Polynomial harmonic morphisms and eigenfamilies on spheres

Oskar Riedler

Universität Münster

September 7, 2023

Westfälische Wilhelms-Universität Münster

Table of contents

Introduction

Harmonic morphisms Eigenfamilies

Global eigenfamilies on S^n

Sⁿ Other compact rank one symmetric spaces Complex type Axis of holomorphicity

Degree 2 eigenfamilies

Eigenfamilies induced by polynomial harmonic morphisms $\mathbb{R}^n o \mathbb{R}^m$

Introduction - Harmonic morphisms

Let (M,g), (N,h) be Riemannian manifolds.

Definition

A smooth map $\varphi : (M, g) \to (N, h)$ is called a *harmonic morphism* if for any open $U \subseteq N$ and harmonic map $f : U \to \mathbb{R}$ the composition

$$f\circ arphi: arphi^{-1}(U) o \mathbb{R}$$

is again harmonic.

Theorem (Fuglede 1978, Ishihara 1979)

 $\varphi : (M,g) \rightarrow (N,h)$ is a harmonic morphism if and only if it is harmonic and weakly horizontally conformal, i.e. if and only if

$$au(\varphi) = 0, \qquad \exists \lambda \in C(M) : \varphi^*(h) = \lambda g|_{\ker(D\varphi)^{\perp}}.$$

Introduction - Harmonic morphisms

The case dim(N) = 2 is especially interesting:

- The regular level sets of φ are then minimal sub-manifolds (Baird-Eells, 1980).
- The property that a map is harmonic morphism is then invariant under conformal transformations of the codomain.
 In particular for local considerations one may assume (N, h) = (C, g_{Euc}).
- For maps $\varphi : (M,g) \to (\mathbb{C}, g_{\text{Euc}})$ the conditions of harmonicity and weak horizontal conformality are equivalent to:

$$\Delta \varphi = 0, \qquad g_{\mathbb{C}}(\nabla \varphi, \nabla \varphi) = 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Where $g_{\mathbb{C}}$ is the \mathbb{C} -bilinear extension of g to $TM \otimes \mathbb{C}$.

Introduction - Harmonic morphisms

Some manifolds have an abundance of local harmonic morphisms with codomain $\mathbb{C}\colon$

Remark

Let (M, g, J) be a Kähler manifold, suppose that $f : M \to \mathbb{C}$ is holomorphic. Then f is a harmonic morphism.

While others do not:

```
Theorem (Baird-Wood 1992)
```

Let U be an open subset of the 3-dimensional homogeneous space Sol, then the constant map is the only harmonic morphism $U \to \mathbb{C}$.

Introduction - Eigenfamilies

One method of finding harmonic morphisms is via *eigenfamilies*, introduced by Gudmundsson and Sakovich 2008.

Definition

Let $\lambda, \mu \in \mathbb{C}$. A family \mathcal{F} of smooth functions from M to \mathbb{C} is called a (λ, μ) -eigenfamily on M if for all $\varphi, \psi \in \mathcal{F}$:

$$\Delta \varphi = \lambda \varphi, \tag{1}$$

$$g_{\mathbb{C}}(\nabla\varphi,\nabla\psi) = \mu\,\varphi\psi.$$
 (2)

Functions that are elements of some (λ, μ) -eigenfamily are called (λ, μ) -eigenfunctions.

Introduction - Eigenfamilies

Eigenfamilies are machines that can produce harmonic morphisms:

Theorem (Gudmundsson-Sakovich 2008)

Let \mathcal{F} be a (λ, μ) -eigenfamily on M, then for any $\varphi_1, ..., \varphi_k \in \mathcal{F}$ and homogeneous polynomials $P, Q \in \mathbb{C}[z_1, ..., z_k]$ of the same degree, the map

$$egin{aligned} &M\setminus\{x\in M\mid Q(arphi_1(x),...,arphi_k(x))=0\}
ightarrow\mathbb{C},\ &x\mapsto rac{P(arphi_1(x),...,arphi_k(x))}{Q(arphi_1(x),...,arphi_k(x))} \end{aligned}$$

is a harmonic morphism.

Remark

(0,0)-eigenfamilies are also called *orthogonal harmonic families* in the literature.

Introduction - Eigenfamilies

Remark

A lone eigenfunction is also useful for other goals:

- There is a universal formula for producing proper *p*-harmonic maps from an eigenfunction (Gudmundsson-Sobak 2020).
- The regular part of the 0-level set of an eigenfunction is a minimal submanifold (Gudmundsson-Munn 2023).

