

Biconservative PMCV Surfaces in Robertson Walker Spacess

Nurettin Cenk TURGAY (joint work with Rüya Yeğin Şen)

Differential Geometry Workshop 2024

September 04-06, 2024

Acknowledgement

In this talk, we are going to present some of results obtained during the TÜBİTAK project RWTSSubmanifolds (Project number: 121F352)

1 [Preliminaries](#page-3-0)

- [Robertson-Walker Spacetimes](#page-6-0)
- [Biharmonic Maps](#page-18-0)
- 2 Class A [Surfaces](#page-31-0)
	- [Submanifolds of](#page-32-0) $\mathbb{R} \times \mathbb{Q}^n_c$
	- Class A [Surfaces in](#page-38-0) $L_1^4(f,0)$

3 [Biconservative Surfaces in RW Spaces](#page-50-0)

- [Biconservative Surfaces in](#page-58-0) $L_1^n(f, c)$
- [Biconservative Surfaces in](#page-71-0) $L_1^4(f,0)$
- [Biconservative Surfaces in](#page-78-0) $L_1^5(f,0)$
- [Surfaces in a Lorentzian Product](#page-83-0)

[Concluding Remark](#page-87-0)

Section 1:

Preliminaries

Notation

Gauss and Weingarten Formulas

$$
\begin{array}{rcl}\n\tilde{\nabla}_X Y & = & \nabla_X Y + h(X, Y), \\
\tilde{\nabla}_X \xi & = & -A_\xi X + \nabla_X^{\perp} \xi,\n\end{array}
$$

Notation

Gauss and Weingarten Formulas

$$
\begin{array}{rcl}\n\tilde{\nabla}_X Y & = & \nabla_X Y + h(X, Y), \\
\tilde{\nabla}_X \xi & = & -A_\xi X + \nabla_X^{\perp} \xi,\n\end{array}
$$

Gauss, Codazzi and Ricci Equations

$$
\begin{array}{rcl}\n(\tilde{R}(X,Y)Z)^{T} & = & R(X,Y)Z + A_{h(X,Z)}Y - A_{h(Y,Z)}X, \\
(\tilde{R}(X,Y)Z)^{\perp} & = & (\bar{\nabla}_{X}h)(Y,Z) - (\bar{\nabla}_{Y}h)(X,Z), \\
(\tilde{R}(X,Y)\xi)^{\perp} & = & R^{D}(X,Y)\xi + h(A_{\xi}X,Y) - h(X,A_{\xi}Y)\n\end{array}
$$

Section 1.1:

Robertson-Walker Spacetimes

Robertson-Walker Spacetimes

- I is an open interval
- $f: I \rightarrow (0, \infty)$
- \bullet \mathbb{Q}_c^n : *n*-dimensional Riemannian space form with dimension *n* and constant curvature c, i.e.,

$$
\mathbb{Q}_c^n = \left\{ \begin{array}{ll} \mathbb{S}^n & \text{if } c = 1, \\ \mathbb{H}^n & \text{if } c = -1, \\ \mathbb{E}^n & \text{if } c = 0, \end{array} \right.
$$

with the metric tensor of g_c .

Definition

Robertson-Walker spacetime is the warped product manifold defined by $L_1^n(f, c) = I \times_f \mathbb{Q}_c^{n-1}$ with the metric tensor

$$
\tilde{g}=-dt^2+f(t)^2g_c.
$$

The Levi-Civita Connection

Let $\Pi^1: I \times R_c^{n-1} \to I$, $\Pi^2: I \times R_c^{n-1} \to R_c^{n-1}$ denote the canonical projections. For a given vector field X in $L_1^n(f,0)$, we define a function X_0 and a vector field \bar{X} by the decomposition

$$
X=X_0\partial_t+\bar{X}.
$$

 1 [Chen and Van der Veken, J. Math. Phys, 2007]

The Levi-Civita Connection

Let $\Pi^1: I \times R_c^{n-1} \to I$, $\Pi^2: I \times R_c^{n-1} \to R_c^{n-1}$ denote the canonical projections. For a given vector field X in $L_1^n(f,0)$, we define a function X_0 and a vector field \bar{X} by the decomposition

$$
X=X_0\partial_t+\bar{X}.
$$

We are going to use the following re-statement of Lemma 2.1 in $¹$ </sup>

Lemma

The Levi-Civita connection $\tilde{\nabla}$ of $L_1^n(f, c)$ is

$$
\widetilde{\nabla}_X Y = \nabla^0_X Y + \frac{f'}{f} \left(\widetilde{g}(\bar{X}, \bar{Y}) \partial_t + X_0 \bar{Y} + Y_0 \bar{X} \right)
$$

whenever X and Y are tangent to $L_1^n(f,c)$, where ∇^0 denotes the Levi-Civita connection of the Cartesian product space $L_1^n(1,c) = I \times \mathbb{Q}^{n-1}_c$.

 1 [Chen and Van der Veken, J. Math. Phys, 2007]

Curvature Tensor

Curvature tensor of $L_1^n(f, c)$ (See ¹)

Lemma

The curvature tensor \tilde{R} of $L_1^n(f,c)$ satisfies

$$
\tilde{R}(\partial_t, \bar{X})\partial_t = \frac{f''}{f}\bar{X}, \qquad \tilde{R}(\partial_t, \bar{X})\bar{Y} = \frac{f''}{f}\langle \bar{X}, \bar{Y} \rangle \partial_t, \n\tilde{R}(\bar{X}, \bar{Y})\partial_t = 0, \qquad \tilde{R}(\bar{X}, \bar{Y})\bar{Z} = \frac{f'^2 + c}{f^2} \left(\langle \bar{Y}, \bar{Z} \rangle \bar{X} - \langle \bar{X}, \bar{Z} \rangle \bar{Y} \right)
$$

whenever $\Pi_1^*(\bar{X}) = \Pi_1^*(\bar{Y}) = \Pi_1^*(\bar{Z}) = 0$

Comoving observer field

- Robertson-Walker spacetime: $L_1^n(f, c) = I \times_f \mathbb{Q}_c^{n-1}$
- Metric tensor: $\widetilde{g} = -dt^2 + f(t)^2 g_c$.

Definition

The vector field ∂_t is called as "comoving observer field".

Note: When $f = 1$, ∂_t is parallel along $\mathbb{R}\times\mathbb{Q}^n_c$.

