The Lagrangian Grassmannian, hyperbolic PDE, and G_{2}

Dennis The

Texas A\&M University

$$
\text { July 11, } 2011
$$

ESI Workshop on Conformal Geometry and its Generalizations

Outline

Main theme:

> Use surface theory in $\operatorname{LG}(2,4)(\bmod \operatorname{CSp}(4, \mathbb{R}))$ to study the geometry of PDE $F\left(x, y, z, z_{x}, z_{y}, z_{x x}, z_{x y}, z_{y y}\right)=0$

Outline:
(1) A classification of (non-MA) hyperbolic PDE
(2) Maximally symmetric "generic" hyperbolic PDE and G_{2}

$$
\left(\text { e.g. } \frac{\left(3 z_{x x}-6 z_{x y} z_{y y}+2\left(z_{y y}\right)^{3}\right)^{2}}{\left(2 z_{x y}-\left(z_{y y}\right)^{2}\right)^{3}}=c\right)
$$

Motivation

- Non-MA hyperbolic PDE arise in hydrodynamic reduction of hyperbolic PDE in 3 indep vars (Smith, 2010)
- LG perspective on PDE in recent literature:
(1) Yamaguchi (1982)
(2) Ferapontov et al. (2009)
(3) Smith (2010)
(9) Doubrov-Ferapontov (2010)
(6) Alexeevsky et al. (2010)

What is a PDE? (Classical)

Definition

A PDE $F=0$ is a hypersurface $\Sigma^{7} \subset J^{2}\left(\mathbb{R}^{2}, \mathbb{R}\right)$, transverse to $\pi_{1}^{2}: J^{2}\left(\mathbb{R}^{2}, \mathbb{R}\right) \rightarrow J^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$.

$$
\begin{aligned}
& \Sigma=F^{-1}(0) \subset J^{2}\left(\mathbb{R}^{2}, \mathbb{R}\right):(x, y, z, p, q, r, s, t) \\
& \underbrace{\downarrow} \pi_{1}^{2} \\
& J^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right):(x, y, z, p, q)
\end{aligned}
$$

The jet spaces come equipped with contact systems:
(1) $J^{1}: \sigma=d z-p d x-q d y$.
(2) $J^{2}: \sigma$ and $\sigma^{1}=d p-r d x-s d y, \sigma^{2}=d q-s d x-t d y$.

GOAL: Classify PDE up to (local) contact transformations.

What is a PDE? (Yamaguchi, 1982)

J : contact 5-mfld, i.e. \exists corank 1 distribution $C=\{\sigma=0\} \subset T J$ s.t. $\eta=d \sigma$ on C is nondegenerate.

Darboux thm: $(J, C) \simeq_{\text {loc }} J^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$.

Definition

Given $\left(\mathbb{R}^{4}, \eta\right)$ symplectic, $\operatorname{LG}(2,4):=$ isotropic 2-planes in \mathbb{R}^{4}.
Lagrange-Grassmann bundle $L(J) \xrightarrow{\pi} J$:

$$
L(J)=\bigcup_{\xi \in J} \operatorname{LG}\left(C_{\xi},[\eta]\right), \quad \widetilde{C}_{\tilde{\xi}}=\pi_{*}^{-1}(\tilde{\xi}),\left.\quad \tilde{\xi} \in L(J)\right|_{\xi} \subset C_{\xi}
$$

We have: $(L(J), \widetilde{C}) \simeq_{\text {loc }} J^{2}\left(\mathbb{R}^{2}, \mathbb{R}\right)$.

Definition

A PDE is hypersurface in $L(J)$ transverse to $L(J) \xrightarrow{\pi} J$.

Locally speaking...

