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Eigenfunctions and Eigenfamilies

The Operators 7 and k
Definitions and Examples
Applications and Properties

Let (M™,g) be a Riemannian manifold, 7€M be the complexification of its
tangent bundle TM and extend g to a complex-bilinear form on T'CM.
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The Operators 7 and k
Definitions and Examples
Applications and Properties

Let (M™,g) be a Riemannian manifold, 7€M be the complexification of its
tangent bundle TM and extend g to a complex-bilinear form on T'CM.

Then the gradient of a complex-valued function ¢ =u+iv:(M,g) > C
is the section of TCM satisfying V¢ = Vu + i V.
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Eigenfunctions and Eigenfamilies

The Operators 7 and k
Definitions and Examples
Applications and Properties

Let (M™,g) be a Riemannian manifold, 7€M be the complexification of its
tangent bundle TM and extend g to a complex-bilinear form on T'CM.

Then the gradient of a complex-valued function ¢ =u+iv:(M,g) > C
is the section of TCM satisfying V¢ = Vu + i V.

The complex-linear Laplace-Beltrami operator T on (M, g) acts locally
on ¢ as

m(¢) =div(Ve) = Y. X7(¢) - (VxX)(9).

XeONF
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Eigenfunctions and Eigenfamilies

The Operators 7 and k
Definitions and Examples
Applications and Properties

Let (M™,g) be a Riemannian manifold, 7€M be the complexification of its
tangent bundle TM and extend g to a complex-bilinear form on T'CM.

Then the gradient of a complex-valued function ¢ =u+iv:(M,g) > C
is the section of TCM satisfying V¢ = Vu + i V.

The complex-linear Laplace-Beltrami operator T on (M, g) acts locally
on ¢ as

7(¢) =div(Ve) = 3 X() - (VyX)(9)-
XEONF
For two functions ¢, : (M, g) - C we have
(@) =7(d) ¥ +2-K(p,¥) + - T(¥),

where the conformality operator x satisfies

“(d’, 1/]) = g(v(ba Vw)
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Eigenfunctions and Eigenfamilies e @ameters » cndl @

Definitions and Examples
Applications and Properties

Definition 1.1 (Gudmundsson & Sakov

Let (M, g) be a Riemannian manifold, A, x € C. Then a complex-valued
function ¢ : M — C is said to be a (A, u)-eigenfunction if it is eigen with
respect to both the Laplace-Beltrami operator 7 and the conformality
operator k with respective eigenvalues A, p, i.e.

(@) =X ¢ and k($,¢) =p-¢°.
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Eigenfunctions and Eigenfamilies e @ameters » cndl @

Definitions d Examples
Applications and Properties

Definition 1.1 (Gudmundsson & Sakovich (2008) [2])

Let (M, g) be a Riemannian manifold, A, x € C. Then a complex-valued
function ¢ : M — C is said to be a (A, u)-eigenfunction if it is eigen with
respect to both the Laplace-Beltrami operator 7 and the conformality
operator k with respective eigenvalues A, p, i.e.

(@) =X ¢ and k($,¢) =p-¢°.

A set € of complex-valued functions on M is said to be a
(A, p)-eigenfamily on M if for all ¢, € £ we have

T(¢) =A-¢ and K($,¥)=p-¢Y.
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Eigenfunctions and Eigenfamilies

The Operators T and k
Definitions and Examples
Applications and Properties

Theorem 1.2 ( Fuglede (1978) + Ishihara (1979), (A=0 and x =0) )

A complez-valued function ¢ : (M, g) — C on a Riemannian manifold is a
harmonic morphism if and only if it is an eigenfunction with A =0 and

pn=0.
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Eigenfunctions and Eigenfamilies e @ameters » cndl @

Definitions and Examples
Applications and Properties

Example 1.3 (Coordiate projections)

Consider the functions ¢; : C" ~ R*™ - C defined by the projections
Gi i 2> 2z

Then
7(¢i) =0, K(¢i, ;) =0
so F={¢; |i=1,...n} is a (0,0)-eigenfamily.
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Eigenfunctions and Eigenfamilies

The Operators T and k
Definitions and Examples
Applications and Properties

Example 1.3 (Coordiate projections)
Consider the functions ¢; : C" ~ R*™ - C defined by the projections
Gi i 2> 2z

Then
7(¢i) =0, K(¢i, ;) =0
so F={¢; |i=1,...n} is a (0,0)-eigenfamily.

