**Effective Cartan-Tanaka Connections on**  $\mathscr{C}^6$ -smooth

# **Strongly Pseudoconvex Hypersurfaces** $M^3$ in $\mathbb{C}^2$

JOËL MERKER

Département de Mathématiques d'Orsay Paris-Sud University France www.math.ens.fr/~merker/

- **I.** Gaussian curvature of surfaces
- II. Spherical real analytic hypersurfaces  $M^3 \subset \mathbb{C}^2$
- **III.** Cartan connections and curvature functions
- **IV. Explicit curvatures and coframes**
- **V. Perspectives on explicit Cartan CR connections**

"Cartan connections,

Geometry of Homogeneous Spaces, and Dynamics" Organized by A. Čap, C. Frances and K. Melnick at the Erwin Schrödinger Institute (Vienna, Austria) July 10 – July 23, 2011

## **I** – Gaussian curvature of surfaces

• Surfaces  $S^2$  embedded in  $\mathbb{R}^3$ :



• Gaussian curvature: Defined *extrinsically* as the quotient of two infinitesimal areas:



• Local representation of the surface as a graph:

z = z(x, y)

• Extrinsic formula for the curvature:

Gaussian curvature = 
$$\frac{z_{xx} z_{yy} - z_{xy}^2}{(1 + z_x^2 + z_y^2)^2}$$

• Gauss' 1816 Preisschrift: Using geodesic triangles: The curvature of a surface remains unchanged when it undergoes any deformation which leaves invariant the length of curves.

[Infinitesimal isometries]

• **Principle of sufficient reason (Leibniz):** Curvature should express in terms of the *intrinsic metric*:

 $ds^{2} = E(u, v) du^{2} + 2F(u, v) dudv + G(u, v) dv^{2}.$ 

## • Hard calculation performed by Gauss:

□ start out from an intrinsic parametrization:

$$(u,v) \longmapsto (x(u,v), y(u,v), z(u,v)));$$

accordingly the metric coefficients:

$$E = x_u^2 + y_u^2 + z_u^2, F = x_u x_v + y_u y_v + z_u z_v, G = x_v^2 + y_v^2 + z_v^2;$$

 $\Box \text{ eliminate } z = z(x, y) \text{ from extrinsic curvature:} \\ \frac{z_{xx} z_{yy} - z_{xy}^2}{(1 + z_x^2 + z_y^2)^2}.$ 

• **Theorema Egregium:** The (Gaussian) curvature of a surface is *intrinsic <u>because</u>* it expresses as the following explicit rational differential expression in the second-order jet of the three elements E, F, G:

$$\begin{aligned} \mathbf{curvature} &= \frac{1}{4 \left( EG - F^2 \right)^2} \bigg\{ E \bigg[ \frac{\partial E}{\partial v} \cdot \frac{\partial G}{\partial v} - 2 \frac{\partial F}{\partial u} \cdot \frac{\partial G}{\partial v} + \frac{\partial G}{\partial u} \cdot \frac{\partial G}{\partial u} \bigg] \\ &+ F \bigg[ \frac{\partial E}{\partial u} \cdot \frac{\partial G}{\partial v} - \frac{\partial E}{\partial v} \cdot \frac{\partial G}{\partial u} - 2 \frac{\partial E}{\partial v} \cdot \frac{\partial F}{\partial v} + 4 \frac{\partial F}{\partial u} \cdot \frac{\partial F}{\partial v} - 2 \frac{\partial F}{\partial u} \cdot \frac{\partial G}{\partial u} \bigg] \\ &+ G \bigg[ \frac{\partial E}{\partial u} \cdot \frac{\partial G}{\partial u} - 2 \frac{\partial E}{\partial u} \cdot \frac{\partial F}{\partial v} + \frac{\partial E}{\partial v} \cdot \frac{\partial E}{\partial v} \bigg] \\ &+ 2 \left( EG - F^2 \right) \bigg[ - \frac{\partial^2 E}{\partial v^2} + 2 \frac{\partial^2 F}{\partial u \partial v} - \frac{\partial^2 G}{\partial u^2} \bigg] \bigg\}. \end{aligned}$$

• Cartan's coframe reformulation:

$$ds^2 = \left(\theta_1\right)^2 + \left(\theta_2\right)^2.$$

thanks to a Gram-Schmidt orthonormalization, with:

$$\theta^{1} = A(u, v) du + B(u, v) dv,$$
  
$$\theta^{2} = C(u, v) du + D(u, v) dv.$$

- Forget about expliciteness: A, B, C, D could be computed in terms of E, F, G.
- Equivalence to another surface metric:

$$ds'^{2} = (\theta'_{1})^{2} + (\theta'_{2})^{2}$$

• When there is an isometry  $S \rightarrow S'$  from the surface S to another surface S':

$$\begin{pmatrix} \theta_1' \\ \theta_2' \end{pmatrix} = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix},$$

with t = t(u, v) being a certain (unknown) function.



• Lifted coframe: Set t as a new independent variable:

$$\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} := \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}.$$

• Advantage of Cartan's approach: Differential invariance is set up at the beginning:

$$\omega, d\omega$$
 similar to  $\omega' = \omega, d\omega' = d\omega.$ 

#### • Absorption of torsion:

$$d\omega^1 = -\pi \wedge \omega^2$$
 and  $d\omega^2 = \pi \wedge \omega^1$ .

## • Apply differential operator d:

 $0 = dd\omega^1 = -d\pi \wedge \omega^1$  and  $0 = dd\omega^2 = d\pi \wedge \omega^2$ .

• **Deduce from Cartan's lemma:** There exists a certain function  $\kappa$  so that:

$$d\pi = \underbrace{\kappa}_{\text{Gaussian curvature}} \cdot \omega^1 \wedge \omega^2.$$

## • Summary:

Explicit differential algebra was in Gauss 1827.

 $\Box$  Surfaces  $S^2 \subset \mathbb{R}^3$  = easiest case of Cartan's theory of the equivalence problem.

□ Cartan, Chern, Tanaka: usually, they leave aside Gaussian-like explicit computations, which are hard.

Our goal today is to compute explicitly Cartan connections, coframes and curvatures, for known structures.

□ Our future goal is to construct Cartan-Tanaka connections for several new — yet unstudied — Cauchy-Riemann structures.

# • The plan of the talk is:

 $\Box$  Gauss (done).

 $\Box$  Second order differential equations:  $y_{xx} = F(x, y, y_x)$ .

 $\Box$  Hypersurfaces  $M^3 \subset \mathbb{C}^2$  equivalent to the sphere.

 $\Box$  Cartan-Tanaka connections for such  $M^3 \subset \mathbb{C}^2$ .

□ Connections for other Cauchy-Riemann structures.

## II – Spherical real analytic hypersurfaces

• **Start out:** A refresher about second order ordinary differential equations.

• Work with: Either real or complex numbers:

 $\mathbb{K} := \mathbb{R}$  or  $\mathbb{C}$ .

• **Projective group:** Let  $PGL_2(\mathbb{K})$  be the projective group of (Möbius) transformations of  $\mathbb{P}^2(\mathbb{K})$ :

$$(x,y)\longmapsto \left(\frac{a_1+b_1x+c_1y}{1+\lambda\,x+\mu\,y},\ \frac{a_2+b_2x+c_2y}{1+\lambda\,x+\mu\,y}\right),$$

and let  $\mathfrak{pgl}_2(\mathbb{K})$  be its Lie algebra, of dimension 8.

• Élie Cartan 1924: [Bulletin des Sciences Math.]: Construction of a unique  $pgl_2(\mathbb{K})$ -valued (Cartan) connection associated to any second-order differential equation:

 $y_{xx} = F(x, y, y_x),$ 

with  $x, y \in \mathbb{K}$ . [Doubrov-Komrakov].

## • Lie-Tresse two principal differential invariants:

$$\mathscr{I}^{1} := F_{y_{x}y_{x}y_{x}y_{x}}$$
$$\mathscr{I}^{2} := \mathsf{DD}(F_{y_{x}y_{x}}) - F_{y_{x}}\mathsf{D}(F_{y_{x}y_{x}}) - 4\mathsf{D}(F_{yy_{x}}) + 6F_{yy} - 3F_{y}F_{y_{x}y_{x}} + 4F_{y_{x}}F_{yy_{x}},$$

where the total differential operator is:

$$\mathsf{D} := \partial_x + y_x \, \partial_y + F(x, y, y_x) \, \partial_{y_x}.$$

• Special case: When invariants vanish identically:

$$0 \equiv \mathscr{I}^1 \equiv \mathscr{I}^2.$$

• Equivalently: The curvature of Cartan's projective connection vanishes identically.

