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Basic Notation

Let E! denote the pseudo-Euclidean n space with the index r given by the metric

r n
E=()=—Y d7+ > d<
i=1

i=r+1

Note: We drop r in the Riemannian case r = 0.
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Basic Notation

Let E! denote the pseudo-Euclidean n space with the index r given by the metric

r n
E=()=—Y d7+ > d<
i=1

i=r+1

Put
ST={x € ET"!: (x,x) = 1}

and

H ={x € ]E:'Ill D (x,x) = —1}.

Note: We drop r in the Riemannian case r = 0.
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Basic Notation

Let E! denote the pseudo-Euclidean n space with the index r given by the metric

r n
E=()=-3 a¢+ > df
i=1 i=r+1
Put
ST={x € ET"!: (x,x) = 1}
and
H ={x € ]E:'Ill D (x,x) = —1}.

Further we use the notation

ST ife=1,
R'(c)=4 HI ifc=-—1,
E? ifc=0,

r

Note: We drop r in the Riemannian case r = 0.
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Basic Definitions

Let (€, g) be a semi-Rimennian manifold and f : (€, g) < R(c) an isometric
immersion.
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Basic Definitions

Let (€, g) be a semi-Rimennian manifold and f : (€, g) < R(c) an isometric
immersion.
Then, the Gauss and Weingarten formulas for the submanifold M = f(Q) of R"(c):

VxY VxY +ar(X,Y),
Vxé = —ALX+Vxe.
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Basic Definitions

Let (€, g) be a semi-Rimennian manifold and f : (€, g) < R(c) an isometric
immersion.
Then, the Gauss and Weingarten formulas for the submanifold M = f(Q) of R"(c):

VxY VxY +ar(X,Y),
Vxé = —ALX+Vxe.

The mean curvature vector field of f is defined by

1
Hf = — trace as.
m
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Basic Equations

The following equations is satisfied for a given f : (Q,g) < R/(c):

R(X,Y)Z = c(XAV)Z+AL v nX = AL x> (G)
(Vxae)(Y,Z) = (Vyar)(X, Z) (©
RP(X, Y)C = ar(X,ALY) — ar(ALX, Y), (R)
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Basic Equations

The following equations is satisfied for a given f : (Q,g) < R/(c):

R(X,Y)Z = c(XAV)Z+AL v nX = AL x> (G)
(Vxae)(Y,Z) = (Vyar)(X, Z) (©
RP(X, Y)C = ar(X,ALY) — ar(ALX, Y), (R)

where we put

(Vxae)(Y,Z) = Dyor(Y,Z) — ar(Vx Y, Z) — ar(Y,VxZ)

and (XA Y)Z =g(Y,Z2)X —g(X,2)Y.
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Biharmonic Maps

Consider a smooth map ¢ : (M, g) — (N, ).
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Biharmonic Maps

Consider a smooth map ¢ : (M, g) — (N, ).

Bienergy Functional

The bienergy functional is defined by

Ex(¥) = [y I7(¥)[2dv
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Biharmonic Maps

Consider a smooth map ¢ : (M, g) — (N, ).

Bienergy Functional

The bienergy functional is defined by
Ex(¢) = [y IT(¥)Pdv

A mapping 9 is said to be biharmonic if it is a critical point of the energy functional
E;.
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Biharmonic Mappings

InlGY. Jiang studied the first and second variation formulas of E, in order to
understand its critical points, called biharmonic maps (See also 2).

1G. Y. Jiang, 2-harmonic maps and their first and second variational
formulas, 1986.

2G. Y. Jiang, 2-harmonic isometric immersions between Riemannian
manifolds, 1986.
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Biharmonic Mappings

InlGY. Jiang studied the first and second variation formulas of E, in order to
understand its critical points, called biharmonic maps (See also 2).

He proved that a mapping v : M — N is biharmonic if and only if the associated
Euler-Lagrange equation

T2() =0

is satisfied, where

() = AT() — trace R(dy, (1)) dv

is the bi-tension field.

1G. Y. Jiang, 2-harmonic maps and their first and second variational
formulas, 1986.

2G. Y. Jiang, 2-harmonic isometric immersions between Riemannian
manifolds, 1986.
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Biharmonic Mappings

InlGY. Jiang studied the first and second variation formulas of E, in order to
understand its critical points, called biharmonic maps (See also 2).

