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Abstract. We settle two questions on sequence A120243 in the OEIS that
were raised by Clark Kimberling and partly solve a conjecture of Van de Lune
and Arias de Reyna. We extend Kimberling’s questions to the framework of
deterministic random walks, automatic sequences, and linear recurrences. Our
results indicate that there may be a deeper connection between these struc-
tures. In particular, we conjecture that the records of deterministic random
walks are ξ-Ostrowski automatic for a quadratic rotation number ξ.

Sequence A120243 in the OEIS consists of numbers n such that the fractional part
{n

√
2} is less than 1

2 . Its complementary sequence, denoted as b(n), is A120749.
The table below presents the first eighteen elements of these sequences:

a(n) 1 3 5 6 8 10 13 15 17 18 20 22 25 27 29 30 32 34
b(n) 2 4 7 9 11 12 14 16 19 21 23 24 26 28 31 33 36 38

Table 1. The first eighteen numbers from A120243 and A120749

These sequences were entered into the OEIS by Clark Kimberling, who posed the
question of whether the difference b(n)− a(n) is positive for all n and whether, for
each integer k, there exist infinitely many values of n such that b(n)−a(n) = k. We
confirm both of these properties. Kimberling’s questions relate to the rotation of
the unit circle by

√
2, which is often an initial case leading to broader mathematical

results, such as in [4]. Our analysis of the sequences a(n) and b(n) extends to the
more general framework of automatic sequences and ergodic theory.

We could also have described the sequences A120243 and A120749 by the parity
of ⌊2n

√
2⌋. The sequence a corresponds to the even numbers, and b corresponds

to the odd numbers. Or alternatively, if instead of parity we use signs by putting
(−1)⌊2n

√
2⌋, then we can think of the sequences a and b as the steps in the posi-

tive direction and the negative direction, respectively, in what is known as, rather
curiously, a deterministic random walk

(1) Sn(ξ) =

n∑
j=1

(−1)⌊jξ⌋,
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for ξ = 2
√
2. If we move from fractional parts {nξ} to deterministic random walks

Sn(2ξ), then we double ξ. Kimberling’s question whether b(n)− a(n) is positive is
equivalent to the question whether Sn(2

√
2) is non-negative. This problem closely

resembles Problem B6 from the 81st William Lowell Putnam Mathematical Com-
petition, which requires proving that Sn(

√
2− 1) is non-negative, see [5].

A number n is a record of the deterministic random walk if none of the previous
partial sums (including zero) is equal to Sn(ξ). Sequence A123737 in the OEIS
contains the partial sums of the deterministic random walk for ξ =

√
2. In a com-

ment on A123737, Václav Kotěšovec asked if the records satisfy a certain recurrence
relation. Van de Lune and Arias de Reyna [13] conjecture that there is a system of
recurrence relations for the records of the deterministic random walk Sn(ξ) for all
quadratic irrationals ξ. Their work extends earlier results of O’Bryant et al [15].
We confirm Kotěšovec’s recurrence and settle some instances of the conjecture.

A number n is a zero of the deterministic random walk if Sn(ξ) = 0. Determinis-
tic random walks Sn(ξ) =

∑n
j=1(−1)⌊x+jξ⌋ (with offset x ∈ [0, 1)) were introduced

by Aaronson and Keane [1], and their primary interest was an estimate of the
asymptotic number of zeros as n goes to infinity for a generic number x. More
specifically, if Nn is the number of zeros up to n, then it can be interpreted as a
random variable depending on a uniformly random x. The asymptotic mean and
variance of Nn remain a subject of ongoing research [2, 7].

1. Irrational rotations and automata

The sequences a and b arise from an irrational rotation of the unit circle. The
number a(n) marks the n-th return to the semi-circle [0, 1

2 ) under the rotation
x 7→ x +

√
2, starting from x = 0, and b(n) is the n-th return to its complement

[ 12 , 1). According to the ergodic theorem, both lim a(n)
n and lim b(n)

n equal two,
which is suggested already by the first eighteen entries in Table 1. Given this, the
next point of interest is the behavior of the differences a(n)−2n and b(n)−2n. Such
deviations from the mean are known as discrepancies, which is a significant topic in
the study of sequences [8]. Kimberling’s question regarding whether b− a assumes
every positive number infinitely often falls within this topic. His other question on
the signature of b − a is equivalent to asking whether a(n) − 2n is negative and
b(n)− 2n is non-negative.

