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1 Topological entropy

Topological entropy was first defined in 1965 by Adler et al. [1], but the form that
Bowen [2] and Dinaburg [4] redressed it in is commonly used nowadays.

We will start by start giving the original definition, because the idea of joints of covers
easily relates to joints of partitions as used in measure-theoretic entropy. After that, we
will give Bowen’s approach, since it readily generalises to topological pressure as well.

1.1 The original definition

Let (X, d, T ) be a continuous map on compact metric space (X, d). We say that U =
{Ui} is an open ε-cover if all Ui are open sets of diameter ⩽ ε and X ⊂

⋃
i Ui. Naturally,

compactness of X guarantees that for every open cover, we can select a finite subcover.
Thus, let N (U) the the minimal possible cardinality of subcovers of U . We say that U
refines V (notation U ⪰ V) if every U ∈ U is contained in a V ∈ V . If U ⪰ V then
N (U) ≥ N (V).

Given two cover U and V , the joint

U ∨ V := {U ∩ V : U ∈ U , V ∈ V}

is an open cover again, and one can verify that N (U ∨ V) ⩽ N (U)N (V). Since T is
continuous, T−1(U) is an open cover as well, although in this case it need not be an
ε-cover; However, U ∨ T−1(U) is an ε-cover, and it refines T−1(U).

Define the topological entropy as

htop(T ) = lim
ε→0

sup
U

lim
n

1

n
logN (Un) for Un :=

n−1∨
i=0

T−i(U), (1)
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where the supremum is taken over all open ε-covers U . BecauseN (U∨V) ⩽ N (U)N (V),
the sequence logN (Un) is subadditive, so the limit limn

1
n
logN (Un) exists.

1.2 Topological entropy of interval maps

If X = [0, 1] with the usual Euclidean metric, then there are various shortcuts to
compute the entropy of a continuous map T : [0, 1] → [0, 1]. Let us call any maximal
interval on which T is monotone a lap; the number of laps is denoted as ℓ(T ). Also, the
variation of T is defined as

V ar(T ) = sup
0⩽x0<... xN⩽N

N∑
i=1

|T (xi)− T (xi−1)|,

where the supremum runs over all finite collections of points in [0, 1]. The following
result is due to Misiurewicz & Szlenk [5].

Proposition 1. Let T : [0, 1] → [0, 1] have finitely many laps. Then

htop(T ) = lim
n→∞

1

n
log ℓ(T n)

= lim sup
n→∞

1

n
log#{clusters of n-periodic points}

= max{0, lim
n→∞

1

n
logVar(T n)}.

where two n-periodic points are in the same cluster if they belong to the same lap of T n.

Remark 1. The identity map has one branch, consisting of (uncountably many) fixed
point, that form one cluster. The map x 7→ x + (x/10)2 sin(π/x) mod 1 has also one
branch, but with countably many fixed point, forming one cluster. For an expanding
map, every branch can contain only one fixed point.

Proof. Since the variation of a monotone function is given by supT − inf T , and due to
the definition of “cluster” of n-periodic points, the inequalities

#{clusters of n-periodic points},Var(T n) ⩽ ℓ(T n)

are immediate. For a lap I of T n, let γ := |T n(I)| be its height. We state without proof
(cf. [3, Chapter 9]):

For every δ > 0, there is γ > 0 such that
#{J : J is a lap of T n, |T n(J)| > γ} ≥ 1− δ)nℓ(Tn).

(2)

This means that V ar(T n) ⩾ γ(1− δ)nℓ(T n), and therefore

−2δ + lim
n

1

n
log ℓ(T n) ⩽ lim

n

1

n
log Var(T n) ⩽ lim

n

1

n
log ℓ(T n).

2



Since δ is arbitrary, both above quantities are all equal.

Making the further assumption (without proof1) that there is K = K(γ) such that
∪Ki=0T

i(J) = X for every interval of length |J | ⩾ γ, we also find that

#{clusters of n+ i-periodic points, 0 ⩽ i ⩽ K} ⩾ (1− δ)nℓ(T n).

This implies that

−2δ + lim
n

1

n
log ℓ(T n) ⩽ lim sup

n

1

n
max
0⩽i⩽K

log#{clusters of n+ i-periodic points}

so also limn
1
n
log ℓ(T n) = lim supn→∞

1
n
log#{clusters of n-periodic points}

If ε > 0 is so small that the width of every lap is greater than 2ε, then for every ε-
cover U , every subcover of Un has at least one element in each lap of T n. Therefore
ℓ(T n) ⩽ N (Un) for every ε-cover, so limn

1
n
log ℓ(T n) ⩽ htop(T ).

1.3 Bowen’s approach

Let T be map of a compact metric space (X, d). If my eyesight is not so good, I cannot
distinguish two points x, y ∈ X if they are at a distance d(x, y) < ε from one another. I
may still be able to distinguish there orbits, if d(T kx, T ky) > ε for some k ⩾ 0. Hence,
if I’m willing to wait n− 1 iterations, I can distinguish x and y if

dn(x, y) := max{d(T kx, T ky) : 0 ⩽ k < n} > ε.

