Polynomial harmonic morphisms and eigenfamilies on spheres

Oskar Riedler

Universität Münster

September 7, 2023
$\stackrel{\perp}{\square}$
Westrälische
Wilhelms-Universität
Münster

Table of contents

Introduction
Harmonic morphisms
Eigenfamilies

Global eigenfamilies on S^{n}
S^{n}
Other compact rank one symmetric spaces
Complex type
Axis of holomorphicity

Degree 2 eigenfamilies

Eigenfamilies induced by polynomial harmonic morphisms $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

Introduction - Harmonic morphisms

Let $(M, g),(N, h)$ be Riemannian manifolds.

Definition

A smooth map $\varphi:(M, g) \rightarrow(N, h)$ is called a harmonic morphism if for any open $U \subseteq N$ and harmonic map $f: U \rightarrow \mathbb{R}$ the composition

$$
f \circ \varphi: \varphi^{-1}(U) \rightarrow \mathbb{R}
$$

is again harmonic.
Theorem (Fuglede 1978, Ishihara 1979)
$\varphi:(M, g) \rightarrow(N, h)$ is a harmonic morphism if and only if it is harmonic and weakly horizontally conformal, i.e. if and only if

$$
\tau(\varphi)=0, \quad \exists \lambda \in C(M): \varphi^{*}(h)=\left.\lambda g\right|_{\operatorname{ker}(D \varphi)^{\perp}}
$$

Introduction - Harmonic morphisms

The case $\operatorname{dim}(N)=2$ is especially interesting:

- The regular level sets of φ are then minimal sub-manifolds (Baird-Eells, 1980).
- The property that a map is harmonic morphism is then invariant under conformal transformations of the codomain. In particular for local considerations one may assume $(N, h)=\left(\mathbb{C}, g_{\text {Euc }}\right)$.
- For maps $\varphi:(M, g) \rightarrow\left(\mathbb{C}, g_{\text {Euc }}\right)$ the conditions of harmonicity and weak horizontal conformality are equivalent to:

$$
\Delta \varphi=0, \quad g_{\mathbb{C}}(\nabla \varphi, \nabla \varphi)=0
$$

Where $g_{\mathbb{C}}$ is the \mathbb{C}-bilinear extension of g to $T M \otimes \mathbb{C}$.

Introduction - Harmonic morphisms

Some manifolds have an abundance of local harmonic morphisms with codomain \mathbb{C} :

Remark

Let (M, g, J) be a Kähler manifold, suppose that $f: M \rightarrow \mathbb{C}$ is holomorphic. Then f is a harmonic morphism.

While others do not:

Theorem (Baird-Wood 1992)

Let U be an open subset of the 3-dimensional homogeneous space Sol, then the constant map is the only harmonic morphism $U \rightarrow \mathbb{C}$.

Introduction - Eigenfamilies

One method of finding harmonic morphisms is via eigenfamilies, introduced by Gudmundsson and Sakovich 2008.

Definition

Let $\lambda, \mu \in \mathbb{C}$. A family \mathcal{F} of smooth functions from M to \mathbb{C} is called a (λ, μ)-eigenfamily on M if for all $\varphi, \psi \in \mathcal{F}$:

$$
\begin{gather*}
\Delta \varphi=\lambda \varphi \tag{1}\\
g_{\mathbb{C}}(\nabla \varphi, \nabla \psi)=\mu \varphi \psi \tag{2}
\end{gather*}
$$

Functions that are elements of some (λ, μ)-eigenfamily are called (λ, μ)-eigenfunctions.

Introduction - Eigenfamilies

Eigenfamilies are machines that can produce harmonic morphisms:

Theorem (Gudmundsson-Sakovich 2008)

Let \mathcal{F} be a (λ, μ)-eigenfamily on M, then for any $\varphi_{1}, \ldots, \varphi_{k} \in \mathcal{F}$ and homogeneous polynomials $P, Q \in \mathbb{C}\left[z_{1}, \ldots, z_{k}\right]$ of the same degree, the map

$$
\begin{aligned}
& M \backslash\left\{x \in M \mid Q\left(\varphi_{1}(x), \ldots, \varphi_{k}(x)\right)=0\right\} \rightarrow \mathbb{C} \\
& x \mapsto \frac{P\left(\varphi_{1}(x), \ldots, \varphi_{k}(x)\right)}{Q\left(\varphi_{1}(x), \ldots, \varphi_{k}(x)\right)}
\end{aligned}
$$

is a harmonic morphism.

