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Preliminaries
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Notation

Gauss and Weingarten Formulas

∇̃XY = ∇XY + h(X ,Y ),

∇̃X ξ = −AξX +∇⊥
X ξ,

Gauss, Codazzi and Ricci Equations

(R̃(X ,Y )Z)T = R(X ,Y )Z + Ah(X ,Z)Y − Ah(Y ,Z)X ,

(R̃(X ,Y )Z)⊥ = (∇̄Xh)(Y ,Z)− (∇̄Y h)(X ,Z),

(R̃(X ,Y )ξ)⊥ = RD(X ,Y )ξ + h(AξX ,Y )− h(X ,AξY )
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Section 1.1:

Robertson-Walker Spacetimes
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Robertson-Walker Spacetimes

• I is an open interval

• f : I → (0,∞)

• Qn
c : n-dimensional Riemannian space form with dimension n and constant

curvature c, i.e.,

Qn
c =

 Sn if c = 1,
Hn if c = −1,
En if c = 0,

with the metric tensor of gc .

Definition

Robertson-Walker spacetime is the warped product manifold defined by
Ln1(f , c) = I ×f Qn−1

c with the metric tensor

g̃ = −dt2 + f (t)2gc .
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The Levi-Civita Connection

Let Π1 : I × Rn−1
c → I , Π2 : I × Rn−1

c → Rn−1
c denote the canonical projections.

For a given vector field X in Ln1(f , 0), we define a function X0 and a vector field X̄ by
the decomposition

X = X0∂t + X̄ .

We are going to use the following re-statement of Lemma 2.1 in 1

Lemma

The Levi-Civita connection ∇̃ of Ln1(f , c) is

∇̃XY = ∇0
XY +

f ′

f

(
g̃(X̄ , Ȳ )∂t + X0Ȳ + Y0X̄

)
whenever X and Y are tangent to Ln1(f , c), where ∇0 denotes the Levi-Civita

connection of the Cartesian product space Ln1(1, c) = I × Qn−1
c .

1[Chen and Van der Veken, J. Math. Phys, 2007 ]
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Curvature Tensor

Curvature tensor of Ln1(f , c) (See 1)

Lemma

The curvature tensor R̃ of Ln1(f , c) satisfies

R̃(∂t , X̄ )∂t =
f ′′

f
X̄ , R̃(∂t , X̄ )Ȳ =

f ′′

f
⟨X̄ , Ȳ ⟩∂t ,

R̃(X̄ , Ȳ )∂t = 0, R̃(X̄ , Ȳ )Z̄ =
f ′2 + c

f 2

(
⟨Ȳ , Z̄⟩X̄ − ⟨X̄ , Z̄⟩Ȳ

)
whenever Π∗

1 (X̄ ) = Π∗
1 (Ȳ ) = Π∗

1 (Z̄) = 0
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Comoving observer field

• Robertson-Walker spacetime:
Ln1(f , c) = I ×f Qn−1

c

• Metric tensor:g̃ = −dt2 + f (t)2gc .

Definition

The vector field ∂t is called as
”comoving observer field”.

Note: When f = 1, ∂t is parallel along
R× Qn

c .
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Submanifolds of Ln1(f , c)

Let M be a submanifold of Ln1(f , c)

• R: Curvature tensor of M

• ∇: LC connection of M

• Aξ: Shape operator along

ξ ∈ T⊥M

• h: SFF of M

• ∇⊥: Normal Connection

• H: MCV of M
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Vector Fields T , η

We define a tangent vector field T on M
and a normal vector field η by decompos-
ing ∂t as

∂t = T + η.
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Some special cases

∂t = T + η

If T = 0, then M is a slice: M ⊂ Qn
c ×

{t0}
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Some special cases

∂t = T + η

If η = 0, then M is a vertical cylinder:
M = N × R for some submanifold N of
Qn

c .
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Some References

• Surfaces in RW Spacetimes [B.-Y. Chen, and J. Van der Veken, 2007]

• Marginally trapped submanifolds in RW Spacetimes [H. Anciaux, N. Cipriani,
2020]

• Surfaces in Space Forms and RW Spacetimes [K. Dekimpe, J. Van der Veken,
2020]

• Light-like Submanifolds of RW Spacetimes [X. Liu And Q. Pan, 2015]

• Light-like Submanifolds of GRW Spacetimes [T. H. Kang, 2014], [M. H. A.
Hamed, F. Massamba, S. Ssekajja, 2019]
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Section 1.2:

Biharmonic Maps
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Biharmonic Maps

Let ψ : (M, g) → (N, g̃) be a smooth map between two semi-Riemannian manifolds.

