Tachibana and Nomizu-Smyth type theorems on k-positively curved manifolds

Based on joint works with M. Mariani, F. Mastropietro, M. Rigoli

Giulio Colombo

"Federico II" University of Naples, Italy

Differential Geometry Workshop 2024 Université de Bretagne Occidentale, Brest, France 4–6 September 2024

イロト イ押 トイヨ トイヨト

- G. C., M. Mariani, M. Rigoli, Tachibana-type theorems on complete manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. 25 (2024), no. 2, 1033–1083
- G. C., F. Mastropietro, M. Rigoli, in preparation

∍

 Ω

メロトメ 倒 トメ ミトメ ミト

Motivation: the Bochner technique

M connected oriented Riemannian manifold of dimension $n \geq 2$

For $k\geq 0$ we denote by $\Omega^k(M)$ the space of C^∞ differential k -forms on M

Definition

 $\omega\in\Omega^k(M)$ is **harmonic** if it is both $\mathsf{closed}\ (\mathrm{d} \omega=0)$ and $\mathsf{coclosed}\ (\delta \omega=0)$.

$$
\mathcal{H}^k(M) = \{ \omega \in \Omega^k(M) : \omega \text{ is harmonic} \}
$$

Theorem (Hodge-de Rham)

If M is closed, $\varphi: \mathcal{H}^k(M) \to H^k_{dR}(M): \omega \mapsto [\omega]$ is a linear isomorphism.

In particular, the k-th Betti number $b_k(M) = \dim \mathcal{H}^k(M)$.

 Ω

イロト イ押ト イヨト イヨト

Bochner technique

The (negative definite) Bochner Laplacian Δ of a tensor field T is

 $\Delta T = \text{tr} \nabla^2 T$

We define the (negative) Hodge Laplacian Δ_H on differential k-forms as

 $-\Delta_H = d\delta + \delta d$

If $\omega \in \mathcal{H}^k(M)$ is harmonic, then $\Delta_H \omega = 0.$ The converse is true if M is closed:

$$
\Delta_H \omega = 0 \quad \Rightarrow \quad 0 = \int_M \langle \omega, \mathrm{d} \delta \omega \rangle + \int_M \langle \omega, \delta \mathrm{d} \omega \rangle = \int_M |\mathrm{d} \omega|^2 + \int_M |\delta \omega|^2
$$

Theorem

For every $\omega \in \Omega^1(M)$

$$
\Delta \omega = \Delta_H \omega + \text{Ric}(\omega^{\sharp}, \cdot)
$$

 299

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

Bochner technique

Theorem (Bochner '46)

 $\overline{1}$

If Mⁿ is closed with $\mathrm{Ric}\geq 0$, then every $\omega\in\mathcal{H}^1(M)$ is parallel and $b_1(M)\leq n.$ Moreover, if $\mathrm{Ric} > 0$ at some point on M then $\mathcal{H}^1(M) = \{0\}$ and $b_1(M) = 0$.

Proof For all $\omega \in \mathcal{H}^1(M)$ we have

$$
\frac{1}{2}\Delta|\omega|^2 = |\nabla\omega|^2 + \langle \omega, \Delta\omega \rangle = |\nabla\omega|^2 + \underbrace{\langle \omega, \Delta_H \omega \rangle}_{=0} + \underbrace{\text{Ric}(\omega^\sharp, \omega^\sharp)}_{\geq 0} \geq |\nabla\omega|^2
$$

and if Ric > 0 at some $x \in M$ then the inequality is strict unless $\omega_x = 0$ at x.

By the maximum principle (or the divergence theorem) the function $|\omega|^2$ is constant and $\nabla \omega = 0$. In particular, $\omega \equiv 0$ on M if Ric > 0. Since ω is parallel, it is completely determined by its value at any point $p \in M$, so

$$
b_1(M)=\dim \mathcal H^1(M)=\dim \{\omega_{\rho}: \omega \in \mathcal H^1(M)\} \leq \dim \, T^*_{\rho}M=\text{n}\,.\quad \Box
$$

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

Bochner technique

Theorem (Bochner '46)

If Mⁿ is closed with $\mathrm{Ric}\geq 0$, then every $\omega\in\mathcal{H}^1(M)$ is parallel and $b_1(M)\leq n.$ Moreover, if $\mathrm{Ric} > 0$ at some point on M then $\mathcal{H}^1(M) = \{0\}$ and $b_1(M) = 0$.

By Poincaré-Hodge duality, we also have

Theorem

If M^n is closed with ${\rm Ric}\geq 0$, then every $\omega\in \mathcal{H}^{n-1}(M)$ is parallel & $b_{n-1}(M)\leq n.$

Moreover, if $\text{Ric} > 0$ at some point on M then $\mathcal{H}^{n-1}(M) = \{0\}$ and $b_{n-1}(M) = 0$.

In particular, so far one can prove the following

Corollary

A closed M³ with $\mathrm{Ric}\geq 0$ has the rational homology of \mathbb{S}^3 , $\mathbb{S}^2\times \mathbb{S}^1$ or \mathbb{T}^3 .

