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The Operators τ and κ
Definitions and Examples
Applications and Properties

Let (Mm, g) be a Riemannian manifold, TCM be the complexification of its
tangent bundle TM and extend g to a complex-bilinear form on TCM .

Then the gradient of a complex-valued function ϕ = u + i v ∶ (M,g) → C
is the section of TCM satisfying ∇ϕ = ∇u + i∇v.

The complex-linear Laplace-Beltrami operator τ on (M,g) acts locally
on ϕ as

τ(ϕ) = div(∇ϕ) = ∑
X∈ONF

X2(ϕ) − (∇XX)(ϕ).

For two functions ϕ,ψ ∶ (M,g) → C we have

τ(ϕ ⋅ ψ) = τ(ϕ) ⋅ ψ + 2 ⋅ κ(ϕ,ψ) + ϕ ⋅ τ(ψ),

where the conformality operator κ satisfies

κ(ϕ,ψ) = g(∇ϕ,∇ψ).
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Applications and Properties

Definition 1.1 (Gudmundsson & Sakovich (2008) [2])

Let (M,g) be a Riemannian manifold, λ,µ ∈ C. Then a complex-valued
function ϕ ∶M → C is said to be a (λ,µ)-eigenfunction if it is eigen with
respect to both the Laplace-Beltrami operator τ and the conformality
operator κ with respective eigenvalues λ,µ, i.e.

τ(ϕ) = λ ⋅ ϕ and κ(ϕ,ϕ) = µ ⋅ ϕ2.

A set E of complex-valued functions on M is said to be a
(λ,µ)-eigenfamily on M if for all ϕ,ψ ∈ E we have

τ(ϕ) = λ ⋅ ϕ and κ(ϕ,ψ) = µ ⋅ ϕψ.
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Theorem 1.2 ( Fuglede (1978) + Ishihara (1979), (λ = 0 and µ = 0) )

A complex-valued function ϕ ∶ (M,g) → C on a Riemannian manifold is a
harmonic morphism if and only if it is an eigenfunction with λ = 0 and
µ = 0.
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Example 1.3 (Coordiate projections)

Consider the functions ϕi ∶ Cn ≃ R2n → C defined by the projections

ϕi ∶ z ↦ zi.

Then
τ(ϕi) = 0, κ(ϕi, ϕj) = 0

so F = {ϕi ∣ i = 1, . . . n} is a (0,0)-eigenfamily.

Example 1.4 (Restriction to odd-dimensional spheres)

Consider S2n−1 ⊂ R2n ≃ Cn. Then we can define ϕ̃i = ϕi∣S2n−1 ∶ S2n−1 → C.
We have that

τ(ϕ̃i) = (−2n + 1) ⋅ ϕi, κ(ϕ̃i, ϕ̃j) = −1 ⋅ ϕiϕj

so F̃ = {ϕ̃i ∣ i = 1, . . . n} is a (−2n + 1,−1)-eigenfamily

Thomas Jack Munn (λ,λ)-Eigenfunctions on Compact Manifolds 6
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Eigenfamilies can be used to produce complex-valued harmonic morphisms:

Theorem 1.5 ( Gudmundsson & Sakovich (2008) [2])

Let (M,g) be a semi-Riemannian manifold and

F = {ϕ1, . . . ϕn}

be a finite eigenfamily of complex valued functions on M . If P,Q ∶ Cn → C
are linearly independent homogeneous polynomials of the same positive
degree.

Then the quotient
P (ϕ1, . . . , ϕn)
Q(ϕ1, . . . , ϕn)

is a non-constant harmonic morphism on the open and dense subset

{p ∈M ∣Q(ϕ1(p), . . . , ϕn(p)) ≠ 0}.

Thomas Jack Munn (λ,λ)-Eigenfunctions on Compact Manifolds 7
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Eigenfunctions can be used to produce minimal submanifolds:

Theorem 1.6 ( Baird & Eells (1981), (λ = 0 and µ = 0) )

Let ϕ ∶ (M,g) → C be a horizontally conformal [κ(ϕ,ϕ) = 0] function
from a Riemannian manifold. Then ϕ is harmonic [τ(ϕ) = 0] if and only
if its fibres are minimal at regular points of ϕ [∇ϕ ≠ 0].

