 (λ, λ) -Eigenfunctions on Compact Manifolds

Thomas Jack Munn

Department of Mathematics Faculty of Science Lund University

These lecture notes are available at:

www.matematik.lu.se/matematiklu/personal/ munn/slides/slides.html

Brest - 4/9/2024

《 ロ 》 《 御 》 《 唐 》 《 唐 》 《 唐

Outline

¹ [Eigenfunctions and Eigenfamilies](#page-4-0)

- [The Operators](#page-4-0) τ and κ
- [Definitions and Examples](#page-8-0)
- [Applications and Properties](#page-13-0)

4 0 F

 $\left\{ \left\vert \left\langle \left\vert \Phi\right\vert \right\rangle \right\} \right\} \rightarrow \left\{ \left\vert \left\vert \Phi\right\vert \right\} \right\}$

 \rightarrow \equiv

Þ

Outline

¹ [Eigenfunctions and Eigenfamilies](#page-4-0)

- [The Operators](#page-4-0) τ and κ
- [Definitions and Examples](#page-8-0)
- [Applications and Properties](#page-13-0)

2 (λ , λ)[-Eigenfunctions](#page-19-0)

4 0 F

④ → → → → →

 \sim 后 QQ

₽

Outline

¹ [Eigenfunctions and Eigenfamilies](#page-4-0)

- [The Operators](#page-4-0) τ and κ
- [Definitions and Examples](#page-8-0)
- [Applications and Properties](#page-13-0)

2 (λ, λ) [-Eigenfunctions](#page-19-0)

³ [Generalised Eigenfamilies](#page-45-0)

4 0 F

K 何 ▶ | K ヨ ▶ | K ヨ ▶

 QQ

₽

Let (M^m, g) be a Riemannian manifold, $T^{\mathbb{C}}M$ be the complexification of its tangent bundle TM and extend g to a complex-bilinear form on $T^{\mathbb{C}}M$.

イロト イ押 トラテト

 QQ

重

Let (M^m, g) be a Riemannian manifold, $T^{\mathbb{C}}M$ be the complexification of its tangent bundle TM and extend g to a complex-bilinear form on $T^{\mathbb{C}}M$.

Then the **gradient** of a **complex-valued** function $\phi = u + iv : (M, q) \to \mathbb{C}$ is the section of $T^{\mathbb{C}}M$ satisfying $\nabla \phi = \nabla u + i \nabla v$.

Let (M^m, g) be a Riemannian manifold, $T^{\mathbb{C}}M$ be the complexification of its tangent bundle TM and extend g to a complex-bilinear form on $T^{\mathbb{C}}M$.

Then the **gradient** of a **complex-valued** function $\phi = u + iv : (M, q) \to \mathbb{C}$ is the section of $T^{\mathbb{C}}M$ satisfying $\nabla \phi = \nabla u + i \nabla v$.

The complex-linear **Laplace-Beltrami operator** τ on (M, q) acts locally on ϕ as

$$
\tau(\phi) = \text{div}(\nabla \phi) = \sum_{X \in \text{ONF}} X^2(\phi) - (\nabla_X X)(\phi).
$$

Let (M^m, g) be a Riemannian manifold, $T^{\mathbb{C}}M$ be the complexification of its tangent bundle TM and extend g to a complex-bilinear form on $T^{\mathbb{C}}M$.

Then the **gradient** of a **complex-valued** function $\phi = u + iv : (M, q) \to \mathbb{C}$ is the section of $T^{\mathbb{C}}M$ satisfying $\nabla \phi = \nabla u + i \nabla v$.

The complex-linear **Laplace-Beltrami operator** τ on (M, q) acts locally on ϕ as

$$
\tau(\phi) = \text{div}(\nabla \phi) = \sum_{X \in \text{ONF}} X^2(\phi) - (\nabla_X X)(\phi).
$$

For two functions $\phi, \psi : (M, q) \to \mathbb{C}$ we have

$$
\tau(\phi \cdot \psi) = \tau(\phi) \cdot \psi + 2 \cdot \kappa(\phi, \psi) + \phi \cdot \tau(\psi),
$$

where the **conformality operator** κ satisfies

$$
\kappa(\phi,\psi)=g(\nabla\phi,\nabla\psi).
$$

[Eigenfunctions and Eigenfamilies](#page-4-0) (λ, λ) [-Eigenfunctions](#page-19-0)

[Generalised Eigenfamilies](#page-45-0) [References](#page-52-0) [The Operators](#page-4-0) τ and κ [Definitions and Examples](#page-9-0)

Definition 1.1 (Gudmundsson & Sakovich (2008) [\[2\]](#page-52-1))

Let (M, q) be a Riemannian manifold, $\lambda, \mu \in \mathbb{C}$. Then a complex-valued function $\phi : M \to \mathbb{C}$ is said to be a (λ, μ) -eigenfunction if it is eigen with respect to both the Laplace-Beltrami operator τ and the conformality operator $κ$ with respective eigenvalues $λ$, $μ$, i.e.

$$
\tau(\phi) = \lambda \cdot \phi
$$
 and $\kappa(\phi, \phi) = \mu \cdot \phi^2$.

