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Notation

e Throughout this work, we consider ¥ an orientable surface
immersed into R3.

e The function N : ¥ — S? stands for the Gauss map of the
surface.

e The principal curvatures of X are denoted by x1 and k».

e The mean and Gaussian curvature of X, are defined,
respectively, by

H(p) = r1(p) + r2(p), K(p) = r1(p)r2(p), p € X.

The shape operator of X is denoted by A and it is satisfied that
|A]> = K3 + K3 = H? — 2K.
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Translating A-solitons

Definition (Translating A-soliton)

Let v € R3, |v| =1, called the density vector. An oriented surface ¥ in
R3 is a translating \-soliton with respect to v if

He(p) = (Np,v) + A Vp e ¥ (1.1)
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Definition (Translating A-soliton)

Let v € R3, |v| =1, called the density vector. An oriented surface ¥ in
R3 is a translating \-soliton with respect to v if

Hs(p) = (Np,v) + A Vp e X (1.1)

Observe that:

1. On the one hand, they are a particular case of prescribed mean
curvature (PMC) surfaces.

Hs(p) = H(N,) ¥p € X for a given H € C*(S?).

In this case, H(Np) = (Np, v) + A.

2. On the other hand, if A = 0 they generalize self-translating solitons
of the mean curvature flow.

3. Moreover, they are closely related to CMC surfaces.
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Motivation: Minkowski's problem. K(p) = K(N(p)).

Existence and uniqueness of PMC spheres: Alexandrov,

Pogorelov, Hartman, Witner, B. Guan, P. Guan, Galvez, Mira.

Other problems of PMC surfaces: properly embedded;
rotational; half-space theorems; Bjorling problem, other
ambient spaces.

Related problems studied by the authors: prescribed Gaussian
curvature and predetermined linear Weingarten curvature, ...

A. Bueno, . Ortiz, Invariant hypersurfaces with linear

prescribed mean curvature, J. Math. Anal. Appl. 487 (2020).
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Translating A-solitons

Consequently, to obtain results for translating A-solitons we take
into account:

2. Results of self-translating solitons of the mean curvature
flow:

» Widely studied during the last decades: Hoffman, Huisken,
[Imanen, F. Martin, Spruck, White, Xiao.

> They are minimal surfaces in (R3,e®3(-,-)). In particular, the
tangency principle is satisfied.

» Cylindrical solitons and rotationals. Non orientable examples.

WA A
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Remind that if ¥ is a surface and v € C§°(X), u=0in 0%, a normal
variation of compact support is defined by

¥(p, t) =p+tu(p)N(p), [t <e, Te={d(p,t): pei}.
CMC surfaces

e Area and volume functionals:
At) = / ds., V(1) :/ | Jacy|dV.
b [0,t]xX
e First variation of the area and volume functionals:
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Translating A-solitons

Consequently, to obtain results for translating A-solitons we take
into account:
3. Analogy with CMC: solutions of a variational problem.

Remind that if ¥ is a surface and v € C§°(X), u=0in 0%, a normal
variation of compact support is defined by

¥(p, t) =p+tu(p)N(p), [t <e, Te={d(p,t): pei}.
CMC surfaces

e Area and volume functionals:
At) = / ds., V(1) :/ | Jacy|dV.
b [0,t]xX
e First variation of the area and volume functionals:

A(0) = 7/ uHdE, V'(0) = / wEhE,
b b
e Critical points of the area functional: minimal surfaces and CMC
surfaces preserving the enclosed volume (i.e. [; udY = 0).
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Translating A-solitons

Consequently, to obtain results for translating A-solitons we take
into account:

3. Analogy with CMC: solutions of a variational problem.
Translating \-solitons

o Given ¢ € C°(R3), we define d¥, = e?d¥ and dV,, = e?dV.

o Weighted area and volume functionals, Ay and Vy, are defined.

e First variation of the weighted area and volume functionals:

AL(0) = —/zu(H— (N, D))dE 4 = —/)tuH¢dz¢,

V(;(O) = —/):ud2¢.