Moreover, if Ric > 0 at some point then M has the rational homology of \mathbb{S}^3 .

 Ω

 $\mathbf{A} \sqsubseteq \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B}$

Lichnerowicz operator Γ

A. Lichnerowicz defined for each $k \geq 1$ a self-adjoint endomorphism

$$
\Gamma:\,T_k^0M\to T_k^0M
$$

given, with respect to any local orthonormal frame $\{\theta^i\}_{1\leq i\leq n}$ for $\mathcal{T}^\ast\mathcal{M}$, by

$$
(\Gamma T)_{i_1...i_k} = \sum_{\ell=1}^k R_{i_{\ell}t} T_{i_1...t...i_k} - 2 \sum_{1 \leq \ell < h \leq k} R_{i_{\ell}t_{h}s} T_{i_1...t...s...i_k}
$$

where ${\rm Riem} = R = R_{ijtl}\, \theta^i\otimes \theta^j\otimes \theta^t\otimes \theta^l$ and ${\rm Ric} = R_{ij}\, \theta^i\otimes \theta^j.$

Theorem (Weitzenböck identity)

For every $\omega \in \Omega^k(M)$, $k \geq 1$, $\Delta\omega = \Delta_H \omega + \Gamma \omega$ In particular, for every $\omega \in \mathcal{H}^k(M)$ 1 $\frac{1}{2}\Delta|\omega|^2=|\nabla\omega|^2+\langle\Gamma\omega,\omega\rangle$

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

Curvature operator R

The curvature operator of M is the self-adjoint endomorphism

 $\mathfrak{R}: \Lambda^2 M \to \Lambda^2 M$

given w. r. to any local o.n. frame $\{\theta^i\}$ for $\mathcal{T}^\ast M$ by

$$
(\Re \omega)_{ij} = R_{ijts} \omega_{ts}
$$

- If M has constant sectional curvature $\kappa\in\mathbb{R}$ then $\mathfrak{R}\omega=2\kappa\omega$ for all $\omega\in\Lambda^2M$
- Given $c \in \mathbb{R}$, we write $\Re \geq c$ if $\langle \Re \omega, \omega \rangle \geq c |\omega|^2$ for all $\omega \in \Lambda^2 M$
- R is positive $(\Re > 0)$ if $\langle \Re \omega, \omega \rangle > 0$ whenever $\omega \neq 0$

• For any tangent 2-plane $v \wedge w \leq TM$

$$
\mathrm{Sect}(v \wedge w) = \frac{1}{2} \frac{\langle \Re(v^{\flat} \wedge w^{\flat}), v^{\flat} \wedge w^{\flat} \rangle}{|v^{\flat} \wedge w^{\flat}|^2}
$$

In particular, $\Re \geq c \Rightarrow \text{Sect} \geq c/2$

The converse is generally false: \mathbb{CP}^2 has $1/4 \leq \mathrm{Sect} \leq 1$ but $\mathfrak{R} \geq 0$, ker $\mathfrak{R} \neq \{ 0 \}$

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

Curvature operator on 3-manifolds

For $n > 3$ recall the Ricci decomposition of the Riemann tensor R

$$
R=W+\frac{1}{n-2}Z\bigotimes g+\frac{S}{2(n-1)(n-2)}g\bigotimes g
$$

where S is the scalar curvature, $Z = \mathring{\rm Ric} = \mathring{\rm Ric} - \frac{S}{n} g$ and W is the Weyl tensor. If $n = 3$ then W is always zero and \Re is diagonalized by decomposable 2-forms: • let v_1 , v_2 , v_3 be a basis of eigenvectors of Ric with eigenvalues λ_1 , λ_2 , λ_3 the 2-forms $\omega_1 = v_2^{\flat} \wedge v_3^{\flat}$, $\omega_2 = v_3^{\flat} \wedge v_1^{\flat}$, $\omega_3 = v_1^{\flat} \wedge v_2^{\flat}$ satisfy $\Re \omega_1 = 2K_{23}\omega_1$, $\Re \omega_2 = 2K_{31}\omega_2$, $\Re \omega_3 = 2K_{12}\omega_3$ where $\mathcal{K}_{ij} = \text{Sect}(\mathsf{v}_i \wedge \mathsf{v}_j) \equiv \frac{1}{2} \mathsf{S} - \varepsilon_{ijk} \lambda_k$ Therefore, only for $n = 3$, for any $c \in \mathbb{R}$

$$
\Re \geq c \quad \Leftrightarrow \quad \text{Sect} \geq \frac{c}{2} \quad \Leftrightarrow \quad \frac{S-c}{2} \geq \text{Ric} \quad (\Rightarrow \text{Ric} \geq c)
$$

Remark $\Re > 0 \Leftrightarrow$ Sect > 0 is still stronger than Ric > 0 .

