

Biconservative Hypersurfaces in Euclidean Spaces

On the Shape Operator of Biconservative Hypersurfaces in Euclid and Minkowski Spaces

Nurettin Cenk Turgay Istanbul Technical University

Differential Geometry Workshop 2023

September 06-09, 2023

Biconservative Hypersurfaces in Euclidean Spaces

Preliminaries

- Notation
- Biconservative Submanifolds
- Hypersurfaces of Riemannian Space Forms

2 Hypersurfaces of \mathbb{E}_1^4

- Uniqueness of Biconservative Hypersurfaces
- Local Classification

3 Biconservative Hypersurfaces in Euclidean Spaces

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Section 1:

Preliminaries

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Basic Notation

Let \mathbb{E}_r^n denote the pseudo-Euclidean *n* space with the index *r* given by the metric

$$ilde{g} = \langle \cdot, \cdot
angle = -\sum_{i=1}^r dx_i^2 + \sum_{i=r+1}^n dx_i^2$$

Note: We drop r in the Riemannian case r = 0.

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Basic Notation

Let \mathbb{E}_r^n denote the pseudo-Euclidean *n* space with the index *r* given by the metric

$$ilde{g} = \langle \cdot, \cdot
angle = -\sum_{i=1}^r dx_i^2 + \sum_{i=r+1}^n dx_i^2$$

Put

$$\mathbb{S}_r^n = \{ x \in \mathbb{E}_r^{n+1} : \langle x, x \rangle = 1 \}$$

and

$$\mathbb{H}_r^n = \{ x \in \mathbb{E}_{r+1}^{n+1} : \langle x, x \rangle = -1 \}.$$

Note: We drop r in the Riemannian case r = 0.

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Basic Notation

Let \mathbb{E}_r^n denote the pseudo-Euclidean *n* space with the index *r* given by the metric

$$ilde{g} = \langle \cdot, \cdot
angle = -\sum_{i=1}^r dx_i^2 + \sum_{i=r+1}^n dx_i^2$$

Put

$$\mathbb{S}_r^n = \{ x \in \mathbb{E}_r^{n+1} : \langle x, x \rangle = 1 \}$$

and

$$\mathbb{H}_r^n = \{ x \in \mathbb{E}_{r+1}^{n+1} : \langle x, x \rangle = -1 \}.$$

Further we use the notation

$$R_r^n(c) = \begin{cases} \mathbb{S}_r^n & \text{if } c = 1, \\ \mathbb{H}_r^n & \text{if } c = -1, \\ \mathbb{E}_r^n & \text{if } c = 0, \end{cases}$$

Note: We drop r in the Riemannian case r = 0.

Basic Definitions

Let (Ω, g) be a semi-Rimennian manifold and $f : (\Omega, g) \hookrightarrow R_r^n(c)$ an isometric immersion.

Basic Definitions

Let (Ω, g) be a semi-Rimennian manifold and $f : (\Omega, g) \hookrightarrow R_r^n(c)$ an isometric immersion.

Then, the Gauss and Weingarten formulas for the submanifold $M = f(\Omega)$ of $R_r^n(c)$:

$$\begin{aligned} \widetilde{\nabla}_X Y &= \nabla_X Y + \alpha_f(X,Y), \\ \widetilde{\nabla}_X \xi &= -A_\xi^f X + \nabla_X^{\perp} \xi. \end{aligned}$$

Basic Definitions

Let (Ω, g) be a semi-Rimennian manifold and $f : (\Omega, g) \hookrightarrow R_r^n(c)$ an isometric immersion.

Then, the Gauss and Weingarten formulas for the submanifold $M = f(\Omega)$ of $R_r^n(c)$:

$$\begin{aligned} \widetilde{\nabla}_X Y &= \nabla_X Y + \alpha_f(X,Y), \\ \widetilde{\nabla}_X \xi &= -A_\xi^f X + \nabla_X^{\perp} \xi. \end{aligned}$$

The mean curvature vector field of f is defined by

$$H_f = \frac{1}{m} \operatorname{trace} \alpha_f.$$

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Basic Equations

The following equations is satisfied for a given $f : (\Omega, g) \hookrightarrow R_r^n(c)$:

$$R(X,Y)Z = c(X \wedge Y)Z + A^{f}_{\alpha_{f}(Y,Z)}X - A^{f}_{\alpha_{f}(X,Z)}Y,$$
(G)

$$(\bar{\nabla}_X \alpha_f)(Y, Z) = (\bar{\nabla}_Y \alpha_f)(X, Z) \tag{C}$$

$$R^{D}(X,Y)\zeta = \alpha_{f}(X,A_{\zeta}^{f}Y) - \alpha_{f}(A_{\zeta}^{f}X,Y), \tag{R}$$

