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(joint work with Ioana Antonia BRANEA)

PhD Student, Transilvania University of Brasov

ioana.radulescu@unitbv.ro

Supervisor: Prof. Univ. Dr. Adela MIHAI

September 2023

1 / 56



1 Introduction

2 Preliminaries
Probability Theory and Statistics
Differential Geometry
Statistical Manifolds

3 Main Results
Exponential Distribution

Fisher Metric
The Laplace-Beltrami Operator. Harmonic Functions
Submanifold of Finite Type

Bernoulli Distribution
Fisher Metric
The Laplace-Beltrami Operator. Harmonic Functions
Submanifold of Finite Type

4 Conclusions

5 References
2 / 56



Introduction

Statistical manifolds are geometric abstractions used to model information. They belong to
the field of Information Geometry, which is a relatively new branch of mathematics that applies
the tools of differential geometry to explore topics such as statistical inference, estimation, and
information loss. This field originated from the differential geometric analysis of the manifold
of probability density functions.
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Introduction

Statistical models consist of a family of probability distributions which can be given a
geometric structure. They can be endowed with a Riemannian metric, specifically the Fisher
information matrix, introduced by Rao ([7] Information and accuracy attainable in estimation
of statistical parameters, Bulletin of the Calcutta Math. Soc. 37 (1945)) and Jeffreys ([6] An
invariant form for the prior probability in estimation problems, Proceedings of the Royal
Society of London, Series A, 186(1007) (1946)) and they become Riemannian manifolds, as
shown by Amari( [1] S. Amari and H. Nagaoka, Methods of Information Geometry, American
Mathematical Soc., Oxford Univ. Press 191, 2000) and Călin and Udrişte ( [3] O. Călin and
C. Udrişte, Geometric Modeling in Probability and Statistics, Springer, 2014).
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Introduction

We conduct a differential geometric study on the set of exponential and Bernoulli distributions
by computing the Fisher matrix, Christoffel symbols, geodesics, Laplace-Beltrami operator and
harmonic functions.

Our results reveal that the statistical models given by the exponential distribution and the one
given by the Bernoulli distribution are 1-type curves in R2.
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Probability Theory and Statistics

Definitions taken from [2] [G. Blom, Probability and Statistics: Theory and Applications,
Springer, 1989].
Let (Ω,F ,P) be a probability space, where

Ω is the set of all possible outcomes;

σ-field F is a collection of subsets of Ω that is closed under countable many intersections,
unions, and complements;

P is a probability function, i.e. a measure on F for which P(Ω) = 1.

A random variable X on (Ω,F ,P) is a function X : Ω → R that satisfies

X−1(A) = {ω ∈ Ω : X (ω) ∈ A} ∈ F , ∀A ∈ B, (1)

where B is the Borel algebra on the set of real numbers.
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Probability Theory and Statistics

There are two classes of random variables:

1. discrete random variables X : Ω → χ = {x1, x2, . . . } for which the density function
p : χ → R satisfies

p(x) =

{
P(X = xi ), x = xi , i = {1, 2, . . . },
0, otherwise

and
∑
k

p(xk) = 1. (2)

2. continuous random variables X : Ω → χ ⊂ Rn for which the density function p : χ → R
satisfies

P(X ∈ D) =

∫
D
p(x)dx and

∫
χ
p(x)dx = 1. (3)
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Probability Theory and Statistics

From the numerical characteristics of random variables, we recall the expectation value

E(X ) =



∑
i

xip(xi ), if X is a discrete random variable,

∫
χ
xp(x)dx , if X is a continuous random variable

. (4)
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Differential Geometry

By investigating curves, surfaces, manifolds, and studying concepts like tangent vectors,
curvature, and metrics, Differential Geometry reveals the intrinsic properties of geometric
objects.

Let (M,A) be a differentiable manifold, where M is a topological space and
A = {(Ui , hi ) : i ∈ I} is the atlas, i.e. a collection of charts which are bijective mappings
between open subsets of M and open subsets of Rm. An immersion is a mapping x : M → Rm

that has rank n = dim M.