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶

Relation between Γ and *9*3

To each $\mathcal{T}\in T^0_kM$ we associate a T^0_kM -valued 2-form $\hat{\mathcal{T}}\in T^0_kM\otimes\Lambda^2M$: Let $\{\theta^i\}$ be an o.n. frame on \mathcal{T}^*M . For each $\alpha=(i_1,\ldots,i_k)\in\{1,\ldots,n\}^k$ set

$$
\mathcal{T}^{\alpha}_{ts} = \mathcal{T}^{(i_1,...,i_k)}_{ts} = \frac{1}{2} \sum_{\ell=1}^k \mathcal{T}_{i_1...t...i_k} \delta_{i_\ell s} - \frac{1}{2} \sum_{\ell=1}^k \mathcal{T}_{i_1...s...i_k} \delta_{i_\ell t}
$$

then define

$$
\hat{\mathcal{T}} = \sum_{i_1,\ldots,i_k,t,s} T_{ts}^{(i_1,\ldots,i_k)} \theta^{i_1} \otimes \cdots \otimes \theta^{i_k} \otimes \theta^t \otimes \theta^s
$$

Theorem (Berger '61, Meyer '71, Tachibana '74, Petersen) For every $T, S \in T^0_k M$

$$
\langle \Gamma T, S \rangle = \sum_{\alpha} \langle \mathfrak{R} T^{\alpha}, S^{\alpha} \rangle = \sum_{\alpha} R_{ijts} T^{\alpha}_{ij} S^{\alpha}_{ts}
$$

In particular, if $\Re \geq c$ then

$$
\langle \Gamma T, T \rangle \ge c \sum_{\alpha} |T^{\alpha}|^2 = c |\hat{T}|^2
$$

目

メロトメ 伊 トメ ミトメ ミト

Bochner technique for k-forms

Theorem (Berger '61, Gallot-Meyer '72, '75)

If M^n is closed with $\mathfrak{R} \geq 0$, then every $\omega \in \mathcal{H}^k(M)$ is parallel and $b_k(M) \leq {n \choose k}$.

If further $\mathfrak{R}>0$ at some point, then $\mathcal{H}^k(M)=\{0\}$ and $b_k(M)=0$ for $0 < k < n.$

Proof Direct computation shows that for all $\omega \in \Omega^k(M)$

$$
|\hat{\omega}|^2 = \min\{k, n-k\}|\omega|^2.
$$

Hence, if $\mathfrak{R}\geq 0$ then for all $\omega\in\mathcal{H}^k(M)$

$$
\frac{1}{2}\Delta|\omega|^2 = |\nabla\omega|^2 + \langle \Gamma\omega, \omega \rangle \ge |\nabla\omega|^2
$$

and if $0 < k < n$ and $\Re > 0$ at some $x \in M$ then the inequality is strict unless $\omega = 0$ at x. Then the proof goes on as in case $k = 1$. \Box

Remark $\mathfrak{R} > 0$ cannot be relaxed to $\mathrm{Sect} > 0$: $b_2(\mathbb{CP}^2) = 1$.

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

$\langle \Gamma A, A \rangle$ for symmetric bilinear tensors A

Let $\{\theta^i\}_{1\leq i\leq n}$ be a local o. n. frame on \mathcal{T}^*M . If $A\in \mathcal{T}^0_2M$ is symmetric,

$$
\langle \Gamma A, A \rangle = 2R_{ij}A_{jt}A_{ti} - 2R_{itjs}A_{ij}A_{ts}
$$

If $\theta^i = v_i^b$ where v_i are eigenvectors of A with eigenvalues λ_i , then

$$
\langle \Gamma A, A \rangle = 2 \sum_{i=1}^{n} R_{ii} \lambda_i^2 - 2 \sum_{i,j=1}^{n} R_{ijij} \lambda_i \lambda_j = \sum_{i,j=1}^{n} R_{ijij} (\lambda_i - \lambda_j)^2
$$

A direct computation shows that

$$
\frac{1}{2}\sum_{i,j=1}^n (\lambda_i - \lambda_j)^2 = n|\mathring{A}|^2 = |\mathring{A}|^2 \quad \text{where } \mathring{A} = A - \frac{\text{tr}\,A}{n}g
$$

Theorem (Berger-Ebin '69)

If $\mathrm{Sect}\geq c/2$ then for every $A\in S_2^0M$ $\langle \Gamma A, A \rangle \geq n c |\mathring{A}|^2 = c |\mathring{A}|^2$

メロトメ 伊 トメ ミトメ ミト

Harmonic curvature

Definition

The Riemann curvature tensor R of M^n is **harmonic** if $\text{div } R = 0$.

- R is harmonic iff ∇Ric is totally symmetric (\Leftrightarrow Ric is a Codazzi tensor)
- **•** Einstein manifolds ($\text{Ric} = \lambda g$, $\lambda \in \mathbb{R}$) have harmonic curvature
- Locally symmetric manifolds ($\nabla R = 0$) have harmonic curvature

The converse is false: ex. $(\mathbb{R}^n_+, x_n^{4/(n-2)}g_{\textrm{can}})$ for $n \geq 3$ [Gray '78]

- \bullet If $n = 2$, div $R = 0 \Leftrightarrow M$ has constant curvature
- If $n = 3$, div $R = 0 \Leftrightarrow M$ is locally conformally flat and S is constant
- If $n > 4$, div $R = 0 \Leftrightarrow$ div $W = 0$ and S is constant

 $A \equiv \mathbf{1} + \mathbf{1} +$

Berger theorem

Theorem (Berger)

Let $M^{n\geq 3}$ be closed with harmonic curvature.

