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Binet-Legendge ellipsoid in conformal finsler
geometry

Vladimir S. Matveev (Jena)

Based on the paper arXiv:1104.1647 joint with Marc Troyanov

Abstract: I show a simple construction from convex geometry that
solves many named problems in Finsler geometry



Definition of finsler metrics: Finsler metric ist a continuous function
F : TM → R such that for every x ∈ M the restriction F|TxM is a
Minkowski norm, that is ∀u, v ∈ TxM, ∀λ > 0
(a) F (λ · v) = λ · F (v), (b) F (u + v) ≤ F (u) + F (v),
(c) F (v) = 0 ⇐⇒ v = 0.

Euclidean norm:
E : Rn → R of the form
E (v) =

√∑

i,j aijv iv j ,

where (aij) is a positively def-
inite symmetric matrix

−→

(Minkowski) norm:
B : Rn → R≥0 with

(a) B(λ · v) = λ · B(v),

(b) B(u + v) ≤ B(u) + B(v),

(c) B(v) = 0 ⇐⇒ v = 0

↓ ↓
(Local) Riemannian metric:
g : Rn

︸︷︷︸

x

× Rn

︸︷︷︸

v

→ R≥0

of the form
gx(v , u) =

∑

i,j aij(x)v iuj ,
where for every x
(aij(x)) is a positively definite
symmetric matrix

−→

(LOCAL) FINSLER METRIC:
F : Rn

︸︷︷︸

x

× Rn

︸︷︷︸

v

→ R≥0 such

that for every x
F (x , ·

︸︷︷︸

v

) : Rn → R is a

norm, i.e., satisfies
(a), (b), (c).



How to visualize finsler metrics

It is known (Minkowski) that the unit ball
determines the norm uniquely:

for a given convex body K ∈ Rn such that 0 ∈
int(K ) there exists an unique norm B such that
K = {x ∈ Rn | B(x) ≤ 1}.

Thus, in order to make a picture of a finsler
metric it is sufficient to draw unit balls at the
tangent spaces.

0

T h e r e  e x i s t s  a  u n i q u e  
n o r m  s u c h  t h a t  
( t h e  c o n v e x  b o d y )
K  i s   t h e  u n i t e  b a l l  
i n  t h i s    n o r m

K



Examples:

Riemannian metric: every unit ball is an ellipsoid symmetric w.r.t. 0.

R i e m a n n i a n  2 D  m e t r i c :  a l l  u n i t e  b a l l s  a r e  e l l i p s e s

Minkowski metric on Rn: F (x , v) = B(v) for a certain norm B, i.e.,
the metric is invariant w.r.t. the standard translations of Rn.

M i n k o w s k i  2 D  m e t r i c

Arbitrary finsler metric on Rn:

F i n s l e r  2 D  m e t r i c :   u n i t e  b a l l s  a r e  c o n v e x ;  t h a t ’ s  a l l



Main Trick

F F
gc a n o n i c a l l y  c o n s t r u c t  

Given a (smooth) finsler metrics F we construct a (smooth)
RIEMANNIAN metric on gF such that
• The Riemannian metric gF has the same (or better) regularity as the
finsler metric F
• If F is Riemannian, i.e. if F (x , ξ) =

√

gx(ξ, ξ) for a some Riemannian
metric g, then gF = g
• If two finsler metrics F1 and F2 are conformally equivalent, i.e., if
F1(x , ξ) = λ(x)F2(x , ξ) for some function λ : M → R, then the
corresponding Riemannian metrics are also conformally equivalent with
essentially the same conformal factor: gF1

= λ2gF2

• If F1 and F2 are C 0-close, then so are gF1
and gF2

.
• If F1 and F2 are bilipschitzly equivalent, then so are gF1

and gF2
.