Submanifolds of L_1^n $\frac{n}{1}(f,c)$

Let M be a submanifold of $L_1^n(f, c)$

- R : Curvature tensor of M
- ∇ : LC connection of M
- A_{ξ} : Shape operator along $\xi \in \mathcal{T}^{\perp}M$
- h: SFF of M
- ∇^{\perp} : Normal Connection
- H: MCV of M

Vector Fields T , η

 $\Lambda \partial_t$ η

We define a tangent vector field T on M and a normal vector field η by decomposing ∂_t as

$$
\partial_t = T + \eta.
$$

Some special cases

$\partial_t = T + \eta$

If
$$
T = 0
$$
, then M is a slice: $M \subset \mathbb{Q}_c^n \times \{t_0\}$

Some special cases

$$
\partial_t = \mathcal{T} + \eta
$$

If $\eta = 0$, then M is a vertical cylinder: $M = N \times \mathbb{R}$ for some submanifold N of \mathbb{Q}^n_c .

Some References

- Surfaces in RW Spacetimes [B.-Y. Chen, and J. Van der Veken, 2007]
- Marginally trapped submanifolds in RW Spacetimes [H. Anciaux, N. Cipriani, 2020]
- Surfaces in Space Forms and RW Spacetimes [K. Dekimpe, J. Van der Veken, 2020]

Some References

- Surfaces in RW Spacetimes [B.-Y. Chen, and J. Van der Veken, 2007]
- Marginally trapped submanifolds in RW Spacetimes [H. Anciaux, N. Cipriani, 2020]
- Surfaces in Space Forms and RW Spacetimes [K. Dekimpe, J. Van der Veken, 2020]
- Light-like Submanifolds of RW Spacetimes [X. Liu And Q. Pan, 2015]
- Light-like Submanifolds of GRW Spacetimes [T. H. Kang, 2014], [M. H. A. Hamed, F. Massamba, S. Ssekajja, 2019]

Section 1.2:

Biharmonic Maps

Biharmonic Maps

Let $\psi : (M, g) \to (N, \widetilde{g})$ be a smooth map between two semi-Riemannian manifolds.

- v_g represents the volume element of M
- $\tau(\psi) = \text{trace }\nabla d\psi,$

Biharmonic Maps

Let $\psi : (M, g) \to (N, \widetilde{g})$ be a smooth map between two semi-Riemannian manifolds.

- v_g represents the volume element of M
- $\tau(\psi) = \text{trace }\nabla d\psi,$

Bienergy Functional

$$
E_2: C^\infty(M,N) \to \mathbb{R}, \quad E_2(\psi) = \frac{1}{2} \int_M \widetilde{g}(\tau(\psi), \tau(\psi)) \, v_g,
$$

Biharmonic Maps

Let $\psi : (M, g) \to (N, \widetilde{g})$ be a smooth map between two semi-Riemannian manifolds.

- v_g represents the volume element of M
- $\tau(\psi) = \text{trace }\nabla d\psi,$

Bienergy Functional

$$
E_2: C^{\infty}(M,N) \to \mathbb{R}, \quad E_2(\psi) = \frac{1}{2} \int_M \widetilde{g}(\tau(\psi), \tau(\psi)) \, v_g,
$$

Biharmonic map

A mapping ψ is said to be biharmonic if it is a critical point of the energy functional E_2 .

Biharmonic Mappings

In ² G.Y. Jiang studied the first and second variation formulas of E_2 in order to understand its critical points, called biharmonic maps (See also 3).

 2 G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, 1986.

 $3³$ G. Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, 1986.

Biharmonic Mappings

In ² G.Y. Jiang studied the first and second variation formulas of E_2 in order to understand its critical points, called biharmonic maps (See also 3).

Euler-Lagrange Equation

 ψ is biharmonic if and only if it satisfies the Euler-Lagrange equation

$$
\tau_2(\psi) := \Delta \tau(\psi) - \text{trace } \widetilde{R}(d\psi, \tau(\psi)) d\psi = 0.
$$
 (1)

 $3³$ G. Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, 1986.

 2 G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, 1986.

Biharmonic Mappings

In ² G.Y. Jiang studied the first and second variation formulas of E_2 in order to understand its critical points, called biharmonic maps (See also 3).

Euler-Lagrange Equation

 ψ is biharmonic if and only if it satisfies the Euler-Lagrange equation

$$
\tau_2(\psi) := \Delta \tau(\psi) - \text{trace } \widetilde{R}(d\psi, \tau(\psi)) d\psi = 0.
$$
 (1)

Remark

It is obvious that a harmonic map is biharmonic.

 2^2 G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, 1986.

³G. Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, 1986.

Biharmonic immersions

Let $\phi : (\Omega, g) \to (N, \tilde{g})$ be an isometric immersion.

Biharmonic immersions

Let $\phi : (\Omega, g) \to (N, \tilde{g})$ be an isometric immersion. In this case, we have

 $\tau_2(\phi) = 0 \Leftrightarrow$

Biharmonic immersions

Let $\phi : (\Omega, g) \to (N, \tilde{g})$ be an isometric immersion. In this case, we have

$$
\tau_2(\phi) = 0 \Leftrightarrow \begin{cases} m\nabla ||H||^2 + 4 \operatorname{trace} A_{\nabla^{\perp} H}(\cdot) + 4 \operatorname{trace} (\tilde{R}(\cdot, H) \cdot)^T = 0, & \text{(T)} \\ \operatorname{trace} h(A_H(\cdot), \cdot) - \Delta^{\perp} H + \operatorname{trace} (\tilde{R}(\cdot, H) \cdot)^{\perp} = 0 & (\perp), \end{cases}
$$

Biconservative Immersions

Biharmonic Immersions

A mapping $\psi : (M, g) \to (N, \tilde{g})$ is said to be biconservative if

 $\langle \tau_2(\psi), d\psi \rangle = 0.$

Biconservative Immersions

Biharmonic Immersions

A mapping $\psi : (M, g) \to (N, \tilde{g})$ is said to be biconservative if

 $\langle \tau_2(\psi), d\psi \rangle = 0.$

Biconservative Submanifolds

If ψ : $(M, g) \rightarrow (N, \tilde{g})$ is an isometric immersion, then it is biconservative if and only if

$$
(\tau_2(\phi))^T=0.
$$

Biconservative Immersions

Biharmonic Immersions

A mapping $\psi : (M, g) \to (N, \tilde{g})$ is said to be biconservative if

 $\langle \tau_2(\psi), d\psi \rangle = 0.$

Biconservative Submanifolds

If ψ : $(M, g) \rightarrow (N, \tilde{g})$ is an isometric immersion, then it is biconservative if and only if

$$
(\tau_2(\phi))^T=0.
$$

Proposition

An immersion $\phi : (M, g) \hookrightarrow (N, \tilde{g})$ is biconservative if and only if the equation

$$
m\nabla ||H||^2 + 4 \operatorname{trace} A_{\nabla \perp H}(\cdot) + 4 \operatorname{trace} (\tilde{R}(\cdot, H) \cdot)^T = 0
$$
 (T)

is satisfied.