1. Introduction A-solitons 9 /34



Translating A-solitons

Consequently, to obtain results for translating A-solitons we take
into account:

3. Analogy with CMC: solutions of a variational problem.

Translating \-solitons
Given ¢ € C®(R3), we define d¥ s = e?d¥ and dV,, = e?dV.

Weighted area and volume functionals, A, and Vg, are defined.

First variation of the weighted area and volume functionals:
A;,(O) =— /): u(H—(N,D¢))dxs = —/):uH¢dZ¢,

V(;(O) = —/):ud2¢.

Critical points of the weighted area functional: surfaces with
Hg = 0 and surfaces with Hy = A under variations preserving the
enclosed weighted volume (i.e. [ ud¥y = 0).
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First characterization of \-solitons

A-solitons <+ theory of manifolds with density.

Definition (Weighted mean curvature)

The weighted mean curvature Hy of an oriented surface ¥ in R3
with respect to the density e? € C(IR3) is defined by

H¢ = Hz - <N7 D¢>7
where D is the gradient operator in R3.

e If we consider ¢, (x) = (x, v),
Y is a A-soliton <= H,, = A
11 / 34
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weighted area and volume with respect to ¢, are

Ag,(X) ::/ze¢vd2, Ve, (Q) ;:/Qe¢vdv,

where dX and dV are the usual area and volume elements in R3.

e Y is a A-soliton +—
A (0) =0Vue C°(T) st. [fudry =0
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Third characterization of \-solitons

e Consider 1 : ¥ — R3 a \-soliton.

e Then, the family of translations of % in the v direction given
by F(p,t) = (p) + tv is the solution of the geometric flow

(%I;)L = (Hz — AN,

which corresponds to the mean curvature flow with a constant
forcing term.
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Characterizations of A-solitons

Summing up, we get the following result.
Proposition
The following conditions are equivalent:

1. ¥ is a A-soliton.

2. ¥ has constant weighted mean curvature Hp, = A for the
density e? € C®(R3), where ¢,(x) = (x, v).

3. X is a critical point of Ag, under compactly supported
variations preserving the enclosed weighted volume.

4. Y is a critical point under compactly supported variations of
the functional Ly, := Ay, — AVy,.

5. X is a self-translating soliton of the mean curvature flow with
a constant forcing term.
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Classification of rotational A-solitons
Theorem 1 (L6pez, Bueno-Ortiz)
The rotational A-solitons are given by:

e Either a vertical cylinder of radius ry = 1/,

e or one of the resulting surfaces after rotate the following profile
curves around the axis x3.

A>1 A=1 A<l

3. Classification of rotational A-solitons A-solitons 16 / 34



Rotational A-solitons obtained rotating the profile curves

- vt o

Rotational A-solitons intersecting the Rotational A-solitons non-intersecting
rotation axis. the rotation axis.

3. Classification of rotational A-solitons A-solitons 17 / 34



Summary

1. Introduction
2. Characterizations of \-solitons
3. Classification of rotational A-solitons

4. Classification of cylindrical A-solitons

5. Stability results of A-solitons. Plateau-Rayleigh phenomenon




Cylindrical A-solitons
Definition (Cylindrical surface)
A surface ¥ C R3 is cylindrical if it can be parametrized by
(s, t) = afs) +ta, a€R> |a]=1. (4.1)

where v is a curve, called the base curve, contained in a 2-dimensional
plane T1 orthogonal to the ruling direction a.
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A surface ¥ C R3 is cylindrical if it can be parametrized by
(s, t) = afs) +ta, a€R> |a]=1. (4.1)

where v is a curve, called the base curve, contained in a 2-dimensional
plane T1 orthogonal to the ruling direction a.

Observe that if X is a cylindrical \-soliton:
The principal curvatures are 0 and x,, and N(i(s, t)) = na(s).

Then, from (1.1) we get the equation for cylindrical A-solitons
Ka(s) = (na(s),v) + A (4.2)

e \We assume that a and v are orthogonal and A > 0. (a= ey, v = €3)

Thus, by (4.1) X can be parametrized as W(s, t) = (a1(s), t, a3(s)).
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Cylindrical A-solitons
Definition (Cylindrical surface)
A surface ¥ C R3 is cylindrical if it can be parametrized by
(s, t) = afs) +ta, a€R> |a]=1. (4.1)

where v is a curve, called the base curve, contained in a 2-dimensional
plane T1 orthogonal to the ruling direction a.

