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Motivation: the Bochner technique

M connected oriented Riemannian manifold of dimension n ≥ 2

For k ≥ 0 we denote by Ωk(M) the space of C∞ differential k-forms on M

Definition

ω ∈ Ωk(M) is harmonic if it is both closed (dω = 0) and coclosed (δω = 0).

Hk(M) = {ω ∈ Ωk(M) : ω is harmonic}

Theorem (Hodge-de Rham)

If M is closed, φ : Hk(M) → Hk
dR(M) : ω 7→ [ω] is a linear isomorphism.

In particular, the k-th Betti number bk(M) = dimHk(M).
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Bochner technique

The (negative definite) Bochner Laplacian ∆ of a tensor field T is

∆T = tr∇2T

We define the (negative) Hodge Laplacian ∆H on differential k-forms as

−∆H = dδ + δd

If ω ∈ Hk(M) is harmonic, then ∆Hω = 0. The converse is true if M is closed:

∆Hω = 0 ⇒ 0 =

�
M

⟨ω,dδω⟩+
�
M

⟨ω, δdω⟩ =
�
M

|dω|2 +
�
M

|δω|2

Theorem

For every ω ∈ Ω1(M)
∆ω = ∆Hω + Ric(ω♯, · )
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Bochner technique

Theorem (Bochner ’46)

If Mn is closed with Ric ≥ 0, then every ω ∈ H1(M) is parallel and b1(M) ≤ n.

Moreover, if Ric > 0 at some point on M then H1(M) = {0} and b1(M) = 0.

Proof For all ω ∈ H1(M) we have

1

2
∆|ω|2 = |∇ω|2 + ⟨ω,∆ω⟩ = |∇ω|2 + ⟨ω,∆Hω⟩︸ ︷︷ ︸

=0

+Ric(ω♯, ω♯)︸ ︷︷ ︸
≥0

≥ |∇ω|2

and if Ric > 0 at some x ∈ M then the inequality is strict unless ωx = 0 at x .

By the maximum principle (or the divergence theorem) the function |ω|2 is
constant and ∇ω = 0. In particular, ω ≡ 0 on M if Ric > 0. Since ω is parallel, it
is completely determined by its value at any point p ∈ M, so

b1(M) = dimH1(M) = dim{ωp : ω ∈ H1(M)} ≤ dimT ∗
pM = n . □
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Bochner technique

Theorem (Bochner ’46)

If Mn is closed with Ric ≥ 0, then every ω ∈ H1(M) is parallel and b1(M) ≤ n.

Moreover, if Ric > 0 at some point on M then H1(M) = {0} and b1(M) = 0.

By Poincaré-Hodge duality, we also have

Theorem

If Mn is closed with Ric ≥ 0, then every ω ∈ Hn−1(M) is parallel & bn−1(M) ≤ n.

Moreover, if Ric > 0 at some point on M then Hn−1(M) = {0} and bn−1(M) = 0.

In particular, so far one can prove the following

Corollary

A closed M3 with Ric ≥ 0 has the rational homology of S3, S2 × S1 or T3.

Moreover, if Ric > 0 at some point then M has the rational homology of S3.
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Lichnerowicz operator Γ

A. Lichnerowicz defined for each k ≥ 1 a self-adjoint endomorphism

Γ : T 0
kM → T 0

kM

given, with respect to any local orthonormal frame {θi}1≤i≤n for T ∗M, by

(ΓT )i1...ik =
k∑

ℓ=1

RiℓtTi1...t...ik − 2
∑

1≤ℓ<h≤k

RiℓtihsTi1...t...s...ik

where Riem = R = Rijtl θ
i ⊗ θj ⊗ θt ⊗ θl and Ric = Rij θ

i ⊗ θj .

Theorem (Weitzenböck identity)

For every ω ∈ Ωk(M), k ≥ 1,

∆ω = ∆Hω + Γω

In particular, for every ω ∈ Hk(M)

1

2
∆|ω|2 = |∇ω|2 + ⟨Γω, ω⟩
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Curvature operator R

