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Harmonic maps

Let φ : (M, g) → (N, h) be a smooth map between smooth
Riemannian manifolds. For M compact, the energy or Dirichlet
integral of φ is

E (φ) =

∫
M
e(φ)ωg =

∫
M

1
2 |dφ|

2 ωg

where ωg = volume measure and, for any p ∈ M,

|dφp|2 = Hilbert–Schmidt square norm of dφp = g ijhαβ φ
α
i φ

β
j .

The map φ is called harmonic if the first variation of E for
variations φt of the map φ vanishes at φ, i.e., d

dtE (φt)
∣∣
t=0

= 0.

d

dt
E (φt)

∣∣
t=0

= −
∫
M

〈
τ(φ), v

〉
ωg

where v = ∂φt/∂t|t=0 is the variation vector field of (φt), and
τ(φ) is called the tension field of φ.



Examples of harmonic maps

In general, a smooth map φ : M → N is harmonic iff it satisfies the
harmonic (or tension field) equation: τ(φ) = 0 where

τ(φ) = div dφ = Trace∇dφ.

1. Harmonic functions: φ : Rm ⊇ U → Rn is harmonic iff
∆φ = 0 where ∆ = usual Laplacian on Rm.

More generally, φ : (M, g) → Rn is harmonic iff ∆Mφ = 0 where
∆M = is the (linear) Laplace–Beltrami operator on (M, g).

2. Geodesics: φ : R ⊇ U → N or S1 → N is harmonic iff it defines
a geodesic parametrized linearly. 3. Harmonic morphisms, see ??

4. ±-Holomorphic maps between Kähler manifolds; in fact they
give absolute minima of the energy functional.

5. Minimal submanifolds; for maps from surfaces, we can allow
branch points in the sense of [R.D. Gulliver, R. Osserman and
H.L. Royden, A theory of branched immersions of surfaces]1.

1Amer. J. Math.95 (1973), 750–812.



Harmonic maps from surfaces

For a map φ : M → N from a surface, the energy is unchanged by
conformal change of metric on the domain, so we can talk about
harmonic maps from Riemann surfaces. Then the harmonic
map equation becomes, in a local complex coordinate z ,

∇φ
z̄

∂φ

∂z
= 0, equivalently ∇φ

z

∂φ

∂z̄
= 0.

where ∇φ is the pull-back of the Levi-Civita connection on N.
When M = C and N = Rn this reduces to the familiar way of
writing Laplace’s equation:

∂

∂z̄

∂φ

∂z
= 0, equivalently

∂

∂z

∂φ

∂z̄
= 0.

These equations say that the partial derivative ∂φ
∂z (resp. ∂φ

∂z̄ ) is
holomorphic (resp. antiholomorphic).



Maps into Kähler manifolds

From now on, M will denote a Riemann surface.

We can decompose any complexified tangent vector v ∈ T cN to a
almost complex manifold into (1, 0) and (0, 1) parts, then

A smooth map φ : M → N into a Kähler manifold is harmonic
iff

∇φ
z̄

∂(1,0)φ

∂z
= 0, equivalently ∇φ

z

∂(1,0)φ

∂z̄
= 0. (1)

We view ∂(1,0)φ
∂z as a (local) section of the pull-back bundle

φ−1T (1,0)N. Then the first of equations (1) says:

The (1, 0)-part of the partial derivative ∂φ
∂z is holomorphic w.r.t.

the Koszul–Malgrange holomorphic structure2 on φ−1T (1,0)N, i.e.,
the holomorphic structure with ∂-operator ∇φ

z̄ .

2J. L. Koszul and B. Malgrange, Sur certaines structures fibrées complexes,
Arch. Math. 9 (1958) 102–109.



Maps into Grassmannians4

A (smooth) map φ : M → Gk(Cn) can be represented by a
(smooth) subbundle φ of the trivial bundle Cn := M ×Cn given by
the pullback via φ of the tautological bundle; φ has fibre at x ∈ M
given by the subspace φ(x). Then

φ−1T (1,0)Gk(Cn) is naturally isomorphic to L(φ,φ⊥) 3.

The derivatives of φ w.r.t. z and to z̄ correspond to locally
defined linear bundle maps A′

φ,A
′′
φ, : φ→ φ⊥ given by

A′
φ(s) = π⊥φ ∂zs and A′′

φ(s) = π⊥φ ∂z̄s (s ∈ Γ(φ));

we call these the second fundamental forms of φ (in Cn). Then

φ is harmonic iff A′
φ is holomorphic iff A′′

φ is antiholomorphic.