Section 2:

Class A Surfaces

Turgay, N. C. [Biconservative Surfaces](#page-0-0) 21/57

Section 2.1:

Submanifolds of $\mathbb{R} \times \mathbb{Q}^n_c$

Class A immersions

Recall the expression

$$
\partial_t = \mathcal{T} + \eta
$$

for a given isometric immersion $\phi: (\Omega,g) \to \mathbb{R} \times \mathbb{Q}^n_c$ and put $M = \phi(\Omega).$

⁴[Mendonça B., Bull. Braz. Math. Soc., 2010] 5 [Mendonça B. and Tojeiro R., Canad. J. Math., 2014.]

Class A immersions

Recall the expression

$$
\partial_t = \mathcal{T} + \eta
$$

for a given isometric immersion $\phi: (\Omega,g) \to \mathbb{R} \times \mathbb{Q}^n_c$ and put $M = \phi(\Omega).$

The following definition is given in for hypersurfaces in 4 and for submanifolds with arbitrary codimension in ⁵

Definition

 ϕ belongs to class A if T is a principle direction of all shape operators of ϕ .

⁴[Mendonça B., Bull. Braz. Math. Soc., 2010] 5 [Mendonça B. and Tojeiro R., Canad. J. Math., 2014.]

Trivial examples

If $T = 0$ or $\eta = 0$, then we have the following trivial examples of A immersions:

Trivial examples

If $T = 0$ or $\eta = 0$, then we have the following trivial examples of A immersions:

Non-trivial example

- $\bullet~$ A non-trivial example of class ${\cal A}$ immersions into ${\mathbb R}\times {\mathbb Q}_{c}^{n}$ was constructed in 6 and $⁷$.</sup>
- \bullet Also, the complete classification of class ${\mathcal A}$ submanifolds of ${\mathbb R}\times {\mathbb Q}_c^n$ was obtained in these papers.

⁶[Mendonça, B., Bull. Braz. Math. Soc., 2010] 7 [Mendonça, B. and Tojeiro, R., Canad. J. Math., 2014.]

Section 2.2:

Class $\mathcal A$ Surfaces in L_1^4 $_{1}^{4}(f,0)$

For some smooth functions x_1, x_2 , consider the following spacelike surface in $L_1^4(f,0)$

$$
\phi(u, v) = (u, x_1(u), x_2(u), v) \tag{2}
$$

with $-1 + f^2(x_1'^2(u) + x_2'^2(u)) > 0.$

Proposition

The surface given by (2) is class A .

 $\bullet \quad \alpha: I_v \to \mathbb{S}^2$ is an arc-length parameterized curve with unit normal n and curvature $\kappa.$

- $\bullet \quad \alpha: I_v \to \mathbb{S}^2$ is an arc-length parameterized curve with unit normal n and curvature $\kappa.$
- Define $\phi_2(u, v)$ and $\phi_3(u, v)$ by

$$
\phi_2(u, v) = \int_{u_0}^{u} R(\xi) \sin \tau(\xi, v) d\xi + \psi_1(v),
$$

$$
\phi_3(u, v) = \int_{u_0}^{u} R(\xi) \cos \tau(\xi, v) d\xi + \psi_2(v)
$$

- $\bullet \quad \alpha: I_v \to \mathbb{S}^2$ is an arc-length parameterized curve with unit normal n and curvature $\kappa.$
- Define $\phi_2(u, v)$ and $\phi_3(u, v)$ by

$$
\phi_2(u, v) = \int_{u_0}^u R(\xi) \sin \tau(\xi, v) d\xi + \psi_1(v),
$$

$$
\phi_3(u, v) = \int_{u_0}^u R(\xi) \cos \tau(\xi, v) d\xi + \psi_2(v)
$$

• The following conditions hold:

$$
\psi_1' = \kappa \psi_2 - \phi_1, \qquad \psi_2' = -\kappa \psi_1, \qquad \tau_v = \kappa
$$

and

$$
(-1+f^2R^2)(\phi'_1-\phi_2)>0
$$

Consider the surface given by

$$
\phi(u, v) = (u, \phi_1(v)\alpha(v) + \phi_2(u, v)\alpha'(v) + \phi_3(u, v)n(v))
$$
\n(3)

- $\bullet \quad \alpha: I_v \to \mathbb{S}^2$ is an arc-length parameterized curve with unit normal n and curvature $\kappa.$
- Define $\phi_2(u, v)$ and $\phi_3(u, v)$ by

$$
\phi_2(u, v) = \int_{u_0}^u R(\xi) \sin \tau(\xi, v) d\xi + \psi_1(v),
$$

$$
\phi_3(u, v) = \int_{u_0}^u R(\xi) \cos \tau(\xi, v) d\xi + \psi_2(v)
$$

• The following conditions hold:

$$
\psi_1' = \kappa \psi_2 - \phi_1, \qquad \psi_2' = -\kappa \psi_1, \qquad \tau_v = \kappa
$$

and

$$
(-1+f^2R^2)(\phi'_1-\phi_2)>0
$$

Consider the surface given by

$$
\phi(u, v) = (u, \phi_1(v)\alpha(v) + \phi_2(u, v)\alpha'(v) + \phi_3(u, v)n(v))
$$
\n(3)

Proposition

The surface given by (3) is class A .

Local Classification Theorem

Theorem

A spacelike surface in $L_1^4(f,0)$ is a class ${\mathcal A}$ surface if and only if it is locally congruent to one of the following surfaces:

- (i) The cylinder described in Example 1,
- (ii) The surface described in Example 2.

 8 [Bektaş Demirci, NCT, Yeğin Şen, arXiv:2408.00475]

Minimal Class A Surfaces

Theorem

Let M be a space-like surface in $L_1^4(f,0)$ which has no open part lying on a totally geodesic hypersurface of $L_1^4(f, 0)$.