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Basic Equations

The following equations is satisfied for a given $f : (\Omega, g) \hookrightarrow R_r^n(c)$:

$$R(X,Y)Z = c(X \wedge Y)Z + A^{f}_{\alpha_{f}(Y,Z)}X - A^{f}_{\alpha_{f}(X,Z)}Y,$$
(G)

$$(\bar{\nabla}_X \alpha_f)(Y, Z) = (\bar{\nabla}_Y \alpha_f)(X, Z) \tag{C}$$

$$R^{D}(X,Y)\zeta = \alpha_{f}(X,A_{\zeta}^{f}Y) - \alpha_{f}(A_{\zeta}^{f}X,Y), \tag{R}$$

where we put

$$(\bar{\nabla}_X \alpha_f)(Y, Z) = D_X^f \alpha_f(Y, Z) - \alpha_f(\nabla_X Y, Z) - \alpha_f(Y, \nabla_X Z)$$

and $(X \wedge Y)Z = g(Y, Z)X - g(X, Z)Y$.

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Section 1.2:

Biconservative Submanifolds

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spa

Biharmonic Maps

Consider a smooth map $\psi : (M,g) \rightarrow (N,\tilde{g})$.

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Biharmonic Maps

Consider a smooth map $\psi : (M,g) \rightarrow (N,\tilde{g})$.

Bienergy Functional

The bienergy functional is defined by

 $E_2(\psi) = \int_M |\tau(\psi)|^2 dv$

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Biharmonic Maps

Consider a smooth map $\psi : (M,g) \rightarrow (N,\tilde{g})$.

Bienergy Functional

The bienergy functional is defined by

$$E_2(\psi) = \int_M |\tau(\psi)|^2 dv$$

Biharmonic map

A mapping ψ is said to be biharmonic if it is a critical point of the energy functional $E_2.$

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Biharmonic Mappings

In ¹ G.Y. Jiang studied the first and second variation formulas of E_2 in order to understand its critical points, called biharmonic maps (See also ²).

¹G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, 1986.

²G. Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, 1986.

lypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Biharmonic Mappings

In ¹ G.Y. Jiang studied the first and second variation formulas of E_2 in order to understand its critical points, called biharmonic maps (See also ²). He proved that a mapping $\psi: M \to N$ is biharmonic if and only if the associated Euler-Lagrange equation

$$\tau_2(\psi) = 0$$

is satisfied, where

$$au_2(\psi) = \Delta \tau(\psi) - \operatorname{trace} \tilde{R}(d\psi, \tau(\psi)) d\psi$$

is the bi-tension field.

¹G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, 1986.

²G. Y. Jiang, *2-harmonic isometric immersions between Riemannian manifolds*, 1986.

lypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Biharmonic Mappings

In ¹ G.Y. Jiang studied the first and second variation formulas of E_2 in order to understand its critical points, called biharmonic maps (See also ²). He proved that a mapping $\psi: M \to N$ is biharmonic if and only if the associated Euler-Lagrange equation

$$\tau_2(\psi) = 0$$

is satisfied, where

$$au_2(\psi) = \Delta \tau(\psi) - \operatorname{trace} \tilde{R}(d\psi, \tau(\psi)) d\psi$$

is the bi-tension field.

Remark

It is obvious that a harmonic map is biharmonic.

¹G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, 1986.

²G. Y. Jiang, *2-harmonic isometric immersions between Riemannian manifolds*, 1986.

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Biharmonic immersions

Let $f : (\Omega, g) \hookrightarrow (N, \tilde{g})$ be an isometric immersion.

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Biharmonic immersions

Let $f: (\Omega, g) \hookrightarrow (N, \tilde{g})$ be an isometric immersion. In this case, we have

 $\tau_2(f) = 0 \Leftrightarrow$

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Biharmonic immersions

Let $f:(\Omega,g) \hookrightarrow (N, \widetilde{g})$ be an isometric immersion. In this case, we have

$$\tau_{2}(f) = 0 \Leftrightarrow \begin{cases} m \nabla \|H\|^{2} + 4 \operatorname{trace} A_{\nabla_{\cdot}^{\perp} H}(\cdot) + 4 \operatorname{trace} \left(\tilde{R}(\cdot, H) \cdot\right)^{T} = 0, \quad (\mathsf{T}) \\ \operatorname{trace} \alpha_{f}(A_{H}(\cdot), \cdot) - \Delta^{\perp} H + \operatorname{trace} \left(\tilde{R}(\cdot, H) \cdot\right)^{\perp} = 0 \quad (\perp), \end{cases}$$

where we simply put $A^f = A$ and $H = H_f$.