- If Sect ≥ 0 then Ric is parallel.
- \bullet If Sect > 0 then M is Einstein.

Proof The Ricci tensor of M satisfies

$$
\frac{1}{2}\Delta|\mathrm{Ric}|^2=|\nabla\mathrm{Ric}|^2+\frac{1}{2}\langle\Gamma\mathrm{Ric},\mathrm{Ric}\rangle
$$

and if $\mathrm{Sect}\geq c\geq 0$ then $\langle\mathrm{FRic,Ric}\rangle\geq 2c|\mathrm{R\hat ic}|^2=2nc|Z|^2\geq 0.$

So $\nabla \text{Ric} = 0$ by maximum principle, and therefore $\nabla Z = 0$ and $\nabla S = 0$.

If Sect > 0 at some $x \in M$ then it must be $Z = 0$ at x, hence $Z \equiv 0$ on M. \Box

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Berger theorem

Theorem (Berger)

Let $M^{n\geq 3}$ be closed with harmonic curvature.

- If $\text{Sect} > 0$ then Ric is parallel.
- \bullet If Sect > 0 then M is Finstein.

If $n = 3$ then $\nabla \text{Ric} = 0 \Leftrightarrow \nabla R = 0$ and $\text{Ric} = \lambda g \Leftrightarrow R = (\lambda/12)g \bigcirc g$

Corollary

Let M^3 be closed with harmonic curvature.

- If Sect ≥ 0 then M is isometric to a quotient of \mathbb{S}^3 , $\mathbb{S}^2 \times \mathbb{R}$ or \mathbb{R}^3 .
- If Sect > 0 then M is isometric to a quotient of \mathbb{S}^3 .

Remark In dimension $n = 4$, \mathbb{CP}^2 is Einstein but not of constant curvature.

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Tachibana theorem

Theorem (Tachibana '74)

Let $M^{n\geq 4}$ be closed with harmonic curvature.

- If \Re > 0 then M is locally symmetric.
- If $\mathfrak{R} > 0$ then M is isometric to a quotient of \mathbb{S}^n .

Proof The Riemann curvature tensor R of M satisfies

$$
\frac{1}{2}\Delta|R|^2 = |\nabla R|^2 + \frac{1}{2}\langle \Gamma R, R\rangle
$$

and if $\mathfrak{R}\geq c\geq 0$ then $\langle \mathsf{\Gamma} R,R\rangle \geq c|\hat{R}|^2\geq 0.$ So $\nabla R=0$ by maximum principle.

 $\nabla R = 0$ also implies $\nabla W = 0$, $\nabla Ric = \nabla Z = 0$ and $\nabla S = 0$.

If $\mathfrak{R} > 0$ at some $x \in M$ then it must be $\hat{R} = 0$ at x. By direct computation

$$
|\hat{R}|^2 = 2(n-1)|W|^2 + \frac{4n}{n-2}|Z|^2
$$

so W and Z vanish at x, hence everywhere on M by parallelism. \square

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

Tachibana theorem for $n = 3$

Theorem (proved in C.-Mariani-Rigoli '24)

Let M^3 be closed with harmonic curvature.

- If $\mathrm{Ric} \geq 0$ then M is isometric to a quotient of \mathbb{S}^3 , $\mathbb{S}^2 \times \mathbb{R}$ or \mathbb{R}^3 .
- If Ric > 0 then M is isometric to a quotient of \mathbb{S}^3 .

Proof $\langle \Gamma R, R \rangle = P(\lambda, \mu, \nu)$, where $\lambda \leq \mu \leq \nu$ are the eigenvalues of Ric and

$$
P(\lambda, \mu, \nu) = 8[\lambda(\lambda - \mu)(\lambda - \nu) + \mu(\mu - \lambda)(\mu - \nu) + \nu(\nu - \lambda)(\nu - \mu)].
$$

It is shown that if $\lambda, \mu, \nu \geq 0$ then $P(\lambda, \mu, \nu) \geq 0$, with equality holding iff $\lambda = \mu = \nu$ or $0 = \lambda < \mu = \nu$. Then the proof goes on as in case $n \ge 4$, by also using the following result of M. H. Noronha. \square

Theorem (Noronha '93)

Let $Mⁿ$ be closed with $Ric > 0$ and locally conformally flat. Then M is either

- globally conformally equivalent to a quotient of \mathbb{S}^n , or
- isometric to a quotient of $\mathbb{S}^{n-1}\times\mathbb{R}$ or \mathbb{R}^n

If M is locally symmetric then M is isometric to a quotient of \mathbb{S}^n , $\mathbb{S}^{n-1}\times\mathbb{R}$ or \mathbb{R}^n .