For N ∈ N an interval I ⊂ (0, 1) and ξ ∈ (0, 1), let ℓ(I) be the length of I and let
N(ξ, I) be the cardinality of {n : {nξ} ∈ I, n ≤ N}. Kesten [12] famously proved
that

(2) lim sup
N→∞

|N(ξ, I)− ℓ(I) ·N | < ∞

if and only if ℓ(I) = {mξ} for some m ∈ N. If we apply this to ξ = {
√
2}

and I = [0, 1
2 ), then we get that the difference between N/2 and the number of

{nξ} < 1
2 up to N is unbounded. This implies that a(n) − 2n and b(n) − 2n are

both unbounded.
Sós [19] observed that the discrepancy N(ξ, I)− ℓ(I) ·N may be bounded on one

side and unbounded on the other. Recall the (regular) continued fraction of a real

https://oeis.org/A123737
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number ξ

ξ = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .
The coefficients ai are the partial quotients and the finite expansions pn

qn
are the con-

vergents, starting from p0

q0
= a0

1 . Dupain and Sós [9] gave a necessary and sufficient
condition on I = [0, β) and ξ for one-sided boundedness, for ξ with bounded partial
quotients (such as quadratic irrationals). Boshernitzan and Ralston [6] found an
elegant condition for nonnegative discrepancy in terms of the convergents of ξ.

Theorem 1 (Boshernitzan and Ralston). Let I = [0, h
k ) and let pn

qn
be the conver-

gents of ξ. The discrepancy N(ξ, I)−ℓ(I) ·N is nonnegative if and only if k | q2n+1

for all n.

In particular, if the odd convergents q2n+1 of ξ are even then the number of {nξ}
in [0, 1

2 ) up to N exceeds, or is equal to, the number of {nξ} in [1/2, 1). This is
equivalent to the non-negativity of Sn(2ξ). The denominators qn of the convergents
of

√
2, starting from q0 = 1, are the Pell numbers 1, 2, 5, 12, . . ., entry A000129 in

the OEIS. The qn are even for odd n and so the discrepancy is nonnegative by
Theorem 1. For each N at least half of the iterates {n

√
2} are in [0, 1

2 ). It follows
that a(n)−2n is negative and b(n)−2n is nonnegative for all n, and therefore b−a
is positive. This settles one of the two questions of Kimberling.

Corollary 2. The sequence b− a is positive.

The odd convergents are even if and only if the odd partial quotients a2n+1

are even. Problem B6 of the 2021 Putnam Competition asks one to prove that
Sn(

√
2 − 1) is non-negative. The continued fraction expansion of

√
2−1
2 is [0; 4, 1]

where the bar indicates that these coefficients are repeated. The partial quotients
a2n+1 are all equal to 4 so that Theorem 1 settles problem B6.

The Pell numbers Pn form the basis of a numeration system [18, Ch 3.4]. They
satisfy the recurrence Pn+1 = 2Pn + Pn−1 starting from P0 = 0, P1 = 1. Please
note that there is a mismatch between the indexing of the Pell numbers and the
denominators of the convergents of

√
2. The Pell numbers start at P0 = 0 and

the denominators start at q0 = 1. Each number can be represented as a sum
n =

∑j
i=1 diPi with digits di ∈ {0, 1, 2}. The representation is unique under the

condition that di = 0 if di+1 = 2. For example, 69 = 1 ·1+0 ·2+2 ·5+0 ·12+2 ·29.
As in decimal notation, it is standard practice to write the digits with the most
significant digit first (msd). The decimal number 69 is represented by 20201 in Pell
numeration. A sequence is Pell automatic if there exists a deterministic finite-state
automaton (DFA) that reads digits in Pell numeration and decides if a number is
in the sequence. The DFA in Fig. 1 decides if a number is in A120749 or not. For
example, 69 is entered as 20201, leading to the state transitions 0 → 2 → 4 → 2 →
4 → 5 ending in the accepting state 5. The number is in the sequence. In fact,
inspection of the OEIS shows that it is the 34th element of the sequence, which
implies that the 69th step of the deterministic random walk has value 1. The next
step, seventy, is Pell number P6, which has representation 100000. It ends in state

https://oeis.org/A000129
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3, which is accepting. Therefore, the walk has value 0 at this point: P6 is a zero
of Sn(2

√
2). We will prove below that the zeros and records of this walk are Pell

automatic.
The DFA in Fig. 1 is constructed from a method due to Schaeffer et al. [17], who

showed how a Beatty sequence such as ⌊n
√
2⌋ can be implemented in the automatic

theorem prover Walnut [14]. In particular, it is possible to implement a command
beattysqrt2(n,r) which accepts numbers r = ⌊n

√
2⌋. Sequence A120749 contains

the numbers n such that ⌊2n
√
2⌋ is even. In terms of first-order logic, a number n

is in the sequence if
∃k ⌊2n

√
2⌋ = 2k + 1.

In the Walnut environment this becomes
"?msd_pell E k $beattysqrt2(2*n,2*k+1)":

which produces the depicted DFA.

2. The records of Sn(2
√
2)

We say that r is a record if Sr(ξ) = m and none of the Sn(ξ) for n < r are equal
to m. The sequence Rn of records of Sn(

√
2) starts as

0, 1, 3, 8, 20, . . .

Jan van de Lune [20] conjectured that the records of Sn(
√
2) satisfy a Pell-like

recurrence, which was confirmed in [10].

Theorem 3 (Van de Lune). The sequence of records Rn of Sn(
√
2) satisfies the

recurrence

(3) Rn+1 = 2Rn +Rn−1 + 1, with R0 = 0, R1 = 1.

and the values of consecutive records have alternating signs.