[Eigenfunctions and Eigenfamilies](#page-4-0) (λ, λ) [-Eigenfunctions](#page-19-0)

[Generalised Eigenfamilies](#page-45-0) [References](#page-52-0)

[The Operators](#page-4-0) τ and κ [Definitions and Examples](#page-8-0) [Applications and Properties](#page-13-0)

Definition 1.1 (Gudmundsson & Sakovich (2008) [\[2\]](#page-52-1))

Let (M, q) be a Riemannian manifold, $\lambda, \mu \in \mathbb{C}$. Then a complex-valued function $\phi : M \to \mathbb{C}$ is said to be a (λ, μ) -eigenfunction if it is eigen with respect to both the Laplace-Beltrami operator τ and the conformality operator $κ$ with respective eigenvalues $λ$, $μ$, i.e.

$$
\tau(\phi) = \lambda \cdot \phi
$$
 and $\kappa(\phi, \phi) = \mu \cdot \phi^2$.

A set $\mathcal E$ of complex-valued functions on M is said to be a (λ, μ) -eigenfamily on M if for all $\phi, \psi \in \mathcal{E}$ we have

 $\tau(\phi) = \lambda \cdot \phi$ and $\kappa(\phi, \psi) = \mu \cdot \phi \psi$.

 \mathcal{A} and \mathcal{A} in the form of \mathcal{A}

[Eigenfunctions and Eigenfamilies](#page-4-0)

 (λ, λ) [-Eigenfunctions](#page-19-0) [Generalised Eigenfamilies](#page-45-0) [References](#page-52-0)

[The Operators](#page-4-0) τ and κ [Definitions and Examples](#page-8-0) [Applications and Properties](#page-13-0)

Theorem 1.2 (Fuglede (1978) + Ishihara (1979), $(\lambda = 0 \text{ and } \mu = 0)$)

A complex-valued function $\phi : (M, g) \to \mathbb{C}$ on a Riemannian manifold is a harmonic morphism if and only if it is an eigenfunction with $\lambda = 0$ and $\mu = 0.$

4 000 100

 \overline{AB}

ALC: NO

 QQ

[The Operators](#page-4-0) τ and κ [Definitions and Examples](#page-8-0) [Applications and Properties](#page-13-0)

Example 1.3 (Coordiate projections)

Consider the functions $\phi_i : \mathbb{C}^n \simeq \mathbb{R}^{2n} \to \mathbb{C}$ defined by the projections

[References](#page-52-0)

 $\phi_i : z \mapsto z_i$.

Then

$$
\tau(\phi_i)=0, \quad \kappa(\phi_i,\phi_j)=0
$$

so $\mathcal{F} = \{\phi_i \mid i = 1, \ldots n\}$ is a $(0, 0)$ -eigenfamily.

イロト イ押 トラ テトラ

舌

 QQ

重

[The Operators](#page-4-0) τ and κ [Definitions and Examples](#page-8-0) [Applications and Properties](#page-13-0)

Example 1.3 (Coordiate projections)

Consider the functions $\phi_i : \mathbb{C}^n \simeq \mathbb{R}^{2n} \to \mathbb{C}$ defined by the projections

[References](#page-52-0)

 $\phi_i : z \mapsto z_i$.

Then

$$
\tau(\phi_i)=0, \quad \kappa(\phi_i,\phi_j)=0
$$

so $\mathcal{F} = \{\phi_i \mid i = 1, \ldots n\}$ is a $(0, 0)$ -eigenfamily.

Example 1.4 (Restriction to odd-dimensional spheres)

Consider $S^{2n-1} \subset \mathbb{R}^{2n} \simeq \mathbb{C}^n$. Then we can define $\tilde{\phi}_i = \phi_i|_{S^{2n-1}} : S^{2n-1} \to \mathbb{C}$. We have that

$$
\tau(\tilde{\phi}_i) = (-2n+1) \cdot \phi_i, \quad \kappa(\tilde{\phi}_i, \tilde{\phi}_j) = -1 \cdot \phi_i \phi_j
$$

so $\tilde{\mathcal{F}} = {\tilde{\phi}_i \mid i = 1, \ldots n}$ is a $(-2n + 1, -1)$ -eigenfamily

4 000 100

 \mathcal{A} and \mathcal{A} . The \mathcal{A}

 QQ

Eigenfamilies can be used to produce complex-valued harmonic morphisms:

Theorem 1.5 (Gudmundsson & Sakovich (2008) [\[2\]](#page-52-1))

Let (M, g) be a semi-Riemannian manifold and

 $\mathcal{F} = \{\phi_1, \ldots, \phi_n\}$

be a finite eigenfamily of complex valued functions on M. If $P, Q: \mathbb{C}^n \to \mathbb{C}$ are linearly independent homogeneous polynomials of the same positive degree.