Manifolds with $\mathfrak{R} \geq 0$

Theorem (Hamilton '82)

Let M^3 be closed with $\mathrm{Ric} \geq 0$. Then M is diffeomorphic to a quotient of \mathbb{S}^3 , $\mathbb{S}^2\times\mathbb{R}$ or \mathbb{R}^3 . If $\mathrm{Ric}>0$ somewhere, then M is diffemorphic to a quotient of \mathbb{S}^3 .

Theorem (Hamilton '86, Chow-Lu-Ni '06, Böhm-Wilking '08, Ni-Wu '07)

Let $M^{n\geq 4}$ be closed with $\mathfrak{R} > 0$. Then M is diffeomorphic to a quotient of a product of finitely many factors of the following types:

- i) standard spheres
- ii) Euclidean spaces
- iii) closed symmetric spaces
- iv) closed Kähler manifolds with positive curvature operator on real $(1, 1)$ -forms

If $\mathfrak{R} > 0$ somewhere on M, then M is diffeomorphic to a quotient of \mathbb{S}^n .

The above statements remain true if condition $\Re > 0$ (resp., $\Re > 0$) is replaced by $\lambda_1 + \lambda_2 \ge 0$ (resp., $\lambda_1 + \lambda_2 > 0$) where λ_1, λ_2 are the first two eigenvalues of \Re

メロトメ 御 トメ ミトメ ミト

Petersen-Wink's improved conditions for the Bochner technique

Definition

For each $x\in M$ let $\lambda_1(x)\leq\lambda_2(x)\leq\cdots\leq\lambda_{\binom{n}{2}}(x)$ be the eigenvalues of $\mathfrak{R}_x.$ For each integer $1 \leq \mathcal{N} \leq \binom{n}{2}$ we define $\mathfrak{R}^{(\mathcal{N})}:\mathcal{M} \rightarrow \mathbb{R}$ by

$$
\mathfrak{R}^{(N)} = \frac{1}{N} \sum_{i=1}^N \lambda_i
$$

Main goal

Obtain bounds of the form $\langle \Gamma T, T\rangle \geq \mathfrak{R}^{(N)} |\hat T|^2$ for suitable classes of tensors $T.$

 Ω

イロト イ部 トイ ヨ トイ ヨ トー

Petersen-Wink's improved conditions for the Bochner technique

Let $\{\theta^i\}_{1\leq i\leq n}$ be a local o.n. frame on T^*M . For $T\in T_k^0M$ and $\omega\in\Lambda^2M$ set

$$
\langle \omega, \hat{T} \rangle = \sum_{i_1, \ldots, i_k} \omega_{ts} T_{ts}^{(i_1, \ldots, i_k)} \theta^{i_1} \otimes \cdots \otimes \theta^{i_k} \in T_k^0 M.
$$

If $\{\omega_i\}$ is an o.n. basis for $\Lambda^2 M$ of eigenvectors of ${\mathfrak R}$ with eigenvalues λ_i , then

$$
\langle \Gamma T, T \rangle = \sum_i \lambda_i |\langle \omega_i, \hat{T} \rangle|^2, \quad |\hat{T}|^2 = \sum_i |\langle \omega_i, \hat{T} \rangle|^2.
$$

Theorem (Petersen-Wink '21)

Let $\mathcal{T} \in \mathcal{T}^0_k \mathcal{M}$ and suppose that there exists an integer $1 \leq \mathcal{N} < {n \choose 2}$ such that $|\langle \omega, \hat{T} \rangle|^2 \leq \frac{1}{\Lambda}$ $\frac{1}{N}|\omega|^2|\hat{\tau}|^2$

for all $\omega \in \Lambda^2 M$. Then

$$
\langle \Gamma T, T \rangle \geq \mathfrak{R}^{(N)} |\hat{T}|^2.
$$

The proof is an application of an elementary lemma.

 Ω

メロトメ 伊 トメ ミトメ ミト

Petersen-Wink's improved conditions for the Bochner technique

Elementary lemma

Let a_1, \ldots, a_n be $n \geq 2$ real numbers such that, for some integer $1 \leq N < n$,

$$
a_i^2 \leq \frac{1}{N} \sum_{j=1}^n a_j^2 \qquad \forall 1 \leq i \leq n.
$$

Then for any non-decreasing sequence of real numbers $\lambda_1 \leq \cdots \leq \lambda_n$

$$
\sum_{i=1}^n \lambda_i a_i^2 \ge \frac{1}{N} \sum_{i=1}^N \lambda_i \sum_{j=1}^n a_j^2
$$

Proof

$$
\sum_{i=1}^{n} \lambda_i a_i^2 \ge \sum_{i=1}^{N} \lambda_i a_i^2 + \lambda_{N+1} \sum_{i=N+1}^{n} a_i^2 = \sum_{i=1}^{N} (\lambda_i - \lambda_{N+1}) a_i^2 + \lambda_{N+1} \sum_{i=1}^{n} a_i^2
$$

$$
\ge \frac{1}{N} \sum_{i=1}^{n} (\lambda_i - \lambda_{N+1}) \sum_{j=1}^{n} a_j^2 + \lambda_{N+1} \sum_{i=1}^{n} a_i^2 = \frac{1}{N} \sum_{i=1}^{N} \lambda_i \sum_{j=1}^{n} a_j^2.
$$

