Split signature conformal metrics and half-dimensional projective structures

Josef Šilhan \& Vojtěch Žádník

MU Brno, CZ

Vienna, July 2011

Plan

— remind and compare Nurowski-Sparling and Dunajski-Tod construction,

- generalities on Fefferman-type constructions and intro to the parabolic-geometric view,
- some natural questions, especially, on higher dim analogies,
- some answers, especially, on the model situation and the target space in general,
- various remarks, especially, on the feedback to the initial material.

Nurowski-Sparling co.

Rough content of [$\left.\mathrm{NS}^{\prime} 03\right]^{1}$:
— 2-order ODE $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ mod point transf \leadsto conformal metric of signature $(2,2)$,

- treated via Cartan's equivalence method as a different real form of the Fefferman metric co.

[^0]
Nurowski-Sparling co. (detail)

Some detail:
— write the eqn as $p=y^{\prime}, p^{\prime}=Q(x, y, p)$,

- 1-dim subdistribution in the contact distribution on J^{1}

$$
d p-Q d x=0, d y-p d x=0
$$

—assoc (normal) Cartan connection on a principal bundle \mathcal{G}

$$
\omega=\left(\begin{array}{ccc}
\frac{1}{3}\left(2 \Omega_{2}+\bar{\Omega}_{2}\right) & i \bar{\Omega}_{3} & -\frac{1}{2} \Omega_{4} \\
\theta^{1} & \frac{1}{3}\left(\bar{\Omega}_{2}-\Omega_{2}\right) & -\frac{1}{2} \Omega_{3} \\
2 \theta^{3} & 2 i \theta^{2} & -\frac{1}{3}\left(2 \bar{\Omega}_{2}+\Omega_{2}\right)
\end{array}\right) \text {, }
$$

where i is a non-zero real constant,

- in this frame, the metric on a 4-dim quotient \mathcal{G} / \sim given by

$$
g_{F}=2 \theta^{1} \theta^{2}+\frac{2}{3 i} \theta^{3}\left(\Omega_{2}-\bar{\Omega}_{2}\right)
$$

Nurowski-Sparling co. (detail cont.)

- by construction, g_{F} is expressible in terms of Q, Q_{p}, \ldots
- g_{F} has signature (2,2),
- essential curvature invariants on both sides, are nicely proportional one another, in particular,

Corollary
(Half-)trivial eqns $\leadsto \rightarrow$ (half-)flat Fefferman metrics.

Dunajski-Tod co.

Rough content of [DT'10] ${ }^{2}$:

- general necessary conditions,
- equivalent condition in the ASD case,
— "Riemannian extension" from projective str and link to the metrizability problem.

[^1]
Dunajski-Tod co. (ASD case)

Prolongation and Thm 2.3...

Theorem

4-dim conformal ASD str contains a Kähler metric iff there is a non-zero section of the tractor bundle $\Lambda_{+}^{3} \tilde{T}$ whose injective part is non-degenerate and which is parallel with respect to an non-normal tractor connection.

Dunajski-Tod co. (Riemannian extension)

Given 2-dim projective str [$\left[7\right.$] on U and local coords $\left(x^{i}, z^{j}\right)$ on $T U$. Riemannian extension of [$[7$] is the conformal str on $T U$ given by

$$
g_{R}=d z_{i} d x^{i}-\Pi_{i j}^{k} z_{k} d x^{i} d x^{j}
$$

where $\Pi_{i j}^{k}=\Gamma_{i j}^{k}-\frac{1}{3} \Gamma_{l i}^{l} \delta_{j}^{k}-\frac{1}{3} \Gamma_{l j}^{l} \delta_{i}^{k}$ are Thomas projective parameters.

Fact

Riemannian extension has signature (2, 2), is ASD, and admits a null conformal Killing vector...

The characterization by Prop 4.2...

Dunajski-Tod co. (metrizability)

Thm 4.1. states:
Theorem
Projective str on U is metrizable iff its Riemannian extension contains a (para-)Kähler metric.