A Riemannian metric g on a differentiable manifold is a symmetric, positive definite bilinear
form on the tangent space. The pair (M, g) is called a Riemannian manifold.
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Differential Geometry. Christoffel Symbols

The Riemannian metric allows for the definition of various geometric quantities such as the
Christoffel symbols of the first kind

Γij ,k =
1

2

(
∂gjk
∂x i

+
∂gik
∂x j

−
∂gij
∂xk

)
, (5)

and the Christoffel symbols of the second kind

Γkij =
1

2

n∑
l=1

gkl

(
∂gjl
∂x i

+
∂gil
∂x j

−
∂gij
∂x l

)
. (6)
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Differential Geometry

Using Christoffel symbols, we can define geodesics, which are the paths that locally minimize
distance

d2xk

dt2
+

n∑
i ,j=1

Γkij ·
dx i

dt
· dx

j

dt
= 0, k = 1, n. (7)

The Laplace-Beltrami operator is defined by

∆f := − 1√
detg

n∑
i ,j=1

∂

∂xi

(
g ij ·

√
detg · ∂f

∂xj

)
, (8)

where g ij is the inverse of the Riemannian metric gij .

A function satisfying ∆f = 0 is called harmonic.

11 / 56



Differential Geometry

A submanifold is a subset of a manifold that itself possesses the structure of a manifold. It is
well-known (see [4] B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type,
World Scientific Publishing Company, 1984) that an isometric immersion x : M → Rm,
x = (x1, . . . , xm), x i ∈ C∞(M), i = 1,m satisfies

x i = x i0 +

qi∑
t=pi

x it , i = 1,m, (9)

with x i0 ∈ R and x it eigenfunctions of the Laplace-Beltrami operator. Chen [4] defines
submanifolds of finite type by denoting

p = inf{pi : i = 1,m} ∈ N∗ and q = sup{qi : i = 1,m} ∈ N∗ ∪ {∞} (10)

as follows.
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Differential Geometry. Submanifolds of Finite Type

Definition 1

A compact submanifold M in Rm is said to be of finite type if q from (10) is finite. Otherwise,
M is of infinite type.
If the set {t ∈ {p, p + 1, . . . , q} : xt ̸= 0} has exactly k elements, then M is said to be of
k-type.

13 / 56



Differential Geometry. Characterization of Submanifolds of Finite Type

Chen ( [4], 1984 ) gives the following characterization for the submanifolds of finite type.

Theorem 2

Let x : M → Rm be an isometric immersion of a compact, n-dimensional Riemannian manifold
M. Then M is of finite type if and only if there is a non-trivial polynomial P such as

P(∆)H = ∆kH + c1∆
k−1H + · · ·+ ck−1∆H + ckH = 0, ci ∈ R, i = 1, k , (11)

where H is the mean curvature vector defined by

H =
1

n

n∑
i=1

h(ei , ei ), (12)

for any orthonormal frame e1, ..., en.
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Statistical Manifolds

The notions presented in the above subsections intertwine, resulting the theory behind
statistical (or parametric) models. Explicitly, a family of probability distributions which
depends on a finite number of parameters can be considered a parameterized surface.
Denote the set of probability distributions on χ that depends on n parameters ξ =

(
ξ1, . . . , ξn

)
by

S = {pξ = p(x ; ξ)}. (13)

S is a subset of P(χ) =

{
f : χ → R : f ≥ 0,

∫
χ
fdx = 1

}
. If the mapping ξ → pξ is an

immersion, then the set S is a statistical model of dimension n.
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Statistical Manifolds

In our computations, we will make use of the log-likelihood function given by

ℓx(ξ) = ℓ(pξ)(x) = ln pξ(x). (14)

The Fisher information matrix is given by

gij(ξ) = E

[
∂ℓx(ξ)

∂ξi
· ∂ℓx(ξ)

∂ξj

]
, ∀i , j ∈ {1, . . . , n}, (15)

where ξ = (ξ1, . . . , ξn) ∈ R. It can be proven (see e.g. [3] O. Călin and C. Udrişte, Geometric
Modeling in Probability and Statistics, Springer, 2014) that for any statistical model, the
Fisher information matrix is a Riemannian metric. As a consequence, the pair (S, g) can be
organized as a manifold.
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Main Results

In the bellow paragraphs, we present a differential geometric study for the exponential
distribution and the Bernoulli distribution.

For the rest of this paper, let (Ω,F ,P) be a probability space.
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Exponential Distribution

We denote the family of exponential distributions by

S = {pξ(x) = ξe−ξx : ξ > 0, x ≥ 0}. (16)

Proposition 3

The Fisher information matrix of S is given by

g11(ξ) =
1

ξ2
. (17)
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Fisher Metric

Proof.