4 000 100

 \mathcal{A} and \mathcal{A} in \mathcal{A} . The set

Eigenfamilies can be used to produce complex-valued harmonic morphisms:

Theorem 1.5 (Gudmundsson & Sakovich (2008) [\[2\]](#page-52-1))

Let (M, g) be a semi-Riemannian manifold and

$$
\mathcal{F} = \{\phi_1, \ldots \phi_n\}
$$

be a finite eigenfamily of complex valued functions on M. If $P, Q: \mathbb{C}^n \to \mathbb{C}$ are linearly independent homogeneous polynomials of the same positive degree. Then the quotient

$$
\frac{P(\phi_1,\ldots,\phi_n)}{Q(\phi_1,\ldots,\phi_n)}
$$

is a non-constant harmonic morphism on the open and dense subset

$$
\{p\in M|Q(\phi_1(p),\ldots,\phi_n(p))\neq 0\}.
$$

4 000 100

 \mathcal{A} and \mathcal{A} in \mathcal{A} . The set of \mathcal{A}

Eigenfunctions can be used to produce minimal submanifolds:

Theorem 1.6 (Baird & Eells (1981), $(\lambda = 0 \text{ and } \mu = 0)$)

Let ϕ : $(M, q) \rightarrow \mathbb{C}$ be a horizontally conformal $\lceil \kappa(\phi, \phi) \rceil$ function from a Riemannian manifold. Then ϕ is **harmonic** $[\tau(\phi) = 0]$ if and only if its fibres are **minimal** at regular points of ϕ $[\nabla \phi \neq 0]$.

4 000 100

 \mathcal{A} and \mathcal{A} in \mathcal{A} . The set of \mathcal{A}

Eigenfunctions can be used to produce minimal submanifolds:

Theorem 1.6 (Baird & Eells (1981), $(\lambda = 0 \text{ and } \mu = 0)$)

Let ϕ : $(M, g) \to \mathbb{C}$ be a horizontally conformal $\lceil \kappa(\phi, \phi) = 0 \rceil$ function from a Riemannian manifold. Then ϕ is **harmonic** $[\tau(\phi) = 0]$ if and only if its fibres are **minimal** at regular points of ϕ $[\nabla \phi \neq 0]$.

Theorem 1.7 (Gudmundsson & TM (2024))

Let $\phi : (M, q) \to \mathbb{C}$ be a complex-valued eigenfunction on a Riemannian manifold, such that $0 \in \phi(M)$ is a regular value for ϕ . Then the fibre over **zero** $\mathcal{F}_0 = \phi^{-1}(\{0\})$ *is a* minimal submanifold *of* M.

イロト イ押ト イモト イモト

Eigenfunctions can be used to produce p-harmonic functions:

Theorem 1.8 (Gudmundsson & Sobak (2020))

Let $\phi : (M, g) \to \mathbb{C}$ be a (λ, μ) -eigenfunction from a Riemannian manifold. Then for any positive integer p the non-vanishing function

$$
\Phi_p: W = \{x \in M \mid \phi(x) \notin (-\infty, 0]\} \to \mathbb{C}
$$

with.

$$
\Phi_p(x) = \begin{cases} c_1 \cdot \log(\phi(x))^{p-1} & \text{if } \mu = 0, \lambda \neq 0 \\ c_1 \cdot \log(\phi(x))^{2p-1} + c_1 \cdot \log(\phi(x))^{2p-2} & \text{if } \mu \neq 0, \lambda = 0 \\ c_1 \cdot \phi(x)^{1-\frac{\lambda}{\mu}} \log(\phi(x))^{p-1} + c_2 \cdot \log(\phi(x))^{p-1} & \text{if } \mu \neq 0, \lambda \neq 0 \end{cases}
$$

is proper p-harmonic on the domain W.

4 000 100

 \rightarrow \oplus \rightarrow \rightarrow \rightarrow \rightarrow

When (locally) describing an eigenfunction in polar form, some additional relations are obtained.