Comparing

Projective structure [$\left[\right.$] on $U^{2} \leadsto \rightarrow$ geodesic eqn

$$
y^{\prime \prime}=A_{0}+A_{1} y^{\prime}+A_{1} y^{\prime 2}+A_{3} y^{\prime 3}
$$

where $A_{0}=-\Gamma_{11}^{2}, A_{1}=\Gamma_{11}^{1}-2 \Gamma_{11}^{2}, A_{2}=2 \Gamma_{12}^{1}-\Gamma_{22}^{2}$, and $A_{3}=\Gamma_{22}^{1}$.
Corresponding Thomas parameters are:
$\Pi_{11}^{1}=\frac{1}{3} A_{1}, \Pi_{12}^{1}=\frac{1}{3} A_{2}, \Pi_{22}^{1}=A_{3}, \Pi_{11}^{2}=-A_{0}, \Pi_{21}^{2}=-\frac{1}{3} A_{1}$,
$\Pi_{22}^{2}=-\frac{1}{3} A_{2}$.
Subs into g_{F} and g_{R} from [NS'03] and [DT'10], respectively:
Claim
g_{F} and g_{R} are conformal.

Fefferman extension (revised)

Original Fefferman co., interpreted as an extension of Cartan geometries, is fully determined by the embedding $S U(2,1) \rightarrow S O(4,2) \ldots$

Further generalized to any dim and sign, powered by the embedding $G=S U(p+1, q+1) \rightarrow S O(2 p+2,2 q+2)=\tilde{G}$:
— start with $(\mathcal{G} \rightarrow M, \omega)$, the normal Cartan geometry of type G / P assoc. to the CR str on M,
— let \tilde{P} the Poincaré subgroup in \tilde{G} and $Q:=G \cap \tilde{P}$,
— observe $Q \subset P$ and $G / Q=\tilde{G} / \tilde{P}$,
— denote $\tilde{M}:=\mathcal{G} / Q$, the Fefferman space,
— $\operatorname{def} \tilde{\mathcal{G}}:=\mathcal{G} \times_{Q} \tilde{P}$ and extend equivariantly ω to $\tilde{\omega} \in \Omega^{1}(\tilde{\mathcal{G}}, \tilde{\mathfrak{g}})$,
— altogether, $(\tilde{\mathcal{G}} \rightarrow \tilde{M}, \tilde{\omega})$ is a Cartan geometry of type \tilde{G} / \tilde{P}.

Fefferman extension (normality)

Necessary control of the normality condition [ČG'07] ${ }^{3}$:

Theorem

Let ω be the normal. Then $\tilde{\omega}$ is normal iff ω is torsion-free.
Note that

- torsion-freeness of $\omega \leftrightarrow \rightsquigarrow$ integrability of the CR str,
- automatically satisfied if $\operatorname{dim} M=3$,
- curvature of $\tilde{\omega}$ is fully determined by the curvature of ω, in particular (and in general), $\tilde{\omega}$ is flat iff ω is flat.

Fefferman extension (characterization)

Fefferman metrics from CR str's are nicely characterized [ČG'10] ${ }^{4}$:

Theorem

If \tilde{M} admits a parallel and $O G$ complex structure \mathbb{J} on the standard tractor bundle, then \tilde{M} is locally conf. equivalent to the Fefferman space of a CR mfld...

Note that
— orthogonality \leadsto skew-symmetry of $\mathbb{J} \leadsto$ parallel section of the adjoint tractor bundle \leadsto null conformal Killing vector on \tilde{M} which inserts trivially into the curvature tensors,
— these (and consequences of $\mathbb{J} \circ \mathbb{J}=$ - id) yield the Sparling's characterization,

- all the study starts with a good understanding of the model situation!

[^2]
Natural ideas and questions

[NS'03] provides a split real form of the classical Fefferman co. in 3-dim case; a natural analogy in general dim starts with Lagrangean contact structures.

- May also this version be treated in similarly nice manner as the classical one?
- If yes, what is the proper interpretation of the Fefferman space?
- In particular, how to deal in model situation?
[DT'10] provides a characterization of Riemannian/Fefferman extensions from projective structures in 2-dim case.
- What can one add to this point?
- In particular, what about possible generalizations and different views?
- What about the metrizability problem?

Lagrangean contact str

$=$ contact structure $H \subset T M$ with a fixed decomposition $H=E \oplus V$ into Lagrangean subspaces (equiv. an almost para-complex str
$J \circ J=\mathrm{id}_{H}$)
$=$ parabolic geometry of type $\operatorname{PGL}(n+1, \mathbb{R}) / P$, where \ldots
Model $=\operatorname{Flag}_{1, n}\left(\mathbb{R}^{n+1}\right)=\mathcal{P} T^{*} \mathbb{R}^{n}{ }^{n}$ where
$H=$ canonical contact distribution,
$V=$ vertical subbundle of $\mathcal{P} T^{*} \mathbb{R} \mathbb{P}^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}$, and
$E=$ determ. by the flat projective str on $\mathbb{R} \mathbb{P}^{n}$.
Harmonic curvatures, torsion-freeness vs. integrability, ...