It is known (see e.g. [3]) that the Fisher information matrix can be written as:

gij(ξ) = −E

[
∂2ℓx(ξ)

∂ξi∂ξj

]
. (18)

For S, the log-likelihood function is

ℓx(ξ) = ln
(
ξe−ξx

)
= ln ξ − ξx ,

hence
∂ℓx(ξ)

∂ξ
=

1

ξ
− x =⇒ ∂2ℓx(ξ)

∂ξ2
= − 1

ξ2
. (19)
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Proof.

Finally, formulas (18) and (3) provide the Fisher information matrix

g11(ξ) = −E

[
− 1

ξ2

]
=

∫ ∞

0

1

ξ2
pξ(x) dx =

1

ξ2

∫ ∞

0
pξ(x)dx =

1

ξ2
.
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The Christoffel Symbols

We now use the Fisher information matrix to compute the Christoffel symbols for the manifold
(S, g).

Proposition 4

The Christoffel symbols of the first and the second kind of (S, g) are given by:

Γ11,1 = − 1

ξ3
and Γ111 = −1

ξ
. (20)
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The Christoffel symbols

Proof.

Applying (5) and (6), we obtain:

Γ11,1 =
1

2

(
∂g11
∂ξ

+
∂g11
∂ξ

− ∂g11
∂ξ

)
= −1

2
· 2

ξ3
= − 1

ξ3
,

respectively

Γ111 =
1

2
g11

(
∂g11
∂ξ

+
∂g11
∂ξ

− ∂g11
∂ξ

)
= −1

2
· ξ2 · 2

ξ3
= −1

ξ
.
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The Geodesics

Using the Christoffel symbols in (7), we can compute the geodesics.

Proposition 5

The geodesics of (S, g) are given by

ξ(t) = ec1t+c2 , (21)

where c1, c2 ∈ R are constants.
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The geodesics

Proof.

Applying (7), we have

d2ξ

dt2
+ Γ111

dξ

dt
· dξ
dt

= 0 ⇐⇒ d2ξ

dt2
− 1

ξ
·
(
dξ

dt

)2

= 0. (22)

We obtained the homogeneous differential equation

ξ′′ − (ξ′)2

ξ
= 0. (23)

We divide the above equation by ξ (ξ ̸= 0).
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Proof.

ξ′′

ξ
− (ξ′)2

ξ2
= 0 ⇐⇒ ξ′′ · ξ − ξ′ · ξ′

ξ2
= 0 ⇐⇒

(
ξ′

ξ

)′
= 0,

and by integration, we have

ξ′

ξ
= c1 ⇐⇒ dξ

dt
= c1ξ ⇐⇒ dξ

ξ
= c1 dt ⇐⇒

∫
dξ

ξ
=

∫
c1 dt

⇐⇒ ln(ξ) = c1t + c2 =⇒ ξ(t) = ec1t+c2 , c1, c2 constants, (24)

concluding the proof.
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The Laplace-Beltrami Operator

Using (8), we will compute ∆f with respect to g . We will find the harmonic functions.

Proposition 6

The Laplace-Beltrami operator acting on differentiable functions f : S → R
has the following expression:

∆f = −ξ

(
∂f

∂ξ
+ ξ

∂2f

∂ξ2

)
. (25)
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The Laplace-Beltrami Operator

Proof.

We see that det g =
1

ξ2
and g11 = ξ2. Then

∆f = − 1√
1

ξ2

∂

∂ξ

(
ξ2 · 1

ξ
· ∂f
∂ξ

)
= −ξ

∂

∂ξ

(
ξ
∂f

∂ξ

)
= −ξ

(
∂f

∂ξ
+ ξ

∂2f

∂ξ2

)
.
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The Laplace-Beltrami Operator. Harmonic Functions

Next we consider the case ∆f = 0. We have the homogeneous differential equation:

f ′ + ξf ′′ = 0.

We denote by u(ξ) = f ′(ξ). Then the above relation becomes

u + ξu′ = 0 ⇐⇒ ξ
du

dξ
= −u ⇐⇒ du

u
= −dξ

ξ
.

By integration, we have

ln u = − ln ξ + ln c1 ⇐⇒ ln u = ln

(
c1
ξ

)
⇐⇒ u =

c1
ξ

⇐⇒ df

dξ
=

c1
ξ

⇐⇒
∫

df =

∫
c1
ξ
dξ ⇐⇒

f (ξ) = c1 ln ξ + c2, c1, c2 ∈ R constants. (26)
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Submanifold of Finite Type

In this subsection, we will use the framework provided by Chen in [4] to study the family of
exponential distributions as a curve in R2.