On J, have $\sigma=d z-p d x-q d y$, and

$$
C=\{\sigma=0\}=\operatorname{span}\left\{\partial_{x}+p \partial_{z}, \partial_{y}+q \partial_{z}, \partial_{p}, \partial_{q}\right\}
$$

and

$$
\eta=d \sigma=d x \wedge d p+d y \wedge d q \sim\left(\begin{array}{cc}
0 & I_{2} \\
-I_{2} & 0
\end{array}\right) \quad \text { on } \quad C
$$

Then at $\xi=(x, y, z, p, q)$,

$$
(r, s, t) \leftrightarrow \operatorname{span}\left\{\partial_{x}+p \partial_{z}+r \partial_{p}+s \partial_{q}, \partial_{y}+q \partial_{z}+s \partial_{p}+t \partial_{q}\right\}
$$

Contact transformations

- ϕ contact on $J \Leftrightarrow \phi_{*} C=C$. In fact, $\phi_{*}:(C,[\eta]) \rightarrow(C,[\eta])$ is conformal symplectomorphism.

$$
\text { Prolongation to } L(J):=\phi_{*}=\text { induced map of } L G^{\prime} \text { s. }
$$

- Backlünd thm:
Φ contact on $L(J) \Rightarrow \Phi=\phi_{*}$ for ϕ contact on J.

Symplectic invariants yield contact invariants

IDEA: Do a fibrewise study of PDE.

i.e. Given $F(x, y, z, p, q, r, s, t)=0$, freeze any $\xi=(x, y, z, p, q)$ and study the surface $F(r, s, t ; \xi)=0$ in $\operatorname{LG}\left(C_{\xi}\right) \cong \operatorname{LG}(2,4)$.

Theorem (2010)

Any $\operatorname{CSp}(4, \mathbb{R})$ differential invariant for surfaces in $\operatorname{LG}(2,4)$ induces a contact invariant for PDE.

Generalizes to n-indep. vars. and to systems. (Only 1 dep. var.) NOTE: This study only takes into account "vertical derivatives". e.g. Cannot distinguish btw $z_{x y}=0$ or any hyperbolic MA PDE.

What's the point?: New invariants for non-MA PDE.

Elliptic, parabolic, hyperbolic PDE

$$
\operatorname{Sp}(4, \mathbb{R}) \text { is SPECIAL: } \operatorname{Sp}(4, \mathbb{R}) \cong \operatorname{Spin}(2,3)
$$

Have a $\operatorname{CSp}(4, \mathbb{R})$-invariant (Lorentzian) conformal structure $[\mu]$, so a cone $\mathcal{C}=\{\mu=0\}$ in each tangent space of $\operatorname{LG}(2,4)$.

Classical description: Relative invariant $\Delta=F_{r} F_{t}-\frac{1}{4}\left(F_{s}\right)^{2}$. Ell: $\Delta>0$, par: $\Delta=0$, hyp: $\Delta<0$ (evaluated on $F=0$). $L G$ perspective: Let $M^{2} \subset \operatorname{LG}(2,4) . T M \cap \mathcal{C}$ looks like:

Elliptic

Hyperbolic

Projective realization and "spheres"

Plücker embedding: $\operatorname{Gr}(2,4) \hookrightarrow \mathbb{P}\left(\bigwedge^{2} \mathbb{R}^{4}\right)$. This restricts to $\operatorname{LG}(2,4) \hookrightarrow \mathbb{P} V=\mathbb{R P}^{4}$, where

$$
V=\bigwedge_{0}^{2} \mathbb{R}^{4}:=\left\{z \in \bigwedge^{2} \mathbb{R}^{4}: \eta(z)=0\right\} .
$$

On V, have sig. $(2,3)$ scalar product: $\langle\cdot, \cdot\rangle=\eta \wedge \eta$, and

$$
\operatorname{LG}(2,4)=\mathcal{Q}=\{[z] \in \mathbb{P} V:\langle z, z\rangle=0\} .
$$

Definition

For any $[z] \in \mathbb{P} V$, we refer to $\mathcal{S}_{[z]}=\mathbb{P}\left(z^{\perp}\right) \cap \mathcal{Q}$ as a "sphere".
i.e. if $[w] \in \mathcal{Q}$, we have $[w] \in \mathcal{S}_{[z]}$ iff $\langle w, z\rangle=0$.