Figure 1. A finite state automaton that decides if a number n is
in A120749 or in its complement A120243. The input is in msd
format. Inputs that end in double circled states (acceptance) are
in A120749. Inputs that end in state 1 (rejection) are in A120243.
Inputs that end in 2 are not a valid Pell representation. The au-
tomaton is produced by the automatic theorem prover Walnut us-
ing the results in [17].

https://oeis.org/A120749
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The records are sums of Pell numbers Rn =
∑n

j=1 Pj . In Pell numeration, their
representation is 11 · · · 1 and the sequence Rn is Pell automatic.

Figure 2. An automaton that accepts the records of Sn(
√
2) in

Pell numeration in msd representation.

Václav Kotěšovec separated the records into positive and negative values. For
a natural number m, let Am be the first index such that Sn(

√
2) = m and let Bm

be the first index such that Sn(
√
2) = −m, both starting out from A0 = B0 =

0. Kotěšovec noticed that these are recurrence sequences and that An occurs as
A001652 while Bn occurs as A001108 in the OEIS.

Corollary 4. The sequences An and Bn satisfy the recurrences

An+1 = 6An −An−1 + 2, with A0 = 0, A1 = 3,

and
Bn+1 = 6Bn −Bn−1 + 2, with B0 = 0, B1 = 1.

Proof. This follows from Van de Lune’s recursion (3) and the observation that the
first step is in the negative direction:

Rn+2 = 2
(
2Rn +Rn−1 + 1

)
+Rn + 1

= 5Rn + 2Rn−1 + 3

= 6Rn −Rn−2 + 2.

□

The first few records of Sn(2
√
2) are

0, 1, 6, 35, 204, . . .

which happen to be the first few half Pell numbers P2n/2. These numbers satisfy
the recurrence relation Qn+1 = 6Qn −Qn−1, which is Kotěšovec’s recursion up to
a constant. To verify that the records Qn are indeed half Pell numbers, we apply
the algorithm from [10] to compute values of the deterministic random walk Sn(ξ).
It assumes that 0 < ξ < 1 and depends on the denominators of the convergents
qn of ξ/2. In our case ξ = 2

√
2, we translate to 2

√
2 − 2 to place it in the unit

interval and divide by two, to get
√
2− 1. The denominators of its convergents are

the Pell numbers (starting from q0 = 1 = P1). For this particular case we have the
following three rules. We write q = qn+1, q′ = qn, and q′′ = qn−1 and we write Sn

for Sn(2
√
2). The rules are, in this special case of ξ = 2

√
2:

Recursive rules for Sn(2
√
2)

Rule A: Sq = 1 if q is odd and Sq = 0 if q is even.
Rule B: Sq−k = Sq′ + Sk−1 if 1 ≤ k ≤ q′′.
Rule C: Sq′+k = Sq′ + Sk if 1 ≤ k < q′.

https://oeis.org/A001652
https://oeis.org/A001108
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An explanation for these rules is that qξ is a close return to 0 mod 1. If q is even,
there are equally many steps in the two semicircles [0, 1/2) and [1/2, 1). If q is odd,
then it is the denominator of a convergent p/q < ξ. The return qξ is in [0, 1/2) and
therefore there is one more step in [0, 1/2).

Rule B determines Sn for n ∈ [q − q′′, q) and Rule C determines Sn for n ∈
(q′, 2q′). Since q − q′′ = 2q′ these rules, together with Rule A, determine all values
Sn by recursion. The parity of the Pell numbers alternates. If q is odd than q′ is
even and vice versa. If the interval [q′, q] is marked by an even q′ and an odd q,
then the contributions S′

q in rule B and rule C are zero. It follows that there is
no record in [q′, q] in this case. Records can only occur if q′ is odd and q is even.
Notice that a Pell number Pn is even if and only if its index is even.

Theorem 5. The records Qn of Sn(2
√
2) are the half-Pell numbers P2n/2.

Note that the half-Pell number P2n/2 is the sum of the first n odd Pell numbers.
By rules A and C, each odd Pell number contributes 1 to the walk at step P2n/2.

Proof. We can limit our attention to intervals [q′, q] such that q′ is odd. These are
the intervals [P2n−1, P2n]. For n = 1 we have P2 = 2 and the unique record in
[1, 2] occurs indeed at 1 = P2/2. By rules B and C the value of Sn increases by
Sq′ = 1 for n ∈ (q′, q) compared to earlier values, so there is at most one record in
this interval. By rule C Sq′+k(

√
2) = 1 + Sk(

√
2) for all k ∈ [0, q′) and therefore

the record has to come from this rule. The new record in [q′, q] is q′ + r for the
old record r ∈ [0, q′). By induction, records occur as sums of odd Pell numbers
P1 + P3 + · · ·+ P2m−1 = P2m/2. □

Figure 3. An automaton that accepts the records of Sn(2
√
2) in

Pell numeration in msd representation.