Remark

$(0,0)$-eigenfamilies are also called orthogonal harmonic families in the literature.

Introduction - Eigenfamilies

Remark

A lone eigenfunction is also useful for other goals:

- There is a universal formula for producing proper p-harmonic maps from an eigenfunction (Gudmundsson-Sobak 2020).
- The regular part of the 0-level set of an eigenfunction is a minimal submanifold (Gudmundsson-Munn 2023).

Global eigenfamilies - S^{n}

One makes the following observation about eigenfamilies with domain all of S^{n} :

Theorem

Let \mathcal{F} be a family of maps from S^{n} to \mathbb{C}, and $\lambda, \mu \in \mathbb{C}$. The following are equivalent:
(i) \mathcal{F} is a (λ, μ)-eigenfamliy.
(ii) There is a $(0,0)$-eigenfamily $\widetilde{\mathcal{F}}$ of homogeneous polynomials from \mathbb{R}^{n+1} to \mathbb{C} all of the same degree d, so that the map

$$
\widetilde{\mathcal{F}} \rightarrow \mathcal{F},\left.\quad F \mapsto F\right|_{S^{n}}
$$

is a well defined bijection and $\lambda=-d(d+n-1), \mu=-d^{2}$.

Global eigenfamilies - S^{n}

One makes the following observation about eigenfamilies with domain all of S^{n} :

Theorem

Let \mathcal{F} be a family of maps from S^{n} to \mathbb{C}, and $\lambda, \mu \in \mathbb{C}$. The following are equivalent:
(i) \mathcal{F} is a (λ, μ)-eigenfamliy.
(ii) There is a $(0,0)$-eigenfamily $\widetilde{\mathcal{F}}$ of homogeneous polynomials from \mathbb{R}^{n+1} to \mathbb{C} all of the same degree d, so that the map

$$
\widetilde{\mathcal{F}} \rightarrow \mathcal{F},\left.\quad F \mapsto F\right|_{S^{n}}
$$

is a well defined bijection and $\lambda=-d(d+n-1), \mu=-d^{2}$.

Remark

So: orthogonal families of homogeneous polynomial harmonic morphisms on $\mathbb{R}^{n+1} \leftrightarrow$ eigenfamilies on S^{n}.

Proof.

Recall:

A function $F: S^{n} \rightarrow \mathbb{C}$ satsifies $\Delta^{S^{n}} F=\lambda F$ if and only if there is a harmonic homogeneous polynomial $\widetilde{F}: \mathbb{R}^{n+1} \rightarrow \mathbb{C}$ of some degree d so that $\left.\widetilde{F}\right|_{S^{n}}=F$ and $\lambda=-d(d+n-1)$.

$$
\nabla_{x}^{\mathbb{R}^{n+1}} \widetilde{F}=\|x\|^{d-1}\left(\nabla_{x /\|x\|}^{S^{n}} F+d \cdot F\left(\frac{x}{\|x\|}\right) \partial_{r}\right)
$$

so that for two lifts $\widetilde{F}, \widetilde{G}$ one has:

$$
\left(\nabla_{x}^{\mathbb{R}^{n+1}} \widetilde{F}\right)^{T} \nabla_{x}^{\mathbb{R}^{n+1}} \widetilde{G}=\|x\|^{2 d-2}\left(g_{\mathbb{C}}\left(\nabla_{x /\|x\|}^{S^{n}} F, \nabla_{x /\|x\|}^{S^{n}} G\right)+d^{2} F\left(\frac{x}{\|x\|}\right) G\left(\frac{x}{\|x\|}\right)\right) .
$$

