G_{2}-STRUCTURES AND TWISTOR THEORY

Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics University of Cambridge

- Joint with Tod, Godliński, Sokolov, Doubrov.
- Bulids on Calyey, Sylvester, Penrose, Hitchin, Bryant, Bailey\&Eastwood, Doubrov, Godliński\&Nurowski, Kryński.

Geometry of plane conics

- Five general points determine a conic (Appolonius of Perga 200BC)

Geometry of plane conics

- Five general points determine a conic (Appolonius of Perga 200BC)
- Fourth jet at a point determines a conic (Halphen 1879) $y^{2}+\alpha x^{2}+\beta x y+\gamma y+\delta x+\epsilon=0$. Differentiate five times

$$
9\left(y^{(2)}\right)^{2} y^{(5)}-45 y^{(2)} y^{(3)} y^{(4)}+40\left(y^{(3)}\right)^{3}=0 .
$$

Geometry of plane conics

- Five general points determine a conic (Appolonius of Perga 200BC)
- Fourth jet at a point determines a conic (Halphen 1879) $y^{2}+\alpha x^{2}+\beta x y+\gamma y+\delta x+\epsilon=0$. Differentiate five times

$$
9\left(y^{(2)}\right)^{2} y^{(5)}-45 y^{(2)} y^{(3)} y^{(4)}+40\left(y^{(3)}\right)^{3}=0 .
$$

- $G L(2)$ structure on $M=S L(3) / S L(2) . T_{c} M=\operatorname{Sym}^{4}\left(\mathbb{C}^{2}\right)$. Vectors=binary quartics $a_{4} \lambda^{4}+a_{3} \lambda^{3}+a_{2} \lambda^{2}+a_{1} \lambda+a_{0}$.

Geometry of plane conics

- Five general points determine a conic (Appolonius of Perga 200BC)
- Fourth jet at a point determines a conic (Halphen 1879) $y^{2}+\alpha x^{2}+\beta x y+\gamma y+\delta x+\epsilon=0$. Differentiate five times

$$
9\left(y^{(2)}\right)^{2} y^{(5)}-45 y^{(2)} y^{(3)} y^{(4)}+40\left(y^{(3)}\right)^{3}=0 .
$$

- $G L(2)$ structure on $M=S L(3) / S L(2) . T_{c} M=\operatorname{Sym}^{4}\left(\mathbb{C}^{2}\right)$. Vectors=binary quartics $a_{4} \lambda^{4}+a_{3} \lambda^{3}+a_{2} \lambda^{2}+a_{1} \lambda+a_{0}$.
- $S L(2) \subset G L(5)$. Invariant $I=12 a_{4} a_{0}-3 a_{3} a_{1}+\left(a_{2}\right)^{2}$.

Geometry of plane conics

- Five general points determine a conic (Appolonius of Perga 200BC)
- Fourth jet at a point determines a conic (Halphen 1879)
$y^{2}+\alpha x^{2}+\beta x y+\gamma y+\delta x+\epsilon=0$. Differentiate five times

$$
9\left(y^{(2)}\right)^{2} y^{(5)}-45 y^{(2)} y^{(3)} y^{(4)}+40\left(y^{(3)}\right)^{3}=0 .
$$

- $G L(2)$ structure on $M=S L(3) / S L(2) . T_{c} M=\operatorname{Sym}^{4}\left(\mathbb{C}^{2}\right)$.

Vectors=binary quartics $a_{4} \lambda^{4}+a_{3} \lambda^{3}+a_{2} \lambda^{2}+a_{1} \lambda+a_{0}$.

- $S L(2) \subset G L(5)$. Invariant $I=12 a_{4} a_{0}-3 a_{3} a_{1}+\left(a_{2}\right)^{2}$.
- Rational parametrisation: $x^{2}+y^{2}=1$.

$$
x=\frac{1-\lambda^{2}}{1+\lambda^{2}}, \quad y=\frac{2 \lambda}{1+\lambda^{2}} .
$$

Geometry of plane conics

- Five general points determine a conic (Appolonius of Perga 200BC)
- Fourth jet at a point determines a conic (Halphen 1879)
$y^{2}+\alpha x^{2}+\beta x y+\gamma y+\delta x+\epsilon=0$. Differentiate five times

$$
9\left(y^{(2)}\right)^{2} y^{(5)}-45 y^{(2)} y^{(3)} y^{(4)}+40\left(y^{(3)}\right)^{3}=0 .
$$

- $G L(2)$ structure on $M=S L(3) / S L(2) . T_{c} M=\operatorname{Sym}^{4}\left(\mathbb{C}^{2}\right)$.

Vectors=binary quartics $a_{4} \lambda^{4}+a_{3} \lambda^{3}+a_{2} \lambda^{2}+a_{1} \lambda+a_{0}$.

- $S L(2) \subset G L(5)$. Invariant $I=12 a_{4} a_{0}-3 a_{3} a_{1}+\left(a_{2}\right)^{2}$.
- Rational parametrisation: $x^{2}+y^{2}=1$.

$$
x=\frac{1-\lambda^{2}}{1+\lambda^{2}}, \quad y=\frac{2 \lambda}{1+\lambda^{2}} .
$$

- Conformal structure on $M: V \in \Gamma(T M)$ is null iff $I(V)=0$.

This Talk

- Can one define a G_{2} structure on a seven-dimensional family M of rational curves?

This Talk

- Can one define a G_{2} structure on a seven-dimensional family M of rational curves?
- Can one characterise the curves and the corresponding G_{2} structures in terms of a 7th order ODE

$$
y^{(7)}=F\left(x, y, y^{\prime}, \ldots, y^{(6)}\right)
$$

with M as its solution space?

This Talk

- Can one define a G_{2} structure on a seven-dimensional family M of rational curves?
- Can one characterise the curves and the corresponding G_{2} structures in terms of a 7th order ODE

$$
y^{(7)}=F\left(x, y, y^{\prime}, \ldots, y^{(6)}\right)
$$

with M as its solution space? Condtions on F ?

This Talk

- Can one define a G_{2} structure on a seven-dimensional family M of rational curves?
- Can one characterise the curves and the corresponding G_{2} structures in terms of a 7th order ODE

$$
y^{(7)}=F\left(x, y, y^{\prime}, \ldots, y^{(6)}\right)
$$

with M as its solution space? Condtions on F ?

- General set up for ODEs of order $(n+1)$: $G L(2, \mathbb{R})$ structures. Vectors identified with homogeneous polynomials in two variables.

This Talk

- Can one define a G_{2} structure on a seven-dimensional family M of rational curves?
- Can one characterise the curves and the corresponding G_{2} structures in terms of a 7th order ODE

$$
y^{(7)}=F\left(x, y, y^{\prime}, \ldots, y^{(6)}\right)
$$

with M as its solution space? Condtions on F ?

- General set up for ODEs of order $(n+1)$: $G L(2, \mathbb{R})$ structures. Vectors identified with homogeneous polynomials in two variables.
- Works only for special ODEs: $(n-1)$ expressions constructed out of F and its derivatives must vanish.

This TALK

- Can one define a G_{2} structure on a seven-dimensional family M of rational curves?
- Can one characterise the curves and the corresponding G_{2} structures in terms of a 7th order ODE

$$
y^{(7)}=F\left(x, y, y^{\prime}, \ldots, y^{(6)}\right)
$$

with M as its solution space? Condtions on F ?

- General set up for ODEs of order $(n+1)$: $G L(2, \mathbb{R})$ structures. Vectors identified with homogeneous polynomials in two variables.
- Works only for special ODEs: $(n-1)$ expressions constructed out of F and its derivatives must vanish.
- Examples from twistor theory/algebraic geometry.

This Talk

- Can one define a G_{2} structure on a seven-dimensional family M of rational curves?
- Can one characterise the curves and the corresponding G_{2} structures in terms of a 7th order ODE

$$
y^{(7)}=F\left(x, y, y^{\prime}, \ldots, y^{(6)}\right)
$$

with M as its solution space? Condtions on F ?