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

 Ω

Petersen-Wink's approach to k-forms

Theorem (Petersen-Wink '21)

Let M^{n} be a Riemannian manifold and $0 < k < n$. For all $\mathcal{T} \in \Lambda^{k}M$ and $\omega \in \Lambda^{2}M$

$$
|\langle \omega, \hat{T} \rangle|^2 \leq \frac{1}{\min\{k, n-k\}} |\omega|^2 |\hat{T}|^2
$$

In particular, for all $T \in \Lambda^k M$

$$
\langle \Gamma T, T \rangle \geq \mathfrak{R}^{(\min\{k, n-k\})} |\hat{T}|^2
$$

Theorem (Petersen-Wink '21)

If M^n is closed with $\mathfrak{R}^{(p)}\geq 0$ for some $1\leq p\leq n/2$, then every $\omega\in\mathcal{H}^k(M)$ is parallel and $b_k(M) \leq {n \choose k}$, provided $0 \leq k \leq p$ or $n - p \leq k \leq n$.

Moreover, if $\mathfrak{R}^{(p)} > 0$ at some point then $\mathcal{H}^k(M) = \{0\}$ and $b_k(M) = 0$, provided $1 \leq k \leq p$ or $n-p \leq k \leq n-1$.

イロト イ押 トイヨ トイヨ トー

 Ω

Algebraic curvature tensors

Definition

 $T \in T_4^0M$ is an **algebraic curvature tensor** if it shares the algebraic symmetries of the Riemann tensor, that is, if for all vectors v_1 , v_2 , v_3 , v_4

$$
\mathcal{T}(v_1,v_2,v_3,v_4)=-\mathcal{T}(v_2,v_1,v_3,v_4)=\mathcal{T}(v_3,v_4,v_1,v_2)
$$

 $T(v_1, v_2, v_3, v_4) + T(v_2, v_3, v_1, v_4) + T(v_3, v_1, v_2, v_4) = 0$

For any algebraic curvature tensor T we can define a Ricci contraction $\text{Ric}_{\mathcal{T}}$

$$
\mathrm{Ric}_{\,\mathcal{T}}(v_1,v_2)=\mathrm{tr}\left[\left(w_1,w_2\right)\mapsto\,\mathcal{T}\!\left(v_1,w_1,v_2,w_2\right)\right],
$$

a total trace $S_T = \text{tr} \, \text{Ric}_T$ and, if $n \geq 3$, an associated Weyl-type tensor W_T s.t.

$$
T = W_T + \frac{1}{n-2} Z_T \bigotimes g + \frac{S_T}{2(n-1)(n-2)} g \bigotimes g
$$

where $Z_{\mathcal{T}} = \mathring{\mathrm{Ric}}_{\mathcal{T}} = \mathring{\mathrm{Ric}}_{\mathcal{T}} - \frac{S_{\mathcal{T}}}{n} g$. We have

$$
|\hat{T}|^2 = 2(n-1)|W_T|^2 + \frac{4n}{n-2}|Z_T|^2 = |\hat{W}_T|^2 + \frac{4}{n-2}|\hat{Z}_T|^2
$$

Harmonic curvature tensors

Definition

An algebraic curvature tensor field $\mathcal{T} \in C^\infty(\mathcal{T}_4^0 M)$ is **harmonic** if $\mathrm{div}~\mathcal{T} = 0$ and the second Bianchi identity holds, i.e. if for all vector fields v_1, v_2, v_3, w, z

$$
\nabla_{v_1} T(v_2, v_3, w, z) + \nabla_{v_2} T(v_3, v_1, w, z) + \nabla_{v_3} T(v_1, v_2, w, z) = 0
$$

For any harmonic curvature tensor T on a Riemannian manifold

$$
\frac{1}{2}\Delta|\mathcal{T}|^2 = |\nabla\mathcal{T}|^2 + \frac{1}{2}\langle \Gamma\mathcal{T},\mathcal{T}\rangle
$$

 Ω

メロトメ 倒 トメ ヨ トメ ヨ トー

Petersen-Wink's approach to algebraic curvature tensors

Theorem (Petersen-Wink '21)

Let $M^{n\geq 3}$ be a Riemannian manifold. For each algebraic curvature tensor T with $Z_T = 0$ and for each $\omega \in \Lambda^2 M$

$$
|\langle \omega, \hat{\mathcal{T}} \rangle|^2 \leq \frac{2}{n-1} |\omega|^2 |\hat{\mathcal{T}}|^2
$$

In particular, for any such T

$$
\langle \Gamma\, \mathcal{T},\, \mathcal{T} \rangle \geq \mathfrak{R}^{(\lfloor \frac{n-1}{2} \rfloor)} |\, \hat{\mathcal{T}}|^2
$$

Theorem (Petersen-Wink '21)

Let $M^{n\geq 4}$ be a closed Finstein manifold.