If the lifts are a $(0,0)$-eigenfamily then the LHS is 0 , implying that $g_{C}\left(\nabla_{x /\|x\|}^{S^{n}} F, \nabla_{x /\|x\|}^{S^{n}} G\right)=-d^{2} F\left(\frac{x}{\|x\|}\right) G\left(\frac{x}{\|x\|}\right)$. On the other hand if \mathcal{F} is a (λ, μ)-eigenfamily then:

$$
\left(\mu+d^{2}\right) \widetilde{F}(x) \widetilde{G}(x)=\|x\|^{2}\left(\nabla_{x} \widetilde{F}\right)^{T} \nabla_{x} \widetilde{G}
$$

If $\mu \neq-d^{2}$ this implies one of \tilde{F}, \tilde{G} has an $\|x\|^{2}$ factor, which contradicts harmonicity.

Other CROSSes

Remark

Let $X \in\left\{\mathbb{R P}^{n}, \mathbb{C P}^{n}, \mathbb{H P}^{n}\right\}$ and let $\pi: S^{m(X)} \rightarrow X$ be the standard quotient map. Then π is a Riemannian submersion with totally geodesic fibres. In particular for all $\varphi, \psi: X \rightarrow \mathbb{C}$ one has:

$$
\begin{aligned}
\Delta^{S^{m(X)}}(\varphi \circ \pi) & =\left(\Delta^{X} \varphi\right) \circ \pi, \\
g_{\mathbb{C}}^{S^{m(X)}}(\nabla(\varphi \circ \pi), \nabla(\psi \circ \pi)) & =g_{\mathbb{C}}^{X}(\nabla \varphi, \nabla \psi) \circ \pi .
\end{aligned}
$$

Corollary

Let X be as above and let \mathcal{F} be a family of functions $X \rightarrow \mathbb{C}$, $\lambda, \mu \in \mathbb{C}$. The following are equivalent:
(i) \mathcal{F} is a (λ, μ)-eigenfamily.
(ii) $\pi^{*}(\mathcal{F})=\left\{\varphi \circ \pi: S^{m(X)} \rightarrow \mathbb{C} \mid \varphi \in \mathcal{F}\right\}$ is a (λ, μ)-eigenfamily on $S^{m(X)}$.

Eigenfamilies of homogeneous polynomials

Similar to harmonic morphisms:

Remark

Let (M, g, J) be a Kähler manifold, \mathcal{F} a family of holmorphic maps $M \rightarrow \mathbb{C}$. Then \mathcal{F} is a $(0,0)$-eigenfamily.

Holomorphic homogeneous polynomials then give a large amount of eigenfamilies on S^{n} (well known). Finding new examples leads to the following question:

Question

How can one tell if a family of functions is not holomorphic with respect to any Kähler structure?

Functions of complex type

For convenience define:

Definition

1. A family \mathcal{F} of functions from \mathbb{R}^{n} to \mathbb{C} is said to be uniformly of complex type if there is a \mathbb{R}-linear isometric inclusion a : $\mathbb{C}^{k} \rightarrow \mathbb{R}^{n}$ so that for all $F \in \mathcal{F}$ one has that $F=F \circ\left(a a^{*}\right)$ and $F \circ a: \mathbb{C}^{k} \rightarrow \mathbb{C}$ is holomorphic.
2. A function $F: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is said to be of complex type if the family $\{F\}$ is uniformly of complex type.

Theorem

A family \mathcal{F} of smooth functions from \mathbb{R}^{n} to \mathbb{C} is uniformly of complex type if and only if for all $F, G \in \mathcal{F}$ and $x, y \in \mathbb{R}^{n}$:

$$
\begin{equation*}
\left(\nabla_{x} F\right)^{T} \nabla_{y} G=0 \tag{3}
\end{equation*}
$$