Lemma 1.9 (Riedler & Siffert (2024) [\[7\]](#page-52-2))

Let (U, q) be a Riemannian manifold, not necessarily compact or complete, and let $\phi: U \to \mathbb{C}$ be a (λ, μ) -eigenfunction with λ, μ both real and $\phi(x) \neq 0$ for all $x \in U$. Suppose $\phi(x) = e^{ih(x)} |\phi(x)|$ for some smooth function $h: U \rightarrow \mathbb{R}$. Then:

- \bullet $\tau(h) = 0;$
- $\bullet \tau(\ln |\phi|) = \lambda \mu;$
- $\mathbf{\Theta}$ $\kappa(h, |\phi|) = 0$;
- $\bullet \ \kappa(\ln |\phi|, \ln |\phi|) = \kappa(h, h) + \mu.$

4 0 8

A BA A BA

Proposition 2.1 (Riedler & Siffert (2024) [\[7\]](#page-52-2))

Let (M, g) be a compact connected Riemannian manifold and $\phi : M \to \mathbb{C}$ a non-constant (λ, μ) -eigenfunction.

4.000.00

 \equiv \rightarrow

 QQ

Ξ

Proposition 2.1 (Riedler & Siffert (2024) [\[7\]](#page-52-2))

Let (M, g) be a compact connected Riemannian manifold and $\phi : M \to \mathbb{C}$ a non-constant (λ, μ) -eigenfunction. The following are equivalent:

 $\bullet \lambda = \mu$.

4.000.00

重ね

 QQ

Proposition 2.1 (Riedler & Siffert (2024) [\[7\]](#page-52-2))

Let (M, g) be a compact connected Riemannian manifold and $\phi : M \to \mathbb{C}$ a non-constant (λ, μ) -eigenfunction. The following are equivalent:

 $\bullet \lambda = \mu$. $\mathbf{P}|\phi|^2$ is constant.

4 17 18

重ね

 QQ

Proposition 2.1 (Riedler & Siffert (2024) [\[7\]](#page-52-2))

Let (M, g) be a compact connected Riemannian manifold and $\phi : M \to \mathbb{C}$ a non-constant (λ, μ) -eigenfunction. The following are equivalent:

- $\bullet \lambda = \mu$.
- $\mathbf{P}|\phi|^2$ is constant.
- \bullet $\phi(x) \neq 0$ for all $x \in M$.

重ね

Proposition 2.1 (Riedler & Siffert (2024) [\[7\]](#page-52-2))

Let (M, g) be a compact connected Riemannian manifold and $\phi : M \to \mathbb{C}$ a non-constant (λ, μ) -eigenfunction. The following are equivalent:

\n- $$
\mathbf{O} \quad \lambda = \mu
$$
.
\n- $\mathbf{O} \quad |\phi|^2$ is constant.
\n- $\mathbf{O} \quad \phi(x) \neq 0$ for all $x \in M$.
\n

In particular, item (4) on the previous slide simplifies to

$$
\kappa(h,h)=-\lambda.
$$

 $\alpha = 1$

Main Results

Theorem 2.2 (TM & Riedler)

Let (M, g) be a compact and connected Riemannian manifold, $\phi : M \to \mathbb{C}$ a non-constant smooth map, $\lambda < 0$.

4 0 F

 $\leftarrow \mathbb{R}$) $\leftarrow \mathbb{R}$)

舌

 2990

₽

Main Results

Theorem 2.2 (TM & Riedler)

Let (M, g) be a compact and connected Riemannian manifold, $\phi : M \to \mathbb{C}$ a non-constant smooth map, $\lambda < 0$. The following are equivalent:

- \bullet ϕ is a (λ, λ) -eigenfunction.
- **2** For all $x_0 \in M$ the map $\pi : (M, g) \to (S^1, \frac{1}{|\lambda|} dt^2), x \mapsto \frac{\phi(x)}{|\phi(x_0)|}$ is a well-defined and harmonic Riemannian submersion.

4 0 8

 \mathcal{A} and \mathcal{A} in \mathcal{A} . The contribution of \mathcal{B}

Proof

 $(1 \Rightarrow 2)$. From Proposition [2.1](#page-19-1) the map $\pi : M \to S^1, x \mapsto \frac{\phi(x)}{|\phi(x_0)|}$ is well defined. For any point $x_1 \in M$ there is a neighbourhood \hat{U} of x_1 and a function $h: U \to \mathbb{R}$ such that

$$
\phi(x) = |\phi(x_0)|e^{ih(x)}.
$$

4 T. K.

→ 何 ▶ → 手 ▶ →

 2990

÷.