3F.E. Burstall and J.H. Rawnsley, Twistor theory for Riemannian symmetric
spaces, Lecture Notes in Mathematics, 1424, Springer-Verlag, Berlin,
Heidelberg (1990).

4F.E. Burstall and JCW, The construction of harmonic maps into complex
Grassmannians, J. Diff. Geom. 23 (1986), 255–298.



Gauss transforms

If φ : M → Gk(Cn) is a harmonic map, by the above
±-holomorphicity, the images of A′

φ and A′′
φ can be extended over

points where A′
φ and A′′

φ do not have their maximal rank giving
globally well-defined smooth subbundles G ′(φ) := ImA′

φ and
G ′′(φ) := ImA′′

φ of Cn called the ∂′- and ∂′′-Gauss bundles of φ.
These define maps into Grassmannians sometimes called Gauss
transforms or ∂- and ∂-transforms5.
If φ is harmonic, so are its Gauss transforms.

This is an early example of K. Uhlenbeck’s adding a uniton. Note
that the two sorts of Gauss transform are mutually inverse when
the bundles concerned are of the same rank. We can iterate this
construction to define the r-th ∂′- and ∂′′-Gauss bundles by

G (1)(φ) = G ′(φ), G (r+1)(φ) = G ′(G (r)(φ))
and

G (−1)(φ) = G ′(φ), G (−r−1)(φ) = G ′′(G (−r)(φ)).
5S.-S. Chern and J. G. Wolfson, Harmonic maps of the two-sphere in to a

complex Grassmannm manifold, Ann. Math. 125 (1987), 301–335.



‘Harmonic’ Diagrams

Generalizing the definitions of A′
φ and A′′

φ, given any orthogonal
subbundles φ, ψ, and local complex coordinate z , we define the
second fundamental form of φ in φ⊕ ψ by

A′
φ,ψ(s) = πψ∂zs and A′′

φ,ψ(s) = πψ∂z̄s (s ∈ Γ(φ)).

Note that A′
φ,ψdz and A′′

φ,ψdz̄ are globally well-defined 1-forms.

Then, by a diagram6 we mean a set of mutually orthogonal
subbundles ψi of Cn with sum Cn together with second
fundamental forms A′

ψi ,ψj
for some of the pairs (i , j), i ̸= j .

We represent this by a directed graph with vertices representing the
ψi and the arrow (i.e. directed edge) from ψi to ψj representing
A′
ψi ,ψj

, with no arrow shown if this is known to be zero.

6See [Burstall–Wood]. Suggested by S. Salamon, cf. Harmonic and
holomorphic maps, Geometry Seminar, Luigi Bianchi II, Lecture Notes in Math.
1164, Springer.



Examples of diagrams

The simplest non-trivial diagram is

φ
A′
φ

// φ⊥

A′
φ⊥

ww (2)

Recall that the second fundamental forms A′
φ and A′

φ⊥ are
holomorphic if and only if φ is harmonic.
We can generalize the above diagram to a cyclic diagrams with 3
or more vertices, e.g. with 4 vertices:

ψ4

��

ψ3
oo

ψ1
// ψ2

OO

(3)

CLAIM: In a cyclic diagram with ℓ vertices, all the arrows (second
fundamental forms) A′

ψi
= A′

ψi ,ψi+1 mod ℓ
are holomorphic and all

vertices are harmonic. We explain why:



Test for holomorphicity

Proposition (= Proposition 1.5, Burstall–Wood7)

Given a diagram {ψi ,Aψi ,ψj
}, A′

ψi ,ψj
: ψi → ψj is holomorphic if

the diagram contains no configurations of the following forms:

ψℓ

ψi

OO

// ψj

__ ψℓ

�� ��
ψi

// ψj
ψi 55 ψj
uu

(4)

Note that this test is a sufficient but not necessary condition; see
the 2-vertex example above. However, it is very useful test.

For example, in a cyclic diagram, all the arrows (second
fundamental forms) are holomorphic and so all vertices are
harmonic. We give a famous example:

7Please note correction to [Burstall–Wood, Proposition 1.6], see
http://www1.maths.leeds.ac.uk/pure/staff/wood/Burstall-Wood-corrn.pdf



Example: The Clifford torus

Suppose we have a cyclic diagram:

φ2
// φ0

// φ1
ww

(5)

As above, we can deduce from [Burstall–Wood, Proposition 1.5]
that each arrow is holomorphic, so that each vertex φi is harmonic.