Thus, orthogonality \leftrightarrow incidence!

Locally speaking...

Take $\eta=\left(\begin{array}{cc}0 & I_{2} \\ -I_{2} & 0\end{array}\right)$ wrt $\left\{e_{1}, \ldots, e_{4}\right\}$. Let $o=\operatorname{span}\left\{e_{1}, e_{2}\right\}$. Then
(1) $\operatorname{LG}(2,4)=\operatorname{CSp}(4, \mathbb{R}) / P$, where $P=\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$.
(2) Nbd. of o is $\left(\begin{array}{ll}l_{2} & 0 \\ X & l_{2}\end{array}\right) / P$, where $X=\left(\begin{array}{ll}r & s \\ s & t\end{array}\right)$ $\leftrightarrow \operatorname{span}\left\{e_{1}+r e_{3}+s e_{4}, e_{2}+s e_{3}+t e_{4}\right\}$.
(3) Conformal structure: $[\mu]=\left[d r d t-d s^{2}\right]$.
(4) $\left(e_{1}+r e_{3}+s e_{4}\right) \wedge\left(e_{2}+s e_{3}+t e_{4}\right)$
$=e_{1} \wedge e_{2}+r e_{3} \wedge e_{2}+s\left(e_{1} \wedge e_{3}-e_{2} \wedge e_{4}\right)+t e_{1} \wedge e_{4}+\left(r t-s^{2}\right) e_{3} \wedge e_{4}$
$(r, s, t) \leftrightarrow\left[1, r, s, t, r t-s^{2}\right] \in \mathcal{Q}$,
$\langle\cdot, \cdot\rangle=\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0\end{array}\right)$
(5) $\mathcal{S}_{[z]}: \quad 0=\langle w, z\rangle=-z_{0}\left(r t-s^{2}\right)+z_{3} r-2 z_{2} s+z_{1} t-z_{4}$.

Fibrewise, this is exactly the Monge-Ampère PDE: it's a sphere.

Invariance of the Monge-Ampère PDE

There are 3 types of spheres $\mathcal{S}_{[z]}$ according to sign of $\langle z, z\rangle$:

Theorem (Classical)

The class of ell. / par. / hyp. MA PDE are contact invariant.
New proof: "sphere", ell., par., hyp. are all $\operatorname{CSp}(4, \mathbb{R})$ inv. notions.

Moving frames - adaptations

GOAL: $\operatorname{CSp}(4, \mathbb{R})$-inv. study of hyperbolic $M^{2} \subset \mathcal{Q}^{3} \subset \mathbb{P} V \cong \mathbb{R P}^{4}$.
NOTE: No intrinsic geometry. (Any surface is conformally flat.)
Use moving frames!
Geometric interpretation:
A frame $v=\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\right)$ of V is a 5 -tuple of spheres.
Projective moving frame adaptations:
(0) (a) $\left[\mathrm{v}_{0}\right] \in M$
(b) $T_{\mathrm{v}_{0}} \widehat{\mathcal{Q}}=\mathrm{v}_{0}^{\perp}=\operatorname{span}\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\} .(\widehat{\mathcal{Q}}=\operatorname{cone}(\mathcal{Q}))$
(1) (a) $T_{\mathrm{v}_{0}} \widehat{M}=\operatorname{span}\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}\right\} .(\widehat{M}=\operatorname{cone}(M))$
(b) Hyperbolic: Require $\overline{v_{1}}, \overline{v_{2}}$ to be null.
(2) $\mathcal{S}_{\left[\mathrm{v}_{3}\right]}=$ central tangent sphere
(3) If $M \neq$ sphere, \exists normalizing cones $\mathcal{S}_{\left[\mathrm{v}_{1}\right]}, \mathcal{S}_{\left[\mathrm{v}_{2}\right]}$. Finally, $\left[\mathrm{v}_{4}\right]=\mathcal{S}_{\left[\mathrm{v}_{1}\right]} \cap \mathcal{S}_{\left[\mathrm{v}_{2}\right]} \cap \mathcal{S}_{\left[\mathrm{v}_{3}\right]}=$ conjugate point is determined.