Proof

 $(1 \Rightarrow 2)$. From Proposition [2.1](#page-19-1) the map $\pi : M \to S^1, x \mapsto \frac{\phi(x)}{|\phi(x_0)|}$ is well defined. For any point $x_1 \in M$ there is a neighbourhood U of x_1 and a function $h: U \to \mathbb{R}$ such that

$$
\phi(x) = |\phi(x_0)|e^{ih(x)}
$$

Then Lemma [1.9](#page-18-0) tells us that

$$
\kappa(h,h) = ||dh||^2 = -\lambda = |\lambda| \text{ and } \tau(h) = 0.
$$

4 T. K.

 $\left\{ \left\{ \bigoplus_{i=1}^{n} x_i \; | \; i \in \mathbb{Z} \right\} \right\}$ and $\left\{ \bigoplus_{i=1}^{n} x_i \; | \; i \in \mathbb{Z} \right\}$

 QQ

.

Proof

 $(1 \Rightarrow 2)$. From Proposition [2.1](#page-19-1) the map $\pi : M \to S^1, x \mapsto \frac{\phi(x)}{|\phi(x_0)|}$ is well defined. For any point $x_1 \in M$ there is a neighbourhood U of x_1 and a function $h: U \to \mathbb{R}$ such that

$$
\phi(x) = |\phi(x_0)|e^{ih(x)}
$$

Then Lemma [1.9](#page-18-0) tells us that

$$
\kappa(h,h) = ||dh||^2 = -\lambda = |\lambda| \text{ and } \tau(h) = 0.
$$

Since the map

$$
(\mathbb{R}, \cdot) \to (S^1, dt^2), \quad t \mapsto e^{it}
$$

is a local isometry, the first equation implies that $\pi : (M, g) \to (S^1, \frac{1}{|\lambda|} dt^2)$ is a Riemannian submersion and the second implies that it is harmonic.

 \rightarrow \oplus \rightarrow \rightarrow \rightarrow \rightarrow \oplus

 209

.

Proof (continued)

 $(2 \Rightarrow 1)$. Let $\iota : (S^1, \frac{1}{|\lambda|} dt^2) \to (\mathbb{C}, \langle \cdot, \cdot \rangle)$ denote the standard inclusion of the unit circle. We then have that

$$
\phi(x)=(\iota\circ\pi)(x)
$$

for all x .

K ロ ト K 何 ト K ヨ ト K

后

 2990

₽

Proof (continued)

 $(2 \Rightarrow 1)$. Let $\iota : (S^1, \frac{1}{|\lambda|} dt^2) \to (\mathbb{C}, \langle \cdot, \cdot \rangle)$ denote the standard inclusion of the unit circle. We then have that

$$
\phi(x)=(\iota\circ\pi)(x)
$$

for all x. Since π is a harmonic Riemannian submersion, a calculation shows that

$$
\kappa(\iota \circ \pi, \iota \circ \pi) = \kappa(\iota, \iota) \circ \pi,
$$

$$
\tau(\iota \circ \pi) = \tau(\iota) \circ \pi.
$$

Since $\kappa(\iota, \iota) = \lambda \cdot \iota^2$ and $\tau(\iota) = \lambda \cdot \iota$, we immediately verify that ϕ is a (λ, λ) -eigenfunction.

→ イ門 トーイ ヨ トーイ ヨ ト

Theorem 2.3 (TM & Riedler)

Let (M, g) be compact and connected, $\lambda < 0$, and $\pi:(M,g)\to (S^1,h=\frac{1}{|\lambda|}dt^2)$ a smooth map. The following are equivalent:

 \bullet The map π is a harmonic Riemannian submersion.

4 0 8

48 ⊧

 \equiv \rightarrow

Theorem 2.3 (TM & Riedler)

Let (M, q) be compact and connected, $\lambda < 0$, and $\pi:(M,g)\to (S^1,h=\frac{1}{|\lambda|}dt^2)$ a smooth map. The following are equivalent: \bullet The map π is a harmonic Riemannian submersion. ² M is a mapping torus

$$
M_0 \times_{\eta} [0, 2\pi] = \frac{M_0 \times [0, 2\pi]}{(x, 0) \sim (\eta(x), 2\pi)}
$$

with metric

$$
g = g(t) + \frac{1}{|\lambda|} dt^2
$$

and monodromy map $\eta: M_0 \to M_0$ with $\eta^* g(2\pi) = g(0)$, M_0 is compact, the volume density of $g(t)$ is constant in t, and $\pi([x,t]) = e^{it}$.

4 0 8

All Britain Art

Outline of Proof

 $(1 \Rightarrow 2)$

M is compact $\Rightarrow \pi : M \to S^1$ is a fibre bundle.