Theorem 7

The set of exponential distributions is a 1-type curve in R2.
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Submanifold of Finite type

Proof.

We consider the immersion x : S → R2 defined by:

x(ξ) = (cos(ln ξ), sin(ln ξ)) . (27)

Indeed, we have
∂x

∂ξ
=

(
− sin(ln ξ) · 1

ξ
, cos(ln ξ) · 1

ξ

)
and

g11 =

〈
∂x

∂ξ
,
∂x

∂ξ

〉
= sin2(ln ξ) · 1

ξ2
+ cos2(ln ξ) · 1

ξ2
=

1

ξ2
, (28)

where ⟨·, ·⟩ is the inner product.
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Proof.

We have
∂2x

∂ξ2
=

(
− cos(ln ξ)1ξ ξ + sin(ln ξ)

ξ2
,
− sin(ln ξ)1ξ ξ − cos(ln ξ)

ξ2

)

=

(
− cos(ln ξ) + sin(ln ξ)

ξ2
,
− sin(ln ξ)− cos(ln ξ)

ξ2

)
.

Applying (25), we obtain:

∆x = −ξ

(
∂x

∂ξ
+ ξ

∂2x

∂ξ2

)
= −ξ

[(
− sin(ln ξ)

ξ
,
cos(ln ξ)

ξ

)
+ ξ

(
− cos(ln ξ) + sin(ln ξ)

ξ2
,
− sin(ln ξ)− cos(ln ξ)

ξ2

)]
= −ξ

(
− cos(ln ξ)

ξ
,
− sin(ln ξ)

ξ

)
=⇒

∆x = (cos(ln ξ), sin(ln ξ)) . (29)
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Proof.

It is known (see Chen [4]) that H satisfies

∆x = −nH, (30)

where n is the dimension of the submanifold and H is the mean curvature vector. Then

H = −∆x =⇒ H = (− cos(ln ξ),− sin(ln ξ)) . (31)

The first and second order partial derivatives are

∂H

∂ξ
=

(
sin(ln ξ)

ξ
,
− cos(ln ξ)

ξ

)
, (32)

∂2H

∂ξ2
=

(
cos(ln ξ)− sin(ln ξ)

ξ2
,
sin(ln ξ) + cos(ln ξ)

ξ2

)
. (33)
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Proof.

Hence

∆H = −ξ

[(
sin(ln ξ))

ξ
,
− cos(ln ξ)

ξ

)
+ ξ

(
cos(ln ξ)− sin(ln ξ)

ξ2
,
sin(ln ξ) + cos(ln ξ)

ξ2

)]
∆H = − (cos(ln ξ), sin(ln ξ)) . (34)

We showed that the mean curvature vector satisfies the following relation

∆H − H = 0, (35)

so, by Theorem 2 we conclude that S is a 1-type curve in R2.
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Submanifold of Finite type

As a consequence of (35), we have

Corollary 8

An eigenvalue of the Laplace-Beltrami operator is 1.
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Bernoulli Distribution. Fisher Metric

In this section we study the manifold of Bernoulli distributions:

S = {p(ξ; k) = ξk(1− ξ)1−k : 0 < ξ < 1, k ∈ {0, 1}}. (36)

Proposition 9

The Fisher information matrix has one element given by

g11(ξ) =
1

ξ(1− ξ)
. (37)

35 / 56



Proof.

The log-likelihood for the Bernoulli probability density function is given by

ℓk(ξ) = ln p(ξ; k) = ln
(
ξk(1− ξ)1−k

)
= k ln ξ + (1− k) ln(1− ξ). (38)

The first and second derivatives of the log-likelihood with respect to the parameter ξ are given
by

∂ℓk(ξ)

∂ξ
=

k − ξ

ξ(1− ξ)
. (39)

∂2ℓk(ξ)

∂ξ2
= − k

ξ2
− 1− k

(1− ξ)2
. (40)

For computing the Fisher metric coefficients we use the formula from [3, Proposition 1.6.3]

gij(ξ) = −E

[
∂2ℓx(ξ)

∂ξi∂ξj

]
.
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Proof.