- If $\mathfrak{R}^{(\lfloor \frac{n-1}{2} \rfloor)} \geq 0$ then M is locally symmetric.
- If $\mathfrak{R}^{(\lfloor \frac{n-1}{2} \rfloor)} > 0$ then M is isometric to a quotient of \mathbb{S}^n .

In case n = 4 the above statements remain true when $\mathfrak{R}^{(\lfloor \frac{n-1}{2} \rfloor)}$ is replaced by $\mathfrak{R}^{(2)}.$

イロト イ押 トイヨ トイヨ)

Generalized Tachibana theorem

Theorem (C.-Mariani-Rigoli '24)

Let T be an algebraic curvature tensor on $M^{n\geq 4}$. Then

 \langle Γ $\mathcal{T},\,\mathcal{T}\rangle\geq \mathfrak{R}^{(\lfloor \frac{n-1}{2}\rfloor)}|\,\hat{\mathcal{T}}|^2$

Theorem (C.-Mariani-Rigoli '24)

Let $M^{n\geq 4}$ be closed with harmonic curvature.

- If $\mathfrak{R}^{(\lfloor \frac{n-1}{2} \rfloor)} \geq 0$ then M is locally symmetric.
- If $\mathfrak{R}^{(\lfloor \frac{n-1}{2} \rfloor)} > 0$ then M is isometric to a quotient of \mathbb{S}^n .

Remark If $n = 4$ the statements remain true with $\mathfrak{R}^{(\lfloor \frac{n-1}{2} \rfloor)}$ replaced by $\mathfrak{R}^{(2)}$. In particular, the corresponding Tachibana type theorem has been proved in the preprint [Bettiol-Jackson Goodman '22]

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Lower bound on $\langle \Gamma T, T \rangle$

The proof of the lower bound $\langle \Gamma\,T,\,T\rangle \geq \mathfrak{R}^{(\lfloor\frac{n-1}{2}\rfloor)} |\hat{\mathcal{T}}|^2$ is based on two lemmas.

Lemma 1 (C.-Mariani-Rigoli '24)

Let T, T' be algebraic curvature tensors on $M^{n\geq 3}$. Then

$$
\langle \Gamma T, T' \rangle = \langle \Gamma W_T, W_{T'} \rangle + \frac{4}{n-2} \langle \Gamma Z_T, Z_{T'} \rangle
$$

Definition

For each integer
$$
1 \leq N \leq {n \choose 2}
$$
 we define $\operatorname{Sect}^{(N)} : M \to \mathbb{R}$ by
\n
$$
\operatorname{Sect}^{(N)}(x) = \inf \left\{ \frac{1}{N} \sum_{i=1}^{N} \operatorname{Sect}(\pi_i) : \pi_1, \dots, \pi_N \text{ orthogonal 2-planes in } T_x M \right\}
$$

Lemma 2 (C.-Mariani-Rigoli '24)

For all $A \in S^0_2M$

$$
\langle \Gamma A, A \rangle \geq 2\mathop{\rm Sect}\nolimits^{(\lfloor n/2 \rfloor)} |\hat A|^2
$$

É

 299

メロトメ 伊 トメ ミトメ ミト

Lower bound on $\langle \Gamma T, T \rangle$

Proof For any collection $\{\pi_i\}$ of $\lfloor n/2 \rfloor$ mutually orthogonal 2-planes we have

$$
\frac{2}{\lfloor n/2 \rfloor} \sum_{i=1}^{\lfloor n/2 \rfloor} \mathrm{Sect}(\pi_i) = \frac{1}{\lfloor n/2 \rfloor} \sum_{i=1}^{\lfloor n/2 \rfloor} \frac{\langle \Re \omega_i, \omega_i \rangle}{|\omega_i|^2} \geq \Re^{(\lfloor \frac{n}{2} \rfloor)} \geq \Re^{(\lfloor \frac{n-1}{2} \rfloor)}
$$

where each ω_i is a 2-form metrically equivalent to a bivector spanning $\pi_i.$ Then

$$
\langle \Gamma T, T \rangle = \langle \Gamma W_T, W_T \rangle + \frac{4}{n-2} \langle \Gamma Z_T, Z_T \rangle
$$

\n
$$
\geq \Re^{(\lfloor \frac{n-1}{2} \rfloor)} |\hat{W}_T|^2 + \frac{4}{n-2} \Re^{(\lfloor \frac{n}{2} \rfloor)} |\hat{Z}_T|^2
$$

\n
$$
\geq \Re^{(\lfloor \frac{n-1}{2} \rfloor)} \left(|\hat{W}_T|^2 + \frac{4}{n-2} |\hat{Z}_T|^2 \right) = \Re^{(\lfloor \frac{n-1}{2} \rfloor)} |\hat{T}|^2. \quad \Box
$$

Remark If $n = 4$ then $\langle \Gamma Z_T, Z_T \rangle \geq \Re^{(2)} |\hat{Z}_T|^2$ holds by the previous steps, while $\langle \Gamma W_{\mathcal{T}}, W_{\mathcal{T}} \rangle \geq \mathfrak{R}^{(2)} |\hat{W}_{\mathcal{T}}|^2$ follows from Petersen-Wink.