- General set up for ODEs of order $(n+1)$: $G L(2, \mathbb{R})$ structures. Vectors identified with homogeneous polynomials in two variables.
- Works only for special ODEs: $(n-1)$ expressions constructed out of F and its derivatives must vanish.
- Examples from twistor theory/algebraic geometry.
- Mixture of old and new: Classical invariant theory (Young, Sylvester), algebraic geometry, twistor theory (Penrose, Hitchin).

G_{2} structures and Fernandez-Gray types

- $G_{2} \subset S O(7), \quad g=\left(e^{1}\right)^{2}+\cdots+\left(e^{7}\right)^{2}$,

$$
\phi=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}
$$

G_{2} structures and Fernandez-Gray types

- $G_{2} \subset S O(7), \quad g=\left(e^{1}\right)^{2}+\cdots+\left(e^{7}\right)^{2}$,

$$
\phi=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}
$$

- $\operatorname{dim} M=7, \quad(M, g, \phi)$.

$$
d \phi=\tau_{0} * \phi+\frac{3}{4} \tau_{1} \wedge \phi+* \tau_{3}, \quad d * \phi=\tau_{1} \wedge * \phi-\tau_{2} \wedge \phi
$$

where $\tau_{0} \in \Lambda^{0}(M), \tau_{1}=\Lambda^{1}(M), \tau_{2}=\Lambda^{2}(M), \tau_{3} \in \Lambda^{3}(M)$ satisfy

$$
\tau_{2} \wedge \phi=-* \tau_{2}, \quad \tau_{3} \wedge \phi=\tau_{3} \wedge * \phi=0
$$

G_{2} structures and Fernandez-Gray types

- $G_{2} \subset S O(7), \quad g=\left(e^{1}\right)^{2}+\cdots+\left(e^{7}\right)^{2}$,

$$
\phi=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}
$$

- $\operatorname{dim} M=7, \quad(M, g, \phi)$.

$$
d \phi=\tau_{0} * \phi+\frac{3}{4} \tau_{1} \wedge \phi+* \tau_{3}, \quad d * \phi=\tau_{1} \wedge * \phi-\tau_{2} \wedge \phi
$$

where $\tau_{0} \in \Lambda^{0}(M), \tau_{1}=\Lambda^{1}(M), \tau_{2}=\Lambda^{2}(M), \tau_{3} \in \Lambda^{3}(M)$ satisfy

$$
\tau_{2} \wedge \phi=-* \tau_{2}, \quad \tau_{3} \wedge \phi=\tau_{3} \wedge * \phi=0
$$

- Conformal rescallings $g \rightarrow e^{2 f} g$
$\phi \rightarrow e^{3 f} \phi, \quad \tau_{0} \rightarrow e^{-f} \tau_{0}, \quad \tau_{1} \rightarrow \tau_{1}+4 d f, \quad \tau_{2} \rightarrow e^{f} \tau_{2}, \quad \tau_{3} \rightarrow e^{2 f} \tau_{3}$.
(1) G_{2} holonomy $\tau_{0}=\tau_{1}=\tau_{2}=\tau_{3}=0$. Implies g is Ricci flat.

G_{2} structures and Fernandez-Gray types

- $G_{2} \subset S O(7), \quad g=\left(e^{1}\right)^{2}+\cdots+\left(e^{7}\right)^{2}$,

$$
\phi=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}
$$

- $\operatorname{dim} M=7, \quad(M, g, \phi)$.

$$
d \phi=\tau_{0} * \phi+\frac{3}{4} \tau_{1} \wedge \phi+* \tau_{3}, \quad d * \phi=\tau_{1} \wedge * \phi-\tau_{2} \wedge \phi
$$

where $\tau_{0} \in \Lambda^{0}(M), \tau_{1}=\Lambda^{1}(M), \tau_{2}=\Lambda^{2}(M), \tau_{3} \in \Lambda^{3}(M)$ satisfy

$$
\tau_{2} \wedge \phi=-* \tau_{2}, \quad \tau_{3} \wedge \phi=\tau_{3} \wedge * \phi=0
$$

- Conformal rescallings $g \rightarrow e^{2 f} g$
$\phi \rightarrow e^{3 f} \phi, \quad \tau_{0} \rightarrow e^{-f} \tau_{0}, \quad \tau_{1} \rightarrow \tau_{1}+4 d f, \quad \tau_{2} \rightarrow e^{f} \tau_{2}, \quad \tau_{3} \rightarrow e^{2 f} \tau_{3}$.
(1) G_{2} holonomy $\tau_{0}=\tau_{1}=\tau_{2}=\tau_{3}=0$. Implies g is Ricci flat.
(2) Weak G_{2} holonomy $\tau_{1}=\tau_{2}=\tau_{3}=0$. Implies g is Einstein.

G_{2} structures and Fernandez-Gray types

- $G_{2} \subset S O(7), \quad g=\left(e^{1}\right)^{2}+\cdots+\left(e^{7}\right)^{2}$,

$$
\phi=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}
$$

- $\operatorname{dim} M=7, \quad(M, g, \phi)$.

$$
d \phi=\tau_{0} * \phi+\frac{3}{4} \tau_{1} \wedge \phi+* \tau_{3}, \quad d * \phi=\tau_{1} \wedge * \phi-\tau_{2} \wedge \phi
$$

where $\tau_{0} \in \Lambda^{0}(M), \tau_{1}=\Lambda^{1}(M), \tau_{2}=\Lambda^{2}(M), \tau_{3} \in \Lambda^{3}(M)$ satisfy

$$
\tau_{2} \wedge \phi=-* \tau_{2}, \quad \tau_{3} \wedge \phi=\tau_{3} \wedge * \phi=0
$$

- Conformal rescallings $g \rightarrow e^{2 f} g$
$\phi \rightarrow e^{3 f} \phi, \quad \tau_{0} \rightarrow e^{-f} \tau_{0}, \quad \tau_{1} \rightarrow \tau_{1}+4 d f, \quad \tau_{2} \rightarrow e^{f} \tau_{2}, \quad \tau_{3} \rightarrow e^{2 f} \tau_{3}$.
(1) G_{2} holonomy $\tau_{0}=\tau_{1}=\tau_{2}=\tau_{3}=0$. Implies g is Ricci flat.
(2) Weak G_{2} holonomy $\tau_{1}=\tau_{2}=\tau_{3}=0$. Implies g is Einstein.
(3) Closed G_{2} structure $\tau_{0}=\tau_{1}=\tau_{3}=0$.

G_{2} structures and Fernandez-Gray types

- $G_{2} \subset S O(7), \quad g=\left(e^{1}\right)^{2}+\cdots+\left(e^{7}\right)^{2}$,

$$
\phi=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}
$$

- $\operatorname{dim} M=7, \quad(M, g, \phi)$.

$$
d \phi=\tau_{0} * \phi+\frac{3}{4} \tau_{1} \wedge \phi+* \tau_{3}, \quad d * \phi=\tau_{1} \wedge * \phi-\tau_{2} \wedge \phi
$$

where $\tau_{0} \in \Lambda^{0}(M), \tau_{1}=\Lambda^{1}(M), \tau_{2}=\Lambda^{2}(M), \tau_{3} \in \Lambda^{3}(M)$ satisfy

$$
\tau_{2} \wedge \phi=-* \tau_{2}, \quad \tau_{3} \wedge \phi=\tau_{3} \wedge * \phi=0
$$

- Conformal rescallings $g \rightarrow e^{2 f} g$
$\phi \rightarrow e^{3 f} \phi, \quad \tau_{0} \rightarrow e^{-f} \tau_{0}, \quad \tau_{1} \rightarrow \tau_{1}+4 d f, \quad \tau_{2} \rightarrow e^{f} \tau_{2}, \quad \tau_{3} \rightarrow e^{2 f} \tau_{3}$.
(1) G_{2} holonomy $\tau_{0}=\tau_{1}=\tau_{2}=\tau_{3}=0$. Implies g is Ricci flat.
(2) Weak G_{2} holonomy $\tau_{1}=\tau_{2}=\tau_{3}=0$. Implies g is Einstein.
(3) Closed G_{2} structure $\tau_{0}=\tau_{1}=\tau_{3}=0$.
(1) Co-calibrated G_{2} structure $\tau_{1}=\tau_{2}=0$.