If this holds, then x and y are said to be (n, ε)-separated. Among all the subsets of
X of which all points are mutually (n, ε)-separated, choose one, say En(ε), of maximal
cardinality. Then sn(ε) := #En(ε) is the maximal number of n-orbits I can distinguish
with ε-poor eyesight.

The topological entropy is defined as the limit (as ε→ 0) of the exponential growth-
rate of sn(ε):

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log sn(ε). (3)

Note that sn(ε1) ⩾ sn(ε2) if ε1 ⩽ ε2, so lim supn
1
n
log sn(ε) is a decreasing function in

ε, and the limit as ε→ 0 indeed exists.

Instead of (n, ε)-separated sets, we can also work with (n, ε)-spanning sets, that is,
sets that contain, for every x ∈ X, a y such that dn(x, y) ⩽ ε. Note that, due to its

1In fact, it is not entirely true if T has an invariant subset attracting an open neighbourhood.
But it suffices to restrict T to its nonwandering set, that is, the set Ω(T ) = {x ∈ X : x ∈
∪n⩾1T

n(U)) for every neighbourhood U ∋ x}, because htop(T ) = htop(T |Ω(T )).
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maximality, En(ε) is always (n, ε)-spanning, and no proper subset of En(ε) is (n, ε)-
spanning. Each y ∈ En(ε) must have a point of an (n, ε/2)-spanning set within an
ε/2-ball (in dn-metric) around it, and by the triangle inequality, this ε/2-ball is disjoint
from ε/2-ball centred around all other points in En(ε). Therefore, if rn(ε) denotes the
minimal cardinality among all (n, ε)-spanning sets, then

rn(ε) ⩽ sn(ε) ⩽ rn(ε/2). (4)

Thus we can equally well define

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log rn(ε). (5)

Examples: Consider the β-transformation Tβ : [0, ) → [0, 1), x 7→ βx (mod 1) for
some β > 1. Take ε < 1/(2β2), and Gn = { k

βn : 0 ⩽ k < βn}. Then Gn is (n, ε)-

separating, so sn(ε) ⩾ βn. On the other hand, G′
n = {2kε

βn : 0 ⩽ k < βn/(2ε)} is

(n, ε)-spanning, so rn(ε) ⩽ βn/(2ε). Therefore

log β = lim sup
n

1

n
log βn ⩽ htop(Tβ) ⩽ lim sup

n
log βn/(2ε) = log β.

Circle rotations, or in general isometries, T have zero topological entropy. Indeed,
if E(ε) is an ε-separated set (or ε-spanning set), it will also be (n, ε)-separated (or
(n, ε)-spanning) for every n ⩾ 1. Hence sn(ε) and rn(ε) are bounded in n, and their
exponential growth rates are equal to zero.

Finally, let (X, σ) be the full shifts on N symbols. Let ε > 0 be arbitrary, and take m
such that 2−m < ε. If we select a point from each n +m-cylinder, this gives an (n, ε)-
spanning set, whereas selecting a point from each n-cylinder gives an (n, ε)-separated
set. Therefore

logN = lim sup
n

1

n
logNn ⩽ lim sup

n

1

n
log sn(ε) ⩽ htop(Tβ)

⩽ lim sup
n

1

n
log rn(ε) ⩽ lim sup

n
logNn+m = logN.

Proposition 2. For a continuous map T on a compact metric space (X, d), the three
definitions (1), (3) and (5) give the same outcome.

Proof. The equality of the limits (3) and (5) follows directly from (4).

If U is an ε-cover, every A ∈ Un can contain at most one point in an (n, ε)-separated
set, so s(n, ε) < N (Un), whence lim supn

1
n
log s(n, ε) ⩽ limn

1
n
logN (Un).

Finally, in a compact metric space, every open cover U has a number (called its Lebesgue
number) such that for every x ∈ X, there is U ∈ U such that Bδ(x) ⊂ U . Clearly δ < ε
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if U is an ε-cover. Now if an open ε-cover U has Lebesgue number δ, and E is an
(n, δ)-spanning set of cardinality #E = r(n, δ), then X ⊂ ∪x∈E ∩n−1

i=0 T
−i(Bδ(T

ix)).
Since each Bδ(T

i(x)) is contained in some U ∈ U , we have N (Un) ⩽ r(n, δ). Since
δ → 0 as ε→ 0, also

lim
ε→0

lim
n

1

n
logN (Un) ⩽ lim

δ→0
lim sup

n

1

n
log r(n, δ).

1.4 Properties of entropy

Lemma 1. If f is an isometry, then htop(f) = 0.

Proof. Since f preserves distances, Bε(x) = Bn,ε(x) for all n ∈ N. It follows that sn(ε)
is independent of n, say sn(ε) = s(ε). Therefore

htop(f) = lim
ε→0

lim sup
n→∞

1

n
log sn(ε) = lim

ε→0
lim sup
n→∞

1

n
log s(ε) = lim

ε→0
0 = 0.