He proved that a mapping v : M — N is biharmonic if and only if the associated
Euler-Lagrange equation

T2() =0

is satisfied, where

() = AT() — trace R(dy, (1)) dv

is the bi-tension field.

It is obvious that a harmonic map is biharmonic.

1G. Y. Jiang, 2-harmonic maps and their first and second variational
formulas, 1986.

2G. Y. Jiang, 2-harmonic isometric immersions between Riemannian
manifolds, 1986.
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Biharmonic immersions

Let £ :(2,g) — (N, &) be an isometric immersion.
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Biharmonic immersions

Let 7 : (2, g) < (N, &) be an isometric immersion. In this case, we have

Tg(f) =0&
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Biharmonic immersions

Let 7 : (2, g) < (N, &) be an isometric immersion. In this case, we have

mV||H|]2 + 4trace Ay 1 () + 4 trace (R(-, H) - )T =0, (T)

nif)=0e { trace ar(Ap("),-) — ALH + trace (R(-, H)- ) =0 (L),

where we simply put A” = A and H = H.
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Biconservative Immersions

Definition

An immersion 1 : (M, g) < (N, g) is said to be biconservative if the equation
(=(f)T =0

is satisfied.
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Biconservative Immersions

An immersion 1 : (M, g) < (N, g) is said to be biconservative if the equation

((f) =0

is satisfied.

Biconservative Immersion

An immersion ¢ : (M, g) — (N, g) is biconservative if and only if the equation

mV||H||? + 4 trace Ap_(-) + 4 trace (R’(, H) - )T =0, (T)

is satisfied.
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Biconservative Immersions

An immersion 1 : (M, g) < (N, g) is said to be biconservative if the equation

((f) =0

is satisfied.

Biconservative Immersion

An immersion ¢ : (M, g) — (N, g) is biconservative if and only if the equation

mV||H||? + 4 trace Ap_(-) + 4 trace (R’(, H) - )T =0, (T)

is satisfied.

y

Biharmonic Immersions

Every biharmonic immersion is biconservative.

Turgay, N. C.
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Biconservative Hypersurfaces

3

In 2, we study biconservative hypersurfaces of non-flat Riemannian space forms.

® When N = R’(c), we have trace (R(-, H)-)" =0

3[nCt, Upadhyay, Mathematische Nachrichten, 2019]
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Biconservative Hypersurfaces

3

In 2, we study biconservative hypersurfaces of non-flat Riemannian space forms.

® When N = R’(c), we have trace (R(-, H)-)" =0

® Therefore, the biconservativity equation
mV||H||? + 4 trace Ap_1(-) + 4 trace (.E\’(7 H) - )T =0, (T

turns into o
S(VH) = f%VH. (T)

3[nCt, Upadhyay, Mathematische Nachrichten, 2019]
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Biconservative Hypersurfaces

S(VH) = —%VH. (T)

Proposition
We assume that H is not constant.
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Biconservative Hypersurfaces

H
S(VH) = —%VH. (T)
We assume that H is not constant. )

Proposition

A hypersurface of N = R"1(c) is biconservative if and only if

kn

for a function H such that ¢;(H) =0, i =2,3,...,n.
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Biconservative hypersurfaces of R"1(¢)

nH
S(VH) = _TVI-L
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Biconservative hypersurfaces of R"1(¢)

nH
S(VH) = _TVI-L

We have the following parametrization of the hypersurface M:

Let M be a proper biconservative hypersurface of R"*l(c), ¢ € {—1, 1} with the mean curvature H and m € M.
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Biconservative hypersurfaces of R"1(¢)

nH
S(VH) = _TVI-L

We have the following parametrization of the hypersurface M:

Let M be a proper biconservative hypersurface of R"*l(c), ¢ € {—1, 1} with the mean curvature H and m € M.
If ¢ = —1, assume that H(m) # 2/n.
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Biconservative hypersurfaces of R"1(¢)

nH
S(VH) = _TVI-L

We have the following parametrization of the hypersurface M:

Let M be a proper biconservative hypersurface of R"*l(c), ¢ € {—1, 1} with the mean curvature H and m € M.
If ¢ = —1, assume that H(m) # 2/n.Let ©(t1, tp, . .., t,—1) be a local parametrization of an integral

submanifold M of the distribution D = (span VH)L passing through m.
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Biconservative hypersurfaces of R"1(¢)

nH
S(VH) = _TVI-L

We have the following parametrization of the hypersurface M:

Let M be a proper biconservative hypersurface of R"*l(c), ¢ € {—1, 1} with the mean curvature H and m € M.
If ¢ = —1, assume that H(m) # 2/n.Let ©(t1, tp, . .., t,—1) be a local parametrization of an integral
submanifold M of the distribution D = (span VH)L passing through m.Then, there exists a neighbourhood Np,
of m on which M can be parametrized

x(s,t1,t2, -5 tg—1) =O(t1, to, - - -, th—1) + @1(s)E1(t1, B2, - - -, th—1) + @2(s)E2(t1, B2, - - s

th—1) + a3(s)&s(tr, to, - - th—1)

for any parallel, orthonormal base {£1, €2, £3} of the normal space of M in E(n + 1, c).

Turgay, N. C.



Biconservative hypersurfaces of H*

x(s, t,u) = (@1(s), az(s) cos t, az(s) sin t, az(s) cos u, az(s) sinu),

x(s, t, u) = (a1(s) cosh u, a1 (s) sinh u, ax(s) cos t, an(s) sin t, az(s)),

A 2
x(s, t,u) = (M + asu® + 4i, su, A(s) cos t, A(s)sin t,
s a
A 2
aA(s)* + a +asu27—>
s
[ ]
A
x(s, t,u) = (a (s)° + as (¢ 2+ u2) + 24 i,st,su,A(s)7
4a s
aA(s)? s s a)
—_ t [EE— —
s + as( tu ) 4a + s
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Shape Operator of Hypersurfaces |

Let M be a Lorentzian surface, p € M and A be a symmetric endomorphism of T, M.
Then, by choosing an appropriated base for T,M, A can put into one of the following
four canonical forms:

ai
a2
Case (i).A ~ . ,

with respect to an orthonormal base.
ap

-1 ag

Case (ii).A ~ a

an—2

with respect to an pseudo-orthonormal base.

Turgay, N. C.



Shape Operator of Hypersurfaces Il

EN) 0 0
0 ap 1
-1 0 a
Case (iii).A ~ ar ,
an—3
with respect to an pseudo-orthonormal base.
a by
—bo a0
Case (iv).A ~ a
an—2.

with respect to an orthonormal base
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Some References

® Biconservative hypersurfaces with diagonalizable shape operator were classified
in 4

® Biharmonic hypersurfaces with non-diagonalizable shape operator were studied
5
in

® Biconservative hypersurfaces with complex principle curvature were studied by ©

*[Fu, nCt, International Journal of Mathematics, 2015]

®[Arvanitoyeorgos, Kaimakamis, Magid, lllinois Journal of Mathematics,
2009]

®[Deepika, Mediterr. J. Math., 2017]

Turgay, N. C.



Section 2.1:

Uniqueness of Biconservative Hypersurfaces

Turgay, N. C.



Shape Operator of Biconservative Hypersurfaces

Assume that a hypersurface M in IEI‘I1 with non-diagonalizable shape operator is proper
biconservative. Then, we have

S(grad H) = 73ngad H. (1)
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Shape Operator of Biconservative Hypersurfaces

Assume that a hypersurface M in IEI‘I1 with non-diagonalizable shape operator is proper
biconservative. Then, we have

S(grad H) = ngad H. (1)

We have the following two cases subject to the causality of grad H:
Case (i). There exists a pseudo-orthonormal base field {e1, e2, e3} such that

—3H/2 1 0
S~| o —3H/2 0|, )
0 0 6H

where the null vector e is proportional to grad H.
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Shape Operator of Biconservative Hypersurfaces

Assume that a hypersurface M in IEI‘I1 with non-diagonalizable shape operator is proper
biconservative. Then, we have

S(grad H) = grad H. (1)

We have the following two cases subject to the causality of grad H:
Case (i). There exists a pseudo-orthonormal base field {e1, e2, e3} such that

—3H/2 1 0
S~| o —3H/2 0|, )
0 0 6H

where the null vector e is proportional to grad H.
Case (ii). There exists a pseudo-orthonormal base field {ei, e2, €3} such that

9H /4 1 0
S~| 0 9H /4 0 , 3)
0 0 —3H/2

where the space-like vector e3 is proportional to grad H.

