Universität

Reduction for minimal submanifolds from harmonic morphisms

Oskar Riedler

September 4, 2024

living.knowledge

Table of contents

Introduction

Reduction of dimension Harmonic morphisms

Reduction via harmonic morphisms

Theorem Proof Corollaries

Application to polynomial harmonic morphisms

Polynomials to $\mathbb C$ Polynomials to $\mathbb R^n,\,n>2$ Open questions

References

Introduction

Reduction of dimension

Example scenario: \mathfrak{M} a space of maps $M^m \to N^n$, $L: \mathfrak{M} \to \mathbb{R}$ a nice functional.

Usually the equation $\delta L = 0$ is a PDE and it gets more difficult when dim(*M*) gets larger:

- If dim(M) = 0, we want to extremise a function on N.
- If dim(M) = 1, we (locally) want to solve dim(N) coupled ODEs.
- If $\dim(M) \ge 2$, we want to solve $\dim(N)$ coupled PDEs in $\dim(M)$ variables.

Reduction of dimension

Example scenario: \mathfrak{M} a space of maps $M^m \to N^n$, $L : \mathfrak{M} \to \mathbb{R}$ a nice functional.

Usually the equation $\delta L = 0$ is a PDE and it gets more difficult when dim(*M*) gets larger:

- If dim(M) = 0, we want to extremise a function on N.
- If $\dim(M) = 1$, we (locally) want to solve $\dim(N)$ coupled ODEs.
- If $\dim(M) \ge 2$, we want to solve $\dim(N)$ coupled PDEs in $\dim(M)$ variables.

If there is a nice group action G on M and N that leaves L invariant, then one could look for G-equivariant solutions. Often this leads to another PDE for maps of the form

$$M/G \rightarrow N$$
,

which has less "effective" variables.

Theorem ([PT 86])

Let $\pi : (M, g) \to (N, h)$ be a Riemannian submersion so that:

(i) $\pi^{-1}(\{y\})$ is compact for all $y \in N$,

(ii) the mean curvature of the fibres $H_{\pi^{-1}(\{y\})}$ is a basic field of the submersion.

Then for all submanifolds $B \subset N$ one has that $\varphi^{-1}(B)$ is minimal in (M, g) iff B is minimal in $(N, vol(\pi^{-1}(\{y\}))^{2/\dim(B)}h)$.

Remark

- Condition (ii) means that there is a vectorfield $V \in \Gamma(TN)$ so that $d\pi(H_{\phi^{-1}(y)})_y = V_y$.
- The condition of an π -invariant submanifold being minimal is reduced to a PDE on N.

Let $f:S^{m-1}\to \mathbb{R}$ be an isoparametric function. Define

$$\mathsf{F}: \mathbb{R}^{\mathfrak{m}} \setminus \{0\} \to \mathbb{R}^{2}, \mathsf{x} \mapsto \left(\|\mathsf{x}\|^{2}, \mathsf{f}(\frac{\mathsf{x}}{\|\mathsf{x}\|}) \right)$$

The level sets of F are all rescalings of the level sets of f.

Let $f:S^{m-1}\to \mathbb{R}$ be an isoparametric function. Define

$$\mathsf{F}: \mathbb{R}^m \setminus \{0\} \to \mathbb{R}^2, \mathsf{x} \mapsto \left(\|\mathsf{x}\|^2, \mathsf{f}(\frac{\mathsf{x}}{\|\mathsf{x}\|}) \right)$$

The level sets of F are all rescalings of the level sets of f.

Example applications:

Q.M. Wang **[WS 94]**: Classifies all complete immersed minimal submanifolds of \mathbb{R}^m of the form $F^{-1}(\gamma)$ for a curve γ by applying a similar theorem as above and reducing to an ODE in \mathbb{R}^2 .

Let $f:S^{m-1}\to \mathbb{R}$ be an isoparametric function. Define

$$\mathsf{F}: \mathbb{R}^m \setminus \{0\} \to \mathbb{R}^2, \mathsf{x} \mapsto \left(\|\mathsf{x}\|^2, \mathsf{f}(\frac{\mathsf{x}}{\|\mathsf{x}\|}) \right)$$

The level sets of F are all rescalings of the level sets of f.

