Split signature conformal metrics and half-dimensional projective structures

Josef Šilhan & Vojtěch Žádník

MU Brno, CZ

Vienna, July 2011

Plan

- remind and compare Nurowski–Sparling and Dunajski–Tod construction,

- generalities on Fefferman-type constructions and intro to the parabolic-geometric view,

- some natural questions, especially, on higher dim analogies,

- some answers, especially, on the model situation and the target space in general,

- various remarks, especially, on the feedback to the initial material.

Rough content of [NS'03]¹:

— 2-order ODE y'' = Q(x, y, y') mod point transf \rightarrow conformal metric of signature (2, 2),

- treated via Cartan's equivalence method as a different real form of the Fefferman metric co.

¹Nurowski–Sparling, 3-dim CR structures and 2-order ODEs, 2003

Nurowski–Sparling co. (detail)

Some detail:

— write the eqn as p = y', p' = Q(x, y, p),

— 1-dim subdistribution in the contact distribution on J^1

$$dp - Q dx = 0$$
, $dy - p dx = 0$,

— assoc (normal) Cartan connection on a principal bundle ${\cal G}$

$$\omega=egin{pmatrix} rac{1}{3}(2\Omega_2+ar\Omega_2)&iar\Omega_3&-rac{1}{2}\Omega_4\ heta^1&rac{1}{3}(ar\Omega_2-\Omega_2)&-rac{1}{2}\Omega_3\ 2 heta^3&2i heta^2&-rac{1}{3}(2ar\Omega_2+\Omega_2) \end{pmatrix},$$

where *i* is a non-zero *real* constant,

— in this frame, the metric on a 4-dim quotient \mathcal{G}/\sim given by

$$g_{\mathsf{F}}=2 heta^1 heta^2+rac{2}{3i} heta^3(\Omega_2-ar\Omega_2),$$

- by construction, g_F is expressible in terms of Q, Q_p, \ldots
- $-g_F$ has signature (2, 2),
- essential curvature invariants on both sides, are nicely proportional one another, in particular,

Corollary

(Half-)trivial eqns 🛶 (half-)flat Fefferman metrics.

Rough content of [DT'10]²:

- general necessary conditions,
- equivalent condition in the ASD case,

- "Riemannian extension" from projective str and link to the metrizability problem.

²Dunajski–Tod, 4-dim metrics conformal to Kähler, 2010

Prolongation and Thm 2.3...

Theorem

4-dim conformal ASD str contains a Kähler metric iff there is a non-zero section of the tractor bundle $\Lambda^3_+ \tilde{T}$ whose injective part is non-degenerate and which is parallel with respect to an non-normal tractor connection.

Given 2-dim projective str [Γ] on *U* and local coords (x^i, z^j) on *TU*. *Riemannian extension* of [Γ] is the conformal str on *TU* given by

$$g_{\mathsf{R}}=dz_{i}dx^{i}-\Pi_{ij}^{k}\,z_{k}\,dx^{i}dx^{j},$$

where $\Pi_{ij}^{k} = \Gamma_{ij}^{k} - \frac{1}{3}\Gamma_{li}^{l}\delta_{j}^{k} - \frac{1}{3}\Gamma_{lj}^{l}\delta_{i}^{k}$ are Thomas projective parameters.

Fact

Riemannian extension has signature (2,2), is ASD, and admits a null conformal Killing vector...

The characterization by Prop 4.2... (sl. 24)

(sl. 26)

Thm 4.1. states:

Theorem

Projective str on U is metrizable iff its Riemannian extension contains a (para-)Kähler metric.

(sl. 24)

Comparing

Projective structure [Γ] on $U^2 \leftrightarrow$ geodesic eqn

$$y'' = A_0 + A_1 y' + A_1 y'^2 + A_3 y'^3,$$

where $A_0 = -\Gamma_{11}^2$, $A_1 = \Gamma_{11}^1 - 2\Gamma_{11}^2$, $A_2 = 2\Gamma_{12}^1 - \Gamma_{22}^2$, and $A_3 = \Gamma_{22}^1$. Corresponding Thomas parameters are: $\Pi_{11}^1 = \frac{1}{3}A_1$, $\Pi_{12}^1 = \frac{1}{3}A_2$, $\Pi_{22}^1 = A_3$, $\Pi_{11}^2 = -A_0$, $\Pi_{21}^2 = -\frac{1}{3}A_1$, $\Pi_{22}^2 = -\frac{1}{3}A_2$.

