let us first
take a moment to recall alternate characterizations, which will prove useful later in the paper.

A subspace Z of a metric space X is µ–Morse for some µ : [1,∞) × [0,∞)→ R if for every
L ≥ 1 and every A ≥ 0, every (L, A)–quasi-geodesic with endpoints in Z is contained in N̄µ(L,A)Z.
We say Z is Morse if there exists µ such that it is µ–Morse. It is easy to see that the property of
being Morse is invariant under quasi-isometries. In particular, a subset of a finitely generated
group G is Morse in one Cayley graph of G if and only if it is Morse in every Cayley graph of
G. Thus, we can speak of a Morse subset of G without specifying a finite generating set.

A set Z is called t–recurrent2, for t ∈ (0, 1/2), if for every C ≥ 1 there exists D ≥ 0 such
that if p is a path with endpoints x and y on Z such that the ratio of the length of p to the
distance between its endpoints is at most C, then there exists a point z ∈ Z such that d(p, z) ≤ D
and min{d(z, x), d(z, y)} ≥ td(x, y). The set Z is called recurrent if it is t–recurrent for every
t ∈ (0, 1/2).

Theorem 2.2. Let Z be a subset of a geodesic metric space X. The following are equivalent:
(1) Z is Morse.
(2) Z is contracting.
(3) Z is recurrent.
(4) There exists t ∈ (0, 1/2) such that Z is t-recurrent.

2This characterization was introduced in [22] with t = 1/3 for Z a quasi-geodesic. The idea is that a short curve
must pass near the ‘middle third’ of the subsegment of Z connecting its endpoints. The property, again only for
quasi-geodesics, but for variable t, is called ‘middle recurrence’ in [3].
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Moreover, each of the equivalences are ‘effective’, in the sense that the defining function of one
property determines the defining functions of each of the others.

Proof. The equivalence of (1) and (2) is proved in [4]. That (3) implies (4) is obvious. The
implications ‘(2) implies (3)’ and ‘(4) implies (1)’ are proved in [3] for the case that Z is a
quasi-geodesic, but their proofs go through with minimal change for arbitrary subsets Z. �

3. Contraction

Definition 3.1. We call a function ρ sublinear if it is non-decreasing, eventually non-
negative, and limr→∞ ρ(r)/r = 0.

Definition 3.2. Let X be a proper geodesic metric space. Let Z be a closed subset of X, and
let πZ : X → 2Z : x 7→ {z ∈ Z | d(x, z) = d(x,Z)} be closest point projection to Z. Then, for a
sublinear function ρ, we say that Z is ρ–contracting if for all x and y in X:

d(x, y) ≤ d(x,Z) =⇒ diam πZ(x) ∪ πZ(y) ≤ ρ(d(x,Z))

We say Z is contracting if there exists a sublinear function ρ such that Z is ρ–contracting.
We say a collection of subsets {Zi}i∈I is uniformly contracting if there exists a sublinear function
ρ such that for every i ∈ I the set Zi is ρ–contracting.

We shorten πZ to π when Z is clear from context.
Let us stress that the closest point projection map is set-valued, and there is no bound on the

diameter of image sets other than that implied by the definition.
In a tree every convex subset is ρ–contracting where ρ is identically 0. More generally, in a

hyperbolic space a set is contracting if and only if it is quasi-convex. In fact, in this case more
is true: the contraction function is bounded in terms of the hyperbolicity and quasi-convexity
constants. We call a set strongly contracting if it is contracting with bounded contraction
function.

The more general Definition 3.2 was introduced by Arzhantseva, Cashen, Gruber, and Hume
to characterize Morse geodesics in small cancellation groups [5].

The concept of strong contraction (sometimes simply called ‘contraction’ in the literature)
has been studied before, notably by Minsky [32] to describe axes of pseudo-Anosov mapping
classes in Teichmüller space, by Bestvina and Fujiwara [9] to describe axes of rank-one isome-
tries of CAT(0) spaces (see also Sultan [40]), and by Algom-Kfir [2] to describe axes of fully
irreducible free group automorphisms acting on Outer Space.

Masur and Minsky [31] introduced a different notion of contraction that requires the
existence of constants A and B such that:

d(x, y) ≤ d(x,Z)/A =⇒ diam πZ(x) ∪ πZ(y) ≤ B

This is satisfied, for example, by axes of pseudo-Anosov elements in the mapping class group
(as opposed to Teichmüller space). Some authors refer to this property as ‘contraction’, eg [7,
24, 1]. It is not hard to show that this version implies the version in Definition 3.2 with the
contraction function ρ being logarithmic.

We now recall some further results about contracting sets in a geodesic metric space X.

Lemma 3.3 ([4, Lemma 6.3]). Given a sublinear function ρ and a constant C ≥ 0 there
exists a sublinear function ρ′ � ρ such that if Z ⊂ X and Z′ ⊂ X have Hausdorff distance at
most C and Z is ρ–contracting then Z′ is ρ′–contracting.

Theorem 3.4 (Geodesic Image Theorem [4, Theorem 7.1]). For Z ⊂ X, there exists a
sublinear function ρ so that Z is ρ–contracting if and only if there exists a sublinear function
ρ′ and a constant κρ so that for every geodesic segment γ, with endpoints denoted x and y, if
d(γ,Z) ≥ κρ then diam π(γ) ≤ ρ′(max{d(x,Z), d(y,Z)}). Moreover ρ′ and κρ depend only on ρ
and vice-versa, with ρ′ � ρ.

An easy consequence is that there exists a κ′ρ such that if γ is a geodesic segment with
endpoints at distance at most κρ from a ρ–contracting set Z then γ ⊂ N̄κ′ρ(Z).

The following is a special case of [4, Proposition 8.1].
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Lemma 3.5. Given a sublinear function ρ and a constant C ≥ 0 there exists a constant B
such that if α and β are ρ–contracting geodesics such that their initial points α0 and β0 satisfy
d(α0, β0) = d(α, β) ≤ C then α ∪ β is B–quasi-convex.

The next two lemmas are easy-to-state generalizations of results that are known for strong
contraction. The proofs are rather tedious, due to the weak hypotheses, so we postpone them
until after Lemma 3.8.

Lemma 3.6. Given a sublinear function ρ there is a sublinear function ρ′ � ρ such that every
subsegment of a ρ–contracting geodesic is ρ′–contracting.

Lemma 3.7. Given a sublinear function ρ there is a sublinear function ρ′ � ρ such that if α
and β are ρ–contracting geodesic rays or segments such that γ := ᾱ + β is geodesic, then γ is
ρ′–contracting.

Given C ≥ 0 a geodesic C–almost triangle is a trio of geodesics αi : [ai, bi] → X, for
i ∈ {0, 1, 2} and ai ≤ 0 ≤ bi ∈ R ∪ {−∞,∞}, such that for each i ∈ {0, 1, 2}, with scripts taken
modulo 3, we have:

• bi < ∞ if and only if ai+1 > −∞.
• If bi and ai+1 are finite then d(αi

bi
, αi+1

ai+1
) ≤ C.

• If bi and ai+1 are not finite then αi
[0,∞) and ᾱi+1

[0,∞) = αi+1
(−∞,0] are asymptotic.

Lemma 3.8. Given a sublinear function ρ and constant C ≥ 0 there is a sublinear function
ρ′ � ρ such that if α, β, and γ are a geodesic C–almost triangle and α and β are ρ–contracting
then γ is ρ′–contracting.

Proof. First suppose α, β, and γ are segments. By Lemma 3.5, there exists a B depending
only on ρ and C such that α ∪ β is B–quasi–convex. Thus, we can replace α ∪ β by a single
geodesic segment δ whose endpoints are C–close to the endpoints of γ. Furthermore, δ is a
union of two subsegments, one of which has endpoints within distance B of α, and the other
of which has endpoints within distance B of β. Consequently, by Theorem 3.4 there exists
B′ so that these two subsegments are B′–Hausdorff equivalent to subsegments of α and of β,
respectively. Applying Lemma 3.6, Lemma 3.3, and Lemma 3.7, there is a ρ′′ � ρ depending on
ρ and B′ such that δ is ρ′′–contracting. Theorem 3.4 implies that since γ and δ are close at their
endpoints, they stay close along their entire lengths, so their Hausdorff distance is determined
by ρ′′ and C, hence by ρ and C. Applying Lemma 3.3 again, we conclude γ is ρ′–contracting
with ρ′ � ρ′′ � ρ depending only on ρ and C.

In the case of an ideal triangle, where not all three sides are segments, replace C by
max{C, κρ}. Theorem 3.4 implies that if, say, γ and ᾱ have asymptotic tails then the set of
points γ that come κρ–close to α is unbounded. Truncate the triangle at such a C–close pair of
points. Doing the same for other ideal vertices, we get a C–almost triangle to which we can
apply the previous argument and conclude that a subsegment of γ is ρ′–contracting. Since γ
comes κρ–close to α on an unbounded set, we can repeat the argument for larger and larger
almost triangles approximating α, β, γ, and find that every subsegment of γ is contained in a
ρ′–contracting subsegment, which implies that γ itself is ρ′–contracting. �

Definition 3.9. If Z is a subset of R define the interval of Z, invl(Z), to be the smallest
closed interval containing Z. If γ : I → X is a geodesic and Z is a subset of γ let invl(Z) :=
γ(invl(γ−1(Z))).

Proof of Lemma 3.6. Let γ : I → X be a ρ–contracting geodesic. Let J := [ j0, j1] be a
subinterval of I. Let ρ′′ � ρ be the function given by Theorem 3.4, and let κ′ρ be the constant
defined there. We claim it suffices to take ρ′(r) := 2(2κ′ρ + ρ′′(2r) + ρ(2r)).

First we show that if πγI (x) misses γJ then πγJ (x) is relatively close to one of the endpoints
of γJ . This is automatic if diam γJ ≤ ρ(d(x, γJ)), so assume not. With this assumption, πγI (x)
cannot contain points on both sides of γJ , that is, if γ−1(πγI (x)) contains a point less than j0
then it does not also contain one greater than j1, and vice versa. Suppose that γ−1(πγI (x)) is
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contained in (−∞, j0). Let β be a geodesic from x to a point y in πγJ (x). There exists a first
time s such that d(βs, γI) = κρ. By Theorem 3.4, diam πγI (β|[0,s]) ≤ ρ′′(d(x, γI)). Suppose
that γ j0 ∈ invl(πγI (β|[0,s])). Then there is a first time s′ ∈ [0, s], such that πI(βs′) contains a
point in γ[ j0,∞). By the assumption on the diameter of γJ , we actually have πγI (βs′) ∩ γJ , ∅,
so y ∈ πγJ (βs′) ⊂ πγI (βs′) ⊂ πγI (β|[0,s]) and diam γ j0 ∪ πγJ (x) ≤ ρ′′(d(x, γI)). Otherwise, if
γ j0 < invl(πγI (β|[0,s])), then let t > s be the first time such that γ j0 ∈ invl πγI (β|[s,t]). Again,
y ∈ πγI (βt). Since the points of β after βs, are contained in N̄κ′ργ, for all small E > 0 we
have diam πγIβt−E ∪ πγIβt ≤ E + 2κ′ρ. Therefore, d(γ j0 , y) ≤ d(y, πγI (βt−E)) ≤ E + 2κ′ρ, for all
sufficiently small E. We conclude:

(1) diam γ j0 ∪ πγJ (x) ≤ max{2κ′ρ, ρ
′′(d(x, γI))}

Now suppose x and y are points such that d(x, y) ≤ d(x, γJ). Note that d(y, γJ) ≤ 2d(x, γJ).
We must show diam πγJ (x) ∪ πγJ (y) is bounded by a sublinear function of d(x, γJ). There are
several cases, depending on whether πγI (x) and πγI (y) hit γJ .
Case 1: γJ ∩ πγI (x) , ∅ and γJ ∩ πγI (y) , ∅. In this case πγJ (x) ⊂ πγI (x), and likewise for y, so:

diam πγJ (x) ∪ πγJ (y) ≤ diam πγI (x) ∪ πγI (y) ≤ ρ(d(x, γI)) = ρ(d(x, γJ))

Case 2: γ−1(πγI (x)) < j0 and γ−1(πγI (y)) < j0. By (1) twice:

diam πγJ (x) ∪ πγJ (y) ≤ 2 max{2κ′ρ, ρ
′′(d(x, γI)), ρ′′(d(y, γI))}

≤ 2 max{2κ′ρ, ρ
′′(2d(x, γJ))}

Case 3: γ−1(πγI (y)) < j0 and γJ ∩ πγI (x) , ∅. In this case πγJ (x) ⊂ πγI (x) and d(x, y) ≤
d(x, γJ) = d(x, γI), so diam πγI (y) ∪ πγJ (x) ≤ ρ(d(x, γJ)). By hypothesis, γ j0 ∈ invl(πγI (y) ∪
πγJ (x)), and by (1): diam γ j0 ∪ πγJ (y) ≤ max{2κ′ρ, ρ

′′(2d(x, γJ))}. Thus:

diam πγJ (x) ∪ πγJ (y) ≤ max{ρ(d(x, γJ)), 2κ′ρ, ρ
′′(2d(x, γJ))}

Case 4: γ−1(πγI (x)) < j0 and πγI (y) ∩ γ[ j0,∞) , ∅. If j1 − j0 ≤ 2ρ(2d(x, γJ)) then there is
nothing more to prove, so assume not. Let β be a geodesic from x to y. For all z ∈ β:

d(x, z) + d(z, y) = d(x, y) ≤ d(x, γJ) ≤ d(x, z) + d(z, γJ)

This implies d(z, y) ≤ d(z, γJ). Let z be the first point on β such that γ−1(πγI (z)) contains a point
greater than or equal to j0. By the hypothesis on |J|, γ−1(πγI (z)) < j1. This means diam πγJ (z) ∪
πγJ (y) is controlled by one of the previous cases, and it suffices to control diam πγJ (x) ∪ πγJ (z).

We know from (1) that πγJ (x) is max{2κ′ρ, ρ
′′(d(x, γJ))}-close to γ j0 , so it suffices to control

diam γ j0 ∪ πγJ (z). Take a point w , z on β before z such that d(z,w) ≤ d(z, γI). By hypothesis,
γ j0 ∈ invl πγI (w) ∪ πγI (z), but diam πγI (w) ∪ πγI (z) ≤ ρ(d(z, γI)) = ρ(d(z, γJ)) ≤ ρ(2d(x, γJ)).

Up to symmetric arguments, this exhausts all the cases. �

Proof of Lemma 3.7. Let α and β be ρ–contracting geodesic segments or rays with α0 = β0
such that γ := ᾱ + β is geodesic.

First suppose that x is a point such that πγ(x) ∩ α , ∅ and πγ(x) ∩ β , ∅. Let δ be a
geodesic from x to α0 = β0. Recall from Theorem 3.4 that once δ enters the κρ–neighborhood
of either α or β then it cannot leave the κ′ρ–neighborhood. Thus, δ intersects at most one
of N̄κρα r N2κ′ρα0 or N̄κρβ r N2κ′ρβ0. Without loss of generality, suppose δ does not intersect
N̄κρβ r N2κ′ρβ0. Let t be the first time such that d(δt, β) = κρ. Then d(δt, β0) ≤ 2κ′ρ and, by
Theorem 3.4, there is a sublinear ρ′′ � ρ such that diam πβ(δ|[0,t]) ≤ ρ′′(d(x, β)) = ρ′′(d(x, γ)). In
particular, this means diam πβ(x)∪β0 ≤ diam πβ(δ) ≤ 4κ′ρ+ρ′′(d(x, γ)). Now let δ′ be a geodesic
from x to a point x′ ∈ πβ(x), and project δ′ to α. Since ᾱ + β is geodesic, diam πα(x) ∪ α0 ≤

diam παδ
′ ≤ ρ′′(max{d(x, α), d(x′, α)}) by Theorem 3.4. We have already established that

d(x′, α) ≤ 4κ′ρ + ρ′′(d(x, γ)). Since ρ′′ grows sublinearly, d(x, α) > 4κ′ρ + ρ′′(d(x, γ)) except
for d(x, α) less than some bound depending only on ρ and ρ′′. We conclude that there is a
sublinear function ρ′′′ � ρ depending only on ρ such that diam πα(x) ∪ α0 ≤ ρ

′′′(d(x, γ)) and
diam πβ(x) ∪ β0 ≤ ρ

′′′(d(x, γ)), hence diam πγ(x) ≤ 2ρ′′′(d(x, γ)).
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Now suppose x, y ∈ X are points such that d(x, y) ≤ d(x, γ). There are several cases
according to where πγ(x) and πγ(y) lie.
Case 1: πγ(x) ∩ α , ∅ , πγ(y) ∩ α. Then d(x, y) ≤ d(x, γ) = d(x, α), so contraction for
α implies diam πα(x) ∪ πα(y) ≤ ρ(d(x, α)) = ρ(d(x, γ)). There are four sub-cases to check,
according to whether πγ(x) and πγ(y) hit β. These are easy to check, with the worst bound being
diam πγ(x) ∪ πγ(y) ≤ ρ(d(x, γ)) + 2ρ′′′(2d(x, γ)).
Case 2: πγ(x) ∩ β = ∅ = πγ(y) ∩ α. Let δ be a geodesic from x to y. Let w be the
first point on δ such that πγ(w) ∩ β , ∅. Then d(w, α) = d(w, β) = d(w, γ) ≤ 2d(x, γ) and
d(y, β) = d(y, γ) ≤ 2d(x, γ). We can apply that α is ρ-contracting to the pair x,w since
d(x,w) ≤ d(x, y) ≤ d(x, γ) = d(x, α). Likewise, we can apply that β is ρ-contracting to w, y since
d(x,w) + d(w, y) = d(x, y) ≤ d(x, γ) ≤ d(x,w) + d(w, γ) so d(w, y) ≤ d(w, γ). We conclude:

diam πγ(x) ∪ πγ(y) ≤ diam πα(x) ∪ πα(w) + diam πγ(w)
+ diam πβ(w) ∪ πβ(y)

≤ ρ(d(x, α)) + 2ρ′′′(d(w, γ)) + ρ(d(w, β))

≤ ρ(d(x, γ)) + 2ρ′′′(2d(x, γ)) + ρ(2d(x, γ))

By symmetry these two cases cover all possibilities, so it suffices to define ρ′(r) := 2ρ(2r) +

2ρ′′′(2r). �

4. Contraction and Quasi-geodesics

In this section we explore the behavior of a quasi-geodesic ray based at a point in a
contracting set Z. The main conclusion is that such a ray can stay close to Z for an arbitrarily
long time, but once it exceeds a certain threshold distance depending on the quasi-geodesic
constants and the contraction function then the ray must escape Z at a definite linear rate.