BINARY SEXTICS

- Binary sextics $\mathcal{V}=\mathbb{C}^{7}$.

$$
V=a^{1} \lambda^{6}+6 a^{2} \lambda^{5}+15 a^{3} \lambda^{4}+20 a^{4} \lambda^{3}+15 a^{5} \lambda^{2}+6 a^{6} \lambda+a^{7},
$$

BINARY SEXTICS

- Binary sextics $\mathcal{V}=\mathbb{C}^{7}$.

$$
V=a^{1} \lambda^{6}+6 a^{2} \lambda^{5}+15 a^{3} \lambda^{4}+20 a^{4} \lambda^{3}+15 a^{5} \lambda^{2}+6 a^{6} \lambda+a^{7},
$$

- Möbius action

$$
t \longrightarrow \tilde{t}=\frac{\alpha t+\beta}{\gamma t+\delta}
$$

induces $G L(2, \mathbb{C}) \subset G L(7, \mathbb{C})$.

BINARY SEXTICS

- Binary sextics $\mathcal{V}=\mathbb{C}^{7}$.

$$
V=a^{1} \lambda^{6}+6 a^{2} \lambda^{5}+15 a^{3} \lambda^{4}+20 a^{4} \lambda^{3}+15 a^{5} \lambda^{2}+6 a^{6} \lambda+a^{7},
$$

- Möbius action

$$
t \longrightarrow \tilde{t}=\frac{\alpha t+\beta}{\gamma t+\delta}
$$

induces $G L(2, \mathbb{C}) \subset G L(7, \mathbb{C})$.

- Invariant of weight 6

$$
I(V)=a^{1} a^{7}-6 a^{2} a^{6}+15 a^{3} a^{5}-10\left(a^{4}\right)^{2}
$$

BINARY SEXTICS

- Binary sextics $\mathcal{V}=\mathbb{C}^{7}$.

$$
V=a^{1} \lambda^{6}+6 a^{2} \lambda^{5}+15 a^{3} \lambda^{4}+20 a^{4} \lambda^{3}+15 a^{5} \lambda^{2}+6 a^{6} \lambda+a^{7},
$$

- Möbius action

$$
t \longrightarrow \tilde{t}=\frac{\alpha t+\beta}{\gamma t+\delta}
$$

induces $G L(2, \mathbb{C}) \subset G L(7, \mathbb{C})$.

- Invariant of weight 6

$$
I(V)=a^{1} a^{7}-6 a^{2} a^{6}+15 a^{3} a^{5}-10\left(a^{4}\right)^{2}, I(V) \rightarrow(\alpha \delta-\beta \gamma)^{6} I(V)
$$

Binary sextics

- Binary sextics $\mathcal{V}=\mathbb{C}^{7}$.

$$
V=a^{1} \lambda^{6}+6 a^{2} \lambda^{5}+15 a^{3} \lambda^{4}+20 a^{4} \lambda^{3}+15 a^{5} \lambda^{2}+6 a^{6} \lambda+a^{7},
$$

- Möbius action

$$
t \longrightarrow \tilde{t}=\frac{\alpha t+\beta}{\gamma t+\delta}
$$

induces $G L(2, \mathbb{C}) \subset G L(7, \mathbb{C})$.

- Invariant of weight 6

$$
I(V)=a^{1} a^{7}-6 a^{2} a^{6}+15 a^{3} a^{5}-10\left(a^{4}\right)^{2}, I(V) \rightarrow(\alpha \delta-\beta \gamma)^{6} I(V)
$$

- Index notation: $A, B, \ldots, C=0,1$. $V=V_{A B C D E F} z^{A} z^{B} z^{C} z^{D} z^{E} z^{F}, \quad I(V)=V_{A B C D E F} V^{A B C D E F}$.

Binary sextics

- Binary sextics $\mathcal{V}=\mathbb{C}^{7}$.

$$
V=a^{1} \lambda^{6}+6 a^{2} \lambda^{5}+15 a^{3} \lambda^{4}+20 a^{4} \lambda^{3}+15 a^{5} \lambda^{2}+6 a^{6} \lambda+a^{7},
$$

- Möbius action

$$
t \longrightarrow \tilde{t}=\frac{\alpha t+\beta}{\gamma t+\delta}
$$

induces $G L(2, \mathbb{C}) \subset G L(7, \mathbb{C})$.

- Invariant of weight 6

$$
I(V)=a^{1} a^{7}-6 a^{2} a^{6}+15 a^{3} a^{5}-10\left(a^{4}\right)^{2}, I(V) \rightarrow(\alpha \delta-\beta \gamma)^{6} I(V)
$$

- Index notation: $A, B, \ldots, C=0,1$. $V=V_{A B C D E F} z^{A} z^{B} z^{C} z^{D} z^{E} z^{F}, \quad I(V)=V_{A B C D E F} V^{A B C D E F}$.
- Raise with symplectic form (unique up to scale) $\varepsilon^{A B}=\varepsilon^{[A B]}$.

BINARY SEXTICS

- Binary sextics $\mathcal{V}=\mathbb{C}^{7}$.

$$
V=a^{1} \lambda^{6}+6 a^{2} \lambda^{5}+15 a^{3} \lambda^{4}+20 a^{4} \lambda^{3}+15 a^{5} \lambda^{2}+6 a^{6} \lambda+a^{7},
$$

- Möbius action

$$
t \longrightarrow \tilde{t}=\frac{\alpha t+\beta}{\gamma t+\delta}
$$

induces $G L(2, \mathbb{C}) \subset G L(7, \mathbb{C})$.

- Invariant of weight 6

$$
I(V)=a^{1} a^{7}-6 a^{2} a^{6}+15 a^{3} a^{5}-10\left(a^{4}\right)^{2}, I(V) \rightarrow(\alpha \delta-\beta \gamma)^{6} I(V)
$$

- Index notation: $A, B, \ldots, C=0,1$. $V=V_{A B C D E F} z^{A} z^{B} z^{C} z^{D} z^{E} z^{F}, \quad I(V)=V_{A B C D E F} V^{A B C D E F}$.
- Raise with symplectic form (unique up to scale) $\varepsilon^{A B}=\varepsilon^{[A B]}$.
- Transvectants (Grace, Young 1903), or two component spinors (Penrose).

Seven dimensions and G_{2} geometry

- $G L(2)$ structure on $M \leftrightarrow$ binary sextic S with values in $T^{*} M$.

$$
V \in \Gamma(T M) \rightarrow V\lrcorner S
$$

Seven dimensions and G_{2} geometry

- $G L(2)$ structure on $M \leftrightarrow$ binary sextic S with values in $T^{*} M$.

$$
V \in \Gamma(T M) \rightarrow V\lrcorner S
$$

- Conformal structure $g(V, V)=I(V)$.

Seven dimensions and G_{2} geometry

- $G L(2)$ structure on $M \leftrightarrow$ binary sextic S with values in $T^{*} M$.

$$
V \in \Gamma(T M) \rightarrow V\lrcorner S
$$

- Conformal structure $g(V, V)=I(V)$.
- Three-form $\phi(V, U, W)=V_{A B C}{ }^{D E F} U_{D E F}{ }^{G H I} W_{G H I}{ }^{A B C}$.

