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Gauss and Weingarten Formulas

VxY = VxY+h(X,Y),
Vxé = —AeX+Vx§,
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Gauss and Weingarten Formulas

VxY = VxY+h(X,Y),
Vxé = —AeX+Vx§,

Gauss, Codazzi and Ricci Equations

(RX,Y)Z2)T = R(X,Y)Z+ Aux.2)Y — Ay, )X,
(RX,V)Z): = (Vxh)(Y,2)— (Vyh)(X,2),
(RX, ) = RP(X,Y)E+ h(AcX,Y) — h(X,AsY)
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Robertson-Walker Spacetimes

® | is an open interval

® f:1—(0,00)

® QZ: n-dimensional Riemannian space form with dimension n and constant
curvature c, i.e.,

s" ife=1,
Q=4 H" ifc=-1,
E" ifc=0,

with the metric tensor of gc.

Definition

Robertson-Walker spacetime is the warped product manifold defined by
L(f,c) =1 x¢ Q2! with the metric tensor

g = —dt® + f(t)%g..
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The Levi-Civita Connection

Let Ml:/ x RI™Y — 1, M2:/x R — R"! denote the canonical projections.
For a given vector field X in L](f,0), we define a function Xp and a vector field X by
the decomposition

X = Xo0: + X.

1[Chen and Van der Veken, J. Math. Phys, 2007 ]
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The Levi-Civita Connection

Let Ml:/ x RI™Y — 1, M2:1x R\ — R denote the canonical projections.
For a given vector field X in L](f,0), we define a function Xy and a vector field X by

the decomposition B
X = Xp0: + X.

We are going to use the following re-statement of Lemma 2.1 in !

The Levi-Civita connection V of LI(f,c) is
= f! - - _ -
VxY = ViY+ 7 (@(X, V)0 + XY + YoX)

whenever X and Y are tangent to L?(f,c), where V® denotes the Levi-Civita
connection of the Cartesian product space L{(1,c) =/ x QL.

1[Chen and Van der Veken, J. Math. Phys, 2007 ]
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Curvature Tensor
Curvature tensor of L7(f,c) (See 1)

The curvature tensor R of L7(f, c) satisfies

17 "
R(at,X)at:f?X, R (D, X % Y)

R(X, Y)d: =0,

whenever M3 (X) = N (V) =N3(Z2) =0

Turgay, N. C.



Comoving observer field

— -
\A o \A O ? TGt

® Metric tensor:g = —dt? + f(t)?ge.

A A ‘ Definition
% ‘ a[ ‘ at ‘ The vector field 0; is called as

" comoving observer field". )

? af ? af ? Note: When f = 1, 0; is parallel along

R x Q7.

e i
Q7
€




Submanifolds of L{(f, c)

Let M be a submanifold of L{(f,c)

® R: Curvature tensor of M

® V: LC connection of M

® Ag: Shape operator along
EeT+M

® h: SFF of M

® V-L: Normal Connection

® H: MCV of M
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Vector Fields T, 7

We define a tangent vector field T on M
and a normal vector field 1 by decompos-
ing O as

Ot =T +n.

Turgay, N. C.



Some special cases

~__ R O =T+n

If T =0, then M is a slice: M C Q2 x
kg kg h| W
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Some special cases

__ R Or=T++n

bo Aok

If n = 0, then M is a vertical cylinder:
A 8 A a M = N x R for some submanifold N of
[ t Qn.
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Biharmonic Maps

Let ¢ : (M, g) — (N, g) be a smooth map between two semi-Riemannian manifolds.
® v, represents the volume element of M
® 7(v) = trace Vdiy,
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Biharmonic Maps

Let ¢ : (M, g) — (N, g) be a smooth map between two semi-Riemannian manifolds.
® v, represents the volume element of M
® 7(v) = trace Vdiy,

Bienergy Functional

B CO(MN) R, Ex(y)= /M E(r (), 7(%)) v
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Biharmonic Maps

Let ¢ : (M, g) — (N, g) be a smooth map between two semi-Riemannian manifolds.
® v, represents the volume element of M
® 7(v) = trace Vdiy,

Bienergy Functional

B CO(MN) R, Ex(y)= /M E(r (), 7(%)) v

Biharmonic map

A mapping % is said to be biharmonic if it is a critical point of the energy functional
E,.
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Biharmonic Mappin

In 2 G.Y. Jiang studied the first and second variation formulas of E in order to
understand its critical points, called biharmonic maps (See also 3).