Subs into g_F and g_R from [NS'03] and [DT'10], respectively:

Claim

 g_F and g_R are conformal.

Original Fefferman co., interpreted as an extension of Cartan geometries, is fully determined by the embedding $SU(2, 1) \rightarrow SO(4, 2)...$

Further generalized to any dim and sign, powered by the embedding $G = SU(p + 1, q + 1) \rightarrow SO(2p + 2, 2q + 2) = \tilde{G}$:

— start with $(\mathcal{G} \to M, \omega)$, the normal Cartan geometry of type G/P assoc. to the CR str on M,

- let \tilde{P} the Poincaré subgroup in \tilde{G} and $Q := G \cap \tilde{P}$,
- observe $Q \subset P$ and $G/Q = \tilde{G}/\tilde{P}$,
- denote $\tilde{M} := \mathcal{G}/Q$, the Fefferman space,

- def $\tilde{\mathcal{G}} := \mathcal{G} \times_Q \tilde{P}$ and extend equivariantly ω to $\tilde{\omega} \in \Omega^1(\tilde{\mathcal{G}}, \tilde{g})$, - altogether, $(\tilde{\mathcal{G}} \to \tilde{M}, \tilde{\omega})$ is a Cartan geometry of type $\tilde{\mathcal{G}}/\tilde{P}$. Necessary control of the normality condition [ČG'07]³:

Theorem

Let ω be the normal. Then $\tilde{\omega}$ is normal iff ω is torsion-free.

Note that

- torsion-freeness of $\omega \iff$ integrability of the CR str,
- automatically satisfied if dim M = 3,
- curvature of $\tilde{\omega}$ is fully determined by the curvature of ω , in particular (and in general), $\tilde{\omega}$ is flat iff ω is flat.

(sl. 22)

³Čap–Gover, CR tractors and the Fefferman space, 2007

Fefferman metrics from CR str's are nicely characterized [ČG'10]⁴:

Theorem

If \tilde{M} admits a parallel and OG complex structure \mathbb{J} on the standard tractor bundle, then \tilde{M} is locally conf. equivalent to the Fefferman space of a CR mfld...

Note that

— orthogonality \rightsquigarrow skew-symmetry of $\mathbb{J} \rightsquigarrow$ parallel section of the adjoint tractor bundle \rightsquigarrow null conformal Killing vector on \tilde{M} which inserts trivially into the curvature tensors,

— these (and consequences of $\mathbb{J}\circ\mathbb{J}=-\operatorname{id})$ yield the Sparling's characterization,

— all the study starts with a good understanding of the model (sl. 22) situation!

⁴Čap–Gover, A holonomy characterization of Fefferman spaces, 2010

[NS'03] provides a split real form of the classical Fefferman co. in 3-dim case; a natural analogy in general dim starts with *Lagrangean contact* structures.

- May also this version be treated in similarly nice manner as the classical one?

- If yes, what is the proper interpretation of the Fefferman space?

- In particular, how to deal in model situation?

[DT'10] provides a characterization of Riemannian/Fefferman extensions from *projective* structures in 2-dim case.

- What can one add to this point?

- In particular, what about possible generalizations and different views?

- What about the metrizability problem?

= contact structure $H \subset TM$ with a fixed decomposition $H = E \oplus V$ into Lagrangean subspaces (equiv. an almost para-complex str $J \circ J = id_H$)

= parabolic geometry of type $PGL(n + 1, \mathbb{R})/P$, where ...

Model = $\operatorname{Flag}_{1,n}(\mathbb{R}^{n+1}) = \mathcal{P}T^*\mathbb{RP}^n$ where

- H = canonical contact distribution,
- V = vertical subbundle of $\mathcal{P}T^*\mathbb{RP}^n \to \mathbb{RP}^n$, and
- E = determ. by the flat projective str on \mathbb{RP}^n .

