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Brief history of the subject

1967 Kobayashi : holomorphic pseudodistance
(quickly extended to complex spaces and more recently almost
complex manifolds)
1894 Hilbert : properly convex domains in projective space
(1957 Birkhoff - extension to cones in Banach space)

1977 Kobayashi : (normal) projective geometries (1978
Kobayashi-Sasaki, 1981 Wu, Podesta, Goldman, ...)

1979 M. : holomorphic projective geometries

1981 M. : conformal Lorentz geometries

c. 1980 M. – unsolved puzzle: how does one extend this to general
parabolic geometries?
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The missing puzzle pieces

A. Čap, J. Slovák, V. Žádník, On Distinguished Curves in Parabolic
Geometries, Transform. Groups 9 no. 2 (2004), 143–166.

B. Doubrov, Projective reparametrization of homogeneous curves,
Arch. Math. (Brno) 41 (2005), 129–133.

B. Doubrov, V. Žádník, Equations and symmetries of generalized
geodesics, in: Differential Geometry and Its Applications, Elsevier,
Amsterdam (2004), 203–216.

V. Žádník, Generalized Geodesics, Ph.D. Thesis, Masaryk University
(Brno), 2003.

V. Žádník, Remarks on Development of Curves, in: The Proceedings
of 24th winter school Geometry and Physics (Srni 2004), Suppl.
Rend. Circ. Mat. Palermo, Series II.
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Puzzle solved
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Primary reference

[CS] A. Čap, J. Slovák, Parabolic Geometries I: Background and
General Theory, Math. Surveys and Monographs 154,
Amer. Math. Soc., Providence, 2009
ISBN: 978-0-8218-2681-2
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Cartan connections

Notation

G : a Lie group (with Lie algebra g)

P : a closed subgroup (with Lie algebra p)

M : a manifold (usually connected)
π :G → M : a principal P-bundle (with dimG = dim G)

A Cartan connection on G is a 1–form ω ∈ Ω1(G, g) satisfying:
(rh)∗ω = Ad(h−1)ω for all h ∈ P,
ω(ζX (u)) = X for fundamental vector fields ζX with X ∈ p,
ω(u) : TuG → g is a linear isomorphism at each point u ∈ G.
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Parabolic geometries

A Cartan geometry of type (G,P) on M is a principal P-bundle
π :G → M together with a Cartan connection ω ∈ Ω1(G, g).

A morphism between two Cartan geometries (G → M, ω) and
(G′ → M ′, ω′) of the same type is a bundle map ϕ :G → G′ that
preserves the connections: ϕ∗ω′ = ω.

A parabolic geometry of type (G,P) is a Cartan geometry
(π :G → M, ω) with G semisimple and P parabolic.

C(G,P) : category of Cartan geometries modeled on G/P
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Semisimple GLAs

A |k |-grading on g is a vector space decomposition:

g = g−k + · · ·+ g−1︸ ︷︷ ︸
g−

+ g0 + g1 + · · ·+ gk︸ ︷︷ ︸
p+=g1︸ ︷︷ ︸

p=g0

such that [gi , gj ] ⊂ gi+j and g−1 generates the subalgebra g−.

The associated filtration is given by:

gi = gi + · · ·+ gk

[gi , gj ] ⊂ gi+j
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Curvature

The curvature of a parabolic geometry (G → M, ω) is defined to be
the horizontal two–form K ∈ Ω2(G, g) given by the structure equation

K (ξ, η) := dω(ξ, η) + [ω(ξ), ω(η)].

It is often convenient to work instead with the curvature function
κ :G → Λ2g∗ ⊗ g defined by

κ(u)(X ,Y ) = K (ω−1(X )(u), ω−1(Y )(u)).