**Corollary.** [Lie 1883] Such a second-order differential equation:

$$y_{xx} = F(x, y, y_x)$$

is equivalent to the Newtonian free particle:

$$Y_{XX} = 0$$

under some point transformation:

$$(x,y) \longmapsto (X(x,y), Y(x,y))$$

if and only if:

$$0 = \mathscr{I}^1 = \mathscr{I}^2.$$

## • Further explorations/modernizations:

[Lie; Tresse; Koppisch; Gonzalez-Lopez; Grissom-Thompson-Wilkens; Hsu-Kamran; Romanovsky; Nurowski-Sparling; Crampin-Saunders; Doubrov-Komrakov]. • Open question in CR geometry: Characterize local biholomorphic equivalence of a strongly pseudoconvex real hypersurface  $M^3 \subset \mathbb{C}^2$  to the standard unit sphere:

 $1 = z\overline{z} + w\overline{w}.$ 

**explicitly** in terms of some defining function for M.

- Question mentioned/considered by: [Vitushkin, Isaev, Ezhov, Schmalz, McLaughlin]
- Strong mathematical links:



• Hypersurfaces  $M^3 \subset \mathbb{C}^2$  are graphs of the form:

$$v = \varphi(x, y, u),$$

in some local holomorphic coordinates:



 $\bullet$  Rewrite the equation of M as:

$$\frac{w - \overline{w}}{2i} = \varphi\left(x, y, \frac{w + \overline{w}}{2}\right).$$

• When the graphing function  $\varphi$  is real analytic: May solve with respect to w:

$$w = \Theta(z, \overline{z}, \overline{w}).$$

• Segre (Beniamino) 1931 [Lie, long before]: Consider w = w(z) as a function of z and differentiate:

$$w(z) = \Theta(z, \overline{z}, \overline{w})$$
$$w_z(z) = \Theta_z(z, \overline{z}, \overline{w}).$$

 $\bullet$  Assume M is strongly pseudoconvex at the origin:

$$w(z) = \overline{w} + i \, z\overline{z} + O(3),$$
  
$$w_z(z) = \overline{z} + O(2).$$

• Hence may solve using implicit function theorem:

$$\overline{z} = \zeta (z, w(z), w_z(z)),$$
  
$$\overline{w} = \xi (z, w(z), w_z(z)).$$

• Segre (Beniamino) 1931 [Webster 1977]: Associate to any *real analytic* strongly pseudoconvex Cauchy-Riemann hypersurface  $M^3 \subset \mathbb{C}^2$  a unique second-order ordinary differential equation by substituting the parameters  $\overline{z}$  and  $\overline{w}$  in the second derivative:

$$w_{zz}(z) = \Theta_{zz}(z, \overline{z}, \overline{w})$$
  
=  $\Theta_{zz}(z, \zeta(z, w(z), w_z(z)), \xi(z, w(z), w_z(z)))$   
=:  $\Phi(z, w(z), w_z(z)).$ 

• Élie Cartan 1932 just after Segre 1931: Construction of a natural  $pgl_2(\mathbb{R})$ -valued connection associated to any strongly pseudoconvex real hypersurface  $M^3 \subset \mathbb{C}^2$ .

• Redone with some variations by: [Chern-Moser; Jacobowitz; Yamaguchi; Nurowski-Sparling]

• Fact: None of these works provide curvatures or coframes explicitly in terms of a graphing function  $\varphi(x, y, u)$  for  $M^3 \subset \mathbb{C}^2$ .

• **Paradox:** The  $pgl_2(\mathbb{C})$ -valued connection, coframe, curvature of the associated second order differential equation are known explicitly in the literature.

## • Reason due to differential algebra swelling:

 $\Box$  for a differential equation  $w_{zz} = \Phi(z, w, w_z)$ , the connection depends upon the 4-th order jet  $J_{z,w,w_z}^4 \Phi$ 

 $\Box$  for a hypersurface  $w = \Theta(z, \overline{z}, \overline{w})$ , the data depend upon the sixth-order jet  $J_{x,y,u}^{6}\Theta$ 

 $\Box$  furthermore, computations explode because one has to divide by the Levi-form.

• Standard unit 3-sphere  $S^3 \subset \mathbb{C}^2$ :

 $1 = z\overline{z} + w\overline{w}$ 

• Recall the Cayley transform:

 $(z,w) \longmapsto \left(\frac{i z}{1+w}, \frac{i-iw}{1+w}\right) =: (z',w')$ which has inverse:  $(z',w') \longmapsto \left(\frac{2z'}{i+w'}, \frac{i-w'}{i+w'}\right)$ 

• This transform shows that:  $S^3 \setminus \{\infty\}$  is biholomorphically equivalent to the *Heisenberg sphere*:

$$w' = \overline{w}' + 2iz'\overline{z}'.$$

• Fact: This *graphed* model is more convenient to work with.

**Proposition.** [Easy] *A strongly pseudoconvex local real analytic hypersurface:* 

$$w = \Theta(z, \overline{z}, \overline{w})$$

is locally biholomorphic to a piece of the Heisenberg sphere:

 $w = \overline{w} + 2i\,z\overline{z}$ 

*if and only if its associated second-order ordinary complex differential equation:* 

$$w_{zz}(z) = \Phi(z, w(z), w_z(z))$$

is locally equivalent to the Newtonian free particle:

$$w_{zz}(z) = 0,$$

if and only if:

$$0 \equiv \mathscr{I}^1 \equiv \mathscr{I}^2.$$

**Theorem.** [M., 2010] An arbitrary real analytic hypersurface  $M \subset \mathbb{C}^2$  which is Levi nondegenerate and has a complex defining equation of the form:

 $w = \Theta(z, \,\overline{z}, \,\overline{w})$ 

in some system of local holomorphic coordinates  $(z, w) \in \mathbb{C}^2$  is equivalent to the Heisenberg sphere if and only if its graphing complex function  $\Theta$  satisfies the following explicit sixth-order algebraic partial differential equation:

$$0 \equiv \left(\frac{-\Theta_{\overline{w}}}{\Theta_{\overline{z}}\Theta_{z\overline{w}} - \Theta_{\overline{w}}\Theta_{z\overline{z}}}\frac{\partial}{\partial\overline{z}} + \frac{\Theta_{\overline{z}}}{\Theta_{\overline{z}}\Theta_{z\overline{w}} - \Theta_{\overline{w}}\Theta_{z\overline{z}}}\frac{\partial}{\partial\overline{w}}\right)^{2} [AJ^{4}(\Theta)]$$
  
*identically in*  $\mathbb{C}\left\{z, \overline{z}, \overline{w}\right\}$ , *where:*  

$$AJ^{4}(\Theta) := \frac{1}{[\Theta_{\overline{z}}\Theta_{z\overline{w}} - \Theta_{\overline{w}}\Theta_{z\overline{z}}]^{3}} \left\{\Theta_{zz\overline{z}\overline{z}}\left(\Theta_{\overline{w}}\Theta_{\overline{w}} \left|\frac{\Theta_{\overline{z}}}{\Theta_{z\overline{z}}} \left|\frac{\Theta_{\overline{w}}}{\Theta_{z\overline{w}}}\right|\right) - 2\Theta_{z\overline{z}\overline{w}}\left(\Theta_{\overline{z}}\Theta_{\overline{w}} \left|\frac{\Theta_{\overline{z}}}{\Theta_{z\overline{z}}} \left|\frac{\Theta_{\overline{w}}}{\Theta_{z\overline{z}}} \left|\frac{\Theta_{\overline{w}}}{\Theta_{z\overline{z}}} \left|\frac{\Theta_{\overline{w}}}{\Theta_{z\overline{w}}}\right|\right) + \Theta_{zz\overline{w}\overline{w}}\left(\Theta_{\overline{z}}\Theta_{\overline{z}} \left|\frac{\Theta_{\overline{w}}}{\Theta_{z\overline{w}}} \left|\frac{\Theta_{\overline{w}}}}{\Theta_{z\overline{w}}} \left|\frac{\Theta_{\overline{w}}}{\Theta_{z\overline{w}}} \left|\frac{\Theta_{\overline{w}}}{\Theta_{z\overline{w}}} \left|\frac{\Theta_{\overline{w}}}{\Theta_{z\overline{w}}} \left|\frac{\Theta_{\overline{w}}}{\Theta_{z\overline{w}}} \right|\frac{\Theta_{\overline{w}$$

• **Proof:** Express the vanishing of the two curvatures:

$$0 \equiv \mathscr{I}^1 \equiv \mathscr{I}^2$$

in terms of  $J_{z,\overline{z},\overline{w}}^{6}\Theta$  thanks to transfer formulas.

• Same open problem in higher dimensions: Characterize when a Levi nondegenerate *real analytic* hypersurface  $M^{2n+1} \subset \mathbb{C}^{n+1}$  with  $n \ge 2$ :

$$w = \Theta(z_1, \ldots, z_n, \overline{z}_1, \ldots, \overline{z}_n, \overline{w})$$

is biholomorphic to the Heisenberg pseudo-sphere:

$$\frac{w-\overline{w}}{2i} = |z_1|^2 + \dots + |z_q|^2 - |z_{q+1}|^2 - \dots - |z_n|^2,$$

where (q, n - q) is the signature of the Levi form of M.

• Expected applications: Complete classification of tube spherical hypersurfaces  $M^{2n+1} \subset \mathbb{C}^{n+1}$  whose Levi form has signature (n, 0), (n - 1, 1), or (n - 2, 2) [Isaev, LNM 2020, Springer, May 2011].

• Remind Chern-Moser 1974: Construction of a natural projective  $\mathfrak{pgl}_{n+1}(\mathbb{R})$ -valued connection associated to such  $M^{2n+1} \subset \mathbb{C}^{n+1}$ .

• Differential algebra obstacle: Basic elements — coframe and curvatures — of this projective connection were never computed explicitly in terms of a defining function for the hypersurface  $M^{2n+1} \subset \mathbb{C}^{n+1}$ : still an open problem!

• Hachtroudi 1937 [PhD under Cartan]: Construction of a natural  $pgl_{n+1}(\mathbb{K})$ -valued connection associated to

any completely integrable second-order PDE system:

$$y_{x_{k_1}x_{k_2}} = F_{k_1k_2}(x_1, \dots, x_n, y, y_{x_1}, \dots, y_{x_n})$$
  
(k\_1, k\_2 = 1...n),

with  $n \ge 2$ .

• **Good news:** Contrary to Chern's, Hachtroudi's results are effective!