Seven dimensions and G_{2} geometry

- $G L(2)$ structure on $M \leftrightarrow$ binary sextic S with values in $T^{*} M$.

$$
V \in \Gamma(T M) \rightarrow V\lrcorner S
$$

- Conformal structure $g(V, V)=I(V)$.
- Three-form $\phi(V, U, W)=V_{A B C}{ }^{D E F} U_{D E F}{ }^{G H I} W_{G H I}{ }^{A B C}$.
- Compatibility

$$
g(V, V)=0 \longleftrightarrow(V\lrcorner \phi) \wedge(V\lrcorner \phi) \wedge \phi=0 .
$$

Seven dimensions and G_{2} geometry

- $G L(2)$ structure on $M \leftrightarrow$ binary sextic S with values in $T^{*} M$.

$$
V \in \Gamma(T M) \rightarrow V\lrcorner S
$$

- Conformal structure $g(V, V)=I(V)$.
- Three-form $\phi(V, U, W)=V_{A B C}{ }^{D E F} U_{D E F}{ }^{G H I} W_{G H I}{ }^{A B C}$.
- Compatibility

$$
g(V, V)=0 \longleftrightarrow(V\lrcorner \phi) \wedge(V\lrcorner \phi) \wedge \phi=0 .
$$

- $G L(2) \subset\left(G_{2}\right)^{\mathbb{C}} \times \mathbb{C}^{*}$.

Seven dimensions and G_{2} geometry

- $G L(2)$ structure on $M \leftrightarrow$ binary sextic S with values in $T^{*} M$.

$$
V \in \Gamma(T M) \rightarrow V\lrcorner S
$$

- Conformal structure $g(V, V)=I(V)$.
- Three-form $\phi(V, U, W)=V_{A B C}{ }^{D E F} U_{D E F}{ }^{G H I} W_{G H I}{ }^{A B C}$.
- Compatibility

$$
g(V, V)=0 \longleftrightarrow(V\lrcorner \phi) \wedge(V\lrcorner \phi) \wedge \phi=0 .
$$

- $G L(2) \subset\left(G_{2}\right)^{\mathbb{C}} \times \mathbb{C}^{*}$. Really follows from Morozov's theorem.

$G L(2, \mathbb{R})$ structures From ODEs.

- Assume that the space of solutions M to the 7 th order ODE

$$
y^{(7)}=F\left(x, y, y^{\prime}, \ldots, y^{(6)}\right)
$$

has a $G L(2, \mathbb{R})$ structure such that normals to surfaces $y=y(x ; t)$ in M have root with multiplicity 6 . Then F satisfies five contact-invariant conditions $W_{1}[F]=\cdots=W_{5}[F]=0$.

$G L(2, \mathbb{R})$ structures From ODEs.

- Assume that the space of solutions M to the 7 th order ODE

$$
y^{(7)}=F\left(x, y, y^{\prime}, \ldots, y^{(6)}\right)
$$

has a $G L(2, \mathbb{R})$ structure such that normals to surfaces $y=y(x ; t)$ in M have root with multiplicity 6 . Then F satisfies five contact-invariant conditions $W_{1}[F]=\cdots=W_{5}[F]=0$.

- Additional contact invariants: torsion of G_{2} structure $\tau_{0}=\ldots, \tau_{1}=\ldots, \tau_{2}=\ldots, \tau_{3}=\partial^{2} F / \partial\left(y^{(6)}\right)^{2}$.

$G L(2, \mathbb{R})$ structures From ODEs.

- Assume that the space of solutions M to the 7 th order ODE

$$
y^{(7)}=F\left(x, y, y^{\prime}, \ldots, y^{(6)}\right)
$$

has a $G L(2, \mathbb{R})$ structure such that normals to surfaces $y=y(x ; t)$ in M have root with multiplicity 6 . Then F satisfies five contact-invariant conditions $W_{1}[F]=\cdots=W_{5}[F]=0$.

- Additional contact invariants: torsion of G_{2} structure $\tau_{0}=\ldots, \tau_{1}=\ldots, \tau_{2}=\ldots, \tau_{3}=\partial^{2} F / \partial\left(y^{(6)}\right)^{2}$.
- If $\tau_{0}=\tau_{1}=\tau_{2}=\tau_{3}=0$ then g is conformally flat and $y^{(7)}=0$.

Twistor Theory

- Family of rational curves L_{t} parametrised by $t \in M . x \rightarrow(x, y(x ; t))$ with self-intersection number six in a complex surface Z. Normal vector

$$
\delta y=\sum_{\alpha=1}^{6} \frac{\delta y}{\delta t_{\alpha}} \delta t_{\alpha}
$$

vanishes at zeroes of a 6 th order polynomial. $N(L)=\mathcal{O}(6)$.

Twistor Theory

- Family of rational curves L_{t} parametrised by $t \in M . x \rightarrow(x, y(x ; t))$ with self-intersection number six in a complex surface Z. Normal vector

$$
\delta y=\sum_{\alpha=1}^{6} \frac{\delta y}{\delta t_{\alpha}} \delta t_{\alpha}
$$

vanishes at zeroes of a 6th order polynomial. $N(L)=\mathcal{O}(6)$.

- $H^{1}(L, N(L))=0$. Kodaira Theory: $T_{t} M \cong H^{0}\left(L_{t}, N\left(L_{t}\right)\right)$.

Twistor Theory

- Family of rational curves L_{t} parametrised by $t \in M . x \rightarrow(x, y(x ; t))$ with self-intersection number six in a complex surface Z. Normal vector

$$
\delta y=\sum_{\alpha=1}^{6} \frac{\delta y}{\delta t_{\alpha}} \delta t_{\alpha}
$$

vanishes at zeroes of a 6th order polynomial. $N(L)=\mathcal{O}(6)$.

- $H^{1}(L, N(L))=0$. Kodaira Theory: $T_{t} M \cong H^{0}\left(L_{t}, N\left(L_{t}\right)\right)$.
- Sections of $\mathcal{O}(6) \rightarrow \mathbb{C P}^{1}=$ homogeneous polynomials of degree 6 .

Twistor Theory

- Family of rational curves L_{t} parametrised by $t \in M . x \rightarrow(x, y(x ; t))$ with self-intersection number six in a complex surface Z. Normal vector

$$
\delta y=\sum_{\alpha=1}^{6} \frac{\delta y}{\delta t_{\alpha}} \delta t_{\alpha}
$$

vanishes at zeroes of a 6th order polynomial. $N(L)=\mathcal{O}(6)$.

- $H^{1}(L, N(L))=0$. Kodaira Theory: $T_{t} M \cong H^{0}\left(L_{t}, N\left(L_{t}\right)\right)$.
- Sections of $\mathcal{O}(6) \rightarrow \mathbb{C P}^{1}=$ homogeneous polynomials of degree 6 . $G L(2)$ structure.

Twistor Theory

- Family of rational curves L_{t} parametrised by $t \in M . x \rightarrow(x, y(x ; t))$ with self-intersection number six in a complex surface Z. Normal vector

$$
\delta y=\sum_{\alpha=1}^{6} \frac{\delta y}{\delta t_{\alpha}} \delta t_{\alpha}
$$

vanishes at zeroes of a 6th order polynomial. $N(L)=\mathcal{O}(6)$.

- $H^{1}(L, N(L))=0$. Kodaira Theory: $T_{t} M \cong H^{0}\left(L_{t}, N\left(L_{t}\right)\right)$.
- Sections of $\mathcal{O}(6) \rightarrow \mathbb{C P}^{1}=$ homogeneous polynomials of degree 6 . $G L(2)$ structure.
- In practice: $f\left(x, y, t_{\alpha}\right)=0$ with rational parametrisation $x=p\left(\lambda, t_{\alpha}\right), y=q\left(\lambda, t_{\alpha}\right)$. Polynomial in λ giving rise to a null vector is given by

$$
\left.\sum_{\alpha} \frac{\partial f}{\partial t_{\alpha}}\right|_{\{x=p, y=q\}} \delta t_{\alpha}
$$

Three examples

(1) Example 1.

- Rational curve: cuspidial cubic. (Neil 1657).
- 7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).
- Co-calibrated G_{2} structure on $S U(2,1) / U(1)$. (MD, Doubrov 2011).

Three examples

(1) Example 1 .

- Rational curve: cuspidial cubic. (Neil 1657).
- 7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).
- Co-calibrated G_{2} structure on $S U(2,1) / U(1)$. (MD, Doubrov 2011).
(2) Example 2.
- Rational curve: Bihorn sextic.
- 7th order ODE: (Wilczynski).
- Closed G_{2} structure (MD, Godliński 2010).