Definition 4.1. Given a sublinear function ρ and constants L ≥ 1 and A ≥ 0, define:

κ(ρ, L, A) := max{3A, 3L2, 1 + inf{R > 0 | ∀r ≥ R, 3L2ρ(r) ≤ r}}

Define:
κ′(ρ, L, A) := (L2 + 2)(2κ(ρ, L, A) + A)

Remark 4.2. For the rest of the paper κ and κ′ always refer to the functions defined in
Definition 4.1. We use them frequently and without further reference.

This definition implies that for r ≥ κ(ρ, L, A) we have:

(2) r − L2ρ(r) − A ≥
1
3

r ≥ L2ρ(r)

An inspection of the proof of [4, Theorem 7.1] gives that κ(ρ, 1, 0) ≥ κρ and κ′(ρ, 1, 0) ≥ κ′ρ,
so the results of the previous section still hold using κ(ρ, 1, 0) and κ′(ρ, 1, 0). Enlarging the
constants lets us give unified proofs for geodesics and quasi-geodesics.

Theorem 4.3 (Quasi-geodesic Image Theorem). Let Z ⊂ X be ρ–contracting. Let β : [0,T ]→
X be a continuous (L, A)–quasi-geodesic segment. If d(β,Z) ≥ κ(ρ, L, A) then:

diam π(β0) ∪ π(βT ) ≤
L2 + 1

L2 (A + d(βT ,Z)) +
L2 − 1

L2 d(β0,Z) + 2ρ(d(β0,Z))

The proof generalizes the proof of the Geodesic Image Theorem to work for quasi-geodesics.
We typically apply the result when d(βT ,Z) = κ(ρ, L, A), in which case the theorem says that
for fixed ρ, L, and A the projection diameter of β is bounded in terms of d(β0,Z). In particular,
when β is geodesic, or, more generally, when L = 1, the bound is sublinear in d(β0,Z), and we
recover a version of the Geodesic Image Theorem. With a little more work we can prove this
stronger statement for quasi-geodesics as well. Although we do not need it in this paper, the
stronger version may be of independent interest, so we include a proof at the end of this section
(see Theorem 4.9).
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Proof of Theorem 4.3. Let t0 := 0. For each i ∈ N in turn, let ti+1 be the first time such that
d(βti , βti+1) = d(βti ,Z), or set ti+1 = T if no such time exists. Let j be the first index such that
d(βt j , βT ) ≤ d(βt j ,Z).

T = T − t j +

j−1∑
i=0

(ti+1 − ti)

≥
1
L

d(βt j , βT ) − d(βt j ,Z) +

j∑
i=0

(d(βti ,Z) − A)


≥

1
L

−d(βT ,Z) +

j∑
i=0

(d(βti ,Z) − A)


On the other hand:

T
L
− A ≤ d(β0, βT )

≤ d(β0,Z) + diam π(β0) ∪ π(βT ) + d(Z, βT )

≤ d(β0,Z) + d(βT ,Z) +

j∑
i=0

ρ(d(βti ,Z))

Combining these gives:

j∑
i=1

(
d(βti ,Z) − L2ρ(d(βti ,Z)) − A

)
≤ d(βT ,Z) + L2 (A + d(β0,Z) + d(βT ,Z))

−
(
d(β0,Z) − L2ρ(d(β0,Z)) − A

)
By (2), the left-hand side is at least L2 ∑ j

i=1 ρ(d(βti ,Z)), so:

diam π(β0) ∪ π(βT ) ≤
j∑

i=0

ρ(d(βti ,Z))

≤
L2 + 1

L2 (A + d(βT ,Z)) +
L2 − 1

L2 d(β0,Z) + 2ρ(d(β0,Z)) �

Corollary 4.4. Let Z be ρ–contracting and let β be a continuous (L, A)–quasi-geodesic ray
with d(β0,Z) ≤ κ(ρ, L, A). There are two possibilities:

(1) The set {t | d(βt,Z) ≤ κ(ρ, L, A)} is unbounded and β is contained in the κ′(ρ, L, A)–
neighborhood of Z.

(2) There exists a last time T0 such that d(βT0 ,Z) = κ(ρ, L, A) and:

∀t, d(βt,Z) ≥
1

2L
(t − T0) − 2(A + κ(ρ, L, A))(?)

Proof. Let κ := κ(ρ, L, A). Let [a, b] be a maximal interval such that d(βt,Z) ≥ κ for
t ∈ [a, b] and d(βa,Z) = d(βb,Z) = κ.

For t ∈ [a, b] we have d(βt,Z) ≤ κ + L · (b − a)/2 + A. Since β is quasi-geodesic:

(b − a) ≤ L(A + d(βa, βb)) ≤ L(A + 2κ + diam π(βa) ∪ π(βb))

Theorem 4.3 implies:

diam π(βa) ∪ π(βb) ≤
L2 + 1

L2 (A + κ) +
L2 − 1

L2 κ +
2κ

3L2

=
L2 + 1

L2 A +
6L2 + 2

3L2 κ
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Putting these estimates together yields:

d(βt,Z) < (L2 + 2)(2κ + A) = κ′(ρ, L, A)

Thus, once β leaves the κ′(ρ, L, A)–neighborhood of Z it can never return to the κ(ρ, L, A)–
neighborhood of Z. If {t | d(βt,Z) ≤ κ} is unbounded then β never leaves the κ′(ρ, L, A)–
neighborhood of Z.

Suppose now that there does exist some last time T0 such that d(βT0 ,Z) = κ. Any segment
β[T0,t] stays outside NκZ, so apply Theorem 4.3 to see:

t − T0

L
− A ≤ d(βt, βT0)

≤ d(βt,Z) + diam π(βt) ∪ π(βT0) + κ

≤
6L2 − 1

3L2 d(βt,Z) +
L2 + 1

L2 (A + κ) + κ

Thus:

d(βt,Z) ≥
3L

6L2 − 1
(t − T0) −

6L2 + 3
6L2 − 1

(A + κ) �

Lemma 4.5. Suppose α is a continuous, ρ–contracting (L, A)–quasi-geodesic and β is a
continuous (L, A)–quasi-geodesic ray such that d(α0, β0) ≤ κ(ρ, L, A). If there are r, s ∈ [0,∞)
such that d(αr, βs) ≤ κ(ρ, L, A) then dHaus(α[0,r], β[0,s]) ≤ κ′(ρ, L, A). If α[0,∞) and β[0,∞) are
asymptotic then their Hausdorff distance is at most κ′(ρ, L, A).

Proof. Corollary 4.4 (1) reduces the asymptotic case to the bounded case and shows that β
is contained in N̄κ′(ρ,L,A)α.

For the other direction, suppose that (a, b) is a maximal open subinterval of the domain
of α such that α(a,b) ∩ πα(β ∩ N̄κ(ρ,L,A)α) = ∅. For subsegments of β contained in N̄κ(ρ,L,A)α the
projection to α has jumps of size at most 2κ(ρ, L, A). For subsegments of β outside N̄κ(ρ,L,A)α
the largest possible gap in the projection is bounded by Theorem 4.3 by:

d(αa, αb) ≤
L2 + 1

L2 (A + κ(ρ, L, A)) +
L2 − 1

L2 κ(ρ, L, A) + 2ρ(κ(ρ, L, A))(3)

≤
L2 + 1

L2 (A + κ(ρ, L, A)) +
L2 − 1

L2 κ(ρ, L, A) +
2κ(ρ, L, A)

3L2

=
L2 + 1

L2 A +
6L2 + 2

6L2 · 2κ(ρ, L, A)

This is greater than 2κ(ρ, L, A).
In either case, for c ∈ (a, b) we have:

d(αc, β) ≤ κ(ρ, L, A) + min{d(αa, αc), d(αb, αc)}(4)

≤ κ(ρ, L, A) + A + L
b − a

2

≤ κ(ρ, L, A) + A + L
LA + Ld(αa, αb)

2
Substitute (3) into (4) and observe that the resulting bound is less than κ′(ρ, L, A), which was
defined to be (L2 + 2)(A + 2κ(ρ, L, A)). �

Lemma 4.6. If α is a ρ–contracting geodesic ray and β is a continuous (L, A)–quasi-geodesic
ray asymptotic to α with α0 = β0 then β is ρ′–contracting where ρ′ � ρ depends only on ρ, L,
and A.

Proof. Lemma 4.5 says the Hausdorff distance between α and β is bounded in terms of ρ,
L, and A, so the claim follows from Lemma 3.3. �

The next lemma gives the key divagation estimate, which gives us lower bounds on fellow-
travelling distance.
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Lemma 4.7. Let α be a ρ-contracting geodesic ray, and let β be a continuous (L, A)–quasi-
geodesic ray with α0 = β0 = o. Given some R and J, suppose there exists a point x ∈ α with
d(x, o) ≥ R and d(x, β) ≤ J. Let y be the last point on the subsegment of α between o and x
such that d(y, β) = κ(ρ, L, A). There is a constant M ≤ 2 and a function λ(φ, p, q) defined for
sublinear φ, p ≥ 1, and q ≥ 0 such that λ is monotonically increasing in p and q and:

d(x, y) ≤ MJ + λ(ρ, L, A)

Thus:
d(o, y) ≥ R − MJ − λ(ρ, L, A)

Proof. If d(x, β) ≤ κ(ρ, L, A) then y = x and we are done. Otherwise, let a be the last time
such that βa is κ(ρ, L, A)–close to α between o and x, and let y′ ∈ α be the last point of α with
d(βa, y′) = κ(ρ, L, A). Note d(y, x) ≤ d(y′, x).

Now let b be the first time such that d(βb, x) = J. The subsegment β[a,b] stays outside
Nκ(ρ,L,A)α. Pick a geodesic from βb to x and let w be the first point such that d(w, α) = κ(ρ, 1, 0).
Pick z ∈ π(βb) and v ∈ π(w), and let W := d(βb,w), Y := d(y′, z), Z := d(z, v), and X := d(v, x),
see Figure 1.

≥ R

Y Z X

≤ J

W

κ(ρ, L, A)
κ(ρ, 1, 0)

y′ y z

v w

βa

βb

o
xα

β

Figure 1. Setup for Lemma 4.7

We have W ≥ d(βb, α) − Z − κ(ρ, 1, 0), and X ≤ J −W + κ(ρ, 1, 0), so:

d(y′, x) ≤ X + Y + Z
≤ Y + Z + J − d(βb, α) + Z + 2κ(ρ, 1, 0)

Apply Theorem 4.3 to the subsegment of γ between γa to γb to bound Y . Apply Theorem 4.3
to the subsegment of the chosen geodesic from βb to x between βb and w to bound Z. (Note in
the latter case that we are applying Theorem 4.3 to a geodesic, so use L = 1 and A = 0 for this
case.) Combining these bounds for Y and Z with the bound on d(x, y′) above yields:

d(y′, x) ≤ J + 6κ(ρ, 1, 0) +
L2 + 1

L2 (A + κ(ρ, L, A)) −
1
L2 d(βb, α) + 6ρ(d(βb, α))

Now use the facts that ρ(d(βb, α)) ≤ d(βb,α)
3L2 and d(βb, α) ≤ J to achieve:

d(y, x) ≤ d(y′, x) ≤
L2 + 1

L2 J + 6κ(ρ, 1, 0) +
L2 + 1

L2 (A + κ(ρ, L, A))

≤ 2J + 6κ(ρ, 1, 0) + 2(A + κ(ρ, L, A))

Set M := 2 and λ(φ, p, q) := 6κ(φ, 1, 0) + 2(q + κ(φ, p, q)). �

Here is an application of Lemma 4.7 that we will use in Section 9.

Lemma 4.8. Given a sublinear function ρ and constants L ≥ 1, A ≥ 0 there exist constants
L′ ≥ 1 and A′ ≥ 0 such that if α is a ρ-contracting geodesic ray or segment and β is a continuous
(L, A)–quasi-geodesic ray not asymptotic to α with α0 = β0 = o, then we obtain a continuous
(L′, A′)–quasi-geodesic by following α backward until αs0 , then following a geodesic from αs0

to βt0 , then following β, where βt0 is the last point of β at distance κ(ρ, L, A) from α, and where
αs0 is the last point of α at distance κ(ρ, L, A) from βt0 .
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Proof. Define κ := κ(ρ, L, A) and M and λ := λ(ρ, L, A) from Lemma 4.7. Recall M ≤

2 ≤ 2L. It suffices to take A′ :=
(

(4L+1)κ+λ
4L + A

)
and L′ := 4L. Since we have constructed a

concatenation of three quasi-geodesic segments, it suffices to check that points on different
segments are not too close together. Since A′ > A + κ we may ignore the short middle segment.
Thus, we need to check for s ≥ s0 and t ≥ t0 that d(αs, βt) ≥

s−s0+t−t0+κ
L′ − A′.

For such s and t, let x := αs, y := αs0 , and z := βt. By Lemma 4.7, s − s0 = d(x, y) ≤
Md(x, z) + λ < 2Ld(x, z) + λ. Choose some point z′ ∈ πα(z). By Corollary 4.4 (?) we have
d(z, x) ≥ d(z, z′) ≥ t−t0

2L − 2(A + κ). Now average these two lower bounds for d(x, z):

d(αs, βt) = d(x, z) ≥
1
2

( s − s0

2L
−

λ

2L
+

t − t0
2L
− 2(A + κ)

)
≥

s − s0 + t − t0 + κ

4L
−

(
λ

4L
+

4L + 1
4L

κ + A
)

�

To close this section we give the stronger formulation of the Quasi-geodesic Image Theorem:

Theorem 4.9. Given a sublinear function ρ and constants L ≥ 1 and A ≥ 0 there is
a sublinear function ρ′ such that if Z is ρ–contracting and β : [0,T ] → X is a continuous
(L, A)–quasi-geodesic segment with d(β,Z) = d(βT ,Z) = κ(ρ, L, A) then diam π(β0) ∪ π(βT ) ≤
ρ′(d(β0,Z)).

Proof. Define ρ′(r) := supβ diam π(β0) ∪ π(βT ) where the supremum is taken over all
continuous (L, A)–quasi-geodesic segments β such that d(β,Z) = κ(ρ, L, A) is realized at one
endpoint of β and the other endpoint is at distance at most r from Z. Suppose that ρ′ is not
sublinear, so suppose lim supr→∞ ρ

′(r)/r = 2ε > 0. Then there exists a sequence (ri)→ ∞ such
that for each i there exists a continuous (L, A)–quasi-geodesic segment β(i) : [0,Ti]→ X with
d(β(i)

Ti
,Z) = κ(ρ, L, A) and d(β(i)

0 ,Z) ≤ ri and diam π(β(i)
0 ) ∪ π(β(i)

Ti
) ≥ εri, so that diam π(β(i)

0 ) ∪

π(β(i)
Ti

) ≥ εd(β(i)
0 ,Z).

For n ∈ N define κn large enough so that for all r ≥ κn we have r−L2ρ(r)−A ≥ 1
3 r ≥ nL2ρ(r)

(recalling (2), κ1 = κ(ρ, L, A)). The proof of Theorem 4.3 shows that if a continuous (L, A)–
quasi-geodesic segment stays outside the κn–neighborhood of Z then:

diam π(β0) ∪ π(βT ) ≤
L2 + 1

nL2 (A + d(βT ,Z)) +
L2 − 1

nL2 d(β0,Z) +
n + 1

n
ρ(d(β0,Z))

≤
1
n

(2A + 2d(βT ,Z) + d(β0,Z))(5)

For ε > 0 as above, choose n ∈ N large enough that nε > 2. For all sufficiently large i we
have that diam π(β(i)

0 ) ∪ π(β(i)
Ti

) > 2A + 2κ1 + κn. By (5) for n = 1, we have d(β(i)
0 ,Z) > κn. Let

si > 0 be the first time such that d(β(i)
si ,Z) = κn.

εd(β(i)
0 ,Z) ≤ diam π(β(i)

Ti
) ∪ π(β(i)

0 )

≤ diam π(β(i)
Ti

) ∪ π(β(i)
si ) + diam π(β(i)

si ) ∪ π(β(i)
0 )

≤ (2A + 2κ1 + κn) +
1
n

(
2A + 2κn + d(β(i)

0 ,Z)
)

≤ (2A + 2κ1 + κn) +
ε

2

(
2A + 2κn + d(β(i)

0 ,Z)
)

Solving for d(β(i)
0 ,Z), we find that it is bounded, independent of i. By (5) for n = 1, this

would bound diam π(β(i)
0 ) ∪ π(β(i)

Ti
), independent of i, whereas we have assumed diam π(β(i)

0 ) ∪

π(β(i)
Ti

) ≥ εri → ∞. This is a contradiction, so we conclude limr→∞ ρ
′(r)/r = 0. �
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5. The contracting boundary and the topology of fellow-travelling quasi-geodesics

Definition 5.1. Let X be a proper geodesic metric space with basepoint o. Define ∂cX to be
the set of contracting quasi-geodesic rays based at o modulo Hausdorff equivalence.

Lemma 5.2. For each ζ ∈ ∂cX:

• The set of contracting geodesic rays in ζ is non-empty.
• There is a sublinear function:

ρζ(r) := sup
α,x,y

diam πα(x) ∪ πα(y)

Here the supremum is taken over geodesics α ∈ ζ and points x and y such that
d(x, y) ≤ d(x, α) ≤ r.
• Every geodesic in ζ is ρζ–contracting.