• vg represents the volume element of M

• τ(ψ) = trace∇dψ,

Bienergy Functional

E2 : C∞(M,N) → R, E2(ψ) =
1

2

∫
M
g̃(τ(ψ), τ(ψ)) vg ,

Biharmonic map

A mapping ψ is said to be biharmonic if it is a critical point of the energy functional
E2.

Turgay, N. C. Biconservative Surfaces 17 / 57
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Biharmonic Mappings

In 2 G.Y. Jiang studied the first and second variation formulas of E2 in order to
understand its critical points, called biharmonic maps (See also 3).

Euler-Lagrange Equation

ψ is biharmonic if and only if it satisfies the Euler-Lagrange equation

τ2(ψ) := ∆τ(ψ)− trace R̃(dψ, τ(ψ)) dψ = 0. (1)

Remark

It is obvious that a harmonic map is biharmonic.

2G. Y. Jiang, 2-harmonic maps and their first and second variational
formulas, 1986.

3G. Y. Jiang, 2-harmonic isometric immersions between Riemannian
manifolds, 1986.
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Biharmonic immersions

Let ϕ : (Ω, g) → (N, g̃) be an isometric immersion.

In this case, we have

τ2(ϕ) = 0 ⇔
{

m∇∥H∥2 + 4 traceA∇⊥
· H(·) + 4 trace

(
R̃(·,H) ·

)T
= 0, (T)

trace h(AH(·), ·)−∆⊥H + trace (R̃(·,H)·)⊥ = 0 (⊥),

Turgay, N. C. Biconservative Surfaces 19 / 57
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Biconservative Immersions

Biharmonic Immersions

A mapping ψ : (M, g) → (N, g̃) is said to be biconservative if

⟨τ2(ψ), dψ⟩ = 0.

Biconservative Submanifolds

If ψ : (M, g) → (N, g̃) is an isometric immersion, then it is biconservative if and only if

(τ2(ϕ))
T = 0.

Proposition

An immersion ϕ : (M, g) ↪→ (N, g̃) is biconservative if and only if the equation

m∇∥H∥2 + 4 traceA∇⊥
· H(·) + 4 trace

(
R̃(·,H) ·

)T
= 0 (T)

is satisfied.
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Section 2:

Class A Surfaces
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Section 2.1:

Submanifolds of R×Qn
c
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Class A immersions

Recall the expression
∂t = T + η

for a given isometric immersion ϕ : (Ω, g) → R× Qn
c and put M = ϕ(Ω).

The following definition is given in for hypersurfaces in 4 and for submanifolds with
arbitrary codimension in 5

Definition

ϕ belongs to class A if T is a principle direction of all shape operators of ϕ.

4[Mendonça B., Bull. Braz. Math. Soc., 2010]
5[Mendonça B. and Tojeiro R., Canad. J. Math., 2014.]
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Trivial examples

If T = 0 or η = 0, then we have the following trivial examples of A immersions:

T = 0 Slices η = 0 Vertical cylinders
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Non-trivial example

• A non-trivial example of class A immersions into R× Qn
c was constructed in 6

and 7.

• Also, the complete classification of class A submanifolds of R× Qn
c was

obtained in these papers.

6[Mendonça, B., Bull. Braz. Math. Soc., 2010]
7[Mendonça, B. and Tojeiro, R., Canad. J. Math., 2014.]
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Section 2.2:

Class A Surfaces in L41(f , 0)
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Example 1

For some smooth functions x1, x2, consider the following spacelike surface in L41(f , 0)

ϕ(u, v) = (u, x1(u), x2(u), v) (2)

with −1 + f 2(x ′21 (u) + x ′22 (u)) > 0.

Proposition

The surface given by (2) is class A.
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Example 2
• α : Iv → S2 is an arc-length parameterized curve with unit normal n and curvature κ.