Hypersurfaces of \mathbb{E}^4_1

Biconservative Hypersurfaces in Euclidean Spaces

Biconservative Immersions

Definition

An immersion $\psi: (M,g) \hookrightarrow (N,\tilde{g})$ is said to be biconservative if the equation

$$(\tau_2(f))^T = 0$$

is satisfied.

Hypersurfaces of \mathbb{E}^4_1

Biconservative Hypersurfaces in Euclidean Spaces

Biconservative Immersions

Definition

An immersion $\psi: (M,g) \hookrightarrow (N,\tilde{g})$ is said to be biconservative if the equation

$$(\tau_2(f))^T = 0$$

is satisfied.

Biconservative Immersion

An immersion $\psi: (M,g) \hookrightarrow (N, \tilde{g})$ is biconservative if and only if the equation

$$m\nabla \|H\|^{2} + 4\operatorname{trace} A_{D,H}(\cdot) + 4\operatorname{trace} \left(\tilde{R}(\cdot,H)\cdot\right)^{T} = 0, \tag{T}$$

is satisfied.

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Biconservative Immersions

Definition

An immersion $\psi: (M,g) \hookrightarrow (N,\tilde{g})$ is said to be biconservative if the equation

$$(\tau_2(f))^T = 0$$

is satisfied.

Biconservative Immersion

An immersion $\psi: (M,g) \hookrightarrow (N, \widetilde{g})$ is biconservative if and only if the equation

$$m\nabla \|H\|^{2} + 4\operatorname{trace} A_{D,H}(\cdot) + 4\operatorname{trace} \left(\tilde{R}(\cdot,H)\cdot\right)^{T} = 0, \tag{T}$$

is satisfied.

Biharmonic Immersions

Every biharmonic immersion is biconservative.

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Section 1.3:

Hypersurfaces of Riemannian Space Forms

Biconservative Hypersurfaces

In $^{3}\!,$ we study biconservative hypersurfaces of non-flat Riemannian space forms.

• When $N = R_r^n(c)$, we have trace $(\tilde{R}(\cdot, H) \cdot)^T = 0$

³[nCt, Upadhyay, Mathematische Nachrichten, 2019]

Biconservative Hypersurfaces

In $^{3}\!,$ we study biconservative hypersurfaces of non-flat Riemannian space forms.

- When $N = R_r^n(c)$, we have $\operatorname{trace} (\tilde{R}(\cdot, H) \cdot)^T = 0$
- Therefore, the biconservativity equation

$$m\nabla \|H\|^2 + 4\operatorname{trace} A_{D,H}(\cdot) + 4\operatorname{trace} \left(\tilde{R}(\cdot,H)\cdot\right)^T = 0, \tag{T}$$

turns into

$$S(\nabla H) = -\frac{nH}{2}\nabla H.$$
 (T)

³[nCt, Upadhyay, Mathematische Nachrichten, 2019]

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Biconservative Hypersurfaces

$$S(\nabla H) = -\frac{nH}{2}\nabla H.$$
 (T)

Proposition

We assume that H is not constant.

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Biconservative Hypersurfaces

$$S(\nabla H) = -\frac{nH}{2}\nabla H.$$
 (T)

Proposition

We assume that H is not constant.

Proposition

A hypersurface of $N = R^{n+1}(c)$ is biconservative if and only if

$$S = \begin{pmatrix} -\frac{nH}{2} & & \\ & k_2 & \\ & & \ddots & \\ & & & k_n \end{pmatrix}$$

for a function H such that $e_i(H) = 0$, i = 2, 3, ..., n.

Hypersurfaces of \mathbb{E}_1^{\prime}

Biconservative Hypersurfaces in Euclidean Spaces

Biconservative hypersurfaces of $R^{n+1}(\varepsilon)$

$$S(\nabla H) = -\frac{nH}{2}\nabla H,$$

Hypersurfaces of \mathbb{E}_2°

Biconservative Hypersurfaces in Euclidean Spaces

Biconservative hypersurfaces of $R^{n+1}(\varepsilon)$

$$S(\nabla H) = -\frac{nH}{2}\nabla H,$$

We have the following parametrization of the hypersurface M:

Theorem

Let *M* be a proper biconservative hypersurface of $R^{n+1}(c)$, $c \in \{-1, 1\}$ with the mean curvature *H* and $m \in M$.