Proof. By definition, ζ is an equivalence class of contracting quasi-geodesic rays, so there
exists some ρ′–contracting (L, A)–quasi-geodesic ray β ∈ ζ based at o. Since X is proper, a
sequence of geodesic segments connecting o to βi for i ∈ N has a subsequence that converges to
a geodesic α′. By Theorem 3.4, all of these geodesic segments, hence α′ as well, are contained
in a bounded neighborhood of β, with bound depending only on ρ′, so there do exist geodesics
asymptotic to β. Furthermore, Corollary 4.4 implies that geodesic rays asymptotic to β have
uniformly bounded Hausdorff distance from β, with bound depending on ρ′, L, and A. By
Lemma 3.3, all such geodesics are ρ′′–contracting for some ρ′′ � ρ′ depending on ρ′, L, and A.

The function ρζ is non-decreasing and bounds projection diameters by definition. The fact
that there exists a sublinear function ρ′′ such that all geodesics in ζ are ρ′′–contracting implies
ρζ ≤ ρ

′′, so ρζ is also sublinear. �

Definition 5.3. Let X be a proper geodesic metric space. Take ζ ∈ ∂cX. Fix a geodesic ray
αζ ∈ ζ. For each r ≥ 1 define U(ζ, r) to be the set of points η ∈ ∂cX such that for all L ≥ 1 and
A ≥ 0 and every continuous (L, A)–quasi-geodesic ray β ∈ ηwe have d(β, αζ∩Nc

r o) ≤ κ(ρζ , L, A).

Informally, η ∈ U(ζ, r) means that inside the ball of radius r about the basepoint quasi-
geodesics in η fellow-travel αζ just as closely as quasi-geodesics in ζ do. Alternatively, quasi-
geodesics in η do not escape from αζ until after they leave the ball of radius r about the
basepoint.

Definition 5.4. Define the topology of fellow-travelling quasi-geodesics on ∂cX by:

FQ := {U ⊂ ∂cX | ∀ζ ∈ U, ∃r ≥ 1, U(ζ, r) ⊂ U}

The contracting boundary equipped with this topology is denoted ∂FQc X.

We do not assume that the sets U(ζ, r) are open in the topology FQ. Indeed, from the
definition it is not even clear that U(ζ, r) is a neighborhood of ζ, but we will show that this is
the case.

Proposition 5.5. FQ is a topology on ∂cX, and for each ζ ∈ ∂cX the collection {U(ζ, n) |
n ∈ N} is a neighborhood basis at ζ.

Corollary 5.6. ∂FQc X is first countable.

Observation 5.1. Suppose η < U(ζ, r). By definition, for some L and A there exists a
continuous (L, A)–quasi-geodesic β ∈ η such that d(β, αζ ∩ Nc

r o) > κ(ρζ , L, A). Since o ∈ β, this
is not possible if κ(ρζ , L, A) ≥ r. Thus, in light of Definition 4.1, the quasi-geodesic β witnessing
η < U(ζ, r) must be an (L, A)–quasi-geodesic with L2 < r/3 and A < r/3.

The proof of Proposition 5.5 depends on two lemmas. The first is a recombination result for
quasi-geodesics. Its key feature is that the quasi-geodesic constants of the result depend only on
the quasi-geodesic constants of the input, not on the contraction function.



190 H. A METRIZABLE TOPOLOGY ON THE CONTRACTING BOUNDARY OF A GROUP

Lemma 5.7 (Tail wagging). Let ρ be a sublinear function. Let L ≥ 1 and A ≥ 0. Let
T ≥ 11κ′(ρ, L, A) and S ≥ T + 6κ′(ρ, L, A) + 6κ′(ρ, 1, 0). Suppose α is a ρ–contracting
geodesic ray based at o, γ is a continuous (L, A)–quasi-geodesic ray based at o such that
d(γ, α[T,∞)) ≤ κ(ρ, L, A), and β is a geodesic ray based at o such that d(β, α[S ,∞)) ≤ κ(ρ, 1, 0).
Then there are continuous (2L + 1, A)–quasi-geodesic rays that agree with γ until a point within
distance 11κ′(ρ, L, A) of αT and share tails with α and β, respectively.

Proof. We construct the quasi-geodesic ray that shares a tail with β. The construction for
the α–tail is similar, but with easier estimates.

Let T ′′ := T − 3κ′(ρ, 1, 0) − κ′(ρ, L, A). Let T ′ be the first time at which γ comes within
distance κ′(ρ, L, A) of α[T ′′,∞). Let S ′ be such that d(βS ′ , α[S ,∞)) ≤ κ(ρ, 1, 0). Let t0 ≤ T ′ and r0 ≥

S ′ be times such that d(γt0 , βr0) = d(γ[0,T ′], β[S ′,∞)), and let δ be a geodesic from γt0 to βr0 . There
are times b, c, b′, and c′ such that d(γt0 , αb), d(γT ′ , αc) ≤ κ′(ρ, L, A), d(βb′ , αb), d(βc′ , αc) ≤
κ′(ρ, 1, 0). For any t ≤ t0 there exist a and a′ such that d(γt, αa) ≤ κ′(ρ, L, A) and d(αa, βa′) ≤
κ(ρ, 1, 0). See Figure 2.

α

β

γ

δ

o

αa
αb αcαT ′′ αT

αS

βS ′

βr0

βr

βa′
βb′ βc′

γt

γt0

γT ′

Figure 2. Wagging the tail of γ.

The desired quasi-geodesic ray is γ[0,t0] + δ + β[r0,∞).
First, we verify d(γt0 , αT ) ≤ 11κ′(ρ, L, A). The definitions of t0 and r0 demand d(γt0 , βr0) ≤

d(γT ′ , βS ′). The left-hand side is at least S ′ − b′ − (κ′(ρ, L, A) + κ′(ρ, 1, 0)), while the right-hand
side is no more than S ′ − c′ + (κ′(ρ, L, A) + κ′(ρ, 1, 0)), so c′ − b′ ≤ 2(κ′(ρ, L, A) + κ′(ρ, 1, 0)).
Since T ′′ ≤ c ≤ T ′′ + 2κ′(ρ, L, A) we have d(αc, αT ) ≤ κ′(ρ, L, A) + 3κ′(ρ, 1, 0). Together, these
allow us to estimate:

d(γt0 , αT ) ≤ d(γt0 , βb′) + d(βb′ , βc′) + d(βc′ , αc) + d(αc, αT )

≤ (κ′(ρ, L, A) + κ′(ρ, 1, 0)) + c′ − b′ + κ′(ρ, 1, 0)

+ (κ′(ρ, L, A) + 3κ′(ρ, 1, 0))

≤ 7κ′(ρ, 1, 0) + 4κ′(ρ, L, A) ≤ 11κ′(ρ, L, A)

Next we verify the quasi-geodesic constants. Since we have a concatenation of quasi-
geodesics, we only need to check that points on different pieces are not closer than they ought to
be with respect to the parameterization.

First we claim γ[0,t0] + δ is an (L′, A)–quasi-geodesic for L′ := 2L + 1. This is true for γ[0,t0]
and δ individually. Suppose there are 0 ≤ t < t0 and 0 < u ≤ |δ| such that d(γt, δu) < t0−t+u

L′ − A.
Now, d(δu, γt) ≥ d(δu, γt0) = u, which implies u < L′

L′−1 ( t0−t
L′ − A). But then:

t0 − t
L
− A ≤ d(γt, γt0) ≤ d(γt, δu) + d(δu, γt0)

≤

( t0 − t + u
L′

− A
)

+ u

Plugging in the value for L′ and the bound for u yields a contradiction.
The same argument shows δ + β[r0,∞) is a (3, 0)–quasi-geodesic.
Now consider points γt and βr for t ≤ t0 and r ≥ r0.
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d(γt, βr) ≥ r − a′ − (κ′(ρ, L, A) + κ′(ρ, 1, 0))

= r − r0 + r0 − b′ + b′ − a′ − (κ′(ρ, L, A) + κ′(ρ, 1, 0))

≥ r − r0 + d(γt0 , βr0) + d(γt, γt0) − 4(κ′(ρ, L, A) + κ′(ρ, 1, 0))

≥
t0 − t + r − r0 + |δ|

2L + 1
− A + |δ|

2L
2L + 1

− 4(κ′(ρ, L, A) + κ′(ρ, 1, 0))

Thus, the ray we have constructed is a (2L + 1, A)–quasi-geodesic, since |δ| ≥ 6(κ′(ρ, L, A) +

κ′(ρ, 1, 0)), as we now verify:

|δ| ≥ r0 − b′ − (κ′(ρ, L, A) + κ′(ρ, 1, 0))

≥ r0 − b − (κ′(ρ, L, A) + 2κ′(ρ, 1, 0))

≥ S ′ − T ′′ − (κ′(ρ, L, A) + 2κ′(ρ, 1, 0))

≥ S − T ′′ − (κ′(ρ, L, A) + 3κ′(ρ, 1, 0))

≥ 6(κ′(ρ, L, A) + κ′(ρ, 1, 0)) �

Lemma 5.8. For every sublinear function ρ and r ≥ 1 there exists a number ψ(ρ, r) > r such
that for every R ≥ ψ(ρ, r) and every ζ ∈ ∂cX such that ρζ ≤ ρ we have that for every η ∈ U(ζ,R)
there exists an R′ such that U(η,R′) ⊂ U(ζ, r).

Proof. It suffices to take ψ(ρ, r) := r + Mκ(ρ, 2
√

r/3 + 1, r/3) + λ(ρ,
√

r/3, r/3), where M
and λ are as in Lemma 4.7.

Suppose R ≥ ψ(ρ, r) and ζ is a point in ∂cX such that ρζ ≤ ρ. Suppose that η ∈ U(ζ,R) with
η , ζ. Let T0 be the last time such that d(αηT0

, αζ) = κ(ρζ , 1, 0). Set:

R′ := T0 + 2κ′(ρζ , 2
√

r/3 + 1, r/3) + 4κ(ρζ , 1, 0) + 28κ′(ρη,
√

r/3, r/3) + 6κ′(ρη, 1, 0)

Suppose that there exists a point ξ ∈ U(η,R′) such that ξ < U(ζ, r). The latter implies
there exists an L ≥ 1 and A ≥ 0 and a continuous (L, A)–quasi-geodesic γ ∈ ξ such that
d(γ,Nc

r o ∩ αζ) > κ(ρζ , L, A). By Observation 5.1, we have L2, A < r/3. Set α := αη, β := αξ,
T := T0 + 4κ(ρζ , 1, 0) + 22κ′(ρη,

√
r/3, r/3) + 2κ′(ρζ , 2

√
r/3 + 1, r/3), and S := R′ ≥ T +

6κ′(ρη, L, A) + 6κ′(ρη, 1, 0). Apply Lemma 5.7 to α, β, γ, T , and S to produce a continuous
(2L + 1, A)–quasi-geodesic δ ∈ η that agrees with γ at least until a point z in the ball of radius
11κ′(ρη, L, A) about αηT .

By Corollary 4.4 (?) we have d(αT , α
ζ) ≥ (T −T0)/2−2κ(ρζ , 1, 0), which implies d(z, αζ) ≥

κ′(ρζ , 2L + 1, A), so by point z the ray δ has already escaped αζ and can never return to
its κ(ρζ , 2L + 1, A)–neighborhood. Therefore, the only points of δ in the κ(ρζ , 2L + 1, A)–
neighborhood of αζ are those that were contributed by γ. By construction, γ does not come
κ(ρζ , L, A)–close to αζ outside the ball of radius r. By applying Lemma 4.7, we see that δ is a
witness to η < U(ζ,R). This is a contradiction, so U(η,R′) ⊂ U(ζ, r). �

Proof of Proposition 5.5. For every ζ ∈ ∂cX and 1 ≤ r < r′ we have ζ ∈ U(ζ, r′) ⊂ U(ζ, r).
The nesting is immediate from Definition 5.3, and ζ ∈ U(ζ, r) by Corollary 4.4. Now it is easy to
see that FQ is a topology. That a set of the form U(ζ, r) is a neighborhood of ζ in this topology
follows from showing that the set

U := {η ∈ U(ζ, r) | ∃Rη, U(η,Rη) ⊂ U(ζ, r)}

is open, since then ζ ∈ U ⊂ U(ζ, r). Now if η ∈ U then there exists Rη so that U(η,Rη) ⊂ U(ζ, r).
Lemma 5.8 says that for all ξ ∈ U(η, ψ(ρη,Rη)) there exists R′ with U(ξ,R′) ⊂ U(η,Rη) ⊂
U(ζ, r). Therefore U(η, ψ(ρη,Rη)) ⊂ U and so U is open. �

From this proof we observe the following consequence.

Corollary 5.9. For every ζ ∈ ∂cX and r ≥ 1 there exists an open set U such that
U(ζ, ψ(ρζ , r)) ⊂ U ⊂ U(ζ, r).
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Proposition 5.10. The topology FQ does not depend on the choice of basepoint or on the
choices of the representative geodesic rays for each point in ∂cX.

Proof. Let C be the set of contracting quasi-geodesic rays based at o and let C′ be the
set of contracting quasi-geodesic rays based at o′. There is a map φ : C → C′ by prefixing
γ ∈ C with a chosen geodesic segment from o′ to o. The map φ clearly induces a bijection
∂cφ between contracting boundaries of X with respect to different basepoints, and the inverse
map can be achieved by simply prefixing quasi-geodesic rays by a geodesic from o to o′. We
check that ∂cφ is an open map. For ζ ∈ ∂FQc X and r ≥ 1 we show for sufficiently large R that
U′(∂cφ(ζ),R) ⊂ ∂cφ(U(ζ, r)), where U′(∂cφ(ζ),R) denotes the appropriate neighborhood of
∂cφ(ζ) defined with o′ as basepoint.

Let α := αζ be the reference geodesic for ζ based at o, and let α′ be the reference geodesic
for ∂cφ(ζ) based at o′. Then α′ is bounded Hausdorff distance from α. Suppose α is ρ–
contracting and α′ is ρ′–contracting. Theorem 3.4 implies that α′ eventually comes within
distance κ(ρ, 1, 0) of α, and Theorem 4.3 implies that this first happens at some time no later than
d(o′, α) + 3κ(ρ, 1, 0) + 2ρ(d(o′, α)). After that time α′ remains in the κ′(ρ, 1, 0)–neighborhood
of α. Assume R > d(o′, α) + 3κ(ρ, 1, 0) + 2ρ(d(o′, α)).

Assume further that R > r +2d(o, o′) and suppose η ∈ U′(∂cφ(ζ),R). Let γ ∈ ∂cφ
−1(η) be an

arbitrary continuous (L, A)–quasi-geodesic. Our goal is to show that if R is chosen sufficiently
large with respect to ρ, ρ′, and r, then such a γ must come within distance κ(ρ, L, A) of α
outside Nro. We then conclude ∂cφ

−1(U′(∂cφ(ζ),R)) ⊂ U(ζ, r). By Observation 5.1, it suffices
to consider the case L2, A < r/3.

Now, γ′ := φ(γ) ∈ η is a continuous (L, A + 2d(o, o′))–quasi-geodesic. Since η ∈
U′(∂cφ(ζ),R) there exists a point x′ ∈ α′ such that d(γ′, x′) ≤ κ(ρ′, L, A + 2d(o, o′)) and
d(x′, o′) ≥ R. The first restriction on R implies there is a point x ∈ α such that d(x, x′) ≤
κ′(ρ, 1, 0), so d(γ′, x) ≤ κ′(ρ, 1, 0)+κ(ρ′, L, A+2d(o, o′)). We also have d(x, o) ≥ R−κ′(ρ, 1, 0)−
d(o, o′). Assuming further that R > 2d(o, o′) + 2κ′(ρ, 1, 0) + κ(ρ′, L, A + 2d(o, o′)), we have that
the point of γ′ close to x is actually a point of γ. Let y be the last point of α at distance κ(ρ, L, A)
from γ (see Figure 3), and apply Lemma 4.7 to find:

d(o, y) ≥ R − κ′(ρ, 1, 0) − d(o, o′)

− M(κ′(ρ, 1, 0) + κ(ρ′,
√

r/3, r/3 + 2d(o, o′))) − λ(ρ,
√

r/3, r/3)

o

o′

ζ

η

γγ′

α

α′

xx′y

≤ κ(ρ′, L, A + 2d(o, o′))

≤ κ′(ρ, 1, 0)

≥ R

Figure 3. Change of basepoint

Assuming that R was chosen large enough to guarantee the right-hand side is at least r, we
have that γ comes within distance κ(ρ, L, A) of α outside Nro. �

Proposition 5.11. ∂FQc X is Hausdorff.

Proof. Let ζ and η be distinct points in ∂cX. Let α := αζ and β := αη be representative
geodesic rays. Let R be large enough that the κ′(ρζ , 1, 0)–neighborhood of α[R,∞) is disjoint from
the κ′(ρη, 1, 0)–neighborhood of β[R,∞). Such an R exists by Corollary 4.4.

Choose ξ ∈ U(ζ,R). Let γ ∈ ξ be a geodesic ray. Since ξ ∈ U(ζ,R) there exists a point
x ∈ α and y ∈ γ with d(x, o) ≥ R and d(x, y) ≤ κ(ρζ , 1, 0). By construction d(y, β) > κ′(ρη, 1, 0),
so, by Corollary 4.4, the final visit of γ to the κ(ρη, 1, 0)–neighborhood of β must have occurred
inside the ball of radius R about o. Thus, ξ < U(η,R). �
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Proposition 5.12. ∂FQc X is regular.

Proof. Suppose C ⊂ ∂FQc X is closed and ζ ∈ Cc. Then Cc is a neighborhood of ζ, so there
exists r′ such that for all r ≥ r′ we have U(ζ, r) ⊂ Cc. Suppose:

(6) ∀ζ ∈ ∂FQc X, ∃r′ ≥ 1, ∀r ≥ r′, ∃R > r, U(ζ,R) ⊂ U(ζ, r)

Then there exists an R > r such that U(ζ,R) ⊂ U(ζ, r) ⊂ Cc, so C is contained in an open set
U(ζ,R)

c
that is disjoint from U(ζ,R). By Proposition 5.5, U(ζ,R) is a neighborhood of ζ, so it

contains an open set U that contains ζ. The disjoint open sets U and U(ζ,R)
c

separate ζ and C,
so (6) implies regularity.