2G. Y. Jiang, 2-harmonic maps and their first and second variational
formulas, 1986.

3G. Y. Jiang, 2-harmonic isometric immersions between Riemannian
manifolds, 1986.
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Biharmonic Mappin

In 2 G.Y. Jiang studied the first and second variation formulas of E in order to
understand its critical points, called biharmonic maps (See also 3).

Euler-Lagrange Equation

1 is biharmonic if and only if it satisfies the Euler-Lagrange equation

T2() := AT(y)) — trace R(dv, () dip = 0. (1)

2G. Y. Jiang, 2-harmonic maps and their first and second variational
formulas, 1986.

3G. Y. Jiang, 2-harmonic isometric immersions between Riemannian
manifolds, 1986.
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Biharmonic Mappin

In 2 G.Y. Jiang studied the first and second variation formulas of E in order to
understand its critical points, called biharmonic maps (See also 3).

Euler-Lagrange Equation

1 is biharmonic if and only if it satisfies the Euler-Lagrange equation

T2() := AT(y)) — trace R(dv, () dip = 0. (1)

It is obvious that a harmonic map is biharmonic.

2G. Y. Jiang, 2-harmonic maps and their first and second variational
formulas, 1986.

3G. Y. Jiang, 2-harmonic isometric immersions between Riemannian
manifolds, 1986.
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Biharmonic immersions

Let ¢ : (Q2,g) — (N, &) be an isometric immersion.

Turgay, N. C.



Biharmonic immersions

Let ¢ : (Q2,g) — (N, g) be an isometric immersion. In this case, we have

7‘2(¢) =0<
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Biharmonic immersions

Let ¢ : (Q2,g) — (N, g) be an isometric immersion. In this case, we have

mV||H|? + 4 trace Ag 1 y(-) + 4trace (R(-, H) )T =0, (T)

oo { trace (AR(). ) — ALH + trace (RE.H))E =0 (1),
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Biconservative Immersions

Biharmonic Immersions

A mapping ¢ : (M, g) — (N, g) is said to be biconservative if

(r2(9), d¢) = 0.
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Biconservative Immersions

Biharmonic Immersions

A mapping ¢ : (M, g) — (N, g) is said to be biconservative if

(r2(9), d¢) = 0.

Biconservative Submanifolds

If ¢ : (M, g) — (N, g) is an isometric immersion, then it is biconservative if and only if

(r2(¢))" = 0.
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Biconservative Immersio

Biharmonic Immersions

A mapping ¢ : (M, g) — (N, g) is said to be biconservative if

(r2(9), d¢) = 0.

Biconservative Submanifolds

If ¢ : (M, g) — (N, g) is an isometric immersion, then it is biconservative if and only if

(r2(¢))" = 0.

v

An immersion ¢ : (M, g) < (N, g) is biconservative if and only if the equation

mV||H||?> + 4 trace Ag1yy(+) + 4trace (R(-,H) ") T=o (T)

is satisfied.

Turgay, N. C.
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Submanifolds of R x Q7
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Class A immersions

Recall the expression
Bt =T + Ui

for a given isometric immersion ¢ : (2, g) — R x Q7 and put M = ¢(Q).

*[Mendonga B., Bull. Braz. Math. Soc., 2010]
®[Mendonga B. and Tojeiro R., Canad. J. Math., 2014.]
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Class A immersions

Recall the expression
Bt =T + Ui

for a given isometric immersion ¢ : (2, g) — R x Q7 and put M = ¢(Q).

The following definition is given in for hypersurfaces in # and for submanifolds with
arbitrary codimension in ®

Definition

¢ belongs to class A if T is a principle direction of all shape operators of ¢.

*[Mendonga B., Bull. Braz. Math. Soc., 2010]
®[Mendonga B. and Tojeiro R., Canad. J. Math., 2014.]
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Trivial examples

If T =0 orn =0, then we have the following trivial examples of A immersions:

Turgay, N. C.



Trivial examples

If T =0orn =0, then we have the following trivial examples of .A immersions:

T = 0 Slices n = 0 Vertical cylinders

Turgay, N. C.