ω is said to be:

regular if κ(gi , gj ) ⊂ gi+j+1 ∀i , j < 0

torsionfree if κ(G) ⊂ Λ2g∗ ⊗ p

flat if κ ≡ 0
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Canonical curves: definition

G0 ⊂ P : Levi subgroup of grading–preserving elements
A0 ⊆ g− : a G0-invariant subset

A : Ad(P)(A0)

(π :G → M, ω) : an object in the category C(G,P)

J : open subinterval of R

A smooth curve γ(t) : J → M is a canonical curve of type A on M if γ
locally coincides up to a constant shift of parameter with the
projection to M of the flow Flξt of a constant vector field
ξ = ω−1(X ) ∈ X(G) for some X ∈ A.
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Canonical curves: diagram

p

g−

X ∈ A = Ad(P)(A0)

G

M

π

P ξX = ω-1(X)

u

ω-1

X(G) g

x = π(u)

γ(t) ∈ CΑ

Figure: A projective path of type A
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Connectivity and completeness

We say that a parabolic geometry on a manifold M is:

A-connected if there exists a piecewise smooth canonical curve of
type A joining any two points of M.

A-complete if Flξt is defined for all t ∈ R regardless of the choice of
ξ = ω−1(X ) with X ∈ A. In this case, each canonical curve of type A
on M is infinitely extendible to a map γ :R→ M.

complete if Flξt is defined for all t ∈ R and all ξ = ω−1(X ) with X ∈ g.
(Of course, the flat model space for any parabolic geometry is
complete and therefore A-complete for any choice of A.)
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Admissable parametrizations

Every canonical curve γ(t) admits affine reparametrizations:

t 7→ at + b for a 6= 0,b ∈ R.

Some γ(t) even admit projective reparametrizations:

t 7→ (at + b)/(ct + d) for ad − bc 6= 0.

Theorem (CS,Thm. 5.3.5)

Either a canonical curve admits projective reparametrizations or it
admits only affine reparametrizations.

Let CA denote the class of canonical curves of type A on M. We say
that CA admits projective reparametrizations if all curves in CA have
this property.
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On the abundance of suitable CA

Theorem (5.3.3ff; Čap, Slovák, Zádník)

Suppose that A0 ⊂ g− is a G0-invariant subset contained in a single
grading component (A0 ⊆ gj for some j < 0) and set A = Ad(P)(A0).
Then CA admits projective reparametrizations and any curve in CA
defined on a connected interval is uniquely determined by its r -jet at a
single point provided that rj > k.

In particular, if A0 ⊆ g−k , each curve in CA defined on a connected
interval is uniquely determined by its 2-jet at a single point. (These
curves are called “chains.”)
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Pseudodistances

d : M ×M → [0,∞] is a pseudodistance (or ‘pseudometric’) if, for all
x , y , z ∈ M,

d(x , x) = 0
d(x , y) = d(y , x), and
d(x , y) ≤ d(x , z) + d(z, y).

d is finite if d(x , y) <∞ for all x , y ∈ M.

d is nondegenerate (or a ‘true distance’) if

d(x , y) = 0 =⇒ x = y
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Nonexpansive maps

A map f : M → N between pseudometric spaces (M,dM) and (N,dN)
is nonexpansive (or ‘distance non-increasing’) if

dM(x , y) ≥ dN(f (x), f (y))

for all x , y ∈ M.
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Notation

Given

G : a (real or complex) semisimple Lie group
P : a parabolic subgroup

we consider the following categories

C(G,P) : parabolic geometries modeled on G/P
D : pseudometric spaces and nonexpansive maps
S : sets and set maps
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Intrinsic pseudodistance

Our goal is to define one or more functors d• making the following
diagram commutative:

C(G,P) d• //

F
""

D

F ′
��

S

where F and F ′ are the forgetful functors.

d• will depend upon the choice of a canonical curve class CA. For
suitable CA, one can replace S with the topological category T by
restricting to the full subcategory of C(G,P) comprised of regular
parabolic geometries for which d• is nondegenerate.