**Theorem.** [Hachtroudi 1937] *The curvature of the projective normal (Cartan) connection associated to the above PDE system vanishes if and only if the right-hand side functions*  $F_{k_1,k_2}$  *satisfy the following explicit differential system, which is linear in terms of their second-order derivatives :* 

$$0 \equiv \frac{\partial^2 F_{k_1,k_2}}{\partial y_{x^{\ell_1}} y_{x^{\ell_2}}} - \frac{1}{n+2} \sum_{\ell'=1}^n \left( \delta_{k_1,\ell_1} \frac{\partial^2 F_{\ell',k_2}}{\partial y_{x^{\ell'}} \partial y_{x^{\ell_2}}} + \delta_{k_1,\ell_2} \frac{\partial^2 F_{\ell',k_2}}{\partial y_{x^{\ell_1}} \partial y_{x^{\ell'}}} + \delta_{k_2,\ell_1} \frac{\partial^2 F_{k_1,\ell'}}{\partial y_{x^{\ell'}} \partial y_{x^{\ell_2}}} + \delta_{k_2,\ell_2} \frac{\partial^2 F_{k_1,\ell'}}{\partial y_{x^{\ell_1}} \partial y_{x^{\ell'}}} \right) + \frac{1}{(n+1)(n+2)} \left[ \delta_{k_1,\ell_1} \delta_{k_2,\ell_2} + \delta_{k_2,\ell_1} \delta_{k_1,\ell_2} \right] \sum_{\ell'=1}^n \sum_{\ell''=1}^n \frac{\partial^2 F_{\ell',\ell''}}{\partial y_{x^{\ell'}} \partial y_{x^{\ell''}}} \begin{pmatrix} 1 \leq k_1, k_2 \leq n \\ 1 \leq \ell_1, \ell_2 \leq n \end{pmatrix} \right) \cdot \frac{1}{(1 \leq \ell_1, \ell_2 \leq n)} \cdot \frac{1}{(1 \leq \ell_1, \ell_2 \leq n)} \left[ \delta_{k_1,\ell_1} \delta_{k_2,\ell_2} + \delta_{k_2,\ell_1} \delta_{k_1,\ell_2} \right] \sum_{\ell'=1}^n \sum_{\ell''=1}^n \frac{\partial^2 F_{\ell',\ell''}}{\partial y_{x^{\ell'}} \partial y_{x^{\ell''}}} + \frac{1}{(1 \leq \ell_1, \ell_2 \leq n)} \cdot \frac{1}{(1 \leq \ell_1, \ell_2 \leq n)} + \frac{1}{(1 \leq \ell_1, \ell_2 \leq n)} \cdot \frac{1}{(1 \leq \ell_1, \ell_2 \leq n)} \right] \cdot \frac{1}{(1 \leq \ell_1, \ell_2 \leq n)} \cdot \frac{1}{($$

• Associate a PDE system to  $M^{2n+1} \subset \mathbb{C}^{n+1}$ :

$$w(z) = \Theta(z, \overline{z}, \overline{w}),$$
  

$$w_{z_1}(z) = \frac{\partial \Theta}{\partial z_1}(z, \overline{z}, \overline{w}), \dots, \quad w_{z_n}(z) = \frac{\partial \Theta}{\partial z_n}(z, \overline{z}, \overline{w}).$$

#### • Use Levi-nondegeneracy of *M* to solve:

 $\overline{z}_1 = \zeta_1 (z, w(z), w_z(z)), \dots, \quad \overline{z}_n = \zeta_n (z, w(z), w_z(z)),$  $\overline{w} = \xi (z, w(z), w_z(z)).$ 

• Insert in all possible second-order derivatives:

$$\begin{split} w_{z_{k_1}z_{k_2}}(z) &= \frac{\partial^2 \Theta}{\partial z_{k_1}\partial z_{k_2}} \left( z, \ \overline{z}, \ \overline{w} \right) \\ &= \frac{\partial^2 \Theta}{\partial z_{k_1}\partial z_{k_2}} \left( z, \ \zeta \left( z, \ w(z), \ w_z(z) \right), \ \xi \left( z, \ w(z), \ w_z(z) \right) \right) \\ &=: \Phi_{k_1,k_2} \left( z, \ w(z), \ w_z(z) \right) \qquad (k_1,k_2 = 1 \cdots n), \end{split}$$

**Proposition.** [easy] A Levi nondegenerate local real analytic hypersurface  $M^{2n+1} \subset \mathbb{C}^{n+1}$  is locally biholomorphic to a piece of the Heisenberg pseudosphere if and only if its associated second-order PDE system is locally equivalent to the trivial second-order system:

$$w'_{z'_{k_1}z'_{k_2}}(z') = 0 \qquad (1 \le k_1, \, k_2 \le n),$$

whose solutions are hyperplanes of  $\mathbb{P}^{n+1}(\mathbb{C})$ .

#### • Summary:

 $\Box$  Nobody yet is able to compute the Cartan-Chern-Moser  $\mathfrak{pgl}_{n+1}(\mathbb{R})$ -valued connection associated to a Levi nondegenerate real hypersurface  $M^{2n+1} \subset \mathbb{C}^{n+1}$  explicitly in terms of its defining function.

□ But for second-order PDE systems, this is done [Lie, Cartan, Hachtroudi] and less difficult.

□ To know when hypersurfaces are locally equivalent to a piece of the standard unit sphere, it then suffices to express that Hachtroudi's curvature for the associated PDE system vanishes.

 $\Box$  When one writes down vanishing of Hachtroudi curvature in terms of  $\Theta$ , one gets the following.

**Theorem.** [M., 2010] An arbitrary local real analytic hypersurface  $M^{2n+1} \subset \mathbb{C}^{n+1}$  with  $\underline{n \ge 2}$  which is Levi nondegenerate is pseudospherical if and only if its complex graphing function  $\Theta$  satisfies the following explicit nonlinear fourth-order system of partial differential equations:

$$\begin{split} 0 &\equiv \sum_{\mu=1}^{n+1} \sum_{\nu=1}^{n+1} \left[ \Delta_{[0_{1+\ell_{1}}]}^{\mu} \cdot \Delta_{[0_{1+\ell_{2}}]}^{\nu} \left\{ \Delta \cdot \frac{\partial^{4}\Theta}{\partial z_{k_{1}} \partial z_{k_{2}} \partial \overline{t}_{\mu} \partial \overline{t}_{\nu}} - \sum_{\tau=1}^{n+1} \Delta_{[\overline{t}^{\mu}\overline{t}^{\nu}]}^{\tau} \cdot \frac{\partial^{3}\Theta}{\partial z_{k_{1}} \partial z_{k_{2}} \partial \overline{t}^{\tau}} \right\} - \\ &- \frac{\delta_{k_{1},\ell_{1}}}{n+2} \sum_{\ell'=1}^{n} \Delta_{[0_{1+\ell'}]}^{\mu} \cdot \Delta_{[0_{1+\ell'}]}^{\nu} \left\{ \Delta \cdot \frac{\partial^{4}\Theta}{\partial z_{\ell'} \partial z_{k_{2}} \partial \overline{t}_{\mu} \partial \overline{t}_{\nu}} - \sum_{\tau=1}^{n+1} \Delta_{[\overline{t}^{\mu}\overline{t}^{\nu}]}^{\tau} \cdot \frac{\partial^{3}\Theta}{\partial z_{\ell'} \partial z_{k_{2}} \partial \overline{t}^{\tau}} \right\} - \\ &- \frac{\delta_{k_{1},\ell_{2}}}{n+2} \sum_{\ell'=1}^{n} \Delta_{[0_{1+\ell_{1}}]}^{\mu} \cdot \Delta_{[0_{1+\ell'}]}^{\nu} \left\{ \Delta \cdot \frac{\partial^{4}\Theta}{\partial z_{\ell'} \partial z_{k_{2}} \partial \overline{t}_{\mu} \partial \overline{t}_{\nu}} - \sum_{\tau=1}^{n+1} \Delta_{[\overline{t}^{\mu}\overline{t}^{\nu}]}^{\tau} \cdot \frac{\partial^{3}\Theta}{\partial z_{\ell'} \partial z_{k_{2}} \partial \overline{t}^{\tau}} \right\} - \\ &- \frac{\delta_{k_{2},\ell_{2}}}{n+2} \sum_{\ell'=1}^{n} \Delta_{[0_{1+\ell'}]}^{\mu} \cdot \Delta_{[0_{1+\ell'}]}^{\nu} \left\{ \Delta \cdot \frac{\partial^{4}\Theta}{\partial z_{k_{1}} \partial z_{\ell'} \partial \overline{t}_{\mu} \partial \overline{t}_{\nu}} - \sum_{\tau=1}^{n+1} \Delta_{[\overline{t}^{\mu}\overline{t}^{\nu}]}^{\tau} \cdot \frac{\partial^{3}\Theta}{\partial z_{k_{1}} \partial z_{\ell'} \partial \overline{t}^{\tau}} \right\} - \\ &- \frac{\delta_{k_{2},\ell_{2}}}{n+2} \sum_{\ell'=1}^{n} \Delta_{[0_{1+\ell_{1}}]}^{\mu} \cdot \Delta_{[0_{1+\ell'}]}^{\nu} \left\{ \Delta \cdot \frac{\partial^{4}\Theta}{\partial z_{k_{1}} \partial z_{\ell'} \partial \overline{t}_{\mu} \partial \overline{t}_{\nu}} - \sum_{\tau=1}^{n+1} \Delta_{[\overline{t}^{\mu}\overline{t}^{\nu}]}^{\tau} \cdot \frac{\partial^{3}\Theta}{\partial z_{k_{1}} \partial z_{\ell'} \partial \overline{t}^{\tau}} \right\} + \\ &+ \frac{1}{(n+1)(n+2)} \cdot \left[ \delta_{k_{1},\ell_{1}} \delta_{k_{2},\ell_{2}} + \delta_{k_{2},\ell_{1}} \delta_{k_{1},\ell_{2}} \right] \cdot \\ &\cdot \sum_{\ell'=1}^{n} \sum_{\ell'=1}^{n} \Delta_{[0_{1+\ell'}]}^{\mu} \cdot \Delta_{[0_{1+\ell''}]}^{\nu} \left\{ \Delta \cdot \frac{\partial^{4}\Theta}{\partial z_{\ell'} \partial z_{\ell'} \partial \overline{t}_{\mu} \partial \overline{t}_{\nu}} - \sum_{\tau=1}^{n+1} \Delta_{[\overline{t}^{\mu}\overline{t}^{\nu}]}^{\tau} \cdot \frac{\partial^{3}\Theta}{\partial z_{k_{1}} \partial z_{\ell'} \partial \overline{t}^{\tau}} \right\} + \\ &+ \frac{1}{(n+1)(n+2)} \cdot \left[ \delta_{k_{1},\ell_{1}} \delta_{k_{2},\ell_{2}} + \delta_{k_{2},\ell_{1}} \delta_{k_{1},\ell_{2}} \right] \cdot \\ &+ \sum_{\ell'=1}^{n} \sum_{\ell'=1}^{n} \Delta_{[0_{1+\ell'}]}^{\mu} \cdot \Delta_{[0_{1+\ell''}]}^{\mu} \left\{ \Delta \cdot \frac{\partial^{4}\Theta}{\partial z_{\ell'} \partial \overline{t}_{\mu'} \partial \overline{t}_{\mu} - \sum_{\tau=1}^{n+1} \Delta_{[\overline{t}^{\mu}\overline{t}^{\nu}]}^{\tau} \cdot \frac{\partial^{3}\Theta}{\partial z_{k_{1}} \partial \overline{t}_{\mu'} \partial \overline{t}^{\tau}} \right\} \right\}$$