If we ignore the first record at 0, then in Pell numeration the records of Sn(2
√
2)

occur at 1, 101, 10101, . . . and more generally (10)∗1, where the Kleene ∗ represents
an arbitrary repetition. Again, they form a Pell automatic sequence. The Ostrowski
numeration system can be defined for every real number ξ, see [18, ch 3.5]. It is
equal to Pell numeration if ξ =

√
2.

Definition 6. Given a positive real irrational number ξ = [a0, a1, . . . ] with con-
tinued fraction convergents pn/qn = [a0, a1, . . . , an], we can write every integer
N ≥ 0 uniquely as

N =
∑

0≤i≤j

biqi

where the digits (bi)i≥0 satisfy the conditions
(a) 0 ≤ b0 < a1.
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(b) 0 ≤ bi ≤ ai+1, for i ≥ 1.
(c) For i ≥ 1, if bi = ai+1, then bi−1 = 0.

A sequence is ξ-Ostrowski automatic if there exists a finite state automaton that
decides if a number is in the sequence. The following conjecture is a variation of
the conjecture of van de Lune and Arias de Reyna, which we mentioned earlier.

Conjecture 7. The records of Sn(2ξ) are ξ-Ostrowski automatic for quadratic
irrational ξ.

Figure 4. An automaton that accepts the records of Sn(
√
3) in√

3/2-Ostrowski numeration, provided that the system of recur-
rences conjectured by Van de Lune and Arias de Reyna holds. The
continued fraction of

√
3/2 has partial coefficients [0; 1, 6, 2], where

the bar marks that these coefficients repeat. The denominators of
its convergents are 1, 7, 15, 97, . . ..

To back up their conjecture, Van de Lune and Arias de Reyna provide a specific
recurrence relation for the records of ξ =

√
3, with initial values tj = 0 for negative

indices (where we corrected a typo for t4n+1).

t4n+1 = 2t4n + t4n−1 + 1

t4n+2 = t4n+1 + 2t4n + 1

t4n+3 = t4n+2 + 2t4n + 1

t4n+4 = 2t4n+3 + t4n + 1.

This recurrence was found experimentally. It generates the sequence

1, 2, 3, 7, 18, 33, 48, 104, 257, 466, 675, 1455, 3586, . . .

which unfortunately does not yet match any sequence in the OEIS. It is possible to
construct an automaton, shown in Fig. 4, for this system of recurrences using the
automatic theorem prover Walnut.

3. The zeros of Sn(2
√
2)

An index n is a zero of a deterministic random walk if Sn(ξ) = 0. The study
of the asymptotic number of zeros of deterministic random walks with offsets was
initiated in [1] and remains a topic of ongoing research. For our walk Sn(2

√
2) the

first few zeros are

0, 2, 4, 12, 14, 16, 24, 26, 28, 70, 72, 74, 82, 84, 86, . . .
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Figure 5. An automaton that accepts the zeros of Sn(2
√
2) in

Pell numeration in msd representation.

which is entry A194368 of the OEIS. In Pell numeration these numbers are

ϵ, 10, 20, 1000, 1010, 1020, 2000, 2010, 2020, 100000, . . .

where ϵ is the empty word. Like its records, the zeros of Sn(
√
2) are easy to spot

in Pell numeration.

Theorem 8. The zeros of Sn(2
√
2) occur at n = 0 or (10|20)(00|10|20)∗ in Pell

numeration.

Proof. There cannot be a zero in [q′, q] if q′ is an odd Pell number because rules
B and C add Sq′(

√
2) = 1 to previous values, and these are non-negative. Zeros

occur in [q′, q] for even Pell numbers q′, starting at q′ following rule A. Note that
rules B and C partition this interval into numbers with initial digits 1 and 2 in Pell
numeration.

We assume by induction that the earlier zeros all are of the required form. If
rule C applies, then Sq′+k(

√
2) = 0 if and only if Sk(

√
2) = 0, so indeed all zeros in

this part of [q′, q] are of the form (10)(00|10|20)∗. For rule B we use the identity

P2m − 1 =

m−1∑
i=1

2P2i.

We rewrite rule B as S(q−1)−k)(
√
2) = Sk(

√
2), using that q′ is an even Pell number.

In particular, q − 1 − k is a zero if and only if k is a zero. Now q − 1 is equal to
(20)m in Pell numeration and k = (00|10|20)m−1 by our inductive assumption. It
follows that (q − 1)− k = (20)(00|10|20)m−1 and we are done. □

Surprisingly, the set of zeros of Sn(
√
2) does not seem to be Pell automatic, or if

it is, its automaton needs many states. The one-sidedness of Sn(2
√
2) seems to be

essential. We say that ξ is a BR-number (after Boshernitzan and Ralston) if its odd
convergents q2n+1 are even, or, equivalently, if all its odd partial quotients a2n+1

are even. According to Theorem 1, the walk Sn(2ξ) is nonnegativeif and only if ξ is
a BR-number. Note that q0 = 1 and q1 is even for a BR-number. By the recursion
qn+1 = anqn + qn−1, the parity of the convergents alternates for BR-numbers.

