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Introduction



Reduction of dimension

Example scenario: M a space of mapsMm → Nn, L : M → R a nice functional.

Usually the equation δL = 0 is a PDE and it gets more difficult when dim(M) gets larger:

• If dim(M) = 0, we want to extremise a function onN.

• If dim(M) = 1, we (locally) want to solve dim(N) coupled ODEs.

• If dim(M) > 2, we want to solve dim(N) coupled PDEs in dim(M) variables.

If there is a nice group action G onM andN that leaves L invariant, then one could look for

G-equivariant solutions. Often this leads to another PDE for maps of the form

M/G → N,

which has less “effective” variables.
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Reduction of dimension – Example Theorem

Theorem ([PT 86])

Let π : (M,g) → (N,h) be a Riemannian submersion so that:

(i) π−1({y}) is compact for all y ∈ N,

(ii) the mean curvature of the fibresHπ−1({y}) is a basic field of the submersion.

Then for all submanifolds B ⊂ N one has thatϕ−1(B) is minimal in (M,g) iff B is minimal in

(N, vol(π−1({y}))2/ dim(B)h).

Remark

• Condition (ii) means that there is a vectorfield V ∈ Γ(TN) so that dπ(Hϕ−1(y))y = Vy.

• The condition of an π-invariant submanifold being minimal is reduced to a PDE onN.
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Reduction of dimension – Example Application

Definition

Let f : Sm−1 → R be an isoparametric function. Define

F : Rm \ {0} → R2, x 7→
(
‖x‖2, f( x

‖x‖
)

)
The level sets of F are all rescalings of the level sets of f.

Example applications:

Q.M. Wang [WS 94]: Classifies all complete immersed minimal submanifolds of Rm of the form

F−1(γ) for a curve γ by applying a similar theorem as above and reducing to an ODE in R2.

[Ri 24]: Use the same symmetry to find new embedded self-shrinkers in Rm \ {0}, by applying the
above theorem and reducing to an ODE in R2.
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Goal

The goal of today:

• Present reduction techniques for minimal submanifolds by using harmonic morphisms.

• Investigate examples (polynomials!).

• Find new polynomial harmonic morphisms Rm → Rn.

This is work in progress.
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Harmonic morphisms

Definition

A map ϕ : (M,g) → (N,h) is a harmonic morphism if

∆Nf = 0 =⇒ ∆M(f ◦ϕ) = 0

for any locally defined function germ f : N → R.
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Harmonic morphisms

Definition

Suppose ϕ : (M,g) → (N,h) is smooth

(i) ϕ is called harmonic if it extremises E(ϕ) = 1
2
∫
M ‖dϕ‖2, i.e. iff

τ(ϕ) = Tr(∇dϕ) = 0

in coordinates xi onM, yα onN:∑
ij

gij∂i∂jϕ
α −

∑
ij

gijΓ(g)kij∂kϕ
α +

∑
ij

gij
∑
βγ

Γ(h)αβγ∂iϕ
β∂jϕ

γ = 0

(ii) ϕ is called weakly horizontally conformal (WHC) if there exists a λ : M → R so that:

λ2g(dϕv,dϕw) = h(v,w)

for all v,w ⊥ ker(dϕ). We call λ the conformality factor ofϕ.
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Harmonic morphisms

Theorem ([Fu 78], [Is 79])

ϕ : (M,g) → (N,h) is a harmonic morphism iff it is WHC and harmonic.

Examples

• Harmonic Riemannian submersions.

• Holomorphic functions from a Kähler manifold to a Riemann surface.

• The projection (M×N,gM + f2 hN) → (N,hN) to the warped factor in a warped product.
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Harmonic morphisms

If the codomain has dimension 2, harmonic morphisms fibre the domain by minimal submanifolds:

Theorem ([BE 81])

ϕ : (M,g) → (N,h)WHC and dimN = 2, thenϕ is harmonic iffϕ−1({y}) is minimal at its regular

points for all y ∈ M.

In higher dimensions there are different extensions of this, we highlight:

Theorem ([BG 92])

ϕ : (M,g) → (N,h)WHC with conformailtiy factor λ, then

τdimN(ϕ) := λdimN−2 (τ(ϕ) + (dimN− 2)dϕ(∇ ln λ)) = 0

iffϕ−1({y}) is minimal at its regular points for all y ∈ N.
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Harmonic morphisms

Remark

• τp is called the p-tension field.

• For non WHCmaps τp is defined as the variation of the functional 1
p

∫
M ‖dϕ‖p.