Hypersurfaces of $\mathbb{E}_{\mathbb{F}}^{2}$

Biconservative Hypersurfaces in Euclidean Spaces

Biconservative hypersurfaces of $R^{n+1}(\varepsilon)$

$$S(\nabla H) = -\frac{nH}{2}\nabla H,$$

We have the following parametrization of the hypersurface M:

Theorem

Let *M* be a proper biconservative hypersurface of $R^{n+1}(c)$, $c \in \{-1, 1\}$ with the mean curvature *H* and $m \in M$. If c = -1, assume that $H(m) \neq 2/n$. Hypersurfaces of $\mathbb{E}_{\mathbb{F}}^{2}$

Biconservative Hypersurfaces in Euclidean Spaces

Biconservative hypersurfaces of $R^{n+1}(\varepsilon)$

$$S(\nabla H) = -\frac{nH}{2}\nabla H,$$

We have the following parametrization of the hypersurface M:

Theorem

Let M be a proper biconservative hypersurface of $\mathbb{R}^{n+1}(c)$, $c \in \{-1, 1\}$ with the mean curvature H and $m \in M$. If c = -1, assume that $H(m) \neq 2/n$.Let $\Theta(t_1, t_2, \ldots, t_{n-1})$ be a local parametrization of an integral submanifold \hat{M} of the distribution $D = (\operatorname{span} \nabla H)^{\perp}$ passing through m. Hypersurfaces of \mathbb{E}_1^{+}

Biconservative Hypersurfaces in Euclidean Spaces

Biconservative hypersurfaces of $R^{n+1}(\varepsilon)$

$$S(\nabla H) = -\frac{nH}{2}\nabla H,$$

We have the following parametrization of the hypersurface M:

Theorem

Let *M* be a proper biconservative hypersurface of $\mathbb{R}^{n+1}(c)$, $c \in \{-1, 1\}$ with the mean curvature *H* and $m \in M$. If c = -1, assume that $H(m) \neq 2/n$.Let $\Theta(t_1, t_2, \dots, t_{n-1})$ be a local parametrization of an integral submanifold \hat{M} of the distribution $D = (\operatorname{span} \nabla H)^{\perp}$ passing through *m*.Then, there exists a neighbourhood \mathcal{N}_m of *m* on which *M* can be parametrized

$$\begin{aligned} \mathbf{x}(s,t_1,t_2,\ldots,t_{n-1}) = \Theta(t_1,t_2,\ldots,t_{n-1}) + \alpha_1(s)\xi_1(t_1,t_2,\ldots,t_{n-1}) + \alpha_2(s)\xi_2(t_1,t_2,\ldots,t_{n-1}) \\ t_{n-1}) + \alpha_3(s)\xi_3(t_1,t_2,\ldots,t_{n-1}) \end{aligned}$$

for any parallel, orthonormal base $\{\xi_1, \xi_2, \xi_3\}$ of the normal space of \hat{M} in E(n+1, c).

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Biconservative hypersurfaces of \mathbb{H}^4

$$x(s,t,u) = (\alpha_1(s), \alpha_2(s) \cos t, \alpha_2(s) \sin t, \alpha_3(s) \cos u, \alpha_3(s) \sin u),$$

 $x(s,t,u) = (\alpha_1(s) \cosh u, \alpha_1(s) \sinh u, \alpha_2(s) \cos t, \alpha_2(s) \sin t, \alpha_3(s)),$

$$x(s,t,u) = \left(\frac{aA(s)^2 + a}{s} + asu^2 + \frac{s}{4a}, su, A(s)\cos t, A(s)\sin t, \frac{aA(s)^2 + a}{s} + asu^2 - \frac{s}{4a}\right)$$

$$\begin{aligned} x(s,t,u) &= \left(\frac{aA(s)^2}{s} + as\left(t^2 + u^2\right) + \frac{s}{4a} + \frac{a}{s}, st, su, A(s), \\ \frac{aA(s)^2}{s} + as\left(t^2 + u^2\right) - \frac{s}{4a} + \frac{a}{s}\right) \end{aligned}$$

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Section 2:

Hypersurfaces of \mathbb{E}_1^4

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Shape Operator of Hypersurfaces I

Let *M* be a Lorentzian surface, $p \in M$ and *A* be a symmetric endomorphism of T_pM . Then, by choosing an appropriated base for T_pM , *A* can put into one of the following four canonical forms:

Case (i).
$$A \sim \begin{bmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & a_n \end{bmatrix}$$

with respect to an orthonormal base.