We write q = qn+1, q′ = qn, and q′′ = qn−1 so that q = aq′ + q′′ for the partial
quotient a = an+1. The rules B and C from [10] allow some overlap, but we state
them in such a form that they apply to separate parts of [q′, q).

Recursive rules for Sn(2ξ) for a BR-number ξ ∈ (0, 1)

Rule A: Sq = 1 if q is odd and Sq = 0 if q is even.
Rule B: Sq−k = Sq′ + Sk−1 if 1 ≤ k ≤ q/2.
Rule C: Sq′+k = Sq′ + Sk if 1 ≤ k < q/2− q′.

https://oeis.org/A194368
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Theorem 9. Let ξ ∈ (0, 1) be a BR-number and let N =
∑n

i=0 biqi be the ξ-
Ostrowski representation. Then N is a zero of Sn(2ξ) if and only if bi = 0 for all
even i.

Proof. By rules B and C, for each n ∈ [q′, q) there is some k < n such that Sn =
Sq′ + Sk. If q′ is odd, then Sq′ = 1 and Sk ≥ 0 since the walk is one-sided. There
are no zeros in [q′, q) if q′ is odd. If N is a zero, it must be in [q′, q) for an even q′.

We need to prove that the odd digits of N are zero in Ostrowski numeration.
First suppose that N < q/2. Rule C applies and SN = Sq′+Sk = Sk for N = q′+k.
Therefore, k is a zero and by induction has odd digits zero. Note that k < q/2−q′ <
q′ and that q′ gives a digit 1 at an even position in Ostrowski numeration. The
odd digits of N are zero if N < q/2. If N ≥ q/2 then SN = Sq′ + Sk−1 = Sk−1 for
N = q− k. By induction, N is a zero if and only if N = q− k for a zero k− 1 < N .
Now we use the identity

(4) q2j+2 =

j∑
i=0

a2i+2q2i+1 + 1

to write

N =

j∑
i=0

a2i+2q2i+1 − (k − 1)

for a zero k− 1. By induction k− 1 =
∑j

i=0 b2i+1q2i+1 for digits b2i+1 ≤ a2i+2. We
conclude that all even digits in the expansion of N are zero. □

It is easy to construct an automaton that decides if all digits on even positions
are zero.

Corollary 10. The zeros of Sn(2ξ) form a ξ-automatic sequence if ξ is a BR-
number.

The following generalizes Theorem 5 from ξ =
√
2 to BR-numbers.

Theorem 11. Let ξ ∈ (0, 1) be a BR-number and let N =
∑n

i=0 biqi be the ξ-
Ostrowski representation. Then N is a record of Sn(2ξ) if and only if n is even,
bi = 0 for all odd i, bi = ai+1/2 for all even i < n, and bn ≤ an+1/2.

Proof. We argue by induction on the index n of the most significant digit. Records
can only occur in [q′, q) if q′ is odd, so n is even. The first partial quotient a1
is even and the initial record of the walk occurs immediately at the initial steps
a1/2, which shows that the statement is true for n = 0. Assume that it is true for
n − 2. The final record with most significant digit n − 2 is equal to (qn−1)/2 by
Equation (4). We write qn+1, qn, qn−1 as q, q′, q′′ and q = aq′+ q′′. The final record
before q′′ is r = (q′′ − 1)/2. Rule C implies that the records in [q′, q/2) are bq′ + r
up to q/2. Since (a/2)q′ + r = (q− 1)/2 the digit b runs up to a/2. Rule B implies
that the only possible record in the subinterval [q/2, q) is q − k if k − 1 is the final
record before q/2. This record is (q − 1)/2. Since q is odd, the minimal number in
[q/2, q) is (q + 1)/2. If we write it as q − k, then we get k = (q − 1)/2 and k − 1 is
below the final record. All records are of the prescribed form. □

Corollary 12. Both Conjecture 7 and the conjecture of Van de Lune and Arias de
Reyna hold if ξ is a BR-number.
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Proof. We construct an lsd automaton. It checks that bi = 0 if i is odd and that
bi ≤ ai+1/2 if i is even. If this inequality is strict, then all further digits need to be
zero. Therefore, the odd transitions are 0. The even transitions are ai+1/2, unless
the transition is < ai+1/2, which moves to a separate state for which all further
transitions are 0. Since the partial quotients are eventually periodic, the automaton
eventually loops back and the number of states is finite. For a BR number, the
period is even, so this does not conflict with the check that odd digits are zero.
This settles Conjecture 7 for BR-numbers.

To find a system of linear recurrences, observe that the difference between con-
secutive records equals qj for some even index j = 2k. Each qj occurs aj+1/2 times
and therefore the number of occurrences is eventually periodic. The convergents
q2k form a recurrence sequence and therefore the difference sequence of consecutive
records satisfies a system of recurrences, and so does the sequence of records. □

4. The difference sequence b− a

We establish Kimberling’s second observation that b − a assumes all positive
integers infinitely often. We focus on the walk Sn(2

√
2) and for simplicity, we

abbreviate our notation to Sn = Sn(2
√
2). The walk exhibits two key symmetries,

described by Rules B and C. Rule B is reflexive, meaning that the step from Sq−k

to Sq−k+1 mirrors the step from Sk−1 to Sk−2. Rule C, on the other hand, is
translational: it states that from the q-th step onward, the next q steps replicate
the initial q steps. To fully address Kimberling’s second observation, we need an
additional symmetry, ensuring that each value k > 0 appears infinitely often in
b− a.