Minimal Class A Surfaces

Theorem

Let M be a space-like surface in $L_1^4(f, 0)$ which has no open part lying on a totally geodesic hypersurface of $L_1^4(f,0)$. Then, M is minimal and class ${\mathcal A}$ surface if and only if it is locally congruent to the surface

$$
\phi(u,v)=(u,\zeta_1(u)\cos v,\zeta_1(u)\sin v,\zeta_2(u)),
$$

where ζ_1, ζ_2 satisfies

$$
f\zeta_1'' = f'\zeta_1' (2f^2 (\zeta_1'^2 + \zeta_2'^2) - 3) + \sqrt{f^2 (\zeta_1'^2 + \zeta_2'^2) - 1},
$$

$$
f\zeta_2'' = f'\zeta_2' (2f^2 (\zeta_1'^2 + \zeta_2'^2) - 3).
$$

Further Results

We have obtained the following results about class A surfaces:

Proposition

A surfaces satisfying $\nabla^{\perp}\eta=0$ in $L_1^4(f,c)$ is class ${\cal A}.$

Further Results

We have obtained the following results about class A surfaces:

Proposition

A surfaces satisfying $\nabla^{\perp}\eta=0$ in $L_1^4(f,c)$ is class ${\cal A}.$

Proposition

A biconservative PMCV surface in $L_1^4(f, c)$ is class \mathcal{A} .

Further Results

We have obtained the following results about class A surfaces:

Proposition

A surfaces satisfying $\nabla^{\perp}\eta=0$ in $L_1^4(f,c)$ is class ${\cal A}.$

Proposition

A biconservative PMCV surface in $L_1^4(f, c)$ is class \mathcal{A} .

Proposition

A surface in $L_1^4(f, c)$ with positive relative nullity is either class A or it lays on $L_1^3(f, c) \subset L_1^4(\tilde{f}, c).$

Section 3:

Biconservative Surfaces in RW Spaces

Some References

- Biharmonic maps between warped product manifolds [A. Balmuş, S. Montaldo, C. Oniciuc, J. Geom. Phys. 57 (2007)]
- CMC biconservative surfaces in $\mathbb{S}^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$ [Fetcu, D., Oniciuc, C., Pinheiro, A. L., J. Math. Anal. Appl., 2015]
- PMCV Biconservative submanifolds in $\mathbb{S}^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$ [Manfio F., NCT, Upadhyay, U., J. Geom. Anal., 2019]

Some References

- Biharmonic maps between warped product manifolds [A. Balmuş, S. Montaldo, C. Oniciuc, J. Geom. Phys. 57 (2007)]
- CMC biconservative surfaces in $\mathbb{S}^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$ [Fetcu, D., Oniciuc, C., Pinheiro, A. L., J. Math. Anal. Appl., 2015]
- PMCV Biconservative submanifolds in $\mathbb{S}^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$ [Manfio F., NCT, Upadhyay, U., J. Geom. Anal., 2019]
- Biharmonic submanifolds of $\mathbb{Q}_{c}^{n} \times \mathbb{Q}_{c'}^{m}$ [Roth, J., Upadhyay, Differ. Geom. Appl., 2017]
- Biharmonic submanifolds in nonflat Lorentz 3-space forms [Sasahara, T., Bull. Aust. Math. Soc. 85, 2012]

Some References

- Biharmonic maps between warped product manifolds [A. Balmuş, S. Montaldo, C. Oniciuc, J. Geom. Phys. 57 (2007)]
- CMC biconservative surfaces in $\mathbb{S}^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$ [Fetcu, D., Oniciuc, C., Pinheiro, A. L., J. Math. Anal. Appl., 2015]
- PMCV Biconservative submanifolds in $\mathbb{S}^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$ [Manfio F., NCT, Upadhyay, U., J. Geom. Anal., 2019]
- Biharmonic submanifolds of $\mathbb{Q}_{c}^{n} \times \mathbb{Q}_{c'}^{m}$ [Roth, J., Upadhyay, Differ. Geom. Appl., 2017]
- Biharmonic submanifolds in nonflat Lorentz 3-space forms [Sasahara, T., Bull. Aust. Math. Soc. 85, 2012]
- PMCV surfaces in $L_1^n(f, c)$ [B.-Y. Chen, J. Van der Veken, J. Math. Phys., 2007]
- Marginally trapped submanifolds in $L_1^n(f, c)$ [H. Anciaux, N. Cipriani, J. Geom. Phys 88, 2015]

Lemma

A PMCV submanifold M in $\mathbb{Q}_{\varepsilon}^n\times\mathbb{R}$ is biconservative if and only if

 $\langle H, \eta \rangle T = 0.$

 $E_0(H) = \{X \in \mathcal{T}M | A_H X = 0\}$

Remark

Assume that $\dim E_0(H) = 1$. Then, a PMCV biconservative surface belongs to class A.

Lemma

A PMCV submanifold M in $\mathbb{Q}_{\varepsilon}^n\times\mathbb{R}$ is biconservative if and only if

 $\langle H, \eta \rangle T = 0.$

 $E_0(H) = \{X \in \mathcal{T}M | A_H X = 0\}$

Remark

Assume that $\dim E_0(H) = 1$. Then, a PMCV biconservative surface belongs to class A.

• CMC biconservative surfaces in $\mathbb{Q}_{\varepsilon}^n \times \mathbb{R}$ [Fetcu, Oniciuc, Pinheiro, J. Math.Anal.Appl., 2015]

Lemma

A PMCV submanifold M in $\mathbb{Q}_{\varepsilon}^n\times\mathbb{R}$ is biconservative if and only if

 $\langle H, \eta \rangle T = 0.$

 $E_0(H) = \{X \in \mathcal{T}M | A_H X = 0\}$

Remark

Assume that $\dim E_0(H) = 1$. Then, a PMCV biconservative surface belongs to class A.

- CMC biconservative surfaces in $\mathbb{Q}_{\varepsilon}^n \times \mathbb{R}$ [Fetcu, Oniciuc, Pinheiro, J. Math.Anal.Appl., 2015]
- 3-dimensional PMCV biconservative submanifolds in $\mathbb{Q}^4_\varepsilon\times\mathbb{R}$ [Manfio, NCT, Upadhyay, Journal of Geometric Analysis, 2019] The case $\dim E_0(H) = 2$. A PMCV biconservative surface still belongs to class A.

Lemma

A PMCV submanifold M in $\mathbb{Q}_{\varepsilon}^n\times\mathbb{R}$ is biconservative if and only if

 $\langle H, \eta \rangle T = 0.$

$$
E_0(H)=\{X\in TM|A_HX=0\}
$$

Remark

Assume that $\dim E_0(H) = 1$. Then, a PMCV biconservative surface belongs to class A.