Case (ii).
$$A \sim \begin{bmatrix} a_0 & & & \\ -1 & a_0 & & & \\ & a_1 & & & \\ & & & \ddots & \\ & & & & & a_{n-2} \end{bmatrix}$$

with respect to an pseudo-orthonormal base.

Hypersurfaces of \mathbb{E}_{2}^{*}

Biconservative Hypersurfaces in Euclidean Spaces

Shape Operator of Hypersurfaces II

with respect to an pseudo-orthonormal base.

Case (iv).
$$A \sim \begin{bmatrix} a_0 & b_0 & & & \\ -b_0 & a_0 & & & \\ & & a_1 & & \\ & & & \ddots & \\ & & & & a_{n-2}. \end{bmatrix}$$

with respect to an orthonormal base

Some References

- $\bullet\,$ Biconservative hypersurfaces with diagonalizable shape operator were classified in 4
- Biharmonic hypersurfaces with non-diagonalizable shape operator were studied in $^{\rm 5}$
- Biconservative hypersurfaces with complex principle curvature were studied by ⁶

⁴[Fu, nCt, International Journal of Mathematics, 2015]

⁵[Arvanitoyeorgos, Kaimakamis, Magid, Illinois Journal of Mathematics, 2009]

⁶[Deepika, Mediterr. J. Math., 2017]

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Section 2.1:

Uniqueness of Biconservative Hypersurfaces

Shape Operator of Biconservative Hypersurfaces

Assume that a hypersurface M in \mathbb{E}_1^4 with non-diagonalizable shape operator is proper biconservative. Then, we have

$$S(\operatorname{grad} H) = \frac{-3H}{2} \operatorname{grad} H.$$
(1)

Shape Operator of Biconservative Hypersurfaces

Assume that a hypersurface M in \mathbb{E}_1^4 with non-diagonalizable shape operator is proper biconservative. Then, we have

$$S(\operatorname{grad} H) = \frac{-3H}{2} \operatorname{grad} H.$$
(1)

We have the following two cases subject to the causality of $\operatorname{grad} H$: *Case (i)*. There exists a pseudo-orthonormal base field $\{e_1, e_2, e_3\}$ such that

$$S \sim \begin{bmatrix} -3H/2 & 1 & 0\\ 0 & -3H/2 & 0\\ 0 & 0 & 6H \end{bmatrix},$$
 (2)

where the null vector e_1 is proportional to grad H.

Shape Operator of Biconservative Hypersurfaces

Assume that a hypersurface M in \mathbb{E}_1^4 with non-diagonalizable shape operator is proper biconservative. Then, we have

$$S(\operatorname{grad} H) = \frac{-3H}{2} \operatorname{grad} H.$$
(1)

We have the following two cases subject to the causality of $\operatorname{grad} H$: *Case (i)*. There exists a pseudo-orthonormal base field $\{e_1, e_2, e_3\}$ such that

$$S \sim \begin{bmatrix} -3H/2 & 1 & 0\\ 0 & -3H/2 & 0\\ 0 & 0 & 6H \end{bmatrix},$$
 (2)

where the null vector e_1 is proportional to grad H. Case (ii). There exists a pseudo-orthonormal base field $\{e_1, e_2, e_3\}$ such that

$$S \sim \begin{bmatrix} 9H/4 & 1 & 0\\ 0 & 9H/4 & 0\\ 0 & 0 & -3H/2 \end{bmatrix},$$
 (3)

where the space-like vector e_3 is proportional to grad H.

Sketch Proof

Lemma

Let M be a proper biconservative hypersurface of \mathbb{E}_1^4 with non-diagonalized shape operator. Then, its shape operator s has the matrix representation

$$S \sim \begin{bmatrix} 9H/4 & 1 & 0\\ 0 & 9H/4 & 0\\ 0 & 0 & -3H/2 \end{bmatrix}$$

Main Theorem

Theorem

Let (Ω, g) be a 3-dimensional, connected Lorentzian manifold. If (Ω, g) admits two proper biconservative isometric immersion $x, \tilde{x} : (\Omega, g) \hookrightarrow \mathbb{E}_1^4$ with non-diagonalizable shape operator then there exists an isometry $\tau : \mathbb{E}_1^4 \to \mathbb{E}_1^4$ such that $\tilde{x} = \tau \circ x$.