This allows to use the results and methods from (much better developed)

Riemannian geometry to finsler geometry. I will show many application



Construction of the (Binet-Legendre) Euclidean structure
in every tangent space

For every convex body K ⊆ V such that 0 ∈ int(K ), let us now
construct an Euclidean structure in V .
We take an arbitrary linear volume form Ω in V and construct

contravariant bilinear form g∗ : V ∗ × V ∗ → R (where V ∗ is the dual
vector space to V ) by

g∗(ξ, ν) :=
1

VolΩ(K )

∫

K

ξ(k)ν(k)dΩ

(i.e., the function we integrate takes on k ∈ K ⊂ V the value ξ(k)ν(k);
ξ and ν are elements of V ∗, i.e., are functions on V .)

Equivalent definition: g∗(ξ, ν) = 〈ξ|K , ν|K 〉L2
where we fixed the linear

volume form Ω on V by requiring VolΩ(K ) = 1.

g ∗ allows to identify canonically V and V ∗ and gives therefore
an Euclidean structure on V , which we denote by g .



g ∗(ξ, ν) := 1
VolΩ(K )

∫

K ξ(k)ν(k)dΩ

Evidently, g is a well-defined Euclidean structure

◮ it does not depend on Ω (because the only freedom is choosing Ω,
multiplication by a constant, does not influence the result),

◮ It is bilinear and positive definite

Moreover,

◮ g ′ constructed by K ′ := 1
λ
· K is given by g ′ = λ2 · g

Remark 1. The construction is too easy to be new – our motivation
came from classical mechanics, and our construction is close to one of
the inertia ellipsoid (Poinsot, Binet, Legendre). In the convex geometry,
Milman et al 1990 had a similar construction in an Euclidean space

Remark 2. There exist other constructions for example Vincze 2005 and
M∼, Rademacher, Troyanov, Zeghib 2009. The present construction has
better properties.



Thus, by a finsler metric F , we canonically constructed a Euclidean
structure on every tangent space, i.e., a Riemannian metric gF . If the
finsler metric is smooth, then the Riemannian metric is also smooth.

This metric has the following property: gλ·F = λ2 · gF .

In particular, if φ is isometry, similarity, or conformal transformation of F ,
it is an isometry, similarity, or conformal transformation of gF .



First application: Wang’s Theorem for all dimensions.

Theorem. Let (Mn,F ) be a C 2-smooth connected Finlser manifold. If
the dimension of the space of Killing vector fields of (M,F ) is greater

than n(n−1)
2 + 1, then F is actually a Riemannian metric.

History: For n 6= 2, 4 Theorem was proved 1947 by H.C. Wang. This
theorem answers a question of S. Deng and Z. Hou (2007).
Proof. I will use: if φ is an isometry of F , then it is an isometry of gF .

Let r > n(n−1)
2 + 1 be the dimension of the space of Killing vector fields.

Take a point x and choose r − n linearly independent Killing vector fields
K1, . . . ,Kr−n vanishing at x . The point x is then a fixed point of the

corresponding local flows φK1
t , ... , φ

Kr−n

t .

Then, for every t, the differentials of φK1
t , ... , φ

Kr−n

t at x are linear
isometries of (TxM, gF ).
Thus, the subgroup of SO(TxM, gF ) preserving the function F|TxM is at
least r − n dimensional.
Now, it is well-known that every subgroup of SO(TxM, gF ) of dimension

r − n > n(n−1)
2 + 1 − n = (n−2)(n−1)

2 acts transitively on the gF -sphere
Sn+1 ⊂ TxM. Then, the ratio F (ξ)2/g(ξ, ξ) is constant for all ξ ∈ TxM
and the metric F is actually a Riemannian metric



The Liouville Theorem for Minkowski spaces and the
solution to a problem by Matsumoto.

Theorem. Let (V ,F ) be an non-euclidean Minkowski space. If
φ : U1 → U2 is a conformal map between two domains U1 ⊂ V and
U2 ⊂ V , then φ is (the restriction of) a similarity, that is the composition
of an isometry and a homothety x 7→ const · x.

Remark. Theorem generalizes classical result of Liouville for Minkowski
metrics: Liouville has shown 1850 that every conformal transformation of
the standard (Rn≥3, geuclidean) is a similarity or a Möbius transformation,
i.e., a composition of a similarity and an inversion. We see that for
noneuclidean finsler metrics only similarities are allowed.