The proof of (6) is similar to the proof of Lemma 5.8: suppose given r and ζ there is no R
satisfying the claim. Then there exists a point η ∈ U(ζ,R) ∩ U(ζ, r)c. Now η ∈ U(ζ,R) implies
that for all n ∈ N there exists ξn ∈ U(ζ,R) ∩ U(η, n), while η < U(ζ, r) implies there exist
L2, A < r/3 and a continuous (L, A)–quasi-geodesic γ ∈ η such that d(γ,Nc

r o∩αζ) > κ(ρζ , L, A).
For sufficiently large n we wag the tail of γ by Lemma 5.7 to produce a continuous (2L + 1, A)–
quasi-geodesic δ ∈ ξn that agrees with γ on a long initial segment. If R is large enough this sets
up a contradiction between the fact that ξn ∈ U(ζ,R) and the fact that γ witnesses η < U(ζ, r),
so for large enough R we have U(ζ,R) ⊂ U(ζ, r), as desired. �

Generally in this paper we will work directly with the topology on the contracting boundary.
However, it is worth mentioning that this object that we have called a ‘boundary’ really is a
topological boundary.

Definition 5.13. A bordification of a Hausdorff topological space X is a Hausdorff space X̂
containing X as an open, dense subset.

The contracting boundary of a proper geodesic metric space provides a bordification of X
by X̂ := X ∪ ∂cX as follows. For x ∈ X take a neighborhood basis for x to be metric balls about
x. For ζ ∈ ∂cX take a neighborhood basis for ζ to be sets Û(ζ, r) consisting of U(ζ, r) and points
x ∈ X such that we have d(γ,Nc

r o ∩ αζ) ≤ κ(ρζ , L, A) for every L ≥ 1, A ≥ 0, and continuous
(L, A)–quasi-geodesic segment γ with endpoints o and x.

Proposition 5.14. X̂ := X ∪ ∂cX topologized as above defines a first countable bordification
of X such that the induced topology on ∂cX is the topology of fellow-travelling quasi-geodesics.

Proof. A similar argument to that of Proposition 5.5 shows we have defined a neighborhood
basis in a topology for each point in X̂, and the topology agrees with the metric topology on X
and topology FQ on ∂cX by construction. That X̂ is Hausdorff follows from Proposition 5.11.
X is clearly open in X̂. To see that X is dense, consider ζ ∈ ∂cX, which, by definition, is an
equivalence class of contracting quasi-geodesic rays. For any quasi-geodesic ray γ ∈ ζ we have
that (γn)n∈N is a sequence in X converging to γ, because the subsegments γ[0,n] are uniformly
contracting. �

Definition 5.15. If G is a finitely generated group acting properly discontinuously on a
proper geodesic metric space X with basepoint o we define the limit set Λ(G) := Go rGo of G
to be the topological frontier in X̂ of the orbit Go of the basepoint.

6. Quasi-isometry invariance

In this section we prove quasi-isometry invariance of the topology of fellow-travelling
quasi-geodesics.

Theorem 6.1. Suppose φ : X → X′ is a quasi-isometric embedding between proper geodesic
metric spaces. If φ takes contracting quasi-geodesics to contracting quasi-geodesics then it
induces an injection ∂cφ : ∂FQc X → ∂FQc X′ that is an open mapping onto its image with the
subspace topology. If φ(X) is a contracting subset of X′ then ∂cφ is continuous.
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We will see in Lemma 6.6 that if φ(X) is contracting then φ does indeed take contracting
quasi-geodesics to contracting quasi-geodesics, so we get the following corollary of Theorem 6.1.

Corollary 6.2. If φ : X → X′ is a quasi-isometric embedding between proper geodesic
metric spaces and φ(X) is contracting in X′ then ∂cφ is an embedding. In particular, if φ is a
quasi-isometry then ∂cφ is a homeomorphism.

Remark 6.3. Cordes [16] proves a version of Theorem 6.1 and Corollary 6.2 for the Morse
boundary. The construction of the injective map is exactly the same. For continuity, he defines
a map between contracting boundaries to be Morse-preserving if for each µ there is a µ′ such
that the map takes boundary points with a µ–Morse representative to boundary points with a
µ′–Morse representative, and shows that if φ is a quasi-isometric embedding that induces a
Morse-preserving map ∂cφ on the contracting boundary then ∂cφ is continuous in the direct
limit topology.

Similarly, let us say that φ is Morse-controlled if for each µ there exists µ′ such that φ takes
µ–Morse geodesics to µ′–Morse geodesics. A Morse-controlled quasi-isometric embedding
induces a Morse-preserving boundary map. We will see in Lemma 6.6 that the hypothesis that
φ(X) is a contracting set implies that φ is Morse-controlled.

Cayley graphs of a fixed group with respect to different finite generating sets are quasi-
isometric, so Corollary 6.2 allows us to define the contracting boundary of a finitely generated
group, independent of a choice of generating set.

Definition 6.4. If G is a finitely generated group define ∂FQc G to be ∂FQc X where X is any
Cayley graph of G with respect to a finite generating set.

The hypothesis in Theorem 6.1 that φ(X) is contracting already implies that it is undistorted,
so in fact we do not need to explicitly require φ to be a quasi-isometric embedding. We can
relax the hypotheses by only requiring φ to be coarse Lipschitz and uniformly proper. This is
illustrated by the following easy lemma.

A map φ : X → X′ between metric spaces is coarse Lipschitz if there are constants L ≥ 1
and A ≥ 0 such that d(φ(x), φ(x′)) ≤ Ld(x, x′) + A for all x, x′ ∈ X. It is uniformly proper if
there exists a non-decreasing function χ : [0,∞)→ [0,∞) such that d(x, x′) ≤ χ(d(φ(x), φ(x′)))
for all x, x′ ∈ X. Note that if X is geodesic and φ is coarse Lipschitz and uniformly proper then
χ(r) > 0 once r > A.

Lemma 6.5. If φ : X → X′ is a coarse Lipschitz, uniformly proper map between geodesic
metric spaces and Z ⊂ X has quasi-convex image in X′ then φ|Z : Z → X′ is a quasi-isometric
embedding.

We will prove a stronger statement than this in Lemma 6.7.

Lemma 6.6. Suppose φ : X → X′ is a coarse Lipschitz, uniformly proper map between
geodesic metric spaces and Z ⊂ X. If φ(X) is Morse and Z is Morse then φ(Z) is Morse. If φ(Z)
is Morse then Z is Morse. Moreover, the Morse function of Z determines the Morse function of
φ(Z), and vice versa, up to functions depending on φ.

Before proving Lemma 6.6 let us consider some examples to motivate the hypotheses. If X
is a Euclidean plane, X′ is a line, Z is a geodesic in X, and φ is the composition of projection of
X onto Z and an isometry between Z and X′ then φ is Lipschitz and φ(Z) is Morse, but φ is not
proper and Z is not Morse. If X is a line, X′ is a plane, Z = X, and φ is an isometric embedding
then φ is Lipschitz and uniformly proper and Z is Morse, but φ(X) = φ(Z) is not Morse.

In this paper we will only use the lemma in the case that φ(X) is Morse, and in this case it
is easy to prove that Z is Morse when φ(Z) is. However, the more general statement might be
of independent interest, and requires only mild generalizations of known results. The proof of
the first claim uses essentially the same argument as the well-known result that quasi-convex
subspaces are quasi-isometrically embedded. The key technical point for this direction is made
in Lemma 6.7 (in a more general form than needed for Lemma 6.6, for later use). The second
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claim is proved using the same strategy as used by Drutu, Mozes, and Sapir [22, Lemma 3.25],
who proved it in the case that X′ is a finitely generated group, φ : X → X′ is inclusion of a
finitely generated subgroup, and Z is an infinite cyclic group.

Lemma 6.7. If φ : X → X′ is a coarse Lipschitz, uniformly proper map between geodesic
metric spaces and Z ⊂ X has Morse image in X′ then for every L ≥ 1 and A ≥ 0 there exist
L′ ≥ 1, A′ ≥ 0, D′ ≥ 0, and D ≥ 0 such that for every (L, A)–quasi-geodesic γ in X′ with
endpoints on φ(Z) there is an (L′, A′)–quasi-geodesic δ in X with endpoints in Z such that:

• δ ⊂ ND′(Z)
• γ ⊂ ND(φ(δ))
• γ and φ(δ) have the same endpoints.

The proof, briefly, is to project γ to φ(Z) and then pull the image back to X.

Proof. Suppose φ is χ–uniformly proper, (Lφ, Aφ)–coarse-Lipschitz, and φ(Z) is µ–Morse.
Suppose the domain of γ is [0,T ]. For z ∈ {0,T } choose δz ∈ Z such that φ(δz) = γz. For
z ∈ Z ∩ (0,T ) choose δz ∈ Z such that d(φ(δz), γz) ≤ µ(L, A). Complete δ to a map on [0,T ]
by connecting the dots by geodesic interpolation in X. For D := L/2 + A + µ(L, A) we have
γ ⊂ N̄D(φ(δ)). Since the reparameterized geodesic segments used to build δ have endpoints on
Z and length at most χ(L + A + 2µ(L, A)), by choosing D′ := χ(L + A + 2µ(L, A))/2 we have
δ ⊂ N̄D′(Z), and, furthermore, δ is χ(L + A + 2µ(L, A))–Lipschitz. For any a ∈ [0,T ] we have
d(φ(δa), γa) ≤ LφD′ + Aφ + D. Finally, for a, b ∈ [0,T ]:

Lφd(δa, δb) + Aφ ≥ d(φ(δa), φ(δb))

≥ d(γa, γb) − 2(LφD′ + Aφ + D)

≥
|b − a|

L
− A − 2(LφD′ + Aφ + D)

Thus, δ is an (L′, A′)–quasi-geodesic for L′ := max{LφL, χ(L + A + 2µ(L, A))} and A′ :=
(3Aφ + A + 2LφD′ + 2D)/Lφ. �

Lemma 6.5 follows by the same argument applied to a geodesic.

Proof of Lemma 6.6. Suppose φ(X) and Z are Morse. A quasi-geodesic γ in X′ with end-
points on φ(Z) has endpoints on φ(X), which is Morse. Apply Lemma 6.7 to get a quasi-geodesic
δ in X such that φ(δ) is coarsely equivalent to γ. We can, and do, choose δ so that it has endpoints
on Z. Since Z is Morse, δ stays close to Z, so φ(δ) stays close to φ(Z), so γ is close to φ(Z).
Thus, φ(Z) is Morse.

Now suppose φ(Z) is Morse. By Lemma 6.5, φ restricted to Z is a quasi-isometric embedding.
Suppose that it is an (L, A)–quasi-isometric embedding. (These constants are at least the coarse
Lipschitz constants, so we will also assume φ is (L, A)–coarse Lipschitz on all of X.) Suppose
φ(Z) is µ–Morse. The Morse property implies that φ(Z) is (2µ(1, 0) + 1)–coarsely connected, so
Z is E–coarsely connected for E := L(2µ(1, 0) + 1 + A). Let t := 1

6L2 . If Z has diameter at most
1+2t
1−2t E then it is µ′–Morse for µ′ the function 1+2t

1−2t E, which depends only on L, A, and µ. In this
case we are done. Otherwise we prove that Z is t–recurrent and apply Theorem 2.2.

We fix C ≥ 1 and produce the corresponding D from the definition of recurrence.
Since the diameter of Z is bigger than 1+2t

1−2t E, the fact that Z is E–coarsely connected implies
that for every a, b ∈ Z there exists a point c ∈ Z such that td(a, b) + E ≥ min{d(a, c), d(b, c)} ≥
td(a, b): if d(a, b) ≥ 1

1−2t E then c may be found on a coarse path from a to b, otherwise c may
be found on a coarse path joining a to one of two points separated by more than 1+2t

1−2t E. Such
a point c is within distance td(a, b) + E of every path with endpoints a and b, so for any fixed
K ≥ 0 we may restrict our attention to the case d(a, b) > K by assuming D is at least tK + E.

Suppose p is path in X with endpoints a and b on Z such that p has length |p| at most
Cd(a, b) and d(a, b) > 8L(A + 1). Subdivide p into d|p|e many subsegments, all but possibly the
last of which has length 1. Denote the endpoints of these subsegments a = x0, x1, . . . , xd|p|e = b.
Let q be a path in X′ obtained by connecting each φ(xi) to φ(xi+1) by a geodesic. Then q is a path
of length at most (L + A)d|p|e ≤ (L + A) 9

8 |p| that coincides with φ(p) on φ({x0, . . . , xd|p|e}). Since
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φ is an (L, A)–quasi-geodesic embedding of Z we have that the distance between the endpoints
of q is at least d(a, b)/L − A ≥ 7

8L d(a, b), so that |q| < C′d(φ(a), φ(b)) for C′ = 9CL(L + A)/7.
Since φ(Z) is Morse it is recurrent, so given t′ := 1/3 and C′ as above there is a D′ ≥ 0 and
z ∈ Z such that min{d(φ(z), φ(a)), d(φ(z), φ(b))} ≥ d(φ(a), φ(b))/3 and d(φ(z), q) ≤ D′. Thus,
there is some i such that d(φ(xi), φ(z)) ≤ D′ + (L + A)/2. If φ is χ–uniformly proper then
d(xi, z) ≤ D := max{χ(D′ + (L + A)/2), 8tL(A + 1) + E}. It remains to check that z is sufficiently
far from the endpoints of p. This follows easily from our choice of t, the distance bound between
φ(z) and the endpoints of q, and the assumption d(a, b) > 8LA, by using the fact that φ|Z is an
(L, A)–quasi-isometric embedding. �

Corollary 6.8. If G is a finitely generated group and Z is a subset of a finitely generated
subgroup H of G such that Z is Morse in G then Z is Morse in H. If G is a finitely generated
group and H is a Morse subgroup of G then every Morse subset Z of H is also Morse in G.

Proof of Theorem 6.1. Since the topology is basepoint invariant we choose o ∈ X and let
o′ := φ(o) ∈ X′.

Suppose φ is an (L, A)–quasi-isometric embedding, and suppose φ̄ : φ(X)→ X is an (L, A)–
quasi-isometry inverse to φ. We assume supx∈X′ d(φ ◦ φ̄(x), x) ≤ A.

The quasi-isometric embedding φ induces an injective map between equivalence classes
of quasi-geodesic rays based at o and equivalence classes of quasi-geodesic rays based at o′.
The hypothesis that φ sends contracting quasi-geodesics to contracting quasi-geodesics implies
that it takes equivalence classes of contracting quasi-geodesic rays to equivalence classes of
contracting quasi-geodesic rays, so φ induces an injection ∂cφ : ∂cX → ∂cX′.

Continuity: Assume φ(X) is ρ–contracting. By Lemma 6.6, φ sends contracting quasi-
geodesic rays to contracting quasi-geodesic rays, so we have an injective map ∂cφ as above. We
claim that:

(7) ∀ζ ∈ ∂cφ(∂cX), ∀r > 1, ∃R′ > 1, ∀R ≥ R′, U((∂cφ)−1(ζ),R) ⊂ (∂cφ)−1(U(ζ, r))

Given the claim, let U′ be an open set in ∂FQc X′. For each ζ ∈ U′ ∩ ∂cφ(∂cX) there exists
an rζ such that U(ζ, rζ) ⊂ U′. Apply (7) to get an Rζ , and choose an open neighborhood
of (∂cφ)−1(ζ) contained in U((∂cφ)−1(ζ),Rζ). Let U be the union of these open sets for all
ζ ∈ U′ ∩ ∂cφ(∂cX). Then U is an open set and (7) implies U = (∂cφ)−1(U′).

To prove the claim we play our usual game of supposing the converse, deriving a bound on
R, and then choosing R to be larger than that bound. The key point is that all of the constants
involved are bounded in terms of ζ, (∂cφ)−1(ζ), r, and ρ.

Suppose for given ζ ∈ ∂cφ(∂cX) and r > 1 there exists an R > 1 and a point η ∈
U((∂cφ)−1(ζ),R) such that η < (∂cφ)−1(U(ζ, r)). The latter implies there exists a continu-
ous (L′, A′)–quasi-geodesic γ ∈ ∂cφ(η) witnessing ∂cφ(η) < U(ζ, r). By Observation 5.1, the
quasi-geodesic constants of γ are bounded in terms of r. We must adjust γ to get it into the
domain of φ̄. Since ∂cφ(η) is in the image of ∂cφ, the quasi-geodesic γ is asymptotic to a
quasi-geodesic contained in φ(X), so γ is contained in a bounded neighborhood of φ(X). Since
φ(X) as a whole is ρ–contracting, we can replace γ by a projection γ′ of γ to φ(X) as Lemma 6.7.
The Hausdorff distance between γ and γ′ is bounded3 in terms of ρ and the quasi-geodesic
constants of γ, hence by r, and the additive quasi-geodesic constant of γ′ increases by at most
twice the Hausdorff distance.

Tame φ̄(γ′) to get a continuous quasi-geodesic γ̂ ∈ η. The Hausdorff distance between
them and the quasi-geodesic constants (L′′, A′′) of γ̂ are bounded in terms of the quasi-isometry
constants of γ′ and φ.

Let α := α(∂cφ)−1(ζ). Since γ̂ ∈ η ∈ U((∂cφ)−1(ζ),R), there exists x ∈ α such that
d(o, x) ≥ R and d(x, γ̂) ≤ κ(ρ(∂cφ)−1(ζ), L′′, A′′). By the argument of the previous paragraph,
κ(ρ(∂cφ)−1(ζ), L′′, A′′) can be bounded in terms of L, A, r, ρ, ρζ , and ρ(∂cφ)−1(ζ). This bound

3If we had only assumed φ to be Morse-controlled this bound would depend on the Morse/contraction function
of η, which can be arbitrarily bad, even for η in a small neighborhood of ζ.
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ζ

α′ := αζ

η ∂cφ(η)

(∂cφ)−1(ζ)

x

o o′

α := α(∂cφ)−1(ζ)φ̄(γ′) γ̂ γ

φ(x)

α̂

φ

φ(α)

x′′

≤ J1

≤ J2

≥ R
≤ J0

Figure 4. Setup for Theorem 6.1

plus the Hausdorff distance to φ̄(γ′) give a bound d(φ̄(γ′), x) ≤ J0. Push forward by φ to get
d(γ, φ(x)) ≤ J1 := LJ0 + 2A + dHaus(γ, γ′). We also know d(φ(x), o′) ≥ R/L − A.