Hypersurfaces of \mathbb{E}_1^2

Biconservative Hypersurfaces in Euclidean Spaces

Sketch Proof

Assume the existence of $x:(\Omega,g)\hookrightarrow \mathbb{E}_1^4$ with the shape operator

$$S \sim egin{bmatrix} 9H/4 & 1 & 0 \ 0 & 9H/4 & 0 \ 0 & 0 & -3H/2 \end{bmatrix}.$$

lypersurfaces of \mathbb{E}_1^2

Biconservative Hypersurfaces in Euclidean Spaces

Sketch Proof

Assume the existence of $x:(\Omega,g)\hookrightarrow \mathbb{E}_1^4$ with the shape operator

$$S \sim \begin{bmatrix} 9H/4 & 1 & 0 \\ 0 & 9H/4 & 0 \\ 0 & 0 & -3H/2 \end{bmatrix}$$

We first prove that H, e_1, e_2, e_3 can be obtained intrinsically:

lypersurfaces of \mathbb{E}_1^2

Biconservative Hypersurfaces in Euclidean Spaces

Sketch Proof

Assume the existence of $x:(\Omega,g)\hookrightarrow \mathbb{E}_1^4$ with the shape operator

$$S \sim \begin{bmatrix} 9H/4 & 1 & 0 \\ 0 & 9H/4 & 0 \\ 0 & 0 & -3H/2 \end{bmatrix}$$

We first prove that H, e_1, e_2, e_3 can be obtained intrinsically:

• It turns out that the scalar curvature of is $S = \frac{27}{16}H^2$

lypersurfaces of \mathbb{E}_1^\prime

Biconservative Hypersurfaces in Euclidean Spaces

Sketch Proof

Assume the existence of $x:(\Omega,g)\hookrightarrow \mathbb{E}_1^4$ with the shape operator

$$S \sim egin{bmatrix} 9H/4 & 1 & 0 \ 0 & 9H/4 & 0 \ 0 & 0 & -3H/2 \end{bmatrix}.$$

We first prove that H, e_1, e_2, e_3 can be obtained intrinsically:

- It turns out that the scalar curvature of is $S = \frac{27}{16}H^2$
- Then, we obtain $e_3 = x_* E_3$, where

$$E_3 = \frac{\operatorname{grad} S}{\|\operatorname{grad} S\|}.$$

lypersurfaces of \mathbb{E}_1^\prime

Biconservative Hypersurfaces in Euclidean Spaces

Sketch Proof

Assume the existence of $x:(\Omega,g)\hookrightarrow \mathbb{E}_1^4$ with the shape operator

$$S \sim egin{bmatrix} 9H/4 & 1 & 0 \ 0 & 9H/4 & 0 \ 0 & 0 & -3H/2 \end{bmatrix}.$$

We first prove that H, e_1, e_2, e_3 can be obtained intrinsically:

- It turns out that the scalar curvature of is $S = \frac{27}{16}H^2$
- Then, we obtain $e_3 = x_* E_3$, where

$$E_3 = \frac{\operatorname{grad} S}{\|\operatorname{grad} S\|}.$$

• Finally, we proved that $e_1 = x_*E_1$, $e_2 = x_*E_2$, where E_1, E_2 are the only vectors satisfying

$$R(E_1, E_3)E_1 = 0,$$
 $R(E_3, E_2)E_3 = -\frac{3H}{2}E_1,$
 $R(E_2, E_3)E_2 = \frac{3H}{2}E_3$.

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Section 2.2:

Local Classification

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Construction of Hypersurface

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Construction of Hypersurface

Let α be a null curve which admits a pseudo-orthonormal base $\{\mathcal{T},\mathcal{U},\alpha_1,\alpha_2\}$ such that

$$\begin{array}{rcl} \alpha' & = & T, \\ T' & = & A_2\alpha_2 + A_1T, \\ U' & = & A_3\alpha_1 + A_4\alpha_2 - A_1U, \\ \alpha'_1 & = & A_3T, \\ \alpha'_2 & = & A_2U + A_4T \end{array}$$

for some smooth functions A_i .