Choice $G=S L(n+1, \mathbb{R}) \leadsto$ an additional geom. data..

From projective to Lagrangean contact

More generally [$\left.\mathrm{T}^{\prime} 94\right]^{5}$:
projective structure on $X \leadsto$ Lagrangean contact str on $\mathcal{P} T^{*} X$
Correspondence space co. [Č'05] ${ }^{6}$:
let $(\mathcal{G} \rightarrow X, \omega)$ be normal Cartan geometry of type \mathcal{G} / P_{1} assoc. to the projective str. on X and let $P \subset P_{1}$ be the parabolic subgroup as above \leadsto Cartan geometry $(\mathcal{G} \rightarrow \mathcal{G} / P, \omega)$ of type G / P.

Theorem

$\mathcal{G} / P \cong \mathcal{P} T^{*} X$ and $(\mathcal{G} \rightarrow \mathcal{G} / P, \omega)$ is the normal Cartan geometry to the induced Lagrangean contact str; harmonic curvatures $K=T^{\vee}=0$ and $T^{E} \propto W$, the projective Weyl tensor. Moreover, this provides a local characterization.

Case $n=2$ is, of course, special. . .

[^3]
Para-complex vector space

Let $\mathbb{V}=\mathbb{R}^{2 n+2}$ with a real inner product h and a skew-symmetric para-complex structure J, i.e.

$$
J \circ J=\text { id and } h(J-,-)+h(-, J-)=0 .
$$

The compatibility of h and J yields, in particular,

- the eigenspaces $\mathbb{V}_{ \pm}$of J are isotropic,
- h has split signature,
$-h(X, X)=0$ iff $h(J X, J X)=0$ iff $\langle X, J X\rangle$ is isotropic.

Embedding

Given $\mathbb{V}=\mathbb{R}^{2 n+2}, h \in S^{2} \mathbb{V}^{*}$, and compatible $J \in \operatorname{End}(\mathbb{V})$ as above.
$\tilde{G}:=S O(h) \cong S O(n+1, n+1)$, $\operatorname{def} \bar{G}:=\{A \in \tilde{G}: A \circ J=J \circ A\}$. Hence $\bar{G} \cong G L(n+1, \mathbb{R})$.
Appropriate matrix realization...
Reduce to $G:=S L(n+1, \mathbb{R}) \ldots$
Note that
$-G \subset \tilde{G}$ is the standard embedding,
— for $n=2$, it is conjugate to [NS'03], \ldots

Embedding (cont.)

Denote $\mathcal{N} \subset \mathbb{V}$ the null-cone of h, remind $\mathbb{V}_{ \pm} \subset \mathcal{N}$, denote $\mathcal{N}_{0}:=\mathcal{N} \backslash \mathbb{V}_{ \pm}$.
$\mathcal{P N} \cong \tilde{G} / \tilde{P}=$ conformal (n, n) sphere; consists of three G-orbit:

$$
\mathcal{P N}=\mathcal{P} \mathbb{V}_{+} \cup \mathcal{P} \mathcal{N}_{0} \cup \mathcal{P} \mathbb{V}_{-}
$$

Para-complex (null) lines

$=$ real (isotropic) planes of the form $\langle X, J X\rangle$; abbrev. $\overline{\mathbb{C}}($ null) lines.
Facts:
$-X \in \mathcal{N}_{0} \Longrightarrow\langle X, J X\rangle$ is a $\overline{\mathbb{C}}$ null line in \mathcal{N},
— any $\overline{\mathbb{C}}$ null line $\langle X, J X\rangle$ determined by a pair $Y_{ \pm}:=X \pm J X \in \mathbb{V}_{ \pm}$,
— that pair is orthogonal, $h\left(Y_{+}, Y_{-}\right)=0$.
Denote $\tilde{M}:=\mathcal{P} \mathcal{N}_{0}=\left\{\mathbb{R}\right.$-lines in $\left.\mathcal{N}_{0}\right\}$, define $M:=\{\overline{\mathbb{C}}$-lines in $\mathcal{N}\}$.
Claim
$\tilde{M} \cong G / Q, \quad M \cong \operatorname{Flag}_{1, n}\left(\mathbb{R}^{n+1}\right) \cong G / P$,
$\mathcal{P} \mathbb{V}_{+} \cong \mathbb{R}^{n} \cong G / P_{1}$ and $\mathcal{P} \mathbb{V}_{-} \cong \mathbb{R} \mathbb{P}^{n *} \cong G / P_{2}$,
where $P_{1} \cap P_{2}=P \subset Q \ldots$

Fefferman space

Fefferman space in general $\tilde{M}:=\mathcal{G} / Q$.
Typical fibre of $\tilde{M} \rightarrow M$ is $P / Q \cong \mathbb{R} \backslash\{0\}$.
According to standard conventions:
Claim
$\tilde{M} \cong$ (double cover of) the scale bundle $\mathcal{E}(1,-1)$ over M.
If $M=\mathcal{P} T^{*} X$ then $\tilde{M} \cong T^{*} X[2]$ (without the zero section).