Observe that if X is a cylindrical \-soliton:

The principal curvatures are 0 and x,, and N(i(s, t)) = na(s).

Then, from (1.1) we get the equation for cylindrical A-solitons
Ka(s) = (na(s),v) + A (4.2)
e \We assume that a and v are orthogonal and A > 0. (a= ey, v = €3)
Thus, by (4.1) X can be parametrized as W(s, t) = (a1(s), t, a3(s)).
So, (4.2) can be written as
Ka(s) = a4(s) + A= 0'(s) = cosO(s) + A\
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Classification of cylindrical A-solitons

Theorem 2 (Lépez, Bueno-Ortiz)

The base curve of a cylindrical A-soliton parametrized by
Y(s, t) = (aa(s), t,as(s)) has the following behavior:

Case A =
e Not embedded, not e Symmetric
closed. (x3-axis). e Symmetric
e Periodic (x;-axis), e Unique (x3-axis).
T=2n/v -1 self-intersection e Unique
point. self-intersection
e n, — (0,0,—1) as point.
|s| = oo. o g

%
(V1= 22,0, -)).

4. Classification of cylindrical A-solitons A-solitons 20 / 34



Classification of cylindrical A-solitons

Theorem 2 (L6pez, Bueno-Ortiz)

The explicit parametrizations of the base curves of a cilyndrical
A-soliton are:

o Case \ > 1:

a(s) = (7)\5 + 2arctan (1/ ;\‘J_ri tan(5 VA2 — 1)) , 0, log(\ — cos(sv/ A2 — 1))) .

o Case A =1:

a(s) = (75 + 2arctan(s), 0, log(1 + sz)) .

o Case A < 1:

a(s) = (—)\s + 2arctan (1/ }ii‘\ tanh($v/1 — Az)) , 0, log(—X + cosh(sv/'1 — Az)) .

4. Classification of cylindrical A-solitons A-solitons

21 /34
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Second variation of the area functional:
A"(0) = 7/ u(Du + |ARu)dE.
bX

e A CMC surface ¥ is strongly stable if A”(0) > 0,Vu € C§°(X) .

e A CMC surface ¥ is stable if A”(0) > 0,Vu € C§°(X) s.t.
J5 ud¥ =0.
Definition (Stability in A-solitons)
Second variation of the weighted area functional:

Aﬁ;(O):—/Zu(Aqu(Vu, v) + |APu)dZ .

e A \-soliton T is strongly stable if A}(0) > 0,Vu € C5°(X) .
e A A-soliton ¥ is stable if A3(0) > 0,Vu € C§°(X) s.t.
f): Ud2¢ =0.
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Stability of A-solitons
Definition (Stability operator for A-solitons)

The stability operator for \-solitons is defined as a second order
operator on C§°(X) given by

Jyu=Au+ (Vu,v) +|APu.
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o Jy is self-adjoint w.r.t. the weighted inner product [ uvd¥,.
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operator on C§°(X) given by

Jyu = Au+ (Vu,v) + |APu.

o Jy is self-adjoint w.r.t. the weighted inner product [ uvd¥,.

e Then, a quadratic form Q4 can be defined as follows

Qs(u) = 7/ udyud¥y = /(\VUF — |APu?)d L.
X x
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Stability of A-solitons
Definition (Stability operator for \-solitons)

The stability operator for \-solitons is defined as a second order
operator on C§°(X) given by

Jyu = Au+ (Vu,v) + |APu.

Jy is self-adjoint w.r.t. the weighted inner product [ uvd¥,.

Then, a quadratic form Q4 can be defined as follows

Qs(u) = 7/ udyud¥y = /(\VUF — |APu?)d L.
X x

A X-soliton X is strongly stable if Q,(u) > 0,Vu € C5°(X).
A A-soliton ¥ is stable if Qg(u) > 0,Vu € CGg°(X) s.t. [; ud¥Xy =0.
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Stability of A-solitons
Definition (Stability operator for \-solitons)

The stability operator for \-solitons is defined as a second order
operator on C§°(X) given by

Jyu = Au+ (Vu,v) + |APu.