- CMC biconservative surfaces in $\mathbb{Q}_{\varepsilon}^n \times \mathbb{R}$ [Fetcu, Oniciuc, Pinheiro, J. Math.Anal.Appl., 2015]
- 3-dimensional PMCV biconservative submanifolds in $\mathbb{Q}^4_\varepsilon\times\mathbb{R}$ [Manfio, NCT, Upadhyay, Journal of Geometric Analysis, 2019] The case $\dim E_0(H) = 2$. A PMCV biconservative surface still belongs to class A.
- PMCV biconservative surfaces in $L_1^n(f, c)$ [NCT, Yeğin Şen, arXiv:2409.00132] A PMCV biconservative surface belongs to class A.

Section 3.1:

Biconservative Surfaces in L_1^n $_{1}^{n}(f, c)$

Biconservative Surfaces in L_1^n $\frac{n}{1}(f,c)$

Let M be a space-like surface in $L_1^n(f, c)$. Recall that M is biconservative if and only if

$$
2\nabla ||H||^2 + 4 \operatorname{trace} A_{\nabla^{\perp} H}(\cdot) + 4 \operatorname{trace} (\tilde{R}(\cdot, H) \cdot)^T = 0
$$
 (T)

Biconservative Surfaces in L_1^n $\frac{n}{1}(f,c)$

Let M be a space-like surface in $L_1^n(f, c)$. Recall that M is biconservative if and only if

$$
2\nabla ||H||^2 + 4 \operatorname{trace} A_{\nabla^{\perp} H}(\cdot) + 4 \operatorname{trace} (\tilde{R}(\cdot, H) \cdot)^T = 0
$$
 (T)

 $\partial_t = T + \eta$

Lemma

$$
\text{trace}\,\big(\widetilde{R}(\cdot,H)\cdot\big)^{\mathcal{T}}=\left(\frac{f''}{f}-\frac{f'^{2}+c}{f^{2}}\right)\left\langle H,\eta\right\rangle \mathcal{T}.
$$

Biconservative Surfaces in L_1^n $\frac{n}{1}(f,c)$

Let M be a space-like surface in $L_1^n(f, c)$. Recall that M is biconservative if and only if

$$
2\nabla ||H||^2 + 4 \operatorname{trace} A_{\nabla^{\perp} H}(\cdot) + 4 \operatorname{trace} (\tilde{R}(\cdot, H) \cdot)^T = 0
$$
 (T)

 $\partial_t = T + n$

Lemma

$$
\text{trace}\,\big(\widetilde{R}(\cdot,H)\cdot\big)^{\mathcal{T}}=\left(\frac{f''}{f}-\frac{f'^{2}+c}{f^{2}}\right)\langle H,\eta\rangle\,\mathcal{T}.
$$

Lemma

M is biconservative and PMCV if and only if

$$
\left(\frac{f''}{f}-\frac{f'^2+c}{f^2}\right)\langle H,\eta\rangle T=0.
$$

Assumptions

 $\partial_t = T + \eta$

Lemma

The curvature tensor \tilde{R} of $L_1^n(f, c)$ satisfies

$$
\tilde{R}(\partial_t, \bar{X})\partial_t = \frac{f''}{f}\bar{X}, \qquad \tilde{R}(\partial_t, \bar{X})\bar{Y} = \frac{f''}{f}\langle \bar{X}, \bar{Y} \rangle \partial_t,
$$

$$
\tilde{R}(\bar{X}, \bar{Y})\partial_t = 0, \qquad \tilde{R}(\bar{X}, \bar{Y})\bar{Z} = \frac{f'^2 + c}{f^2} \left(\langle \bar{Y}, \bar{Z} \rangle \bar{X} - \langle \bar{X}, \bar{Z} \rangle \bar{Y} \right)
$$

whenever $\Pi_1^*(\bar{X}) = \Pi_1^*(\bar{Y}) = \Pi_1^*(\bar{Z}) = 0$

Assumptions

•
$$
\frac{f''(t)}{f(t)} - \frac{f'(t)^2 + c}{f(t)^2} \neq 0 \text{ for any } t \in I,
$$

- T does not vanish on M .
- ${e_1, e_2}$ is an orthonormal basis for the tangent bundle of M, where e_1 is proportional to T,
- All surfaces are connected and all vector fields are smooth.

Since $(\tilde{R}(X, Y)\xi)^{\perp} = 0$, we have

$$
R^{\perp}(X,Y)\xi = h(X,A_{\xi}Y) - h(A_{\xi}X,Y).
$$

Therefore,

Lemma Let M be a submanifold in $L_1^n(f, c)$. Then, • *M* is space-like: M has flat normal bundle \Leftrightarrow All shape operators can be simultaneously diagonalized. \bullet *M* is time-like: M has flat normal bundle \Leftrightarrow All shape operators have same "casual" character.

Codazzi equations:

$$
0 = \left(\nabla_{e_1}^{\perp} h\right)(e_2, e_1) - \left(\nabla_{e_2}^{\perp} h\right)(e_1, e_1),
$$

\n
$$
\sinh \theta \left(-\frac{f''}{f} + \frac{f'^2 + c}{f^2}\right)\eta = \left(\nabla_{e_1}^{\perp} h\right)(e_2, e_2) - \left(\nabla_{e_2}^{\perp} h\right)(e_1, e_2).
$$

$$
\left.\frac{\partial}{\partial t}\right|_M = \sinh\theta \, \mathbf{e}_1 + \cosh\theta \, \mathbf{e}_3. \tag{4}
$$

Remark

In addition to the Gauss, Codazzi, and Ricci equations, the following equations are satisfied on a submanifold in Robertson-Walker space:

÷,

$$
\tilde{\nabla}_X \partial_t = (\nabla_X T - A_\eta X) + (h(X, T) + \nabla_X^{\perp} \eta)
$$

Note that the LHS of this equation is not zero unless $f = 1$.

$$
\left.\frac{\partial}{\partial t}\right|_M = \sinh\theta \ e_1 + \cosh\theta \ e_3. \tag{4}
$$

Remark

In addition to the Gauss, Codazzi, and Ricci equations, the following equations are satisfied on a submanifold in Robertson-Walker space:

$$
\tilde{\nabla}_X \partial_t = (\nabla_X T - A_\eta X) + (h(X, T) + \nabla_X^{\perp} \eta)
$$

Note that the LHS of this equation is not zero unless $f = 1$.