 QQQ

イロト 不優 トメ 差 トメ 差 トー 差

Generalized Tachibana theorem for complete manifolds

Theorem (C.-Mariani-Rigoli '24)

Let M^3 be a complete 3-manifold with harmonic curvature.

- If $\mathrm{Ric} \geq 0$ then M is isometric to a quotient of \mathbb{S}^3 , $\mathbb{S}^2 \times \mathbb{R}$ or \mathbb{R}^3 .
- If Ric > 0 then M is isometric to a quotient of \mathbb{S}^3 .

Proof We recall the following

Theorem (Zhu '94, Carron-Herzlich '06)

If M^n is complete with $Ric \geq 0$ and locally conformally flat, then M is either

- i) isometric to a quotient of $\mathbb{S}^{n-1}\times \mathbb{R}$ or \mathbb{R}^n
- ii) conformally equivalent to a quotient of \mathbb{S}^n
- iii) non-flat and conformally equivalent to a quotient of \mathbb{R}^n
- δ ii) \Rightarrow M is compact \Rightarrow we apply Tachibana theorem for closed manifolds.

 $\overline{\mathfrak{m}}$) cannot occur: otherwise, the universal cover of M would be \mathbb{R}^n with complete metric of constant $S > 0$ and conformally equivalent to the Euclidean metric, which is impossible by [Caffarelli-Gidas-Spruck '89]. □

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

 \Rightarrow

Generalized Tachibana theorem for complete manifolds

Theorem (C.-Mariani-Rigoli '24)

Let $M^{n\geq 4}$ be a complete manifold with harmonic curvature and such that

$$
\int_1^{+\infty} \frac{R \mathrm{d}R}{\mathrm{vol}_g(B_R(p))} = +\infty \quad \text{for some } p \in M
$$

\n- If
$$
\Re^{(\lfloor \frac{n-1}{2} \rfloor)} \geq 0
$$
 then M is locally symmetric.
\n- If $\Re^{(\lfloor \frac{n-1}{2} \rfloor)} > 0$ then M is isometric to a quotient of \mathbb{S}^n .
\n

Corollary

Let $M⁴$ be a complete 4-manifold with harmonic curvature.

- If \Re > 0 then M is locally symmetric.
- If $\mathfrak{R} > 0$ then M is isometric to a quotient of \mathbb{S}^4 .

メロトメ 倒 トメ ミトメ ミト

.

Nomizu-Smyth theorem

Let $\psi: \mathsf{M}^n \to \overline{\mathsf{M}}^{n+1}$ be a two-sided isometrically immersed hypersurface in a space of constant curvature. If the mean curvature H of the immersion ψ is constant, then the second fundamental form II satisfies

$$
\frac{1}{2}\Delta|\mathrm{II}|^2 = |\nabla\mathrm{II}|^2 + \langle \Gamma\mathrm{II}, \mathrm{II} \rangle
$$

Theorem (Nomizu-Smyth '69)

Let Mⁿ be a closed manifold with Sect ≥ 0 and let $\psi : M \to \overline{M}$ be as above with $\overline{M}=\mathbb{R}^{n+1}$, \mathbb{H}^{n+1} or \mathbb{S}^{n+1} .

- If $\overline{M} = \mathbb{R}^{n+1}$ or \mathbb{H}^{n+1} then $\psi(M)$ is a totally umbilic sphere.
- If $\overline{M} = \mathbb{S}^{n+1}$ then $\psi(M)$ is an umbilic sphere or a Clifford torus $\mathbb{S}^k \times \mathbb{S}^{n-k}$.

Theorem (C.-Mastropietro-Rigoli)

Let $\psi : M^n \to \mathbb{S}^{n+1}$ be a two-sided isometric immersion with constant H. If M is closed and has Sect^{([n/2]}) > 0 then $\psi(M)$ is an umbilic sphere or a Clifford torus.

メロトメ 伊 トメ ミトメ ミト

 QQ

Nomizu-Smyth type theorem

Proposition (C.-Mastropietro-Rigoli)

If $\psi: M^n \to \mathbb{S}^{n+1}$ be a two-sided, 2-convex isometric immersion. Then

$$
\langle \Gamma \text{II}, \text{II} \rangle \geq \left(n - \frac{n^3 H^2}{(n-2)^2} \right) |\Phi|^2 \quad \text{and} \quad \langle \Gamma \text{II}, \text{II} \rangle \geq (n - |\text{II}|^2) |\Phi|^2
$$

where $\Phi = II - Hg$ is the traceless part of the second fundamental form.

Theorem (C.-Mastropietro-Rigoli)

Let $\psi: \mathsf{M}^n \to \mathbb{S}^{n+1}$ be a two-sided, 2-convex isometric immersion with constant H. If M is closed and either

$$
|H| \leq \frac{n-2}{n} \qquad \text{or} \qquad |\mathrm{II}|^2 \leq n
$$

then $\psi(M)$ is a totally umbilic sphere or a Clifford torus.

メロメメ 御 メメ きょく ミメー

Thank you for your time!

э

 QQ

メロトメ 御 トメ ミトメ ミト