Functions of complex type

Weakly horizontally conformal polynomials $\mathbb{R}^{n} \rightarrow \mathbb{C}$ are automatically harmonic (Ababou-Baird-Brossard 1999). We are then interested in families \mathcal{F} of homogeneous polynomials so that

$$
\left(\nabla_{x} F\right)^{T} \nabla_{x} G=0 \text { for all } x \in \mathbb{R}^{n} \text { and all } F, G \in \mathcal{F}
$$

but for which there exist $x, y \in \mathbb{R}^{n}$ and $F, G \in \mathcal{F}$ so that

$$
\left(\nabla_{x} F\right)^{T} \nabla_{y} G \neq 0
$$

Remark

For degree 2 maps (not families!) the two equations coincide: For $F(x)=x^{T} A x, A=A^{T}$ one has:

$$
\begin{aligned}
& \left(\nabla_{x} F\right)^{T} \nabla_{x} F=4 x^{T} A^{2} x=0 \forall x \Longleftrightarrow A^{2}=0 \\
& \Longleftrightarrow 0=4 x^{T} A^{2} y=\left(\nabla_{x} F\right)^{T} \nabla_{y} F \forall x, y .
\end{aligned}
$$

This is well known! It follows e.g. from the classification of homogeneous degree 2 polynomial harmonic morphisms $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. (Ou-Wood 1996, Ou 1997)

Example

The polynomial $\mathbb{R}^{8} \rightarrow \mathbb{C}$ given by

$$
\begin{aligned}
& x_{3} x_{1}^{3}-i x_{4} x_{1}^{3}+3 i x_{2} x_{3} x_{1}^{2}+3 x_{2} x_{4} x_{1}^{2}-3 x_{2}^{2} x_{3} x_{1} \\
+ & 3 i x_{2}^{2} x_{4} x_{1}-x_{3} x_{5} x_{7} x_{1}+i x_{4} x_{5} x_{7} x_{1}+i x_{3} x_{6} x_{7} x_{1} \\
+ & x_{4} x_{6} x_{7} x_{1}-i x_{3} x_{5} x_{8} x_{1}-x_{4} x_{5} x_{8} x_{1}-x_{3} x_{6} x_{8} x_{1} \\
+ & i x_{4} x_{6} x_{8} x_{1}-i x_{2}^{3} x_{3}-x_{2}^{3} x_{4}-i x_{2} x_{3} x_{5} x_{7}-x_{2} x_{4} x_{5} x_{7} \\
- & x_{2} x_{3} x_{6} x_{7}+i x_{2} x_{4} x_{6} x_{7}+x_{2} x_{3} x_{5} x_{8}-i x_{2} x_{4} x_{5} x_{8} \\
- & i x_{2} x_{3} x_{6} x_{8}-x_{2} x_{4} x_{6} x_{8}
\end{aligned}
$$

is of complex type, but not holomorphic with respect to the standard Kähler structure on $\mathbb{R}^{8} \cong \mathbb{C}^{4}$.

Examples - eigenfamilies

The following families are not uniformly of complex type:
(i) $F_{1}, F_{2}: \mathbb{C}^{4} \rightarrow \mathbb{C}$ given by

$$
F_{1}(z, u, v, w)=z v+u w, \quad F_{2}(z, u, v, w)=z \bar{w}-u \bar{v}
$$

(ii) The product of the two polynomials above:

$$
\mathbb{C}^{4} \rightarrow \mathbb{C}, \quad(z, u, v, w) \mapsto z^{2} v w-u^{2} \overline{v w}+z u\left(|w|^{2}-|v|^{2}\right)
$$

(iii) As a, b, c, d vary over \mathbb{C} the family of maps $\mathbb{C}^{4} \rightarrow \mathbb{C}$ given by:

$$
a\left(z^{2} w+z u \bar{v}\right)+b\left(u^{2} \bar{w}-z u v\right)+c\left(z^{2} v-z u \bar{w}\right)+d\left(u^{2} \bar{v}+z u w\right)
$$

An element of the family is not of complex type unless $a b+c d=0$.
(iv) Let $\gamma \in \mathbb{C}$, the map

$$
\mathbb{C}^{3} \oplus \mathbb{R} \mapsto \mathbb{C}, \quad((z, u, w), t) \mapsto z^{2} w+2 \gamma z u t-\gamma^{2} u^{2} \bar{w}
$$

is not of complex type unless $\gamma=0$ (inflation of an example from Ababou-Baird-Brossard 1999).