Non-trivial example

® A non-trivial example of class .A immersions into R x Q7 was constructed in 6
7
and ‘.

® Also, the complete classification of class .A submanifolds of R x Q2 was
obtained in these papers.

6[Mendonga, B., Bull. Braz. Math. Soc., 2010]
"[Mendonga, B. and Tojeiro, R., Canad. J. Math., 2014.]
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Example 1

For some smooth functions xi, x2, consider the following spacelike surface in L‘ll(f, 0)
¢(u,v) = (u,x1(u), x2(u), v) (2)
with —1 + £2(x{(u) + x42(u)) > 0.

Proposition

The surface given by (2) is class A.

|

Turgay, N. C.



Example 2

® «a:l, — S? is an arc-length parameterized curve with unit normal n and curvature k.
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Example 2

® «a:l, — S? is an arc-length parameterized curve with unit normal n and curvature k.
® Define ¢(u, v) and ¢3(u, v) by

92(u,v) = [ R(E)sin (€ v)de + w1 (v),
uo

93(u,v) = [* R() cos (€, v)dE + wa(v)

Uo
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Example 2

® «a:l, — S? is an arc-length parameterized curve with unit normal n and curvature k.
® Define ¢(u, v) and ¢3(u, v) by

92(u,v) = [ R(E)sin (€ v)de + w1 (v),
g

93(u,v) = [* R() cos (€, v)dE + wa(v)

Uo
® The following conditions hold:

Py =Ky — ¢1,  Py=—K, Ty =K

and
(~1+ PR?)(¢] — d2) > 0

Consider the surface given by

B(u, v) = (u, p1(v)a(v) + da(u, v)a' (v) + ¢3(u, v)n(v)) ®3)
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Example 2

® «a:l, — S? is an arc-length parameterized curve with unit normal n and curvature k.

® Define ¢(u, v) and ¢3(u, v) by

92(u,v) = [ R(E)sin (€ v)de + w1 (v),
g

93(u,v) = [* R() cos (€, v)dE + wa(v)

0
The following conditions hold:

Py =Ky — ¢1,  Py=—K, Ty =K

and
(~1+ PR?)(¢] — d2) > 0

Consider the surface given by

B(u, v) = (u, p1(v)a(v) + da(u, v)a' (v) + ¢3(u, v)n(v)) ®3)

Proposition

The surface given by (3) is class A.
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Local Classification Theorem

See

A spacelike surface in L‘l‘(f,O) is a class A surface if and only if it is locally congruent
to one of the following surfaces:

(i) The cylinder described in Example 1,

(if) The surface described in Example 2.

8[Bektas Demirci, NCT, Yegin Sen, arXiv:2408.00475 ]
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Minimal Class A Surfaces

Let M be a space-like surface in L‘l‘(f, 0) which has no open part lying on a totally
geodesic hypersurface of L‘I‘(f7 0).
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Minimal Class A Surfaces

Let M be a space-like surface in L‘l‘(f, 0) which has no open part lying on a totally
geodesic hypersurface of L‘I‘(f7 0). Then, M is minimal and class A surface if and only
if it is locally congruent to the surface

#(u, v) = (u, G1(u) cos v, G1 (u) sin v, (),
where (7, (2 satisfies

O =Fa P (A2 + %) =3) +4/ 2 (2 + &) - 1,

F& =f'¢; (22 (6% + ¢5%) = 3).

Turgay, N. C.



Further Results

We have obtained the following results about class A surfaces:

Proposition

A surfaces satisfying V- = 0 in L}(f, c) is class A.
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Further Results

We have obtained the following results about class A surfaces:

Proposition

A surfaces satisfying V- = 0 in L}(f, c) is class A.

Proposition

A biconservative PMCV surface in L}(f, c) is class A.
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Further Results

We have obtained the following results about class A surfaces:

Proposition

A surfaces satisfying V- = 0 in L}(f, c) is class A.

Proposition

A biconservative PMCV surface in L}(f, c) is class A.

Proposition

A surface in L}(f, c) with positive relative nullity is either class A or it lays on
L3(f,c) C LY(f, ).

Turgay, N. C.
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® Biharmonic maps between warped product manifolds [A. Balmus, S. Montaldo,
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Biconservative PMCV Submanifolds

A PMCV submanifold M in Q7 x R is biconservative if and only if

(H,n)T = 0.