Three examples

(1) Example 1.

- Rational curve: cuspidial cubic. (Neil 1657).
- 7th order ODE: (Halphen 1879, Sylvester 1888, Wilczynski 1905).
- Co-calibrated G_{2} structure on $S U(2,1) / U(1)$. (MD, Doubrov 2011).
(2) Example 2.
- Rational curve: Bihorn sextic.
- 7th order ODE: (Wilczynski).
- Closed G_{2} structure (MD, Godliński 2010).
(3) Example 3.
- Rational curve: (MD, Sokolov 2010).
- 7th order ODE: (Noth 1904).
- Weak G_{2} holonomy on $S O(5) / S O(3)$ (Bryant 1987).

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Irreducible plane cubics $\alpha x^{3}+\beta y^{3}+\gamma x y^{2}+\cdots+\delta=0$.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Irreducible plane cubics $\alpha x^{3}+\beta y^{3}+\gamma x y^{2}+\cdots+\delta=0$. Better: $P_{\alpha \beta \gamma} Z^{\alpha} Z^{\beta} Z^{\gamma}=0$, where $Z^{1} / Z^{3}=x, Z^{2} / Z^{3}=y$.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Irreducible plane cubics $\alpha x^{3}+\beta y^{3}+\gamma x y^{2}+\cdots+\delta=0$. Better: $P_{\alpha \beta \gamma} Z^{\alpha} Z^{\beta} Z^{\gamma}=0$, where $Z^{1} / Z^{3}=x, Z^{2} / Z^{3}=y$.
- PSL(3) acts on $\mathbb{C P}^{9} \quad P_{\alpha \beta \gamma} \rightarrow N^{\delta}{ }_{\alpha} N^{\epsilon}{ }_{\beta} N^{\phi}{ }_{\gamma} P_{\delta \epsilon \phi}$.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Irreducible plane cubics $\alpha x^{3}+\beta y^{3}+\gamma x y^{2}+\cdots+\delta=0$. Better: $P_{\alpha \beta \gamma} Z^{\alpha} Z^{\beta} Z^{\gamma}=0$, where $Z^{1} / Z^{3}=x, Z^{2} / Z^{3}=y$.
- PSL(3) acts on $\mathbb{C P}^{9} \quad P_{\alpha \beta \gamma} \rightarrow N^{\delta}{ }_{\alpha} N^{\epsilon}{ }_{\beta} N^{\phi}{ }_{\gamma} P_{\delta \epsilon \phi}$.
(1) Smoth cubic $y^{2}=x(x-1)(x-c)$.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Irreducible plane cubics $\alpha x^{3}+\beta y^{3}+\gamma x y^{2}+\cdots+\delta=0$. Better: $P_{\alpha \beta \gamma} Z^{\alpha} Z^{\beta} Z^{\gamma}=0$, where $Z^{1} / Z^{3}=x, Z^{2} / Z^{3}=y$.
- PSL(3) acts on $\mathbb{C P}^{9} \quad P_{\alpha \beta \gamma} \rightarrow N^{\delta}{ }_{\alpha} N^{\epsilon}{ }_{\beta} N^{\phi}{ }_{\gamma} P_{\delta \epsilon \phi}$.
(1) Smoth cubic $y^{2}=x(x-1)(x-c)$.
(2) Nodal cubic $y^{2}=x^{3}-x^{2}$.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Irreducible plane cubics $\alpha x^{3}+\beta y^{3}+\gamma x y^{2}+\cdots+\delta=0$. Better: $P_{\alpha \beta \gamma} Z^{\alpha} Z^{\beta} Z^{\gamma}=0$, where $Z^{1} / Z^{3}=x, Z^{2} / Z^{3}=y$.
- PSL(3) acts on $\mathbb{C P}^{9} \quad P_{\alpha \beta \gamma} \rightarrow N^{\delta}{ }_{\alpha} N^{\epsilon}{ }_{\beta} N^{\phi}{ }_{\gamma} P_{\delta \epsilon \phi}$.
(1) Smoth cubic $y^{2}=x(x-1)(x-c)$.
(2) Nodal cubic $y^{2}=x^{3}-x^{2}$.
(3) Cuspidal cubic $y^{2}=x^{3}$.

7 D orbit $M=P S L(3, \mathbb{C}) / \mathbb{C}^{*}$.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Irreducible plane cubics $\alpha x^{3}+\beta y^{3}+\gamma x y^{2}+\cdots+\delta=0$. Better: $P_{\alpha \beta \gamma} Z^{\alpha} Z^{\beta} Z^{\gamma}=0$, where $Z^{1} / Z^{3}=x, Z^{2} / Z^{3}=y$.
- PSL(3) acts on $\mathbb{C P}^{9} \quad P_{\alpha \beta \gamma} \rightarrow N^{\delta}{ }_{\alpha} N^{\epsilon}{ }_{\beta} N^{\phi}{ }_{\gamma} P_{\delta \epsilon \phi}$.
(1) Smoth cubic $y^{2}=x(x-1)(x-c)$.
(2) Nodal cubic $y^{2}=x^{3}-x^{2}$.
(3) Cuspidal cubic $y^{2}=x^{3}$.

7 D orbit $M=\operatorname{PSL}(3, \mathbb{C}) / \mathbb{C}^{*} .\left[Z^{1}, Z^{2}, Z^{3}\right] \rightarrow\left[a Z^{1}, a^{4} Z^{2}, a^{-5} Z^{3}\right]$.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Irreducible plane cubics $\alpha x^{3}+\beta y^{3}+\gamma x y^{2}+\cdots+\delta=0$. Better: $P_{\alpha \beta \gamma} Z^{\alpha} Z^{\beta} Z^{\gamma}=0$, where $Z^{1} / Z^{3}=x, Z^{2} / Z^{3}=y$.
- PSL(3) acts on $\mathbb{C P}^{9} \quad P_{\alpha \beta \gamma} \rightarrow N^{\delta}{ }_{\alpha} N^{\epsilon}{ }_{\beta} N^{\phi}{ }_{\gamma} P_{\delta \epsilon \phi}$.
(1) Smoth cubic $y^{2}=x(x-1)(x-c)$. Genus one.
(2) Nodal cubic $y^{2}=x^{3}-x^{2}$. Genus zero.
(3) Cuspidal cubic $y^{2}=x^{3}$. Genus zero.

7 D orbit $M=P S L(3, \mathbb{C}) / \mathbb{C}^{*} .\left[Z^{1}, Z^{2}, Z^{3}\right] \rightarrow\left[a Z^{1}, a^{4} Z^{2}, a^{-5} Z^{3}\right]$.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Set $\sigma=N^{-1} d N \in \Lambda^{1}(S L(3, \mathbb{C})) \otimes \mathfrak{s l}(3, \mathbb{C})$.

$$
g=2 \sigma^{3}{ }_{2} \odot \sigma^{2}{ }_{3}+\frac{1}{2} \sigma^{3}{ }_{1} \odot \sigma^{1}{ }_{3}-\frac{2}{5} \sigma^{1}{ }_{2} \odot \sigma^{2}{ }_{1}-\frac{1}{40}\left(4 \sigma^{1}{ }_{1}-\sigma^{2}{ }_{2}\right)^{2} .
$$

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Set $\sigma=N^{-1} d N \in \Lambda^{1}(S L(3, \mathbb{C})) \otimes \mathfrak{s l}(3, \mathbb{C})$.

$$
g=2 \sigma^{3}{ }_{2} \odot \sigma^{2}{ }_{3}+\frac{1}{2} \sigma^{3}{ }_{1} \odot \sigma^{1}{ }_{3}-\frac{2}{5} \sigma^{1}{ }_{2} \odot \sigma^{2}{ }_{1}-\frac{1}{40}\left(4 \sigma^{1}{ }_{1}-\sigma^{2}{ }_{2}\right)^{2} .
$$

- Signature $(3,4)$ on $M=S L(3, \mathbb{R}) / \mathbb{R}^{*}$.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Set $\sigma=N^{-1} d N \in \Lambda^{1}(S L(3, \mathbb{C})) \otimes \mathfrak{s l}(3, \mathbb{C})$.