M. Markowitz Kobayashi pseudodistances for parabolic geometries



Introduction
Kobayashi pseudodistances

Examples

historical remarks
parabolic geometries
pseudodistances

Poincaré metric

To measure distances where some projective invariance is available,
it is natural to use the following projectively invariant metrics.

real case

I = {u ∈ R | |u| < 1}

ds2
I =

4du2

(1− u2)2

(almost-) complex case

∆ = {z ∈ C | |z| < 1}

ds2
∆ =

4 dz dz̄
(1− |z|2)2

M. Markowitz Kobayashi pseudodistances for parabolic geometries



Introduction
Kobayashi pseudodistances

Examples

historical remarks
parabolic geometries
pseudodistances

Poincaré distance

The distance function on I corresponding to ds2
I is given by

ρI(u1,u2) =

∣∣∣∣ log
(1 + u1)(1− u2)

(1− u1)(1 + u2)

∣∣∣∣
Schwarz lemma: General linear fractional transformations of I (resp.,
∆) are nonexpansive with respect to ρI (resp., ρ∆), while those which
are isometries at a single point must be automorphisms.

(I, ρI) and (∆, ρ∆) are used as "measuring rods."
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Kobayashi construction: setup

g = g− + g0 + g+ : a |k |-graded semisimple Lie algebra
p = g0 + g+ : the parabolic subalgebra

G : a Lie group with Lie algebra g

P : a parabolic subgroup of G
G0 ⊂ P : the Levi subgroup

A0 ⊆ g− : a G0-invariant subset
A : Ad(P)(A0)

assumption : CA admits projective reparametrizations
(π :G → M, ω) : a parabolic geometry of type (G,P)
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Kobayashi construction: path length

Given x , y ∈ M, we define a (Kobayashi) path of type A from x to y to
be a collection of points x = x0, x1, . . . , xk = y ∈ M, pairs of points
a1,b1, . . . ,ak ,bk ∈ I, and projectively parametrized canonical curves
of type A γ1, . . . , γk : I → M such that

γi (ai ) = xi−1 and γi (bi ) = xi for i = 1, . . . , k .

Denoting the above path by α = {xi ,ai ,bi , γi}, we define its
(Kobayashi) length to be

L(α) =
k∑

i=1

ρI(ai ,bi ).

M. Markowitz Kobayashi pseudodistances for parabolic geometries



Introduction
Kobayashi pseudodistances

Examples

construction
basic properties
finiteness

Kobayashi construction: diagram

A Kobayashi path of type A joining x to y :

x = x0 = γ1(a1)

-1

1

0

M

γ1

γk

γ2

x1 = γ1(b1) = γ2(a2)

x2 = γ2(b2) = γ3(a3)

xk-1 = γk(ak)

y = xk = γk(bk)

I = (-1,1)

ai

biρI(ai,bi)

Figure: A projective path of type A
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Kobayashi construction: definition

The Kobayashi pseudodistance on M associated with CA is then given
by

dA
M(x , y) = inf

α
L(α),

where the infimum is taken over all Kobayashi paths α of type A
joining x to y in M.

If no such path exists, we set dA
M(x , y) =∞.

Obviously dA
M(x , x) = 0, dA

M(x , y) = dA
M(y , x), and dA

M(x , y) ≥ 0 for all
x , y ∈ M, so dA

M is a symmetric extended real-valued function
dA

M : M ×M → [0,∞] .
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Basic properties

Theorem

(a) dA
M is a pseudodistance that depends only on the parabolic

geometry (G → M, ω) and choice of G0-invariant subset A0 ⊂ g−.

(b) If f : I → M is in CA, then dA
M(f (p), f (q)) ≤ ρ(p,q) for all p,q ∈ I.

(c) if δM is any pseudodistance on M such that
δM(f (p), f (q)) ≤ ρ(p,q) for all p,q ∈ I and all f : I → M in CA, then
δM(x , y) ≤ dA

M(x , y) for all x , y ∈ M.
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Basic properties (cont.)

Theorem

(d) Any morphism Φ: (G → M, ω)→ (G′ → M ′, ω′) between two
geometries of type (G,P) induces a local diffeomorphism ϕ : M → M ′

which is nonexpansive:
dA

M′(ϕ(x), ϕ(y)) ≤ dA
M(x , y) for all x , y ∈ M.