Jy is self-adjoint w.r.t. the weighted inner product [ uvd¥,.

Then, a quadratic form Q4 can be defined as follows

Qs(u) = 7/ udyud¥y = /(\VUF — |APu?)d L.
X x

e A X-soliton X is strongly stable if Qg(u) > 0,Vu € C§°(X).
o A X-soliton ¥ is stable if Qg(u) > 0,Vu € Gg°(X) s.t. [; ud¥y =0.

Example

Planes are strongly stable since |A| = 0.
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First stability results of A-solitons

Theorem 3 (Bueno, Lépez, Ortiz)
Let ¥ be a graphical A-soliton. Then ¥ is strongly stable.
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First stability results of A-solitons

Theorem 3 (Bueno, Lépez, Ortiz)
Let X be a graphical A-soliton. Then X is strongly stable.

Theorem 4 (Bueno, Lépez, Ortiz)

Let X be a compact A-soliton which is a graph over Q C {x3 = 0}.
Then X is a minimizer for A, in the class of all surfaces in Q x R
with the same boundary and same weighted volume.
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First stability results of A-solitons

Theorem 3 (Bueno, Lépez, Ortiz)
Let X be a graphical A-soliton. Then X is strongly stable.

Theorem 4 (Bueno, Lépez, Ortiz)

Let X be a compact A-soliton which is a graph over Q C {x3 = 0}.
Then X is a minimizer for A, in the class of all surfaces in Q x R
with the same boundary and same weighted volume.

e In the particular case A = 0 we can drop the assumption on
the constancy of the weighted volume.

5. Stability results of A-solitons. Plateau-Rayleigh phenomenon A-solitons 25 / 34



Plateau-Rayleigh instability phenomenon

0

5
~

e In 1873, Plateau observed that a stream of water dropping vertically
was divided into smaller packets with the same volume but less
surface area.
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surface area.
e Later, Rayleigh proved that a stream of radius r breaks into drops
when its length L > 27r.
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e In 1873, Plateau observed that a stream of water dropping vertically
was divided into smaller packets with the same volume but less
surface area.

e Later, Rayleigh proved that a stream of radius r breaks into drops
when its length L > 27r.

e This fact can be explained by the theory of CMC surfaces:

A CMC cylinder C! with length L and radius r is stable <
L <27mr.
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Plateau-Rayleigh instability phenomenon

~

e In 1873, Plateau observed that a stream of water dropping vertically
was divided into smaller packets with the same volume but less
surface area.

e Later, Rayleigh proved that a stream of radius r breaks into drops
when its length L > 27r.

e This fact can be explained by the theory of CMC surfaces:

A CMC cylinder C! with length L and radius r is stable <
L <27mr.

e It is known as Plateau-Rayleigh instability phenomenon.
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Plateau-Rayleigh instability for A-solitons

Our purpose: to study the Plateau-Rayleigh instability for
A-solitons.
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A-solitons.

e Let ¥ be a cylindrical A-soliton parametrized by

\U(S’ t) = (al(s)a t7a3(5))7 V=263, a=e€.

5. Stability results of A-solitons. Plateau-Rayleigh phenomenon A-solitons 27 / 34



Plateau-Rayleigh instability for A-solitons

Our purpose: to study the Plateau-Rayleigh instability for
A-solitons.

e Let ¥ be a cylindrical A-soliton parametrized by

\U(S’ t) = (al(s)a t7a3(5))7 V=263, a=e€.

e Fix an interval [a, b] in the domain of a.