• Define ϕ2(u, v) and ϕ3(u, v) by

ϕ2(u, v) =

∫ u

u0

R(ξ) sin τ(ξ, v)dξ + ψ1(v),

ϕ3(u, v) =

∫ u

u0

R(ξ) cos τ(ξ, v)dξ + ψ2(v)

• The following conditions hold:

ψ
′
1 = κψ2 − ϕ1, ψ

′
2 = −κψ1, τv = κ

and
(−1 + f 2R2)(ϕ′

1 − ϕ2) > 0

Consider the surface given by

ϕ(u, v) = (u, ϕ1(v)α(v) + ϕ2(u, v)α
′(v) + ϕ3(u, v)n(v)) (3)

Proposition

The surface given by (3) is class A.
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Local Classification Theorem

See 8

Theorem

A spacelike surface in L41(f , 0) is a class A surface if and only if it is locally congruent
to one of the following surfaces:

(i) The cylinder described in Example 1,

(ii) The surface described in Example 2.

8[Bektaş Demirci, NCT, Yeğin Şen, arXiv:2408.00475 ]
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Minimal Class A Surfaces

Theorem

Let M be a space-like surface in L41(f , 0) which has no open part lying on a totally
geodesic hypersurface of L41(f , 0).

Then, M is minimal and class A surface if and only
if it is locally congruent to the surface

ϕ(u, v) = (u, ζ1(u) cos v , ζ1(u) sin v , ζ2(u)),

where ζ1, ζ2 satisfies

f ζ′′1 =f ′ζ′1
(
2f 2

(
ζ′1

2 + ζ′2
2
)
− 3

)
+

√
f 2

(
ζ′1

2 + ζ′2
2
)
− 1,

f ζ′′2 =f ′ζ′2
(
2f 2

(
ζ′1

2 + ζ′2
2
)
− 3

)
.
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Further Results

We have obtained the following results about class A surfaces:

Proposition

A surfaces satisfying ∇⊥η = 0 in L41(f , c) is class A.

Proposition

A biconservative PMCV surface in L41(f , c) is class A.

Proposition

A surface in L41(f , c) with positive relative nullity is either class A or it lays on
L31(f , c) ⊂ L41(f , c).
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Section 3:

Biconservative Surfaces in RW Spaces
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Some References
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• CMC biconservative surfaces in Sn × R and Hn × R [Fetcu, D., Oniciuc, C.,
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Biconservative PMCV Submanifolds

Lemma

A PMCV submanifold M in Qn
ε × R is biconservative if and only if

⟨H, η⟩T = 0.

E0(H) = {X ∈ TM|AHX = 0}

Remark

Assume that dimE0(H) = 1. Then, a PMCV biconservative surface belongs to class A.

• CMC biconservative surfaces in Qn
ε × R [Fetcu, Oniciuc, Pinheiro, J.

Math.Anal.Appl., 2015]
• 3-dimensional PMCV biconservative submanifolds in Q4

ε × R [Manfio, NCT,
Upadhyay, Journal of Geometric Analysis, 2019]
The case dimE0(H) = 2. A PMCV biconservative surface still belongs to class
A.

• PMCV biconservative surfaces in Ln1(f , c) [NCT, Yeğin Şen, arXiv:2409.00132]
A PMCV biconservative surface belongs to class A.
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Section 3.1:

Biconservative Surfaces in Ln1(f , c)
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Biconservative Surfaces in Ln1(f , c)

Let M be a space-like surface in Ln1(f , c). Recall that M is biconservative if and only if

2∇∥H∥2 + 4 traceA∇⊥
· H(·) + 4 trace

(
R̃(·,H) ·

)T
= 0 (T)

∂t = T + η

Lemma

trace (R̃(·,H)·)T =

(
f ′′

f
−

f ′2 + c

f 2

)
⟨H, η⟩T .

Lemma

M is biconservative and PMCV if and only if(
f ′′

f
−

f ′2 + c

f 2

)
⟨H, η⟩T = 0.
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Assumptions

∂t = T + η

Lemma

The curvature tensor R̃ of Ln1(f , c) satisfies

R̃(∂t , X̄ )∂t =
f ′′

f
X̄ , R̃(∂t , X̄ )Ȳ =

f ′′

f
⟨X̄ , Ȳ ⟩∂t ,

R̃(X̄ , Ȳ )∂t = 0, R̃(X̄ , Ȳ )Z̄ =
f ′2 + c

f 2

(
⟨Ȳ , Z̄⟩X̄ − ⟨X̄ , Z̄⟩Ȳ

)
whenever Π∗

1 (X̄ ) = Π∗
1 (Ȳ ) = Π∗

1 (Z̄) = 0

Assumptions

• f ′′(t)

f (t)
−

f ′(t)2 + c

f (t)2
̸= 0 for any t ∈ I ,

• T does not vanish on M,

• {e1, e2} is an orthonormal basis for the tangent bundle of M, where e1 is proportional to T ,

• All surfaces are connected and all vector fields are smooth.
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Integrability Conditions

Since (R̃(X ,Y )ξ)⊥ = 0, we have

R⊥(X ,Y )ξ = h(X ,AξY )− h(AξX ,Y ).