Global eigenfamilies - S^n

One makes the following observation about eigenfamilies with domain all of S^n :

Theorem

Let \mathcal{F} be a family of maps from S^n to \mathbb{C} , and $\lambda, \mu \in \mathbb{C}$. The following are equivalent:

- (i) \mathcal{F} is a (λ, μ) -eigenfamliy.
- (ii) There is a (0,0)-eigenfamily $\widetilde{\mathcal{F}}$ of homogeneous polynomials from \mathbb{R}^{n+1} to \mathbb{C} all of the same degree d, so that the map

$$\widetilde{\mathcal{F}} \to \mathcal{F}, \qquad F \mapsto F|_{S^n},$$

is a well defined bijection and $\lambda = -d(d + n - 1)$, $\mu = -d^2$.

Global eigenfamilies - S^n

One makes the following observation about eigenfamilies with domain all of S^n :

Theorem

Let \mathcal{F} be a family of maps from S^n to \mathbb{C} , and $\lambda, \mu \in \mathbb{C}$. The following are equivalent:

(i)
$$\mathcal{F}$$
 is a (λ, μ) -eigenfamliy.

(ii) There is a (0,0)-eigenfamily $\widetilde{\mathcal{F}}$ of homogeneous polynomials from \mathbb{R}^{n+1} to \mathbb{C} all of the same degree d, so that the map

$$\widetilde{\mathcal{F}} \to \mathcal{F}, \qquad F \mapsto F|_{S^n},$$

is a well defined bijection and $\lambda = -d(d + n - 1)$, $\mu = -d^2$.

Remark

So: orthogonal families of homogeneous polynomial harmonic morphisms on $\mathbb{R}^{n+1} \leftrightarrow$ eigenfamilies on S^n .

Proof.

Recall:

A function $F: S^n \to \mathbb{C}$ satsifies $\Delta^{S^n} F = \lambda F$ if and only if there is a harmonic homogeneous polynomial $\widetilde{F}: \mathbb{R}^{n+1} \to \mathbb{C}$ of some degree d so that $\widetilde{F}|_{S^n} = F$ and $\lambda = -d(d + n - 1)$.

$$\nabla_{x}^{\mathbb{R}^{n+1}}\widetilde{F} = \|x\|^{d-1} (\nabla_{x/\|x\|}^{S^{n}}F + d \cdot F(\frac{x}{\|x\|})\partial_{r})$$

so that for two lifts $\widetilde{F}, \widetilde{G}$ one has:

$$(\nabla_x^{\mathbb{R}^{n+1}}\widetilde{F})^T \nabla_x^{\mathbb{R}^{n+1}} \widetilde{G} = \|x\|^{2d-2} \left(g_{\mathbb{C}}(\nabla_{x/\|x\|}^{S^n} F, \nabla_{x/\|x\|}^{S^n} G) + d^2 F(\frac{x}{\|x\|}) G(\frac{x}{\|x\|}) \right).$$

If the lifts are a (0,0)-eigenfamily then the LHS is 0, implying that $g_{\mathbb{C}}(\nabla_{x/\|x\|}^{S^n}F, \nabla_{x/\|x\|}^{S^n}G) = -d^2F(\frac{x}{\|x\|})G(\frac{x}{\|x\|}).$ On the other hand if \mathcal{F} is a (λ, μ) -eigenfamily then:

$$(\mu + d^2)\widetilde{F}(x)\widetilde{G}(x) = ||x||^2 (\nabla_x \widetilde{F})^T \nabla_x \widetilde{G}.$$

If $\mu \neq -d^2$ this implies one of $\widetilde{F}, \widetilde{G}$ has an $||x||^2$ factor, which contradicts harmonicity.

ъ

Other CROSSes

Remark

Let $X \in \{\mathbb{RP}^n, \mathbb{CP}^n, \mathbb{HP}^n\}$ and let $\pi : S^{m(X)} \to X$ be the standard quotient map. Then π is a Riemannian submersion with totally geodesic fibres. In particular for all $\varphi, \psi : X \to \mathbb{C}$ one has:

$$\Delta^{S^{m(X)}}(\varphi \circ \pi) = (\Delta^{X} \varphi) \circ \pi,$$
$$g_{\mathbb{C}}^{S^{m(X)}}(\nabla(\varphi \circ \pi), \nabla(\psi \circ \pi)) = g_{\mathbb{C}}^{X}(\nabla\varphi, \nabla\psi) \circ \pi.$$

Corollary

Let X be as above and let F be a family of functions X → C,
λ, μ ∈ C. The following are equivalent:
(i) F is a (λ, μ)-eigenfamily.
(ii) π*(F) = {φ ∘ π : S^{m(X)} → C | φ ∈ F} is a (λ, μ)-eigenfamily on S^{m(X)}.