Axis of holomorphicity

A feature of all examples on the previous slide is that they are holomorphic in some variables.
It turns out to be useful to investigate this further:

Definition

Let \mathcal{F} be a family of functions $\mathbb{R}^{n} \rightarrow \mathbb{C}$. A vector subspace $V \subseteq \mathbb{R}^{n}$ is said to be a uniform axis of holomorphicity of \mathcal{F} if the family

$$
\left\{V \rightarrow \mathbb{C}, v \mapsto F(x+v) \mid x \in \mathbb{R}^{n}, F \in \mathcal{F}\right\}
$$

is uniformly of complex type.

Theorem

Let $n \in\{5,6\}$ and suppose $P: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is a homogeneous harmonic morphism. If P has an axis of holomorphicity of (real) dimension at least 2, then P is of complex type.

Axis of holomorphicity

Homogeneous polynomials without an axis of holomorphicity contain information that, in a certain sense, appears for the first time in a given dimension. For example the proof of the previous Theorem implies:

Corollary

Let $n \leq 9$ and suppose $P: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is a homogeneous polynomial harmonic morphism not admitting an axis of holomorphicity. Then there is no non-trivial decomposition $\mathbb{R}^{n}=V \oplus V^{\perp}$ with respect to which P is a harmonic morphism in each variable seperately.

Remark

The speaker does not know of any homogeneous polynomial harmonic morphisms without an axis of holomorphicity! However numerics indicate the existence of homogeneous degree 3 examples on \mathbb{R}^{6}.

Eigenfamilies consisting of homogeneous degree 2 polynomials

Degree 2 eigenfamilies always admit an axis of holomorphicity:

Theorem

Let \mathcal{F} be an eigenfamily of homogeneous degree 2 polynomial harmonic morphisms $\mathbb{R}^{n} \rightarrow \mathbb{C}$. Then \mathcal{F} admits a uniform axis of holomorphicity of (real) dimension at least $\min (2, n)$.

Eigenpairs of degree 2 polynomials

Definition

Let \mathcal{F} be a family of smooth functions $\mathbb{R}^{n} \rightarrow \mathbb{C}$. A uniform axis of holomorphicity V of \mathcal{F} is called maximal if it is not contained in any other uniform axis of holomorphicity.

Definition

1 We call a triple (m, k, δ) of natural numbers a subspace type if $m \geq k, k$ is even, and $\delta \in\{0,1\}$.
2 We call a triple $\left(P_{1}, P_{2}, A\right)$ polynomial data of a subspace type (m, k, δ) if $P_{1}, P_{2} \in \mathbb{C}\left[z_{1}, \ldots, z_{m}\right]$ are homogenous complex polynomials of degree 2 and A is a complex $m \times k$ matrix of rank k.
3 We call a triple (Y, C, v) twisting data of a subspace type (m, k, δ) if Y, C are anti-symmetric $k \times k$ matrices, Y is invertible, and if $v \in \mathbb{C}^{m}$ with $v=0$ if and only if $\delta=0$.

Theorem

Let $F_{1}, F_{2}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ be two homogenous degree 2 polynomials so that $\left\{F_{1}, F_{2}\right\}$ is a full eigenfamily. Then there are subspace data (m, k, δ) as well as polynomial and twisting data $\left(P_{1}, P_{2}, A\right)$, (Y, C, v) so that:

1 Up to an isometry of the domain one can decompose $\mathbb{R}^{n} \cong \mathbb{C}^{m} \oplus$ $\mathbb{C}^{k} \oplus \mathbb{R}^{\delta}$ so that \mathbb{C}^{m} is a maximal uniform axis of holomorphicity for $\left\{F_{1}, F_{2}\right\}$.
2 Let $X=\left(\frac{1}{2} v v^{\top}+C\right) Y^{-1}$. One has, with respect to the above decomposition:

$$
\begin{aligned}
F_{1}\left(\left(z_{1}, \ldots, z_{m}\right),\left(w_{1}, \ldots, w_{k}\right), t\right) & =P_{1}\left(z_{1}, \ldots, z_{m}\right)+\sum_{i j} z_{i} A_{i j} w_{j} \\
F_{2}\left(\left(z_{1}, \ldots, z_{m}\right),\left(w_{1}, \ldots, w_{k}\right), t\right) & =P_{2}\left(z_{1}, \ldots, z_{m}\right) \\
+ & \sum_{i j} z_{i} A_{i j}\left(\sum_{l} X_{j l} w_{l}+\sum_{l} Y_{j l} \bar{w}_{l}+v_{j} t\right)
\end{aligned}
$$