Theorem 1.7 ( Gudmundsson & TM (2024) )

Let ϕ ∶ (M,g) → C be a complex-valued eigenfunction on a Riemannian
manifold, such that 0 ∈ ϕ(M) is a regular value for ϕ. Then the fibre over
zero F0 = ϕ−1({0}) is a minimal submanifold of M .

Thomas Jack Munn (λ,λ)-Eigenfunctions on Compact Manifolds 8
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Eigenfunctions can be used to produce p-harmonic functions:

Theorem 1.8 ( Gudmundsson & Sobak (2020) )

Let ϕ ∶ (M,g) → C be a (λ,µ)-eigenfunction from a Riemannian manifold.
Then for any positive integer p the non-vanishing function

Φp ∶W = {x ∈M ∣ ϕ(x) ∉ (−∞,0]} → C

with

Φp(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c1 ⋅ log(ϕ(x))p−1 if µ = 0, λ ≠ 0
c1 ⋅ log(ϕ(x))2p−1 + c1 ⋅ log(ϕ(x))2p−2 if µ ≠ 0, λ = 0

c1 ⋅ ϕ(x)
1−λ
µ log(ϕ(x))p−1 + c2 ⋅ log(ϕ(x))p−1 if µ ≠ 0, λ ≠ 0

is proper p-harmonic on the domain W .
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When (locally) describing an eigenfunction in polar form, some additional
relations are obtained.

Lemma 1.9 ( Riedler & Siffert (2024) [7])

Let (U, g) be a Riemannian manifold, not necessarily compact or complete,
and let ϕ ∶ U → C be a (λ,µ)-eigenfunction with λ,µ both real and ϕ(x) ≠ 0
for all x ∈ U . Suppose ϕ(x) = eih(x)∣ϕ(x)∣ for some smooth function
h ∶ U → R. Then:

1 τ(h) = 0;
2 τ(ln ∣ϕ∣) = λ − µ;
3 κ(h, ∣ϕ∣) = 0;
4 κ(ln ∣ϕ∣, ln ∣ϕ∣) = κ(h,h) + µ.

Thomas Jack Munn (λ,λ)-Eigenfunctions on Compact Manifolds 10
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In the context of (λ,λ)-eigenfunctions we have the additional result.

Proposition 2.1 ( Riedler & Siffert (2024) [7])

Let (M,g) be a compact connected Riemannian manifold and ϕ ∶M → C a
non-constant (λ,µ)-eigenfunction.

The following are equivalent:

1 λ = µ.
2 ∣ϕ∣2 is constant.

3 ϕ(x) ≠ 0 for all x ∈M .

In particular, item (4) on the previous slide simplifies to

κ(h,h) = −λ.

Thomas Jack Munn (λ,λ)-Eigenfunctions on Compact Manifolds 11
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Main Results

Theorem 2.2 (TM & Riedler)

Let (M,g) be a compact and connected Riemannian manifold, ϕ ∶M → C a
non-constant smooth map, λ < 0.

The following are equivalent:

1 ϕ is a (λ,λ)-eigenfunction.
2 For all x0 ∈M the map π ∶ (M,g) → (S1, 1

∣λ∣dt
2), x↦ ϕ(x)

∣ϕ(x0)∣ is a
well-defined and harmonic Riemannian submersion.

Thomas Jack Munn (λ,λ)-Eigenfunctions on Compact Manifolds 12
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Proof

(1⇒ 2). From Proposition 2.1 the map π ∶M → S1, x↦ ϕ(x)
∣ϕ(x0)∣ is well

defined. For any point x1 ∈M there is a neighbourhood U of x1 and a
function h ∶ U → R such that

ϕ(x) = ∣ϕ(x0)∣eih(x).

Then Lemma 1.9 tells us that

κ(h,h) = ∥dh∥2 = −λ = ∣λ∣ and τ(h) = 0.

Since the map
(R, ⋅) → (S1, dt2), t↦ eit

is a local isometry, the first equation implies that π ∶ (M,g) → (S1, 1
∣λ∣dt

2) is
a Riemannian submersion and the second implies that it is harmonic.