Example 1.4 (Restriction to odd-dimensional spheres)

Consider §?"™! c R*™ ~ C". Then we can define ¢; = ¢;|g2n-1 : S*"* > C.
We have that

() = (-2n+1) - ¢i, K(Bi, ;) = —1-pi;
so F={¢i | i=1,...n} is a (-2n + 1, -1)-eigenfamily
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Eigenfunctions and Eigenfamilies e @ameters » cndl @

Definitions and Examples

Applications and Properties

Eigenfamilies can be used to produce complex-valued harmonic morphisms:

Theorem 1.5 ( Gudmundsson & Sakovich (2008) [2])

Let (M, g) be a semi-Riemannian manifold and

F={¢1,...¢n}

be a finite eigenfamily of complex valued functions on M. If P,Q:C" - C
are linearly independent homogeneous polynomials of the same positive
degree.
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Eigenfunctions and Eigenfamilies e @ameters » cndl @

Definitions and Examples

Applications and Properties

Eigenfamilies can be used to produce complex-valued harmonic morphisms:

Theorem 1.5 ( Gudmundsson & Sakovich (2008) [2])

Let (M, g) be a semi-Riemannian manifold and

F={¢1,...¢n}

be a finite eigenfamily of complex valued functions on M. If P,Q:C" - C
are linearly independent homogeneous polynomials of the same positive
degree. Then the quotient

P(d1,...,0n)

Q(¢17" 7¢n)

is a non-constant harmonic morphism on the open and dense subset

{p e M|Q(¢1(p),- -, Pn(p)) #0}.
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Eigenfunctions and Eigenfamilies e @ameters » cndl @

Definitions and Examples

Applications and Properties

Eigenfunctions can be used to produce minimal submanifolds:

Theorem 1.6 ( Baird & Eells (1981), (A=0 and p =0) )

Let ¢: (M, g) — C be a horizontally conformal [x(¢, ) = 0] function
from a Riemannian manifold. Then ¢ is harmonic [7(¢) = 0] if and only
if its fibres are minimal at regular points of ¢ [V + 0].
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Eigenfunctions and Eigenfamilies TG @rocmetiens & erdl

Definitions and Examples

Applications and Properties

Eigenfunctions can be used to produce minimal submanifolds:

Theorem 1.6 ( Baird & Eells (1981), (A=0 and p =0) )

Let ¢: (M, g) — C be a horizontally conformal [x(¢, ) = 0] function
from a Riemannian manifold. Then ¢ is harmonic [7(¢) = 0] if and only
if its fibres are minimal at regular points of ¢ [V + 0].

Theorem 1.7 ( Gudmundsson & TM (2024) )

Let ¢: (M, g) — C be a complez-valued eigenfunction on a Riemannian
manifold, such that 0 € ¢(M) is a regular value for ¢. Then the fibre over
zero Fo = ¢ *({0}) is @ minimal submanifold of M.
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Eigenfunctions and Eigenfamilies

The Operators T and k
Definitions and Examples
Applications and Properties

Eigenfunctions can be used to produce p-harmonic functions:

Theorem 1.8 ( Gudmundsson & Sobak (2020) )

Let ¢: (M,g) — C be a (N, p)-eigenfunction from a Riemannian manifold.
Then for any positive integer p the mon-vanishing function

Pp: W ={xeM|p(z)¢(-00,0]} > C
with
c1 - log(g(z))P™t fp=0,A%0
@, (x) = 1 JoB(#(2)* " + c1 -log(6(x)) if 1% 0,3=0
c1-¢(z)' k log(s(x))"™ +c2-log(d(x))"™  if p#0,A#0

is proper p-harmonic on the domain W.
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Eigenfunctions and Eigenfamilies e @ameters » cndl @

Definitions and Examples

Applications and Properties

When (locally) describing an eigenfunction in polar form, some additional
relations are obtained.

Lemma 1.9 ( Riedler & Siffert (2024) [7])

Let (U, g) be a Riemannian manifold, not necessarily compact or complete,
and let ¢ : U — C be a (A, u)-eigenfunction with X, u both real and ¢(z) #0
for all x € U. Suppose ¢(x) = e ®|¢(x)| for some smooth function

h:U - R. Then:

7(h) =0;

T(In|¢]) = A - p;

t(h,|¢]) = 0;

k(I |¢l, In|@]) = k(h, k) + p.

© 000
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(X, A)-Eigenfunctions

In the context of (A, A)-eigenfunctions we have the additional result.

Proposition 2.1 ( Riedler & Siffert (2024) [7])

Let (M, g) be a compact connected Riemannian manifold and ¢ : M — C a
non-constant (A, p)-eigenfunction.