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Construction of Hypersurface

Let α be a null curve which admits a pseudo-orthonormal base $\{T, U, \alpha_1, \alpha_2\}$ such that

$$\begin{array}{rcl} \alpha' & = & T, \\ T' & = & A_2 \alpha_2 + A_1 T, \\ U' & = & A_3 \alpha_1 + A_4 \alpha_2 - A_1 U, \\ \alpha'_1 & = & A_3 T, \\ \alpha'_2 & = & A_2 U + A_4 T \end{array}$$

for some smooth functions A_i . Consider the hypersurface

$$g(s, u, w) = \alpha(s) + uT(s) + w\alpha_1(s) + f(w)\alpha_2(s),$$

where f is a smooth function.

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Construction of Hypersurface

 $g(s, u, w) = \alpha(s) + uT(s) + w\alpha_1(s) + f(w)\alpha_2(s),$

surfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Construction of Hypersurface

$$g(s, u, w) = \alpha(s) + uT(s) + w\alpha_1(s) + f(w)\alpha_2(s),$$

The shape operator of this hypersurface has the form

$$\begin{pmatrix} \frac{1}{f(w)\sqrt{f'(w)^{2}+1}} & -\frac{A_{3}(s)\left(w+f(w)f'(w)\right)+1}{f(w)^{2}A_{2}(s)\sqrt{f'(w)^{2}+1}} & 0\\ 0 & \frac{1}{f(w)\sqrt{f'(w)^{2}+1}} & 0\\ 0 & 0 & -\frac{f''(w)}{\left(f'(w)^{2}+1\right)^{3/2}} \end{pmatrix}.$$

Therefore, this hypersurface is biconservative if and only if

$$-3f(w)f''(w) + 2f'(w)^2 + 2 = 0$$

Local Classfication Result

Theorem

A hypersurface M in \mathbb{E}^4_1 with non-diagonalizable shape operator is proper biconservative if and only if it is locally congruent to the hypersurface previously constructed

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Section 3:

Biconservative Hypersurfaces in Euclidean Spaces

Hypersurfaces of \mathbb{E}^4_1

Biconservative Hypersurfaces in Euclidean Spaces

Biconservative Hypersurfaces

Let $f:(\Omega,g) \to \mathbb{E}^{n+1}$ be a proper biconservative immersion, where (Ω,g) is an n dimensional Riemannian manifold. Then, we have

$$S(\operatorname{grad} H) = \frac{-nH}{2}\operatorname{grad} H.$$

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Biconservative Hypersurfaces

Let $f: (\Omega, g) \to \mathbb{E}^{n+1}$ be a proper biconservative immersion, where (Ω, g) is an n dimensional Riemannian manifold. Then, we have

$$S(\operatorname{grad} H) = \frac{-nH}{2}\operatorname{grad} H.$$

Therefore,

- $e_1 = \frac{\text{grad } H}{\|\text{grad } H\|}$ is a principle direction of f
- with the corresponding principle curvature

$$k_1=\frac{-nH}{2}.$$

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Biconservative Hypersurfaces

Let $f: (\Omega, g) \to \mathbb{E}^{n+1}$ be a proper biconservative immersion, where (Ω, g) is an n dimensional Riemannian manifold. Then, we have

$$S(\operatorname{grad} H) = \frac{-nH}{2}\operatorname{grad} H.$$

Therefore,

- $e_1 = \frac{\text{grad } H}{\|\text{grad } H\|}$ is a principle direction of f
- with the corresponding principle curvature

$$k_1 = \frac{-nH}{2}$$

Consider an orthonormal frame field $\{e_1,e_2,\ldots,e_n\}$ of $\mathcal{T}\Omega$ such that

$$Se_i = k_i e_i$$
.

Corollary

f is biconservative if and only if

 $-3k_1 + k_2 + \cdots + k_n = 0$ and $e_a(k_1) = 0, a = 2, 3, \dots, n$.

Hypersurfaces of \mathbb{E}^4_1

Biconservative Hypersurfaces in Euclidean Spaces

Uniqueness Theorem

Theorem

Let (Ω, g) be an *n*-dimensional, connected Riemannian manifold. If (Ω, g) admits two proper biconservative isometric immersion $f, \tilde{f} : (\Omega, g) \hookrightarrow \mathbb{E}^{n+1}$, then there exists an isometry $\tau : \mathbb{E}^{n+1} \to \mathbb{E}^{n+1}$ such that $\tilde{f} = \tau \circ f$.

