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Outline

Main theme:

Use surface theory in LG(2, 4) (mod CSp(4,R))
to study the geometry of PDE

F (x , y , z , zx , zy , zxx , zxy , zyy ) = 0

Outline:

1 A classification of (non-MA) hyperbolic PDE

2 Maximally symmetric “generic” hyperbolic PDE and G2(
e.g.

(3zxx − 6zxy zyy + 2(zyy )3)2

(2zxy − (zyy )2)3
= c

)
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Motivation

Non-MA hyperbolic PDE arise in hydrodynamic reduction of
hyperbolic PDE in 3 indep vars (Smith, 2010)

LG perspective on PDE in recent literature:
1 Yamaguchi (1982)
2 Ferapontov et al. (2009)
3 Smith (2010)
4 Doubrov–Ferapontov (2010)
5 Alexeevsky et al. (2010)

Dennis The LG(2, 4), hyperbolic PDE, and G2



A classification of hyperbolic PDE
Maximally symmetric generic hyperbolic PDE and G2

PDE and Jet Spaces
Geometry of LG(2, 4)
Moving frames

What is a PDE? (Classical)

Definition

A PDE F = 0 is a hypersurface Σ7 ⊂ J2(R2,R), transverse to
π2

1 : J2(R2,R)→ J1(R2,R).

Σ = F−1(0) ⊂ J2(R2,R)

π2
1

��

: (x , y , z , p, q, r , s, t)

J1(R2,R) : (x , y , z , p, q)

The jet spaces come equipped with contact systems:

1 J1: σ = dz − pdx − qdy .

2 J2: σ and σ1 = dp − rdx − sdy , σ2 = dq − sdx − tdy .

GOAL: Classify PDE up to (local) contact transformations.
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What is a PDE? (Yamaguchi, 1982)

J : contact 5-mfld, i.e. ∃ corank 1 distribution C = {σ = 0} ⊂ TJ
s.t. η = dσ on C is nondegenerate.

Darboux thm: (J,C ) 'loc J1(R2,R).

Definition

Given (R4, η) symplectic, LG(2, 4) := isotropic 2-planes in R4.

Lagrange–Grassmann bundle L(J)
π→ J:

L(J) =
⋃
ξ∈J

LG(Cξ, [η]), C̃ξ̃ = π−1
∗ (ξ̃), ξ̃ ∈ L(J)|ξ ⊂ Cξ.

We have: (L(J), C̃ ) 'loc J2(R2,R).

Definition

A PDE is hypersurface in L(J) transverse to L(J)
π→ J.
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Locally speaking...

On J, have σ = dz − pdx − qdy , and

C = {σ = 0} = span{∂x + p∂z , ∂y + q∂z , ∂p, ∂q},

and

η = dσ = dx ∧ dp + dy ∧ dq ∼
(

0 I2
−I2 0

)
on C .

Then at ξ = (x , y , z , p, q),

(r , s, t)↔ span{∂x + p∂z + r∂p + s∂q, ∂y + q∂z + s∂p + t∂q}.
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Contact transformations

φ contact on J ⇔ φ∗C = C . In fact, φ∗ : (C , [η])→ (C , [η])
is conformal symplectomorphism.

Prolongation to L(J) := φ∗ = induced map of LG ’s.

Backlünd thm:
Φ contact on L(J) ⇒ Φ = φ∗ for φ contact on J.
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Symplectic invariants yield contact invariants

IDEA: Do a fibrewise study of PDE.

i.e. Given F (x , y , z , p, q, r , s, t) = 0, freeze any ξ = (x , y , z , p, q)
and study the surface F (r , s, t; ξ) = 0 in LG(Cξ) ∼= LG(2, 4).

Theorem (2010)

Any CSp(4,R) differential invariant for surfaces in LG(2, 4)
induces a contact invariant for PDE.

Generalizes to n-indep. vars. and to systems. (Only 1 dep. var.)

NOTE: This study only takes into account “vertical derivatives”.
e.g. Cannot distinguish btw zxy = 0 or any hyperbolic MA PDE.

What’s the point?: New invariants for non-MA PDE.
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Elliptic, parabolic, hyperbolic PDE

Sp(4,R) is SPECIAL: Sp(4,R) ∼= Spin(2, 3)

Have a CSp(4,R)-invariant (Lorentzian) conformal structure [µ],
so a cone C = {µ = 0} in each tangent space of LG(2, 4).

Classical description: Relative invariant ∆ = Fr Ft − 1
4 (Fs)2.

Ell: ∆ > 0, par: ∆ = 0, hyp: ∆ < 0 (evaluated on F = 0).

LG perspective: Let M2 ⊂ LG(2, 4). TM ∩ C looks like:

Q: This is a first order invariant. Higher order invariants?Dennis The LG(2, 4), hyperbolic PDE, and G2
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Projective realization and “spheres”

Plücker embedding: Gr(2, 4) ↪→ P(
∧2 R4). This restricts to

LG(2, 4) ↪→ PV = RP4, where

V =
∧2

0 R4 := {z ∈
∧2 R4 : η(z) = 0}.

On V , have sig. (2, 3) scalar product: 〈·, ·〉 = η ∧ η, and

LG(2, 4) = Q = {[z ] ∈ PV : 〈z , z〉 = 0}.