for all pairs of indices  $(k_1, k_2)$  with  $1 \leq k_1, k_2 \leq n$ , and for all pairs of indices  $(\ell_1, \ell_2)$  with  $1 \leq \ell_1, \ell_2 \leq n$ .

## **III – Cartan connections and curvature functions**

#### • Summary:

Using known explicit projective connections on PDE systems, one can characterize local biholomorphic equivalence to the sphere.

□ Cartan connections in CR geometry are not effective in terms of the graphing function(s). **Open problem!** 

# • Ezhov-McLaughlin-Schmalz:

[Notices of the AMS, 58 (2011), no. 1, 20-27]:

Construction of a normal, regular, Cartan-Tanaka  $\mathfrak{pgl}_2(\mathbb{R})$ -valued connection associated to any *real an-alytic* strongly pseudoconvex hypersurface  $M^3 \subset \mathbb{C}^2$ .

• **Comment 1:** This approach is alternative to Cartan 1932 and to Chern-Moser 1974.

• **Comment 2:** Ezhov-McLaughlin-Schmalz use *M* is *real analytic*.

• Today: Improve this Notices of the AMS paper: Joint works with M. Sabzevari (PhD) and M. Aghasi (cosupervisor):

arxiv.org/abs/1104.1509 "[AMS 2011]". arxiv.org/abs/1104.5300 (joint with B. Alizadeh)

• Assume only: M is  $\mathscr{C}^6$ -smooth, not real analytic.

• Arbitrary homogeneous space: Let G be a Lie group with a closed subgroup H, and let g and h be the corresponding Lie algebras.

• Cartan geometry of type (G, H): A manifold M is a right principal H-bundle:

 $\pi\colon \mathscr{P} \longrightarrow M$ 

together with a g-valued one-form  $\omega$  on  $\mathcal{P}$  satisfying:

- (i)  $\omega_p \colon T_p \mathscr{P} \longrightarrow \mathfrak{g}$  is an isomorphism for any  $p \in \mathscr{P}$ ;
- (ii) if  $R_h(p) := ph$  is the right translation on  $\mathscr{P}$  by  $h \in H$ , then for any such h:

$$R_h^*\omega = \operatorname{Ad}(h^{-1}) \circ \omega;$$

(iii)  $\omega(H^{\dagger}) = h$  for every  $h \in \mathfrak{h}$ , where:  $H^{\dagger}|_{p} := \frac{d}{dt}|_{0} ((R_{\exp(th)}(p)))$ 

is the left-invariant vector field on  $\mathcal{G}$  corresponding to h.

#### • Associated curvature 2-form:

$$\Omega(X,Y) := d\omega(X,Y) + \left[\omega(X), \ \omega(Y)\right]_{\mathfrak{g}},$$

where X, Y are vector (fields) on  $\mathscr{P}$ .

•  $Ad(h^{-1})$ -equivariancy implies:  $\Omega(X, Y)$  vanishes if either X or Y is vertical.

• Consequence:  $\Omega$  is fully represented by the associated *curvature function*:

$$\kappa \in \mathscr{C}^{\infty}(\mathscr{P}, \Lambda^2(\mathfrak{g}^*/\mathfrak{h}^*) \otimes \mathfrak{g})$$

which sends a point  $p \in \mathscr{P}$  to the map:

$$\kappa(p)\colon (\mathfrak{g}/\mathfrak{h})\wedge(\mathfrak{g}/\mathfrak{h})\longrightarrow\mathfrak{g}$$

defined by:

$$(\mathbf{x}' \mod \mathfrak{h}) \land (\mathbf{x}'' \mod \mathfrak{h}) \longmapsto - \Omega_p (\omega_p^{-1}(\mathbf{x}'), \, \omega_p^{-1}(\mathbf{x}'')) = \\ = - [\mathbf{x}', \mathbf{x}'']_{\mathfrak{g}} + \omega_p ([\widehat{X}', \, \widehat{X}'']),$$

where:

$$\widehat{X} := \omega^{-1}(\mathbf{x})$$

is the *constant field* on  $\mathscr{P}$  associated to an  $x \in \mathfrak{g}$ .

#### • Lie algebra bases: Denote:

$$r := \dim_{\mathbb{R}} \mathfrak{g}, \quad n := \dim_{\mathbb{R}} (\mathfrak{g}/\mathfrak{h}),$$

whence  $n - r = \dim_{\mathbb{R}} \mathfrak{h}$ .

• Suppose:  $r \ge 2$ ,  $n \ge 1$ ,  $n - r \ge 1$  so that  $\mathfrak{g}$ ,  $\mathfrak{g}/\mathfrak{h}$  and  $\mathfrak{h}$  are all nonzero.

#### • Pick up an adapted basis:

$$\mathfrak{g} = \operatorname{Span}_{\mathbb{R}} (\mathsf{x}_1, \dots, \mathsf{x}_n, \mathsf{x}_{n+1}, \dots, \mathsf{x}_r) \\ \mathfrak{h} = \operatorname{Span}_{\mathbb{R}} (\mathsf{x}_{n+1}, \dots, \mathsf{x}_r),$$

## • Expand accordingly the curvature function:

$$\kappa(p) = \sum_{1 \leqslant i_1 < i_2 \leqslant n} \sum_{k=1}^r \kappa_{i_1,i_2}^k(p) \ \mathbf{x}_{i_1}^* \wedge \mathbf{x}_{i_2}^* \otimes \mathbf{x}_k.$$

• Space of *k*-cochains:

$$\mathscr{C}^k := \Lambda^k(\mathfrak{g}^*/\mathfrak{h}^*) \otimes \mathfrak{g}.$$

• Differential operator:  $\partial^k : \mathscr{C}^k \to \mathscr{C}^{k+1}$  defined by:

$$(\partial^k \Phi) (\mathbf{z}_0, \mathbf{z}_1, \dots, \mathbf{z}_k) := \sum_{i=0}^k (-1)^i [\mathbf{z}_i, \Phi(\mathbf{z}_0, \dots, \widehat{\mathbf{z}}_i, \dots, \mathbf{z}_k)]_{\mathfrak{g}} + \sum_{0 \leq i < j \leq k} (-1)^{i+j} \Phi([\mathbf{z}_i, \mathbf{z}_j]_{\mathfrak{g}}, \mathbf{z}_0, \dots, \widehat{\mathbf{z}}_i, \dots, \widehat{\mathbf{z}}_j, \dots, \mathbf{z}_k).$$

• Especially for k = 2: Cohomology space

$$\mathscr{H}^2 := \ker(\partial^2) / \operatorname{im}(\partial^1)$$

encode deformations of Lie algebras [Goze] and are central when constructing Cartan connections [Tanaka, Morimoto, Cap-Schichl].

• Algorithm using Gröbner bases: Computed these cohomology spaces [Alizadeh-Aghasi-M.-Sabzevari].