The curvature operator of M is the self-adjoint endomorphism

R : Λ2M → Λ2M

given w. r. to any local o.n. frame {θi} for T ∗M by

(Rω)ij = Rijtsωts

If M has constant sectional curvature κ ∈ R then Rω = 2κω for all ω ∈ Λ2M

Given c ∈ R, we write R ≥ c if ⟨Rω, ω⟩ ≥ c |ω|2 for all ω ∈ Λ2M

R is positive (R > 0) if ⟨Rω, ω⟩ > 0 whenever ω ̸= 0

For any tangent 2-plane v ∧ w ≤ TM

Sect(v ∧ w) =
1

2

⟨R(v ♭ ∧ w ♭), v ♭ ∧ w ♭⟩
|v ♭ ∧ w ♭|2

In particular, R ≥ c ⇒ Sect ≥ c/2

The converse is generally false: CP2 has 1/4 ≤ Sect ≤ 1 but R ≥ 0, kerR ̸= {0}
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Curvature operator on 3-manifolds

For n ≥ 3 recall the Ricci decomposition of the Riemann tensor R

R = W +
1

n − 2
Z ⃝∧ g +

S

2(n − 1)(n − 2)
g ⃝∧ g

where S is the scalar curvature, Z = R̊ic = Ric− S
n g and W is the Weyl tensor.

If n = 3 then W is always zero and R is diagonalized by decomposable 2-forms:

let v1, v2, v3 be a basis of eigenvectors of Ric with eigenvalues λ1, λ2, λ3

the 2-forms ω1 = v ♭
2 ∧ v ♭

3 , ω2 = v ♭
3 ∧ v ♭

1 , ω3 = v ♭
1 ∧ v ♭

2 satisfy

Rω1 = 2K23ω1 , Rω2 = 2K31ω2 , Rω3 = 2K12ω3

where Kij = Sect(vi ∧ vj) ≡ 1
2S − εijkλk

Therefore, only for n = 3, for any c ∈ R

R ≥ c ⇔ Sect ≥ c

2
⇔ S − c

2
≥ Ric ( ⇒ Ric ≥ c)

Remark R ≥ 0 ⇔ Sect ≥ 0 is still stronger than Ric ≥ 0.
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Relation between Γ and R

To each T ∈ T 0
kM we associate a T 0

kM-valued 2-form T̂ ∈ T 0
kM ⊗ Λ2M:

Let {θi} be an o.n. frame on T ∗M. For each α = (i1, . . . , ik) ∈ {1, . . . , n}k set

Tα
ts = T

(i1,...,ik )
ts =

1

2

k∑
ℓ=1

Ti1...t...ik δiℓs −
1

2

k∑
ℓ=1

Ti1...s...ik δiℓt

then define

T̂ =
∑

i1,...,ik ,t,s

T
(i1,...,ik )
ts θi1 ⊗ · · · ⊗ θik ⊗ θt ⊗ θs

Theorem (Berger ’61, Meyer ’71, Tachibana ’74, Petersen)

For every T ,S ∈ T 0
kM

⟨ΓT ,S⟩ =
∑
α

⟨RTα,Sα⟩ =
∑
α

RijtsT
α
ij S

α
ts

In particular, if R ≥ c then

⟨ΓT ,T ⟩ ≥ c
∑
α

|Tα|2 = c |T̂ |2
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Bochner technique for k-forms

Theorem (Berger ’61, Gallot-Meyer ’72, ’75)

If Mn is closed with R ≥ 0, then every ω ∈ Hk(M) is parallel and bk(M) ≤
(
n
k

)
.

If further R > 0 at some point, then Hk(M) = {0} and bk(M) = 0 for 0 < k < n.

Proof Direct computation shows that for all ω ∈ Ωk(M)

|ω̂|2 = min{k , n − k}|ω|2 .

Hence, if R ≥ 0 then for all ω ∈ Hk(M)

1

2
∆|ω|2 = |∇ω|2 + ⟨Γω, ω⟩ ≥ |∇ω|2

and if 0 < k < n and R > 0 at some x ∈ M then the inequality is strict unless
ω = 0 at x . Then the proof goes on as in case k = 1. □

Remark R > 0 cannot be relaxed to Sect > 0: b2(CP2) = 1.
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⟨ΓA,A⟩ for symmetric bilinear tensors A

Let {θi}1≤i≤n be a local o. n. frame on T ∗M. If A ∈ T 0
2M is symmetric,

⟨ΓA,A⟩ = 2RijAjtAti − 2RitjsAijAts

If θi = v ♭
i where vi are eigenvectors of A with eigenvalues λi , then

⟨ΓA,A⟩ = 2
n∑

i=1

Riiλ
2
i − 2

n∑
i,j=1

Rijijλiλj =
n∑

i,j=1

Rijij(λi − λj)
2

A direct computation shows that

1

2

n∑
i,j=1

(λi − λj)
2 = n|Å|2 = |Â|2 where Å = A− trA

n
g

Theorem (Berger-Ebin ’69)

If Sect ≥ c/2 then for every A ∈ S0
2M

⟨ΓA,A⟩ ≥ nc |Å|2 = c |Â|2
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Harmonic curvature

Definition

The Riemann curvature tensor R of Mn is harmonic if divR = 0.