Harmonic curvatures, torsion-freeness vs. integrability, ...

Choice $G = SL(n + 1, \mathbb{R}) \rightsquigarrow$ an additional geom. data...

More generally [T'94]⁵:

projective structure on $X \rightarrow \text{Lagrangean contact str on } \mathcal{P}T^*X$

Correspondence space co. $[\check{C}'05]^6$:

let $(\mathcal{G} \to X, \omega)$ be normal Cartan geometry of type G/P_1 assoc. to the projective str. on X and let $P \subset P_1$ be the parabolic subgroup as above \rightsquigarrow Cartan geometry $(\mathcal{G} \to \mathcal{G}/P, \omega)$ of type G/P.

Theorem

 $\mathcal{G}/P \cong \mathcal{P}T^*X$ and $(\mathcal{G} \to \mathcal{G}/P, \omega)$ is the normal Cartan geometry to the induced Lagrangean contact str; harmonic curvatures $K = T^V = 0$ and $T^E \propto W$, the projective Weyl tensor. Moreover, this provides a local characterization.

Case n = 2 is, of course, special...

⁵Takeuchi, Lagrangean contact str. on projective cotangent bundles, 1994
⁶Čap, Correspondence spaces and twistor spaces for parabolic geom., 2005

Let $\mathbb{V} = \mathbb{R}^{2n+2}$ with a real inner product *h* and a skew-symmetric para-complex structure *J*, i.e.

$$J \circ J = \text{id and } h(J-, -) + h(-, J-) = 0.$$

The compatibility of h and J yields, in particular,

- the eigenspaces \mathbb{V}_{\pm} of *J* are isotropic,
- h has split signature,
- h(X, X) = 0 iff h(JX, JX) = 0 iff $\langle X, JX \rangle$ is isotropic.

Given $\mathbb{V} = \mathbb{R}^{2n+2}$, $h \in S^2 \mathbb{V}^*$, and compatible $J \in \text{End}(\mathbb{V})$ as above. $\tilde{G} := SO(h) \cong SO(n+1, n+1)$, def $\bar{G} := \{A \in \tilde{G} : A \circ J = J \circ A\}$. Hence $\bar{G} \cong GL(n+1, \mathbb{R})$.

Appropriate matrix realization...

Reduce to $G := SL(n+1, \mathbb{R})...$

Note that

- $G \subset \tilde{G}$ is the standard embedding,
- for n = 2, it is conjugate to [NS'03], ...

Denote $\mathcal{N} \subset \mathbb{V}$ the null-cone of h, remind $\mathbb{V}_{\pm} \subset \mathcal{N}$, denote $\mathcal{N}_0 := \mathcal{N} \setminus \mathbb{V}_{\pm}$. $\mathcal{PN} \cong \tilde{G}/\tilde{P} = \text{conformal } (n, n) \text{ sphere; consists of three } G\text{-orbit:}$

 $\mathcal{PN} = \mathcal{PV}_+ \cup \mathcal{PN}_0 \cup \mathcal{PV}_-.$

Para-complex (null) lines

= real (isotropic) planes of the form $\langle X, JX \rangle$; abbrev. $\overline{\mathbb{C}}$ (null) lines. Facts:

 $-X \in \mathcal{N}_0 \Longrightarrow \langle X, JX \rangle \text{ is a } \overline{\mathbb{C}} \text{ null line in } \mathcal{N},$

— any $\overline{\mathbb{C}}$ null line $\langle X, JX \rangle$ determined by a pair $Y_{\pm} := X \pm JX \in \mathbb{V}_{\pm}$,

— that pair is orthogonal, $h(Y_+, Y_-) = 0$.

Denote $\tilde{M} := \mathcal{PN}_0 = \{\mathbb{R} \text{-lines in } \mathcal{N}_0\}$, define $M := \{\overline{\mathbb{C}} \text{-lines in } \mathcal{N}\}$.