Lemma

Let M be a space-like surface in $L_1^n(f, c)$, where $n \geq 4$. Then, the equations

$$
e_1(\theta) \cosh \theta \ e_1 + \sinh \theta \nabla_{e_1} e_1 \ - \cosh \theta A_{e_3} e_1 \quad = \quad \frac{f'}{f} \cosh^2 \theta e_1,
$$

$$
e_2(\theta) \cosh \theta \ e_1 + \sinh \theta \nabla_{e_2} e_1 - \cosh \theta A_{e_3} e_2 = \frac{f'}{f} e_2,
$$

$$
e_1(\theta)\sinh\theta\ e_3+\sinh\theta h(e_1,e_1)+\cosh\theta \nabla^{\perp}_{e_1}e_3\quad =\quad \frac{f'}{f}\cosh\theta\sinh\theta e_3,
$$

 $e_2(\theta)$ sinh θ e_3 + sinh θ h (e_1, e_2) + cosh $\theta \nabla \frac{1}{e_2} e_3$ = 0,

Let M be a space-like PMCV surface in $L_1^n(f, c)$.

Let M be a space-like PMCV surface in $L_1^n(f, c)$. M is biconservative if and only if

 $\langle H, \eta \rangle = 0.$

Corollary

There are no marginally trapped biconservative PMCV surface in $L_1^n(f, c)$.

 $\langle H, \eta \rangle = 0.$

Proposition

Then, M is a biconservative PMCV surface if and only if there exists a non-zero constant H_0 and a unit normal vector field e₄ such that

$$
\begin{array}{rcl} \nabla^{\perp} e_4 & = & 0, \qquad \langle e_4, \eta \rangle = 0, \\ A_{e_4} & = & \left(\begin{array}{cc} 0 & 0 \\ 0 & 2H_0 \end{array} \right), \\ A_{\xi} & = & \left(\begin{array}{cc} \gamma_{\xi} & 0 \\ 0 & -\gamma_{\xi} \end{array} \right) \qquad \text{whenever} \ \langle e_4, \xi \rangle = 0, \end{array}
$$

where $\gamma_{\varepsilon} \in C^{\infty}(M)$.

 $\langle H, \eta \rangle = 0.$

Lemma

Let M be a space-like biconservative PMCV surface in $L_1^n(f, c)$ and $p \in M$. Then the vector fields e_1, e_2 and e_3 satisfy

$$
\nabla_{e_1} e_1 = \nabla_{e_1} e_2 = \nabla_{e_2} e_1 = \nabla_{e_2} e_2 = 0,
$$

$$
\frac{f'}{f} = \cosh \theta \gamma_{e_3}, \qquad e_2(\theta) = 0.
$$

Consequently, there exists a local coordinate system $(\mathcal{N}_p, (u, v))$ such that $\mathcal{N}_p \ni p$ and

 $e_1|_{\mathcal{N}_p} = -\sinh\theta\partial_u, \qquad e_2|_{\mathcal{N}_p} = \partial_v.$

Section 3.2:

Biconservative Surfaces in L_1^4 $_1^4(f,0)$

PMCV Surfaces in L_1^4 $_{1}^{4}(f,0)$

Theorem

The Robertson-Walker space-time $L_1^4(f,0)$ admits a space-like, biconservative PMCV surface M with mean curvature H_0 if and only if f satisfies

$$
\left(a^2-4H_0^2\right)f^3f''-\left(f'^2-\left(a^2-4H_0^2\right)f^2\right)^2-f'^4=0
$$

for a constant *a* such that $a^2 - 4H_0^2 > 0$.

PMCV Surfaces in L_1^4 $_{1}^{4}(f,0)$

Theorem

The Robertson-Walker space-time $L_1^4(f,0)$ admits a space-like, biconservative PMCV surface M with mean curvature H_0 if and only if f satisfies

$$
\left(a^2-4H_0^2\right)f^3f''-\left(f'^2-\left(a^2-4H_0^2\right)f^2\right)^2-f'^4=0
$$

for a constant *a* such that $a^2 - 4H_0^2 > 0$. In this case, M is locally congruent to the rotational surface

$$
\phi(u,v)=\left(u,\frac{1}{af(u)}\sin av,\frac{1}{af(u)}\cos av,-\frac{2H_0}{a^2c_2f(u)}\right),
$$

where c_2 is a constant.

Consider a space-like surface $M^2 \subset L_1^4(f, c)$. Choose an orthonormal frame ${e_1, e_2; e_3, e_4}$ such that

$$
\eta = \cosh \theta e_3, \qquad H = H_0 e_4
$$

Note that we have

$$
A_{e_4}=\left(\begin{array}{cc}0&0\\0&2H_0\end{array}\right),\qquad A_{e_3}=\left(\begin{array}{cc}\gamma&0\\0&-\gamma\end{array}\right).
$$

Consider a space-like surface $M^2 \subset L_1^4(f, c)$. Choose an orthonormal frame ${e_1, e_2; e_3, e_4}$ such that

$$
\eta = \cosh \theta e_3, \qquad H = H_0 e_4
$$

Note that we have

$$
A_{e_4}=\left(\begin{array}{cc}0&0\\0&2H_0\end{array}\right),\qquad A_{e_3}=\left(\begin{array}{cc}\gamma&0\\0&-\gamma\end{array}\right).
$$

Lemma

Let M be a space-like surface in $L_1^4(f, c)$ and $\{e_1, e_2, e_3, e_4\}$ be an orthonormal frame field. If M is PMCV and biconservative, then

$$
\begin{aligned}\n\widetilde{\nabla}_{e_1} e_1 &= -\gamma e_3, & \widetilde{\nabla}_{e_2} e_1 &= 0, \\
\widetilde{\nabla}_{e_1} e_2 &= 0, & \widetilde{\nabla}_{e_2} e_2 &= \gamma e_3 + 2H_0 e_4, \\
\widetilde{\nabla}_{e_1} e_3 &= -\gamma e_1, & \widetilde{\nabla}_{e_2} e_3 &= \gamma e_2, \\
\widetilde{\nabla}_{e_1} e_4 &= 0, & \widetilde{\nabla}_{e_2} e_4 &= -2H_0 e_2.\n\end{aligned}
$$

Next, we obtain

Lemma

If M is PMCV and biconservative, then

$$
\phi(u, v) = \left(u, \frac{1}{af(u)} \sin av, \frac{1}{af(u)} \cos av, y(u)\right),
$$
\n
$$
e_4 = \frac{1}{f}\left(0, -\frac{2H_0}{a} \sin av, -\frac{2H_0}{a} \cos av, c_2\right)
$$
\n(5)

for some constants a, c_2 satisfying

$$
4H_0^2 + c_2^2 a^2 = a^2, \qquad c_2 > 0,
$$

where H_0 is the mean curvature of M and ϕ is the position vector of M.