R is harmonic iff ∇Ric is totally symmetric (⇔ Ric is a Codazzi tensor)

Einstein manifolds (Ric = λg , λ ∈ R) have harmonic curvature

Locally symmetric manifolds (∇R = 0) have harmonic curvature

The converse is false: ex. (Rn
+, x

4/(n−2)
n gcan) for n ≥ 3 [Gray ’78]

If n = 2, divR = 0 ⇔ M has constant curvature

If n = 3, divR = 0 ⇔ M is locally conformally flat and S is constant

If n ≥ 4, divR = 0 ⇔ divW = 0 and S is constant
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Berger theorem

Theorem (Berger)

Let Mn≥3 be closed with harmonic curvature.

If Sect ≥ 0 then Ric is parallel.

If Sect > 0 then M is Einstein.

Proof The Ricci tensor of M satisfies

1

2
∆|Ric|2 = |∇Ric|2 + 1

2
⟨ΓRic,Ric⟩

and if Sect ≥ c ≥ 0 then ⟨ΓRic,Ric⟩ ≥ 2c |R̂ic|2 = 2nc |Z |2 ≥ 0.

So ∇Ric = 0 by maximum principle, and therefore ∇Z = 0 and ∇S = 0.

If Sect > 0 at some x ∈ M then it must be Z = 0 at x , hence Z ≡ 0 on M. □
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Berger theorem

Theorem (Berger)

Let Mn≥3 be closed with harmonic curvature.

If Sect ≥ 0 then Ric is parallel.

If Sect > 0 then M is Einstein.

If n = 3 then ∇Ric = 0 ⇔ ∇R = 0 and Ric = λg ⇔ R = (λ/12)g ⃝∧ g

Corollary

Let M3 be closed with harmonic curvature.

If Sect ≥ 0 then M is isometric to a quotient of S3, S2 × R or R3.

If Sect > 0 then M is isometric to a quotient of S3.

Remark In dimension n = 4, CP2 is Einstein but not of constant curvature.
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Tachibana theorem

Theorem (Tachibana ’74)

Let Mn≥4 be closed with harmonic curvature.

If R ≥ 0 then M is locally symmetric.

If R > 0 then M is isometric to a quotient of Sn.

Proof The Riemann curvature tensor R of M satisfies

1

2
∆|R|2 = |∇R|2 + 1

2
⟨ΓR,R⟩

and if R ≥ c ≥ 0 then ⟨ΓR,R⟩ ≥ c |R̂|2 ≥ 0. So ∇R = 0 by maximum principle.

∇R = 0 also implies ∇W = 0, ∇Ric = ∇Z = 0 and ∇S = 0.

If R > 0 at some x ∈ M then it must be R̂ = 0 at x . By direct computation

|R̂|2 = 2(n − 1)|W |2 + 4n

n − 2
|Z |2

so W and Z vanish at x , hence everywhere on M by parallelism. □
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Tachibana theorem for n = 3

Theorem (proved in C.-Mariani-Rigoli ’24)

Let M3 be closed with harmonic curvature.

If Ric ≥ 0 then M is isometric to a quotient of S3, S2 × R or R3.

If Ric > 0 then M is isometric to a quotient of S3.

Proof ⟨ΓR,R⟩ = P(λ, µ, ν), where λ ≤ µ ≤ ν are the eigenvalues of Ric and

P(λ, µ, ν) = 8[λ(λ− µ)(λ− ν) + µ(µ− λ)(µ− ν) + ν(ν − λ)(ν − µ)] .

It is shown that if λ, µ, ν ≥ 0 then P(λ, µ, ν) ≥ 0, with equality holding iff
λ = µ = ν or 0 = λ < µ = ν. Then the proof goes on as in case n ≥ 4, by also
using the following result of M. H. Noronha. □

Theorem (Noronha ’93)

Let Mn be closed with Ric ≥ 0 and locally conformally flat. Then M is either

globally conformally equivalent to a quotient of Sn, or
isometric to a quotient of Sn−1 × R or Rn

If M is locally symmetric then M is isometric to a quotient of Sn, Sn−1 ×R or Rn.
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Manifolds with R ≥ 0

Theorem (Hamilton ’82)

Let M3 be closed with Ric ≥ 0. Then M is diffeomorphic to a quotient of S3,
S2 × R or R3. If Ric > 0 somewhere, then M is diffemorphic to a quotient of S3.