Thomas Jack Munn (λ,λ)-Eigenfunctions on Compact Manifolds 13
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Proof (continued)

(2⇒ 1). Let ι ∶ (S1, 1
∣λ∣dt

2) → (C, ⟨⋅, ⋅⟩) denote the standard inclusion of the
unit circle. We then have that

ϕ(x) = (ι ○ π)(x)

for all x.

Since π is a harmonic Riemannian submersion, a calculation
shows that

κ(ι ○ π, ι ○ π) = κ(ι, ι) ○ π,
τ(ι ○ π) = τ(ι) ○ π.

Since κ(ι, ι) = λ ⋅ ι2 and τ(ι) = λ ⋅ ι, we immediately verify that ϕ is a
(λ,λ)-eigenfunction.
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Theorem 2.3 (TM & Riedler)

Let (M,g) be compact and connected, λ < 0, and
π ∶ (M,g) → (S1, h = 1

∣λ∣dt
2) a smooth map. The following are equivalent:

1 The map π is a harmonic Riemannian submersion.

2 M is a mapping torus

M0 ×η [0,2π] =
M0 × [0,2π]

(x,0) ∼ (η(x),2π)

with metric

g = g(t) + 1

∣λ∣
dt2

and monodromy map η ∶M0 →M0 with η∗g(2π) = g(0), M0 is compact,
the volume density of g(t) is constant in t, and π([x, t]) = eit.

Thomas Jack Munn (λ,λ)-Eigenfunctions on Compact Manifolds 15
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Outline of Proof

(1⇒ 2)
M is compact ⇒ π ∶M → S1 is a fibre bundle.

Let X = ∇π̂, where π̂ is the local lift of π to R. Since π̂ is a
Riemannian submersion:

dπ̂(X) = g(X,X) = dπ̂(X)
2

∣λ∣
,

so dπ̂(X) = ∥X∥2 = −λ.
Now, let ηt denote the flow of X it follows that

∂t(π̂ηt(x)) = dπ̂(X) = −λ,

and so π̂(ηt(x)) = −λ ⋅ t + π̂(x), i.e. π(ηt(x)) = eitπ(x).
It follows that M is a mapping torus

M ≅ M0 × [0,2π]
(x,0) ∼ (η(x),2π)

with monodromy map η = η2π, and π([x, t]) = eit.

Thomas Jack Munn (λ,λ)-Eigenfunctions on Compact Manifolds 16
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∣λ∣
,

so dπ̂(X) = ∥X∥2 = −λ.
Now, let ηt denote the flow of X it follows that

∂t(π̂ηt(x)) = dπ̂(X) = −λ,

and so π̂(ηt(x)) = −λ ⋅ t + π̂(x), i.e. π(ηt(x)) = eitπ(x).
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Outline of Proof (continued)

It follows that M is a mapping torus

M ≅ M0 × [0,2π]
(x,0) ∼ (η(x),2π)

with monodromy map η = η2π, and π([x, t]) = eit.
Under the above diffeomorphism X ≡ ∂t. X is horizontal, so the metric
on M has the form

g = g(t) + 1
∣λ∣dt

2

where η∗g(2π) = g(0) and g(t) is a family of metrics on the fibre M0.

Since X is divergence free, its flow preserves the volume form, so the
volume density induced by g(t) is constant with respect to t.
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Outline of Proof (continued)

(2⇒ 1). Note that the map

π̂ ∶ (R ×M0, dt
2 + g(t)) → (R, ⋅), (t, x) ↦ t

is clearly a Riemannian submersion. It follows from the fact that the
volume density is constant over time that π̂ is harmonic.

Now the diagram

(M0 ×R, dt2 + g(t)) (R, ⋅)

(M0 ×η I, dt2 + g(t)) (S1, dt2)

π̂

/Z /Z

π

commutes by by construction, here the vertical arrows are the natural
covering maps. Since the vertical maps are also local isometries it follows
that π is a harmonic Riemannian submersion
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Proposition 2.4

Let (M,g) be a compact and connected Riemannian manifold, λ ∈ C and F
a (λ,λ)-eigenfamily on M . Then dim(spanC(F)) ∈ {0,1}.