The quasi-isometric embedding φ sends the geodesic α to an (L, A)–quasi-geodesic φ(α)
asymptotic to α′ := αζ with φ(α)0 = φ(o) = o′. Tame φ(α) to produce a continuous (L, 2L+2A)–
quasi-geodesic α̂ at Hausdorff distance at most L + A from φ(α). Since α̂ ∈ ζ we have that
α̂ is contained in the κ′(ρζ , L, 2L + 2A)–neighborhood of α′, so φ(α) is contained in the J2–
neighborhood of α′ for J2 := κ′(ρζ , L, 2L + 2A) + L + A. In particular, d(φ(x), α′) ≤ J2. Let
x′′ be the closest point of α′ to φ(x), so that d(γ, x′′) ≤ J1 + J2 and d(o′, x′′) ≥ R/L − A − J2.
By Lemma 4.7, since γ is an (L′, A′)–quasi-geodesic, if y is the last point of α′ such that
d(γ, y) = κ(ρζ , L′, A′) then:

(8) d(o′, y) ≥ R/L − A − J2 − M(J1 + J2) − λ(ρζ , L′, A′)

Everything except R in (8) can be bounded in terms of L, A, r, ρ, ρζ , and ρ(∂cφ)−1(ζ), so,
given r and ζ we can choose R large enough to guarantee d(o′, y) > r. For such an R, we have
∂cφ(η) ∈ U(ζ, r) for every η ∈ U((∂cφ)−1(ζ),R). This finishes the proof of claim (7), so we
conclude ∂cφ is continuous if φ(X) is contracting.

Open mapping: The image of φ̄ is coarsely dense in X, so it is contracting. Thus, we can
apply the argument of the proof of continuity above to φ̄ to get the following analogue of (7),
noting that ∂cφ̄ = (∂cφ)−1:

(9) ∀ζ ∈ ∂cX, ∀r > 1, ∃R′ > 1, ∀R ≥ R′, ∂cφ(U(ζ, r)) ⊃ U(∂cφ(ζ),R) ∩ ∂cφ(∂cX)

Let U be an open set in ∂FQc X. For every ζ ∈ U there exists rζ such that U(ζ, rζ) ⊂ U.
Apply (9) to get Rζ , and let Uζ be an open neighborhood of ∂cφ(ζ) contained in U(∂cφ(ζ),Rζ).
Then U′ :=

⋃
ζ∈U Uζ is an open set in ∂FQc X′ containing ∂cφ(U). The choices of the Rζ , by (9),

imply that U′ ∩ ∂cφ(∂FQc X) = ∂cφ(U). �

One reason it may be convenient to weaken the stated quasi-isometric embedding hypothesis
is that the orbit map of a properly discontinuous group action of a finitely generated group on a
proper geodesic metric space is always coarse Lipschitz and uniformly proper, so we get the
following consequences of Corollary 6.2.

Proposition 6.9. Suppose G acts properly discontinuously on a proper geodesic metric
space X. Suppose the orbit map φ : g 7→ go takes contracting quasi-geodesics to contracting
quasi-geodesics and has quasi-convex image. Then:

• G is finitely generated.
• The orbit map φ : g 7→ go is a quasi-isometric embedding.
• The orbit map induces an injection ∂cφ : ∂FQc G → ∂FQc X that is an open mapping

onto its image, which is Λ(G) (recall Definition 5.15). In particular, if Λ(G) is compact
then so is ∂FQc G.

If φ(G) is contracting in X then the above are true and ∂cφ is an embedding, so ∂FQc G is
homeomorphic to Λ(G).
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Proof. Suppose Go is Q–quasi-convex. A standard argument shows that G is finitely
generated and φ is a quasi-isometric embedding.

Since φ takes contracting quasi-geodesics to contracting quasi-geodesics it induces an open
injection ∂cφ onto its image by Theorem 6.1.

A point in ζ ∈ ∂FQc G is sent to the equivalence class of the contracting quasi-geodesic ray
φ(αζ). The sequence (φ(αζn))n∈N converges to ∂cφ(ζ) in X̂, so the image of ∂cφ is contained in
Λ(G).

Conversely, suppose ζ ∈ Λ(G). Then there is a sequence (gno)n∈N converging in X̂ to
ζ ∈ ∂FQc X. By passing to a subsequence, we may assume gno ∈ Û(ζ, n) for all n. The definition
of Û(ζ, n) implies that for any chosen geodesic γn from o to gno there are points xn on αζ

and yn on γn such that d(xn, yn) ≤ κ := κ(ρζ , 1, 0) and d(o, xn) ≥ n. Since Go is quasi-convex,
there exists g′n ∈ G such that d(yn, g′no) ≤ Q. Thus, the set Go ∩ Nκ+Qα

ζ is unbounded. If
go ∈ Nκ+Qα

ζ then an application of Lemma 4.7 implies that a geodesic from o to go has an
initial segment that is κ′(ρζ , 1, 0)–Hausdorff equivalent to an initial segment of αζ , and the length
of these initial segments is d(o, go) minus a constant depending on ζ and Q, but not g. Since
we can take d(o, go) arbitrarily large, and since every geodesic from o to go is contained in the
Q–neighborhood of Go, we conclude that αζ is contained in a bounded neighborhood of Go.
Now project αζ to Go and pull back to G to get a contracting quasi-geodesic ray whose φ–image
is asymptotic to αζ , which shows ζ ∈ ∂cφ(∂FQc G).

If φ(G) is contracting then φ does indeed take contracting quasi-geodesics to contracting
quasi-geodesics, by Lemma 6.6, and have quasi-convex image, so the previous claims are true
and Corollary 6.2 says ∂cφ is an embedding. �

Corollary 6.10. If H is a subgroup of a finitely generated group G and H is contracting in
G then H is finitely generated and the inclusion ι : H → G induces an embedding ∂cι : ∂FQc H →
∂FQc G.

Properly speaking, we ought to require that H is a contracting subset of the Cayley graph of
G with respect to some specified generating set, but it follows from Theorem 2.2 that the property
of being a contracting subset does not depend on the choice of metric within a quasi-isometry
class.

Corollary 6.11. If H is a hyperbolically embedded subgroup (in the sense of [20]) in a
finitely generated group G then ∂cι : ∂FQc H → ∂FQc G is an embedding. A special case is that of
a peripheral subgroup of a relatively hyperbolic group.

Proof. Sisto [39] shows hyperbolically embedded subgroups are Morse, hence contracting.
Peripheral subgroups of relatively hyperbolic groups are a motivating example for the definition
of hyperbolically embedded subgroups in [20], but in this special case the fact they are Morse
was already shown by Drutu and Sapir [23]. �

Together with Corollary 6.2, Corollary 6.8 implies:

Corollary 6.12. If G is a finitely generated group and Z is a Morse subset of G then ∂FQc Z
embeds into ∂FQc H for every finitely generated subgroup H of G containing Z. In particular, if
∂FQc Z is non-empty then so is ∂FQc H, and if ∂FQc Z contains a non-trivial connected component
then so does ∂FQc H.

7. Comparison to other topologies

Definition 7.1. Let X be a proper geodesic metric space. Take ζ ∈ ∂cX. Fix a geodesic ray
α ∈ ζ. For each r ≥ 1 define V(ζ, r) to be the set of points η ∈ ∂cX such that for every geodesic
ray β ∈ η we have d(β, α ∩ Nc

r o) ≤ κ(ρζ , 1, 0).

The same argument as Proposition 5.5 shows that {V(ζ, n) | n ∈ N} gives a neighborhood
basis at ζ for a topology FG on ∂cX. We call FG the topology of fellow-travelling geodesics. It
is immediate from the definitions that FQ is a refinement of FG. The topology FG need not
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be preserved by quasi-isometries of X [12]. It is an open question whether FG is preserved by
quasi-isometries when X is the Cayley graph of a finitely generated group.

One might also try to take V ′(ζ, r) to be the set of points η ∈ ∂cX such that for some
geodesic ray β ∈ η we have d(β, α ∩ Nc

r o) ≤ κ(ρζ , 1, 0). Let FG′ denote the resulting topology.
Beware that in general {V ′(ζ, r) | r ≥ 1} is only a filter base converging to ζ, not necessarily a
neighborhood base of ζ in FG′; the sets V ′(ζ, r) might not be neighborhoods of ζ.

Lemma 7.2. Let X be a proper geodesic metric space. Let ∂ρX = {ζ ∈ ∂cX | ρζ ≤ ρ}, i.e.
ζ ∈ ∂ρX if all geodesics α ∈ ζ are ρ–contracting. The topologies on ∂ρX generated by taking, for
each ζ ∈ ∂ρX and r ≥ 1, the sets U(ζ, r) ∩ ∂ρX, V(ζ, r) ∩ ∂ρX, or V ′(ζ, r) ∩ ∂ρX, are equivalent.

Proof. For each ζ and r we have U(ζ, r) ∩ ∂ρX ⊂ V(ζ, r) ∩ ∂ρX ⊂ V ′(ζ, r) ∩ ∂ρX by
definition.

Given that points in V ′(ζ, r) ∩ ∂ρX and U(ζ, r) ∩ ∂ρX are uniformly contracting, a straight-
forward application of Lemma 4.7 shows that for all ζ and r, for all sufficiently large R we
have V ′(ζ,R) ∩ ∂ρX ⊂ U(ζ, r) ∩ ∂ρX. Also since points of V ′(ζ,R) ∩ ∂ρX are uniformly
contracting, these do, in fact, give a neighborhood basis at ζ for the induced topology, as in
Proposition 5.5. �

Proposition 7.3. Let X be a proper geodesic metric space. If X is hyperbolic then ∂FQc X �

∂FGc X � ∂FG
′

c X, and these are homeomorphic to the Gromov boundary. If X is CAT(0) then
∂FGc X � ∂FG

′

c X, and these are homeomorphic to the subset of the visual boundary of X consisting
of endpoints of contracting geodesic rays, topologized as a subspace of the visual boundary.

Proof. For a description of a neighborhood basis for points in the Gromov or visual
boundary see [11, III.H.3.6] and [11, p. II.8.6], respectively. Note that these are equivalent to
the neighborhood bases for FG′.

The claim for hyperbolic spaces follows from Lemma 7.2, because geodesics in a hyperbolic
space are uniformly contracting.

If X is CAT(0) then ∂FGc X � ∂FG
′

c X because there is a unique geodesic ray in each asymp-
totic equivalence class. �

More generally, ∂FGc X � ∂FG
′

c X if X is a proper geodesic metric space with the property
that every geodesic ray in X is either not contracting or has contraction function bounded by a
constant. This follows by the same argument as in [12].

Next, we recall the direct limit topology, DL, on ∂cX of Charney and Sultan [14] and
Cordes [16].

For a given contraction function ρ consider the set ∂ρX of points ζ in ∂cX such that one
can take ρζ ≤ ρ, as in Lemma 7.2. The topologies FQ, FG, and FG′ on ∂ρX coincide by
Lemma 7.2. For ρ ≤ ρ′ the inclusion ∂ρX ↪→ ∂ρ′X is continuous, and ∂cX, as a set, is the direct
limit of this system of inclusions over all contraction functions.

LetDL be the direct limit topology on ∂cX, that is, the finest topology on ∂cX such that all
of the inclusion maps ∂ρX ↪→ ∂cX are continuous.

Proposition 7.4. DL is a refinement of FQ.

Proof. The universal property of the direct limit topology says that a map from the direct
limit is continuous if and only if the precomposition with each inclusion map is continuous. Thus,
it suffices to show the inclusion ∂ρX ↪→ ∂FQc X is continuous. This is clear from Lemma 7.2, since
we can take the topology on ∂ρX to be the subspace topology induced from ∂ρX ↪→ ∂FQc X. �

Lemma 7.5. ∂DLc X is homeomorphic to Cordes’s Morse boundary.

Proof. Cordes considers Morse geodesic rays, and defines the Morse boundary to be the set
of asymptotic equivalence classes of Morse geodesic rays based at o, topologized by taking the
direct limit topology of the system of uniformly Morse subsets. By Theorem 2.2, a collection of
uniformly Morse rays is contained in a collection of uniformly contracting rays, and vice versa.
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It follows as in [16, Remark 3.4] that the direct limit topology over uniformly Morse points and
the direct limit topology over uniformly contracting points agree on ∂cX. �

As with the other topologies, if X is hyperbolic then ∂DLc X is homeomorphic to the Gromov
boundary. Thus, if X is a proper geodesic hyperbolic metric space then all of the above topologies
yield a compact contracting boundary. Conversely, Murray [33] showed if X is a complete
CAT(0) space admitting a properly discontinuous, cocompact, isometric group action, and if
∂DLc X is compact and non-empty, then X is hyperbolic. Work of Cordes and Durham [17] shows
that if the contracting boundary, with topologyDL, of a finitely generated group is non-empty
and compact then the group is hyperbolic. We will prove this for FQ in Section 10.

We have shown that all of the topologies we consider agree for hyperbolic groups. More
generally, we could ask about relatively hyperbolic groups. There are many ways to define
relatively hyperbolic groups [26, 10, 36, 27, 21, 23, 29, 38], all of which are equivalent in
our setting. Let G be a finitely generated group that is hyperbolic relative to a collection of
peripheral subgroups P. Fix a finite generating set for G. We again use G to denote the
Cayley graph of G with respect to this generating set. Let G̃ be the cusped space obtained by
gluing a combinatorial horoball onto each left coset of a peripheral subgroup, as in [27]. The
cusped space is hyperbolic, and its boundary ∂G̃ is the Bowditch boundary of (G,P). Points
in the Bowditch boundary that are fixed by a conjugate of a peripheral subgroup are known as
parabolic points, and the remaining points are known as conical points. As described, G sits as
a subgraph in G̃.

Theorem 7.6. If a finitely generated group G is hyperbolic relative to P, then the inclusion
ι : G ↪→ G̃ induces a continuous, G–equivariant map ι∗ : ∂FGc G → ∂G̃ that is injective at
conical points.

For ι∗ : ∂FQc G → ∂G̃, the preimage of a parabolic point is the contracting boundary of its
stabilizer subgroup embedded in ∂FQc G as in Corollary 6.11.

Let q : ∂FQc G → ∂FQc G/ι∗ be the quotient map from ∂FQc G to its ι∗–decomposition space,
that is, the quotient space of ∂FQc G obtained by collapsing to a point the preimage of each point
in ι∗(∂FQc G). If each peripheral subgroup is hyperbolic or has empty contracting boundary then
ι∗ ◦ q−1 is an embedding.

Theorem 7.6 forDL, without the embedding result, was first observed by Tran [41]. Recall
from the introduction that the embedding statement is not true forDL (cf [41, Remark 8.13]).

Corollary 7.7. If G is a finitely generated group that is hyperbolic relative to subgroups
with empty contracting boundaries then ∂FQc G = ∂FGc G.

Since the contracting boundary of a hyperbolic group is the same as the Gromov boundary,
we also recover the following well-known result (see [30] and references therein).

Corollary 7.8. If G is hyperbolic and hyperbolic relative to P then the Bowditch boundary
of (G,P) can be obtained from the Gromov boundary of G by collapsing to a point each
embedded Gromov boundary of a peripheral subgroup.

The following example shows that the embedding statement of Theorem 7.6 can fail when a
peripheral subgroup is non-hyperbolic with non-trivial contracting boundary.

Example 7.9. Let A := 〈a, b | [a, b] = 1〉, H := A ∗ 〈c〉, and G := H ∗ 〈d〉. Since G is a free
product of H and a hyperbolic group, G is hyperbolic relative to H.

A geodesic α in G (or H) is contracting if and only if there is a bound B such that α spends
at most time B in any given coset of A.

Consider the sequence (and∞)n∈N in ∂FQc G. We have (ι∗(and∞)) → ι∗(∂FQc H), which is a
parabolic point in ∂G̃. However, (q(and∞)) does not converge in ∂FQc G/ι∗. To see this, note that
every edge e in the Cayley graph of G with one incident vertex in A determines a clopen subset
Ue of ∂FQc G consisting of all ζ ∈ ∂FQc G such that αζ crosses e. Let U be the union of the Ue for
every edge e incident to A and labelled by c or c−1. This is an open set containing ∂FQc H such
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that q−1(q(U)) = U and and∞ < U for all n ∈ N. Therefore, q(U) is an open set in ∂FQc G/ι∗
containing the point q(∂FQc H) but not containing any q(and∞).

Before proving the theorem let us recall some of the necessary machinery for relatively hy-
perbolic groups. Any bounded set meets finitely many cosets of the peripherals, and projections
of peripheral sets to one another are uniformly bounded.

Given an (L, A)–quasi-geodesic γ, Drutu and Sapir [23] define the saturation Sat(γ) of γ
to be the union of γ and all cosets gP of peripheral subgroups P ∈ P such that γ comes within
distance M of gP, where M is a number depending on L and A. [23, Lemma 4.25] says there
exists µ independent of γ such that the saturation of γ is µ–Morse. It follows that the analogous
saturation of γ in G̃, that is, the union of γ and all horoballs sufficiently close to γ, is also Morse.

