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Motivation and origins of c-biharmonic maps

How could we generalize the well-known harmonic
maps”?

Let (M™,g) and (N",h) be two Riemannian manifolds.
@ Energy functional

E:C*(M,N) =R, E(¢)= l/ |do|* v,.
2 Jm
@ Euler-Lagrange equation (harmonic equation)

() = traceVd¢
= 0,

where V represents the connection on the pull-back bundle ¢~ 'TN.
@ Critical points of E are called harmonic maps.
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Motivation and origins of c-biharmonic maps

Biharmonic maps

Let (M™,g) and (N",h) be two Riemannian manifolds.
@ Bienergy functional

1
Er:iC"(MN) R, Ex(9)=; [ Is(@)Pv,
@ Euler-Lagrange equation (biharmonic equation)

©(9) = —Ar(9)—traceR"(d9 ("), T(¢))do(-)
= 0.

@ Critical points of E, are called biharmonic maps.
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Motivation and origins of c-biharmonic maps

The biharmonic equation (G.Y. Jiang - 1986)

7(9) = —At(¢) — trace R (d9 (), 7(9))d¢(-) =0,

where o
At(¢) = —trace (VV — Vy)

is the rough Laplacian on sections of ¢ ~'7N" and

RY(X,Y)Z = VIVYZ - VYVRZ -V} yZ.

@ is a fourth-order non-linear elliptic equation;
@ any harmonic map is a stable biharmonic map;
@ a non-harmonic biharmonic map is called proper-biharmonic;
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Motivation and origins of c-biharmonic maps

Does biharmonicity serve as a ‘good’ generalization of
harmonicity?

@ Biharmonic isometric immersions enjoy many intriguing properties; there
are many examples in the Euclidean spheres (Balmus, Montaldo, Oniciuc
—2008); in the Euclidean space there exists a challenging conjecture of
B.-Y. Chen claiming that any biharmonic submanifold is minimal.

From the point of view of submanifolds theory, the answer is YES!

@ Both harmonic and biharmonic equations are invariant under homotetic
transformations of the domain;

@ The harmonic equation is invariant under conformal transformations of
the domain in dimension two;

@ The biharmonic equation does not enjoy conformal invariance in any
dimension.

From the point of view of conformal geometry, the answer is NO!
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Motivation and origins of c-biharmonic maps

Introducing the c-biharmonicity

Theorem 3.1 (Berard — 2008)

Let (M™, g) and (N",h) be two Riemannian manifolds, with m even. Then, there
exists a functional E;, ” acting on C* (M,N) which is conformally invariant with
respect to the domain metric g. The corresponding Euler-Lagrange equation
is a m-th-order non-liniar elliptic equation with the leading term (A)’"/ = T(¢).

Definition

The critical points of E, j are called conformal-harmonic maps, or c-harmonic
maps.

Whenm =2, we have E{ = E.
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Motivation and origins of c-biharmonic maps

Introducing the c-biharmonicity

The equation TZ/z(‘P) = 0 does not have an explicit expression. However,
since we want to work with this equation, we propose

@ to keep the degree of the Euler-Lagrange equation to be four;
@ to extend the expression of ES to any manifold M™, not only M*.

This functional will be conformally invariant only when m = 4.

Definition
@ The (new) functional ES is called conformal-bienergy functional or
c-bienergy functional.

@ The critical points of E are called conformal-biharmonic maps, or
c-biharmonic maps.
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Motivation and origins of c-biharmonic maps

Introducing the c-biharmonicity

Let (M™,g) and (N",h) be two Riemannian manifolds.
@ Conformal-bienergy (c-bienergy) functional

B5(0) = Ex(0) + | (3 Scal do ? — wacela (Rie())a9() ) v

@ Euler-Lagrange equation (c-biharmonic equation)

%5(9) = 12((]))+2trace(vd¢)(Ric(-),-)—%Scalr((]))—i—%dq)(VScal)
= 0.

In the particular case when ¢ : M* — R, then 15 is the Paneitz operator.
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Bienergy functional vs. c-bienergy functional

Proposition 4.1

We have E5 = E, in each of the following cases:
i) if the dimension of the domain manifold is m = 1;
ii) if the domain manifold is a 3-dimensional Einstein manifold;
iii) if the domain manifold M™ is Ricci-flat.
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Properties of c-biharmonic maps

Harmonic maps vs. c-biharmonic maps

Proposition 4.2

The identity map 1d : (M™,g) — (M™,g) is c-biharmonic if and only if Scal is
constant.
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Harmonic maps vs. c-biharmonic maps

Proposition 4.2

The identity map 1d : (M™,g) — (M™,g) is c-biharmonic if and only if Scal is
constant.