Moving frames - geometric picture

For hyp. M, use hyp. frames v :

$$
\left\langle\mathrm{v}_{i}, \mathrm{v}_{j}\right\rangle=\left(\begin{array}{c|cc|c|c}
0 & 0 & 0 & 0 & -1 \\
\hline 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & -2 & 0 \\
\hline-1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Recall: orthogonality \leftrightarrow incidence!

Definition

The conjugate manifold M^{\prime} is the image of $M \rightarrow \mathcal{Q}, p \mapsto\left[\left.v_{4}\right|_{p}\right]$. Given PDE Σ, can fibrewise construct the conjugate PDE Σ^{\prime}.

NOTE: Conjugation is not an involution!

A classification of hyperbolic PDE Maximally symmetric generic hyperbolic PDE and G_{2}

PDE and Jet Spaces

Classification of hyperbolic surfaces / PDE

e.g. (i) $s=\frac{1}{2} t^{2}$: SR, M^{\prime} pt; (ii) $3 r t^{3}+1=0$ or $\frac{\left.(3 r-6 s t+2)^{3}\right)^{2}}{\left(2 s-t^{2}\right)^{3}}=c$: gen., M^{\prime} pt; (iii) $r=e^{t}$: gen., M^{\prime} surface; (iv) $r t=-1$: gen. (Dupin cyclide), $M^{\prime}=\{r t=-9\}$.

Maximally symmetric generic hyperbolic PDE

Definition

A hyperbolic PDE is of generic type if $I_{1} I_{2} \neq 0$, i.e. fibrewise, \exists null geodesics.

Theorem (Vranceanu 1937, T. 2008)

(1) Any gen. hyp. PDE has ≤ 9-dim contact sym [sharp].
(2) All max. sym. models are given by

A: $3 r t^{3}+1=0$
B: $\frac{\left(3 r-6 s t+2 t^{3}\right)^{2}}{\left(2 s-t^{2}\right)^{3}}=c$, where $c<-4$ or $c \geq 0(*)$
$(*):$ if $c=0$, need $s>\frac{t^{2}}{2}$ for hyperbolicity.

Degenerations to Cartan's G_{2}-models

Let $G=G_{2}$ (non-cpt). Relations to Cartan's 5-vars paper (1910):
(1) $\frac{\left(3 r-6 s t+2 t^{3}\right)^{2}}{\left(2 s-t^{2}\right)^{3}}=c$ has contact sym. alg. $\cong \underline{\mathfrak{p}_{1} \subset \mathfrak{g}}$
(2) $c=0$: type-changing $3 r-6 s t+2 t^{3}=0$. Parabolic locus is Cartan's involutive system:

$$
r=\frac{t^{3}}{3}, \quad s=\frac{t^{2}}{2}
$$

(3) $c=-4$: Cartan's parabolic Goursat model:

$$
9 r^{2}-36 r s t+12 r t^{3}-12 s^{2} t^{2}+32 s^{3}=0
$$

Preview: The global picture

FACT: $J=G / P_{2}$ is a contact 5 -mfld.
The G-action prolongs to $L(J) \rightarrow J$. Orbit decomposition:

$$
L(J)=\mathcal{O}_{8} \cup \mathcal{O}_{7} \cup \mathcal{O}_{6}
$$

where

- $\mathcal{O}_{8}=$ open orbit;
- $\mathcal{O}_{7}=$ parabolic Goursat model;
- $\mathcal{O}_{6}=$ involutive system.

Theorem (2011)

The open orbit $\mathcal{O}_{8} \subset L(J)$ is globally foliated by $\widetilde{P_{1}}$-orbits, all 7-dim. Moreover, every Type B max. sym. generic hyp. PDE occurs as a leaf in this foliation. (Note: \exists other leaves.)