Example. Start with the map φ = φ0 : C → CP2 with formula

φ0(z) =
[
ez−z , eωz−ωz , eω

2z−ω2z
]
, where ω = e2πi/3, and set

φi = G (i)(φ) (i = 0, 1, 2, . . .). This map factors to an isometric
harmonic map of the torus C/⟨2π/

√
3, 2πi⟩, and its image is a

minimal torus called a Clifford torus.
Then, φi (z) =

[
ez−z , ωieωz−ωz , ω2ieω

2z−ω2z
]
; in particular,

G (3)(φ) = φ — such maps with cyclic Gauss transforms, so giving
a cyclic diagram, are called superconformal.8

8J. Bolton, F. Pedit and L. M. Woodward, Minimal surfaces and the
affine Toda field model, J. Reine Angew. Math. 459 (1995), 119–150.



Harmonic maps from the 2-sphere

The composition of holomorphic second fundamental forms A′
φi
dz

around a cycle gives a holomorphic differential which must be zero
if the domain is the two-sphere. This means that there cannot be
any such circuit, which leads to a slick proof of the following
result, see Eells–Wood9 and other papers cited there:

All harmonic maps from S2 → CPn are obtained from holomorphic
maps by applying the ∂′-Gauss transform up to n times.

Proof Since there are no circuits, the harmonic sequence given by
forming ∂′- and ∂′′-Gauss transforms must end in both directions:

G (−r)(φ) → · · · → G ′′(φ) → φ→ G ′(φ) → · · · → G (s)(φ) (6)

with f := G (−r)(φ) holomorphic, g := G (s)(φ) antiholomorphic
and r + s ≤ n. Then φ = G (r)(f ).

QUESTION: How does this work for other domains?

9J. Eells and J. C. Wood, Harmonic maps from surfaces to complex
projective spaces, Advances in Math. 49 (1983), 217–263.



Harmonic maps into Lie groups

Let φ : M → G be a smooth map from a Riemann surface to
a Lie group. Set A = Aφ = 1

2φ
−1dφ. Choose a local complex

coordinate z and decompose Aφ into (1, 0)- and (0, 1)-parts:

Aφ = Aφz dz + Aφz̄ dz̄ .

Set Dφ = d+ Aφ, a derivation on the trivial bundle M × g.
Write Dφ

z = ∂z + Aφz and Dφ
z̄ = ∂z̄ + Aφz̄ where ∂z = ∂/∂z and

∂z̄ = ∂/∂z̄ . Since Aφz corresponds to the partial derivative ∂φ/∂z
under the identification of M × g with φ−1TG , then10

φ is harmonic iff Aφz is holomorphic with respect to Dφ
z̄ = ∂z̄ +Aφz̄ .

We can deal with harmonic maps into symmetric spaces G/K
by embedding them in G by the totally geodesic Cartan
embedding. For Gk(Cn), this is Gk(Cn) ∋ α 7→ πα − π⊥α ∈ U(n).

10K. Uhlenbeck, Harmonic maps into Lie groups: classical solutions of the
chiral model, J. Differential Geom. 30 (1989) 1–50.



Building harmonic maps from unitons

Given a harmonic map φ : M → U(n), a uniton (for φ) is a map
α : M → Gk(Cn) satisfying:

(i) Aφz (σ) ∈ Γ(α) ; (ii) Dφ
z̄ (σ) ∈ Γ(α) for all σ ∈ Γ(α).

(i) says that α is closed under the endomorphism Aφz .
(ii) says it is holomorphic w.r.t. Dφ

z̄ .
Given a harmonic map φ : M → U(n) and a uniton α for it, the
product φ(πα − π⊥α ) is a new harmonic map. A harmonic map
which can be expressed as a product of a finite number of unitons
is said to be of finite uniton number. Uhlenbeck showed that all
harmonic maps from S2 to U(n) are of finite uniton number.
The uniton equations can be solved11 giving an algebraic
construction of all harmonic maps of finite uniton number from a
surface; see Dai and Terng12 for another approach.

11M. J. Ferreira, B. A. Simões and JCW, All harmonic 2-spheres in the
unitary group, completely explicitly Math Z. 266 (2010), 953–978.

12B. Dai and C.-L. Terng, Bäcklund transformations, Ward solitons, and
unitons, J. Differential Geom. 75 (2007) 57–108.



Maps into Grassmannians: relationship
between Aφz and A′

φ

For any smooth map φ : M → Gk(Cn), composing with the Cartan
embedding ι : Gk(Cn) → U(n), α 7→ πα − π⊥α , gives a map which
we shall still denote by φ : M → U(n). What is the relationship
between Aφz and A′

φ?

Answer: A short calculation shows:

Aφz = −A′
φ − A′

φ⊥ .