The same proof sows that every contraction has zero entropy as well, as do homeomor-
phisms of the interval or the circle.

Lemma 2. For each N ≥ 0 we have htop(f
N) = Nhtop(f). If f is invertible, then also

htop(f
−N) = Nhtop(f), so in particular htop(f) = htop(f

−1).

Proof. If N = 0, then fN is the identity map, obviously with zero topological entropy.
Choose N ∈ N. Since f j is continuous on the compact metric space X, it is uniformly
continuous, so for every ε > 0 we can choose δ ∈ (0, δ) such that f j(Bδ(x)) ⊂ Bε(f

j(x))
for j = 0, . . . , N − 1. Now if S is an (n, ε)-separating set for fN , then it is also (nN, δ)-
separating for f , and an (nN, ε)-separating set for f is also (n, ε)-separating for fN .
Therefore snN(f, δ) ≥ sn(f

N , ε) ≥ snN(f, ε), and

lim sup
n→∞

1

n
log snN(f, δ) ≥ lim sup

n→∞

1

n
log sn(f

N , ε) ≥ lim sup
n→∞

1

n
log snN(f, ε).

Finally, take the limit ε→ 0 which also means δ → 0.

For the second statement, if f is invertible, then an (n, ε)-ball Bn,ε(x) for f is an
(n, ε)-ball Bn,ε(f

n−1(x)) for f−1. Therefore the cardinalities of (n, ε)-separating (or
(n, ε)-spanning) sets are the same for f and f−1, and hence so are their entropies.

Combining this with the first part, we get htop(f
−N) = Nhtop(f

−1) = Nhtop(f) as
well.
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Theorem 1. If f : X → X and g : Y → Y are conjugate maps on compact metric
spaces, then they have the same topological entropy.

Proof. Let h a conjugacy between f and g, so h ◦ f = g ◦ h. Sine h is continuous and
X is compact, h is also uniformly continuous: for each ε > 0 there is a δ > 0 such
that h(Bδ(x)) ⊂ Bε(h(x)), and also h(Bn,δ(x)) ⊂ Bn,ε(n(x)) for all x ∈ X and n ∈ N.
In particular, if S is (n, δ)-spanning, then h(S) is an (n, ε)-spanning set as well, but
potentially not a minimal (n, ε)-spanning set, even if S is a minimal (n, δ)-spanning
set. Hence rn(g, ε) ≤ rn(f, δ). This inequality remains true after taking logarithms,
dividing by n and taking lim supn→∞. Finally, because supx h(Bn,δ(x)) → 0 as δ → 0,
we can assume that the limit δ → 0 corresponds to ε → 0. Hence, after taking these
limits, we find htop(g) ≤ htop(f).

Reversing the roles of f and g gives the other inequality htop(f) ≤ htop(g)

Remark 2. This proof also shows that if f and g are only semiconjugate, so there is a
continuous surjection h so that h ◦ f = g ◦ h, then htop(f) ≥ htop(g).

1.5 Topological pressure

The topological pressure Ptop(T, ψ) combines entropy with a potential function ψ : X →
R. By definition, htop(T ) = Ptop(T, ψ) if ψ(x) ≡ 0. Denote the n-th ergodic sum of ψ
by

Snψ(x) =
n−1∑
k=0

ψ ◦ T k(x).

Next set {
Kn(T, ψ, ε) = sup{

∑
x∈E e

Snψ(x) : E is (n, ε)-separated},
Ln(T, ψ, ε) = inf{

∑
x∈E e

Snψ(x) : E is (n, ε)-spanning}.
(6)

For reasonable choices of potentials, the quantities limε→0 lim supn→∞
1
n
logKn(T, ψ, ε)

and limε→0 lim supn→∞
1
n
logLn(T, ψ, ε) are the same, and this quantity is called the

topological pressure. To give an example of an unreasonable potential, take X0 be
a dense T -invariant subset of X such that X \X0 is also dense. Let

ψ(x) =

{
100 if x ∈ X0,
0 if x /∈ X0.

Then Ln(T, ψ, ε) = rn(ε) whilst Kn(T, ψ, ε) = e100nsn(ε), and their exponential growth
rates differ by a factor 100. Hence, some amount of continuity of ψ is necessary to make
it work.
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Lemma 3. If ε > 0 is such that d(x, y) < ε implies that |ψ(x)− ψ(y)| < δ/2, then

e−nδKn(T, ψ, ε) ⩽ Ln(T, ψ, ε/2) ⩽ Kn(T, ψ, ε/2).

Exercise 1. Prove Lemma 3. In fact, the second inequality holds regardless of what ψ
is.

Theorem 2. If T : X → X and ψ : X → R are continuous on a compact metric space,
then the topological pressure is well-defined by

Ptop(T, ψ) := lim
ε→0

lim sup
n→∞

1

n
logKn(T, ψ, ε) = lim

ε→0
lim sup
n→∞

1

n
logLn(T, ψ, ε).

Exercise 2. Show that Ptop(T
R, SRψ) = R · Ptop(T, ψ).
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