Example applications:

Q.M. Wang **[WS 94]**: Classifies all complete immersed minimal submanifolds of \mathbb{R}^m of the form $F^{-1}(\gamma)$ for a curve γ by applying a similar theorem as above and reducing to an ODE in \mathbb{R}^2 .

[Ri 24]: Use the same symmetry to find new embedded self-shrinkers in $\mathbb{R}^m \setminus \{0\}$, by applying the above theorem and reducing to an ODE in \mathbb{R}^2 .

The goal of today:

- Present reduction techniques for minimal submanifolds by using harmonic morphisms.
- Investigate examples (polynomials!).
- Find new polynomial harmonic morphisms $\mathbb{R}^m \to \mathbb{R}^n.$

This is work in progress.

Harmonic morphisms

Definition

A map $\phi:(M,g)\to (N,h)$ is a harmonic morphism if

$$\Delta^N f = 0 \implies \Delta^M (f \circ \phi) = 0$$

for any locally defined function germ $f: N \to \mathbb{R}$.

Harmonic morphisms

Definition

Suppose $\varphi : (M, g) \to (N, h)$ is smooth

(i) φ is called harmonic if it extremises $E(\varphi) = \frac{1}{2} \int_{\mathcal{M}} \|d\varphi\|^2$, i.e. iff

 $\tau(\phi)=\text{Tr}(\nabla d\phi)=0$

in coordinates x_i on M, y_α on N:

$$\sum_{ij} g^{ij} \partial_i \partial_j \phi^\alpha - \sum_{ij} g^{ij} \Gamma(g)^k_{ij} \partial_k \phi^\alpha + \sum_{ij} g^{ij} \sum_{\beta\gamma} \Gamma(h)^\alpha_{\beta\gamma} \partial_i \phi^\beta \partial_j \phi^\gamma = 0$$

(ii) ϕ is called weakly horizontally conformal (WHC) if there exists a $\lambda: M \to \mathbb{R}$ so that:

 $\lambda^2 g(d\varphi v, d\varphi w) = h(v, w)$

for all $\nu, w \perp \mathsf{ker}(d\phi).$ We call λ the *conformality factor* of $\phi.$

Theorem (**[Fu 78], [Is 79]**)

$\phi:(M,g) \to (N,h)$ is a harmonic morphism iff it is WHC and harmonic.

Examples

- Harmonic Riemannian submersions.
- Holomorphic functions from a Kähler manifold to a Riemann surface.
- The projection $(M\times N,g_M+f^2\,h_N)\to (N,h_N)$ to the warped factor in a warped product.

Harmonic morphisms

If the codomain has dimension 2, harmonic morphisms fibre the domain by minimal submanifolds:

Theorem ([BE 81])

 $\phi : (M, g) \to (N, h)$ WHC and dim N = 2, then ϕ is harmonic iff $\phi^{-1}(\{y\})$ is minimal at its regular points for all $y \in M$.

In higher dimensions there are different extensions of this, we highlight:

Theorem ([BG 92])

 $\phi:(M,g) \to (N,h)$ WHC with conformailtiy factor λ , then

 $\tau_{dim\,N}(\phi)\coloneqq\lambda^{dim\,N-2}\left(\tau(\phi)+(dim\,N-2)d\phi(\nabla\ln\lambda)\right)=0$

iff $\phi^{-1}(\{y\})$ is minimal at its regular points for all $y \in N$.

Harmonic morphisms

Remark

- $\tau_{\rm p}$ is called the p-tension field.
- For non WHC maps τ_p is defined as the variation of the functional $\frac{1}{p} \int_M ||d\phi||^p$.
- In general the equation $\tau_p(\phi) = 0$ is much less studied than $\tau_2(\phi) = 0$.
- WHC and $\tau_p = 0 \iff p$ -harmonic morphism.