$$
g=2 \sigma^{3}{ }_{2} \odot \sigma^{2}{ }_{3}+\frac{1}{2} \sigma^{3}{ }_{1} \odot \sigma^{1}{ }_{3}-\frac{2}{5} \sigma^{1}{ }_{2} \odot \sigma^{2}{ }_{1}-\frac{1}{40}\left(4 \sigma^{1}{ }_{1}-\sigma^{2}{ }_{2}\right)^{2} .
$$

- Signature $(3,4)$ on $M=S L(3, \mathbb{R}) / \mathbb{R}^{*}$.
- Signature $(4,3)$ on $M=S U(3) / U(1)$.

$$
\left(\begin{array}{ccc}
e^{i \theta} & 0 & 0 \\
0 & e^{4 i \theta} & 0 \\
0 & 0 & e^{-5 i \theta}
\end{array}\right), \quad \theta \in \mathbb{R} \quad \text { Aloff-Wallach space } N(1,4)
$$

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Set $\sigma=N^{-1} d N \in \Lambda^{1}(S L(3, \mathbb{C})) \otimes \mathfrak{s l}(3, \mathbb{C})$.

$$
g=2 \sigma^{3}{ }_{2} \odot \sigma^{2}{ }_{3}+\frac{1}{2} \sigma^{3}{ }_{1} \odot \sigma^{1}{ }_{3}-\frac{2}{5} \sigma^{1}{ }_{2} \odot \sigma^{2}{ }_{1}-\frac{1}{40}\left(4 \sigma^{1}{ }_{1}-\sigma^{2}{ }_{2}\right)^{2} .
$$

- Signature $(3,4)$ on $M=S L(3, \mathbb{R}) / \mathbb{R}^{*}$.
- Signature $(4,3)$ on $M=S U(3) / U(1)$.

$$
\left(\begin{array}{ccc}
e^{i \theta} & 0 & 0 \\
0 & e^{4 i \theta} & 0 \\
0 & 0 & e^{-5 i \theta}
\end{array}\right), \quad \theta \in \mathbb{R} \quad \text { Aloff-Wallach space } N(1,4)
$$

- Riemannian signature on $M=S U(2,1) / U(1)$.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Set $\sigma=N^{-1} d N \in \Lambda^{1}(S L(3, \mathbb{C})) \otimes \mathfrak{s l}(3, \mathbb{C})$.

$$
g=2 \sigma^{3}{ }_{2} \odot \sigma^{2}{ }_{3}+\frac{1}{2} \sigma^{3}{ }_{1} \odot \sigma^{1}{ }_{3}-\frac{2}{5} \sigma^{1}{ }_{2} \odot \sigma^{2}{ }_{1}-\frac{1}{40}\left(4 \sigma^{1}{ }_{1}-\sigma^{2}{ }_{2}\right)^{2} .
$$

- Signature $(3,4)$ on $M=S L(3, \mathbb{R}) / \mathbb{R}^{*}$.
- Signature $(4,3)$ on $M=S U(3) / U(1)$.

$$
\left(\begin{array}{ccc}
e^{i \theta} & 0 & 0 \\
0 & e^{4 i \theta} & 0 \\
0 & 0 & e^{-5 i \theta}
\end{array}\right), \quad \theta \in \mathbb{R} \quad \text { Aloff-Wallach space } N(1,4)
$$

- Riemannian signature on $M=S U(2,1) / U(1)$.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Set $\sigma=N^{-1} d N \in \Lambda^{1}(S L(3, \mathbb{C})) \otimes \mathfrak{s l}(3, \mathbb{C})$.

$$
g=2 \sigma^{3}{ }_{2} \odot \sigma^{2}{ }_{3}+\frac{1}{2} \sigma^{3}{ }_{1} \odot \sigma^{1}{ }_{3}-\frac{2}{5} \sigma^{1}{ }_{2} \odot \sigma^{2}{ }_{1}-\frac{1}{40}\left(4 \sigma^{1}{ }_{1}-\sigma^{2}{ }_{2}\right)^{2} .
$$

- Signature $(3,4)$ on $M=S L(3, \mathbb{R}) / \mathbb{R}^{*}$.
- Signature $(4,3)$ on $M=S U(3) / U(1)$.

$$
\left(\begin{array}{ccc}
e^{i \theta} & 0 & 0 \\
0 & e^{4 i \theta} & 0 \\
0 & 0 & e^{-5 i \theta}
\end{array}\right), \quad \theta \in \mathbb{R} \quad \text { Aloff-Wallach space } N(1,4)
$$

- Riemannian signature on $M=S U(2,1) / U(1)$.
- Co-calibrated G_{2} structure $d \phi=\lambda * \phi+\tau, d * \phi=0$.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Curves in projective geometry $C \subset \mathbb{C P}^{2}$
(Wilczynski 1905).

$$
x \rightarrow\left[y_{1}(x), y_{2}(x), y_{3}(x)\right],
$$

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Curves in projective geometry $C \subset \mathbb{C P}^{2}$
(Wilczynski 1905).

$$
x \rightarrow\left[y_{1}(x), y_{2}(x), y_{3}(x)\right], \quad Y^{\prime \prime \prime}+3 p_{1}(x) Y^{\prime \prime}+3 p_{2}(x) Y^{\prime}+p_{3}(x) Y=0
$$

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Curves in projective geometry $C \subset \mathbb{C P}^{2}$
(Wilczynski 1905).

$$
x \rightarrow\left[y_{1}(x), y_{2}(x), y_{3}(x)\right], \quad Y^{\prime \prime \prime}+3 p_{1}(x) Y^{\prime \prime}+3 p_{2}(x) Y^{\prime}+p_{3}(x) Y=0 .
$$

- Laguerre-Forsyth form $p_{1}=p_{2}=0$.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Curves in projective geometry $C \subset \mathbb{C P}^{2}$
(Wilczynski 1905).

$$
x \rightarrow\left[y_{1}(x), y_{2}(x), y_{3}(x)\right], \quad Y^{\prime \prime \prime}+3 p_{1}(x) Y^{\prime \prime}+3 p_{2}(x) Y^{\prime}+p_{3}(x) Y=0 .
$$

- Laguerre-Forsyth form $p_{1}=p_{2}=0$.
- Projective curvature (Cartan ?)

$$
\kappa=\frac{\left(6 p_{3} p_{3}{ }^{\prime \prime}-7\left(p_{3}\right)^{2}\right)^{3}}{\left(p_{3}\right)^{8}}
$$

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Curves in projective geometry $C \subset \mathbb{C P}^{2}$
(Wilczynski 1905).

$$
x \rightarrow\left[y_{1}(x), y_{2}(x), y_{3}(x)\right], \quad Y^{\prime \prime \prime}+3 p_{1}(x) Y^{\prime \prime}+3 p_{2}(x) Y^{\prime}+p_{3}(x) Y=0 .
$$

- Laguerre-Forsyth form $p_{1}=p_{2}=0$.
- Projective curvature (Cartan ?)

$$
\kappa=\frac{\left(6 p_{3} p_{3}{ }^{\prime \prime}-7\left(p_{3}\right)^{2}\right)^{3}}{\left(p_{3}\right)^{8}}
$$

- 7th order ODE: $\kappa\left(y, y^{\prime}, \ldots, y^{(7)}\right)=\left(3^{9} 7^{3}\right) /\left(2^{4} 5^{2}\right)$, where κ is the projective curvature.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Curves in projective geometry $C \subset \mathbb{C P}^{2}$
(Wilczynski 1905).

$$
x \rightarrow\left[y_{1}(x), y_{2}(x), y_{3}(x)\right], \quad Y^{\prime \prime \prime}+3 p_{1}(x) Y^{\prime \prime}+3 p_{2}(x) Y^{\prime}+p_{3}(x) Y=0 .
$$

- Laguerre-Forsyth form $p_{1}=p_{2}=0$.
- Projective curvature (Cartan ?)