Recalling Dφ
z = ∂z + Aφz , these give

Aφz (s) = −A′
φ(s) = −π⊥φ ∂zs and Dφ

z (s) = πφ∂zs, (s ∈ Γ(φ))
(7)

and

Aφz (s) = −A′
φ⊥(s) = −πφ∂zs and Dφ

z (s) = π⊥φ ∂zs, (s ∈ Γ(φ⊥))
(8)



Unitons for maps into Grassmannians

Let φ : M → Gk(Cn) be a harmonic map. Let β be a subbundle of
φ and γ a subbundle of φ⊥ We say that the pair (β, γ) satisfies
the replacement conditions [Burstall-W.] if

1 β is a holomorphic subbundle of φ,

2 γ is a holomorphic subbundle of φ⊥,

3 A′
φ(β) ⊆ γ and A′

φ⊥(γ) ⊆ β.

Then if φ is harmonic, so is φ̃ := (φ⊖ β)⊕ γ = (β⊥ ∩ φ)⊕ γ.
We say that φ̃ is obtained from φ by replacement of α by β.
Example 1. Set β = φ and γ = ImA′

φ. These are subbundles of

φ and φ⊥ which satisfy the replacement conditions; they give
φ̃ = G ′(φ).
Regarding the Grassmannian as embedded in U(n) via the totally
geodesic Cartan embedding, the replacement conditions say that
α = β⊕γ is a uniton. We shall see that all unitons are of this type.



Nilpotency test for finite uniton number

For any cycle C in a diagram, the corresponding operator C is
the composition of all second fundamental forms in the cycle.

We consider an arbitrary diagram, where a harmonic map
φ : M → Gk(Cn) is the sum of the subbundles represented by some
of the vertices. A cycle is then called external if it includes
vertices in φ and φ⊥.

A cycle on a vertex ψ0 is called simple if no vertices are repeated.

Proposition (Aleman, Pacheco, W.13)

Suppose that, for some vertex, there is a unique simple external
cycle C . If φ is of finite uniton number then the corresponding
operator is nilpotent.

13A. Aleman, R. Pacheco and JCW. Harmonic maps and shift-invariant
subspaces, Monatsh. Math. 194 (2021), no. 4, 625–656.



A more powerful nilpotency test

Again, we consider an arbitrary diagram, where a harmonic map
φ : M → Gk(Cn) is the sum of the subbundles represented by some
of the vertices. We say that a cycle C has degree m if it has m
external arrows and type (ℓ,m) if it has length ℓ and degree m.

Proposition (Pacheco, W.14)

Let φ : M → Gk(Cn) be a harmonic map of finite uniton number.
Let α be a subbundle of φ (which may not be a vertex of the
diagram). Let C be an external cycle of type (ℓ,m) on φ whose
corresponding operator C sends (sections of) α to α.
Then C restricts to a nilpotent bundle map C|α : α→ α if, for
each j ∈ N, any cycle on φ of type (jℓ, jm) is zero on α or is equal
to C j .

14R. Pacheco and JCW, Diagrams and harmonic maps, revisited, Ann. Mat.
Pura Appl. (4)202 (2023), no.3, 1051–1085.



A Negative Example

.
Recall the diagram for the Clifford torus:

φ2
// φ0

// φ1
ww

All the second fundamental forms in the diagram are
isomorphisms, and so is their composition. Thus the cycle is not
nilpotent so, by the above test:

The Clifford torus is not of finite uniton number.

More generally,

A superconformal map M → CPn, i.e., one whose Gauss
transforms give a cyclic diagram, is never of finite uniton number.



A positive example

Theorem (Aleman, Pacheco, W.) Any harmonic map
φ : M → CPn−1 of finite uniton number is given by G (i)(f ) for
some holomorphic map f : M → CPn−1 and some
i ∈ {0, 1, . . . , n − 1}.
Suppose that there is an r ≥ 1 such that G (r+1)(φ) not orthogonal
to φ. We obtain a diagram

φ
A′
φ

// G ′(φ)
A′
G(1)(φ)

// · · ·
A′
G(r−2)(φ)

// G (r−1)(φ)
A′
G(r−1)(φ)

// G (r)(φ)rr
A′
G(r)(φ),R

// Rtt

The second fundamental forms on the inner cycle are all non-zero
so that their composition is also. But by our tests, this
composition must be nilpotent and so zero.
Hence, there is no such r , so all the Gauss bundles are mutually
orthogonal and we get the same diagram, and so the same result,
as for the S2 case.



New approach: U(n) as a Grassmannian15

For any m, let Cm be equipped with its standard Hermitian metric
⟨·, ·⟩. Write C2n = Cn ⊕ Cn, so that, for X = (X1,X2),
Y = (Y1,Y2) ∈ Cn ⊕ Cn, ⟨X ,Y ⟩ = ⟨X1,Y1⟩+ ⟨X2,Y2⟩.