Definition

For any [z ] ∈ PV , we refer to S[z] = P(z⊥) ∩Q as a “sphere”.

i.e. if [w ] ∈ Q, we have [w ] ∈ S[z] iff 〈w , z〉 = 0.

Thus, orthogonality ↔ incidence!
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Locally speaking...

Take η =

„
0 I2
−I2 0

«
wrt {e1, ..., e4}. Let o = span{e1, e2}. Then

1 LG(2, 4) = CSp(4,R)/P, where P =

„
∗ ∗
0 ∗

«
.

2 Nbd. of o is

„
I2 0
X I2

«
/P, where X =

„
r s
s t

«
↔ span{e1 + re3 + se4, e2 + se3 + te4}.

3 Conformal structure: [µ] = [drdt − ds2].

4 (e1 + re3 + se4) ∧ (e2 + se3 + te4)
= e1 ∧ e2 + re3 ∧ e2 + s(e1 ∧ e3 − e2 ∧ e4) + te1 ∧ e4 + (rt − s2)e3 ∧ e4

(r , s, t)↔ [1, r , s, t, rt − s2] ∈ Q , 〈·, ·〉 =

0BBB@
0 0 0 0 −1
0 0 0 1 0
0 0 −2 0 0
0 1 0 0 0
−1 0 0 0 0

1CCCA
5 S[z] : 0 = 〈w , z〉 = −z0(rt − s2) + z3r − 2z2s + z1t − z4.

Fibrewise, this is exactly the Monge–Ampère PDE: it’s a sphere.
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Invariance of the Monge–Ampère PDE

There are 3 types of spheres S[z] according to sign of 〈z , z〉:

Theorem (Classical)

The class of ell. / par. / hyp. MA PDE are contact invariant.

New proof: “sphere”, ell., par., hyp. are all CSp(4,R) inv. notions.
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Moving frames – adaptations

GOAL: CSp(4,R)-inv. study of hyperbolic M2 ⊂ Q3 ⊂ PV ∼= RP4.

NOTE: No intrinsic geometry. (Any surface is conformally flat.)

Use moving frames!

Geometric interpretation:
A frame v = (v0, v1, v2, v3, v4) of V is a 5-tuple of spheres.

Projective moving frame adaptations:
0 (a) [v0] ∈ M

(b) Tv0Q̂ = v⊥0 = span{v0, v1, v2, v3}. (Q̂ = cone(Q))

1 (a) Tv0 M̂ = span{v0, v1, v2}. (M̂ = cone(M))
(b) Hyperbolic: Require v1, v2 to be null.

2 S[v3] = central tangent sphere
3 If M 6= sphere, ∃ normalizing cones S[v1],S[v2]. Finally,

[v4] = S[v1] ∩ S[v2] ∩ S[v3] = conjugate point is determined.
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Moving frames – geometric picture

For hyp. M, use hyp. frames v:

〈vi , vj 〉 =

0BBBB@
0 0 0 0 −1
0 0 1 0 0
0 1 0 0 0
0 0 0 −2 0
−1 0 0 0 0

1CCCCA
Recall: orthogonality ↔ incidence!

Definition

The conjugate manifold M ′ is the image of M → Q, p 7→ [v4|p].
Given PDE Σ, can fibrewise construct the conjugate PDE Σ′.

NOTE: Conjugation is not an involution!
Dennis The LG(2, 4), hyperbolic PDE, and G2
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Classification of hyperbolic surfaces / PDE

e.g. (i) s = 1
2 t2: SR, M ′ pt; (ii) 3rt3 + 1 = 0 or (3r−6st+2t3)2

(2s−t2)3 = c : gen.,

M ′ pt; (iii) r = et : gen., M ′ surface; (iv) rt = −1: gen. (Dupin cyclide),

M ′ = {rt = −9}.
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Maximally symmetric generic hyperbolic PDE

Definition

A hyperbolic PDE is of generic type if I1I2 6= 0, i.e. fibrewise, @
null geodesics.

Theorem (Vranceanu 1937, T. 2008)

1 Any gen. hyp. PDE has ≤ 9-dim contact sym [sharp].
2 All max. sym. models are given by

A: 3rt3 + 1 = 0

B:
(3r − 6st + 2t3)2

(2s − t2)3
= c, where c < −4 or c ≥ 0 (∗)

(∗) : if c = 0, need s > t2

2 for hyperbolicity.
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Degenerations to Cartan’s G2-models

Let G = G2 (non-cpt). Relations to Cartan’s 5-vars paper (1910):

1
(3r − 6st + 2t3)2

(2s − t2)3
= c has contact sym. alg. ∼= p1 ⊂ g

2 c = 0: type-changing 3r − 6st + 2t3 = 0. Parabolic locus is
Cartan’s involutive system:

r =
t3

3
, s =

t2

2

3 c = −4: Cartan’s parabolic Goursat model:

9r 2 − 36rst + 12rt3 − 12s2t2 + 32s3 = 0
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Preview: The global picture

FACT: J = G/P2 is a contact 5-mfld.