5. Stability results of A-solitons. Plateau-Rayleigh phenomenon A-solitons 27 / 34



Plateau-Rayleigh instability for A-solitons

Our purpose: to study the Plateau-Rayleigh instability for
A-solitons.

e Let ¥ be a cylindrical A-soliton parametrized by

\U(S’ t) = (al(s)a t7a3(5))7 V=263, a=e€.

e Fix an interval [a, b] in the domain of a.

e Since ¥ is invariant along the a-direction, we take a compact piece
>* of length L > 0 in the t-parameter,

T =% (a b, L) = W([a, b] x [0, L]).
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e Since ¥ is invariant along the a-direction, we take a compact piece
>* of length L > 0 in the t-parameter,
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e Motivated by the Plateau-Rayleigh instability phenomenon, we
answer the following question:
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Plateau-Rayleigh instability for A-solitons

Our purpose: to study the Plateau-Rayleigh instability for
A-solitons.

e Let ¥ be a cylindrical A-soliton parametrized by

\U(S’ t) = (011(5), t7a3(5))7 V=263, a=e€.

e Fix an interval [a, b] in the domain of a.

e Since ¥ is invariant along the a-direction, we take a compact piece
>* of length L > 0 in the t-parameter,

T =% (a b, L) = W([a, b] x [0, L]).

e Motivated by the Plateau-Rayleigh instability phenomenon, we
answer the following question:

Given [a, b] C |, does there exist Ly > 0 s.t. ¥* is unstable for
any L > Ly?
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Plateau-Rayleigh instability result for A-solitons

e We analyze the Plateau-Rayleigh instability depending on the value
of x A>1, A=1land A< 1.
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Plateau-Rayleigh instability result for A-solitons

e We analyze the Plateau-Rayleigh instability depending on the value
of x A>1, A=1land A< 1.

e Note that for A = 0, « corresponds to the grim reaper, then the
surface is a graph on v’ and strongly stable by Theorem 3.
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Plateau-Rayleigh instability result for A-solitons

e We analyze the Plateau-Rayleigh instability depending on the value
of x A>1, A=1land A< 1.

e Note that for A = 0, « corresponds to the grim reaper, then the
surface is a graph on v’ and strongly stable by Theorem 3.

Theorem 5 (Bueno, Lépez, Ortiz)

Let X be a cylindrical translating A-soliton.

5. Stability results of A-solitons. Plateau-Rayleigh phenomenon A-solitons 28 / 34



Plateau-Rayleigh instability result for A-solitons

e We analyze the Plateau-Rayleigh instability depending on the value
of x A>1, A=1land A< 1.

e Note that for A = 0, « corresponds to the grim reaper, then the
surface is a graph on v’ and strongly stable by Theorem 3.

Theorem 5 (Bueno, Lépez, Ortiz)

Let X be a cylindrical translating A-soliton.
1. Case A > 1. Let be s = T/2, where T denotes the period of a.
Then, X* = X(—sp + 0,5 + 0, L) with o € [0, 5] is unstable if
47

V3V —I(\ + cos(0v 1))

L> Ly =
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Plateau-Rayleigh instability result for A-solitons

e We analyze the Plateau-Rayleigh instability depending on the value
of x A>1, A=1land A< 1.

e Note that for A = 0, « corresponds to the grim reaper, then the
surface is a graph on v’ and strongly stable by Theorem 3.

Theorem 5 (Bueno, Lépez, Ortiz)

Let X be a cylindrical translating A-soliton.

1. Case A > 1. Let be s = T/2, where T denotes the period of a.
Then, X* = X(—sp + 0,5 + 0, L) with o € [0, 5] is unstable if

4T
L> Ly = .
V/3VAZ—I(A + cos(ov/ 32 — 1))
2. Case A =1. X* =¥(—0,0,L) with 0 > sp ~ 1.0213 is unstable if

=i/
L > Lo = 8rc°/? (15( 3 + 90 — (9 + 602 — 304) tanl(a)))
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Plateau-Rayleigh instability result for A-solitons

e We analyze the Plateau-Rayleigh instability depending on the value
of x A>1, A=1land A< 1.

e Note that for A = 0, « corresponds to the grim reaper, then the
surface is a graph on v’ and strongly stable by Theorem 3.

Theorem 5 (Bueno, Lépez, Ortiz)

Let X be a cylindrical translating A-soliton.