Turgay, N. C.



Sketch Proof

Let M be a proper biconservative hypersurface of E‘{ with non-diagonalized shape
operator. Then, its shape operator s has the matrix representation

9H/4 1 0
S~| 0 9H/4 0
0 0 —3H/2

Turgay, N. C.



Main Theorem

Let (€2, g) be a 3-dimensional, connected Lorentzian manifold. If (22, g) admits two
proper biconservative isometric immersion x, X : (2, g) < E$ with non-diagonalizable
shape operator then there exists an isometry 7 : E‘ll — IFj‘l1 such that X = 7o x.

Turgay, N. C.



Sketch Proof

Assume the existence of x : (2, g) — ]E‘l1 with the shape operator

9H/4 1 0
S~ | 0 9H/4 o |.

0 0 —3H/2

Turgay, N. C.



Sketch Proof

Assume the existence of x : (2, g) — ]E‘l1 with the shape operator

9H/4 1 0
S~| 0 9H/4 0
0 0 —3H/2

We first prove that H, e1, ez, €3 can be obtained intrinsically:
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Sketch Proof

Assume the existence of x : (2, g) — ]E‘l1 with the shape operator

9H/4 1 0
S~| 0 9H/4 0
0 0 —3H/2

We first prove that H, e1, ez, €3 can be obtained intrinsically:
® |t turns out that the scalar curvature of is S = %H2
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Sketch Proof

Assume the existence of x : (2, g) — ]E‘l1 with the shape operator

9H/4 1 0
S~| 0 9H/4 0
0 0 —3H/2

We first prove that H, e1, ez, €3 can be obtained intrinsically:
® |t turns out that the scalar curvature of is S = %H2
® Then, we obtain e3 = x4 E3, where

grad S

3=
|| grad S ||
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Sketch Proof

Assume the existence of x : (2, g) — ]E‘l1 with the shape operator

9H/4 1 0
S~| 0 9H/4 0
0 0 —3H/2

We first prove that H, e1, ez, €3 can be obtained intrinsically:
® |t turns out that the scalar curvature of is S = %H2
® Then, we obtain e3 = x4 E3, where

grad S

3=
|| grad S ||

® Finally, we proved that e; = x«E1, ex = x«Ep, where Ej, E> are the only vectors
satisfying
3H
R(E1, E3)E1 =0, R(Es, E2)E3 = *7517

3H
R(E2 B3)Er = —-E3

Turgay, N. C.
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Construction of Hypersurface
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Construction of Hypersurface

Let o be a null curve which admits a pseudo-orthonormal base {T, U, a1, a2} such

that
o = T,
T = Aax+AT,
v = Asaq + Azan — A1 U,
o) = AsT,
oy = AU+AT

for some smooth functions A;.
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Construction of Hypersurface

Let o be a null curve which admits a pseudo-orthonormal base {T, U, a1, a2} such

that
o = T,
T = A+ AT,
v = Asaq + Azan — A1 U,
oy = AsT,
oy = AU+AT

for some smooth functions A;.
Consider the hypersurface

g(s,u,w) = a(s) + uT(s) + wai(s) + f(w)aa(s),

where f is a smooth function.

Turgay, N. C.



Construction of Hypersurface

g(s,u,w) = a(s) + uT(s) + wai(s) + f(w)aa(s),

Turgay, N. C.



Construction of Hypersurface

g(s,u,w) = a(s) + uT(s) + wai(s) + f(w)aa(s),

The shape operator of this hypersurface has the form

1 _ A3(s)(wAF (W) (w))+1 0
f(w)y/f(w)2+1 F(w)2Aa(s \/f’ w)2+1
0 —_— 0
f(w) f( )2+1
0 0 - W

(F'(w)2+1)%/?
Therefore, this hypersurface is biconservative if and only if

—3f(w)f"(w) 4+ 2f (w)2+2=0

Turgay, N. C.