Lemma 13. Let q = q2n−1 be an even denominator. Then

Sq/2+k = Sq/2 − Sk

for 0 ≤ k ≤ q/2.

Proof. This follows from the rules of Sn(2
√
2). The intuition behind this equation

is that after q/2 steps the parity of the rounded exponents 2(j+ q/2)
√
2 is opposite

to that of 2j
√
2 since q

√
2 ≈ p where p/q is the convergent and p is odd.

The half-Pell number q/2 is a sum of odd convergents q2n−1/2 = q2n−2+q2n−4+
· · ·+ q0. We present k in Pell numeration by a word of length 2n− 1, padding with
initial zeros if necessary. Since k ≤ q/2 its Pell presentation is (10)j0w for some
j ≥ 0 and a word w of length 2(n− j − 1). In particular

k = q2n−2 + . . .+ q2n−2j + k′

for k′ < q2n−2j−2. Rule C implies that Sk = j+Sk′ . If we write r = q2n−2j−1 then
q/2− k = r/2− k′. By rule B and by induction

Sq/2+k = 1 + Sq/2−k−1 = 1 + Sr/2−k′−1 = Sr/2+k′ = Sr/2 − Sk′ .

Now q/2 is the n-th record and r/2 is the (n−j)-th record. Therefore Sq/2 = j+Sr/2

and we find
Sr/2 − Sk′ = Sq/2 − Sk

as required. □
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Lemma 14. Let q = q2n−1 be an even denominator.

(5) a(q/2 + j) = q + a(j) and b(q/2 + j) = q + b(j)

for j ≤ q/2

Proof. Since q is even, it is a zero, and there are equally many forward and backward
steps to q. By definition, a(q/2 + j) is the index of the (q/2 + j)-th forward step.
There are q/2 forward steps up to index q, after which the walk repeats itself by
rule C for the next q/2 steps. Therefore, a(q/2 + j) = q + a(j). The argument for
b(q/2 + j) is the same. □

Lemma 15. For any k > 0, if b(n)−a(n) = k for some n, then there are infinitely
many m such that b(m)− a(m) = k.

Proof. It follows from Equation (5) that each difference b(n) − a(n) repeats after
q/2 steps for a sufficiently large q. □

If q = q2m−1 is the m-th even denominator, then q/2 is the m-th record, and
there is a surplus of m forward steps among the first q/2 steps.

Lemma 16. For all m > 1, we have

b

(
q2m−1 + 2m

4

)
− a

(
q2m−1 + 2m

4

)
= a(m).

Proof. We write q = q2m−1. There is a surplus of m forward steps; therefore,
(q+2m)/4 steps are forward and (q− 2m)/4 are backward. The final step of these
first q/2 steps is forward, since it produces a record. By Lemma 14, after step q/2
the walk repeats itself, but in the opposite direction, for the next q/2 steps. Since
a(m) < 2m < q/2 it follows that

b

(
q − 2m

4
+ j

)
=

q

2
+ a(j) for 1 ≤ j ≤ m.

In particular b
(
q+2m

4

)
= q

2 + a(m) and a
(
q+2m

4

)
= q

2 . □

Theorem 17. For every k > 0 there are infinitely many j such that b(j)−a(j) = k.

Proof. The previous lemmas take care of the case that k is in the sequence a.
We need to find a solution for k in b, say k = b(n). Take a sequence of n odd
denominators of convergents cn > cn−1 > . . . c1 such that c1/2 > b(n). These
denominators do not need to be consecutive, which is why we write c instead of q,
to avoid confusion. Let d = cn + cn−1 + · · · c1. Rule C implies that Sd = n and
that the d-th step is forward. There is a surplus of n forward steps which implies
that a

(
n+d
2

)
= d. By Rule C the deficit of n backward steps is compensated for at

index d+ b(n). We conclude that b
(
n+d
2

)
− a

(
n+d
2

)
= b(n). □

5. Self-similarity of noble mean rotations

A quadratic number ξ2 = mξ + 1 with constant continued fraction expansion
ξ = [m;m,m,m, . . .] is called a metallic mean or noble mean [3]. For m = 1 it
is the golden mean and for m = 2 it is the silver mean. A noble mean is a BR-
number if m is even. Our standing example Sn(2

√
2) is generated by the rotation

over the silver mean. It is well-known that the irrational rotation ρ : x 7→ x + ξ
mod 1 has a self-similarity for noble means. We shall see that this explains why



12 HENK BRUIN AND ROBBERT FOKKINK

the deterministic random walk Sn(2ξ) is non-negative, for noble means with even
m = 2k. Only the fractional part of ξ matters for the rotation, which is why we
subtract m from the noble mean, adjusting it to ξm = [0;m,m,m, . . .].