Therefore,

Lemma

Let M be a submanifold in Ln1(f , c). Then,

• M is space-like:
M has flat normal bundle ⇔ All shape operators can be simultaneously
diagonalized.

• M is time-like:
M has flat normal bundle ⇔ All shape operators have same ”casual” character.
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Integrability Conditions

Codazzi equations:

0 =
(
∇⊥

e1
h
)
(e2, e1)−

(
∇⊥

e2
h
)
(e1, e1),

sinh θ

(
−
f ′′

f
+

f ′2 + c

f 2

)
η =

(
∇⊥

e1
h
)
(e2, e2)−

(
∇⊥

e2
h
)
(e1, e2).

Turgay, N. C. Biconservative Surfaces 39 / 57



Preliminaries Class A Surfaces Biconservative Surfaces in RW Spaces Concluding Remark

Integrability Conditions

∂

∂t

∣∣∣∣
M

= sinh θ e1 + cosh θ e3. (4)

Remark

In addition to the Gauss, Codazzi, and Ricci equations, the following equations are satisfied on a submanifold in
Robertson-Walker space:

∇̃X∂t = (∇XT − AηX ) + (h(X ,T ) + ∇⊥
X η)

Note that the LHS of this equation is not zero unless f = 1.

Lemma

Let M be a space-like surface in Ln1(f , c), where n ≥ 4. Then, the equations

e1(θ) cosh θ e1 + sinh θ∇e1
e1 − cosh θAe3

e1 =
f ′

f
cosh2 θe1,

e2(θ) cosh θ e1 + sinh θ∇e2
e1 − cosh θAe3

e2 =
f ′

f
e2,

e1(θ) sinh θ e3 + sinh θh(e1, e1) + cosh θ∇⊥
e1

e3 =
f ′

f
cosh θ sinh θe3,

e2(θ) sinh θ e3 + sinh θh(e1, e2) + cosh θ∇⊥
e2

e3 = 0,

Turgay, N. C. Biconservative Surfaces 40 / 57



Preliminaries Class A Surfaces Biconservative Surfaces in RW Spaces Concluding Remark

Integrability Conditions

∂

∂t

∣∣∣∣
M

= sinh θ e1 + cosh θ e3. (4)

Remark

In addition to the Gauss, Codazzi, and Ricci equations, the following equations are satisfied on a submanifold in
Robertson-Walker space:

∇̃X∂t = (∇XT − AηX ) + (h(X ,T ) + ∇⊥
X η)

Note that the LHS of this equation is not zero unless f = 1.

Lemma

Let M be a space-like surface in Ln1(f , c), where n ≥ 4. Then, the equations

e1(θ) cosh θ e1 + sinh θ∇e1
e1 − cosh θAe3

e1 =
f ′

f
cosh2 θe1,

e2(θ) cosh θ e1 + sinh θ∇e2
e1 − cosh θAe3

e2 =
f ′

f
e2,

e1(θ) sinh θ e3 + sinh θh(e1, e1) + cosh θ∇⊥
e1

e3 =
f ′

f
cosh θ sinh θe3,

e2(θ) sinh θ e3 + sinh θh(e1, e2) + cosh θ∇⊥
e2

e3 = 0,

Turgay, N. C. Biconservative Surfaces 40 / 57



Preliminaries Class A Surfaces Biconservative Surfaces in RW Spaces Concluding Remark

Space-like Surfaces in Ln1(f , c)

Let M be a space-like PMCV surface in Ln1(f , c).

M is biconservative if and only if

⟨H, η⟩ = 0.

Corollary

There are no marginally trapped biconservative PMCV surface in Ln1(f , c).
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Space-like Surfaces in Ln1(f , c)

⟨H, η⟩ = 0.