Sisto [38] extends these results, showing, in particular, that peripheral subgroups are strongly
contracting.4

The other key definition is that of a transition point of γ, as defined by Hruska [29]. The
idea is that a point of γ is deep if it is contained in a long subsegment of γ that is contained in a
neighborhood of some gP, and a point is a transition point if it is not deep. A quasi-geodesic in
γ is bounded Hausdorff distance from a path of the form β0 +α1 + β1 +α2 + · · · where the βi are
shortest paths connecting some giPi to some gi+1Pi+1 and the αi are paths in giPi. The transition
points are the points close to the β–segments. In G̃ there is an obvious way to shorten such a
path by letting the α–segments relax into the corresponding horoballs. If the endpoints of αi are
x and y, this replaces αi with a segment of length roughly 2 log2 dG(x, y) in G̃. This is essentially
all that happens: if γ is a quasi-geodesic in G then take a geodesic γ̂ with the same endpoints as
γ in the coned-off space Ĝ obtained by collapsing each coset of a peripheral subgroup. Lift ĝ to
a nice α-β path in G as above. The β–segments are coarsely well-defined, because the cosets
of peripheral subgroups are strongly contracting, and the union of the β segments is Hausdorff
equivalent to the set of transition points of γ. Only the endpoints of the α–segments are coarsely
well defined, but relaxing the α-segments to geodesics in the corresponding horoball yields a
uniform quasi-geodesic in G̃ (see [10, Section 7]). Since G̃ is hyperbolic, this is within bounded
Hausdorff distance of any G̃ geodesic γ̃ with the same endpoints as γ. In particular, γ̃ comes
boundedly close to the transition points of γ.

Proof of Theorem 7.6. We omit ι from the notation and think of G sitting as a subgraph of
G̃. First we show that for ζ ∈ ∂cG the sequence (αζn)n∈N converges to a point of ∂G̃. Distances
in G give an upper bound for distances in G̃, so all quasi-geodesics in G asymptotic to αζ also
converge to this point in ∂G̃, which we define to be ι∗(ζ). Let (x·y) := 1

2 (d(1, x)+d(1, y)−d(x, y))
denote the Gromov product of x, y ∈ G̃ with respect to the basepoint 1 corresponding to the
identity element of G. (See [11, Section III.H.3] for background on boundaries of hyperbolic
spaces.)

To see that the sequence (αζn)n∈N does indeed converge, there are two cases. If αζ has
unbounded projection to gP for some g ∈ G and P ∈ P, then a tail of αζ is contained in a
bounded neighborhood of gP, but leaves every bounded subset of gP. It follows that (αζn)
converges to the parabolic point in ∂G̃ fixed by gPg−1 corresponding to the horoball attached to
gP. Furthermore, the projection of the tail of αζ to gP is a contracting quasi-geodesic ray in gP
(by Corollary 6.8), so P has non-trivial contracting boundary.

The other case is that αζ has bounded (not necessarily uniformly!) projection to every gP.
Now, given any r there are only finitely many horoballs in G̃ that meet the r–neighborhood of 1.
Since αζ has bounded projection to each of these, for sufficiently large s none of these are in
Sat(αζ[s,∞)). Since Sat(αζ[s,∞)) is µ–Morse in G̃ for some µ independent of αζ , for any m, n ≥ s,

geodesics connecting αζm and αζn in G̃ stay outside the (r − µ(1, 0))–ball about 1. We conclude
limm, n→∞(αζm · α

ζ
n)G̃ = ∞, so (αζn)n∈N converges to a point in ∂G̃, which, in this case, is a conical

point.

4Sisto does not use the term ‘strongly contracting’, but observe it is equivalent to the first two conditions of [38,
Definition 2.1].
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If αζ and αη tend to the same conical point in ∂G̃ then the sets of transition points of αζ

and αη are unbounded and at bounded Hausdorff distance from one another in G. Since they
are contracting geodesics in G they can only come close on unbounded sets if they are in fact
asymptotic, so ι∗ is injective at conical points.

Continuity: To show ι∗ : ∂FGc G → ∂G̃ is continuous we show that for all ζ ∈ ∂cG and all r
there exists an R such that for all η ∈ V(ζ,R)) we have (ι∗(ζ) · ι∗(η))G̃ > r.

Recall that there is a bound B such that a G̃ geodesic comes B–close to the transition
points of a G geodesic with the same endpoints. There exists B′ so that diam πgP(x) ≤ B′ for
each x ∈ G, g ∈ G, P ∈ P, and so that for any deep point x of a geodesic along gP we have
diam{x} ∪ πgP(x) ≤ B′. Finally, there exists a constant B′′ depending on B so that if x, y ∈ G
satisfy d(πgP(x), πgP(y)) ≥ B′′ for some g ∈ G, P ∈ P, then any geodesic from x to y has a deep
component along gP whose transition points at the ends are within B′′ of πgP(x) and πgP(y),
respectively.

Suppose ζ and r are given. If ι∗(ζ) is conical then given any r′ ≥ 0 there is an R′ such that
for all n ≥ R′ we have dG̃(1, αζn) > r′. Choose R ≥ R′ such that αζR is a transition point, and
moreover that any deep component along αζ within κ′(ρζ , 1, 0) + B′ + B′′ of αζR has distance
at least R′ from 1. If η ∈ V(ζ,R) then αη comes κ(ρζ , 1, 0)–close to αζ[R,∞) in G, so there is a

point αηt that is κ′(ρζ , 1, 0)–close to αζR. If αηt is a deep point of αη, let g′P′ be the corresponding
coset. If d(πg′P′(1), αηt ) > J := B′′ + 2B′ + 2κ′(ρ, 1, 0)) then the geodesic αζ must also have
a deep component along g′P′ with one endpoint (κ′(ρζ , 1, 0) + B′ + B′′)–close to αζR and the
other z := α

ζ
s ∈ N̄B′′πg′P′(1); by assumption, s ≥ R′. If αηt is a transition point of αη, or if

d(πg′P′(1), αηt ) ≤ J, then z := α
ζ
R is (J + B′′)–close to a transition point of αη. In either case

then, z is a transition point of αζ which is (J + B′′)–close to a transition point of αη, and has
d(z, 1) ≥ R′. Thus, by the choice of B, there are points x ∈ [1, ι∗(ζ)] and y ∈ [1, ι∗(η)] with
dG̃(1, x) ≥ r′ − B and d(x, y) ≤ 2B + J + B′′. This allows us to bound (ι∗(ζ) · ι∗(η)) below in
terms of these constants and the hyperbolicity constant for G̃, and by choosing r′ large enough
we guarantee (ι∗(ζ) · ι∗(η)) > r.

Now suppose ι∗(ζ) is parabolic. Then there is some R0 ≥ 0, M ≥ 0, g ∈ G, and P ∈ P such
that αζ[R0,∞) ⊂ NMgP. For R � R0, if η ∈ V(ζ,R) then αη comes within distance κ(ρζ , 1, 0) of

α
ζ
[R,∞). If ι∗(ζ) , ι∗(η) then eventually αη escapes from gP, so it has a transition point at G–

distance greater than R−R0−κ(ρζ , 1, 0) from α
ζ
R0

. This implies diam πgP([1, ι∗(η)]) > R−R0−C,
where C depends on M, B, the contraction function of gP, and κ(ρζ , 1, 0). It follows from the
geometry of the horoballs that for ι∗(ζ) is the parabolic boundary point corresponding to gP
and y ∈ ∂G̃ we have (ι∗(ζ) · y) is roughly dG̃(1, gP) + log2 diam πgP(1) ∪ πgP(y), so by choosing
R > 2r + R0 + C we guarantee (ι∗(ζ) · ι∗(η)) > r + dG̃(1, gP) ≥ r.

Embedding: Suppose that U′ ⊂ ∂FQc G/ι∗ is open. Define U := q−1(U′), which is open in
∂FQc G. We claim that for each p ∈ ι∗(U) there exists an Rp > 0 such that for p′ ∈ ι∗(U), if
(p · p′) > Rp then ι−1

∗ (p′) ⊂ U. Given the claim, the proof concludes by choosing, for each
p ∈ ι∗(U), an open neighborhood Vp of p such that Vp ⊂ {p′ ∈ ∂G̃ | (p · p′) > Rp}, and setting
V =

⋃
p∈ι∗(U) Vp. Then V is open and ι∗(∂FQc G) ∩ V = ι∗(U), so that ι∗ ◦ q−1(∂FQc G/ι∗) ∩ V =

ι∗ ◦ q−1(U′).
First we prove the claim when p is conical. In this case there is a unique point ζ ∈ ι−1

∗ (p),
and since U is open there exists rζ > 1 such that U(ζ, rζ) ⊂ U. Let x be a transition point of αζ

and choose R such that dG̃(1, x) ≤ R. If the claim is false then there exists an η ∈ ∂FQc G such that
(ι∗(ζ) · ι∗(η)) > R and η < U(ζ, rζ). Since η < U(ζ, rζ) , there exists an L and A and a continuous
(L, A)–quasi-geodesic γ ∈ η such that the last point y ∈ αζ such that dG(y, γ) = κ(ρζ , L, A)
satisfies d(1, y) < rζ . By Observation 5.1, we can take L <

√
rζ/3 and A < rζ/3.

By hyperbolicity, geodesics in G̃ tending to ι∗(ζ) and ι∗(η) remain boundedly close together
for distance approximately (ι∗(ζ) · ι∗(η)) > R. Since x is a transition point of αζ there is a B
such that any geodesic [1, ι∗(ζ)] comes B–close to x, so some point z′ in a geodesic [1, ι∗(η)]
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also comes boundedly close to x. If the point z′ lies in a horoball along which γ has a deep
component, whose transition points at both ends are close to [1, ι∗(ζ)], then this deep component
must be of bounded size else x ∈ αζ would not be a transition point. It follows that γ must
contain a point z at bounded distance from x. Since x and z are transition points, we also get a
bound on dG(x, z). Then, by applying Lemma 4.7, we get an upper bound on dG(1, x) depending
on rζ and ρζ , but independent of γ and η. However, if the set of transition points of αζ is bounded
in G then it is bounded in G̃, which would imply ι∗(ζ) = p is parabolic, contrary to hypothesis.

Now suppose p is parabolic. By hypothesis, its stabilizer Gp is a hyperbolic group conjugate
into P. Since the maps are G–equivariant we may assume Gp ∈ P. We may assume that we have
chosen a generating set for G extending one for Gp. Since Gp is quasi-isometrically embedded,
by Lemma 6.5, there exist Lp ≥ 1, Ap ≥ 0 with 1

Lp
dGp(x, y) − Ap ≤ d(x, y) ≤ dGp(x, y) for

all x, y ∈ Gp. The contracting boundary ∂FQc Gp embeds into ∂FQc G and is compact—it is
homeomorphic to the Gromov boundary of Gp. Geodesic rays in Gp are uniformly contracting,
by hyperbolicity, so there exists a contracting function ρ such that for all ζ ∈ ∂FQc Gp ⊂ ∂

FQ
c G

we have that ζ is ρ–contracting.
We will verify the following fact at the end of this proof:

(10) ∃R′p > 1∀ξ ∈ ∂FQc Gp, U(ξ,R′p) ⊂ U

Assuming (10), let η ∈ ι−1
∗ (p′) and let γ ∈ η be a continuous (L, A)–quasi-geodesic for some

L <
√

R′p/3, A < R′p/3. Since Gp is strongly contracting, there exist C and C′ such that the
diameter of πGp(αη ∩ Nc

CGp) is at most C′. We define πGp(η) to be this finite diameter set. Since
γ stays κ′(ρη, L, A)–close to αη, strong contraction implies πGp(γ ∩ Nc

κ′(ρη,L,A)Gp) ⊂ NC′πGp(η).

We apply [38, Lemma 1.15] to any sufficiently long5 initial subsegment of γ to conclude there is
a function K, a point z ∈ γ, and a point x ∈ πGp(η) such that d(x, z) ≤ K(L, A).

Since Gp is a hyperbolic group there exists a constant D such that every point is within D
of a geodesic ray based at 1. Let ξ ∈ ∂FQc Gp be a point such that there is a Gp–geodesic [1, ξ]
containing a point w with d(w, x) ≤ D. Since this Gp–geodesic is a (Lp, Ap)–quasi-geodesic in
G, there exists y′ ∈ αξ such that d(y′,w) ≤ κ′(ρ, Lp, Ap).

We have d(z, y′) ≤ K(L, A) + D + κ′(ρ, Lp, Ap) and:

d(y′, 1) ≥ d(x, 1) − D − κ′(ρ,Lp,Ap)

≥
dGp(1, πGp(η))

Lp
− Ap − D − κ′(ρ, Lp, Ap)

Lemma 4.7 implies that, for M and λ as in the lemma, γ comes within distance κ(ρ, L, A) of αξ

outside the ball of radius:

(11)
dGp(1, πGp(η))

Lp
− Ap − D − κ′(ρ, Lp, Ap) − M(K(L, A) + D + κ′(ρ, Lp, Ap)) − λ(ρ, L, A)

Now, dGp(1, πGp(η)) � 2(p·p′) > 2Rp . Since L <
√

R′p/3, A < R′p/3, all the negative terms
are bounded in terms of R′p, so we can guarantee (11) is greater than R′p by taking Rp sufficiently
large. This means the quasi-geodesic γ does not witness η < U(ξ,R′p). Since γ was arbitrary,
η ∈ U(ξ,R′p), which, by (10), is contained in U. Thus, ι−1

∗ (p′) ⊂ U when (p · p′) > Rp for Rp
sufficiently large with respect to R′p.

It remains to determine R′p and verify (10). Define:

θ(s) := s + M(κ′(ρ,
√

s/3, s/3) + κ(ρ, 1, 0)) + λ(ρ,
√

s/3, s/3)

Since U is open, for every ζ ∈ ∂FQc Gp there exists rζ such that U(ζ, rζ) ⊂ U. For each
ζ ∈ ∂FQc Gp, let Uζ be an open neighborhood of ζ such that Uζ ⊂ U(ζ, θ(rζ)). Then {Uζ}ζ∈∂FQc Gp

5Long enough to leave the max{D0(L, A), κ′(ρη, L, A)}–neighborhood of Gp where D0 is as in [38, Lemma 1.15].
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is an open cover of ∂FQc Gp, which is compact, so there exists a finite set F ⊂ ∂FQc Gp such that
∂FQc Gp ⊂

⋃
ζ∈F Uζ ⊂

⋃
ζ∈F U(ζ, θ(rζ)). Define r := maxζ∈F rζ and:

R′p := r + κ′(ρ, 1, 0) + M(κ(ρ,
√

r/3, r/3) + κ′(ρ, 1, 0)) + λ(ρ,
√

r/3, r/3)

Suppose that ξ ∈ ∂FQc Gp and η ∈ U(ξ,R′p). There exists ζ ∈ F such that ξ ∈ Uζ ⊂

U(ζ, θ(rζ)). Let γ ∈ η be a continuous (L, A)–quasi-geodesic for some L <
√

rζ/3, A < rζ/3.
Since η ∈ U(ξ,R′p), there exist z ∈ γ and x ∈ αξ such that d(x, z) ≤ κ(ρ, L, A) and d(x, 1) ≥ R′p.

There are now two cases to consider. First, suppose that there exists y′ ∈ αζ with d(x, y) ≤
κ′(ρ, 1, 0). Then d(y′, 1) ≥ R′p−κ′(ρ, 1, 0). By Lemma 4.7, γ comes κ(ρ, L, A) close to αζ outside
the ball of radius:

R′p − κ
′(ρ, 1, 0) − M(κ′(ρ, 1, 0) + κ(ρ, L, A)) − λ(ρ, L, A)

By definition of R′p and the conditions L <
√

rζ/3, A < rζ/3, this radius is at least r, which is at
least rζ , so γ does not witness η < U(ζ, rζ).

The second case, where the above y′ does not exist, is the case that x occurs after αξ has
already escaped αζ . In this case there exists x′ between 1 and x on αξ and y′ ∈ αζ such that
d(x′, y′) ≤ κ(ρ, 1, 0) and d(1, y′) ≥ θ(rζ). Moreover, by Lemma 4.5, there exists z′ ∈ γ such that
d(z′, x′) ≤ κ′(ρ, L, A). By Lemma 4.7, γ comes within distance κ(ρ, L, A) of αζ outside the ball
of radius:

θ(rζ) − M(κ(ρ, 1, 0) + κ′(ρ, L, A)) − λ(ρ, L, A)

By definition of θ and the conditions L <
√

rζ/3, A < rζ/3, this radius is at least rζ , so γ does
not witness η < U(ζ, rζ). This verifies (10). �

8. Metrizability for group boundaries

In this section let G be a finitely generated group with nonempty contracting boundary.
Consider the Cayley graph of G with respect to some fixed finite generating set, which is a
proper geodesic metric space we again denote G, and take the basepoint to be the vertex 1
corresponding to the identity element of the group.

There is a natural action of G on ∂FQc G by homeomorphisms defined by sending g ∈ G to the
map that takes ζ ∈ ∂cG to the equivalence class of the quasi-geodesic that is the concatenation
of a geodesic from 1 to g and the geodesic gαζ .

The following two results generalize results of Murray [33] for the case of ∂DLc X when X is
CAT(0). See also [28].

Remark 8.1. If β : I → G is a geodesic and βm is a vertex for some m ∈ Z ∩ I then βn is a
vertex for every n ∈ Z ∩ I. Vertices in the Cayley graph are in one-to-one correspondence with
group elements. If Z is a subset of the Cayley graph we use βnZ to denote the image of Z under
the action by the group element corresponding to the vertex βn.

We will always parameterize bi-infinite geodesics in G so that integers go to vertices.

Proposition 8.2. G is virtually (infinite) cyclic if and only if G y ∂FQc G has a finite orbit.

Proof. If G is virtually cyclic then |∂cG| = 2 and every orbit is finite.
Conversely, if G has a finite orbit then it has a finite index subgroup that fixes a point in ∂cG.

The inclusion of a finite index subgroup is a quasi-isometry, so we may assume that G fixes a
point ζ ∈ ∂cG.