Reduction via harmonic morphisms

Reduction via harmonic morphisms

Initial observation: The previous two results fit into the following statement:

Theorem

 $\phi:(M^m,\to(N^n,h)$ a WHC submersion, $p\in\{1,...,n\}.$ The following are equivalent: (i) $\tau_p(\phi)=0$

- (ii) $\forall B \subset N$ minimal codimension p submanifolds $\phi^{-1}(B)$ is minimal.
- (iii) $\forall B \subset N$ codimension p submanifolds

 $\lambda^2 H_B = d\phi(H_{\phi^{-1}(B)})$

where H_B and $H_{\phi^{-1}(B)}$ denote the mean curvatures of B and $\phi^{-1}(B)$.

Remark

(Submersive) harmonic morphisms are then precisely the WHC maps pull back minimal codim 2 submanifolds to minimal codim 2 submanifolds.

Proof sketch

The Theorem follows from two calculations. Let $\phi : (M, g) \to (N, h)$ be a submersive WHC:

Lemma (1), (**[BG 92]**?)

X, Y, Z vectorfields in $\Gamma(TN)$, let $\hat{X}, \hat{Y}, \hat{Z}$ denote their horizontal lifts to M. Then:

 $h(\nabla^N_X Y, Z) = \lambda^2 g(\nabla^M_{\widehat{X}} \widehat{Y}, \widehat{Z}) + \widehat{X}(\ln \lambda) h(Y, Z) + \widehat{Y}(\ln \lambda) h(X, Z) - \widehat{Z}(\ln \lambda) h(X, Y)$

One uses this to see:

Lemma (2)

Let $B \subset N$ codimension p submanifold, $Z \in \Gamma(TN)$ orthogonal to B:

$$h(\frac{\tau_p}{\lambda^{p-2}}, Z) = h(d\phi(H_{\phi^{-1}(B)}) - \lambda^2 H_B, Z)$$

Then

(i) \iff (iii) \implies (ii) are clear. (ii) \implies (i) follows from:

Lemma

$y \in N$, for all vector subspaces $V \subset T_y N$ there is a $B \subset N$ minimal with $y \in B$ and $T_y B = V$.

Remark

Lemmas (1) and (2) do not require full WHC, an infinitesimal version suffices.

Corollary (1)

$$\begin{split} \phi &: (M,g) \to (N,h), B \subset N \text{ minimal and } \phi \text{ submersive and WHC to 1st order along } \phi^{-1}(B). \text{ TFAE:} \\ (i) \quad \phi^{-1}(B) \text{ is mininal.} \\ (ii) \quad \tau_{\dim N - \dim B}(\phi) \in T_{\phi(x)}B \text{ for all } x \in \phi^{-1}(B). \end{split}$$

Remark

For B a point this is already contained in Baird-Gudmundsson 1994.

Corollaries

The following statement is the one I want to apply in the next few slides:

Corollary (2)

 $\phi : (M, g) \rightarrow (N, h)$ submersive harmonic morphism with conformality factor λ . $B \subset N$ minimal with dim $B \neq \dim N - 2$. TFAE:

(i) $\varphi^{-1}(B)$ is minimal.

(ii) $d\phi(\nabla \ln \lambda) \in T_{\phi(x)}B$ for all $x \in \phi^{-1}(B)$.

Proof.

One has:

$$\tau_{dim \, N-dim \, B}(\phi) = \lambda^{dim \, N-dim \, B-2} \left(\tau_2(\phi) + (dim \, N-dim \, B-2) d\phi(\nabla \ln \lambda)\right)$$

where $\tau_2(\phi) = 0$ since ϕ is a harmonic morphism.

Application to polynomial harmonic morphisms

Polynomials to ${\mathbb C}$

Let $P : \mathbb{R}^m \to \mathbb{C}$ be a homogeneous polynomial harmonic morphism. The only minimal submanifolds of codimension $\notin \{0, 2\}$ are straight lines.

Its usually easier to calculate $dP(\nabla \frac{1}{\lambda^2})$ rather than $dP(\nabla \ln \lambda)$. We calculate this for some examples:

Polynomials to $\mathbb C$

Let $P : \mathbb{R}^m \to \mathbb{C}$ be a homogeneous polynomial harmonic morphism. The only minimal submanifolds of codimension $\notin \{0, 2\}$ are straight lines.