Claim

$$\begin{split} \tilde{M} &\cong G/Q, \quad M \cong \mathrm{Flag}_{1,n}(\mathbb{R}^{n+1}) \cong G/P, \\ \mathcal{P}\mathbb{V}_+ &\cong \mathbb{R}\mathbb{P}^n \cong G/P_1 \text{ and } \mathcal{P}\mathbb{V}_- \cong \mathbb{R}\mathbb{P}^{n*} \cong G/P_2, \\ \text{where } P_1 \cap P_2 &= P \subset Q \dots \end{split}$$

(sl. 25)

Fefferman space in general $\tilde{M} := \mathcal{G}/Q$. Typical fibre of $\tilde{M} \to M$ is $P/Q \cong \mathbb{R} \setminus \{0\}$. According to standard conventions:

Claim

 $\tilde{M} \cong$ (double cover of) the scale bundle $\mathcal{E}(1, -1)$ over M. If $M = \mathcal{P}T^*X$ then $\tilde{M} \cong T^*X[2]$ (without the zero section).

.

Now launch the extension procedure for $(\mathcal{G} \to M, \omega)$ over the embedding $G = SL(n, \mathbb{R}) \subset SO(n, n) = \tilde{G}$ and mimic selected classical results:

Cf., in particular, the normality and the characterization aspects. (sl. 3,4)

Compose the previous two steps:

If n > 2 then normal projective $X \rightarrow$ normal Lagrangean contact $M = \mathcal{P}T^*X$ with half-torsion \rightarrow "half-normal" conformal Cartan connection on \tilde{M} , cf. [HS]⁷.

If n = 2 then go to the next slide.

⁷Hammerl–Sagerschnig, A non-normal Fefferman-type construction of split-signature conformal structures admitting twistor spinor, preprint

— Normal projective $X \rightsquigarrow$ normal conformal \tilde{M} which is ASD and admits a parallel anti-OG para-complex structure on \tilde{T} .

(sl. 8)

(sl. 9)

— Both the metrizability and Kählerity is char'd as a solution of an ODS, cf. $[BDE'10]^8$, $[DT'10] \leftrightarrow$ parallel sections of a tractor bundle w.r. to a *non*-normal connection, cf. $[HSSŠ'10]^9$. Namely, the appropriate *G*-, resp. \tilde{G} -bundles are S^2T , resp. $\Lambda^3_{\perp}\tilde{T}$.

Now $G \subset \tilde{G} \rightsquigarrow S^2 T \subset \Lambda^3_+ \tilde{T}, \ldots ...$!

⁸Bryant–Dunajski–Eastwood, *Metrizability of 2-dim projective structures*, 2010 ⁹Hammerl–Somberg–Souček–Šilhan, *On a new normalization for tractor covariant derivatives*, 2010

Back to the model

Remind the model definitions within $\mathbb{V} = \mathbb{R}^{n+1,n+1}$:

(sl. 20)

 $\tilde{M} = \{\mathbb{R} \text{-lines in } \mathcal{N}_0\},\$

 $M = \{\overline{\mathbb{C}} \text{-lines in } N\} \cong \mathcal{P}T^*\mathbb{RP}^n$, the model Lagrangean contact str.

- In particular,

 $\tilde{M} \subsetneq \{\mathbb{R}\text{-lines in } \mathcal{N}\} = L^{n,n}$, the Lie quadric,

 $M \subsetneq$ {isotropic 2-planes in N} $\cong \mathcal{P}T^*S^{n,n-1}$, the model Lie contact str.

— The correspondence $\mathbb{RP}^n \leftarrow \operatorname{Flag}_{1,n}(\mathbb{R}^{n+1}) \to \mathbb{RP}^{n*}$ is visible within $\mathcal{PN} \cong \tilde{G}/\tilde{P}$ via $(x, \eta) \in \mathbb{RP}^n \times \mathbb{RP}^{n*} \leftrightarrow (X, Y) \in \mathbb{V}_+ \times \mathbb{V}_-$:

 $x \in \ker \eta$ iff h(X, Y) = 0.

Remind the definition of Π_{ij}^k , which is somehow related to the Thomas ambient connection...

What about an ambient reinterpretation of all the story?