Theorem answers the question of Matsumoto 2001 and will be uses

below.



Proof of: Every conformal mapping of a Minkowski space
is a similarity

Proof for dim(M) > 2. I will use: if φ is a conformal transformation of
F , then it is a conformal transformation of gF . Moreover, if φ is a
conformal transformation of F and similarity of gF , then it is a similarity
of F .
We consider the metric gF . It is Euclidean; w.l.o.g. we think that
gF = dx2

1 + ...+ dx2
n .

Then, by the classical Liouville Theorem 1850, φ is as we want or a
Möbius transformation, i.e., a composition of of a similarity and an
inversion. We thus only need to prove that a composition of of a
similarity an inversion cannot be a conformal map of some non euclidean
Minkowski norm on Rn, which is an easy exercise.

T h e  d i f f e r e n t i a l  o f  t h e  i n v e r s i o n  a t  e v e r y  p o i n t  o f  t h e  s p h e r e  
i s  t he  r e f l ec t i on  w i t h  r espec t  t o  t he  t angen t  l i ne  t o  t he  sphe re .  
T h e  o n l y  c o n v e x  b o d y   i n v a r i a n t  w i t h  r e s p e c t  t o  a l l  s u c h  r e f l e c t i o n  
i s  t h e  s t a n d a r d  b a l l



Conformally flat compact Finsler Manifolds

Def. A metric F is conformally flat, if locally, in a neighborhood of
every point, it is conformally Minkowski.
Corollary. Any smooth connected compact conformally flat non
Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf
manifolds. In particular, it is finitely covered either by a torus T n or by
Sn−1 × S1.
Proof. Assuming M to be non Riemannian, it follows from Theorem
from the previous slide that these changes of coordinates are euclidean
similarities.
The manifold M carries therefore a similarity structure.
Compact manifolds with a similarity structure have been topologically
classified by N. H. Kuiper (1950) and D. Fried (1980): they are either
Bieberbach manifolds (i.e. Rn/Γ, where Γ is some crystallographic group
of Rn), or they are Hopf-manifolds i.e. compact quotients of
Rn \ {0} = Sn−1 × R+ by a group G which is a semi-direct product of an
infinite cyclic group with a finite subgroup of O(n + 1).



Finsler spaces with a non trivial self-similarity

Def. A C 1-map f : (M,F ) → (M ′,F ′) is a similarity if there exists a
constant a > 0, a 6= 1 (called the dilation constant) such that
F (f (x), dfx (ξ)) = a · F (x , ξ) for all (x , ξ) ∈ TM.

Theorem. Let (M,F ) be a forward complete connected C 0-Finsler
manifold (the manifold M is of class C 1, the metric F is C 0). If there
exists a non isometric self-similarity f : M → M of class C 1, then (M,F )
is a Minkowski space.

Remark. In the case of smooth Finsler manifolds, Theorem is known. A
first proof was given by Heil and Laugwitz in 1974, however R. L. Lovas,
and J. Szilasi found a gap in the argument and gave a new proof in 2009.



In the proof, I will use:

(Fact 1.) if f is similarity for F , then it is a similarity for gF ;

(Fact 2.) A similarity of a forward-complete manifold always has a
fixed point, i.e. x such that f (x) = x (since for every x the
sequence x , f (x), f (f (x)), f (f (f (x))), ... is forward Cauchy and its
limit is a fixed point.

(Fact 3.) A Riemannian metric admitting similarity with a fixed
point is flat. Indeed, for smooth metrics this statement reduces to
a classical Riemannian argument, since the existence of a non
trivial self-similarity in a C 2-Riemannian manifold easily implies
that the sectional curvature of that manifold vanishes because
otherwise it goes to infinity at the sequence of points
y , f (y), f (f (y)), f (f (f (y)))...→ x . For nonsmooth metrics, the
proof is slightly more tricky and is given in our paper; though it is
known to experts in metric geometry.