Thomas Jack Munn (X, M)-Eigenfunctions on Compact Manifolds 11



(X, A)-Eigenfunctions

In the context of (A, A)-eigenfunctions we have the additional result.

Proposition 2.1 ( Riedler & Siffert (2024) [7])

Let (M, g) be a compact connected Riemannian manifold and ¢ : M — C a
non-constant (A, p)-eigenfunction. The following are equivalent:

Q \=pu.
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(X, A)-Eigenfunctions

In the context of (A, A)-eigenfunctions we have the additional result.

Proposition 2.1 ( Riedler & Siffert (2024) [7])

Let (M, g) be a compact connected Riemannian manifold and ¢ : M — C a
non-constant (A, p)-eigenfunction. The following are equivalent:

Q \=pu.

© |4)? is constant.
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(X, A)-Eigenfunctions

In the context of (A, A)-eigenfunctions we have the additional result.

Proposition 2.1 ( Riedler & Siffert (2024) [7])

Let (M, g) be a compact connected Riemannian manifold and ¢ : M — C a
non-constant (A, p)-eigenfunction. The following are equivalent:

Q \=pu.
© |4)? is constant.

@ ¢(z)+0 for all x e M.

Thomas Jack Munn (X, M)-Eigenfunctions on Compact Manifolds 11



(X, A)-Eigenfunctions

In the context of (A, A)-eigenfunctions we have the additional result.

Proposition 2.1 ( Riedler & Siffert (2024) [7])

Let (M, g) be a compact connected Riemannian manifold and ¢ : M — C a
non-constant (A, p)-eigenfunction. The following are equivalent:

Q \=pu.
© |4)? is constant.

@ ¢(z)+0 for all x e M.

In particular, item (4) on the previous slide simplifies to

k(h, h) = -\
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(X, A)-Eigenfunctions

Main Results

Theorem 2.2 (TM & Riedler)

Let (M, g) be a compact and connected Riemannian manifold, ¢ : M — C a
non-constant smooth map, A < 0.
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(X, A)-Eigenfunctions

Main Results

Theorem 2.2 (TM & Riedler)

Let (M, g) be a compact and connected Riemannian manifold, ¢ : M — C a
non-constant smooth map, A <0. The following are equivalent:

Q ¢ is a (A, \)-eigenfunction.

© For all zo € M the map 7: (M, g) - (S*, % dt?), = — % s a

7 Al #(xo
well-defined and harmonic Riemannian submersion.

Thomas Jack Munn (X, M)-Eigenfunctions on Compact Manifolds 12



(X, A)-Eigenfunctions

(1 = 2). From Proposition 2.1 the map 7: M — S,z di(;))‘ is well
defined. For any point z1 € M there is a neighbourhood i] o? xz1 and a
function h : U — R such that

o(@) = |p(0)|e™ ™.

Thomas Jack Munn (X, M)-Eigenfunctions on Compact Manifolds

13



(X, A)-Eigenfunctions

(1 = 2). From Proposition 2.1 the map 7: M — S,z di(;))‘ is well
defined. For any point z1 € M there is a neighbourhood i] o? xz1 and a
function h : U — R such that

(@) = [¢(wo)[e™ ™).

Then Lemma, 1.9 tells us that

k(h,h) = |dh|® = =X = |A| and 7(h) = 0.
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(X, A)-Eigenfunctions

(1 = 2). From Proposition 2.1 the map 7: M — S,z di(;))‘ is well
defined. For any point z1 € M there is a neighbourhood i] o? xz1 and a
function h : U — R such that

$(@) = [$(wo)[e™ ™.
Then Lemma, 1.9 tells us that

k(h,h) = |dh|® = =X = |A| and 7(h) = 0.
Since the map _
(R7')_>(Sl,dt2)7 tHelt

is a local isometry, the first equation implies that 7 : (M, g) — (st ﬁdt2) is

a Riemannian submersion and the second implies that it is harmonic.

Thomas Jack Munn (X, M)-Eigenfunctions on Compact Manifolds

13



(X, A)-Eigenfunctions

Proof (continued)

(2=1). Let ¢: (S*, =dt*) - (C,(-,-)) denote the standard inclusion of the

iy
unit circle. We then have that

¢(z) = (com)(z)

for all x.

.

Thomas Jack Munn
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(X, A)-Eigenfunctions

Proof (continued)

(2=1). Let ¢v: (S*, ﬁdtQ) — (C, (-,-)) denote the standard inclusion of the

unit circle. We then have that

¢(z) = (com)(z)

for all z. Since 7 is a harmonic Riemannian submersion, a calculation
shows that

k(tomom) = kK(t,t)om,

T(tomw) = 7(¢)om.