Its usually easier to calculate $dP(\nabla \frac{1}{\lambda^2})$ rather than $dP(\nabla \ln \lambda)$. We calculate this for some examples:

1. $P: \mathbb{C}^{m} \to \mathbb{C}, (z_{1}, ..., z_{m}) \mapsto \sum_{i} z_{i}^{2}.$ $dP(\nabla \frac{1}{\lambda^{2}}) (z_{1}, ..., z_{m}) = 32 P(z_{1}, ..., z_{m}).$ 2. $P: \mathbb{C}^{2} \to \mathbb{C}, (z_{1}, z_{2}) \mapsto z_{1}^{2} + 2z_{2}^{2}.$ $dP(\nabla \frac{1}{\lambda^{2}}) (z_{1}, z_{2}) = 32z_{1}^{2} + 256z_{2}^{2}.$ 3. $P: \mathbb{C}^{3} \times \mathbb{R} \to \mathbb{C}, ((z, u, w), t) \mapsto z^{2}w + u^{2}\overline{w} + 2izut.$

$$dP(\nabla \frac{1}{\lambda^2})(z, u, w, t) = 32(|z|^2 + |u|^2 + |w|^2 + t^2)P(z, u, w, t).$$

- 4. $P: \mathbb{C}^3 \times \mathbb{R} \to \mathbb{C}$, $((z, u, w), t) \mapsto z^2 w + \gamma^2 u^2 \overline{w} + 2\gamma izut$, here $\gamma \in \mathbb{C}$. Then $dP(\nabla \frac{1}{\lambda^2})$ is very complicated and not proportional to P unless $\gamma \in \{-1, 0, 1\}$.
- 5. P : $\mathbb{C}^4 \to \mathbb{C}$, $(z, u, v, w) \mapsto z^2 w v u^2 \overline{wv} + z u(|w|^2 |v|^2)$. Then

$$dP(\nabla \frac{1}{\lambda^2})(z, u, v, w) = 8\left[(|z|^2 + |u|^2 + |v|^2 + |w|^2)^2 + 2(|z|^2 + |u|^2)(|v|^2 + |w|^2)\right] \cdot P(z, u, v, w)$$

We see a pattern:

- The first guess tends to have $dP(\nabla \ln \lambda)$ being proportional to P. (\longrightarrow lines through zero get pulled back to minimal hypersurfaces)
- The second guess tends to have $\bigcup_{x \in P^{-1}(\{y\}} \{dP(\nabla \ln \lambda)\}\$ spanning \mathbb{C} . (\longrightarrow no line pulls back to a minimal hypersurface)

Remark

Important: The general discussion for $\mathbb{R}^m \to \mathbb{C}$ is not new! It is discussed **[BG 94]**, and recently Kislitsyn **[Ki 24]** finds another way to write the condition $dP(\nabla \ln \lambda) \propto P$.

Polynomials $\mathbb{R}^m \to \mathbb{R}^n$

Motivated by the examples to $\ensuremath{\mathbb{C}}$ we define:

Definition

A homogeneous polynomial harmonic morphisms $P : \mathbb{R}^m \to \mathbb{R}^n$ is said to be *umbilical* if there is a function $f : \mathbb{R}^m \to \mathbb{R}$ so that

 $dP(\nabla \ln \lambda) (x) = f(x) P(x)$

for all $x \in \mathbb{R}^m$.

Proposition

Let $C \subset \mathbb{R}^n$ be a minimal cone and $P : \mathbb{R}^m \to \mathbb{R}^n$ an umbilical harmonic morphism. Then $P^{-1}(C)$ is a minimal cone at its regular points.

In particular: Umbilical harmonic morphisms pull back minimal submanifolds of S^{n-1} to minimal submanifolds of S^{m-1} (albeit not necessarily preserving closedness!)

In searching for examples we have the problem that not many harmonic morphisms $\mathbb{R}^m \to \mathbb{R}^n$ with n > 2 are known. To my knowledge we only have:

- 0. Orthogonal projections and homotheties.
- 1. Degree 2 polynomials (classified by Ou [Ou 97], and Ou & Wood [OW 96]).
- 2. Multiplications $\mathbb{K}^m \to \mathbb{K}$ where \mathbb{K} is the quaternions or octonions.