Theorem (Hamilton ’86, Chow-Lu-Ni ’06, Böhm-Wilking ’08, Ni-Wu ’07)

Let Mn≥4 be closed with R ≥ 0. Then M is diffeomorphic to a quotient of a
product of finitely many factors of the following types:

i) standard spheres

ii) Euclidean spaces

iii) closed symmetric spaces

iv) closed Kähler manifolds with positive curvature operator on real (1, 1)-forms

If R > 0 somewhere on M, then M is diffeomorphic to a quotient of Sn.

The above statements remain true if condition R ≥ 0 (resp., R > 0) is replaced
by λ1 +λ2 ≥ 0 (resp., λ1 +λ2 > 0) where λ1, λ2 are the first two eigenvalues of R
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Petersen-Wink’s improved conditions for the Bochner technique

Definition

For each x ∈ M let λ1(x) ≤ λ2(x) ≤ · · · ≤ λ(n2)
(x) be the eigenvalues of Rx .

For each integer 1 ≤ N ≤
(
n
2

)
we define R(N) : M → R by

R(N) =
1

N

N∑
i=1

λi

Main goal

Obtain bounds of the form ⟨ΓT ,T ⟩ ≥ R(N)|T̂ |2 for suitable classes of tensors T .
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Petersen-Wink’s improved conditions for the Bochner technique

Let {θi}1≤i≤n be a local o.n. frame on T ∗M. For T ∈ T 0
kM and ω ∈ Λ2M set

⟨ω, T̂ ⟩ =
∑

i1,...,ik

ωtsT
(i1,...,ik )
ts θi1 ⊗ · · · ⊗ θik ∈ T 0

kM .

If {ωi} is an o.n. basis for Λ2M of eigenvectors of R with eigenvalues λi , then

⟨ΓT ,T ⟩ =
∑
i

λi |⟨ωi , T̂ ⟩|2 , |T̂ |2 =
∑
i

|⟨ωi , T̂ ⟩|2 .

Theorem (Petersen-Wink ’21)

Let T ∈ T 0
kM and suppose that there exists an integer 1 ≤ N <

(
n
2

)
such that

|⟨ω, T̂ ⟩|2 ≤ 1

N
|ω|2|T̂ |2

for all ω ∈ Λ2M. Then
⟨ΓT ,T ⟩ ≥ R(N)|T̂ |2 .

The proof is an application of an elementary lemma.
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Petersen-Wink’s improved conditions for the Bochner technique

Elementary lemma

Let a1, . . . , an be n ≥ 2 real numbers such that, for some integer 1 ≤ N < n,

a2i ≤
1

N

n∑
j=1

a2j ∀ 1 ≤ i ≤ n .

Then for any non-decreasing sequence of real numbers λ1 ≤ · · · ≤ λn
n∑

i=1

λia
2
i ≥

1

N

N∑
i=1

λi

n∑
j=1

a2j

Proof
n∑

i=1

λia
2
i ≥

N∑
i=1

λia
2
i + λN+1

n∑
i=N+1

a2i =
N∑
i=1

(λi − λN+1)a
2
i + λN+1

n∑
i=1

a2i

≥ 1

N

n∑
i=1

(λi − λN+1)
n∑

j=1

a2j + λN+1

n∑
i=1

a2i =
1

N

N∑
i=1

λi

n∑
j=1

a2j .
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Petersen-Wink’s approach to k-forms

Theorem (Petersen-Wink ’21)

Let Mn be a Riemannian manifold and 0 < k < n. For all T ∈ ΛkM and ω ∈ Λ2M

|⟨ω, T̂ ⟩|2 ≤ 1

min{k , n − k}
|ω|2|T̂ |2

In particular, for all T ∈ ΛkM

⟨ΓT ,T ⟩ ≥ R(min{k,n−k})|T̂ |2

Theorem (Petersen-Wink ’21)

If Mn is closed with R(p) ≥ 0 for some 1 ≤ p ≤ n/2, then every ω ∈ Hk(M) is
parallel and bk(M) ≤

(
n
k

)
, provided 0 ≤ k ≤ p or n − p ≤ k ≤ n.