M™ is Einstein

Harmonic maps c-biharmonic maps

A(m—13) >0,

M™ is compact Einstein,
Sectional curvature of N is <0

Ric = Ald
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Properties of c-biharmonic maps

Harmonic maps vs. c-biharmonic maps

Proposition 4.3

Let ¢ : M™ — N" be a harmonic map, where M is an Einstein manifold with
Ric=A1Id and A is a real constant. Then ¢ is c-biharmonic.

Proposition 4.4

Let ¢ : M™ — N™ be a smooth map and assume that M is a compact Einstein
manifold with Ric = A1d and A is a real constant, and N has non-positive
sectional curvature. If A (m—3) > 0, then ¢ is c-biharmonic if and only if it is
harmonic.

When M = S*(r) we can recover a result from (Lamm - 2005), that is

Corollary 4.5

Let ¢ : S*(r) — N™ be a smooth map and assume that N has non-positive
sectional curvature. Then ¢ is c-biharmonic if and only if it is harmonic.
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Examples of c-biharmonic hypersurfaces in space forms
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c-biharmonic hypersurfaces in space forms

Let ¢ : M™ — N™*1(c) be a hypersurface. Then

%rﬁ(db) - (Af+£ (5|A|2 —om¥f—c <2m2 - 11m+6)) - itraceA3> n
— mfVf —2A(VF) + ——V Scal. (1)
3m

We will consider the simplest cases:
@ totally geodesic hypersurfaces in space forms;
@ minimal hypersurfaces in space forms;
@ CMC hypersurfaces in space forms;
@ hypersurfaces with VA = 0 in space forms.
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Examples of c-biharmonic hypersurfaces in space forms

Totally geodesic and minimal hypersurfaces in space
forms

Proposition 5.1

Any totally geodesic hypersurface in N"*1(c) is c-biharmonic.

Proposition 5.2

Let ¢ : M™ — N™*1(c) be a minimal hypersurface. Then M is c-biharmonic if
and only if trace A> = 0 and Scal is constant.

Any minimal Einstein hypersurface in a space form is c-biharmonic.

Corollary 5.4

A minimal hypersurface with VA = 0 in a space form is c-biharmonic if and
only if trace A3 = 0.



Biharmonic hypersurfaces vs. c-biharmonic
hypersurfaces

Using a result of (Lusala, Scherfner, Sousa — 2005), we obtain

@ There is an example of c-biharmonic hypersurfaces with 4 constant
distinct principal curvatures: 1++/2, 1 —+/2, —1++/2 and —1 —/2;

@ All known examples of proper biharmonic hypersurfaces have only 1 or 2
constant distinct principal curvatures.

20/49



CMC hypersurfaces in space forms

From (1) we obtain

Proposition 5.5

Let ¢ : M™ — N"™*1(c) be a CMC hypersurface. Then M is c-biharmonic if and
only if
{ mf (5|A|* —2m*f? — ¢ (2m* — 11m+6)) — 6 trace A> =0,

V Scal =0.
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CMC Einstein hypersurfaces in space forms

We have seen in Corollary 5.3 that a minimal Einstein hypersurface in a space
form is c-biharmonic. When the hypersurface is non-minimal, the situation is
more rigid.

Theorem 5.6

Let ¢ : M™ — N™*1(c) be a non-minimal CMC Einstein hypersurface with
Ric = A1d, where A is a real constant. Then, M is c-biharmonic if and only if M
is umbilical,

P 6me(m—1) 2o c(=2m*+11m—6)
-  2m*-5m+6 '

0.
2m? —5m+6’ c7

In this case, one of the following holds
i) c>0andm<4;
i) c<0andm>5.
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Hypersurfaces with VA = 0 in space forms

We have seen in Corollary 5.4 that a minimal hypersurface with VA=0in a
space form is c-biharmonic iff. traceA* = 0. When the hypersurface with
VA =0 is non-minimal, we obtain

Proposition 5.7

Let ¢ : M™ — N™*1(c) be a non-minimal hypersurface with VA = 0. Then, M is
c-biharmonic if and only

A2 (6|A|2 _sm2f? - 6cm) S mf (2m2f2 +e (2m2 —1m+ 12)) —0. (2
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c-biharmonic hypersurfaces in R !
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c-biharmonic hypersurfaces in R !

: HJ




c-biharmonic hypersurfaces with VA = 0 in R"+!