Eo(H) = {X € TM|AyX = 0}

Assume that dimEg(H) = 1. Then, a PMCV biconservative surface belongs to class A.
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Biconservative PMCV Submanifolds

A PMCV submanifold M in Q7 x R is biconservative if and only if

(H,n)T = 0.

Eo(H) = {X € TM|AyX = 0}

Assume that dimEg(H) = 1. Then, a PMCV biconservative surface belongs to class A.

® CMC biconservative surfaces in Q2 x R [Fetcu, Oniciuc, Pinheiro, J.
Math.Anal.Appl., 2015]
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Biconservative PMCV Submanifolds

A PMCV submanifold M in Q7 x R is biconservative if and only if

(H,n)T = 0.

Eo(H) = {X € TM|AyX = 0}

Assume that dimEg(H) = 1. Then, a PMCV biconservative surface belongs to class A.

® CMC biconservative surfaces in Q2 x R [Fetcu, Oniciuc, Pinheiro, J.
Math.Anal.Appl., 2015]

® 3-dimensional PMCV biconservative submanifolds in Qg x R [Manfio, NCT,
Upadhyay, Journal of Geometric Analysis, 2019]
The case dimEy(H) = 2. A PMCV biconservative surface still belongs to class
A.
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Biconservative PMCV Submanifolds

A PMCV submanifold M in Q7 x R is biconservative if and only if

(H,n)T = 0.

Eo(H) = {X € TM|AyX = 0}

Assume that dimEg(H) = 1. Then, a PMCV biconservative surface belongs to class A.

® CMC biconservative surfaces in Q2 x R [Fetcu, Oniciuc, Pinheiro, J.
Math.Anal.Appl., 2015]

® 3-dimensional PMCV biconservative submanifolds in Qg x R [Manfio, NCT,
Upadhyay, Journal of Geometric Analysis, 2019]
The case dimEy(H) = 2. A PMCV biconservative surface still belongs to class
A.

® PMCYV biconservative surfaces in L{(f,c) [NCT, Yegin Sen, arXiv:2409.00132]
A PMCV biconservative surface belongs to class A.

Turgay, N. C.
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Biconservative Surfaces in L](f, c)

Let M be a space-like surface in L7(f, c). Recall that M is biconservative if and only if

2V H|]? + 4trace Ay 1 () + 4 trace (R(:, H) - )T =0 (T
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Biconservative Surfaces in L](f, c)

Let M be a space-like surface in L7(f, c). Recall that M is biconservative if and only if

2V H|]? + 4trace Ay 1 () + 4 trace (R(:, H) - )T =0 (T

oh=T+n

trace (R(-, H))T = (
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Biconservative Surfaces in L](f, c)

Let M be a space-like surface in L7(f, c). Recall that M is biconservative if and only if

2V H|]? + 4trace Ay 1 () + 4 trace (R(:, H) - )T =0 (T

oh=T+n

. f f2
traco (R(.H))T = (G = 55 ) T,

V.

M is biconservative and PMCV if and only if

f 2

f// f'/2
(— = C) (H,)T =0,

Turgay, N. C.



7
R(d¢, X)0r = 7>‘<, R(d¢, X)Y = 7<>‘<, Y) 0,

e o 2o @ P2ae, oo - = =
R(X,Y)o: =0, R(X,Y)Z = 2 WY, 2)yX = (X, 2)Y)

Ni

whenever M} (X) = N} (V) =N (Z) =0
v

1) ()2 +c
() 7L¢Oforanyt€l,
f(t) f(1)?
® T does not vanish on M,
{e1, &} is an orthonormal basis for the tangent bundle of M, where e; is proportional to T,

A\

® All surfaces are connected and all vector fields are smooth.

Turgay, N. C.



Integrability Conditions

Since (R(X, Y)¢)L =0, we have
RE(X,Y)E = h(X,AcY) — h(AcX, Y).

Therefore,

Let M be a submanifold in L](f,c). Then,

® M is space-like:
M has flat normal bundle < All shape operators can be simultaneously
diagonalized.

® M is time-like:
M has flat normal bundle < All shape operators have same "casual’ character.

Turgay, N. C.