Proposition

Then, M is a biconservative PMCV surface if and only if there exists a non-zero constant H0 and a unit normal
vector field e4 such that

∇⊥e4 = 0, ⟨e4, η⟩ = 0,

Ae4
=

(
0 0
0 2H0

)
,

Aξ =

(
γξ 0
0 −γξ

)
whenever ⟨e4, ξ⟩ = 0,

where γξ ∈ C∞(M).
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Space-like Surfaces in Ln1(f , c)

⟨H, η⟩ = 0.

Lemma

Let M be a space-like biconservative PMCV surface in Ln1(f , c) and p ∈ M. Then the vector fields e1, e2 and e3
satisfy

h(e1, e2) = 0,

∇e1
e1 = ∇e1

e2 = ∇e2
e1 = ∇e2

e2 = 0,

f ′

f
= cosh θγe3 , e2(θ) = 0.

Consequently, there exists a local coordinate system (Np , (u, v)) such that Np ∋ p and

e1|Np
= − sinh θ∂u , e2|Np

= ∂v .
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Section 3.2:

Biconservative Surfaces in L41(f , 0)
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PMCV Surfaces in L41(f , 0)

Theorem

The Robertson-Walker space-time L41(f , 0) admits a space-like, biconservative PMCV
surface M with mean curvature H0 if and only if f satisfies

(
a2 − 4H2

0

)
f 3f ′′ −

(
f ′2 −

(
a2 − 4H2

0

)
f 2

)2 − f ′4 = 0

for a constant a such that a2 − 4H2
0 > 0.

In this case, M is locally congruent to the
rotational surface

ϕ(u, v) =

(
u,

1

af (u)
sin av ,

1

af (u)
cos av ,−

2H0

a2c2f (u)

)
,

where c2 is a constant.
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Sketch Proof

Consider a space-like surface M2 ⊂ L41(f , c). Choose an orthonormal frame
{e1, e2; e3, e4} such that

η = cosh θe3, H = H0e4

Note that we have

Ae4 =

(
0 0
0 2H0

)
, Ae3 =

(
γ 0
0 −γ

)
.

Lemma

Let M be a space-like surface in L41(f , c) and {e1, e2; e3, e4} be an orthonormal frame
field. If M is PMCV and biconservative, then

∇̃e1e1 = −γe3, ∇̃e2e1 = 0,

∇̃e1e2 = 0, ∇̃e2e2 = γe3 + 2H0e4,

∇̃e1e3 = −γe1, ∇̃e2e3 = γe2,

∇̃e1e4 = 0, ∇̃e2e4 = −2H0e2.
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Sketch Proof

Next, we obtain

Lemma

If M is PMCV and biconservative, then

ϕ(u, v) =

(
u,

1

af (u)
sin av,

1

af (u)
cos av, y(u)

)
, (5)

e4 =
1

f

(
0,−

2H0

a
sin av,−

2H0

a
cos av, c2

)

for some constants a, c2 satisfying

4H2
0 + c22 a

2 = a2, c2 > 0,

where H0 is the mean curvature of M and ϕ is the position vector of M.

Note that the MCV of (5) is

H = −

(
a2 − 4H2

0

)
f 3f ′′ + 2

(
a2 − 4H2

0

)
f 2f ′2 −

(
a2 − 4H2

0

)
2f 4 − 2f ′4

2f
(
f ′2 −

(
a2 − 4H2

0

)
f 2
)
3/2

e3 + H0e4.

By a direct computation, we obtain the result.
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Section 3.3:

Biconservative Surfaces in L51(f , 0)
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PMCV Surfaces in L51(f , 0)

Theorem

Let y, f be some functions satisfying the system given by

−a6b2c23 f
7y′y′′ − a4c23 c4f

3f ′f ′′ − 2a6c2c
2
3H0f

5
(
f ′′y′ + f ′y′′

)
−2a2c4f

2f ′3
(
a2c23 − 8c2H0f

′y′
)
− 4a4b2f 6f ′y′2

(
a2c23 − 4c2H0f

′y′
)

+a2f 4f ′
(
−12a4c2c

2
3H0f

′y′ + 4
(
a4c23 − 12a2

(
c23 − 1

)
H2
0 − 48H4

0

)
f ′2y′2

)
+2a4b4f 8f ′y′4 + a8c43 f

4f ′ + 2c24 f
′5 = 0

a4c23 f
3
(
f ′y′′ − f ′′y′

)
− a2b4f 6y′3 + a2b2f 4y′

(
a2c23 − 6c2H0f

′y′
)