Proof. By Fact 3, gF is the standard Euclidean metric, and the
similarity f is a similarity of Rn.

We consider two points p, q ∈ Rn. Our goal is to
show that the unit ball in q is the parallel translation
of the unit ball in p.
Let us first assume for simplicity that f is already

a homothety x 7→ C · x for a constant 1 > C > 0
(we known that actually it is ψ ◦ φ, where ψ is an
isometry and φ a homothety; I will explain on the
next slide that w.l.o.g. ψ = Id)

0

p

q

0

p

q

We consider the points p, f (p) = C · p, f ◦ f (p) = C2
· p , ... ,

converge
−→ 0.

The unit ball of the push-forward f k
∗ (F ) of the metric

at the point f k(p) are as on the picture; therefore,
the unit ball of 1

C k f k
∗ (F ) at the point f k(p) is the

parallel translation of the unit ball at the unit ball at
the point p. But the unit ball of 1

C k f k
∗ (F ) at f k(p)

is the unit ball of F !
Thus, for every k the unit ball of F at fk(p) is the parallel translation of
the unit ball of F at p.
Sending k → ∞, we obtain that the unit ball at 0 = limk→∞ f k(p) is the
parallel translation of the unit ball at p. The same is true for q. Then,
the unit ball at q is the parallel translation of the unit ball at p



Why we can think that the similarity f is a homothety,
and not the composition ψ ◦ φ, where ψ ∈ O(n) is an
isometry and φ is a homothety

Because the group O(n) is compact. Hence, any sequence of the
form ψ,ψ2, ψ3, ..., has a subsequence converging to Id .
Thus, in the arguments on the previous slide we can take the
subsequence k → ∞ such that

(ψ ◦ φ)k
φ◦ψ=ψ◦φ

= ψk

︸︷︷︸

∼Id

◦φk

is “almost” φk , and the proof works.



Examples of conformal transformations and Theorem

(i)

If φ : M → M is an isometry for
F , and λ : M → R>0 is a function,
then φ is a conformal transformation
of F1 := λ · F .

(ii) Let Fm be a Minkowski metric on Rn. Then, the mapping
x 7→ const · x (for const 6= 0) is a conformal transformation.
Moreover, it is also a conformal transformation of F := λ · Fm.
Moreover, if ψ is an isometry of Fm, then ψ ◦ φ is a conformal
transformation of every F := λ · Fm.

(iii) Let g be the standard (Riemannian) metric on the standard sphere
Sn. Then, the standard Möbius transformations of Sn are conformal
transformations of every metric F := λ · g .

Theorem (finsler verion of conformal Lichnerowicz conjecture).
That’s all: Let φ be a conformal transformation of a connected
(smooth) finsler manifold (Mn≥2,F ). Then (M,F ) and φ are as in
Examples (i, ii, iii) above.



Even in the Riemannian case, Theorem above is nontrivial
Corollary (proved before by Alekseevsky 1971, Schoen 1995,
(Lelong)-Ferrand 1996) Let φ be a conformal transformation of a
connected RIEMANNIAN manifold (Mn≥2, g). Then for a certain
λ : M → R one of the following conditions holds

(a) φ is an isometry of λ · g , or

(b) (M, λ · g) is (Rn, gflat),

(c) or (Sn, ground).

The story: This statement is known as conformal Lichnerowicz
conjecture ∼ 1960
1970: Obata proved it under the assumption that M is closed.
1971: Alekseevsky proved it for all manifolds; later many mathematicians
(for example Yoshimatsu 1976 amd Gutschera 1995 (basing on example
of Ziller)) claimed the existence of flaws in the proof
1974–1996: (Lelong)-Ferrand gave another proof using her theory of
quasiconformal mappings
1995: Schoen: New proof using completely new ideas
Remark. In the pseudo-Riemannian case, the analog of Theorem is
wrong (a counterexample in signature (2, n − 1) of Frances). In the
lorenz signature, the question is still open.