Eigenfamilies of homogeneous polynomials

Similar to harmonic morphisms:

Remark

Let (M, g, J) be a Kähler manifold, \mathcal{F} a family of holmorphic maps $M \to \mathbb{C}$. Then \mathcal{F} is a (0, 0)-eigenfamily.

Holomorphic homogeneous polynomials then give a large amount of eigenfamilies on S^n (well known). Finding new examples leads to the following question:

Question

How can one tell if a family of functions is *not* holomorphic with respect to any Kähler structure?

Functions of complex type

For convenience define:

Definition

- 1. A family \mathcal{F} of functions from \mathbb{R}^n to \mathbb{C} is said to be *uniformly* of complex type if there is a \mathbb{R} -linear isometric inclusion $a : \mathbb{C}^k \to \mathbb{R}^n$ so that for all $F \in \mathcal{F}$ one has that $F = F \circ (aa^*)$ and $F \circ a : \mathbb{C}^k \to \mathbb{C}$ is holomorphic.
- 2. A function $F : \mathbb{R}^n \to \mathbb{C}$ is said to be of *complex type* if the family $\{F\}$ is uniformly of complex type.

Theorem

A family \mathcal{F} of smooth functions from \mathbb{R}^n to \mathbb{C} is uniformly of complex type if and only if for all $F, G \in \mathcal{F}$ and $x, y \in \mathbb{R}^n$:

$$(\nabla_{x}F)^{T} \nabla_{y}G = 0.$$
(3)

Functions of complex type

Weakly horizontally conformal polynomials $\mathbb{R}^n \to \mathbb{C}$ are automatically harmonic (Ababou-Baird-Brossard 1999). We are then interested in families \mathcal{F} of homogeneous polynomials so that

$$(\nabla_{\!x} F)^T \nabla_{\!x} G = 0$$
 for all $x \in \mathbb{R}^n$ and all $F, G \in \mathcal{F}$

but for which there exist $x, y \in \mathbb{R}^n$ and $F, G \in \mathcal{F}$ so that

$$(\nabla_{x}F)^{T}\nabla_{y}G\neq 0.$$

Remark

For degree 2 maps (not families!) the two equations coincide: For $F(x) = x^T A x$, $A = A^T$ one has:

$$(\nabla_{x}F)^{T} \nabla_{x}F = 4x^{T}A^{2}x = 0 \ \forall x \iff A^{2} = 0$$
$$\iff 0 = 4x^{T}A^{2}y = (\nabla_{x}F)^{T} \nabla_{y}F \ \forall x, y.$$

This is well known! It follows e.g. from the classification of homogeneous degree 2 polynomial harmonic morphisms $\mathbb{R}^n \to \mathbb{R}^m$. (Ou-Wood 1996, Ou 1997)

Example

The polynomial $\mathbb{R}^8 \to \mathbb{C}$ given by

$$\begin{aligned} x_{3}x_{1}^{3} - ix_{4}x_{1}^{3} + 3ix_{2}x_{3}x_{1}^{2} + 3x_{2}x_{4}x_{1}^{2} - 3x_{2}^{2}x_{3}x_{1} \\ + 3ix_{2}^{2}x_{4}x_{1} - x_{3}x_{5}x_{7}x_{1} + ix_{4}x_{5}x_{7}x_{1} + ix_{3}x_{6}x_{7}x_{1} \\ + x_{4}x_{6}x_{7}x_{1} - ix_{3}x_{5}x_{8}x_{1} - x_{4}x_{5}x_{8}x_{1} - x_{3}x_{6}x_{8}x_{1} \\ + ix_{4}x_{6}x_{8}x_{1} - ix_{2}^{3}x_{3} - x_{2}^{3}x_{4} - ix_{2}x_{3}x_{5}x_{7} - x_{2}x_{4}x_{5}x_{7} \\ - x_{2}x_{3}x_{6}x_{7} + ix_{2}x_{4}x_{6}x_{7} + x_{2}x_{3}x_{5}x_{8} - ix_{2}x_{4}x_{5}x_{8} \\ - ix_{2}x_{3}x_{6}x_{8} - x_{2}x_{4}x_{6}x_{8} \end{aligned}$$

is of complex type, but not holomorphic with respect to the standard Kähler structure on $\mathbb{R}^8\cong\mathbb{C}^4.$