Moreover, if R(p) > 0 at some point then Hk(M) = {0} and bk(M) = 0, provided
1 ≤ k ≤ p or n − p ≤ k ≤ n − 1.
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Algebraic curvature tensors

Definition

T ∈ T 0
4M is an algebraic curvature tensor if it shares the algebraic symmetries

of the Riemann tensor, that is, if for all vectors v1, v2, v3, v4

T (v1, v2, v3, v4) = −T (v2, v1, v3, v4) = T (v3, v4, v1, v2)

T (v1, v2, v3, v4) + T (v2, v3, v1, v4) + T (v3, v1, v2, v4) = 0

For any algebraic curvature tensor T we can define a Ricci contraction RicT

RicT (v1, v2) = tr [(w1,w2) 7→ T (v1,w1, v2,w2)] ,

a total trace ST = trRicT and, if n ≥ 3, an associated Weyl-type tensor WT s.t.

T = WT +
1

n − 2
ZT ⃝∧ g +

ST
2(n − 1)(n − 2)

g ⃝∧ g

where ZT = ˚RicT = RicT − ST

n g . We have

|T̂ |2 = 2(n − 1)|WT |2 +
4n

n − 2
|ZT |2 = |ŴT |2 +

4

n − 2
|ẐT |2
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Harmonic curvature tensors

Definition

An algebraic curvature tensor field T ∈ C∞(T 0
4M) is harmonic if divT = 0 and

the second Bianchi identity holds, i.e. if for all vector fields v1, v2, v3,w , z

∇v1T (v2, v3,w , z) +∇v2T (v3, v1,w , z) +∇v3T (v1, v2,w , z) = 0

For any harmonic curvature tensor T on a Riemannian manifold

1

2
∆|T |2 = |∇T |2 + 1

2
⟨ΓT ,T ⟩
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Petersen-Wink’s approach to algebraic curvature tensors

Theorem (Petersen-Wink ’21)

Let Mn≥3 be a Riemannian manifold. For each algebraic curvature tensor T with
ZT = 0 and for each ω ∈ Λ2M

|⟨ω, T̂ ⟩|2 ≤ 2

n − 1
|ω|2|T̂ |2

In particular, for any such T

⟨ΓT ,T ⟩ ≥ R(⌊ n−1
2 ⌋)|T̂ |2

Theorem (Petersen-Wink ’21)

Let Mn≥4 be a closed Einstein manifold.

If R(⌊ n−1
2 ⌋) ≥ 0 then M is locally symmetric.

If R(⌊ n−1
2 ⌋) > 0 then M is isometric to a quotient of Sn.

In case n = 4 the above statements remain true when R(⌊ n−1
2 ⌋) is replaced by R(2).
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Generalized Tachibana theorem

Theorem (C.-Mariani-Rigoli ’24)

Let T be an algebraic curvature tensor on Mn≥4. Then

⟨ΓT ,T ⟩ ≥ R(⌊ n−1
2 ⌋)|T̂ |2

Theorem (C.-Mariani-Rigoli ’24)

Let Mn≥4 be closed with harmonic curvature.

If R(⌊ n−1
2 ⌋) ≥ 0 then M is locally symmetric.

If R(⌊ n−1
2 ⌋) > 0 then M is isometric to a quotient of Sn.

Remark If n = 4 the statements remain true with R(⌊ n−1
2 ⌋) replaced by R(2).

In particular, the corresponding Tachibana type theorem has been proved in the
preprint [Bettiol-Jackson Goodman ’22]
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Lower bound on ⟨ΓT ,T ⟩
The proof of the lower bound ⟨ΓT ,T ⟩ ≥ R(⌊ n−1

2 ⌋)|T̂ |2 is based on two lemmas.

Lemma 1 (C.-Mariani-Rigoli ’24)

Let T ,T ′ be algebraic curvature tensors on Mn≥3. Then

⟨ΓT ,T ′⟩ = ⟨ΓWT ,WT ′⟩+ 4

n − 2
⟨ΓZT ,ZT ′⟩

Definition

For each integer 1 ≤ N ≤
(
n
2

)
we define Sect(N) : M → R by

Sect(N)(x) = inf

{
1

N

N∑
i=1

Sect(πi ) : π1, . . . , πN orthogonal 2-planes in TxM

}

Lemma 2 (C.-Mariani-Rigoli ’24)

For all A ∈ S0
2M

⟨ΓA,A⟩ ≥ 2 Sect(⌊n/2⌋)|Â|2
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Lower bound on ⟨ΓT ,T ⟩