In our case:

g11(ξ) = E

[
k

ξ2
+

1− k

(1− ξ)2

]
. (41)

From the definition (4) of the expectation we have that

E[k] = ξ

E[1− k] = 1− ξ.

So we obtain:

g11(ξ) =
1

ξ
+

1

1− ξ
=

1

ξ(1− ξ)
. (42)
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Bernoulli Distribution. Christoffel Symbols

Using the Fisher information matrix, we can compute the Christoffel symbols for the manifold
(S, g).

Proposition 10

The Christoffel symbols of first and second kind are given by

Γ11,1 =
2ξ − 1

2ξ2(1− ξ)2
(43)

and

Γ111 =
2ξ − 1

2ξ(1− ξ)
. (44)
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Christoffel Symbols

Proof.

By applying formulas (5) and (6) we obtain

Γ11,1 =
1

2

(
∂g11
∂ξ

+
∂g11
∂ξ

− ∂g11
∂ξ

)
=

1

2

(
− 1− 2ξ

ξ2(1− ξ)2

)
=

2ξ − 1

2ξ2(1− ξ)2
,

Γ111 =
1

2
g11

(
∂g11
∂ξ

+
∂g11
∂ξ

− ∂g11
∂ξ

)
,

where g11 is the inverse of the Fisher matrix, in our case g11 = ξ(1− ξ).

Γ111 =
1

2
ξ(1− ξ)

2ξ − 1

ξ2(1− ξ)2
=

2ξ − 1

2ξ(1− ξ)
.
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Geodesics

By replacing the formulas obtained in (44) for the Christoffel symbols in (7), we can compute
the geodesics equations.

Proposition 11

The geodesics for the Bernoulli distribution model are given by

ξ(t) =
1

2
(1 + sin(c1t + c2)), c1, c2 ∈ R. (45)
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Proof.

From (7) we have

d2ξ

dt2
+ Γ111

dξ

dt
· dξ
dt

= 0 ⇐⇒ d2ξ

dt2
+

2ξ − 1

2ξ(1− ξ)

dξ

dt
· dξ
dt

= 0.

We make the substitution dξ
dt = u =⇒ d2ξ

dt2
= du

dξ
dξ
dt ⇐⇒ ξ′′ = u du

dξ . By replacing this in the
equation above, we get

u
du

dξ
+

2ξ − 1

2ξ(1− ξ)
u2 = 0. (46)
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Proof.

We distinguish 2 cases:

1 u = 0 ⇐⇒ dξ
dt = 0 ⇐⇒ ξ(t) = c , c ∈ R;

2 u ̸= 0. We divide (46) by u, which leads to

du

dξ
= − 2ξ − 1

2ξ(1− ξ)
u ⇐⇒ du

u
=

1− 2ξ

2ξ(1− ξ)
dξ.

By integrating both sides, we get

ln u = ln (cξ(1− ξ))
1
2 , c ∈ R.

42 / 56



Proof.

We obtain

u = (cξ(1− ξ))
1
2 ⇐⇒ dξ

dt
= (cξ(1− ξ))

1
2 ⇐⇒ dξ√

ξ(1− ξ)
= c1 dt, c1 ∈ R.

By integrating both sides, we get

arcsin(2ξ − 1) = c1t + c2, ⇐⇒

ξ(t) =
1

2
(1 + sin (c1t + c2)), c1, c2 ∈ R. (47)

This ends the proof.
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Laplace-Beltrami Operator

Proposition 12

The formula for the Laplace-Beltrami operator acting on smooth functions f : S → R is:

∆f =
2ξ − 1

2

∂f

∂ξ
− ξ(1− ξ)

∂2f

∂ξ2
. (48)

44 / 56



Proof.

Applying formula (8) for the Bernoulli distribution model, this becomes

∆f = −
√
ξ(1− ξ)

∂

∂ξ

(
ξ(1− ξ)

√
1

ξ(1− ξ)

∂f

∂ξ

)
⇐⇒

∆f = −
√
ξ(1− ξ)

(
∂

∂ξ
· ∂f
∂ξ

+
√
ξ(1− ξ) · ∂

2f

∂ξ2

)
⇐⇒

∆f = −
√
ξ(1− ξ)

(
1− 2ξ

2
√
ξ(1− ξ)

· ∂f
∂ξ

+
√
ξ(1− ξ) · ∂

2f

∂ξ2

)
⇐⇒

∆f =
2ξ − 1

2

∂f

∂ξ
− ξ(1− ξ)

∂2f

∂ξ2
. (49)
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Harmonic Functions

Proposition 13

Harmonic functions have the following expression

f (ξ) = c1 arcsin (2ξ − 1) + c2, c1, c2 ∈ R. (50)
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Proof.