Since #(t,¢) = A-¢? and 7(1) = A - ¢, we immediately verify that ¢ is a
(A, M)-eigenfunction.

.

Thomas Jack Munn (X, M)-Eigenfunctions on Compact Manifolds

14



(X, A)-Eigenfunctions

Theorem 2.3 (TM & Riedler)

Let (M, g) be compact and connected, X <0, and

w:(M,g) > (S, h= ﬁdtQ) a smooth map. The following are equivalent:

@ The map w is a harmonic Riemannian submersion.
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(X, A)-Eigenfunctions

Theorem 2.3 (TM & Riedler)

Let (M, g) be compact and connected, X <0, and
w:(M,g) > (S, h= P\Idt ) a smooth map. The following are equivalent:

@ The map w is a harmonic Riemannian submersion.
@ M is a mapping torus

My x [0, 27]
(z,0) ~ (n(z),2m)

My x5 [0,27] =

with metric

g=g(t +—dt
() B

and monodromy map n: Mo -~ My with n*g(27) = g(0), Mo zs compact,
the volume density of g(t) is constant in t, and w([z,t]) =

Thomas Jack Munn (X, M)-Eigenfunctions on Compact Manifolds 15



(X, A)-Eigenfunctions

Outline of Proof

(1=2)

o M is compact = 7: M — S* is a fibre bundle.
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(X, A)-Eigenfunctions

Outline of Proof

(1=2)
o M is compact = 7: M — S* is a fibre bundle.

o Let X = V&, where 7 is the local lift of 7 to R.
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(X, A)-Eigenfunctions

Outline of Proof

(1=2)
o M is compact = 7: M — S* is a fibre bundle.

o Let X = V&, where @ is the local lift of 7w to R. Since 7 is a
Riemannian submersion:

dr(X)?

4i(X) = 9(X, X) = 5,

so di(X) = | X|? = -\
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(X, A)-Eigenfunctions

Outline of Proof

(1=2)
o M is compact = 7: M — S* is a fibre bundle.
o Let X = V&, where @ is the local lift of 7w to R. Since 7 is a
Riemannian submersion:
dr(X)?
Al

di(X) = g(X, X) =
so di(X) = | X|? = -\
o Now, let n; denote the flow of X it follows that
Or(fme(z)) = dir (X) = -],

and so #(n:(x)) = -A-t+7(z), ie. m(n:(x)) = e (x).
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(X, A)-Eigenfunctions

Outline of Proof

(1=2)
o M is compact = 7: M — S* is a fibre bundle.

o Let X = V&, where @ is the local lift of 7w to R. Since 7 is a
Riemannian submersion:

. 2
ar(X) = 9%, %) - T
so di(X) = | X|? = -\
o Now, let n; denote the flow of X it follows that
Oy (e (z)) = di(X) = =X,
and so #(n:(x)) = -A-t+7(z), ie. m(n:(x)) = e (x).
o It follows that M is a mapping torus

. Moy x[0,2n]
M= 20) ~ (n(@).20)

with monodromy map 7 = 72, and 7([z,t]) = e*.
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(X, A)-Eigenfunctions

Outline of Proof (continued)

o It follows that M is a mapping torus

~ MO X [0727[']
~ (2,0) ~ (n(2),2m)

with monodromy map 7 = 72, and 7([z,t]) = e*.

@ Under the above diffeomorphism X = 9;. X is horizontal, so the metric
on M has the form

_ 1 g2
g=g(t) + th

where 1*g(27) = g(0) and g(t) is a family of metrics on the fibre My.
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(X, A)-Eigenfunctions

Outline of Proof (continued)

o It follows that M is a mapping torus

~ MO X [0727[']
~ (2,0) ~ (n(2),2m)

with monodromy map 7 = 72, and 7([z,t]) = e*.

@ Under the above diffeomorphism X = 9;. X is horizontal, so the metric
on M has the form

_ 1 g2
g=g(t) + th

where 1*g(27) = g(0) and g(t) is a family of metrics on the fibre My.

o Since X is divergence free, its flow preserves the volume form, so the
volume density induced by g(t) is constant with respect to ¢.
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(X, A)-Eigenfunctions

Outline of Proof (continued)

(2=1). Note that the map
7:(Rx Mo, dt” +g(t)) > (R,-),  (t,x)~1

is clearly a Riemannian submersion. It follows from the fact that the
volume density is constant over time that 7 is harmonic.
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(X, A)-Eigenfunctions

Outline of Proof (continued)