(e) Each automorphism of (ϕ :G → M, ω) is an isometry:
dA

M(ϕ(x), ϕ(y)) = dA
M(x , y) for all x , y ∈ M.

(f) If M is A-connected and A-complete, dA
M ≡ 0.
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Basic properties: coverings

If π : M̃ → M is a covering map and (G → M, ω) is a parabolic
geometry of type (G,P) on M, then (π∗G → M̃, ω̃ = π∗ω) is a
parabolic geometry of that type on M̃.

Theorem

The covering map π : M̃ → M is nonexpansive with respect to the
pseudodistance on M and that induced by π on M̃. In fact,

dA
M(x , y) = inf

ỹ
dA

M̃(x̃ , ỹ) for all x , y ∈ M,

where x̃ is any point of π−1(x) and the infimum is taken over all points
ỹ ∈ π−1(y). Consequently, dA

M̃
is a (complete) distance if and only if

dA
M is.
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A-connectivity and finiteness

For A0 ⊆ g−, G0-invariant or not, we define L(A0) ⊆ g to be the
smallest Lie subalgebra containing Ā = span A0 + p.

We say that A0 is bracket-generating if L(A0) = g, i.e., if every element
of g can be written as a linear combination of iterated brackets of
elements of A0 and p: set Ā0 = Ā and iteratively define
Āk = Āk−1 + [Ā, Āk−1] for k ≥ 1; then A0 is bracket-generating if
Āk = g for some k .

Proposition

If A0 ⊆ g− is bracket-generating, then ω−1(Ā) ⊆ TG defines a
bracket-generating distribution on the bundle space of every regular
parabolic geometry (G → M, ω) of type (G,P).
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Finiteness (cont.)

Theorem
Let A0 ⊆ g− be a G0-invariant bracket-generating subset,
A = Ad(P)(A0), and (π : G → M, ω) a regular parabolic geometry. If M
is connected, then M is A-connected and dA

M is finite.

Examples: A0 any G0-invariant spanning subset of g−1. (This works
since g−1 generates g−.)

Proof: Choose basis B̄ = {X1, . . . ,Xk ,Xk+1, . . . ,Xl} of Ā with
{X1, . . . ,Xk} ⊂ A0 and {Xk+1, . . . ,Xl} ⊂ p, then apply the
Chow-Rashevskii Theorem on accessibility to ω−1(Ā).
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A0 bracket-generating implies dA
M finite: diagram

p

g−A0 ⊆ g−

G

M

π

P

ξX = ω-1(X)
u

ω-1

X(G) g

x = π(u)
y = π(v)

v

B̄ = {
A0︷ ︸︸ ︷

X1, . . . ,Xk ,

p︷ ︸︸ ︷
Xk+1, . . . ,Xl} basis of Ā

Chow-Rashevskii =⇒
∃ ξXi1

, . . . , ξXir
∈ Γ(ω−1(Ā)), t1, . . . , tr ∈ R �

v = Fl
ξXi1
t1 · · ·Fl

ξXir
tr (u)
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Summary

In summary:

Theorem

Choose a G0-invariant A0 ⊆ g− so that with A = Ad(P)A0, CA admits
projective reparametrizations. If (G → M, ω) is regular and A0 is
bracket-generating, dA

M is finite. If furthermore dA
M is nondegenerate,

then dA
M is finitely arcwise connected, hence inner.
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Projective geometries: setup

g = sl(n + 1,R) = g−1 + g0 + g1

=
{(a y t

x A

)
|A ∈ gl(n,R),a = −tr(A), x , y ∈ Rn}

p = g0 + g1

G = SL(n + 1,R)

P = isotropy group of line through e1

G0 = GL(n,R)

G/P = SL(n + 1,R)/GL(n,R) nRn = Pn

A0 = g−1 (our only choice!)
CA = the class of projectively parametrized geodesics
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Projective geometries: results 1

Theorem (Kobayashi 1978-79)

Let (M,g) be a Riemannian manifold with distance function δM and
Ric ≤ −c2g. Then

dM(x , y) ≥ 2c√
n − 1

δM(x , y) ∀x , y ∈ M.