Outline of Proof

 $(1 \Rightarrow 2)$

- M is compact $\Rightarrow \pi : M \to S^1$ is a fibre bundle.
- Let $X = \nabla \hat{\pi}$, where $\hat{\pi}$ is the local lift of π to \mathbb{R} .

Outline of Proof

 $(1 \Rightarrow 2)$

- M is compact $\Rightarrow \pi : M \to S^1$ is a fibre bundle.
- Let $X = \nabla \hat{\pi}$, where $\hat{\pi}$ is the local lift of π to \mathbb{R} . Since $\hat{\pi}$ is a Riemannian submersion:

$$
d\hat{\pi}(X) = g(X,X) = \frac{d\hat{\pi}(X)^2}{|\lambda|},
$$

so $d\hat{\pi}(X) = ||X||^2 = -\lambda$.

Outline of Proof

 $(1 \Rightarrow 2)$

- M is compact $\Rightarrow \pi : M \to S^1$ is a fibre bundle.
- Let $X = \nabla \hat{\pi}$, where $\hat{\pi}$ is the local lift of π to R. Since $\hat{\pi}$ is a Riemannian submersion:

$$
d\hat{\pi}(X) = g(X,X) = \frac{d\hat{\pi}(X)^2}{|\lambda|},
$$

so $d\hat{\pi}(X) = ||X||^2 = -\lambda$.

• Now, let η_t denote the flow of X it follows that

$$
\partial_t(\hat{\pi}\eta_t(x)) = d\hat{\pi}(X) = -\lambda,
$$

and so $\hat{\pi}(\eta_t(x)) = -\lambda \cdot t + \hat{\pi}(x)$, i.e. $\pi(\eta_t(x)) = e^{it}\pi(x)$.

つへへ

Outline of Proof

 $(1 \Rightarrow 2)$

- M is compact $\Rightarrow \pi : M \to S^1$ is a fibre bundle.
- Let $X = \nabla \hat{\pi}$, where $\hat{\pi}$ is the local lift of π to \mathbb{R} . Since $\hat{\pi}$ is a Riemannian submersion:

$$
d\hat{\pi}(X) = g(X,X) = \frac{d\hat{\pi}(X)^2}{|\lambda|},
$$

so $d\hat{\pi}(X) = ||X||^2 = -\lambda$.

• Now, let η_t denote the flow of X it follows that

$$
\partial_t(\hat{\pi}\eta_t(x)) = d\hat{\pi}(X) = -\lambda,
$$

and so $\hat{\pi}(\eta_t(x)) = -\lambda \cdot t + \hat{\pi}(x)$, i.e. $\pi(\eta_t(x)) = e^{it}\pi(x)$.

 \bullet It follows that M is a mapping torus

$$
M \cong \frac{M_0 \times [0, 2\pi]}{(x, 0) \sim (\eta(x), 2\pi)}
$$

with monodromy map $\eta = \eta_{2\pi}$ $\eta = \eta_{2\pi}$ $\eta = \eta_{2\pi}$, and $\pi([x,t]) = e^{it}$ [.](#page-38-0)

つへへ

Outline of Proof (continued)

 \bullet It follows that M is a mapping torus

$$
M \cong \frac{M_0 \times [0, 2\pi]}{(x, 0) \sim (\eta(x), 2\pi)}
$$

with monodromy map $\eta = \eta_{2\pi}$, and $\pi([x, t]) = e^{it}$.

• Under the above diffeomorphism $X \equiv \partial_t$. X is horizontal, so the metric on M has the form

$$
g = g(t) + \frac{1}{|\lambda|} dt^2
$$

where $\eta^* g(2\pi) = g(0)$ and $g(t)$ is a family of metrics on the fibre M_0 .

4 0 8

Outline of Proof (continued)

 \bullet It follows that M is a mapping torus

$$
M \cong \frac{M_0 \times [0, 2\pi]}{(x, 0) \sim (\eta(x), 2\pi)}
$$

with monodromy map $\eta = \eta_{2\pi}$, and $\pi([x, t]) = e^{it}$.

• Under the above diffeomorphism $X \equiv \partial_t$. X is horizontal, so the metric on M has the form

$$
g = g(t) + \frac{1}{|\lambda|} dt^2
$$

where $\eta^* g(2\pi) = g(0)$ and $g(t)$ is a family of metrics on the fibre M_0 .

 \bullet Since X is divergence free, its flow preserves the volume form, so the volume density induced by $g(t)$ is constant with respect to t.