+f 2f ′
(
2a4c2c

2
3H0 +

(
a4c23 + 12a2

(
c23 − 1

)
H2
0 + 48H4

0

)
f ′y′

)
− 2c2c4H0f

′3 = 0

(6)

for some non-zero constants a, c2, c3 satisfying b2 = a2 − 4H2
0 > 0, where we put c4 = a2c23 + 4H2

0 . Then, the

Robertson-Walker space-time L51(f , 0) admits a space-like, biconservative PMCV surface M with the mean
curvature H0 parametrized by

ϕ(u, v) =

(
u,

sin(av)

af (u)
,
cos(av)

af (u)
, y(u),

2H0 − c2a
2f (u)y(u)

c3a2f (u)

)
. (7)
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PMCV Surfaces in L51(f , 0)

Theorem

Conversely, if a Robertson-Walker space-time L51(f , 0) admits a space-like,
biconservative PMCV surface, then f must be a solution of (6) and the surface must
be locally congruent to the surface given by (7).

Sketch Proof:
Consider a space-like surface M2 ⊂ L51(f , c).

• Choose an orthonormal frame {e1, e2; e3, e4, e5} such that

η = cosh θe3, H = H0e4

• In this case, we have

∇e1e1 = ∇e1e2 = ∇e2e1 = ∇e2e2 = 0,

Ae4 =

(
0 0
0 2H0

)
, Ae3 =

(
γ 0
0 −γ

)
,

Ae5 =

(
τ 0
0 −τ

)
.

• We used techniques similar to the case M2 ⊂ L41(f , 0).
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Section 3.4:

Surfaces in a Lorentzian Product
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Surfaces in E1
1 ×Q4

ε

Lemma

Let M be a space-like surface in L51(f , 0) with mean curvature H0 and
{e1, e2; e3, e4, e5} be the orthonormal frame field defined by η = cosh θe3 and
H = H0e4. If M is PMCV and biconservative, then

∇̂e1e1 = τ0e5 − c cosh2 θ0e6, ∇̂e2e1 = 0,

∇̂e1e2 = 0, ∇̂e2e2 = 2H0e4 − τ0e5 − ce6,

∇̂e1e3 = − tanh θ0τ0e5 + c
sinh 2θ0

2
e6, ∇̂e2e3 = 0,

∇̂e1e4 = 0, ∇̂e2e4 = −2H0e2,

∇̂e1e5 = −τ0e1 − tanh θ0τ0e3, ∇̂e2e5 = τ0e2,

∇̂e1e6 = cosh2 θ0e1 +
sinh 2θ0

2
e3, ∇̂e2e6 = e2

Proposition

There are no space-like biconservative PMCV surface in E1
1 × H4.

Proof follows from Codazzi equations.
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PMCV Surfaces in E1
1 × S4

Theorem

Let M be a space-like surface in E1
1 × S4. Then M is biconservative and PMCV if and

only if it is congruent to the surface locally parametrized by

ϕ(u, v) =

−b1u,

√
b21 + 1 cos

(√
b21 + 2u

)
√

b21 + 2
,

√
b21 + 1 sin

(√
b21 + 2u

)
√

b21 + 2
, b2,

b3 sin
v

b3
, b3 cos

v

b3

) (8)

for some non-zero constants b1, b2, b3 satisfying b22 + b23 = 1
b21+2

.
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Section 4:

Concluding Remark
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Biconservative surfaces in Ln1(f , c)

First, we obtain

Lemma

Let M be an oriented space-like biconservative PMCV surface in Ln1(f , c), n ≥ 6.
Then, we have two cases:

Case 1. dimN1M = 2 at every point of M, η ∈ N1M and ∇⊥(N1M) ⊂ N1M,

Case 2. dimN2M = 3 at every point of M, η ∈ N2M − N1M and ∇⊥(N2M) ⊂ N2M.

We have the following reduction of codimension:

Theorem

Let M be an oriented space-like biconservative PMCV surface in Ln1(f , c), n ≥ 6.
Then, there exists a totally geodesic submanifold N of Ln1(f , c) such that M ⊂ N and
dimN is either 4 or 5.
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Sketch Proof

• If Mr is space-like in Ln1(f , c), then Π2(M) is r -dimensional submanifold in

Qn−1
c .

• We proved that Π2(M) lies on N̄ by 9

• We have M ⊂ N = I ×f N̄

• N is totally geodesic in the RW space.

9[Erbacher, J. Differ. Geometry, 1971]
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THANK YOU
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