Proof

Let φ is a conformal transformation of F . Then, it is a conformal
transformation of gF . By the Riemannian version of Main
Theorem, the following cases are possible:

(Trivial case): φ is an isometry of a certain λ · gF .
Then, it is an isometry of λ2 · F .

(Case Rn): After the multiplication of F by an appropriate
function, gF is the standard Euclidean metric, and φ is a similarity
of gF . Then, as we have shown above, F is Minkowski.

(Case Sn): After the multiplication F by an appropriate function,
gF is the standard metric on the sphere, and φ is a möbius
transformation of the sphere.



(Case Sn): After the multiplication F be an appropriate function, gF is
the standard “round” (Riemannian) metric on the sphere
Conformal transformation of Sn were described by J. Liouville 1850 in
dim n = 2, and by S. Lie 1872. For the sphere, the analog of the picture
(a) for the conformal transformation (which are homotheties) of Rn is
the picture (b).

0

Picture (a)

Picture (b)

We will generalize our proof for Rn to the case Sn (the principal
observation that sequence of the points p, φ(p), φ2(p), ... converges to a
fixed point is also true on the sphere; the analysis is slightly more
complicated).



Facts: J. Liouville 1850, S. Lie 1872

Fact 1. Let φ be a conformal nonisometric orientation-preserving

transformation of the round sphere (S , ground). Then, there exists a one

parameter subgroup (R,+) ⊂ Conf(S , ground) containing φ.



Fakt 2. Any one-parametric subgroup of (R,+) ⊂ Conf(S , ground) which
is not a subgroup of Iso(S , ground) can be constructed by one of the
following ways:

• Way 1. (General case)

(i) One takes the sliding rotation
Φt : x → exp(tȦ) + tv , where A
is a skew-symmetric matrix such
that the vector v is its
eigenvector

(ii) and then pullback this
transformation to the sphere with
the help of stereographic
projection

• Way 2. (Special case)

(i) One takes Ψ ◦ Φ, where Φ is a
homothety on the plane and Ψ is
a rotation on the plane

(ii) and then pullback this
transformation to the sphere with
the help of stereographic
projection



A neighborhood of the pole on the sphere is as on the picture:

0

Special case General case

in the special case two points
of the sphere have such neigh-
borhood (south and north
pols), in the general case only
one



The proof for the special case

In this case, the metric is conformally Minkowski, as every metric
admitting a similarity transformations. If it is not Riemannian, the
manifold is finitely covered either by a torus T n or by Sn−1 × S1 which is
not the case.

Thus, it is Riemannian as we want.



The proof for the general case
We have: the finsler metric F is invariant with respect to φ. We
consider the following two functions:

M(q) := maxη∈TqSn, η 6=0
F (q,η)√
g(q)(η,η)

− minη∈TqSn, η 6=0
F (q,η)√
g(q)(η,η)

.

M(q) = 0 ⇐⇒ F (q, ·) is proportional to
√

g(q)(·, ·).
m(q) := F (q,v(q))

g(q)(v(q),v(q)) , where v is the generator of the 1-parameter group

of the conformal transformations containing φ. Both functions are
continuous and invariant with respect to φ. We need to show that
the function M is identically zero; we first do it at the point 0.

u

u
w p

0

We will show that for every vector u at 0 we have
F (0,u)√
g(0)(u,u)

= F (0,w)√
g(0)(w ,w)

, where w is as on the pic-

ture. We take a point p very close to 0 such that at
this point u is proportional to v with a positive co-
efficient. Such points exist in arbitrary small neigh-
borhood of 0. We have:

F (p,u)√
g(p)(u,u)

= F (p,v)√
g(p)(v ,v)

:= m(p)
m(p) is invariant w.r.t. φ

= m(0) = F (0,w)√
g(0)(w ,w)

.

Replacing p by a sequence of the points converging to 0 (such that at

these points u is proportional to v) we obtain that F (0,u)√
g(0)(u,u)

= F (0,w)√
g(0)(w ,w)

implying M(q) = 0 implying F (0, ·) = λ ·
√

g(0)(·, ·).