SALE IN

Outline of Proof (continued)

 $(2 \Rightarrow 1)$. Note that the map

$$
\widehat{\pi}: (\mathbb{R} \times M_0, dt^2 + g(t)) \to (\mathbb{R}, \cdot), \qquad (t, x) \mapsto t
$$

is clearly a Riemannian submersion. It follows from the fact that the volume density is constant over time that $\hat{\pi}$ is harmonic.

イロメ イ何 ト イヨ ト イヨメ

 2990

₽

Outline of Proof (continued)

 $(2 \Rightarrow 1)$. Note that the map

$$
\widehat{\pi}: (\mathbb{R} \times M_0, dt^2 + g(t)) \to (\mathbb{R}, \cdot), \qquad (t, x) \mapsto t
$$

is clearly a Riemannian submersion. It follows from the fact that the volume density is constant over time that $\hat{\pi}$ is harmonic. Now the diagram

$$
(M_0 \times \mathbb{R}, dt^2 + g(t)) \xrightarrow{\widehat{\pi}} (\mathbb{R}, \cdot)
$$

\n
$$
\downarrow/\mathbb{Z} \qquad \qquad \downarrow/\mathbb{Z}
$$

\n
$$
(M_0 \times_{\eta} I, dt^2 + g(t)) \xrightarrow{\pi} (S^1, dt^2)
$$

commutes by by construction, here the vertical arrows are the natural covering maps. Since the vertical maps are also local isometries it follows that π is a harmonic Riemannian submersion

イロト イ押ト イヨト イヨト

Proposition 2.4

Let (M, g) be a compact and connected Riemannian manifold, $\lambda \in \mathbb{C}$ and $\mathcal F$ $a(\lambda, \lambda)$ -eigenfamily on M. Then $\dim(\text{span}_{\mathbb{C}}(\mathcal{F})) \in \{0,1\}.$

4 0 8

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A}$

舌

 299

₽

Proposition 2.4

Let (M, g) be a compact and connected Riemannian manifold, $\lambda \in \mathbb{C}$ and \mathcal{F} $a(\lambda, \lambda)$ -eigenfamily on M. Then $\dim(\text{span}_{\mathbb{C}}(\mathcal{F})) \in \{0,1\}.$

Proof.

Suppose that ϕ, ψ are non-constant and in the same (λ, λ) -eigenfamily \mathcal{F} . Then it follows from Theorem [1.5](#page-13-1) that the quotient

$$
\frac{\phi}{\psi}: M \setminus \psi^{-1}(\{0\}) \to \mathbb{C}
$$

is a harmonic morphism, in particular a harmonic map.

 \mathcal{A} and \mathcal{A} . The set of \mathcal{A}

Proposition 2.4

Let (M, g) be a compact and connected Riemannian manifold, $\lambda \in \mathbb{C}$ and $\mathcal F$ $a(\lambda, \lambda)$ -eigenfamily on M. Then $\dim(\text{span}_{\mathbb{C}}(\mathcal{F})) \in \{0,1\}.$

Proof.

Suppose that ϕ, ψ are non-constant and in the same (λ, λ) -eigenfamily \mathcal{F} . Then it follows from Theorem [1.5](#page-13-1) that the quotient

$$
\frac{\phi}{\psi}: M \setminus \psi^{-1}(\{0\}) \to \mathbb{C}
$$

is a harmonic morphism, in particular a harmonic map. Since $\psi(x) \neq 0$ for all $x \in M$, the domain of $\frac{\phi}{\psi}$ is all of M. By compactness of $M \frac{\phi}{\psi}$ must then be constant, i.e. ψ and ϕ are linearly dependent.

 \mathcal{A} and \mathcal{A} in \mathcal{A} . The set of the \mathcal{A}

Definition 3.1

Let $\mathcal{F} = \{\phi_1, ..., \phi_k\}$ be a finite family of functions $M \to \mathbb{C}$ and $\lambda_i \in \mathbb{C}$, $1 \leq i \leq k$ a vector in \mathbb{C}^k and A_{ij} , $1 \leq i, j \leq k$ a symmetric complex $k \times k$ matrix.

1 We call F is an (λ_i, A_{ij}) -eigenfamily if for all $\phi_i, \phi_j \in \mathcal{F}$:

$$
\kappa(\phi_i,\phi_j)=A_{ij}\phi_i\phi_j,\qquad \tau(\phi_i)=\lambda_i\phi_i.
$$

4 0 5

Definition 3.1

Let $\mathcal{F} = \{\phi_1, ..., \phi_k\}$ be a finite family of functions $M \to \mathbb{C}$ and $\lambda_i \in \mathbb{C}$, $1 \leq i \leq k$ a vector in \mathbb{C}^k and A_{ij} , $1 \leq i, j \leq k$ a symmetric complex $k \times k$ matrix.