Let α ∈ ζ be geodesic and ρ–contracting. Let β be an arbitrary geodesic ray or segment
with β0 = 1. Since Gζ = ζ, for all n ∈ N the geodesic rays α and βnα are asymptotic. By
Theorem 3.4, α and βnα eventually stay within distance κ′ρ of one another. Truncate α and βnα
when their distance is κ′ρ. By Lemma 3.6, these segments are contracting, and they form a
geodesic almost triangle with β[0,n], so, by Lemma 3.8, β[0,n] is ρ′–contracting for some ρ′ � ρ
depending only on ρ. Since this is true uniformly for all n, β is ρ′–contracting. Since β was
arbitrary and G is homogeneous, every geodesic in G is uniformly contracting, which means
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G is hyperbolic and ∂FQc G is the Gromov boundary. If G is hyperbolic and not virtually cyclic
then its boundary is uncountable and every orbit is dense, hence infinite. �

Proposition 8.3. Suppose |∂FQc G| > 2, and fix a point η ∈ ∂cG. For every ζ ∈ ∂cG and
every r ≥ 1 there exists an R′ ≥ 1 such that for all R2 ≥ R1 ≥ R′ there exist g ∈ G such that
ζ ∈ U(gη,R2) ⊂ U(gη,R1) ⊂ U(ζ, r).

Corollary 8.4. ∂FQc G is separable.

Corollary 8.5. If G is not virtually cyclic then G y ∂FQc G is minimal, that is, every orbit
is dense.

Remark 8.6. For the corollaries we just need to know that we can push η into U(ζ, r) via
the group action. The stronger statement of Proposition 8.3 is used in Proposition 8.7 to upgrade
first countable and separable to second countable. The reason for having two parameters R1 and
R2 is to be able to apply Corollary 5.9 in case U(gη,R1) is not an open set.

Proof of Proposition 8.3. By Proposition 8.2, G y ∂FQc G does not have a finite orbit, so
there exists a g′ ∈ G with η′ := g′η , η. Let β be a geodesic joining η′ and η. It suffices to
assume β0 = 1; otherwise, we could consider β′ := β−1

0 β, which is a geodesic with β′0 = 1 and
endpoints in Gη.

Let α := αζ be the geodesic representative of ζ. Choose ρ so that α, β[0,∞), and β̄[0,−∞) are
all ρ–contracting.

For each integral t � 0, at most one of αtβ[0,∞) and αtβ̄[0,−∞) remains in the closed κ′(ρ, 1, 0)–
neighborhood of α[0,t] for distance greater than 2κ′(ρ, 1, 0), otherwise we contradict the fact
that αtβ is a geodesic. Define gt := αt if αtβ[0,∞) does not remain in the closed κ′(ρ, 1, 0)–
neighborhood of α[0,t] for distance greater than 2κ′(ρ, 1, 0). Otherwise, define gt := αtg′. For
each s ∈ N consider a geodesic triangle with sides α[0,t], gtβ[0,s], and a geodesic δs,t joining
α0 to gtβs. By Lemma 3.6, the first two sides are uniformly contracting, so δs,t is as well,
by Lemma 3.8. Since G is proper, for each fixed t a subsequence of the δs,t converges to
a contracting geodesic ray δt ∈ gtη. See Figure 5. Moreover, since the δs,t are uniformly

β

β∞ = η

β−∞ = g′η

ζ

gt1η := αt1η

gt2η := αt2 g′η

α

δt1

δt2
αt1β

αt2β

δ1,t1

δ2,t1

δ3,t1

Figure 5

contracting, the contraction function for δt does not depend on t. Now, for any given t it
is possible that δt does not coincide with the chosen representative αgtη of gtη, but they are
asymptotic, so Lemma 4.6 tells us that uniform contraction for the δt implies uniform contraction
for the αgtη. Thus, there is a ρ′ independent of t such that αgtη is ρ′–contracting. Furthermore,
the defining condition for gt guarantees that there is a C independent of t such that the geodesic
representative αgtη comes within distance κ(ρ, 1, 0) of α outside of Nt−C1, which implies that
α

gtη
[0,t−C] ⊂ N̄2κ′(ρ,1,0)α[0,t−C].

First we give a condition that implies ζ ∈ U(gtη,R). Suppose:

(12) t ≥ R + C + 2M(κ′(ρ,
√

R/3,R/3) + κ′(ρ, 1, 0)) + λ(ρ′,
√

R/3,R/3)

Suppose that γ ∈ ζ is a continuous (L, A)–quasi-geodesic. By Observation 5.1 is suffices
to consider L2, A < R/3. By Corollary 4.4, γ ⊂ N̄κ′(ρ,L,A)α, so there is a point γa that is
(2κ′(ρ, L, A) + 2κ′(ρ, 1, 0))–close to α

gtη
t−C . By Lemma 4.7, γ comes κ(ρ′, L, A)–close to αgtη
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outside the ball around 1 of radius t −C − M(2κ′(ρ, L, A) + 2κ′(ρ, 1, 0)) − λ(ρ′, L, A). By (12),
this is at least R. Since γ ∈ ζ was arbitrary, ζ ∈ U(gtη,R).

Next, we give a condition that implies U(gtη,R) ⊂ U(ζ, r). Suppose:

(13) t −C ≥ R ≥ r + M(2κ′(ρ, 1, 0) + 2κ′(ρ′,
√

r/3, r/3)) + λ(ρ,
√

r/3, r/3)

Suppose that γ is a continuous (L, A)–quasi-geodesic such that [γ] ∈ U(gtη,R). By Observa-
tion 5.1, it suffices to consider L2, A < r/3. By definition, γ comes κ(ρ′, L, A) close to αgtη

outside NR1, so some point γb is 2κ′(ρ′, L, A)–close to α
gtη
R , which implies that d(γb, αR) ≤

(2κ′(ρ′, L, A) + 2κ′(ρ, 1, 0)). Now apply Lemma 4.7 to see that γ comes κ(ρ, L, A)–close to α
outside the ball around 1 of radius R − M(2κ′(ρ, 1, 0) + 2κ′(ρ′, L, A)) − λ(ρ, L, A), which is at
least r, by (13). Thus, U(gtη,R) ⊂ U(ζ, r).

Equipped with these two conditions, we finish the proof. The contraction functions ρ and
ρ′ are determined by ζ and η. Given these and any r ≥ 1, define R′ to be the right hand side of
(13). Given any R2 ≥ R1 ≥ R′, it suffices to define g := gt for any t large enough to satisfy both
condition (12) for R = R2 and condition (13) for R = R1. �

Proposition 8.7. ∂FQc G is second countable.

Proof. If G is virtually cyclic then ∂FQc G is the discrete space with two points, and we are
done. Otherwise, fix any η ∈ ∂cG. For each g ∈ G and n ∈ N choose an open set Ug,n such that
U(gη, ψ(ρgη, n)) ⊂ Ug,n ⊂ U(gη, n) as in Corollary 5.9.

Let U be a non-empty open set and let ζ be a point in U. By definition of FQ, there exists
an r ≥ 1 such that U(ζ, r) ⊂ U. Let R′ be the constant of Proposition 8.3 for ζ and r, and let
R′ ≤ R1 ∈ N. As noted there, there exists a sublinear ρ′ such that the points gtη in the proof
of Proposition 8.3 are all ρ′–contracting. Define R2 := ψ(ρ′,R1) ≥ ψ(ρgtη,R1). Combining
Proposition 8.3 and the definition of the sets Ug,n, there exists g ∈ G such that:

ζ ∈ U(gη,R2) ⊂ Ug,R1 ⊂ U(gη,R1) ⊂ U(ζ, r) ⊂ U

Thus,U := {Ug,n | g ∈ G, n ∈ N} is a countable basis for ∂FQc G. �

Corollary 8.8. ∂FQc G is metrizable.

Proof. ∂FQc G is second countable by Proposition 8.7, regular by Proposition 5.12, and
Hausdorff by Proposition 5.11. The Urysohn Metrization Theorem says every second countable,
regular, Hausdorff space is metrizable. �

It is an interesting open problem to describe, in terms of the geometry of G, a metric on
∂FQc G that is compatible with FQ.

9. Dynamics

Definition 9.1. An element g ∈ G is contracting if Z → G : n 7→ gn is a quasi-isometric
embedding whose image is a contracting set.

We use g∞ and g−∞ to denote the equivalence classes of the contracting quasi-geodesic rays
based at 1 corresponding to the non-negative powers of g and non-positive powers, respectively.
These are distinct points in ∂cG.

Lemma 9.2. Given a contracting element g ∈ G, an r ≥ 1, and a point ζ ∈ ∂FQc Gr{g∞, g−∞}
there exists an R′ ≥ 1 such that for every R ≥ R′ and every n ∈ N we have U(ζ,R) ⊂
g−nU(gnζ, r).

Proof. Since g is contracting there is a sublinear function ρ such that all geodesic segments
joining powers of g as well as geodesic rays based at 1 going to g∞, g−∞, or gmζ for any m ∈ Z
are all ρ–contracting.

Consider a geodesic triangle with sides g−mαgmζ , αζ , and a geodesic from 1 to g−m for
arbitrary m ∈ Z. All sides are ρ–contracting, and such a triangle is B–thin for some B independent
of m. Thus, for sufficiently large s′, independent of m, the point αζs′ is more than B–far from
〈g〉, hence B–close to g−mαgmζ . Since αζ and g−mαgmζ are asymptotic, they eventually come
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κ(ρ, 1, 0)–close and then stay κ′(ρ, 1, 0)–close thereafter. Theorem 3.4 says the first time they
come κ(ρ, 1, 0) close occurs no later than s′ + ρ′(B). Take R′ ≥ s′ + ρ′(B), which guarantees
d(αζs , g−mαgmζ) ≤ κ′(ρ, 1, 0) for all m ∈ Z and all s ≥ R′.

Let L′ and A′ be the constants of Lemma 4.8 for ρ, L =
√

r/3 and A = r/3, and let M
and λ be as in Lemma 4.7. Take T := 1 + r + M(κ(ρ, L′, A′) + κ′(ρ, 1, 0)) + λ(ρ, 1, 0). We
require further that R′ is larger than L′ and A′ and large enough so that for all s ≥ R′ we have
d(αζs , 〈g〉) > T + κ′(ρ, 1, 0).

Suppose, for a contradiction, that there exist some n ∈ N and R ≥ R′ such that there
exists a point η ∈ U(ζ,R) r g−nU(gnζ, r). Since η < g−nU(gnζ, r), for some L, A there exists a
continuous (L, A)–quasi-geodesic γ ∈ gnη that does not come κ(ρ, L, A)–close to αgnζ outside
Nr1. By Observation 5.1, it suffices to consider the case that L <

√
r/3 and A < r/3.

As in Lemma 4.8, construct a continuous (L′, A′)–quasi-geodesic δ that first follows a
geodesic from 1 towards g−n, then a geodesic segment of length κ(ρ, L, A), and then follows a
tail of g−nγ. Since it shares a tail with g−nγ, we have δ ∈ η. Since η ∈ U(ζ,R), there is some
s ≥ R such that δ comes within distance κ(ρ, L′, A′) of αζs . Our choice of R′ guarantees that
d(αζs , g−nαgnζ) ≤ κ′(ρ, 1, 0) and d(αζs , 〈g〉) > T + κ′(ρ, 1, 0). The latter implies that the point of δ
close to αζs is a point of g−nγ, so there is a point of g−nγ that comes within distance κ(ρ, L′, A′) +

κ′(ρ, 1, 0) of a point x of g−nαgnζ such that d(x, 〈g〉) ≥ T . Lemma 4.7 says that there is a point y
on g−nαgnζ such that d(y, g−nγ) = κ(ρ, L, A) and d(x, y) ≤ M(κ(ρ, L′, A′)+κ′(ρ, 1, 0))+λ(ρ, L, A).
The definition of T implies d(y, g−n) ≥ d(y, 〈g〉) ≥ d(x, 〈g〉)− d(x, y) > r. But then gny is a point
of αgnζ with d(gny, 1) > r and d(gny, γ) = κ(ρ, L, A), contradicting the definition of γ. �

Lemma 9.3. Given a contracting element g ∈ G, an r ≥ 1, and a point ζ ∈ ∂FQc Gr{g−∞} there
exist constants R′ ≥ 1 and N such that for all R ≥ R′ and n ≥ N we have gnU(ζ,R) ⊂ U(g∞, r).

Proof. The lemma is easy if ζ = g∞, so assume not. Since g is contracting the geodesics
αgnζ are uniformly contracting. Let ρ be a sublinear function such that αg∞ , αg−∞ , and all αgnζ

are ρ–contracting. Since these geodesics are uniformly contracting, ideal geodesic triangles
with vertices g∞, g−∞, and gnζ are uniformly thin, independent of n. Thus, for N sufficiently
large and for all n ≥ N we have that αgnζ stays κ′(ρ, 1, 0) close to αg∞ for distance greater
than S ′ := 1 + r + λ(ρ,

√
r/3, r/3) + M(κ′(ρ,

√
r/3, r/3) + κ′(ρ, 1, 0)), where M and λ are as in

Lemma 4.7.
Suppose that η ∈ U(gnζ, S ) for some n ≥ N and S ≥ S ′. Let γ ∈ η be a continuous (L, A)–

quasi-geodesic for some L2, A ≤ r/3. By hypothesis, γ comes κ(ρ, L, A)–close to αgnζ outside
NS 1. Therefore, γ stays κ′(ρ, L, A)–close to αgnζ in NS 1. By our choice of N, this implies γ
stays (κ′(ρ, L, A) + κ′(ρ, 1, 0))–close to αg∞ in NS 1. By our choice of S and Lemma 4.7, γ comes
κ(ρ, L, A)–close to αg∞ outside the neighborhood of 1 of radius:

S − M(κ′(ρ, L, A) + κ′(ρ, 1, 0)) − λ(ρ, L, A)

≥ S ′ − M(κ′(ρ,
√

r/3, r/3) + κ′(ρ, 1, 0)) − λ(ρ,
√

r/3, r/3) > r

Since γ was arbitrary, η ∈ U(g∞, r), thus U(gnζ, S ) ⊂ U(g∞, r).
By Lemma 9.2, given g, S ′, and ζ there exists an R′ such that for all R ≥ R′ and every n ∈ N

we have U(ζ,R) ⊂ g−nU(gnζ, S ′). Thus, for this R′ and N as above we have, for all n ≥ N and
R ≥ R′, that gnU(ζ,R) ⊂ U(gnζ, S ′) ⊂ U(g∞, r). �

Theorem 9.4 (Weak North-South dynamics for contracting elements). Let g ∈ G be a
contracting element. For every open set V containing g∞ and every compact set C ⊂ ∂FQc G r
{g−∞} there exists an N such that for all n ≥ N we have gnC ⊂ V.

We remark that if Theorem 9.4 were true for closed sets and G contained contracting
elements without common powers then we could play ping-pong to produce a free subgroup of
G. Such a result cannot be true in this generality because there are Tarski Monsters, non-cyclic
groups such that every proper subgroup is cyclic, such that every non-trivial element is Morse,
hence, contracting [34, Theorem 1.12].
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Proof of Theorem 9.4. Since V is an open set containing g∞ there exists some r > 0 such
that U(g∞, r) ⊂ V . For this r and for each ζ ∈ C there exist Rζ and Nζ as in Lemma 9.3 such that
for all n ≥ Nζ we have gnU(ζ,Rζ) ⊂ U(g∞, r). By Proposition 5.5, U(ζ,Rζ) is a neighborhood of
ζ, so there exists an open set U′ζ such that ζ ∈ U′ζ ⊂ U(ζ,Rζ). The collection {U′ζ | ζ ∈ C} is an
open cover of C, which is compact, so there exists a finite subset C′ of C such that {U′ζ | ζ ∈ C′}
covers C. Define N := maxζ∈C′ Nζ . For every n ≥ N we then have:

gnC ⊂ gn(
⋃
ζ∈C′

U′ζ) ⊂ gn(
⋃
ζ∈C′

U(ζ,Rζ))

=
⋃
ζ∈C′

gnU(ζ,Rζ) ⊂ U(g∞, r) ⊂ V �

10. Compactness

In this section we characterize when the contracting boundary of a group is compact,
Theorem 10.1, and give a partial characterization of when the limit set of a group is compact,
Proposition 10.4.

Theorem 10.1. Let G be an infinite, finitely generated group. Consider the Cayley graph
of G, which we again denote G, with respect to a fixed finite generating set. The following are
equivalent:

(1) Geodesic rays in G are uniformly contracting.
(2) Geodesic segments in G are uniformly contracting.
(3) G is hyperbolic.
(4) ∂DLc G is non-empty and compact.
(5) ∂FQc G is non-empty and compact.
(6) Every geodesic ray in G is contracting.

Remark 10.2. Work of Cordes and Durham [17] implies ‘(4) implies (3)’. Roughly the same
argument we use for ‘(1) implies (2)’ is contained in the proof of [17, Proposition 4.2]. More
interestingly, they prove [17, Lemma 4.1] that compact subsets of the Morse boundary (of a
space) are uniformly Morse, which is a more general version of ‘(4) implies (1)’. We specifically
designed the topology of fellow-travelling quasi-geodesics to allow sequences with decaying
contraction/Morse functions to converge when geometrically appropriate, so the corresponding
statement cannot be true in our setting. In particular, the equivalence of (5) and (6) with (1)-(4)
does not follow from their result.

Remark 10.3. Previous attempts have been made to prove results similar to ‘(6) implies
(1)’. We point out a difficulty in the obvious approach. Suppose that (γn)n∈N is a sequence
of geodesics with decaying Morse functions. Let δn be paths witnessing the decaying Morse
functions, by which we mean that there exist L and A such that for each n the path δn is an
(L, A)–quasi-geodesic with endpoints on γn, and that δn is not contained in Nnγ

n. Let βn denote
the subsegment of γn between the endpoints of δn. We may assume by translation that for all n
the basepoint 1 is approximately the midpoint of βn. By properness, there is a subsequence of
(γn) that converges to a geodesic γ through 1. One would guess that γ is not Morse, but this
is not true in general; explicit counterexamples can be constructed. The problem is that the
convergence to γ can be much slower than the growth of |βn| so that the subsegment of γn that
agrees with γ can be a vanishingly small fraction of βn. In this case the segments δn may not
have endpoints close to γ, so no conclusion can be drawn.