$$
\kappa=\frac{\left(6 p_{3} p_{3}{ }^{\prime \prime}-7\left(p_{3}\right)^{2}\right)^{3}}{\left(p_{3}\right)^{8}}
$$

- 7th order ODE: $\kappa\left(y, y^{\prime}, \ldots, y^{(7)}\right)=\left(3^{9} 7^{3}\right) /\left(2^{4} 5^{2}\right)$, where κ is the projective curvature.
- Rational curves with constant projective curvature: $x^{p}=y^{q}$.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Curves in projective geometry $C \subset \mathbb{C P}^{2}$
(Wilczynski 1905).

$$
x \rightarrow\left[y_{1}(x), y_{2}(x), y_{3}(x)\right], \quad Y^{\prime \prime \prime}+3 p_{1}(x) Y^{\prime \prime}+3 p_{2}(x) Y^{\prime}+p_{3}(x) Y=0 .
$$

- Laguerre-Forsyth form $p_{1}=p_{2}=0$.
- Projective curvature (Cartan ?)

$$
\kappa=\frac{\left(6 p_{3} p_{3}{ }^{\prime \prime}-7\left(p_{3}\right)^{2}\right)^{3}}{\left(p_{3}\right)^{8}}
$$

- 7th order ODE: $\kappa\left(y, y^{\prime}, \ldots, y^{(7)}\right)=\left(3^{9} 7^{3}\right) /\left(2^{4} 5^{2}\right)$, where κ is the projective curvature.
- Rational curves with constant projective curvature: $x^{p}=y^{q}$.
- ... only cuspidal cubics have non-singular contact lifts to $P\left(T^{*} \mathbb{C P}^{2}\right)$.

Ex 1. Cocalibrated G_{2} from cuspidal cubics.

- Curves in projective geometry $C \subset \mathbb{C P}^{2} \quad$ (Wilczynski 1905).

$$
x \rightarrow\left[y_{1}(x), y_{2}(x), y_{3}(x)\right], \quad Y^{\prime \prime \prime}+3 p_{1}(x) Y^{\prime \prime}+3 p_{2}(x) Y^{\prime}+p_{3}(x) Y=0 .
$$

- Laguerre-Forsyth form $p_{1}=p_{2}=0$.
- Projective curvature (Cartan ?)

$$
\kappa=\frac{\left(6 p_{3} p_{3}{ }^{\prime \prime}-7\left(p_{3}\right)^{2}\right)^{3}}{\left(p_{3}\right)^{8}}
$$

- 7th order ODE: $\kappa\left(y, y^{\prime}, \ldots, y^{(7)}\right)=\left(3^{9} 7^{3}\right) /\left(2^{4} 5^{2}\right)$, where κ is the projective curvature.
- Rational curves with constant projective curvature: $x^{p}=y^{q}$.
- ... only cuspidal cubics have non-singular contact lifts to $P\left(T^{*} \mathbb{C P}^{2}\right)$.
- Agrees with the Wilczynski invariants.

Example 2: Closed G_{2} from bihorn sextics.

- $(y+Q(x))^{2}+P(x)^{3}=0$, where

$$
Q(x)=q_{0}+q_{1} x+q_{2} x^{2}+q_{3} x^{3}, \quad P(x)=p_{3}\left(x-p_{2}\right)\left(x-p_{1}\right) .
$$

Example 2: Closed G_{2} FROM Bihorn sextics.

- $(y+Q(x))^{2}+P(x)^{3}=0$, where

$$
Q(x)=q_{0}+q_{1} x+q_{2} x^{2}+q_{3} x^{3}, \quad P(x)=p_{3}\left(x-p_{2}\right)\left(x-p_{1}\right) .
$$

- Two double points and one irregular quadruple point at $\infty . \mathrm{g}=0$.

$$
x(\lambda)=\frac{p_{1}+p_{2} \lambda^{2}}{\lambda^{2}+1}, \quad y(\lambda)=p_{3}^{3 / 2}\left(p_{1}-p_{2}\right)^{3} \frac{\lambda^{3}}{\left(\lambda^{2}+1\right)^{3}}-Q(x(\lambda)) .
$$

Example 2: Closed G_{2} FROM Bihorn sextics.

- $(y+Q(x))^{2}+P(x)^{3}=0$, where

$$
Q(x)=q_{0}+q_{1} x+q_{2} x^{2}+q_{3} x^{3}, \quad P(x)=p_{3}\left(x-p_{2}\right)\left(x-p_{1}\right) .
$$

- Two double points and one irregular quadruple point at $\infty . \mathrm{g}=0$.

$$
\begin{aligned}
x(\lambda)= & \frac{p_{1}+p_{2} \lambda^{2}}{\lambda^{2}+1}, \quad y(\lambda)=p_{3}^{3 / 2}\left(p_{1}-p_{2}\right)^{3} \frac{\lambda^{3}}{\left(\lambda^{2}+1\right)^{3}}-Q(x(\lambda)) . \\
& 7 \text { th order ODE } \quad y^{(7)}=\frac{21}{5} \frac{y^{(6)} y^{(5)}}{y^{(4)}}-\frac{84}{25} \frac{\left(y^{(5)}\right)^{3}}{\left(y^{(4)}\right)^{2}} .
\end{aligned}
$$

Example 2: Closed G_{2} FROM Bihorn sextics.

- $(y+Q(x))^{2}+P(x)^{3}=0$, where

$$
Q(x)=q_{0}+q_{1} x+q_{2} x^{2}+q_{3} x^{3}, \quad P(x)=p_{3}\left(x-p_{2}\right)\left(x-p_{1}\right) .
$$

- Two double points and one irregular quadruple point at $\infty . \mathrm{g}=0$.

$$
\begin{aligned}
x(\lambda)= & \frac{p_{1}+p_{2} \lambda^{2}}{\lambda^{2}+1}, \quad y(\lambda)=p_{3}^{3 / 2}\left(p_{1}-p_{2}\right)^{3} \frac{\lambda^{3}}{\left(\lambda^{2}+1\right)^{3}}-Q(x(\lambda)) . \\
& 7 \text { th order ODE } \quad y^{(7)}=\frac{21}{5} \frac{y^{(6)} y^{(5)}}{y^{(4)}}-\frac{84}{25} \frac{\left(y^{(5)}\right)^{3}}{\left(y^{(4)}\right)^{2}} .
\end{aligned}
$$

- Closed Riemannian G_{2} structure - explicit but messy.

Example 3: Weak G_{2} From submaximal ODE

- Contact geometry: $(x, y) \in Z,(x, y, z) \in P(T Z)$, contact form $\omega=d y-z d x$. Generators of contact transformations

$$
X_{H}=-\left(\partial_{z} H\right) \partial_{x}+\left(H-z \partial_{z} H\right) \partial_{y}+\left(\partial_{x} H+z \partial_{y} H\right) \partial_{z}
$$

where $H=H(x, y, z)$. Now $\mathcal{L}_{X} \omega=c \omega$.

Example 3: WEAK G_{2} FROM SUBMAXIMAL ODE

- Contact geometry: $(x, y) \in Z,(x, y, z) \in P(T Z)$, contact form $\omega=d y-z d x$. Generators of contact transformations

$$
X_{H}=-\left(\partial_{z} H\right) \partial_{x}+\left(H-z \partial_{z} H\right) \partial_{y}+\left(\partial_{x} H+z \partial_{y} H\right) \partial_{z}
$$

where $H=H(x, y, z)$. Now $\mathcal{L}_{X} \omega=c \omega$.

- Lie 1: Maximal contact Lie algebra on $Z=\mathbb{R}^{2}$ is ten-dimensional (isomorphic to $\mathfrak{s p}(4)$) and is generated by

$$
1, x, x^{2}, y, z, x z, x^{2} z-2 x y, z^{2}, 2 y z-x z^{2}, 4 x y z-4 y^{2}-x^{2} z^{2}
$$

Example 3: Weak G_{2} From submaximal ODE

- Contact geometry: $(x, y) \in Z,(x, y, z) \in P(T Z)$, contact form $\omega=d y-z d x$. Generators of contact transformations

$$
X_{H}=-\left(\partial_{z} H\right) \partial_{x}+\left(H-z \partial_{z} H\right) \partial_{y}+\left(\partial_{x} H+z \partial_{y} H\right) \partial_{z}
$$

where $H=H(x, y, z)$. Now $\mathcal{L}_{X} \omega=c \omega$.