Lemma. (Bianchi identity) [Tanaka, Cap-Schichl]  
For any three x', x'', x''' 
$$\in \mathfrak{g}$$
, one has at every point  
 $p \in \mathscr{P}$ :  
 $0 = (\partial^2 \kappa)(p)(\mathbf{x}', \mathbf{x}'', \mathbf{x}''') + \sum_{\text{cycl}} \kappa(p)(\kappa(p)(\mathbf{x}', \mathbf{x}''), \mathbf{x}''') + \sum_{\text{cycl}} (\widehat{X}'(\kappa))(p)(\mathbf{x}'', \mathbf{x}''').$ 

#### • The case of graded Lie algebras:

$$\mathfrak{g} = \mathfrak{g}_{-\mu} \oplus \cdots \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_{\nu},$$

$$\mathfrak{h}=\mathfrak{g}_0\oplus\mathfrak{g}_1\oplus\cdots\oplus\mathfrak{g}_\nu,$$

as in Tanaka's theory, with:

$$\left[\mathfrak{g}_{\lambda_1},\ \mathfrak{g}_{\lambda_2}
ight]_{\mathfrak{g}}\subset\mathfrak{g}_{\lambda_1+\lambda_2}$$

- Second cohomology is graded too:  $\mathscr{H}^2 = \bigoplus_{h \in \mathbb{Z}} \mathscr{H}^2_{[h]},$
- Graded Bianchi identities: [Cap-Schichl]:

$$\partial_{[h]}^{2} (\kappa_{[h]})(\mathbf{x}', \mathbf{x}'', \mathbf{x}''') = -\sum_{\text{cycl}} \sum_{h'=1}^{h-1} \left( \kappa_{[h-h']} (\kappa_{[h']}(\mathbf{x}', \mathbf{x}''), \mathbf{x}''') \right) - \sum_{\text{cycl}} \left( \widehat{X}' \kappa_{[h+|\mathbf{x}'|]} \right) (\mathbf{x}'', \mathbf{x}''')$$

show that the lowest order nonvanishing curvature must be  $\partial$ -closed, and more generally, any homogeneous curvature component is determined by the lower components up to a  $\partial$ -closed component.

## **IV – Explicit curvatures and coframes**

# • Three-dimensional Cauchy-Riemann submanifold: Let now $M^3 \subset \mathbb{C}^2$ be a *local* strongly pseudoconvex $\mathscr{C}^6$ smooth real 3-dimensional hypersurface, represented in coordinates (z, w) = (x + iy, u + iv) as the graph: $v = \varphi(x, y, u)$ $= x^2 + y^2 + O(3).$

• Such  $M^3$ 's are geometry-preserving deformations of the Heisenberg sphere  $\mathbb{H}^3$ :

$$v = x^2 + y^2.$$

• Study firstly the geometry of this homogeneous model:

Lemma. [Known] The Lie algebra:  $\mathfrak{hol}(\mathbb{H}^3) := \{ \mathsf{X} = Z(z, w) \frac{\partial}{\partial z} + W(z, w) \frac{\partial}{\partial w} :$   $\mathsf{X} + \overline{\mathsf{X}} \text{ tangent to } \mathbb{H}^3 \}$ of infinitesimal CR automorphisms of the Heisenberg sphere  $\mathbb{H}^3$  in  $\mathbb{C}^2$  is 8-dimensional and generated by:  $\mathsf{T} := \partial_w, \quad \mathsf{H}_1 := \partial_z + 2iz \, \partial_w, \quad \mathsf{H}_2 := i \, \partial_z + 2z \, \partial_w,$  $\mathsf{D} := z \, \partial_z + 2w \, \partial_w, \quad \mathsf{R} := iz \, \partial_z,$ 

 $I_1 := (w + 2iz^2) \partial_z + 2izw \partial_w, \quad I_2 := (iw + 2z^2) \partial_z + 2zw$  $J := zw \partial_z + w^2 \partial_w.$ 

• For general  $M^3 \subset \mathbb{C}^2$ : Seek a Cartan-Tanaka connection valued in the 8-dimensional *abstract* real Lie algebra:

 $\mathfrak{g} := \mathbb{R} \, t \oplus \mathbb{R} \, h_1 \oplus \mathbb{R} \, h_2 \oplus \mathbb{R} \, d \oplus \mathbb{R} \, r \oplus \mathbb{R} \, i_1 \oplus \mathbb{R} \, i_2 \oplus \mathbb{R} \, j$ (with  $\mathfrak{h} := \mathbb{R} \, d \oplus \mathbb{R} \, r \oplus \mathbb{R} \, i_1 \oplus \mathbb{R} \, i_2 \oplus \mathbb{R} \, j$ )

spanned by some eight abstract vectors enjoying the same commutator table as  $T, \ldots, J$ :

|                | t | $h_1$ | $h_2$         | d              | r      | $i_1$          | $i_2$         | j     |
|----------------|---|-------|---------------|----------------|--------|----------------|---------------|-------|
| t              | 0 | 0     | 0             | $2\mathrm{t}$  | 0      | $h_1$          | $h_2$         | d     |
| $h_1$          | * | 0     | $4\mathrm{t}$ | $\mathbf{h}_1$ | $h_2$  | 6 r            | $2\mathrm{d}$ | $i_1$ |
| $h_2$          | * | *     | 0             | $h_2$          | $-h_1$ | $-2\mathrm{d}$ | 6  r          | $i_2$ |
| d              | * | *     | *             | 0              | 0      | $i_1$          | $i_2$         | 2j    |
| r              | * | *     | *             | *              | 0      | $-i_2$         | $i_1$         | 0     |
| $\mathbf{i}_1$ | * | *     | *             | *              | *      | 0              | 4j            | 0     |
| $i_2$          | * | *     | *             | *              | *      | *              | 0             | 0     |
| j              | * | *     | *             | *              | *      | *              | *             | 0;    |

• Fact:

 $\mathfrak{g}\simeq\mathfrak{pgl}_2(\mathbb{R}).$ 

Natural Tanaka grading [known]:

$$\mathfrak{g} = \underbrace{\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}}_{\mathfrak{g}_{-}} \oplus \underbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}}_{\mathfrak{h}},$$

where:

$$\begin{split} \mathbf{\mathfrak{g}}_{-2} &= \mathbb{R} \, \mathbf{t}, \quad \mathbf{\mathfrak{g}}_{-1} &= \mathbb{R} \, \mathbf{h}_1 \oplus \mathbb{R} \, \mathbf{h}_2, \\ \mathbf{\mathfrak{g}}_0 &= \mathbb{R} \, \mathbf{d} \oplus \mathbb{R} \, \mathbf{r}, \\ \mathbf{\mathfrak{g}}_1 &= \mathbb{R} \, \mathbf{i}_1 \oplus \mathbb{R} \, \mathbf{i}_2, \quad \mathbf{\mathfrak{g}}_2 = \mathbb{R} \, \mathbf{j}. \end{split}$$

Main computational objective: Provide a Cartan-Tanaka connection all elements of which are completely effective in terms of  $\varphi(x, y, u)$  — assuming only  $\mathscr{C}^6$ -smoothness of M.

## • Recall the equation of our hypersurface:

$$v = \varphi(x, y, u).$$

A posteriori fact: All data of the Cartan-Tanaka connection will depend only upon  $\varphi(x, y, u)$ .

#### • Complex tangent bundle:

$$T^c M = TM \cap \sqrt{-1} \ TM$$

generated by the two vector fields:

$$H_1 := \frac{\partial}{\partial x} + \left(\frac{\varphi_y - \varphi_x \,\varphi_u}{1 + \varphi_u^2}\right) \frac{\partial}{\partial u},$$
$$H_2 := \frac{\partial}{\partial y} + \left(\frac{-\varphi_x - \varphi_y \,\varphi_u}{1 + \varphi_u^2}\right) \frac{\partial}{\partial u}.$$

## • Levi form-type Lie-bracket:

$$T := \frac{1}{4} [H_1, H_2]$$
  
=  $\left(\frac{1}{4} \frac{1}{(1+\varphi_u^2)^2} \left\{ -\varphi_{xx} - \varphi_{yy} - 2\varphi_y \varphi_{xu} - \varphi_x^2 \varphi_{uu} + 2\varphi_x \varphi_{yu} - \varphi_y^2 \varphi_{uu} + 2\varphi_y \varphi_u \varphi_{yu} + 2\varphi_y \varphi_u \varphi_{yu} + 2\varphi_x \varphi_u \varphi_{xu} - \varphi_u^2 \varphi_{xx} - \varphi_u^2 \varphi_{yy} \right\} \right) \frac{\partial}{\partial u}.$ 

- Strong pseudoconvexity means:  $\{H_1, H_2, T\}$  makes up a frame on  $M^3$ .
- Complicated Levi form factor: Call  $\Upsilon$  the numerator:  $T = \frac{1}{4} [H_1, H_2] = \frac{1}{4} \frac{\Upsilon}{\Lambda^2} \frac{\partial}{\partial u}.$
- Allow the two notational coincidences:

$$x_1 \equiv x, \qquad x_2 \equiv y.$$

• Introduce the two length-three brackets:  $\begin{bmatrix} H_i, T \end{bmatrix} = \frac{1}{4} \begin{bmatrix} H_i, [H_1, H_2] \end{bmatrix} =: \Phi_i T \qquad (i = 1, 2),$ 

• Fact 1: These are both multiples of T by means of two functions:

$$\Phi_i := \frac{A_i}{\Delta^2 \Upsilon} \qquad (i = 1, 2).$$

• Fact 2: Expansions of these numerators  $A_i$  are one page long.

• Fact 3: Expansions of the numerators  $A_{i,k_1,k_2,k_3}$  below are more than one hundred page long.

• Lastly: Introduce furthermore the  $H_k$ -iterated derivatives of the functions  $\Phi_i$  up to order 3:

$$H_{k_1}(\Phi_i) = \frac{A_{i,k_1}}{\Delta^4 \Upsilon^2}$$
$$H_{k_2}(H_{k_1}(\Phi_i)) = \frac{A_{i,k_1,k_2}}{\Delta^6 \Upsilon^3},$$
$$H_{k_3}(H_{k_2}(H_{k_1}(\Phi_i))) = \frac{A_{i,k_1,k_2,k_3}}{\Delta^8 \Upsilon^4},$$
where  $i, k_1, k_2, k_3 = 1, 2$ .