Integrability Conditions

Codazzi equations:

0 = (Vah) (e e) - (VEh) (e, o),

. f f/2 +c n N
sinh 6 <77 + 2 ) n = <V61h> (e2,€2) — <V52h> (e1, ).

Turgay, N. C.



Integrability Conditions

1}

—| =sinh@e; + cosh 6 e3. (4)
ot m

In addition to the Gauss, Codazzi, and Ricci equations, the following equations are satisfied on a submanifold in
Robertson-Walker space:

Vx0 = (VxT — ApX) + (h(X, T) + Vi)

Note that the LHS of this equation is not zero unless f = 1.

Turgay, N. C.



Integrability Conditions

—| =sinh@e; + cosh 6 e3. (4)
ot m

In addition to the Gauss, Codazzi, and Ricci equations, the following equations are satisfied on a submanifold in
Robertson-Walker space:

Vx0 = (VxT — ApX) + (h(X, T) + Vi)

Note that the LHS of this equation is not zero unless f = 1.

Let M be a space-like surface in Lf(f7 c), where n > 4. Then, the equations

7

f
e1(0) cosh 0 ) +sinh Ve, ep — coshfAeze1 = = cosh? Oey,
f/
e(0) cosh 0 e; +sinh Ve, e — coshfAc;er = 7e2,
. . 1 ! .
€1(0) sinh 6 e3 + sinh 6h(ey, e1) + cosh GVele3 = = cosh 0 sinh fe3,
e(0) sinh 6 e3 + sinh 6h(e1, e2) + cosh 0Vée3 = 0,

Turgay, N. C.



Space-like Surfaces in L](f,c)

Let M be a space-like PMCV surface in L](f,c).

Turgay, N. C.



Space-like Surfaces in L](f,c)

Let M be a space-like PMCV surface in L](f,c). M is biconservative if and only if

(H,n) =0.

There are no marginally trapped biconservative PMCV surface in L{(f, c).

Turgay, N. C.



Space-like Surfaces in L](f,c)

(H,n) = 0.

Proposition

Then, M is a biconservative PMCV surface if and only if there exists a non-zero constant Hp and a unit normal
vector field e; such that

V>e, = 0, (e4,m) =0,
0 0

Aoy = (o 2H0>‘
o

OE 0 ) whenever (e, &) =0,

where v¢ € C°(M).

Turgay, N. C.



Space-like Surfaces in L](f,c)

Let M be a space-like biconservative PMCV surface in L{(f, c) and p € M. Then the vector fields e1, e and e3
satisfy
h(e1,&2) = 0,
velel = Velez = v9251 = veQeZ

/

7 = cosh 6753 s

Consequently, there exists a local coordinate system (N, (u, v)) such that A, 3 p and

el\Np:fsinhGOU, e2|Np:6V.
.

Turgay, N. C.
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Biconservative Surfaces in L{(f,0)
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PMCV Surfaces in L{(f,

The Robertson-Walker space-time L}(f,0) admits a space-like, biconservative PMCV
surface M with mean curvature Hyp if and only if f satisfies

(8 — 4H3) F3F" — (F12 — (2 — 4H2) F2)° — F4 =0

for a constant a such that a% — 4H§ > 0.

Turgay, N. C.



PMCV Surfaces in L{(f,

The Robertson-Walker space-time L}(f,0) admits a space-like, biconservative PMCV
surface M with mean curvature Hyp if and only if f satisfies

(3 — 4HR) F3F — (F2 — (82 —aH2) F2)° — f'* =0

for a constant a such that a% — 4H§ > 0. In this case, M is locally congruent to the
rotational surface

(u, v) 1 . 1 2Hp
u,v)=(u sin av cosav,—————
’ " af (u) " af (u) T a2¢f(u) )]

where ¢, is a constant.

Turgay, N. C.



Sketch Proof

Consider a space-like surface M? C L‘l‘(f7 c). Choose an orthonormal frame
{e1, e; €3, es} such that
n = cosh fes, H = Hpes

Note that we have

AeAi(O 2H0)7 Ae37(0 _’Y>.

Turgay, N. C.