- Lie 1: Maximal contact Lie algebra on $Z=\mathbb{R}^{2}$ is ten-dimensional (isomorphic to $\mathfrak{s p}(4)$) and is generated by

$$
1, x, x^{2}, y, z, x z, x^{2} z-2 x y, z^{2}, 2 y z-x z^{2}, 4 x y z-4 y^{2}-x^{2} z^{2}
$$

- Lie 2: maximal dimension of the contact symmetry algebra of an ODE of order $n>3$ is $(n+4)$ with maximal symmetry occurring if only if the ODE is contact equivalent to a trivial equation $y^{(n)}=0$.

Example 3: Weak G_{2} From submaximal ODE

- Contact geometry: $(x, y) \in Z,(x, y, z) \in P(T Z)$, contact form $\omega=d y-z d x$. Generators of contact transformations

$$
X_{H}=-\left(\partial_{z} H\right) \partial_{x}+\left(H-z \partial_{z} H\right) \partial_{y}+\left(\partial_{x} H+z \partial_{y} H\right) \partial_{z}
$$

where $H=H(x, y, z)$. Now $\mathcal{L}_{X} \omega=c \omega$.

- Lie 1: Maximal contact Lie algebra on $Z=\mathbb{R}^{2}$ is ten-dimensional (isomorphic to $\mathfrak{s p}(4)$) and is generated by

$$
1, x, x^{2}, y, z, x z, x^{2} z-2 x y, z^{2}, 2 y z-x z^{2}, 4 x y z-4 y^{2}-x^{2} z^{2}
$$

- Lie 2: maximal dimension of the contact symmetry algebra of an ODE of order $n>3$ is $(n+4)$ with maximal symmetry occurring if only if the ODE is contact equivalent to a trivial equation $y^{(n)}=0$.
- 7th order ODE with 10D contact symmetries (submaximal ODE)

$$
\begin{aligned}
& 10\left(y^{(3)}\right)^{3} y^{(7)}-70\left(y^{(3)}\right)^{2} y^{(4)} y^{(6)}-49\left(y^{(3)}\right)^{2}\left(y^{(5)}\right)^{2} \\
+ & 280\left(y^{(3)}\right)\left(y^{(4)}\right)^{2} y^{(5)}-175\left(y^{(4)}\right)^{4}=0, \quad(\text { Noth 1904) }
\end{aligned}
$$

Example 3: Weak G_{2} From submaximal ODE

- Rational curve $y^{2}+x(x-1)^{3}=0$ solves the ODE.

EXAMPLE 3: WEAK G_{2} FROM SUBMAXIMAL ODE

- Rational curve $y^{2}+x(x-1)^{3}=0$ solves the ODE.
- Integrate the contact transformations and apply to the parametrization

$$
x(\lambda)=\frac{1}{\lambda^{2}+1}, \quad y(\lambda)=-\frac{\lambda^{3}}{\left(\lambda^{2}+1\right)^{2}} .
$$

Example 3: Weak G_{2} from submaximal ODE

- Rational curve $y^{2}+x(x-1)^{3}=0$ solves the ODE.
- Integrate the contact transformations and apply to the parametrization

$$
x(\lambda)=\frac{1}{\lambda^{2}+1}, \quad y(\lambda)=-\frac{\lambda^{3}}{\left(\lambda^{2}+1\right)^{2}} .
$$

- Take a resultant to elliminate λ. General solution is a degree six rational curve.

Example 3: Weak G_{2} from submaximal OdE

- Rational curve $y^{2}+x(x-1)^{3}=0$ solves the ODE.
- Integrate the contact transformations and apply to the parametrization

$$
x(\lambda)=\frac{1}{\lambda^{2}+1}, \quad y(\lambda)=-\frac{\lambda^{3}}{\left(\lambda^{2}+1\right)^{2}} .
$$

- Take a resultant to elliminate λ. General solution is a degree six rational curve.
- $W_{1}[F]=W_{2}[F]=\cdots=W_{5}[F]=0$.

Example 3: Weak G_{2} from submaximal ODE

- Rational curve $y^{2}+x(x-1)^{3}=0$ solves the ODE.
- Integrate the contact transformations and apply to the parametrization

$$
x(\lambda)=\frac{1}{\lambda^{2}+1}, \quad y(\lambda)=-\frac{\lambda^{3}}{\left(\lambda^{2}+1\right)^{2}} .
$$

- Take a resultant to elliminate λ. General solution is a degree six rational curve.
- $W_{1}[F]=W_{2}[F]=\cdots=W_{5}[F]=0$.
- How about G_{2} structure? Two real forms of $S p(4) / S L(2)$, one of which is a Riemannian homogeneous space $S O(5) / S O(3)$ (Bryant 1987).

Example 3: Weak G_{2} from submaximal ODE

$$
\begin{aligned}
& \left(c_{4} y+c_{1}+c_{2} x+c_{3} x^{2}\right)^{3}+3\left(c_{4} y+c_{1}+c_{2} x+c_{3} x^{2}\right) \\
& \left(3\left(c_{5} x+c_{6}\right)^{4}-6\left(c_{5} x+c_{6}\right)^{2}\left(1-c_{7} x\right)^{2}-\left(1-c_{7} x\right)^{4}\right) \\
& +12\left(c_{5} x+c_{6}\right)\left(3\left(c_{5} x+c_{6}\right)^{4}\left(1-c_{7} x\right)+\left(1-c_{7} x\right)^{5}\right)=0 .
\end{aligned}
$$

Example 3: Weak G_{2} from submaximal ODE

$$
\begin{aligned}
& \left(c_{4} y+c_{1}+c_{2} x+c_{3} x^{2}\right)^{3}+3\left(c_{4} y+c_{1}+c_{2} x+c_{3} x^{2}\right) \\
& \left(3\left(c_{5} x+c_{6}\right)^{4}-6\left(c_{5} x+c_{6}\right)^{2}\left(1-c_{7} x\right)^{2}-\left(1-c_{7} x\right)^{4}\right) \\
& +12\left(c_{5} x+c_{6}\right)\left(3\left(c_{5} x+c_{6}\right)^{4}\left(1-c_{7} x\right)+\left(1-c_{7} x\right)^{5}\right)=0
\end{aligned}
$$

Discriminant of this cubic (in y) is a 3rd power of a quartic with equianharmonic cross-ratio.

Outlook

- Twistor theory of G_{2}-structures.

Outlook

- Twistor theory of G_{2}-structures.
- Special structures - depending on functions of three variables. General G_{2} structures depend on functions of six variables.

Outlook

- Twistor theory of G_{2}-structures.
- Special structures - depending on functions of three variables. General G_{2} structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.

Outlook

- Twistor theory of G_{2}-structures.
- Special structures - depending on functions of three variables. General G_{2} structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.

Outlook

- Twistor theory of G_{2}-structures.
- Special structures - depending on functions of three variables. General G_{2} structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.
- Conformal structures from binary quantics:

Outlook

- Twistor theory of G_{2}-structures.
- Special structures - depending on functions of three variables. General G_{2} structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.
- Conformal structures from binary quantics:
- Quadratic - double root.

Outlook

- Twistor theory of G_{2}-structures.
- Special structures - depending on functions of three variables. General G_{2} structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.
- Conformal structures from binary quantics:
- Quadratic - double root.
- Quadric - equianharmonic cross ratio.

Outlook

- Twistor theory of G_{2}-structures.
- Special structures - depending on functions of three variables. General G_{2} structures depend on functions of six variables.
- Twistor theory 'wrong way round': global properties of rational curves characterised by local invariants.
- Conformal structures from binary quantics:
- Quadratic - double root.
- Quadric - equianharmonic cross ratio.
- Sextic (relevant in this talk) -??