The G -action prolongs to L(J)→ J. Orbit decomposition:

L(J) = O8 ∪ O7 ∪ O6,

where

O8 = open orbit;

O7 = parabolic Goursat model;

O6 = involutive system.

Theorem (2011)

The open orbit O8 ⊂ L(J) is globally foliated by P̃1-orbits, all
7-dim. Moreover, every Type B max. sym. generic hyp. PDE
occurs as a leaf in this foliation. (Note: ∃ other leaves.)
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The parabolic subalgebra p2

g: <s s
(3,2)

(0,1) (1,1) (2,1) (3,1)

(1,0) [gα, gβ] ⊂ gα+β

p2: <@@��
s s g = g−2 ⊕ g−1 ⊕

p2=g≥0︷ ︸︸ ︷
g0 ⊕ g1 ⊕ g2

[gi , gj ] ⊂ gi+j
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Some sl2-representation theory

For orbit decomp. of L(J), look at fibre over o ∈ J = G/P.

1 To(G/P) = g/p ⊃ g−1/p = Co (P-invariant).

2 Trivial g+-action on Co ; reduce to g0-action, where g0 = gl2.

3 GOAL: Understand GL2-orbits on LG(Co) = Q ⊂ P(
∧2

0 Co).

As sl2-reps,

Co = Γ3 = S3R2 and
∧2

0 Co = Γ4 = S4R2 .

Clebsch–Gordan (sl2-inv.) pairings give:

1 symplectic form η on Γ3 (so, sl2 → sp4)

2 sig. (2, 3) scalar product 〈·, ·〉 on Γ4 (so, sl2 → so(2, 3))
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GL2-orbits in Q ⊂ P(Γ4)

On Γ4 = S4(R2):

〈f , f 〉 = 2fxxxx fyyyy − 8fxxxy fyyyx + 6fxxyy fyyxx .

On Q = {[f ] : 〈f , f 〉 = 0} ⊂ P(Γ4), there are three GL2-orbits:

GL2-orbit Description Representative G -orbit

S1 v4(P1) [x4] O6

S2 τ(S1)\S1 [x3y ] O7

S3 Q\τ(S1) [xy(x2 −
√

3xy + y 2)] O8

Here,

S1 = rational normal quartic = {[a4] : [a] ∈ P1}
τ(S1) = tangential variety = {[a3b] : [a], [b] ∈ P1}
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Coordinate description of GL2-orbits

The induced sl2-action in affine coords (r , s, t) on LG(Co):

H : −3r∂r −2s∂s −t∂t

X : 4s2∂r +(4st − 3r)∂s+(4t2 − 6s)∂t

Y : −2s∂r −t∂s −∂t

The GL2-action has orbits:

1 S1: locally, r = t3

3 , s = t2

2 .

y = (1, r , s, t, rt − s2) =

(
1,

t3

3
,

t2

2
, t,

t4

12

)
.

2 S2: locally, 9r 2 − 36rst + 12rt3 − 12s2t2 + 32s3 = 0.

x = (1, r , s, t, rt−s2) = y+uy′ ⇒ (3r − 6st + 2t3)2

(2s − t2)3
= −4.
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The parabolic subalgebra p1

p1: <@@��
s s g =g−3 ⊕ g−2 ⊕ g−1

⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3︸ ︷︷ ︸
p1=g≥0
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Flip P1!

The relative position of P1 wrt P2 matters. Take P̃1 = Pop
1 .

P̃1 P2 P̃1 ∩ P2

⋂
=

P̃1 ∩ P2 = subgrp of P̃1 fixing o ∈ J = G/P2:

long root & grading elt act trivially on Q ∼= LG(Co).

has 2-dim orbits on S3 ⊂ Q,

locally, (3r−6st+2t3)2

(2s−t2)3 is a diff. inv. (i.e. preserved by H, Y)
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The open orbit

Let L ⊂ GL2 be the lower triangular 2× 2 matrices.

Theorem

S3 ⊂ Q is globally foliated by L-orbits

Tc , c 6= −4:

gen. hyp: c < −4 or c > 0; for c = 0, have T −0
(gen.?) ell: 0 < c < 4; for c = 0, have T +

0

T∞ : singly-ruled hyperbolic

N : parabolic

Using the P̃1-action, ∃ corresponding foliation of O8 ⊂ L(J).

Eqns in local coords:

Tc : (3r−6st+2t3)2

(2s−t2)3 = c .

T∞: s = t2

2 .
N : rt − s2 = 0 (different chart).
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Open questions

1 How to get PDE structure eqns adapted to moving frame
adaptations in a fibre?

2 Is the conjugate PDE useful / interesting?

3 Submanifold theory in LG (n, 2n) for n ≥ 3? Geometrically
interesting classes?
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