Sketch Proof

Consider a space-like surface M? C Li‘(f, c). Choose an orthonormal frame
{e1, e; €3, es} such that
n = cosh fes, H = Hpes

Note that we have

(0 o0 (v 0
ra= (0 am ) 2 (85)

Let M be a space-like surface in L4(f, c) and {e1, &; €3, €4} be an orthonormal frame
field. If M is PMCV and biconservative, then

§e161 = —nes, 6ezel =0,

Ve e =0, Ve, & = ves + 2Hoes,
Ve 3 = —7er, Ve 3 = e,

69164 =0, 63264 = —2Hpes.

Turgay, N. C.



Sketch Proof

Next, we obtain

If M is PMCV and biconservative, then

1 1
P(u,v) = <u, @) sin av, ) cos av,y(u)) 5 (5)
1
f

2Hy . 2Ho
0, ——— sinav, ——— cos av, ¢
a a

for some constants a, ¢, satisfying
2 22 2
4Hy + cya” = a°, o >0,

where Hp is the mean curvature of M and ¢ is the position vector of M.

Turgay, N. C.



Sketch Proof

Next, we obtain

If M is PMCV and biconservative, then

1 1
P(u,v) = <u, @) sin av, ) cos av,y(u)) 5 (5)
1
f

2Hy . 2Ho
0, ——— sinav, ——— cos av, ¢
a a

for some constants a, ¢, satisfying
2 22 2
4Hy + cya” = a°, o >0,

where Hp is the mean curvature of M and ¢ is the position vector of M.

Note that the MCV of (5) is

(2 —aH3) 21" 2 (2 — aH}) 22 — (& — 4H) 2 — 26"

H=—
2f (12 — (a2 — 4H3) £2) 3/2

e3 + Hopey.

By a direct computation, we obtain the result.

Turgay, N. C.
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Biconservative Surfaces in L3(f,0)
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PMCV Surfaces in L3(f,0)

Let y, f be some functions satisfying the system given by

736bzc§f7y/y” _ 34C§C4f3f,f” _ 226626§H0f5 (f“y’ + f’y“)
—232qufl3 (32632 — 8czH0f/y/) — 4a4b2f61‘/y/2 (32532 — 4c2H0f/y/)
+a2f4f/ (71234c2c32H0f/y' + 4 (‘?41:32 — 122° (::32 - 1) Hg — 48Hg) f’zy'2>

7

+2a* B Byt B v 2ci

(6)
=0
34c32f3 (f’y” _ f”y’) _ 82b4f6y/3 + azb2f4y/ (32C§ _ 6(:2H0fly/>

+2f (2 caciHo + (a*c] + 124 (] — 1) MG +48H3 ) £y') — 202cutof’® = 0

Turgay, N. C.



PMCV Surfaces in L3(f,0)

Let y, f be some functions satisfying the system given by

i 11

—a0p? (= f7 4 ” a4c3ZC4f3f'f” — 22652c§H0f5 (f y +fy

/2 /2

)
—232qufl3 (32632 — 8czH0f y ) 22* b2 £0F /2 (3253 — 4c2H0f y )
) (6)

/5

+a2f4f/ (71234c2c32H0f/y' + 4 (‘?41:32 — 122° (::32 — 1) Hg — 48H0)
+2a" b By 4 Byt 4220 =0
2263 (f'y” f”y’) — 2240y’ 4 2bPrty (azc3 — 6eaHofy )

+2f (2 caciHo + (a*c] + 124 (] — 1) MG +48H3 ) £y') — 202cutof’® = 0
for some non-zero constants a, ¢y, c3 satisfying b =a% — 4Hg > 0, where we put ¢ = a2 532 AF 4Hg. Then, the

Robertson-Walker space-time L‘;’(f, 0) admits a space-like, biconservative PMCV surface M with the mean
curvature Hy parametrized by

»y(u),

_ sin(av) cos(av) 2Hy — cpa?f(u)y(u)
e, v) = (u, af(u) ~ af(u) c3a?f(u) ) ’ M

Turgay, N. C.



urfaces in L3(

Conversely, if a Robertson-Walker space-time L?(f, 0) admits a space-like,
biconservative PMCV surface, then f must be a solution of (6) and the surface must
be locally congruent to the surface given by (7).

Turgay, N. C.



urfaces in L3(f,

Conversely, if a Robertson-Walker space-time L?(f, 0) admits a space-like,
biconservative PMCV surface, then f must be a solution of (6) and the surface must
be locally congruent to the surface given by (7).