Proof For any collection {πi} of ⌊n/2⌋ mutually orthogonal 2-planes we have

2

⌊n/2⌋

⌊n/2⌋∑
i=1

Sect(πi ) =
1

⌊n/2⌋

⌊n/2⌋∑
i=1

⟨Rωi , ωi ⟩
|ωi |2

≥ R(⌊ n
2 ⌋) ≥ R(⌊ n−1

2 ⌋)

where each ωi is a 2-form metrically equivalent to a bivector spanning πi . Then

⟨ΓT ,T ⟩ = ⟨ΓWT ,WT ⟩+
4

n − 2
⟨ΓZT ,ZT ⟩

≥ R(⌊ n−1
2 ⌋)|ŴT |2 +

4

n − 2
R(⌊ n

2 ⌋)|ẐT |2

≥ R(⌊ n−1
2 ⌋)

(
|ŴT |2 +

4

n − 2
|ẐT |2

)
= R(⌊ n−1

2 ⌋)|T̂ |2 . □

Remark If n = 4 then ⟨ΓZT ,ZT ⟩ ≥ R(2)|ẐT |2 holds by the previous steps,

while ⟨ΓWT ,WT ⟩ ≥ R(2)|ŴT |2 follows from Petersen-Wink.
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Generalized Tachibana theorem for complete manifolds

Theorem (C.-Mariani-Rigoli ’24)

Let M3 be a complete 3-manifold with harmonic curvature.

If Ric ≥ 0 then M is isometric to a quotient of S3, S2 × R or R3.

If Ric > 0 then M is isometric to a quotient of S3.

Proof We recall the following

Theorem (Zhu ’94, Carron-Herzlich ’06)

If Mn is complete with Ric ≥ 0 and locally conformally flat, then M is either

i) isometric to a quotient of Sn−1 × R or Rn

ii) conformally equivalent to a quotient of Sn

iii) non-flat and conformally equivalent to a quotient of Rn

ii) ⇒ M is compact ⇒ we apply Tachibana theorem for closed manifolds.

iii) cannot occur: otherwise, the universal cover of M would be Rn with complete
metric of constant S > 0 and conformally equivalent to the Euclidean metric,
which is impossible by [Caffarelli-Gidas-Spruck ’89]. □
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Generalized Tachibana theorem for complete manifolds

Theorem (C.-Mariani-Rigoli ’24)

Let Mn≥4 be a complete manifold with harmonic curvature and such that

� +∞

1

RdR

volg (BR(p))
= +∞ for some p ∈ M

If R(⌊ n−1
2 ⌋) ≥ 0 then M is locally symmetric.

If R(⌊ n−1
2 ⌋) > 0 then M is isometric to a quotient of Sn.

Corollary

Let M4 be a complete 4-manifold with harmonic curvature.

If R ≥ 0 then M is locally symmetric.

If R > 0 then M is isometric to a quotient of S4.
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Nomizu-Smyth theorem

Let ψ : Mn → M
n+1

be a two-sided isometrically immersed hypersurface in a
space of constant curvature. If the mean curvature H of the immersion ψ is
constant, then the second fundamental form II satisfies

1

2
∆|II|2 = |∇II|2 + ⟨ΓII, II⟩

Theorem (Nomizu-Smyth ’69)

Let Mn be a closed manifold with Sect ≥ 0 and let ψ : M → M be as above with
M = Rn+1, Hn+1 or Sn+1.

If M = Rn+1 or Hn+1 then ψ(M) is a totally umbilic sphere.

If M = Sn+1 then ψ(M) is an umbilic sphere or a Clifford torus Sk × Sn−k .

Theorem (C.-Mastropietro-Rigoli)

Let ψ : Mn → Sn+1 be a two-sided isometric immersion with constant H. If M is
closed and has Sect(⌊n/2⌋) ≥ 0 then ψ(M) is an umbilic sphere or a Clifford torus.
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Nomizu-Smyth type theorem

Proposition (C.-Mastropietro-Rigoli)

If ψ : Mn → Sn+1 be a two-sided, 2-convex isometric immersion. Then

⟨ΓII, II⟩ ≥
(
n − n3H2

(n − 2)2

)
|Φ|2 and ⟨ΓII, II⟩ ≥ (n − |II|2)|Φ|2

where Φ = II− Hg is the traceless part of the second fundamental form.

Theorem (C.-Mastropietro-Rigoli)

Let ψ : Mn → Sn+1 be a two-sided, 2-convex isometric immersion with constant
H. If M is closed and either

|H| ≤ n − 2

n
or |II|2 ≤ n

then ψ(M) is a totally umbilic sphere or a Clifford torus.
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Thank you for your time!
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