From Lagrangean contact to conformal

Now launch the extension procedure for $(\mathcal{G} \rightarrow M, \omega)$ over the embedding $G=S L(n, \mathbb{R}) \subset S O(n, n)=\tilde{G}$ and mimic selected classical results:

Cf., in particular, the normality and the characterization aspects.

From projective to conformal

Compose the previous two steps:
If $n>2$ then normal projective $X \leadsto$ normal Lagrangean contact $M=\mathcal{P} T^{*} X$ with half-torsion \leadsto "half-normal" conformal Cartan connection on \tilde{M}, cf. [HS] ${ }^{7}$.
If $n=2$ then go to the next slide.

[^4]
Back to $n=2$

— Normal projective $X \leadsto$ normal conformal \tilde{M} which is ASD and admits a parallel anti-OG para-complex structure on \tilde{T}.

- Both the metrizability and Kählerity is char'd as a solution of an ODS , cf. [BDE'10] ${ }^{8}$, [DT'10] $\leadsto \rightarrow$ parallel sections of a tractor bundle w.r. to a non-normal connection, cf. [HSSŠ'10] ${ }^{9}$.
Namely, the appropriate G-, resp. \tilde{G}-bundles are $S^{2} T$, resp. $\Lambda_{+}^{3} \tilde{T}$. Now $G \subset \tilde{G} \leadsto S^{2} T \subset \Lambda_{+}^{3} \tilde{T}, \ldots \ldots$!
${ }^{8}$ Bryant-Dunajski-Eastwood, Metrizability of 2-dim projective structures, 2010
${ }^{9}$ Hammerl-Somberg-Souček-Šilhan, On a new normalization for tractor covariant derivatives, 2010

Back to the model

Remind the model definitions within $\mathbb{V}=\mathbb{R}^{n+1, n+1}$:
$\tilde{M}=\left\{\mathbb{R}\right.$-lines in $\left.\mathcal{N}_{0}\right\}$,
$M=\{\overline{\mathbb{C}}$-lines in $\mathcal{N}\} \cong \mathcal{P} T^{*} \mathbb{R}^{n}$, the model Lagrangean contact str.

- In particular,
$\tilde{M} \varsubsetneqq\{\mathbb{R}$-lines in $\mathcal{N}\}=L^{n, n}$, the Lie quadric,
$M \varsubsetneqq\{$ isotropic 2-planes in $\mathcal{N}\} \cong \mathcal{P} T^{*} S^{n, n-1}$, the model Lie contact str.
— The correspondence $\mathbb{R}^{p}{ }^{n} \leftarrow$ Flag $_{1, n}\left(\mathbb{R}^{n+1}\right) \rightarrow \mathbb{R} \mathbb{P}^{n *}$ is visible within $\mathcal{P N} \cong \tilde{G} / \tilde{P}$ via $(x, \eta) \in \mathbb{R} \mathbb{P}^{n} \times \mathbb{R}^{\mathbb{P}^{n *}} \leadsto(X, Y) \in \mathbb{V}_{+} \times \mathbb{V}_{-}$:

$$
x \in \operatorname{ker} \eta \text { iff } h(X, Y)=0
$$

Thomas projective parameters

Remind the definition of $\Pi_{i j}^{k}$, which is somehow related to the Thomas ambient connection...

What about an ambient reinterpretation of all the story?

[^0]: ${ }^{1}$ Nurowski-Sparling, 3-dim CR structures and 2-order ODEs, 2003

[^1]: ${ }^{2}$ Dunajski-Tod, 4-dim metrics conformal to Kähler, 2010

[^2]: ${ }^{4}$ Čap-Gover, A holonomy characterization of Fefferman spaces, 2010

[^3]: ${ }^{5}$ Takeuchi, Lagrangean contact str. on projective cotangent bundles, 1994
 ${ }^{6}$ Čap, Correspondence spaces and twistor spaces for parabolic geom., 2005

[^4]: ${ }^{7}$ Hammerl-Sagerschnig, A non-normal Fefferman-type construction of split-signature conformal structures admitting twistor spinor, preprint