Sketch Proof

We try to determine e_1, e_2, \ldots, e_n intrinsically. Consider the Ricci tensor Ric of (Ω, g) defined to be

 $\operatorname{Ric}(X) = \operatorname{tr}(R(\cdot, X)\cdot).$

Sketch Proof

We try to determine e_1, e_2, \ldots, e_n intrinsically. Consider the Ricci tensor Ric of (Ω, g) defined to be

 $\operatorname{Ric}(X) = \operatorname{tr}(R(\cdot, X)\cdot).$

Then, by the Gauss equation, we have

•
$$\operatorname{Ric}(e_1) = -3k_1^2e_1$$

• $\operatorname{Ric}(e_a) = (2k_1k_1 + k_a^2)e_a$

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Sketch Proof

We try to determine e_1, e_2, \ldots, e_n intrinsically. Consider the Ricci tensor Ric of (Ω, g) defined to be

 $\operatorname{Ric}(X) = \operatorname{tr}(R(\cdot, X)\cdot).$

Then, by the Gauss equation, we have

- $\operatorname{Ric}(e_1) = -3k_1^2e_1$
- $\operatorname{Ric}(e_a) = (2k_1k_1 + k_a^2)e_a$

Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ denote the eigenvectors of Ric .

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Sketch Proof

Note that $X = e_1$ satisfies

$$\begin{aligned} \nabla_X X &= 0, \qquad \operatorname{Ric} \left(X \right) &= \lambda X, \\ Y(\lambda) &= 0 \qquad & \text{whenever } g(X,Y) &= 0, \\ \nabla_Y X &= a_Y Y \qquad & \text{whenever } \operatorname{Ric} \left(Y \right) &= \zeta Y. \end{aligned}$$

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Sketch Proof

Note that $X = e_1$ satisfies

 $\begin{aligned} \nabla_X X &= 0, \qquad & \operatorname{Ric} \left(X \right) = \lambda X, \\ & & Y(\lambda) = 0 \qquad & \text{whenever } g(X,Y) = 0, \\ & & \nabla_Y X = a_Y Y \qquad & \text{whenever } \operatorname{Ric} \left(Y \right) = \zeta Y. \end{aligned}$

By a computation we proved that

Claim

If X is a unit tangent vector field satisfying the properties above, then either $X = e_1$ or $X = -e_1$.

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Sketch Proof

Note that $X = e_1$ satisfies

 $\begin{aligned} \nabla_X X &= 0, \qquad \operatorname{Ric} \left(X \right) &= \lambda X, \\ Y(\lambda) &= 0 \qquad & \text{whenever } g(X,Y) &= 0, \\ \nabla_Y X &= a_Y Y \qquad & \text{whenever } \operatorname{Ric} \left(Y \right) &= \zeta Y. \end{aligned}$

By a computation we proved that

Claim

If X is a unit tangent vector field satisfying the properties above, then either $X = e_1$ or $X = -e_1$.

Consequently, e_1 and $k_1 = \sqrt{-\lambda_1/3}$ can be determined intrinsically.

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Sketch Proof

Next, in order to determine k_a , we consider the map

$$L: (\langle e_1 \rangle)^{\perp} \to (\langle e_1 \rangle)^{\perp}, LX = \nabla_X e_1.$$

Note that, by using Codazzi equations, we have

 e_a is a principle curvature $\Leftrightarrow Le_a = \mu_a e_a$.

Hypersurfaces of \mathbb{E}_1^4

Biconservative Hypersurfaces in Euclidean Spaces

Sketch Proof

Next, in order to determine k_a , we consider the map

$$L: (\langle e_1 \rangle)^{\perp} \to (\langle e_1 \rangle)^{\perp}, LX = \nabla_X e_1.$$

Note that, by using Codazzi equations, we have

 e_a is a principle curvature $\Leftrightarrow Le_a = \mu_a e_a$.

By a further computation we observe that k_a can be determined by using the equations

$$\begin{aligned} k_{a} &= -k_{1} + \varepsilon \sqrt{k_{1}^{2} + \lambda_{a}} \\ 2k_{a}\mu_{a} + e_{1}(k_{1}) &= \varepsilon \left(\mu_{a} \sqrt{k_{1}^{2} + \lambda_{a}} + e_{1}(\sqrt{k_{1}^{2} + \lambda_{a}}) \right). \end{aligned}$$

Hypersurfaces of \mathbb{E}^4_1

Biconservative Hypersurfaces in Euclidean Spaces

THANK YOU