Examples - eigenfamilies

The following families are not uniformly of complex type: (i) $F_1, F_2 : \mathbb{C}^4 \to \mathbb{C}$ given by $F_1(z, u, v, w) = zv + uw, \quad F_2(z, u, v, w) = z\overline{w} - u\overline{v}.$ (ii) The product of the two polynomials above: $\mathbb{C}^4 \to \mathbb{C}, \quad (z, u, v, w) \mapsto z^2 v w - u^2 \overline{v w} + z u (|w|^2 - |v|^2).$ (iii) As a, b, c, d vary over \mathbb{C} the family of maps $\mathbb{C}^4 \to \mathbb{C}$ given by: $a(z^2w + zu\overline{v}) + b(u^2\overline{w} - zuv) + c(z^2v - zu\overline{w}) + d(u^2\overline{v} + zuw)$ An element of the family is not of complex type unless ab + cd = 0. (iv) Let $\gamma \in \mathbb{C}$, the map $\mathbb{C}^3 \oplus \mathbb{R} \mapsto \mathbb{C}$. $((z, u, w), t) \mapsto z^2 w + 2\gamma z u t - \gamma^2 u^2 \overline{w}$

is not of complex type unless $\gamma = 0$ (inflation of an example from Ababou-Baird-Brossard 1999).

Axis of holomorphicity

A feature of all examples on the previous slide is that they are holomorphic in some variables.

It turns out to be useful to investigate this further:

Definition

Let \mathcal{F} be a family of functions $\mathbb{R}^n \to \mathbb{C}$. A vector subspace $V \subseteq \mathbb{R}^n$ is said to be a *uniform axis of holomorphicity* of \mathcal{F} if the family

$$\{V \to \mathbb{C}, v \mapsto F(x+v) \mid x \in \mathbb{R}^n, F \in \mathcal{F}\}$$

is uniformly of complex type.

Theorem

Let $n \in \{5, 6\}$ and suppose $P : \mathbb{R}^n \to \mathbb{C}$ is a homogeneous harmonic morphism. If P has an axis of holomorphicity of (real) dimension at least 2, then P is of complex type.

Axis of holomorphicity

Homogeneous polynomials without an axis of holomorphicity contain information that, in a certain sense, appears for the first time in a given dimension. For example the proof of the previous Theorem implies:

Corollary

Let $n \leq 9$ and suppose $P : \mathbb{R}^n \to \mathbb{C}$ is a homogeneous polynomial harmonic morphism not admitting an axis of holomorphicity. Then there is no non-trivial decomposition $\mathbb{R}^n = V \oplus V^{\perp}$ with respect to which P is a harmonic morphism in each variable seperately.

Remark

The speaker does not know of *any* homogeneous polynomial harmonic morphisms without an axis of holomorphicity! However numerics indicate the existence of homogeneous degree 3 examples on \mathbb{R}^6 .

Eigenfamilies consisting of homogeneous degree 2 polynomials

Degree 2 eigenfamilies always admit an axis of holomorphicity:

Theorem

Let \mathcal{F} be an eigenfamily of homogeneous degree 2 polynomial harmonic morphisms $\mathbb{R}^n \to \mathbb{C}$. Then \mathcal{F} admits a uniform axis of holomorphicity of (real) dimension at least min(2, n).

Eigenpairs of degree 2 polynomials

Definition

Let \mathcal{F} be a family of smooth functions $\mathbb{R}^n \to \mathbb{C}$. A uniform axis of holomorphicity V of \mathcal{F} is called *maximal* if it is not contained in any other uniform axis of holomorphicity.

Definition

- 1 We call a triple (m, k, δ) of natural numbers a subspace type if $m \ge k$, k is even, and $\delta \in \{0, 1\}$.
- 2 We call a triple (P_1, P_2, A) polynomial data of a subspace type (m, k, δ) if $P_1, P_2 \in \mathbb{C}[z_1, ..., z_m]$ are homogenous complex polynomials of degree 2 and A is a complex $m \times k$ matrix of rank k.
- 3 We call a triple (Y, C, v) twisting data of a subspace type (m, k, δ) if Y, C are anti-symmetric $k \times k$ matrices, Y is invertible, and if $v \in \mathbb{C}^m$ with v = 0 if and only if $\delta = 0$.