**Proposition.** [AMS 2011] All the numerators appearing above are inductively given by:

$$\begin{aligned} A_{i,k_{1}} &:= \Delta^{2} \left( \Upsilon A_{i,x_{k_{1}}} - \Upsilon_{x_{k_{1}}} A_{i} \right) + \Delta \left( -2 \Delta_{x_{k_{1}}} \Upsilon A_{i} + \Upsilon \Lambda_{k_{1}} A_{i,u} - \Upsilon_{u} \Lambda_{k_{1}} A_{i} \right) - \\ &- 2 \Delta_{u} \Upsilon \Lambda_{k_{1}} A_{i} \\ A_{i,k_{1},k_{2}} &:= \Delta^{2} \left( \Upsilon A_{i,k_{1},x_{k_{2}}} - 2 \Upsilon_{x_{k_{2}}} A_{i,k_{1}} \right) + \Delta \left( -3 \Delta_{x_{k_{2}}} \Upsilon A_{i,k_{1}} + \Upsilon \Lambda_{k_{2}} A_{i,k_{1},u} - \\ &- 2 \Upsilon_{u} \Lambda_{k_{2}} A_{i,k_{1}} \right) - 3 \Delta_{u} \Upsilon \Lambda_{k_{2}} A_{i,k_{1}} \\ A_{i,k_{1},k_{2},k_{3}} &= \Delta^{2} \left( \Upsilon A_{i,k_{1},k_{2},x_{k_{3}}} - \Upsilon_{x_{k_{3}}} A_{i,k_{1},k_{2}} \right) + \Delta \left( -6 \Delta_{x_{k_{3}}} \Upsilon A_{i,k_{1},k_{2}} + \Upsilon \Lambda_{k_{3}} A_{i,k_{1},k_{2},u} - \\ &- 3 \Upsilon_{u} \Lambda_{k_{2}} A_{i,k_{1}} k_{2} A_{i,k_{1}} \right) - 6 \Delta_{u} \Upsilon \Lambda_{k_{2}} A_{i,k_{1}} k_{2} \end{aligned}$$

Furthermore, these iterated derivatives identically satisfy:

$$H_2(\Phi_1) \equiv H_1(\Phi_2)$$

and four third-order relations [new in the subject]:

$$0 \equiv -H_1(H_2(H_1(\Phi_2))) + 2H_2(H_1(H_1(\Phi_2))) - H_2(H_2(H_1(\Phi_1))) - \Phi_2 H_1(H_2(\Phi_1)) + \Phi_2 H_2(H_1(\Phi_1)),$$

$$0 \equiv -H_2(H_1(H_1(\Phi_2))) + 2H_1(H_2(H_1(\Phi_2))) - H_1(H_1(H_2(\Phi_2))) - \Phi_1 H_2(H_1(\Phi_2)) + \Phi_1 H_1(H_2(\Phi_2)),$$

$$0 \equiv -H_1(H_1(H_1(\Phi_2))) + 2H_1(H_2(H_1(\Phi_1))) - H_2(H_1(H_1(\Phi_1))) + 4H_1(H_2(\Phi_1))) - H_2(H_1(\Phi_1))) + 4H_1(H_1(\Phi_1))) + 4H_1(H_1(\Phi_1)) + 4H_1(H_1(\Phi_1))) + 4H_1(H_1(\Phi_1)) + 4H_1(H_1(\Phi_1))) + 4H_1(H_1(\Phi_1)) + 4H_1(H_1(\Phi_1)) + 4H_1(H_1(\Phi_1)) + 4H_1(H_1(\Phi_1)) + 4H_1(H_1(\Phi_1))) + 4H_1(H_1(\Phi_1)) + 4H_1(H_1(\Phi_1))) + 4H_1(H_1(\Phi_1)) + 4H_1(H_1(\Phi_1))) + 4H_1(H_1(\Phi_1)) + 4H_1(H_1(\Phi_1))) + 4H_1(H_1(\Phi_1)) + 4H_1$$

 $+ \Phi_1 H_1(H_1(\Phi_2)) - \Phi_1 H_2(H_1(\Phi_1)),$  $0 \equiv H_2(H_2(H_1(\Phi_2))) - 2 H_2(H_1(H_2(\Phi_2))) + H_1(H_2(H_2(\Phi_2))) - \Phi_2 H_2(H_1(\Phi_2)) + \Phi_2 H_1(H_2(\Phi_2)).$ 

**Theorem.** [AMS 2011] Associated to such an  $M^3 \subset \mathbb{C}^2$ , there is a unique  $\mathfrak{pgl}_2(\mathbb{R})$ -valued Cartan connection which is normal and regular in the sense of Tanaka. Its curvature function reduces to:  $\kappa(p) = \kappa_{i_1}^{h_1 t}(p) \, \mathbf{h}_1^* \wedge \mathbf{t}^* \otimes \mathbf{i}_1 + \kappa_{i_2}^{h_1 t}(p) \, \mathbf{h}_1^* \wedge \mathbf{t}^* \otimes \mathbf{i}_2 + \mathbf{$  $+ \kappa_{i_1}^{h_2 t}(p) \, \mathbf{h}_2^* \wedge \mathbf{t}^* \otimes \mathbf{i}_1 + \kappa_{i_2}^{h_2 t}(p) \, \mathbf{h}_2^* \wedge \mathbf{t}^* \otimes \mathbf{i}_2 +$  $+\kappa_{j}^{h_{1}t}(p) \mathbf{h}_{1}^{*} \wedge \mathbf{t}^{*} \otimes \mathbf{j} + \kappa_{j}^{h_{2}t}(p) \mathbf{h}_{2}^{*} \wedge \mathbf{t}^{*} \otimes \mathbf{j},$ where the two main curvature coefficients, having homogeneity four, are of the form:  $\kappa_{i_1}^{h_1 t}(p) = -\Delta_1 c^4 - 2\Delta_4 c^3 d - 2\Delta_4 c d^3 + \Delta_1 d^4,$  $\kappa_{i_2}^{h_1 t}(p) = -\Delta_4 c^4 + 2\Delta_1 c^3 d + 2\Delta_1 c d^3 + \Delta_4 d^4,$ in which the two functions  $\Delta_1$  and  $\Delta_4$  of only the three variables (x, y, u) are explicitly given by:  $\Delta_1 = \frac{1}{384} \left| H_1(H_1(H_1(\Phi_1))) - H_2(H_2(H_2(\Phi_2))) + 11 H_1(H_2(H_1(\Phi_2))) - 11 H_2(H_1(H_2(\Phi_1))) + 11 H_2(H_1(\Phi_2))) - 11 H_2(H_1(\Phi_2))) \right|$  $+ 6 \Phi_2 H_2(H_1(\Phi_1)) - 6 \Phi_1 H_1(H_2(\Phi_2)) - 3 \Phi_2 H_1(H_1(\Phi_2)) + 3 \Phi_1 H_2(H_2(\Phi_1)) - 3 \Phi_1 H_1(H_1(\Phi_1)) + 3 \Phi_2 H_2(H_2(\Phi_2)) - 2 \Phi_1 H_1(\Phi_1) + 2 \Phi_2 H_2(\Phi_2) - 2 (\Phi_2)^2 H_1(\Phi_1) + 2 (\Phi_1)^2 H_2(\Phi_2) - 2 (\Phi_2)^2 H_2(\Phi_2) + 2 (\Phi_1)^2 H_1(\Phi_1) \Big|,$  $\Delta_4 = \frac{1}{384} \left| -3 H_2(H_1(H_2(\Phi_2))) - 3 H_1(H_2(H_1(\Phi_1))) + 5 H_1(H_2(H_2(\Phi_2))) + 5 H_2(H_1(H_1(\Phi_1))) + 5 H_2(H_1(\Phi_1))) + 5 H_2(H_1(\Phi_1)) + 5 H_2(H_1(\Phi_1)) + 5 H_2(H_1(\Phi_1))) + 5 H_2(H_1(\Phi_1)) + 5 H_2(H_2(\Phi_2))) + 5 H_2(H_2(\Phi_2)) + 5 H_2(H_2(\Phi_2))) + 5 H_2(H_2(\Phi_2)) + 5 H_2(H_2(\Phi_2))) + 5 H_2(H_2(\Phi_2)) + 5 H_2(H_2(\Phi_2))) + 5 H_2(H_2(\Phi_2))) + 5 H_2(H_2(\Phi_2)) + 5 H_2(H_2(\Phi_2)) + 5 H_2(H_2(\Phi_2))) + 5 H_2(H_2(\Phi_2)) + 5 H_2(H_2(\Phi_2)) + 5 H_2(H_2(\Phi_2))) + 5 H_2(H_2(\Phi_2)) + 5 H_2(H_2(\Phi_2)) + 5 H_2(H_2(\Phi_2)) + 5 H_2(H_2(\Phi_2))) + 5 H_2(H_2(\Phi_2)) + 5 H_2(\Phi_2) + 5 H_2(\Phi_2)$  $+ 4 \Phi_1 H_1(H_1(\Phi_2)) + 4 \Phi_2 H_2(H_1(\Phi_2)) - 3 \Phi_2 H_1(H_1(\Phi_1)) - 3 \Phi_1 H_2(H_2(\Phi_2)) -7\Phi_2 H_1(H_2(\Phi_2)) - 7\Phi_1 H_2(H_1(\Phi_1)) - 2H_1(\Phi_1) H_1(\Phi_2) - 2H_2(\Phi_2) H_2(\Phi_1) +$  $+4\Phi_{1}\Phi_{2}H_{1}(\Phi_{1})+4\Phi_{1}\Phi_{2}H_{2}(\Phi_{2})\Big|,$ 

## and where the remaining secondary curvature coefficients are [use Bianchi identities]:

hat

 $h_1 t \qquad \widehat{\frown} \qquad h_2 t \qquad \widehat{\frown} \qquad h_1 t$ 

$$\kappa_{i_1}^{h_2 t} = \kappa_{i_2}^{h_1 t}, \quad \kappa_{i_2}^{h_2 t} = -\kappa_{i_1}^{h_1 t},$$

hat

 $h_1 t$ 

# **Corollary.** [AMS 2011, 113 pages] $A \mathscr{C}^6$ -smooth strongly pseudoconvex local hypersurface $M^3 \subset \mathbb{C}^2$ is biholomorphic to $\mathbb{H}^3$ , if and only if:

 $\Delta_1 \equiv \Delta_4 \equiv 0,$ 

identically as functions of (x, y, u).