Harmonic functions are those that satisfy ∆f = 0

2ξ − 1

2

df

dξ
− ξ(1− ξ)

d2f

dξ2
= 0.

We make the substitution df
dξ = u ⇐⇒ f ′′ = du

dξ and we obtain, by rearranging the terms and
also taking into account that 0 < ξ < 1

2ξ − 1

2
u − ξ(1− ξ)

du

dξ
= 0 ⇐⇒

du

u
=

2ξ − 1

2ξ(1− ξ)
dξ.
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Proof.

By integrating both sides, we get

ln u = ln
c1√

ξ(1− ξ)
⇐⇒ u =

c1√
ξ(1− ξ)

⇐⇒ df

dξ
=

c1√
ξ(1− ξ)

⇐⇒

df = c1
1√

ξ(1− ξ)
dξ ⇐⇒ f (ξ) = c1 arcsin (2ξ − 1) + c2, c1, c2 ∈ R.
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Bernoulli Distribution. Submanifold of Finite Type

We use again the framework provided by Chen in [4] to study the type of the family of
Bernoulli distributions.

Theorem 14

The family of Bernoulli distributions is 1-type curve in R2.
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Proof.

Consider the immersion x : S → R2,

x(ξ) = (2ξ
1
2 ,−2(1− ξ)

1
2 ), 0 < ξ < 1. (51)

We have
∂x

∂ξ
= (ξ−

1
2 , (1− ξ)−

1
2 ),

g11 =

〈
∂x

∂ξ
,
∂x

∂ξ

〉
=

1

ξ
+

1

1− ξ
=

1

ξ(1− ξ)
,

the same as the Fisher matrix coefficient.
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Proof.

The second order derivative is

∂2x

∂ξ2
=

(
−1

2
ξ−

3
2 ,

1

2
(1− ξ)−

3
2

)
.

By using (48) we obtain

∆x =
2ξ − 1

2

(
ξ−

1
2 , (1− ξ)−

1
2

)
− ξ(1− ξ)

(
−1

2
ξ−

3
2 ,

1

2
(1− ξ)−

3
2

)
.

After doing the computations we obtain

∆x =

(
1

2

√
ξ,−1

2

√
1− ξ

)
. (52)
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Proof.

We know (see Chen [4]) that the mean curvature vector H satisfies

∆x = −nH, (53)

where n is the dimension of the submanifold; in our case n = 1. This implies
∆x = −H =⇒ H = −∆x , which means

H =

(
−1

2

√
ξ,

1

2

√
1− ξ

)
. (54)

We compute the first and second order derivatives of H

∂H

∂ξ
=

(
− 1

4
√
ξ
,− 1

4
√
1− ξ

)
. (55)

∂2H

∂ξ2
=

(
1

8ξ
3
2

,− 1

8(1− ξ)
3
2

)
. (56)
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Proof.

By using the formula (48) for the Laplace-Beltrami operator, (55), and (56) we obtain

∆H =
2ξ − 1

2

∂H

∂ξ
− ξ(1− ξ)

∂2H

∂ξ2
⇐⇒

∆H =

(
−1

8

√
ξ,

1

8

√
1− ξ

)
. (57)

From (54) and (57) we see that the following is true

− 4∆H + H = 0. (58)

By the characterization Theorem 2 for submanifolds of finite type, we conclude that S is a
1-type curve in R2.
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As a consequence of (58) we have

Corollary 15

An eigenvalue of the Laplace-Beltrami operator is 1/4.
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Conclusions

Inspired by the geometric study of the set of normal distributions presented by Călin and
Udrişte in [3], we have conducted a similar study for the family of exponential distributions
and for the family of Bernoulli distributions. In addition to the mentioned work, we have found
appropriate immersions in order to apply the characterization theorem for submanifolds of
finite type given by Chen in [4] and conclude that the exponential and Bernoulli statistical
models are both 1-type curves in R2.

These results have been published by I.A. Branea and I. Rădulescu (Lăzărescu) in A geometric
approach of probability distributions, Romanian Journal of Mathematics and Computer
Science 13(1) (2023).
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