We have:

◮ M(0) = 0,

◮ M is invariant w.r.t. φ and continuous,

◮ For every point p the sequence
p, φ(p), φ2(p), ... converges to 0.

Then, M ≡ 0 implying the metric F is actually a Riemannian metric,



Solution of Deng-Hou conjecture
Def. The Finsler manifold (M,F ) is called locally symmetric, if for every
point x ∈ M there exists r = r(x) > 0 (called the symmetry radius) and
an isometry Ĩx : Br (x) → Br (x) (called the reflexion at x) such that
Ĩx(x) = x and dx(Ĩx) = −id : TxM → TxM.

Def. A Finsler metric is Berwald, if there exists a symmetric affine
connection Γ = (Γi

jk) such that the parallel transport with respect to this
connection preserves the function F .

Theorem. Let (M,F ) be a C 2-smooth Finsler manifold. If (M,F ) is
locally symmetric, then F is Berwald.

Remark. This theorem answers positively a conjecture of Deng-Hou
2009, where it has been proved for globally symmetric spaces.

Remark.Locally symmetric Berwald metrics are easy to construct —
take the Levi-Civita connection ∇ of a locally symmetric Riemannian
manifolds, choose a reversible norm at one TxM invariant with respect to
the holonomy group, and extend the norm to all points y ∈ M with the
help of parallel transport. The obtained finsler metric is then
automatically invariant w.r.t. the reflections.
Corollary. Every locally symmetric C 2-smooth Finsler manifold is locally

isometric to a globally symmetric Finsler space.



Proof under the additional assumption that the symmetry
radius is locally bounded from zero.

The Binet-Legendge metric is a locally symmetric metric. Let us
now show that the metrics gF and F are affinely equivalent, that
is, for every arclength parameterised F -geodesic γ̃ there exists a
nonzero constant c such that γ̃(c · t) is an arclength parameterised
gF -geodesic.
It is sufficient to show that for every sufficiently close points

x , y ∈ M the midpoints of the geodesic segments γ and γ̃ in the
metrics gF and F connecting the points x and y coincide.

x y

Indeed, if it is true, then the geodesics γ and γ̃ coincide on its
dense subset implying they coincide.



Take a short F -geodesic γ̃ : [−ε̃, ε̃] → M. Let γ : [−ε, ε] → W be the
unique shortest gF -geodesic such that γ(−ε) = γ̃(−ε̃) and γ(ε) = γ̃(ε̃).
Let x = γ̃(0) be the midpoint of γ̃ and let Ix be the gF reflexion centered
at x . Then, Ix(γ(−ε)) = Ix(γ̃(−ε̃)) = γ̃(ε̃) = γ(ε) implying
Ix(γ(0)) = γ(0). By uniqueness of the fixed point of Ix , it follows that
γ(0) = x = γ̃(0).
Thus, all geodesic segments γ and γ̃ coincide after the affine
reparameterization By the classical result of Chern-Shen, the metric F is
Berwald.



Conformal invariants of finsler metrics
Def. Conformal invariants of (M,F ) are functions on M canonically
constructed by F and invariant w.r.t. conformal change F → λ(x) · F .

In the Riemannian case, it is hard to construct them. In the Finsler case,
the metric gF helps:
We define conformal invariants via the Steiner Formula:

Vol(BF + t · B) =

n∑

j=0

(
n
j

)

Wj(BF )t j ,

where BF is the 1-ball in F , B is the 1-Ball in gF , Vol is in gF , and
everything is done in one tangent space.
These numbers Wj(x) depend only on F|TxM and are the same for F and
λ(x) · F !!!!

One can construct two more invariants:

M(x) = max
ξ∈TxM

F (x , ξ)
√

g(ξ, ξ)
and m(x) = min

ξ∈TxM

F (x , ξ)
√

g(ξ, ξ)
.

Thus, in the generic case we obtain n + 2 “easy to calculate” scalar
invariants.



Thank you for your attention!!!