## • A few formulas from the proofs:

$$\begin{split} &\alpha_{\ell j} = 3a^4 + 3b^4 - 4e^2 - \Phi_1 a^2 bc + ca\Phi_2 b^2 - \Phi_1 ab^2 d - \Phi_2 a^2 bd - 2\Phi_2 bce - 2\Phi_1 ace - 2\Phi_2 ade + 2\Phi_1 bde \\ &- \Phi_1 a^3 d + \Phi_2 a^3 c - \Phi_1 b^3 c - \Phi_2 b^3 d + 6a^2 b^2 + \left[\frac{3}{16} H_1(\Phi_1) + \frac{3}{16} H_2(\Phi_2)\right] b^2 d^2 + \\ &+ \left[ -\frac{11}{1536} H_2(\Phi_2) H_1(\Phi_1) - \frac{1}{192} H_1(H_1(\Phi_1)) \Phi_1 - \frac{11}{3072} H_2(\Phi_2^2) + \frac{1}{384} \Phi_2^2 H_2(\Phi_2) - \frac{11}{3072} H_1(\Phi_1^2) + \\ &+ \frac{1}{384} \Phi_1^2 H_1(\Phi_1) + \frac{1}{48} H_1(H_2(H_1(\Phi_2))) + \frac{1}{384} H_2(H_2(H_2(\Phi_2))) + \frac{1}{384} H_1(H_1(H_1(\Phi_1))) + \frac{1}{384} \Phi_2^2 H_1(\Phi_1) - \\ &- \frac{1}{192} H_2(H_2(\Phi_2)) \Phi_2 + \frac{1}{48} H_2(H_1(H_1(\Phi_2))) + \frac{1}{64} H_2(H_1(\Phi_1)) \Phi_2 - \frac{1}{48} \Phi_1 H_2(H_1(\Phi_2)) + \frac{1}{384} \Phi_1^2 H_2(\Phi_2) - \\ &- \frac{7}{384} H_2(H_2(H_1(\Phi_1))) + \frac{1}{64} H_1(H_2(\Phi_2)) \Phi_1 - \frac{7}{384} H_1(H_1(H_2(\Phi_2)))) - \frac{1}{48} \Phi_2 H_1(H_1(\Phi_2)) \right] d^4 + \\ &+ \left[ - \frac{11}{768} H_2(\Phi_2) H_1(\Phi_1) - \frac{7}{792} H_2(H_2(H_1(\Phi_1))) + \frac{1}{192} H_2(H_2(H_2(\Phi_2)))) + \frac{1}{192} H_1(H_1(H_1(\Phi_1))) \right] + \\ &+ \frac{1}{192} \Phi_2^2 H_2(\Phi_2) - \frac{1}{1536} H_1(\Phi_1^2) - \frac{1}{24} \Phi_2 H_1(H_1(\Phi_2)) - \frac{1}{1536} H_2(\Phi_2^2) + \frac{1}{32} H_2(H_1(\Phi_1)) \Phi_2 - \frac{1}{96} H_1(H_1(\Phi_1))) \Phi_1 + \\ &+ \frac{1}{192} \Phi_1^2 H_2(\Phi_2) + \frac{1}{132} \Phi_1^2 H_1(\Phi_1) - \frac{1}{24} \Phi_2 H_1(H_1(\Phi_2)) + \frac{1}{24} H_2(H_1(H_1(\Phi_2))) \right] c^2 d^2 + \left[ -\frac{1}{32} H_1(H_1(\Phi_1)) + \\ &+ \frac{1}{32} H_2(\Phi_2) \Phi_1 - \frac{1}{32} H_1(\Phi_2) + \frac{1}{32} H_1(\Phi_1) \Phi_1 \right] bcd^2 + \left[ \frac{1}{32} H_2(H_1(\Phi_1)) + \frac{1}{32} H_2(H_2(\Phi_2)) - \\ &- \frac{1}{32} H_2(\Phi_2) \Phi_2 - \frac{1}{32} H_1(\Phi_1) \Phi_2 \right] ac^2 d^2 + \left[ -\frac{1}{32} H_1(H_1(\Phi_1)) + \frac{1}{32} H_2(\Phi_2) \Phi_2 - \frac{1}{32} H_1(\Phi_1) \Phi_2 \right] bd^3 + \\ &+ \left[ - \frac{1}{32} H_1(\Phi_1) \Phi_1 \right] ad^3 + \left[ \frac{1}{32} H_2(\Phi_2) \Phi_2 - H_2(H_1(\Phi_1)) + \frac{1}{32} H_2(\Phi_2) \Phi_2 - \frac{1}{32} H_1(\Phi_1) \Phi_2 \right] bd^3 + \\ &+ \left[ - \frac{1}{32} H_1(H_1(\Phi_1)) + \frac{1}{32} H_2(\Phi_2) \Phi_1 - \frac{1}{32} H_1(\Phi_2) + \frac{1}{32} H_1(\Phi_1) \Phi_1 \right] bc^3 + \\ &+ \frac{1}{16} \left[ H_1(\Phi_1) + H_2(\Phi_2) \right] a^2 c^2 + \frac{1}{36} \left[ H_1(\Phi_1) + H_2(\Phi_2) \right] b^2 c^2 + \frac{1}{32} H_2(\Phi_2) \Phi_2 - H_2(H_1(\Phi_1)) - \\ &- H_2(H_2(\Phi_2)) + H_1(\Phi_1) \Phi_2 \right] dbc^2 + \frac{1}{32} \left[ - H_1(H_1(\Phi_1)) + H_2(\Phi_2)$$

$$\begin{split} & \left[H_{1}, \left[H_{1}, \left[H_{1}, \left[H_{1}, \left[H_{1}, \left[H_{1}, H_{1}\right]\right]\right]\right] = \left(H_{1}(H_{1}(H_{1}(\Phi_{1}))) + 4\Phi_{1}H_{1}(H_{1}(\Phi_{1})) + (\Phi_{1})^{4}\right)[H_{1}, H_{2}], \\ & \left[H_{1}, \left[H_{1}, \left[H_{1}, \left[H_{2}, \left[H_{1}, H_{2}\right]\right]\right]\right] = \left(H_{1}(H_{1}(H_{1}(\Phi_{2}))) + 3\Phi_{1}H_{1}(H_{1}(\Phi_{2})) + \\ & + 3\Phi_{1}\Phi_{2}H_{1}(H_{1}(\Phi_{1})) + 3\Phi_{1}H_{1}(H_{2}(\Phi_{2})) + \\ & + 3\Phi_{1}\Phi_{2}H_{1}(H_{1}(\Phi_{2})) + 4\Phi_{1}H_{2}(\Phi_{2}) + (\Phi_{2})^{3}\Phi_{2})[H_{1}, H_{2}], \\ \\ & \left[H_{1}, \left[H_{2}, \left[H_{2}, \left[H_{1}, H_{2}\right]\right]\right]\right] = \left(H_{1}(H_{2}(H_{2}(\Phi_{2}))) + 2\Phi_{1}H_{1}(H_{2}(\Phi_{2})) + \\ & + 2\Phi_{2}H_{1}(H_{1}(\Phi_{2})) + 2\Phi_{1}H_{1}(H_{2}(\Phi_{2})) + (\Phi_{1})^{2}\Phi_{2}(\Phi_{2})^{2}\right)[H_{1}, H_{2}], \\ \\ & \left[H_{1}, \left[H_{2}, \left[H_{1}, \left[H_{1}, \left[H_{1}, \left[H_{1}, \left[H_{1}, H_{1}, H_{2}\right]\right]\right]\right]\right] = \left(H_{1}(H_{2}(H_{1}(\Phi_{1}))) + 2\Phi_{1}H_{1}(H_{2}(\Phi_{2})) + \\ & + 4\Phi_{1}P_{2}(\Phi_{1}) + 2\Phi_{2}H_{1}(H_{1}(\Phi_{2})) + H_{1}(\Phi_{1})H_{2}(\Phi_{2}) + 2\Phi_{2}H_{1}(H_{1})H_{2}(\Phi_{2}) + \\ & + 3\Phi_{2}H_{1}(H_{1}(\Phi_{1})) + 2\Phi_{1}H_{1}(H_{1}(\Phi_{2})) + \\ & + 4\Phi_{1}\Phi_{2}H_{1}(\Phi_{2})) + 2\Phi_{1}H_{1}(H_{1}(\Phi_{2})) + \\ & + \Phi_{1}H_{2}(H_{1}(\Phi_{2})) + H_{1}(\Phi_{1})H_{2}(\Phi_{2}) + 2\Phi_{2}H_{1}(H_{1})H_{2}(\Phi_{2}) + \\ & + 4\Phi_{1}\Phi_{2}H_{1}(\Phi_{2}) + (\Phi_{1})^{2}H_{2}(\Phi_{2}) + 2\Phi_{2}H_{1}(H_{1}(\Phi_{2})) + \\ & + 4\Phi_{1}\Phi_{2}(H_{1}(\Phi_{2})) + 3H_{1}(\Phi_{2})H_{2}(\Phi_{2}) + 2\Phi_{1}\Phi_{2})H_{1}(\Phi_{2}) + \\ & + 4\Phi_{1}\Phi_{2}(H_{2}(\Phi_{2})) + 3H_{1}(\Phi_{2})H_{2}(\Phi_{2}) + \\ & + 4\Phi_{1}\Phi_{2}(H_{1}(\Phi_{2})) + 3H_{1}(\Phi_{2})H_{2}(\Phi_{2}) + \\ & + 3\Phi_{2}H_{1}(H_{1}(\Phi_{1})) + 3\Phi_{2}H_{1}(H_{1}(\Phi_{1})) + \\ & + 2\Phi_{1}H_{1}(H_{1}(\Phi_{2})) + 3\Phi_{1}H_{2}(H_{1}(\Phi_{2})) + \\ & + 3\Phi_{1}\Phi_{2}(H_{1}(\Phi_{2})) + 2\Phi_{2}H_{2}(H_{1}(\Phi_{1})) + \\ & + \Phi_{1}\Phi_{2}(H_{1}(\Phi_{2})) + 3\Phi_{1}H_{2}(H_{1}(\Phi_{2})) + \\ & + 4\Phi_{1}\Phi_{2}(H_{1}(\Phi_{2})) + 2\Phi_{2}H_{2}(H_{1}(\Phi_{1})) + \\ & + \Phi_{2}H_{1}(H_{1}(\Phi_{2})) + 2\Phi_{2}H_{2}(H_{1}(\Phi_{1})) + \\ & + \Phi_{1}H_{2}(H_{2}(\Phi_{2}) + \\ & + 2\Phi_{2}H_{2}(H_{1}(\Phi_{2})) + 2\Phi_{2}H_{2}(H_{1}(\Phi_{2})) + \\ & + 2\Phi_{2}H_{2}(H_{1}(\Phi_{2})) + 2\Phi_{2}H_{2}(H_{1}(\Phi_{2})) + \\ & + 2\Phi_{2}H_{2}(H_{1}(\Phi_{2})) + 2\Phi_{2}H_{2}(H_{1}(\Phi_{2})) + \\$$