If M is complete Einstein with Ric = −c2g, then we have equality
above, so in this case the projective automorphism group of M
coincides with its isometry group.

Theorem (Kobayashi-Sasaki 1978)

Let (M, ω) be a complete torsionfree affine connection with positive
semidefinite Ricci tensor. Then dM ≡ 0.
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Projective geometries: results 2

Wu (1981)
dM is the integrated form of an infinitesimal “Royden
pseudometric”
slightly stronger versions of the nondegeneracy and triviality
conditions (based on weaker assumptions on the Ricci tensor)
an analog of Brody’s theorem: dM is nondegenerate if and only if
there is no complete, projectively parametrized geodesic
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Conformal Lorentz geometries: setup

g = so(r + 1,2), r + 1 = m ≥ 3, r ≥ 0
= g−1 + g0 + g1 = Rm + co(r ,1) + Rm∗

p = g0 + g1

G = PO(r + 1,2) = O(r + 1,2)/{±I}
P = isotropy group of line through e1 (“Poincaré group”)

G0 ∼= CO(g−1) ∼= CO(r ,1)

G/P = PO(r + 1,2)/CO(r ,1) nRm

= Möbius space S(r ,1) of null lines in Rm+2

A0 = null cone in g−1

CA = the class of projectively parametrized null geodesics

M. Markowitz Kobayashi pseudodistances for parabolic geometries
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Conformal Lorentz geometries: results 1

Theorem (M. 1981)

Let (M,g) be a null geodesically complete Lorentzian manifold with
Ric(X ,X ) ≤ 0 for all null tangent vectors X. Then dM ≡ 0.

null convergence condition (NCC): Ric(X ,X ) ≥ 0 ∀ null X .

null generic condition (NGC): ∃ a point along every inextendible null
geodesic at which Ric(γ̇, γ̇) 6= 0.
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Conformal Lorentz geometries: results 2

Theorem (M. 1981)

Let (M,g) be a Lorentzian manifold satisfying the NCC and the NGC.
Then dM is nondegenerate.

Corollary (M. 2011 (a variant of the Hawking-Penrose singularity theorems)

Let (M,h) be an Einstein Lorentz manifold. Suppose that there is a
metric in the conformal class of h satisfying the NCC and the NGC.
Then dM is nondegenerate and every affinely parametrized null
geodesic of (M,h) is incomplete.

dM nondegenerate seems to describe BIG BANG cosmologies. For
black hole models, dM can degenerate along null geodesics which
avoid the singularity.
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Conformal Lorentz geometries: results 3

M. (1982)
studied dM for Lorentzian warped products, obtaining sufficient
conditions on the warping function for dM to be nondegenerate
(and for dM ≡ 0).
explicitly computed dM for Einstein-deSitter space (called the
“Poincaré-Lorentz upper half-plane” by Nomizu); dM(x , y) for
null-separated events is essentially redshift.

Dobarro-Ünal (2009)
studied various energy conditions on static spacetimes, obtaining
more explicit conditions on the warping function for dM to be
nondegenerate (and for dM ≡ 0).
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Contact projective geometry: setup

g = g−2 + g−1 + g0 + g1 + g2 = sp(2n + 2,R),n ≥ 1
p = g0 + g1 + g2

G = Sp(2n + 2,R)

P = stabilizer of an oriented line in R2n+2

G0 ∼= CSp(g−1)

G/P = Sp(2n + 2,R)/CSp(2n) nR2n+1 = S2n+1

A0 = g−1, B0 = g−2

CA = projectively parametrized contact geodesics
CB = projectively parametrized chains

Note: [g−1, g−1] = g−2 and [g−2, g1] = g−1
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Contact projective geometry: results

Fox (2005), Čap-Žádník (2008)
The inclusion G = SP(2n + 2,R) ↪→ SL(2n + 2,R) = G̃ induces
a “Fefferman construction” from a contact projective geometry
(G → M, ω) to a projective geometry (G̃ → M, ω̃) on the same
manifold M.
The paths of ω̃ are the contact projective geodesics plus the
chains: C̃g−1 = CA ∪ CB