Next, we obtain

Lemma

If M is PMCV and biconservative, then

$$
\phi(u, v) = \left(u, \frac{1}{af(u)} \sin av, \frac{1}{af(u)} \cos av, y(u) \right),
$$
\n
$$
e_4 = \frac{1}{f} \left(0, -\frac{2H_0}{a} \sin av, -\frac{2H_0}{a} \cos av, c_2 \right)
$$
\n(5)

for some constants a, c_2 satisfying

$$
4H_0^2 + c_2^2 a^2 = a^2, \qquad c_2 > 0,
$$

where H_0 is the mean curvature of M and ϕ is the position vector of M.

Note that the MCV of [\(5\)](#page-76-0) is

$$
H = -\frac{\left(a^2 - 4H_0^2\right) f^3 f'' + 2\left(a^2 - 4H_0^2\right) f^2 f'^2 - \left(a^2 - 4H_0^2\right)^2 f^4 - 2f'^4}{2f \left(f'^2 - \left(a^2 - 4H_0^2\right) f^2\right)^{3/2}} e_3 + H_0 e_4.
$$

By a direct computation, we obtain the result.

Section 3.3:

Biconservative Surfaces in L_1^5 $\frac{5}{1}(f,0)$

(6)

PMCV Surfaces in L_1^5 $\frac{5}{1}(f,0)$

Theorem

Let y, f be some functions satisfying the system given by

$$
-a^{6}b^{2}c_{3}^{2}f^{7}y'y'' - a^{4}c_{3}^{2}c_{4}f^{3}f'f'' - 2a^{6}c_{2}c_{3}^{2}H_{0}f^{5}(f''y' + f'y'') - 2a^{2}c_{4}f^{2}f^{3}(a^{2}c_{3}^{2} - 8c_{2}H_{0}f'y') - 4a^{4}b^{2}f^{6}f'y'^{2}(a^{2}c_{3}^{2} - 4c_{2}H_{0}f'y') - a^{2}f^{4}f^{4}((-12a^{4}c_{2}c_{3}^{2}H_{0}f'y' + 4(a^{4}c_{3}^{2} - 12a^{2}(c_{3}^{2} - 1)H_{0}^{2} - 48H_{0}^{4})f'^{2}y'^{2}) + 2a^{4}b^{4}f^{8}f'y'^{4} + a^{8}c_{3}^{4}f^{4}f' + 2c_{4}^{2}f'^{5} = 0
$$

$$
a^{4}c_{3}^{2}f^{3}(f'y'' - f''y') - a^{2}b^{4}f^{6}y'^{3} + a^{2}b^{2}f^{4}y'(a^{2}c_{3}^{2} - 6c_{2}H_{0}f'y')
$$

$$
+f^{2}f'(2a^{4}c_{2}c_{3}^{2}H_{0} + (a^{4}c_{3}^{2} + 12a^{2}(c_{3}^{2} - 1)H_{0}^{2} + 48H_{0}^{4})f'y') - 2c_{2}c_{4}H_{0}f'^{3} = 0
$$

PMCV Surfaces in L_1^5 $\frac{5}{1}(f,0)$

Theorem

Let y, f be some functions satisfying the system given by

$$
-a^{6}b^{2}c_{3}^{2}f^{7}y'y'' - a^{4}c_{3}^{2}c_{4}f^{3}f'f'' - 2a^{6}c_{2}c_{3}^{2}H_{0}f^{5}(f''y' + f'y'') - 2a^{2}c_{4}f^{2}f^{3}(a^{2}c_{3}^{2} - 8c_{2}H_{0}f'y') - 4a^{4}b^{2}f^{6}f'y'^{2}(a^{2}c_{3}^{2} - 4c_{2}H_{0}f'y') - a^{2}f^{4}f^{4}((-12a^{4}c_{2}c_{3}^{2}H_{0}f'y' + 4(a^{4}c_{3}^{2} - 12a^{2}(c_{3}^{2} - 1)H_{0}^{2} - 48H_{0}^{4})f'^{2}y'^{2}) + 2a^{4}b^{4}f^{8}f'y'^{4} + a^{8}c_{3}^{4}f^{4}f' + 2c_{4}^{2}f'^{5} = 0
$$

$$
a^{4}c_{3}^{2}f^{3}(f'y'' - f''y') - a^{2}b^{4}f^{6}y'^{3} + a^{2}b^{2}f^{4}y'(a^{2}c_{3}^{2} - 6c_{2}H_{0}f'y')
$$

$$
+f^{2}f'(2a^{4}c_{2}c_{3}^{2}H_{0} + (a^{4}c_{3}^{2} + 12a^{2}(c_{3}^{2} - 1)H_{0}^{2} + 48H_{0}^{4})f'y') - 2c_{2}c_{4}H_{0}f'^{3} = 0
$$

for some non-zero constants a, c_2, c_3 satisfying $b^2=a^2-4H_0^2>0$, where we put $c_4=a^2c_3^2+4H_0^2$. Then, the Robertson-Walker space-time $L_1^5(f,0)$ admits a space-like, biconservative PMCV surface M with the mean curvature H_0 parametrized by

$$
\phi(u,v) = \left(u, \frac{\sin(av)}{af(u)}, \frac{\cos(av)}{af(u)}, y(u), \frac{2H_0 - c_2a^2f(u)y(u)}{c_3a^2f(u)}\right).
$$
\n(7)

PMCV Surfaces in L_1^5 $\frac{5}{1}(f,0)$

Theorem

Conversely, if a Robertson-Walker space-time $L_1^5(f,0)$ admits a space-like, biconservative PMCV surface, then f must be a solution of (6) and the surface must be locally congruent to the surface given by [\(7\)](#page-79-1).

PMCV Surfaces in L_1^5 $\frac{5}{1}(f,0)$

Theorem

Conversely, if a Robertson-Walker space-time $L_1^5(f,0)$ admits a space-like, biconservative PMCV surface, then f must be a solution of (6) and the surface must be locally congruent to the surface given by [\(7\)](#page-79-1).

Sketch Proof:

Consider a space-like surface $M^2 \subset L_1^5(f, c)$.