A classification of hyperbolic PDE Maximally symmetric generic hyperbolic PDE and G_{2}

The parabolic subalgebra \mathfrak{p}_{2}

$\mathfrak{g}:$

$$
\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right] \subset \mathfrak{g}_{\alpha+\beta}
$$

$$
\mathfrak{g}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \overbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}}^{\mathfrak{p}_{2}=\mathfrak{g}_{2}}
$$

$$
\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}
$$

Some $\mathfrak{s l}_{2}$-representation theory

For orbit decomp. of $L(J)$, look at fibre over $o \in J=G / P$.
(1) $T_{o}(G / P)=\mathfrak{g} / \mathfrak{p} \supset \mathfrak{g}_{-1} / \mathfrak{p}=C_{o}(P$-invariant $)$.
(2) Trivial \mathfrak{g}_{+}-action on C_{0}; reduce to \mathfrak{g}_{0}-action, where $\mathfrak{g}_{0}=\mathfrak{g l}_{2}$.
(3) GOAL: Understand $G L_{2}$-orbits on $\operatorname{LG}\left(C_{o}\right)=\mathcal{Q} \subset \mathbb{P}\left(\bigwedge_{0}^{2} C_{o}\right)$.

As $\mathfrak{s l}_{2}$-reps,

$$
C_{0}=\Gamma_{3}=S^{3} \mathbb{R}^{2} \quad \text { and } \quad \bigwedge_{0}^{2} C_{0}=\Gamma_{4}=S^{4} \mathbb{R}^{2} \text {. }
$$

Clebsch-Gordan ($\mathfrak{s l}_{2}$-inv.) pairings give:
(1) symplectic form η on $\Gamma_{3}\left(\mathrm{so}, \mathfrak{s l}_{2} \rightarrow \mathfrak{s p}_{4}\right)$
(2) sig. $(2,3)$ scalar product $\langle\cdot, \cdot\rangle$ on $\Gamma_{4}\left(\right.$ so, $\left.\mathfrak{s l}_{2} \rightarrow \mathfrak{s o}(2,3)\right)$

$G L_{2}$-orbits in $\mathcal{Q} \subset \mathbb{P}\left(\Gamma_{4}\right)$

On $\Gamma_{4}=S^{4}\left(\mathbb{R}^{2}\right)$:

- $\langle f, f\rangle=2 f_{x x x x} f_{y y y y}-8 f_{x x x y} f_{y y y x}+6 f_{x x y y} f_{y y x x}$.

On $\mathcal{Q}=\{[f]:\langle f, f\rangle=0\} \subset \mathbb{P}\left(\Gamma_{4}\right)$, there are three $G L_{2}$-orbits:

$G L_{2}$-orbit	Description	Representative	G-orbit
\mathcal{S}_{1}	$v_{4}\left(\mathbb{P}^{1}\right)$	$\left[x^{4}\right]$	\mathcal{O}_{6}
\mathcal{S}_{2}	$\tau\left(\mathcal{S}_{1}\right) \backslash \mathcal{S}_{1}$	$\left[x^{3} y\right]$	\mathcal{O}_{7}
\mathcal{S}_{3}	$\mathcal{Q} \backslash \tau\left(\mathcal{S}_{1}\right)$	$\left[x y\left(x^{2}-\sqrt{3} x y+y^{2}\right)\right]$	\mathcal{O}_{8}

Here,

- $\mathcal{S}_{1}=$ rational normal quartic $=\left\{\left[a^{4}\right]:[a] \in \mathbb{P}^{1}\right\}$
- $\tau\left(\mathcal{S}_{1}\right)=$ tangential variety $=\left\{\left[a^{3} b\right]:[a],[b] \in \mathbb{P}^{1}\right\}$