Clearly dA
M ≥ d̃M and dB

M ≥ d̃M , so the Kobayashi-Wu criteria for
nondegeneracy of the projective pseudodistance d̃M can be applied
to both contact projective pseudodistances.
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Parabolic contact geometries

g = g−2 + g−1 + g0 + g1 + g2

A0 = g−2

CA = projectively parametrized chains

Note: nondegeneracy of the bracket on g−1 implies that
[g−2, g1] = g−1, so that dA

M defined with chains is always finite. (See
[C-S, lemma 4.2.2])

Example: C-R geometries

H. Jacobowitz (1985) considers a slightly different problem: he shows that the ‘endpoint map’ g−2 → M is onto in some neighborhood of
every point in the strictly pseudoconvex case. He uses a ‘formal solution to the CR embedding problem’, a ‘weak version’ of Moser normal
form, and rather ugly calculations in local coordinates. He also gives a counterexample in the indefinite signature case. L. Koch (1988)
proved the same result using the Fefferman construction. N. Kruzhilin (1986)?
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Holomorphic projective geometries

Theorem (McKay 2006)

Complete complex parabolic geometries are flat.

Theorem (Kobayashi-Ochiai 1980)

A compact Einstein-Kähler manifold M admits a normal holomorphic
projective geometry if and only if it is of constant holomorphic
sectional curvature. The possibilities are:

M = Pn,
M is covered by a complex torus Tn (c1 = 0), or
M is covered by the unit ball Bn ⊂ Cn (c1 < 0).
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Holomorphic projective geometries (cont.)

Consider flat holomorphic projective geometries on a complex torus
Tn (or flat holomorphic affine connections on a compact Kähler
manifold M).

Then dK
M ≡ 0 for the Kobayashi holomorphic pseudodistance.

What about the holomorphic projective pseudodistance, dHP
M ? In

other words, what happens if we restrict our measurements to chains
of (projectively parametrized) complex geodesics?
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Holomorphic projective geometries (cont.)

Theorem (Y. Matsushima 1968)

The holomorphic affine structures on Tn are in one-to-one
correspondence with the commutative associative algebra structures
over C on Cn.

Theorem (M. 1979)

dHP
Tn is nondegenerate for the flat projective geometry underlying a

holomorphic affine structure on Tn if and only if the algebra
corresponding to that affine structure is semisimple.

So semisimplicity characterizes the ‘maximally incomplete’ situation
and, moreover, is a projective invariant.
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Summary

The Kobayashi intrinsic pseudodistance construction extends to
general parabolic geometries.

Connection-preserving (and in certain situations much more
general morphisms) are nonexpansive.

Each pseudodistance is a coarse, global measure of
incompleteness for distinguished curves of some fixed type.
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Addendum, p. 1

The following result can now be regarded as a template.

Theorem (‘principle of the little Picard theorem’)

Let X and Y be regular parabolic geometries of the same type with
dX = 0 and dY nondegenerate. Then every morphism f : X → Y is a
constant map. More generally, if Y is nondegenerate modulo a subset
∆, then every morphism f : X → Y is either constant or f (X ) ⊂ ∆.

Referring to the holomorphic case, Kobayashi says that "This is a
trivial consequence of the fact that f is distance-decreasing."

S. Kobayashi, Intrinsic distances, measures, and geometric function
theory , Bull. Amer. Math. Soc. 82 (1976), 357–416.
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Addendum, p. 2

The following result seems to have the same flavor as the question
treated in Charles’ talk on Monday.

Theorem
Let X be a complex manifold and A a complex subspace of
codimension at least 2. Let Y be a complete hyperbolic space. Then
every holomorphic map f : X − A→ Y extends to a holomorphic map
f : X → Y.

M. H. Kwack, Generalization of the big Picard theorem, Ann. of Math.
(2) 90 (1969), 9-22. (See Kobayashi’s 1976 Bulletin survey for a
discussion.)
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