Define J : C2n → C2n by J(X1,X2) = (−X1,X2) and

ω(X ,Y ) = ⟨JX ,Y ⟩ = ⟨X2,Y2⟩ − ⟨X1,Y1⟩.

Define the complex Lagrangian Grassmannian GL = GLag
n (C2n)

by

GL = {U ∈ Gn(C2n) : ω(U,U) = 0, equiv. (JU)⊥ = U}.

This is a totally geodesic submanifold of Gn(C2n).

The map K : A 7→ graph of A = {(X1,X2) ∈ Cn ⊕Cn : X2 = AX1}
defines an isometry of U(n) to GL.

15V.I. Arnol’d, The complex Lagrangian Grassmannian (Russian)
Funktsional. Anal. i Prilozhen. 34 (2000), no.3, 63–65; translation in Funct.
Anal. Appl. 34 (2000), no.3, 208–210.



U(n) as a Grassmannian: interpretation of
adding a uniton16

Let g : M → U(n) be harmonic. Recall the definition of a uniton
for g : Skip to Unitons

Let φ : M → GLag
n (C2n) be the corresponding harmonic map via

the isometry K : U(n) → GLag
n (C2n). Recall the replacement

conditions: Skip to Replacements

Let γ be a subbundle of Cn and set α = {(s1, gs1) : s1 ∈ γ} and
β = {(−s1, gs1) : s1 ∈ γ}. Note that α is a subbundle of φ and β
a subbundle of φ⊥.

Then (α, β) satisfies the replacement conditions if and only if γ is
a uniton. Thus:

We can interpret adding a uniton to a harmonic map
g : M → U(n) as doing a replacement to the corresponding

harmonic map φ : M → GLag
n (C2n).

16R. Pacheco and JCW, work in progress.



U(n) as a Grassmannian: an application

A harmonic map is said to be of finite type if it can be obtained by
using integrable systems methods from a certain Lax-type equation
It is known17 that all non-constant harmonic tori in the Euclidean
sphere Sn or complex projective space CPn are either of finite type
or of finite uniton number. Further [Pacheco-W.] a harmonic map
from a 2-torus T 2 to a complex Grassmannian which is
simultaneously of finite type and finite uniton number is constant.

What about maps into the unitary group U(n)?

Theorem (Pacheco-W.)

(i) A harmonic map T 2 → U(n) which is simultaneously of finite
type and finite uniton number is constant.

(ii) Let g : T 2 → U(n) be harmonic. Suppose that
A := Ag

z = g−1∂zg is invertible and semisimple on a dense
subset of T 2. Then g is of finite type.

17R. Pacheco, see next frame



The proofs

(i) follows immediately from the interpretation of U(n) as a
Grassmannian.
(ii) For a harmonic map g : M → U(n), let φ : M → GLag

n (C2n) be
the corresponding harmonic map via the isometry
K : U(n) → GLag

n (C2n). Then for s = (s1, gs1) ∈ Γ(φ), simple
calculations show that

A′
φ(s) = (−As, gAs), A′′

φ(s) = (−As, gĀs)

hence the first return map c1(φ) := A′
φ⊥ ◦ A′

φ is given by

c1(φ)(s) =
1
2(A

2s, gA2s).

This is clearly invertible and semisimple on a dense subset of T 2,
therefore, by Theorem 4.1 of [S. Udagawa, Harmonic maps from a
two-torus into a complex Grassmann manifold, Internat. J. Math.
6 (1995), no.3, 447–459], φ, and so g has finite type.



Further developments

According to [Y. Huang and N.C Leung, A uniform description of
compact symmetric spaces as Grassmannians using the magic
square, Math. Ann. 350 (2011), no.1, 79–106], every compact
symmetric space, in particular, every compact Lie group, is a
Grassmannian. See also
[J.H. Eschenburg and S. Hosseini, Symmetric spaces as
Grassmannians, Manuscripta Math. 141 (2013), no.1-2, 51–62].

Interpreting G2/SO(4) as a Grassmannian, we can study the
twistor theory of harmonic maps, see [M. Svensson and JCW,
Harmonic maps into the exceptional symmetric space G2/SO(4),
J. Lond. Math. Soc. 91 (2015) 291–319].

For a similar approach for harmonic maps into F4/Spin(9), see
[N. Correia, R. Pacheco and M. Svensson, Harmonic surfaces in
the Cayley plane, J. Lond. Math. Soc. (2) 103 (2021), no.2,
353–371].



Mulţumesc!

Thank you for your attention!
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