Coordinate description of $G L_{2}$-orbits

The induced $\mathfrak{s l}_{2}$-action in affine coords (r, s, t) on $\mathrm{LG}\left(C_{o}\right)$:

$$
\begin{array}{lccr}
\mathrm{H}: & -3 r \partial_{r} & -2 s \partial_{s} & -t \partial_{t} \\
\mathrm{X}: & 4 s^{2} \partial_{r}+(4 s t-3 r) \partial_{s}+\left(4 t^{2}-6 s\right) \partial_{t} \\
\mathrm{Y}: & -2 s \partial_{r} & -t \partial_{s} & -\partial_{t}
\end{array}
$$

The $G L_{2}$-action has orbits:
(1) \mathcal{S}_{1} : locally, $r=\frac{t^{3}}{3}, s=\frac{t^{2}}{2}$.

$$
\mathbf{y}=\left(1, r, s, t, r t-s^{2}\right)=\left(1, \frac{t^{3}}{3}, \frac{t^{2}}{2}, t, \frac{t^{4}}{12}\right) .
$$

(2) \mathcal{S}_{2} : locally, $9 r^{2}-36 r s t+12 r t^{3}-12 s^{2} t^{2}+32 s^{3}=0$.

$$
\mathbf{x}=\left(1, r, s, t, r t-s^{2}\right)=\mathbf{y}+u \mathbf{y}^{\prime} \Rightarrow \frac{\left(3 r-6 s t+2 t^{3}\right)^{2}}{\left(2 s-t^{2}\right)^{3}}=-4
$$

A classification of hyperbolic PDE Maximally symmetric generic hyperbolic PDE and G_{2}

The parabolic subalgebra \mathfrak{p}_{1}

$\mathfrak{p}_{1}:$

$$
\begin{aligned}
\mathfrak{g}= & \mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \\
& \oplus \underbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}}_{\mathfrak{p}_{1}=\mathfrak{g}_{\geq 0}}
\end{aligned}
$$

Flip P_{1} !

The relative position of P_{1} wrt P_{2} matters. Take \square

$\widetilde{P_{1}} \cap P_{2}=$ subgrp of $\widetilde{P_{1}}$ fixing $o \in J=G / P_{2}$:

- long root \& grading elt act trivially on $\mathcal{Q} \cong \mathrm{LG}\left(C_{0}\right)$.
- has 2 -dim orbits on $\mathcal{S}_{3} \subset \mathcal{Q}$,
- locally, $\frac{\left(3 r-6 s t+2 t^{3}\right)^{2}}{\left(2 s-t^{2}\right)^{3}}$ is a diff. inv. (i.e. preserved by H, Y)

The open orbit

Let $L \subset G L_{2}$ be the lower triangular 2×2 matrices.

Theorem

$\mathcal{S}_{3} \subset \mathcal{Q}$ is globally foliated by L-orbits

- $\mathcal{T}_{c}, c \neq-4$:
- gen. hyp: $c<-4$ or $c>0$; for $c=0$, have \mathcal{T}_{0}^{-}
- (gen.?) ell: $0<c<4$; for $c=0$, have \mathcal{T}_{0}^{+}
- \mathcal{T}_{∞} : singly-ruled hyperbolic
- \mathcal{N} : parabolic

Using the $\widetilde{P_{1}}$-action, \exists corresponding foliation of $\mathcal{O}_{8} \subset L(J)$.
Eqns in local coords:

- $\mathcal{T}_{c}: \frac{\left(3 r-6 s t+2 t^{3}\right)^{2}}{\left(2 s-t^{2}\right)^{3}}=c$.
- $\mathcal{T}_{\infty}: s=\frac{t^{2}}{2}$.
- $\mathcal{N}: r t-s^{2}=0$ (different chart).

Open questions

(1) How to get PDE structure eqns adapted to moving frame adaptations in a fibre?
(2) Is the conjugate PDE useful / interesting?
(3) Submanifold theory in $\operatorname{LG}(n, 2 n)$ for $n \geq 3$? Geometrically interesting classes?