» The hyperplanes of R"*! are totally geodesic
and c-biharmonic;

o No m-dimensional hypersphere or cylinder is
c-biharmonic in R"*1,
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Examples of c-biharmonic hypersurfaces in space forms
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c-biharmonic hypersurfaces with VA = 0 in S"+!
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c-biharmonic hypersurfaces with VA = 0 in S"+!
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c-biharmonic hypersurfaces with VA = 0 in S”*!




Examples of c-biharmonic hypersurfaces in space forms

c-biharmonic hypersurfaces in S”*! with 1 distinct
principal curvature

Theorem 5.8

The hypersphere S™(r) is c-biharmonic in S™*! if and only if
i) r=1, i.e., S"(r) is totally geodesic in S"*' and for any m > 1;
i) m=1lorm=3andr=1/v2;

iy m=2andr=1/V3;

iv) m= 4andr_\f/2
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Examples of c-biharmonic hypersurfaces in space forms

c-biharmonic hypersurfaces in S”*! with 2 distinct
principal curvatures

Theorem 5.9

The generalized Clifford torus S™ (ry) x S™ (r,), where my +m; = m and

r?+r3 =1, is c-biharmonic in S"* if and only if one of the following cases
holds

i) my =m, =2 and either

1 1 1 1 1
r%:r%:i or r%:§<1—7§),r%:§<1+7§>
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c-biharmonic hypersurfaces in S”*! with 2 distinct
principal curvatures

Theorem (continuation)
II) mi 7é20rm27é23nd

T. 1
o T 5
I A B O

where T, is the unique positive solution of the polynomial equation
a3T3—|—a2T2+a1T+a0 =0, (3)
with the coefficients given by

apg = m (Zm% —5my + 6)

a; =m ((ml —m2)2+ (m1 — % +

S—
[3%]
8
™~
I
(O8]
S~—
o
I
=
v
(98]
B ——

ap = —my <(m1 —m2)2 + (mz = 7)2 + (my — 3)2 = 1T)
azy = —my (Zm% —S5my —|—6)
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c-biharmonic hypersurfaces with VA = 0 in H”*!
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c-biharmonic hypersurfaces with VA = 0 in H”*!
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c-biharmonic hypersurfaces with VA = 0 in H”*!




c-biharmonic hypersurfaces with VA = 0 in H”*!

We consider the one sheet hyperboloid model lying in the Minkowski space
R™!. More precisely, in R"*!, n > 2, we define the inner product

n
i=1

where X = (X', X%,... X"y and ¥ = (Y',¥?,...,Y"™") are vectors in R".
The hyperbolic space is defined by

H" = {XG R™ | (x,3)=—1 and x""! >0}.
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Hypersurfaces with VA = 0 in H”*! (Ryan — 1971; Liu,
Su —2002)

l.Mm={xeH"! |x! =r>0}
I M™ = {3 e H"! | x+2 =xH 4 q, a >0}

. pm = {zemm | gt (0)? = 2, r > 0}

MP = {E,%) eH™ | |y P =gk ()’ =2,

IV.
B2 =5, ()2 = (@42 == (147%) > 0,1 <k <m—1}
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Examples of c-biharmonic hypersurfaces in space forms

Case |I.

Theorem 5.10

The hypersurface M™ = {x € H"*! | x! = r > 0} is c-biharmonic in H" " if and
only if

i) r=0, i.e., M™ is totally geodesic in H"+!;

i) m>5and
,  2m*—11m+6

B 6m ’

r
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Cases Il and IlI.

Proposition 5.11

The hypersurface M™ = {x € H" ! | x"*2 = x"*! + 4, a > 0} cannot be
c-biharmonic in H"+!.

Proposition 5.12

The hypersurface M™ = {X eHm | ¥l () =12, r> 0} cannot be

c-biharmonic in H™ !,
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Examples of c-biharmonic hypersurfaces in space forms

Case IV.
M]I:‘IZ {(Xl Xz)GHm+1 | \Xl\ _Zk+l( ) :r2’

& = xtl, () _(xm+2)2:_(1+r2),r>o,1gkgm_l}

Proposition 5.13

The hypersurface M;" is c-biharmonic if and only if r? =T, is a positive solution of the
polynomial equation

L(T) = a3T> +arT? +a; T +ag =0, (4)
with the coefficients given by

ap = 2k — 5k% + 6k
ar =2k (k(3m—5) —m? +3m+6)

ay = —2m3+11m2—6m+4k(m2—m+3)

= 6m>
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Case IV. — non-existence results

Proposition 5.14

The hypersurface M cannot be c-biharmonic in H™ " if
i) m<7andforany1 <k<m-—1;
i) me {8,9} and
m*—3m—6
— <k
3m—5
i) m>10 and
2 _
m (m 11m—|—6) <k
4m>—m+3) —
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Case |V. -existence results

If k=1, then the hypersurface M is c-biharmonic in H™ ! if and only if m > 8.
In this case, r* is one of the two positive solutions of the polynomial equation

(4).