Eigenairs of degree 2 polynomials - examples

The following are minimalistic examples of such eigenpairs:
(i) $F_{1}, F_{2}: \mathbb{C}^{4} \rightarrow \mathbb{C}$ given by

$$
F_{1}(z, u, v, w)=z v+u w, \quad F_{2}(z, u, v, w)=z \bar{w}-z \bar{v}
$$

Here $(m, k, \delta)=(2,2,0),\left(P_{1}, P_{2}, A\right)=\left(0,0,\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right),(Y, C, v)=\left(\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), 0,0\right)$.
(ii) $F_{1}, F_{2}: \mathbb{C}^{4} \oplus \mathbb{R} \rightarrow \mathbb{C}$ given by
$F_{1}(z, u, v, w, t)=z v+u w, \quad F_{2}(z, u, v, w, t)=z(\bar{w}+w+2 i t)-u \bar{v}$.
Here $\delta=1$ and $v=\binom{2}{0}$, the other data are as in the previous example.

Other topics - Eigenfamilies induced by polynomial harmonic morphisms $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

Consider a homogeneous polynomial harmonic morphism
$P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, x \mapsto\left(P_{1}(x), \ldots, P_{m}(x)\right)$. Then

$$
\mathcal{E}(P):=\left\{P_{2 k-1}+i P_{2 k} \mid 1 \leq k \leq\lfloor m / 2\rfloor\right\}
$$

is a $(0,0)$-eigenfamily.

Example

Let $P: \mathbb{H}^{3} \rightarrow \mathbb{H}$ be the multiplication of 3 quaternions. Then $\mathcal{E}(P)$ is congruent to the following two maps from $\mathbb{C}^{6} \rightarrow \mathbb{C}$:

$$
\begin{aligned}
& \left(z_{1}, z_{2}, u_{1}, u_{2}, w_{1}, w_{2}\right) \mapsto z_{1}\left(u_{1} w_{1}-u_{2} \overline{w_{2}}\right)-z_{2}\left(\overline{u_{1} w_{2}}+\overline{u_{2}} w_{1}\right) \\
& \left(z_{1}, z_{2}, u_{1}, u_{2}, w_{1}, w_{2}\right) \mapsto z_{1}\left(u_{1} w_{2}+u_{2} \overline{w_{1}}\right)+z_{2}\left(\overline{u_{1} w_{1}}-\overline{u_{2}} w_{2}\right)
\end{aligned}
$$

This family is not uniformly of complex type.

Other topics - Eigenfamilies induced by polynomial harmonic morphisms $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

Using the classification of degree 2 polynomial harmonic morphisms $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ (Wood and Ou 1996, Ou 1997):

Theorem

Let $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a non-zero homogeneous degree 2 polynomial harmonic morphism.

1. If $m \geq 4$ then $\mathcal{E}(P)$ is not uniformly of complex type.
2. For any $B \in O(m)$ the families $\mathcal{E}(P)$ and $\mathcal{E}(B \circ P)$ are congruent.

Definition

Say that two families \mathcal{F}_{1} and \mathcal{F}_{2} of maps $\mathbb{R}^{n} \rightarrow \mathbb{C}$ are congruent if there is an isometry $\Phi \in O(n)$ so that $\operatorname{span}_{\mathbb{C}} \mathcal{F}_{1}=\operatorname{span}_{\mathbb{C}} \Phi^{*}\left(\mathcal{F}_{2}\right)$. Here $\Phi^{*}(\mathcal{F})=\{F \circ \Phi \mid F \in \mathcal{F}\}$.

Thank you!