• In general the equation τp(ϕ) = 0 is much less studied than τ2(ϕ) = 0.
• WHC and τp = 0 ⇐⇒ p-harmonic morphism.
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Reduction via harmonic morphisms

Initial observation: The previous two results fit into the following statement:

Theorem

ϕ : (Mm,→ (Nn,h) a WHC submersion, p ∈ {1, ...,n}. The following are equivalent:

(i) τp(ϕ) = 0
(ii) ∀B ⊂ Nminimal codimension p submanifoldsϕ−1(B) is minimal.

(iii) ∀B ⊂ N codimension p submanifolds

λ2HB = dϕ(Hϕ−1(B))

whereHB andHϕ−1(B) denote the mean curvatures of B andϕ−1(B).

Remark

(Submersive) harmonic morphisms are then precisely the WHCmaps pull back minimal codim 2

submanifolds to minimal codim 2 submanifolds.
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Proof sketch

The Theorem follows from two calculations. Letϕ : (M,g) → (N,h) be a submersive WHC:

Lemma (1), ([BG 92]?)

X, Y,Z vectorfields in Γ(TN), let X̂, Ŷ, Ẑ denote their horizontal lifts toM. Then:

h(∇N
X Y,Z) = λ2g(∇M

X̂
Ŷ, Ẑ) + X̂(ln λ)h(Y,Z) + Ŷ(ln λ)h(X,Z) − Ẑ(ln λ)h(X, Y)

One uses this to see:

Lemma (2)

Let B ⊂ N codimension p submanifold, Z ∈ Γ(TN) orthogonal to B:

h(
τp

λp−2 ,Z) = h(dϕ(Hϕ−1(B)) − λ2HB,Z)
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Proof sketch

Then

(i) ⇐⇒ (iii) =⇒ (ii) are clear. (ii) =⇒ (i) follows from:

Lemma

y ∈ N, for all vector subspaces V ⊂ TyN there is a B ⊂ Nminimal with y ∈ B and TyB = V.
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Corollaries

Remark

Lemmas (1) and (2) do not require full WHC, an infinitesimal version suffices.

Corollary (1)

ϕ : (M,g) → (N,h), B ⊂ Nminimal andϕ submersive and WHC to 1st order alongϕ−1(B). TFAE:

(i) ϕ−1(B) is miminal.

(ii) τdimN−dimB(ϕ) ∈ Tϕ(x)B for all x ∈ ϕ−1(B).

Remark

For B a point this is already contained in Baird-Gudmundsson 1994.
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Corollaries

The following statement is the one I want to apply in the next few slides:

Corollary (2)

ϕ : (M,g) → (N,h) submersive harmonic morphism with conformality factor λ. B ⊂ Nminimal with

dimB 6= dimN− 2. TFAE:
(i) ϕ−1(B) is minimal.

(ii) dϕ(∇ ln λ) ∈ Tϕ(x)B for all x ∈ ϕ−1(B).

Proof.

One has:

τdimN−dimB(ϕ) = λdimN−dimB−2 (τ2(ϕ) + (dimN− dimB− 2)dϕ(∇ ln λ))

where τ2(ϕ) = 0 since ϕ is a harmonic morphism.
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morphisms



Polynomials to C

Let P : Rm → C be a homogeneous polynomial harmonic morphism. The only minimal submanifolds

of codimension /∈ {0, 2} are straight lines.
Its usually easier to calculate dP(∇ 1

λ2 ) rather than dP(∇ ln λ). We calculate this for some examples:

1. P : Cm → C, (z1, ..., zm) 7→
∑

i z
2
i . dP(∇ 1

λ2 ) (z1, ..., zm) = 32P(z1, ..., zm).

2. P : C2 → C, (z1, z2) 7→ z2
1 + 2z2

2. dP(∇ 1
λ2 ) (z1, z2) = 32z2

1 + 256z2
2.

3. P : C3 × R → C, ((z,u,w), t) 7→ z2w+ u2w+ 2izut.

dP(∇ 1
λ2 ) (z,u,w, t) = 32(|z|2 + |u|2 + |w|2 + t2)P(z,u,w, t).