It seems difficult to fix this argument. Instead, our strategy, roughly, will be to construct
for each i a translate giδ

i of δi and for each n a geodesic ray that passes suitably close to both
endpoints of giδ

i for all i ≤ n. We argue that a subsequence of these rays converges to a
non-Morse geodesic ray.

Proof. Assume (1). Since G is infinite and finitely generated, there exists a geodesic
ray α based at 1. Recall that for n ∈ N the point αn is a vertex of the Cayley graph, so it
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corresponds to a unique element of the group G. Thus, α−1
n α is simply the translate of α by the

isometry of G defined by left multiplication by the element α−1
n . Since 1 = α−1

n αn ∈ α
−1
n α, the

sequence (α−1
n α)n∈N has a subsequence that converges to a bi-infinite geodesic β containing 1.

By construction, subsegments of β are close to subsegments of translates of α, so by Lemma 3.6
and Lemma 3.7, β is contracting, with contraction function determined by the uniform bound
for rays. Let β+ and β− denote the two rays based at 1 such that β = β+ ∪ β−.

Let g be an arbitrary non-trivial element of G. Consider the ideal geodesic triangle with one
side gβ and whose other two sides are geodesic rays based at 1 with endpoints gβ+

∞ and gβ−∞.
The sides of this triangle are uniformly contracting, so it is uniformly thin, so there is some
constant C such that every point on gβ is C–close to one of the other two sides. In particular, g
is C–close to one of the other sides. Since the constant C is independent of g, we have that that
for every g ∈ G there exists a geodesic ray γg based at 1 and passing within distance C of g.

Let δ be a geodesic segment with endpoints h and hg for some g, h ∈ G. The contraction
function of the geodesic h−1δ from 1 to g can be bounded in terms of C and the contraction
function of γg, but since rays have uniform contraction this gives us a bound for the contraction
function for h−1δ, hence for δ. Since every geodesic segment is at Hausdorff distance at most 1/2
from a geodesic segment with endpoints at vertices, Lemma 3.3 tells us that geodesic segments
are uniformly contracting. Thus, (1) implies (2).

If geodesic segments in G are uniformly contracting then geodesic bigons are uniformly
thin, so G is hyperbolic by a theorem of Papasoglu [37]. Thus, (2) implies (3).

By [16, Theorem 3.10], if G is hyperbolic then ∂DLc G agrees with the Gromov boundary,
which is compact, so (3) implies (4).

DL is a refinement of FQ by Proposition 7.4, so (4) implies (5).

If G is virtually cyclic then (6) is true. If G is not virtually cyclic then, by Proposition 8.2, if
∂FQc G is non-empty then it is infinite. In particular, there are distinct points in ∂FQc G. Choose
two of them and connect them by a geodesic β, which is necessarily contracting. By translating
β we may assume that β0 = 1. Suppose that α is an arbitrary geodesic ray based at 1. As in the
proof of Proposition 8.3, after possibly exchanging β with β̄ there is increasing σ′ : N→ N such
that for all n ∈ N we have that ασ′(n)β[0,∞) does not backtrack far along α[0,σ′(n)]. This means
there are L and A, independent of n, such that the concatenation of α[0,σ′(n)] and ασ′(n)β[0,∞) is a
continuous (L, A)–quasi-geodesic.

If ∂FQc G is compact then the sequence (ασ′(n)β∞)n∈N has a convergent subsequence, so there
is an increasing σ′′ : N → N such that for σ := σ′ ◦ σ′′ we have (ασ(n)β∞)n∈N converges to
a point ζ ∈ ∂FQc G. Then for every r > 1 there exists an N such that for all n ≥ N we have
ασ(n)β∞ ∈ U(ζ, r). For r > 3L2, 3A we then have that the continuous (L, A)–quasi-geodesic
α[0,σ(n)] + ασ(n)β[0,∞) ∈ ασ(n)β∞ comes κ(ρζ , L, A)–close to αζ outside the ball of radius r about
1, for all sufficiently large n, and therefore has initial segment of length at least r contained in
the κ′(ρζ , L, A)–neighborhood of αζ . Since this is true for all sufficiently large n and since longer
and longer initial segments of the α[0,σ(n)] + ασ(n)β[0,∞) are initial segments of α, we conclude
that α is asymptotic to αζ , which implies that α is contracting. Thus, (5) implies (6).

Finally, we prove (6) implies (1). We do so by assuming (6) is true and (1) is false, and deriv-
ing a contradiction. The strategy is as follows. The fact that ∂FQc G is not uniformly contracting
implies that no non-empty open subset of ∂FQc G is uniformly contracting. We construct a nested
decreasing sequence of neighborhoods focused on points with successively worse contraction
behavior. We use properness of G to conclude that a subsequence of representative geodesics of
these focal points converges to a geodesic ray. The assumption (6) implies the limiting ray is
contracting, so it represents a point in ∂FQc G, and we claim that this point is in the intersection
of the nested sequence of neighborhoods. Furthermore, the details of the construction ensure
that the limiting ray actually experiences the successively worse contraction behavior of the
construction, with the conclusion that it is not a contracting ray, contradicting (6).
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If rays in G fail to be uniformly contracting then so do bi-infinite geodesics in G. To see
this, fix a ray α. Any other ray has a translate β with the same basepoint as α. Since rays are
contracting there is a contracting bi-infinite geodesic γ with endpoints α∞ and β∞. Now α,
β, and γ make a geodesic triangle, so the contraction function of β can be bounded in terms
of those of α and γ. If bi-infinite geodesics are all ρ–contracting then this would mean the
contraction function for β can be bounded in terms of only ρ and ρα, so rays would be uniformly
contracting. Combining this with Theorem 2.2, we have that ¬(1) implies bi-infinite geodesics
in G are not uniformly Morse. They are all Morse, as each bi-infinite geodesic can be written
as a union of two rays, which are contracting, by (6). For each L ≥ 1, A ≥ 0, and bi-infinite
geodesic γ in G, define D(γ, L, A) to be the supremum of the set:

{d(z, γ) | z is a point on a continuous (L, A)–quasi-geodesic with endpoints on γ}

Since γ is Morse, D(γ, L, A) exists for each L and A. If supγ D(γ, L, A) exists for every L and
A then we can define µ(L, A) := supγ D(γ, L, A) and we have that all bi-infinite geodesics are
µ–Morse, contrary to hypothesis, so there exist some L ≥ 1 and A ≥ 0 such that for all n ∈ N
there exists a bi-infinite geodesic γn and a continuous (L, A)–quasi-geodesic δn with endpoints
on γn such that δn is not contained in Nnγ

n. By translating and shifting the parameterization of
γn we may assume that γn

0 = 1 and that the distances from 1 to the two endpoints of δn differ by
at most 1.

Now we make a claim and use it to finish the proof:

(14)
Let γ be a bi-infinite ργ–contracting geodesic. Given ζ ∈ ∂FQc G, R > 1, r ≥ 0 there
exists η ∈ U(ζ,R) and g ∈ G such that αη passes within distance κ(ργ, 1, 0) of both
endpoints of a segment of gγ containing gγ[−r,r].

See Figure 6 and Figure 7 for illustrations of (14). Assuming (14), we construct a de-
creasing nested sequence of neighborhoods in ∂FQc G focusing on points with successively
worse contraction behavior. The key trick is to build extra padding into our constants to give
the contraction function of the eventual limiting geodesic time to dominate. Let M and λ
be as in Lemma 4.7; recall that λ(φ, 1, 0) = 8κ(φ, 1, 0). Let ψ be as in Corollary 5.9. Let
ζ0 ∈ ∂FQc G and R0 > 1 be arbitrary. Now, supposing ζ i and Ri have been defined, consider
γi+1. Let ri+1 be the least integer greater than half the distance between endpoints of δi plus
the quantity (M + 1)κ(ργi , 1, 0) + (6M + 15)(i + 1). Apply (14) to γi+1, ζ i, ψ(ζ i,Ri), ri+1 and
get output ζ i+1 ∈ U(ζ i, ψ(ζ i,Ri)) ⊂ U(ζ i,Ri) and gi+1 ∈ G. Let R′′i+1 be κ(ργi , 1, 0) plus the
larger of the distances to 1 of the endpoints of the subsegment of gi+1γ

i+1 given by (14). Define
R′i+1 := R′′i+1 + (M + 1)κ(ρζi+1 , 1, 0) + 9(i + 1). By Corollary 5.9, there is an open set Ui such
that U(ζ i, ψ(ζ i,Ri)) ⊂ Ui ⊂ U(ζ i,Ri), so since ζ i+1 ∈ U(ζ i, ψ(ζ i,Ri)) we can choose Ri+1 ≥ R′i+1
large enough to guarantee U(ζ i+1,Ri+1) ⊂ U ⊂ U(ζ i,Ri).

Consider the sequence of geodesic rays (αζ
n
)n∈N. Some subsequence converges to a geodesic

ray α. By hypothesis, all rays are contracting, so there exists some ρα such that α is ρα–
contracting.

Pick any i ≥ κ′(ρα, 1, 0) > κ(ρα, 1, 0). There is some n � i such that α agrees with αζ
n

for
distance Ri + κ(ρζi , 1, 0). Since the neighborhoods are nested, by construction, ζn ∈ U(ζ i,Ri),
which implies that α comes κ(ρζi , 1, 0)–close to αζ

i
outside the ball of radius Ri ≥ R′i about 1.

The definition of R′i and the fact that i > κ(ρα, 1, 0) gives us, by Lemma 4.7, that αζ
i

comes
κ(ρα, 1, 0)–close to α outside the ball of radius R′′i about 1. In particular, by Lemma 4.5, α
passes (κ′(ρα, 1, 0) + κ(ρζi , 1, 0))-close to both endpoints of a subsegment of giγ

i containing
giγ

i
[−ri,ri]

. The definition of ri and the fact that i ≥ κ(ρα, 1, 0) give us, by a second application of
Lemma 4.7 and Lemma 4.5, that α comes within distance κ′(ρα, 1, 0) of both endpoints of giδ

i.
Connect the endpoints of giδ

i to α by shortest geodesic segments. For A′ := A + 2κ′(ρα, 1, 0),
the resulting path δ′i is a continuous (L, A′)–quasi-geodesic that is contained in N̄κ′(ρα,L,A′)(α) but
leaves the (i − κ′(ρα, 1, 0))–neighborhood of the subsegment of α between its endpoints. For
sufficiently large i this contradicts the fact that δ′i is (L, A′)–quasi-geodesic.



10. COMPACTNESS 211

We now prove (14). The idea is to take an element g that pushes γ far out along αζ and take
η to be one of the endpoints of gγ. Then αη forms a geodesic triangle with a subsegment of αζ

and a subray of gγ. Additionally, we arrange for gγ[−r,r] to be suitably far from the quasi-center
of this triangle so that it is in one of the thin legs of the triangle, parallel to a segment of αη.

Let α := αζ . Let r′ > r represent a number to be determined, and choose any s >
r′ + 2κ′(ργ, 1, 0). First, suppose that for arbitrarily large t there exists g ∈ Nκ′(ργ,1,0)αt such
that d(gγ−1

s γr′ , α[0,t]) ≥ κ′(ργ, 1, 0). We claim that for any sufficiently large t we can take such
a g and η := gγ−1

s γ−∞ as the output of (14). To see this, define a continuous quasi-geodesic
by following α until we reach the first of either αt or a point of πα(gγ−1

s γr′), then follow a
geodesic to gγ−1

s γr′ , then follow gγ−1
s γ̄ towards η. By an argument similar to Lemma 4.8, β is

an (L, A)–quasi-geodesic, for some L and A not depending on g, r, or s. Now, α[0,t], gγ−1
s γ(−∞,s],

and αη form a κ′(ργ, 1, 0)–almost geodesic triangle, so the contraction function of αη is bounded
in terms of the contraction functions of α and γ. Thus, there is some E such that β and αη are
bounded Hausdorff distance E from one another, independent of our choices. By the hypothesis
on g and Corollary 4.4 the two sides α[0,t] and gγ−1

s γ(−∞,s] of the almost geodesic triangle are
diverging at a linear rate, and so gγ−1

s γr′ is H–close to some point of αη for some H, again
independent of our choices. Assume that we chose r′ ≥ r + (M + 1)H + 9κ(ργ, 1, 0). Then, by
Lemma 4.7, we have that αη passes within distance κ(ργ, 1, 0) of some point of gγ−1

s γ[r,r′], and
also of some point in gγ−1

s γ[−r′,−r].
We also need to show η ∈ U(ζ,R). Any continuous (L′, A′)–quasi-geodesic in η stays

bounded Hausdorff distance H′ from β, with bound depending on L′ and A′, but not g, s, or t.
We only need to consider L′ <

√
R/3 and A′ < R/3, so we can bound H′ in terms of R (and ρα

and ργ). We therefore have that such a quasi-geodesic passes (H′ + H)–close to gγ−1
s γr′ , which

is (s − r′ + κ′(ργ, 1, 0))–close to αt. Applying Lemma 4.7 we see that such a geodesic passes
κ(ρα, L′, A′)–close to α outside the ball of radius R provided that t is chosen sufficiently large
with respect to R, s, and the contraction functions for α and γ. By hypothesis, we can choose t
as large as we like, so in this case we are done.

γs

γr′

γ−r′ αt

g = gγ−1
s γs

gγ−1
s γr′

gγ−1
s γ

αη

β

η = gγ−1
s γ−∞

Figure 6. First case for (14).

The other case is that there exists T such that for every g ∈ Nκ′(ργ,1,0)α[T,∞] we have
d(gγ−1

s γr′ , αt′) < κ′(ργ, 1, 0) for some t′ with t > T and t − t′ = s − r′ ± 2κ′(ργ, 1, 0) > 0. Let w
be the word in the generators for G read along the path γ[r′,s]. Let t0 > T be arbitrary, and let
g0 := αt0 . Let g1 := g0γ

−1
s γr′ . By hypothesis there is a t1 < t0 such that d(g1, αt1) ≤ κ′(ργ, 1, 0).

The segment g0γ
−1
s γ[r′,s] has edge label w and, by Theorem 3.4, is contained in N̄K(α) for some

K depending only on κ′(ργ, 1, 0) and ργ. If t1 > T we can repeat, setting g2 := g1γ
−1
s γr′ , so that

the initial vertex g1 of g1γ
−1
s γ[r′,s] agrees with the terminal vertex of g0γ

−1
s γ[r′,s]. Repeating this

construction until ti ≤ T , we construct a path from αt to N̄κ′(ργ,1,0)α[0,T ] that is contained in the
K–neighborhood of α and whose edge label is a power of w−1. Since this is true for arbitrarily
large t, we conclude that w is a contracting element in G and ζ = hw∞ for some h ∈ G that is
(s − r′ + κ′(ργ, 1, 0))–close to αT . Furthermore, we can also take s′ > s arbitrarily large and
run the same argument to conclude that either we find the g and η we are looking for from
the first case, or else arbitrarily long segments γ[r′,s′] can be sent into N̄Kα[T,∞). We already
know this tube contains an infinite path labelled by powers of w. Therefore, there is f which is
(s − r′ + 2κ′(ργ, 1, 0))–close to γs such that γ∞ = f w∞.
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If f w−∞ = γ−∞ then we can take η := ζ and g := hwa f −1 for a sufficiently large. Otherwise,
for any sufficiently large t and a we can take g := αtγ

−1
s f w−a and η := gγ−∞, see Figure 7. �

γs

γr′

γ−r′

f

f w∞ = γ∞

αt = αtγ
−1
s γs

αtγ
−1
s γ

αtγ
−1
s f

αtγ
−1
s f w−a

αtγ
−1
s f w−aγs

αtγ
−1
s f w−aγr′

α

αtγ
−1
s f w∞η

αη

Figure 7. Second case for (14).

Proposition 10.4. Let G be a group acting properly discontinuously on a proper geodesic
metric space X. Suppose that the orbit map φ : g 7→ go takes contracting quasi-geodesics to
contracting quasi-geodesics and has quasi-convex image. If Go has compact closure in X̂ then G
is hyperbolic. If G is infinite and hyperbolic and φ is Morse-controlled then Λ(G) is non-empty
and compact and Go has compact closure in X̂.

Proof. If G is finite then Go is compact and G is hyperbolic, so assume G is infinite. Since
it has a quasi-convex orbit, G is finitely generated and φ is a quasi-isometric embedding. Since
G is infinite, Go is unbounded, so if it has compact closure then Λ(G) is non-empty and compact.
By Proposition 6.9, ∂FQc G is compact. By Theorem 10.1, G is hyperbolic.

Conversely, if G is hyperbolic then, with respect to any finite generating set, geodesics in G
are uniformly Morse. Therefore, there is a µ such that for any two points g, h ∈ G there is a
µ–Morse geodesic γg,h in G from g to h. If φ is Morse-controlled, there exists a µ′ depending
only on µ such that φ(γg,h) is µ′–Morse. Any (L, A)–quasi-geodesic with endpoints go and ho
therefore stays µ′(L, A)–close to φ(γg,h), but φ(γg,h) is a quasi-geodesic with integral points
on Go, so it remains close to Go. Therefore, Go is a Morse subset of X. By Proposition 6.9,
∂cφ : ∂FQc G → Λ(G) is a homeomorphism. Since G is an infinite hyperbolic group, ∂FQc G is
non-empty and compact, so Λ(G) is as well.

It remains to show Go is compact. SupposeU is an open cover of Go. Only finitely many
elements ofU are required to cover Λ(G). We claim that the part of Go not covered by these
finitely many sets is bounded, hence, finite, so only finitely many more elements of U are
required to cover all of Go. To see this, suppose (gno)n∈N is an unbounded sequence in Go
that does not enter the chosen finite cover of Λ(G). By passing to a subsequence, we may
assume d(o, gno) ≥ n, in which case (gno)n∈N is a sequence with no convergent subsequence
in X̂. For each n pick a geodesic γn from o to gno. A subsequence (γσ(n))n∈N converges to a
geodesic ray γ in X based at o, but since the geodesics γn were uniformly contracting, γ is
contracting. Moreover, by uniform contraction the endpoints gσ(n)o converge to γ∞ in X̂, which
is a contradiction. �
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