Local Classfication Result

A hypersurface M in ]E‘l1 with non-diagonalizable shape operator is proper
biconservative if and only if it is locally congruent to the hypersurface previously
constructed

Turgay, N. C.
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Biconservative Hypersurfaces

Let f: (,g) — E"*! be a proper biconservative immersion, where (2, g) is an n
dimensional Riemannian manifold. Then, we have

—nH

S(grad H) = grad H.
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Biconservative Hypersurfaces

Let f: (,g) — E"*! be a proper biconservative immersion, where (2, g) is an n
dimensional Riemannian manifold. Then, we have

nH

S(grad H) = 72 grad H.
Therefore,
° o = ”g:iZH is a principle direction of f
® with the corresponding principle curvature
—nH
k1 = .
T
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Biconservative Hypersurfaces

Let f: (,g) — E"*! be a proper biconservative immersion, where (2, g) is an n
dimensional Riemannian manifold. Then, we have

S(grad H) = 7’21H

grad H.

Therefore,
__ _grad H
® €= Mgrad A
® with the corresponding principle curvature
—nH
k1 = .
2

Consider an orthonormal frame field {e;, e, ..., en} of TQ such that

Se; = kje;.

is a principle direction of f

f is biconservative if and only if

—3ki+ko+ -+ kn=0and e;(k1) =0, a=2,3,...,n.

Turgay, N. C.




Uniqueness Theorem

Let (€2, g) be an n-dimensional, connected Riemannian manifold. If (2, g) admits two
proper biconservative isometric immersion f, f : (2, g) — E"*1, then there exists an
isometry 7 : E"t1 — E™1 such that f = 7o f.

Turgay, N. C.



Sketch Proof

We try to determine e, e, ..., e, intrinsically.
Consider the Ricci tensor Ric of (2, g) defined to be

Ric (X) = tr (R(-, X)").
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Sketch Proof

We try to determine e, e, ..., e, intrinsically.
Consider the Ricci tensor Ric of (2, g) defined to be

Ric (X) = tr (R(-, X)").

Then, by the Gauss equation, we have
® Ric(e1) = —3k%er
® Ric(es) = (2kiky + k2)es
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Sketch Proof

We try to determine e, e, ..., e, intrinsically.
Consider the Ricci tensor Ric of (2, g) defined to be

Ric (X) = tr (R(-, X)").

Then, by the Gauss equation, we have
® Ric(e1) = —3k%er
® Ric(es) = (2kiky + k2)es
Let A1, A2, ..., A\, denote the eigenvectors of Ric.

Turgay, N. C.



Sketch Proof

Note that X = e; satisfies

VxX =0,  Ric(X)=AX,
Y(A\)=0 whenever g(X,Y) =0,
VyX =ayY whenever Ric(Y) = (Y.
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Sketch Proof

Note that X = e; satisfies

VxX =0,  Ric(X)=AX,
Y(A\)=0 whenever g(X,Y) =0,
VyX =ayY whenever Ric(Y) = (Y.

By a computation we proved that

If X is a unit tangent vector field satisfying the properties above, then either X = ¢;
or X = —ey.
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Sketch Proof

Note that X = e; satisfies

VxX =0,  Ric(X)=AX,
Y(A\)=0 whenever g(X,Y) =0,
VyX =ayY whenever Ric(Y) = (Y.

By a computation we proved that

If X is a unit tangent vector field satisfying the properties above, then either X = ¢;
or X = —ey.

Consequently, e; and ki = y/—X\1/3 can be determined intrinsically.

Turgay, N. C.



Sketch Proof

Next, in order to determine k,, we consider the map
L:((e)t = ({e) ", LX = Vxer.
Note that, by using Codazzi equations, we have

e, is a principle curvature < Le; = pae,.
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Sketch Proof

Next, in order to determine k,, we consider the map
L: ((e1>)L — ((el>)l7 LX = Vxe.
Note that, by using Codazzi equations, we have
e, is a principle curvature < Le; = pae,.

By a further computation we observe that k, can be determined by using the equations

—ki 4\ k2 + A
2kapta + e1(k1) = s<ua,/k12+,\a+el( k12+)\a)>.

ka

Turgay, N. C.



THANK YOU
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