The rotation ρ is an interval exchange transformation [11], which adds ξ to
x ∈ [0, 1− ξ) and subtracts 1− ξ from x ∈ [1− ξ, 1). Recall that the return of x to
I ⊂ [0, 1) is the iterated image ρn(x) ∈ I such that no ρj(x) for 0 < j < n is in I.

Lemma 18. Let ξm =
√
m2+4−m

2 be the adjusted noble mean. The return map to
[0, 1−mξ) is a rescaling of the original rotation on [0, 1).

Proof. The first two convergents of ξm are
m

m2 + 1
< ξm <

1

m

and the closest returns to 0 among its first m2 + 1 rotations are mξm − 1 < 0 <
(m2+1)ξm−m. We suppress the index and write ξ instead of ξm. The first rotation
{jξ} that ends up in [0, 1 − mξ) is (m2 + 1)ξ − m. Let R be the return map to
[0, 1−mξ). A straightforward computation gives

R(x) =

{
x+ (m2 + 1)ξ −m if x < (m+ 1)− (m2 +m+ 1)ξ,
x+ (m2 +m+ 1)ξ −m− 1 if x ≥ (m+ 1)− (m2 +m+ 1)ξ.

If we rescale this interval exchange to unit length, we get a rotation over

(m2 + 1)ξ −m

1−mξ
= ξ.

□

We partition the circle into three labeled intervals

{a, b, c} = {[0, 1/2), [1/2, 1− ξ), [1− ξ, 1)}.

The itinerary of x ∈ [0, 1/2) up to its return S(x) is a for x ∈ I1 because the return
is immediate. It is abk+1c for x ∈ I2 and abkc for x ∈ I3.

Theorem 19. Let ξm be the fractional part of the noble mean for an even m = 2k.
The sequence (an)n≥0 for an = 1[0,1/2)({nξm}) equals limk→∞ τ ◦ σk(a) for the
substitution and coding

σ :


a → ak+1bk−1c (akbk−1c)p−1,

b → akbkc (akbk−1c)p−1,

c → akbkc (akbk−1c)p,

and τ :


a → 1,

b → 0,

c → 0.

Proof. The return map to [0, 1 − mξ) is a rescaling of the rotation, in which the
partition {a, b, c} is scaled to

{a′, b′, c′} = {[0, 1/2− kξ), [1/2− kξ, (1− ξ)(1−mξ)), [(1− ξ)(1−mξ), 1−mξ)}.

The return time is m2+1 on a′∪ b′ and m2+m+1 on c′. The substitution σ gives
the itinerary of elements of {a′, b′, c′} through {a, b, c} until their return. Note that
the return times correspond to the lengths of the substitution.

After m rotations, [0, 1 −mξ) is in [mξ, 1) and after one more rotation it is in
[ξ, 1− (m− 1)ξ). For an element of a′, the itinerary if ak+1bk−1c after m rotations,
including its initial position in a. For the other elements, the itinerary is akbkc.
That explains the prefixes of the coding σ. After k rotations, the initial point of b′
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reaches 1
2 , which marks the transition from coding 1 to coding 0. This is where we

need that m is even.
For each x ∈ [ξ, 1−(m−1)ξ), the itinerary of its initial position and a subsequent

m − 1 rotations is akbk−1c. This itinerary of blocks of m remains the same until
the return to [0, 1−mξ). It follows that σ describes the return map, if we associate
{a′, b′, c′} to {a, b, c}. The coding τ corresponds to the indicator function. □

As a consequence, we get another proof that deterministic random walks are
one-sided for noble means that are BR-numbers.

Corollary 20. The deterministic random walk Sn(2ξ) is nonnegativefor noble
means with even m.

Proof. If we put +1 for a and −1 for b and c then the running sum of

ak+1bk−1c (akbk−1c)m−1,

which is the substitution word of a, is positive. The running sum of the other two
substitution words,

akbkc (akbk−1c)m−1 and akbkc (akbk−1c)m,

is ≥ −1. The deterministic random walk Sn(ξ) is a running sum of substitution
words. If it were negative at some point, then it must have a surplus of b and c
over a at an earlier index, which is nonsense. □

Lemma 18 holds for all noble means and Theorem 19 can be extended to all
noble means as well, but it gets more elaborate. For a noble mean ξm with even
m, the mid-point of the interval [0, 1−mξ) is in the backward orbit of 1

2 and that
is why the partition {a, b, c} carries over under rescaling. If m is odd, we need to
take a smaller interval.

If pn/qn < ξ is a convergent, then the return map to [0, pn − qnξ) is a rescaling
of the rotation. We need qn to be even to preserve the partition, and we need n to
be odd so that pn − qnξ > 0. For example, for the golden mean ξ1 = 1

2 (
√
5− 1), we

can choose the interval [0, 5− 8ξ1). The corresponding substitution and coding are

σ :


a → acacbacaccacb

b → acacbacaccacbacaccacb

c → acaccacaccacbacaccacb

and τ :


a → 1

b → 1

c → 0

The running sums of the substitution words for a and b are non-negative. The
minimum of the running sum of the word for c is −2. This indicates that, as we
know from Theorem 1, the walk is unbounded in both directions.