4. P : C3 × R → C, ((z,u,w), t) 7→ z2w+ γ2u2w+ 2γizut, here γ ∈ C. Then dP(∇ 1
λ2 ) is very

complicated and not proportional to P unless γ ∈ {−1, 0, 1}.
5. P : C4 → C, (z,u, v,w) 7→ z2wv− u2wv+ zu(|w|2 − |v|2). Then

dP(∇ 1
λ2 ) (z,u, v,w) = 8

[
(|z|2 + |u|2 + |v|2 + |w|2)2 + 2(|z|2 + |u|2)(|v|2 + |w|2)

]
· P(z,u, v,w)
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Polynomials to C

We see a pattern:

• The first guess tends to have dP(∇ ln λ) being proportional to P. (−→ lines through zero get

pulled back to minimal hypersurfaces)

• The second guess tends to have
⋃

x∈P−1({y}{dP(∇ ln λ)} spanning C. (−→ no line pulls back to a

minimal hypersurface)

Remark

Important: The general discussion for Rm → C is not new! It is discussed [BG 94], and recently

Kislitsyn [Ki 24] finds another way to write the condition dP(∇ ln λ) ∝ P.
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PolynomialsRm → Rn

Motivated by the examples to C we define:

Definition

A homogeneous polynomial harmonic morphisms P : Rm → Rn is said to be umbilical if there is a

function f : Rm → R so that

dP(∇ ln λ) (x) = f(x)P(x)

for all x ∈ Rm.

Proposition

Let C ⊂ Rn be a minimal cone and P : Rm → Rn an umbilical harmonic morphism. Then P−1(C) is a
minimal cone at its regular points.

In particular: Umbilical harmonic morphisms pull back minimal submanifolds of Sn−1 to minimal

submanifolds of Sm−1 (albeit not necessarily preserving closedness!)
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PolynomialsRm → Rn

In searching for examples we have the problem that not many harmonic morphisms Rm → Rn with

n > 2 are known. To my knowledge we only have:

0. Orthogonal projections and homotheties.

1. Degree 2 polynomials (classified by Ou [Ou 97], and Ou & Wood [OW 96]).

2. MultiplicationsKm → K whereK is the quaternions or octonions.

And direct sums and compositions of the above.

We first review the degree 2 case.
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Quadratic polynomials

Definition

1. A Clifford system of Rn on Rm is a systemA1, ...,An of symmetricm×mmatrices so that:

AiAj +AjAi = 2δij1m×m

2. IfA1, ...,An is a Clifford system on Rm then we associate to it

P : Rm → Rn, P(x)i = 〈x,Aix〉

Remark

• A Clifford system is the same as an orthogonal representation of the Clifford algebra

ρ : C(Rn,−〈, 〉) → End(Rm).

• The map P is the same as Rm → (Rn)∗, x 7→ [v 7→ 〈x, ρ(v)x〉].
• Every degree 2 harmonic morphism is a weighted direct sum of such maps.
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Quadratic polynomials

Proposition

Let P =
⊕

i λiPρi
a quadratic harmonic morphism. Then P is umbilical if and only if the weights |λi|

are all equal. In this case 0 is the only critical point of P.

Polynomials of this type are already called umbilical in the literature (hence the name).

Corollary

If P : Rm → Rn is a quadratic umbilical polynomial harmonic morphism then P pulls back closed

minimal submanifolds of Sn−1 to closed minimal submanifolds of Sm−1.
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New polynomials

We now describe some new examples of polynomial harmonic morphisms Rm → Rn. The simplest

example is as follows:

Definition

Let ρ1 : C(Rn) → End(Rm1), ρ2 : C(Rm1) → End(Rm2) be Clifford systems. We define:

P : Rm1 ⊕ Rm2 → (Rn)∗, (x,y) 7→ [v 7→ 〈y, ρ2(ρ1(v)x)y〉]

Definition

Let ρk : C(Rmk−1) → End(Rmk) be Clifford systems. For v ∈ Rm0 and (x`, ..., x1) ∈
⊕`

k=1 Rmk let

A0(v) = v and
Ak(v) = ρk(Ak−1(v))xk.

Then define

P :
⊕̀
k=1

Rmk → (Rm0)∗, (x`, ..., x1) 7→ [v 7→ 〈x`,A`(v)x`〉].
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New polynomials

Proposition

The polynomials defined on the previous slides are umbilical harmonic morphisms.
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Open questions

The following questions motivated this investigation:

• The minimal cones generated by Cm → C, (z1, ..., zm) 7→
∑

i z
2
i are isometric to Simon’s cone,

which is area-minimising form > 4.
Can one adapt the proof to figure out when general umbilical polynomial harmonic morphisms

Rm → C generate area-minimising cones?

• For a holomorphic map Cm → C, all of its level sets are Kähler varieties, hence area-minismising.

When are the level sets of a polynomial harmonic morphism Rm → C area-minimisers? Stable?

• For an umbilical polynomial harmonic morphism P : Rm → Rn the level set P−1({0}) is minimal

near its regular points.

Is it stationary / stable / area-minimising as a singular variety?

Thank you for your attention!!
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