And direct sums and compositions of the above.

We first review the degree 2 case.

1. A *Clifford system* of \mathbb{R}^n on \mathbb{R}^m is a system $A_1, ..., A_n$ of symmetric $m \times m$ matrices so that:

$$A_iA_j + A_jA_i = 2\delta_{ij}\mathbb{1}_{m\times m}$$

2. If $A_1,...,A_n$ is a Clifford system on \mathbb{R}^m then we associate to it

$$P: \mathbb{R}^m \to \mathbb{R}^n$$
, $P(x)_i = \langle x, A_i x \rangle$

Remark

- A Clifford system is the same as an orthogonal representation of the Clifford algebra $\rho : \mathcal{C}(\mathbb{R}^n, -\langle, \rangle) \to \text{End}(\mathbb{R}^m).$
- The map P is the same as $\mathbb{R}^m \to (\mathbb{R}^n)^*$, $x \mapsto [v \mapsto \langle x, \rho(v)x \rangle]$.
- Every degree 2 harmonic morphism is a weighted direct sum of such maps.

Proposition

Let $P = \bigoplus_i \lambda_i P_{\rho_i}$ a quadratic harmonic morphism. Then P is umbilical if and only if the weights $|\lambda_i|$ are all equal. In this case 0 is the only critical point of P.

Polynomials of this type are already called umbilical in the literature (hence the name).

Corollary

If $P : \mathbb{R}^m \to \mathbb{R}^n$ is a quadratic umbilical polynomial harmonic morphism then P pulls back closed minimal submanifolds of S^{n-1} to closed minimal submanifolds of S^{m-1} .

New polynomials

We now describe some new examples of polynomial harmonic morphisms $\mathbb{R}^m \to \mathbb{R}^n$. The simplest example is as follows:

Definition

Let $\rho_1: \mathcal{C}(\mathbb{R}^n) \to \mathsf{End}(\mathbb{R}^{m_1})$, $\rho_2: \mathcal{C}(\mathbb{R}^{m_1}) \to \mathsf{End}(\mathbb{R}^{m_2})$ be Clifford systems. We define:

 $P: \mathbb{R}^{m_1} \oplus \mathbb{R}^{m_2} \to (\mathbb{R}^n)^*, \qquad (x,y) \mapsto [\nu \mapsto \langle y, \rho_2(\rho_1(\nu)x)y\rangle]$

New polynomials

We now describe some new examples of polynomial harmonic morphisms $\mathbb{R}^m \to \mathbb{R}^n$. The simplest example is as follows:

Definition

Let $\rho_1 : \mathcal{C}(\mathbb{R}^n) \to \mathsf{End}(\mathbb{R}^{m_1})$, $\rho_2 : \mathcal{C}(\mathbb{R}^{m_1}) \to \mathsf{End}(\mathbb{R}^{m_2})$ be Clifford systems. We define:

 $P: \mathbb{R}^{m_1} \oplus \mathbb{R}^{m_2} \to (\mathbb{R}^n)^*, \qquad (x,y) \mapsto [\nu \mapsto \langle y, \rho_2(\rho_1(\nu)x)y\rangle]$

Definition

Let $\rho_k : \mathcal{C}(\mathbb{R}^{m_{k-1}}) \to \text{End}(\mathbb{R}^{m_k})$ be Clifford systems. For $\nu \in \mathbb{R}^{m_0}$ and $(x_\ell, ..., x_1) \in \bigoplus_{k=1}^{\ell} \mathbb{R}^{m_k}$ let $A_0(\nu) = \nu$ and

$$A_k(\nu) = \rho_k(A_{k-1}(\nu))x_k.$$

Then define

$$P: \bigoplus_{k=1}^{\ell} \mathbb{R}^{m_k} \to (\mathbb{R}^{m_0})^*, \qquad (x_{\ell}, ..., x_1) \mapsto [\nu \mapsto \langle x_{\ell}, A_{\ell}(\nu) x_{\ell} \rangle].$$

Reduction from harmonic morphisms

oriedler@uni-muenster.de 22

New polynomials

Proposition

The polynomials defined on the previous slides are umbilical harmonic morphisms.