Proof.

Suppose that ϕ,ψ are non-constant and in the same (λ,λ)-eigenfamily F .
Then it follows from Theorem 1.5 that the quotient

ϕ

ψ
∶M ∖ ψ−1({0}) → C

is a harmonic morphism, in particular a harmonic map. Since ψ(x) ≠ 0 for
all x ∈M , the domain of ϕ

ψ
is all of M . By compactness of M ϕ

ψ
must then

be constant, i.e. ψ and ϕ are linearly dependent.

Thomas Jack Munn (λ,λ)-Eigenfunctions on Compact Manifolds 19



Eigenfunctions and Eigenfamilies
(λ,λ)-Eigenfunctions

Generalised Eigenfamilies
References

Proposition 2.4

Let (M,g) be a compact and connected Riemannian manifold, λ ∈ C and F
a (λ,λ)-eigenfamily on M . Then dim(spanC(F)) ∈ {0,1}.

Proof.

Suppose that ϕ,ψ are non-constant and in the same (λ,λ)-eigenfamily F .
Then it follows from Theorem 1.5 that the quotient

ϕ

ψ
∶M ∖ ψ−1({0}) → C

is a harmonic morphism, in particular a harmonic map.

Since ψ(x) ≠ 0 for
all x ∈M , the domain of ϕ

ψ
is all of M . By compactness of M ϕ

ψ
must then

be constant, i.e. ψ and ϕ are linearly dependent.

Thomas Jack Munn (λ,λ)-Eigenfunctions on Compact Manifolds 19



Eigenfunctions and Eigenfamilies
(λ,λ)-Eigenfunctions

Generalised Eigenfamilies
References

Proposition 2.4

Let (M,g) be a compact and connected Riemannian manifold, λ ∈ C and F
a (λ,λ)-eigenfamily on M . Then dim(spanC(F)) ∈ {0,1}.

Proof.

Suppose that ϕ,ψ are non-constant and in the same (λ,λ)-eigenfamily F .
Then it follows from Theorem 1.5 that the quotient

ϕ

ψ
∶M ∖ ψ−1({0}) → C

is a harmonic morphism, in particular a harmonic map. Since ψ(x) ≠ 0 for
all x ∈M , the domain of ϕ

ψ
is all of M . By compactness of M ϕ

ψ
must then

be constant, i.e. ψ and ϕ are linearly dependent.

Thomas Jack Munn (λ,λ)-Eigenfunctions on Compact Manifolds 19



Eigenfunctions and Eigenfamilies
(λ,λ)-Eigenfunctions

Generalised Eigenfamilies
References

Definition 3.1

Let F = {ϕ1, ..., ϕk} be a finite family of functions M → C and λi ∈ C,
1 ≤ i ≤ k a vector in Ck and Aij , 1 ≤ i, j ≤ k a symmetric complex k × k
matrix.

1 We call F is an (λi,Aij)-eigenfamily if for all ϕi, ϕj ∈ F :

κ(ϕi, ϕj) = Aijϕiϕj , τ(ϕi) = λiϕi.

2 We say the family is λ-diagonal if additionally λi = Aii for all i.
3 F is said to be reduced if Aij is a non-degenerate matrix.
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Definition 3.2

For A a positive definite k × k matrix, let (T k,A−1) denote the flat torus
T k = (S1)k equipped with metric A−1.

Theorem 3.3 (TM & Riedler)

Let (M,g) be a compact Riemannian manifold, A a symmetric real k × k
matrix, and F = {ϕ1, ..., ϕk} a family of functions M → C. The following
are equivalent:

1 F is a reduced (−Aii,−Aij)-eigenfamily.

2 A is positive definite and for all x0 ∈M the map
π ∶ (M,g) → (T k,A−1), x↦ ( ϕ1(x)

∣ϕ1(x0)∣ , ...,
ϕk(x)
∣ϕk(x0)∣) is a well-defined and

harmonic Riemannian submersion.
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Thank you for watching!
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