(2=1). Note that the map

7: (R x Mo, dt* + g(t)) — (R, ), (t,z) >t

is clearly a Riemannian submersion. It follows from the fact that the
volume density is constant over time that 7 is harmonic.
Now the diagram

(Mo xR, dt® + g(t)) N (R,)
I I
(Mo xy I,dt* + g(t)) —= (S*,dt?)

commutes by by construction, here the vertical arrows are the natural
covering maps. Since the vertical maps are also local isometries it follows
that 7 is a harmonic Riemannian submersion O

v
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(X, A)-Eigenfunctions

Proposition 2.4

Let (M, g) be a compact and connected Riemannian manifold, X\ € C and F
a (X, X)-eigenfamily on M. Then dim(spanc(F)) € {0,1}.
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(X, A)-Eigenfunctions

Proposition 2.4

Let (M, g) be a compact and connected Riemannian manifold, X\ € C and F
a (X, X)-eigenfamily on M. Then dim(spanc(F)) € {0,1}.

Suppose that ¢, are non-constant and in the same (A, \)-eigenfamily F.
Then it follows from Theorem 1.5 that the quotient

My (o))~ ©

is a harmonic morphism, in particular a harmonic map.
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(X, A)-Eigenfunctions

Proposition 2.4

Let (M, g) be a compact and connected Riemannian manifold, X\ € C and F
a (X, X)-eigenfamily on M. Then dim(spanc(F)) € {0,1}.

Suppose that ¢, are non-constant and in the same (A, \)-eigenfamily F.
Then it follows from Theorem 1.5 that the quotient
¢ -1
—: M~y ({0}) > C
()
is a harmonic morphism, in particular a harmonic map. Since 1 (x) + 0 for
all z € M, the domain of £ is all of M. By compactness of M % must then
be constant, i.e. ¥ and ¢ are linearly dependent. O

V.
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Generalised Eigenfamilies

Let F = {¢1,...,¢x} be a finite family of functions M — C and \; € C,
1 <4<k a vector in C* and Aij, 1<i,5 <k a symmetric complex k x k
matrix.

Q@ We call F is an (\;, A;j)-eigenfamily if for all ¢;,¢; € F:
(i, #5) = Aijdicdy,  T(di) = Xighi.

.

Thomas Jack Munn (X, M)-Eigenfunctions on Compact Manifolds 20



Generalised Eigenfamilies

Let F = {¢1,...,¢x} be a finite family of functions M — C and \; € C,
1 <4<k a vector in C* and Aij, 1<i,5 <k a symmetric complex k x k
matrix.

Q@ We call F is an (\;, A;j)-eigenfamily if for all ¢;,¢; € F:
(i, #5) = Aijdicdy,  T(di) = Xighi.

@ We say the family is A-diagonal if additionally \; = A;; for all 4.

.
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Generalised Eigenfamilies

Let F = {¢1,...,¢x} be a finite family of functions M — C and \; € C,
1 <4<k a vector in C* and Aij, 1<i,5 <k a symmetric complex k x k
matrix.

Q@ We call F is an (\;, A;j)-eigenfamily if for all ¢;,¢; € F:
(i, #5) = Aijdicdy,  T(di) = Xighi.

@ We say the family is A-diagonal if additionally \; = A;; for all 4.

@ F is said to be reduced if A;; is a non-degenerate matrix.

.
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Generalised Eigenfamilies

For A a positive definite k x k matrix, let (7", A™') denote the flat torus
T* = (81)* equipped with metric A~
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Generalised Eigenfamilies

Definition 3.2

For A a positive definite k x k matrix, let (7", A™') denote the flat torus
T* = (81)* equipped with metric A~

Theorem 3.3 (TM & Riedler)

Let (M, g) be a compact Riemannian manifold, A a symmetric real k x k
matriz, and F = {¢1,..., 0} a family of functions M — C. The following
are equivalent:

@ F is a reduced (A, —A;j)-eigenfamily.
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Generalised Eigenfamilies

Definition 3.2

For A a positive definite k x k matrix, let (7", A™') denote the flat torus
T* = (81)* equipped with metric A~

Theorem 3.3 (TM & Riedler)

Let (M, g) be a compact Riemannian manifold, A a symmetric real k x k
matriz, and F = {¢1,..., 0} a family of functions M — C. The following
are equivalent:
@ F is a reduced (A, —A;j)-eigenfamily.
© A is positive definite and for all xo € M the map
m:(M,g) > (T* A™Y), x> (22 01 (2) ) s o well-defined and

g . . [¢1(z0)|” """ |Pr (z0)]
harmonic Riemannian submersion.
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Generalised Eigenfamilies

Thank you for watching!
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