Theorem

Let $F_1, F_2 : \mathbb{R}^n \to \mathbb{C}$ be two homogenous degree 2 polynomials so that $\{F_1, F_2\}$ is a full eigenfamily. Then there are subspace data (m, k, δ) as well as polynomial and twisting data (P_1, P_2, A) , (Y, C, v) so that:

- 1 Up to an isometry of the domain one can decompose $\mathbb{R}^n \cong \mathbb{C}^m \oplus \mathbb{C}^k \oplus \mathbb{R}^{\delta}$ so that \mathbb{C}^m is a maximal uniform axis of holomorphicity for $\{F_1, F_2\}$.
- 2 Let $X = (\frac{1}{2}vv^T + C)Y^{-1}$. One has, with respect to the above decomposition:

$$F_{1}((z_{1},...,z_{m}),(w_{1},...,w_{k}),t) = P_{1}(z_{1},...,z_{m}) + \sum_{ij} z_{i}A_{ij}w_{j}$$

$$F_{2}((z_{1},...,z_{m}),(w_{1},...,w_{k}),t) = P_{2}(z_{1},...,z_{m})$$

$$+ \sum_{ii} z_{i}A_{ij}\left(\sum_{l} X_{jl}w_{l} + \sum_{l} Y_{jl}\overline{w}_{l} + v_{j}t\right)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Eigenairs of degree 2 polynomials - examples

The following are minimalistic examples of such eigenpairs: (i) $F_1, F_2 : \mathbb{C}^4 \to \mathbb{C}$ given by $F_1(z, u, v, w) = zv + uw, \quad F_2(z, u, v, w) = z\overline{w} - z\overline{v}.$ Here $(m, k, \delta) = (2, 2, 0), (P_1, P_2, A) = (0, 0, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}), (Y, C, v) = (\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, 0, 0).$ (ii) $F_1, F_2 : \mathbb{C}^4 \oplus \mathbb{R} \to \mathbb{C}$ given by

 $F_1(z, u, v, w, t) = zv + uw, \quad F_2(z, u, v, w, t) = z(\overline{w} + w + 2it) - u\overline{v}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Here $\delta = 1$ and $v = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$, the other data are as in the previous example.

Other topics - Eigenfamilies induced by polynomial harmonic morphisms $\mathbb{R}^n \to \mathbb{R}^m$

Consider a homogeneous polynomial harmonic morphism $P : \mathbb{R}^n \to \mathbb{R}^m$, $x \mapsto (P_1(x), ..., P_m(x))$. Then

$$\mathcal{E}(P) := \{P_{2k-1} + iP_{2k} \mid 1 \le k \le \lfloor m/2 \rfloor\}$$

is a (0, 0)-eigenfamily.

Example

Let $P : \mathbb{H}^3 \to \mathbb{H}$ be the multiplication of 3 quaternions. Then $\mathcal{E}(P)$ is congruent to the following two maps from $\mathbb{C}^6 \to \mathbb{C}$:

$$(z_1, z_2, u_1, u_2, w_1, w_2) \mapsto z_1(u_1w_1 - u_2\overline{w_2}) - z_2(\overline{u_1w_2} + \overline{u_2}w_1), (z_1, z_2, u_1, u_2, w_1, w_2) \mapsto z_1(u_1w_2 + u_2\overline{w_1}) + z_2(\overline{u_1w_1} - \overline{u_2}w_2).$$

This family is not uniformly of complex type.

Other topics - Eigenfamilies induced by polynomial harmonic morphisms $\mathbb{R}^n \to \mathbb{R}^m$

Using the classification of degree 2 polynomial harmonic morphisms $\mathbb{R}^n \to \mathbb{R}^m$ (Wood and Ou 1996, Ou 1997):

Theorem

Let $P : \mathbb{R}^n \to \mathbb{R}^m$ be a non-zero homogeneous degree 2 polynomial harmonic morphism.

- 1. If $m \ge 4$ then $\mathcal{E}(P)$ is not uniformly of complex type.
- 2. For any $B \in O(m)$ the families $\mathcal{E}(P)$ and $\mathcal{E}(B \circ P)$ are congruent.

Definition

Say that two families \mathcal{F}_1 and \mathcal{F}_2 of maps $\mathbb{R}^n \to \mathbb{C}$ are *congruent* if there is an isometry $\Phi \in O(n)$ so that $\operatorname{span}_{\mathbb{C}} \mathcal{F}_1 = \operatorname{span}_{\mathbb{C}} \Phi^*(\mathcal{F}_2)$.

Here
$$\Phi^*(\mathcal{F}) = \{F \circ \Phi \mid F \in \mathcal{F}\}.$$

Thank you!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?