$$\begin{split} \kappa_{i_{2}}^{h_{2}t} &= \widehat{I}_{2}^{*}([\widehat{H}_{2},\widehat{T}]) = -\widehat{T}(\alpha_{h_{2}i_{2}}) + \alpha_{h_{2}h_{2}}H_{2}(\alpha_{ti_{2}}) + \alpha_{h_{2}h_{1}}H_{1}(\alpha_{ti_{2}}) + \beta_{i_{2}h_{1}}\left(\alpha_{h_{2}h_{1}}\underline{H_{1}(\alpha_{th_{1}})}_{\alpha_{h_{2}h_{1}}}\right) - \alpha_{th_{2}}\underline{H_{2}(\alpha_{h_{2}h_{1}})}_{\alpha_{h_{2}h_{1}}} - \alpha_{tt}\underline{T}(\alpha_{h_{2}h_{1}})_{\alpha} - \alpha_{tt_{1}}\underline{\widehat{I_{1}}(\alpha_{h_{2}h_{1}})}_{\alpha_{h_{2}h_{1}}} - \alpha_{tt_{2}}\underline{\widehat{I_{2}}(\alpha_{h_{2}h_{1}})}_{\alpha_{h_{1}h_{1}}} - \alpha_{tt}\underline{\widehat{I_{1}}(\alpha_{h_{2}h_{1}})}_{\alpha_{h_{1}h_{1}}} - \alpha_{tt}\underline{\widehat{I_{1}}(\alpha_{h_{2}h_{1}})}_{\alpha_{h_{1}h_{1}}} + \alpha_{h_{2}h_{1}}\underline{H_{2}(\alpha_{th_{1}})}_{\alpha_{h_{2}h_{2}}} - \alpha_{tt}\underline{T}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{1}h_{1}}} - \alpha_{tt_{2}}\underline{\widehat{I_{2}}(\alpha_{h_{2}h_{1}})}_{\alpha_{h_{1}h_{1}}} - \alpha_{tt_{2}}\underline{H_{2}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{1}h_{2}}} - \alpha_{tt}\underline{T}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{1}h_{2}}} - \alpha_{tt_{1}}\underline{\widehat{I_{1}}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{2}h_{2}}} - \alpha_{tt_{1}}\underline{\widehat{I_{2}}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{1}h_{2}}} - \alpha_{tt_{2}}\underline{\widehat{I_{2}}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{2}h_{2}}} - \alpha_{tt_{2}}\underline{\widehat{I_{2}}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{2}h_{2}}} - \alpha_{tt_{2}}\underline{\widehat{I_{2}}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{1}h_{2}}} - \alpha_{tt_{1}}\underline{\widehat{I_{1}}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{1}h_{2}}} - \alpha_{tt_{2}}\underline{\widehat{I_{2}}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{2}h_{2}}} - \alpha_{tt_{2}}\underline{\widehat{I_{2}}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{2}h_{2}}} - \alpha_{tt_{2}}\underline{\widehat{I_{2}}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{2}h_{2}}} - \alpha_{tt_{2}}\underline{\widehat{I_{2}}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{2}h_{2}}} - \alpha_{tt_{2}}\underline{\widehat{I_{2}}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{1}h_{2}}} - \alpha_{tt_{2}}\underline{\widehat{I_{2}}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{2}}} - \alpha_{tt_{2}}\underline{\widehat{I_{2}}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{2}}} - \alpha_{tt_{2}}\underline{\widehat{I_{2}}(\alpha_{h_{2}h_{2}})}_{\alpha_{h_{1}h_{2}}} - \alpha_{tt_{2}}\underline{\widehat{$$

## **V** – Perspectives on explicit Cartan CR connections

# • Today: three (deeper) levels of explicit calculations:

□ Informative linear algebra: Absorption of torsion; normalization; prolongation of equivalence problems; appearance of curvatures tensors; dimensional counts.

□ Polynomial differential algebra: Expand completely quadratic, cubic, quartic, polynomial remainders.

□ Relations (syzygies): Free and non-free Lie algebra impose nontrivial relations between iterated Lie brackets.

• Classification problem (still open in dimension 5): To provide a complete list of all possible (local or global) real analytic submanifolds  $M^{2n+1} \subset \mathbb{C}^{n+1}$  up to change of holomorphic coordinates on  $\mathbb{C}^{n+1}$ .

Joël M., Sophus Lie, Friedrich Engel et le problème de Riemann-Helmholtz, Hermann, Paris, 2010, **349** pages.

**Joël M.**, Sophus Lie and Friedrich Engel's Theory of Transformation Groups (Vol. I, 1888). Modern Presentation and English Translation, **650** pages, submitted to SV.

• Cartan connection problem: To determine classes of homogeneous spaces corresponding to CR submanifolds  $M^{2n+1} \subset \mathbb{C}^{n+1}$  of small dimension, and to construct Cartan connections on geometry-preserving deformations of the found homogeneous models.

□ Cartan connections should be widespread in differential geometry, also for *non* semi-simple homogeneous Klein models, especially on CR manifolds. • Question still open in CR geometry: Make Chern-Moser's computations explicit in terms of the defining equation for a Levi nondegenerate  $M^{2n+1} \subset \mathbb{C}^{n+1}$ [Isaev, LNM 2020, Springer, May 2011].

• Beloshapka-Ezhov-Schmalz: [Russ. J. Math. Phys. 2007] Cartan-Tanaka connection for Engel CR manifolds  $M^4 \subset \mathbb{C}^3$  that are geometry-preserving deformations of Beloshapka's cubic:

$$v_1 = z\overline{z} + O(4) = \varphi_1(x, y, u_1, u_2)$$
  
$$v_2 = 2i \, z\overline{z}(z + \overline{z}) + O(4) = \varphi_2(x, y, u_1, u_2).$$

• M.-Sabzevari: [in progress; many generalizations]

$$\begin{bmatrix} v_1 = 2i \, z\overline{z} + O(4) = \varphi_1(x, y, u_1, u_2, u_3) \\ v_2 = 2i \, z\overline{z}(z + \overline{z}) + O(4) = \varphi_2(x, y, u_1, u_2, u_3) \\ v_3 = 2z\overline{z}(z - \overline{z}) + O(4) = \varphi_3(x, y, u_1, u_2, u_3). \\ T_1 := \partial_{w_1} \\ T_2 := \partial_{w_2} \\ T_3 := \partial_{w_3} \\ L_1 := \partial_z + (2iz) \, \partial_{w_1} + (2iz^2 + 4w_1) \, \partial_{w_2} + 2z^2 \, \partial_{w_3} \\ L_2 := i \, \partial_z + (2z) \, \partial_{w_1} + (2z^2) \, \partial_{w_2} - (2iz^2 - 4w_1) \, \partial_{w_3} \\ D := z \, \partial_z + 2w_1 \, \partial_{w_1} + 3w_2 \, \partial_{w_2} + 3w_3 \, \partial_{w_3} \\ R := iz \, \partial_z - w_3 \, \partial_{w_2} + w_2 \, \partial_{w_3}. \end{bmatrix}$$

• Deformations of the light cone:

$$w + \overline{w} = \frac{2z_1\overline{z}_1 + z_1^2\overline{z}_2 + \overline{z}_1^2z_2}{1 - z_2\overline{z}_2}.$$

[Tanaka's prolongation procedure does not apply]