6. Concluding questions and remarks

We established a connection between deterministic random walks and automata
in certain cases, but much remains to be explored. The general deterministic ran-
dom walk is defined by

n∑
j=1

(−1)⌊jξ+γ⌋.

We only considered the homogeneous case with offset γ = 0 and ξ as a BR-number.
Do our results extend to general walks and arbitrary quadratic irrationals? Van
de Lune and Arias de Reyna found that the records of general walks for quadratic
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ξ appear to satisfy a recurrence for certain γ. Is it true that the records of this
general walk form a ξ-automatic set if γ is rational?

We found that the zeros of Sn(2ξ) are ξ-automatic for BR-numbers. To extend
this result to the general walk, it seems that a generalization of Theorem 1 is needed.
Under what conditions on ξ and γ is the general walk one-sided? A general result
of Peres [16] states that for every (arbitrary irrational) ξ, there exists a γ such that
the walk is one-sided. Is it true that for each quadratic ξ, there exists a rational γ
such that the walk is one-sided?

7. Acknowledgement

We would like to thank Jeffrey Shallit for helpful comments and for drawing our
attention to Problem B6 of the 81st Putnam competition.

References

[1] J. Aaronson and M. Keane, The visits to zero of some deterministic random walks, Proc.
London Math. Soc., 3 (1982), pp. 535–553.

[2] A. Avila, D. Dolgopyat, E. Duryev, and O. Sarig, The visits to zero of a random walk
driven by an irrational rotation, Isr. J. Math., 207 (2015), pp. 653–717.

[3] M. Baake and U. Grimm, Aperiodic order, vol. 1, Cambridge University Press, 2013.
[4] J. Beck, Randomness of the square root of 2 and the giant leap, part 1, Period. Math. Hung.,

60 (2010), pp. 137–242.
[5] M. Bhargava, K. Kedlaya, and L. Ng, Solutions to the 81st William Lowell Putnam

mathematical competition, (2021). Online https://kskedlaya.org/putnam-archive/2020s.
pdf.

[6] M. Boshernitzan and D. Ralston, Continued fractions and heavy sequences, Proc. Am.
Math. Soc., 137 (2009), pp. 3177–3185.

[7] H. Bruin, C. Fougeron, D. Ravotti, and D. Terhesiu, On asymptotic expansions of
ergodic integrals for Zd-extensions of translation flows, arXiv:2402.02266, (2024).

[8] M. Drmota and R. F. Tichy, Sequences, discrepancies and applications, Springer, 2006.
[9] Y. Dupain and V. T Sós, On the one-sided boundedness of the discrepancy-function of the

sequence {nα}, Acta Arith., 37 (1980), pp. 363–374.
[10] R. Fokkink, W. Fokkink, and J. van de Lune, Fast computation of an alternating sum,

Nieuw Arch. Wisk., 12 (1994), pp. 13–18.
[11] M. Keane, Interval exchange transformations, Math. Z., 141 (1975), pp. 25–31.
[12] H. Kesten, On a conjecture of Erdös and Szüsz related to uniform distribution mod 1, Acta

Arith., 12 (1966), pp. 193–212.
[13] J. v. d. Lune and J. Arias de Reyna, On some oscillating sums, Unif. Distrib. Theory,

3 (2008), pp. 35–72.
[14] H. Mousavi, Automatic theorem proving in Walnut, (2016). Online https://arxiv.org/

abs/1603.06017.
[15] K. O’Bryant, B. Reznick, and M. Serbinowska, Almost alternating sums, Am. Math.

Mon., 113 (2006), pp. 673–688.
[16] Y. Peres, A combinatorial application of the maximal ergodic theorem, Bull. London Math.

Soc., 20 (1988), pp. 248–252.
[17] L. Schaeffer, J. Shallit, and S. Zorcic, Beatty sequences for a quadratic irrational:

Decidability and applications, arXiv:2402.08331, (2024).
[18] J. Shallit, The logical approach to automatic sequences: Exploring combinatorics on words

with Walnut, vol. 482, Cambridge University Press, 2022.
[19] V. T. Sós, On the theory of diophantine approximations. I, Acta Math. Acad. Sci. Hungar.,

8 (1957), pp. 461–472.
[20] J. van de Lune, Sums of equal powers of positive integers, PhD thesis, CWI Amsterdam,

1984.
Email address: henk.bruin@univie.ac.at and r.j.fokkink@tudelft.nl

https://kskedlaya.org/putnam-archive/2020s.pdf
https://kskedlaya.org/putnam-archive/2020s.pdf
https://arxiv.org/abs/1603.06017
https://arxiv.org/abs/1603.06017

	1. Irrational rotations and automata
	2. The records of Sn(22)
	3. The zeros of Sn(22)
	4. The difference sequence b-a
	5. Self-similarity of noble mean rotations
	6. Concluding questions and remarks
	7. Acknowledgement
	References