1 We call F is an (λ_i, A_{ij}) -eigenfamily if for all $\phi_i, \phi_j \in \mathcal{F}$:

$$
\kappa(\phi_i,\phi_j)=A_{ij}\phi_i\phi_j,\qquad \tau(\phi_i)=\lambda_i\phi_i.
$$

2 We say the family is λ -diagonal if additionally $\lambda_i = A_{ii}$ for all *i*.

 \rightarrow \pm \rightarrow

Definition 3.1

Let $\mathcal{F} = \{\phi_1, ..., \phi_k\}$ be a finite family of functions $M \to \mathbb{C}$ and $\lambda_i \in \mathbb{C}$, $1 \leq i \leq k$ a vector in \mathbb{C}^k and A_{ij} , $1 \leq i, j \leq k$ a symmetric complex $k \times k$ matrix.

1 We call F is an (λ_i, A_{ij}) -eigenfamily if for all $\phi_i, \phi_j \in \mathcal{F}$:

$$
\kappa(\phi_i,\phi_j)=A_{ij}\phi_i\phi_j,\qquad \tau(\phi_i)=\lambda_i\phi_i.
$$

- **2** We say the family is λ -diagonal if additionally $\lambda_i = A_{ii}$ for all *i*.
- \bullet *F* is said to be **reduced** if A_{ij} is a non-degenerate matrix.

 \rightarrow \pm \rightarrow

Definition 3.2

For A a positive definite $k \times k$ matrix, let (T^k, A^{-1}) denote the flat torus $T^k = (S^1)^k$ equipped with metric A^{-1} .

4 0 F

 \leftarrow \overline{m} \rightarrow

重ね

 2990

₽

Definition 3.2

For A a positive definite $k \times k$ matrix, let (T^k, A^{-1}) denote the flat torus $T^k = (S^1)^k$ equipped with metric A^{-1} .

Theorem 3.3 (TM & Riedler)

Let (M, q) be a compact Riemannian manifold, A a symmetric real $k \times k$ matrix, and $\mathcal{F} = \{\phi_1, ..., \phi_k\}$ a family of functions $M \to \mathbb{C}$. The following are equivalent:

 \bullet *F* is a reduced $(-A_{ii}, -A_{ii})$ -eigenfamily.

Definition 3.2

For A a positive definite $k \times k$ matrix, let (T^k, A^{-1}) denote the flat torus $T^k = (S^1)^k$ equipped with metric A^{-1} .

Theorem 3.3 (TM & Riedler)

Let (M, q) be a compact Riemannian manifold, A a symmetric real $k \times k$ matrix, and $\mathcal{F} = \{\phi_1, ..., \phi_k\}$ a family of functions $M \to \mathbb{C}$. The following are equivalent:

- \bullet *F* is a reduced $(-A_{ii}, -A_{ii})$ -eigenfamily.
- \bullet A is positive definite and for all $x_0 \in M$ the map $\pi:(M,g)\to (T^k,A^{-1}), x\mapsto (\frac{\phi_1(x)}{|\phi_1(x_0)|},...,\frac{\phi_k(x)}{|\phi_k(x_0)|})$ is a well-defined and harmonic Riemannian submersion.

4.000.00

マタト マチャマチャ

つへへ

Thank you for watching!

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

重

- [1] S. Gudmundsson, T. J. Munn, Minimal submanifolds via complex-valued eigenfunctions, J. Geom. Anal. 34 (2024), 190.
- [2] S. Gudmundsson, A. Sakovich, Harmonic morphisms from the classical compact semisimple Lie groups, Ann. Global Anal. Geom. 33 (2008), 343-356.
- [3] S. Gudmundsson, A. Sakovich, Harmonic morphisms from the classical non-compact semisimple Lie groups, Differential Geom. Appl. 27 (2009), 47-63.
- [4] S. Gudmundsson, A. Siffert, M. Sobak, Explicit proper p-harmonic functions on the Riemannian symmetric spaces $SU(n)/SO(n)$, $Sp(n)/U(n)$, $SO(2n)/U(n)$, $SU(2n)/Sp(n)$, J. Geom. Anal. 32, 147 (2022).
- [5] S. Gudmundsson, M. Sobak, Proper r-harmonic functions from Riemannian manifolds, Ann. Global Anal. Geom. 57 (2020), 217-223.
- [6] O. Riedler Polynomial harmonic morphisms and eigenfamilies on spheres, arXiv preprint arXiv:2310.19565 (2023).
- [7] O. Riedler and A. Siffert Global Eigenfamilies on Compact Manifolds, arXiv preprint arXiv:2401.17750 (2024).

イロト イ押 トイヨ トイヨ

舌