Open questions

The following questions motivated this investigation:

• The minimal cones generated by $\mathbb{C}^m \to \mathbb{C}$, $(z_1, ..., z_m) \mapsto \sum_i z_i^2$ are isometric to Simon's cone, which is *area-minimising* for $m \ge 4$.

Can one adapt the proof to figure out when general umbilical polynomial harmonic morphisms $\mathbb{R}^m \to \mathbb{C}$ generate area-minimising cones?

- For a holomorphic map $\mathbb{C}^m \to \mathbb{C}$, all of its level sets are Kähler varieties, hence area-minismising. When are the level sets of a polynomial harmonic morphism $\mathbb{R}^m \to \mathbb{C}$ area-minimisers? Stable?
- For an umbilical polynomial harmonic morphism $P : \mathbb{R}^m \to \mathbb{R}^n$ the level set $P^{-1}(\{0\})$ is minimal near its regular points.

Is it stationary / stable / area-minimising as a singular variety?

Open questions

The following questions motivated this investigation:

• The minimal cones generated by $\mathbb{C}^m \to \mathbb{C}$, $(z_1, ..., z_m) \mapsto \sum_i z_i^2$ are isometric to Simon's cone, which is *area-minimising* for $m \ge 4$.

Can one adapt the proof to figure out when general umbilical polynomial harmonic morphisms $\mathbb{R}^m \to \mathbb{C}$ generate area-minimising cones?

- For a holomorphic map $\mathbb{C}^m \to \mathbb{C}$, all of its level sets are Kähler varieties, hence area-minismising. When are the level sets of a polynomial harmonic morphism $\mathbb{R}^m \to \mathbb{C}$ area-minimisers? Stable?
- For an umbilical polynomial harmonic morphism $P : \mathbb{R}^m \to \mathbb{R}^n$ the level set $P^{-1}(\{0\})$ is minimal near its regular points.

Is it stationary / stable / area-minimising as a singular variety?

Thank you for your attention!!

References

References

- [BE 81] Baird, P., & Eells, J.. A conservation law for harmonic maps. In *Geometry Symposium Utrecht 1980: Proceedings of a Symposium Held at the University of Utrecht, The Netherlands, August 27 29, 1980* (pp. 1-25). Berlin, Heidelberg: Springer Berlin Heidelberg.
- [**BG 94**] Baird, P., & Gudmundsson, S. (1992). p-Harmonic maps and minimal submanifolds. *Mathematische Annalen, 294*, 611-624.
- [Fu 78] Fuglede, B. (1978). Harmonic morphisms between Riemannian manifolds. In *Annales de l'institut Fourier* (Vol. 28, No. 2, pp. 107-144).
- **[Ish 79]** Ishihara, T. (1979). A mapping of Riemannian manifolds which preserves harmonic functions. *Journal of Mathematics of Kyoto University*, *19*(2), 215-229.
- [Ki 24] Kislitsyn, A. (2024). Minimal submanifolds in spheres and complex-valued eigenfunctions. *arXiv preprint* arXiv:2407.09708.
- [PT 86] Palais, R. S., & Terng, C. L. (1986). Reduction of variables for minimal submanifolds. *Proceedings of the American Mathematical Society*, *98(3)*, 480-484.
- [**Ou 97**] Ou, Y. L. (1997). Quadratic harmonic morphisms and O-systems. In *Annales de l'institut Fourier* (Vol. 47, No. 2, pp. 687-713).
- [OW 96] Ou, Y. L., & Wood, J. C. (1996). On the classification of quadratic harmonic morphisms between Euclidean spaces. Algebras Groups Geom. 13, no. 1, 41–53
- [Ri 24] Riedler, O. (2023). Closed embedded self-shrinkers of mean curvature flow. The Journal of Geometric Analysis, 33(6), 172.
- **[Wa 94]** Wang, Q. M., & Sterling, I. (1994). On a class of minimal hypersurfaces in \mathbb{R}^n . *Mathematische Annalen, 298,* 207-251.