Sketch Proof:
Consider a space-like surface M2 C L}(f,c).
® Choose an orthonormal frame {e1, e; €3, €4, €5} such that

1 = cosh fez, H = Hypeq
® |n this case, we have

Ve1e1 = Ve1€2 = vegel = Ve262 =0,

/0 0 (v 0
we(3 k) m(3 %)

T 0
(7 %)

® We used techniques similar to the case M2 C L7(f,0).

Turgay, N. C.



Section 3.4:

Surfaces in a Lorentzian Product
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Tl 4
Surfaces in E; x Q7

Let M be a space-like surface in L3(f,0) with mean curvature Hyp and
{e1, &; €3, €4, e5} be the orthonormal frame field defined by 7 = cosh fe; and

H = Hpes. If M is PMCV and biconservative, then

Ve €1 = Toes — ¢ cosh? Ooes,

@eleZ = 07

N sinh 20
Ve €3 = —tanhfgmpes + ¢ 066,
66164 = 0,
@eleg, = —7pe1 — tanh fpmpes,

~ inh 26
Ve1 €6 = C05h2 Ooer + SlnTOe?”

Turgay, N. C.

@ezel = 0,

Ve262 = 2H()e4 — Tp0€5 — Cée,
Ve263 = 07

66264 = —2H0€2,

Ve 5 = T0€2,

Ve, = &



- ml 4
Surfaces in E; x Q7

Let M be a space-like surface in L3(f,0) with mean curvature Hyp and
{e1, &; €3, €4, e5} be the orthonormal frame field defined by 7 = cosh fe; and
H = Hpes. If M is PMCV and biconservative, then

661 e1 = Toes — c cosh? Ooes, @ezel =0,
@elez =0, @e2e2 = 2Hpes — Tpe5 — cep,
@el e3 = —tanh Ogmoes + Csinh2290 €6, @e2e3 =0,
Ve es =0, Ve,es = —2Hpe,
69165 = —7pe1 — tanh fpmpes, @e2€5 = To€2,
ﬁel e = cosh? fper + we& 69265 =e

w

There are no space-like biconservative PMCV surface in IE% x H*.

Turgay, N. C.




PMCV Surfaces in E! x §*

Let M be a space-like surface in E% x S*. Then M is biconservative and PMCV if and
only if it is congruent to the surface locally parametrized by

\/bf—l-lcos (\/bf—l-Zu) \/bf—l-lsin (\/b%+2u>
Jae '

v v
bs sin —, bs cos —
3 sin bs 3 COS b3)

P(u,v) = | —biu,

1

fef 2 2 _
for some non-zero constants by, by, b3 satisfying by + bs = el

Turgay, N. C.
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Concluding Remark
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Biconservative surfaces in L{(f,

First, we obtain

Let M be an oriented space-like biconservative PMCV surface in L](f,c),n > 6.
Then, we have two cases:

Case 1. dim NyM = 2 at every point of M, n € N;M and Vl(NlM) C NiM,
Case 2. dim N, M = 3 at every point of M, n € Np,M — Ny M and VL(NQM) C NoM.

We have the following reduction of codimension:

Let M be an oriented space-like biconservative PMCV surface in L{(f,c),n > 6.
Then, there exists a totally geodesic submanifold N of L7(f,c) such that M C N and
dim N is either 4 or 5. )

Turgay, N. C.



Sketch Proof

® If M" is space-like in L?(f,c), then M?(M) is r-dimensional submanifold in
et

® We proved that M2(M) lies on N by ©

® Wehave MC N=1x¢N

® N is totally geodesic in the RW space.

°[Erbacher, J. Differ. Geometry, 1971]

Turgay, N. C.



THANK YOU

Turgay, N. C.



	Preliminaries
	Robertson-Walker Spacetimes
	Biharmonic Maps

	Class A Surfaces
	Submanifolds of RQnc 
	Class A Surfaces in L41(f,0)

	Biconservative Surfaces in RW Spaces
	Biconservative Surfaces in Ln1(f,c)
	Biconservative Surfaces in L41(f,0)
	Biconservative Surfaces in L51(f,0)
	Surfaces in a Lorentzian Product

	Concluding Remark