• Choose an orthonormal frame $\{e_1, e_2, e_3, e_4, e_5\}$ such that

$$
\eta = \cosh \theta e_3, \qquad H = H_0 e_4
$$

In this case, we have

$$
\nabla_{e_1}e_1=\nabla_{e_1}e_2=\nabla_{e_2}e_1=\nabla_{e_2}e_2=0,\\ A_{e_4}=\left(\begin{array}{cc} 0 & 0 \\ 0 & 2H_0 \end{array}\right),\qquad A_{e_3}=\left(\begin{array}{cc} \gamma & 0 \\ 0 & -\gamma \end{array}\right),\\ A_{e_5}=\left(\begin{array}{cc} \tau & 0 \\ 0 & -\tau \end{array}\right).
$$

• We used techniques similar to the case $M^2 \subset L_1^4(f,0).$

Section 3.4:

Surfaces in a Lorentzian Product

Surfaces in
$$
\mathbb{E}^1_1 \times \mathbb{Q}^4_{\varepsilon}
$$

Lemma

Let M be a space-like surface in $L_1^5(f,0)$ with mean curvature H_0 and ${e_1, e_2, e_3, e_4, e_5}$ be the orthonormal frame field defined by $\eta = \cosh \theta e_3$ and $H = H_0e_4$. If M is PMCV and biconservative, then

$$
\hat{\nabla}_{e_1} e_1 = \tau_0 e_5 - c \cosh^2 \theta_0 e_6, \qquad \hat{\nabla}_{e_2} e_1 = 0,
$$
\n
$$
\hat{\nabla}_{e_1} e_2 = 0, \qquad \hat{\nabla}_{e_2} e_2 = 2H_0 e_4 - \tau_0 e_5 - c e_6,
$$
\n
$$
\hat{\nabla}_{e_1} e_3 = -\tanh \theta_0 \tau_0 e_5 + c \frac{\sinh 2\theta_0}{2} e_6, \qquad \hat{\nabla}_{e_2} e_2 = 0,
$$
\n
$$
\hat{\nabla}_{e_1} e_4 = 0, \qquad \hat{\nabla}_{e_2} e_4 = -2H_0 e_2,
$$
\n
$$
\hat{\nabla}_{e_1} e_5 = -\tau_0 e_1 - \tanh \theta_0 \tau_0 e_3, \qquad \hat{\nabla}_{e_2} e_5 = \tau_0 e_2,
$$
\n
$$
\hat{\nabla}_{e_1} e_6 = \cosh^2 \theta_0 e_1 + \frac{\sinh 2\theta_0}{2} e_3, \qquad \hat{\nabla}_{e_2} e_6 = e_2
$$

Surfaces in
$$
\mathbb{E}^1_1 \times \mathbb{Q}^4_{\varepsilon}
$$

Lemma

Let M be a space-like surface in $L_1^5(f, 0)$ with mean curvature H_0 and ${e_1, e_2, e_3, e_4, e_5}$ be the orthonormal frame field defined by $\eta = \cosh \theta e_3$ and $H = H_0e_4$. If M is PMCV and biconservative, then

$$
\hat{\nabla}_{e_1} e_1 = \tau_0 e_5 - c \cosh^2 \theta_0 e_6, \qquad \hat{\nabla}_{e_2} e_1 = 0,
$$
\n
$$
\hat{\nabla}_{e_1} e_2 = 0, \qquad \hat{\nabla}_{e_2} e_2 = 2H_0 e_4 - \tau_0 e_5 - c e_6,
$$
\n
$$
\hat{\nabla}_{e_1} e_3 = -\tanh \theta_0 \tau_0 e_5 + c \frac{\sinh 2\theta_0}{2} e_6, \qquad \hat{\nabla}_{e_2} e_3 = 0,
$$
\n
$$
\hat{\nabla}_{e_1} e_4 = 0, \qquad \hat{\nabla}_{e_2} e_4 = -2H_0 e_2,
$$
\n
$$
\hat{\nabla}_{e_1} e_5 = -\tau_0 e_1 - \tanh \theta_0 \tau_0 e_3, \qquad \hat{\nabla}_{e_2} e_5 = \tau_0 e_2,
$$
\n
$$
\hat{\nabla}_{e_1} e_6 = \cosh^2 \theta_0 e_1 + \frac{\sinh 2\theta_0}{2} e_3, \qquad \hat{\nabla}_{e_2} e_6 = e_2
$$

Proposition

There are no space-like biconservative PMCV surface in $\mathbb{E}^1_1 \times \mathbb{H}^4.$

PMCV Surfaces in $\mathbb{E}^1_1 \times \mathbb{S}^4$

Theorem

Let M be a space-like surface in $\mathbb{E}^1_1\times S^4$. Then M is biconservative and PMCV if and only if it is congruent to the surface locally parametrized by

$$
\phi(u,v) = \left(-b_1 u, \frac{\sqrt{b_1^2 + 1} \cos\left(\sqrt{b_1^2 + 2u}\right)}{\sqrt{b_1^2 + 2}}, \frac{\sqrt{b_1^2 + 1} \sin\left(\sqrt{b_1^2 + 2u}\right)}{\sqrt{b_1^2 + 2}}, b_2, b_3 \sin\frac{v}{b_3}, b_3 \cos\frac{v}{b_3}\right)
$$
\n(8)

for some non-zero constants b_1, b_2, b_3 satisfying $b_2^2 + b_3^2 = \frac{1}{b_1^2 + 2}$.

Section 4:

Concluding Remark

Biconservative surfaces in L_1^n $\frac{n}{1}(f,c)$

First, we obtain

Lemma

Let M be an oriented space-like biconservative PMCV surface in $L_1^n(f, c), n \ge 6$. Then, we have two cases:

- Case 1. dim $N_1M = 2$ at every point of M, $\eta \in N_1M$ and $\nabla^{\perp}(N_1M) \subset N_1M$,
- Case 2. dim $N_2M = 3$ at every point of M, $\eta \in N_2M N_1M$ and $\nabla^{\perp}(N_2M) \subset N_2M$.

We have the following reduction of codimension:

Theorem

Let M be an oriented space-like biconservative PMCV surface in $L_1^n(f, c), n \geq 6$. Then, there exists a totally geodesic submanifold N of $L_1^n(f, c)$ such that $M \subset N$ and dim N is either 4 or 5.

- If M' is space-like in $L_1^n(f, c)$, then $\Pi^2(M)$ is r-dimensional submanifold in \mathbb{Q}^{n-1}_c .
- We proved that $\Pi^2(M)$ lies on \bar{N} by 9
- We have $M \subset N = I \times_f \bar{N}$
- *N* is totally geodesic in the RW space.

⁹ [Erbacher, J. Differ. Geometry, 1971]

THANK YOU

Turgay, N. C. [Biconservative Surfaces](#page-0-0) 57/57