Proposition 5.16

Ifm>8 and 1 <k <k, then M{" is c-biharmonic in H™*' if and only if r* is one
of the two positive solutions of the polynomial equation (4), where

_2m® — 6m? —3m+mv4Am* —24m3 — 48m? + 84m — 63
- 4(3m2 —2m+3) '

Form large enough,

ki

el

e
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The stability of c-biharmonic hyperspheres in 5" +1
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The stability of c-biharmonic hyperspheres in 5" +1

Jacobi operator

Let ¢ : S"(r) — S" be a smooth map.

S0 =h(v)+

Form =1 orm = 3, we note that JS = J,.
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The stability of c-biharmonic hyperspheres in 5" +1

Jacobi operator

Let ¢ : S"(r) — S" be a smooth map.

S0 =h(v)+

Form =1 orm = 3, we note that JS = J,.

@r=landn=m+1;
@ r=1andn=m;
@ re(0,1)andn=m+1;
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The stability of c-biharmonic hyperspheres in 5" +1

The stability of the equator

Theorem 6.1 (Smith — 1975)

We consider 1 : S™ — S"™*! the canonical inclusion of the totally geodesic hypersphere
S™. Then, with respect to the energy functional E, we have

i) ifm =2, then the index and the nullity of S™ are m — 1 and 3(m+ 1), respectively;

ii)y ifm >3, then the index and the nullity of S™ are m+2 and (m+1)(m+2)/2,
respectively.

Theorem 6.2

We consider 1 : S™ — S"™*! the canonical inclusion of the totally geodesic hypersphere
S™. Then, with respect to the c-bienergy functional ES, we have

i) ifm=2 orm=4, then the index and the nullity of S™ are 0 and (m+1)(m+4)/2,
respectively;

ii)y ifm =23, then the index and the nullity of S™ are 0 and (m+1)(m+2)/2,
respectively;

i)y ifm > 5, then the index and the nullity of S™ are m+2 and (m+1)(m+2)/2,
respectively.
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The stability of c-biharmonic hyperspheres in 5" +1

The stability of the identity map

Theorem 6.3 (Smith — 1975)

We consider1d : S™ — S™ the identity map of S™. Then, with respect to the energy
functional E, we have

i) ifm =2, then the index and the nullity of S™ are 0 and (m+1)(m+2)/2,
respectively;

i) ifm >3, then the index and the nullity of S™ are m+ 1 and m(m+1)/2, respectively.

Theorem 6.4

We consider1d : S™ — S™ the identity map of S™. Then, with respect to the c-bienergy
functional ES, we have

i) ifm=2 orm =4, then the index and the nullity of S™ are 0 and (m+1)(m+2)/2,
respectively;

i) if m= 3, then the index and the nullity of S™ are 0 and m(m+ 1) /2, respectively;
i)y ifm > 5, then the index and the nullity of S™ are m+ 1 and m(m+1) /2, respectively.
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The stability of c-biharmonic hyperspheres in 5" +1

The stability of the small hyperspheres of S"+1

Theorem 6.5 (Loubeau, Oniciuc — 2005)

We consider1 : S"(1/+/2) — S™*! the canonical inclusion of the small
hypersphere. Then, with respect to the bienergy functional E,, we have the
index and the nullity of S"(1/+/2) are 1 and (m+1)(m+2)/2, respectively.

Theorem 6.6

We consider 1 : S"(r) — S™*! the canonical inclusion of the small hypersphere
of radius r € (0,1). Then, with respect to the c-bienergy functional ES, we have

i) ifm=2 andr=1//3, then the index and the nullity of S"(r) are 1 and 6,
respectively;

i) m=3 andr=1/v2, then the index and the nullity of S"(r) are 1 and
(m+1)(m+2)/2, respectively;

i) ifm =4 andr =+/3/2, then the index and the nullity of S"(r) are 1 and 20,
respectively.
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The stability of c-biharmonic hyperspheres in 5" +1

Stability of c-biharmonic maps

Theorem 6.7 (Xin — 1980)

Let ¢ : S™ — N" be a non-constant harmonic map. If m > 3, then, with respect
to the energy functional E, ¢ is unstable.

Theorem 6.8

Let ¢ : S™ — N" be a non-constant harmonic map. If m > 5, then, with respect
to the c-bienergy functional ES, ¢ is unstable.
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Thank you for your attention!
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