1. Case A > 1. Let be s = T/2, where T denotes the period of a.
Then, X* = X(—sp + 0,5 + 0, L) with o € [0, 5] is unstable if

4T
L> Ly = .
V/3VAZ—I(A + cos(ov/ 32 — 1))
2. Case A =1. X* =¥(—0,0,L) with 0 > sp ~ 1.0213 is unstable if

=i/
L > Lo = 8rc°/? (15( 3 + 90 — (9 + 602 — 304) tanl(a)))

3. Case A\ < 1. We have numerical evidences of instability.
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Plateau-Rayleigh instability result for A-solitons
Proof.

e To get the results, we must find a test function v € C§°(X*)
s.t.

*

Qs(u) <0, u=0at OL" / ud¥ 4 =0,

where 9T* = (a([a, b]) x {0, L}) U ({a(a), a(b)} x [0, L]).
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s.t.

*

Qs(u) <0, u=0at OL" / ud¥ 4 =0,

where 95* = (a([a, b]) x {0, L}) U ({a(a), a(b)} x [0, L]).
o We consider u(s, t) = f(s)g(t) = f(s)sin (2), satisfying:
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o We consider u(s, t) = f(s)g(t) = f(s)sin (2), satisfying:
> f(a)=f(b) =0, g(0) = g(L) =0.
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Plateau-Rayleigh instability result for A-solitons
Proof.

e To get the results, we must find a test function v € C§°(X*)
s.t.

Qs(u) <0, u=0at OL" / ud¥ 4 =0,
( a(b)} x [0, 1]).
e We consider u(s, t) = f(s)g(t) = f(s)sin (*{), satisfying:
0.

> f(a)=f(b) =0, g(0) =g(L) =
> [r. udTy = [ f(s)e*ds [ g(t)d

where 9T* = (a([a, b]) x {0, L}) U ({a(a),
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Plateau-Rayleigh instability result for A-solitons
Proof.

e To get the results, we must find a test function v € C§°(X*)
s.t.
Qs(u) <0, u=0at OL" / ud¥ 4 =0,

{a(a), a(b)} < [0, L]).

( (
e We consider u(s, ) = f(s)g(t) = f(s)sin (&), satisfying:
> f(a) =f(b) =0, g(0) = g(L) =0.
> [o.udEy = 7 f(s) *3(9)ds [ g(t)dt = 0.
> Qy(u) = éfb (f’2 ((al +A)? — L—zz) f2) e*3(5)ds, since

where 9T* = (a([a, b]) x {0, L}) U
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Plateau-Rayleigh instability result for A-solitons
Proof.

e To get the results, we must find a test function v € C§°(X*)
s.t.
Qs(u) <0, u=0at OL" / ud¥ 4 =0,

{a(a), a(b)} < [0, L]).

( (
o We consider u(s, t) = f(s)g(t) = f(s)sin (2), satisfying:
> f(a) = f(b) =0, ( ) =g(L) =0.
> [i. udEy = [P f(s)e*(ds [ g(t)dt = 0.
> Qy(u) = éfb (f’2 ((a +A)? — 2) f2) e*3(5)ds, since

> (Vu,v) =f'g'as
> Au=f"g'+fg"”, and
> K=0.

where 9T* = (a([a, b]) x {0, L}) U

e How to define f(s)?
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Plateau-Rayleigh instability result for A-solitons
Proof.
Case A >1

e «is periodic with T =27/V/A2—1, s = T/2.
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Plateau-Rayleigh instability result for A-solitons
Proof.
Case A >1

e «is periodic with T =27/v/A2 -1, 5o = T/2.
o af[—so+ 0,5+ 0]), o € [0, 0], generates a fundamental piece:
([0, 250]) a([=s0, s0])
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o af[—so+ 0,5+ 0]), o € [0, 0], generates a fundamental piece:
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Plateau-Rayleigh instability result for A-solitons
Proof.
Case A >1

e «is periodic with T =27/V/A2—1, s = T/2.

a([—so + 0,5 + 0]), o € [0, o], generates a fundamental piece:
([0, 250]) a([=s0, s0])

CD

e We define f(s) = sin (%s +Z(1- %)) e—a3(s)/2
e Then,
Qu(u) = g (167 — 32V = 1(A + cos(ov 2 = 1)) ).
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Plateau-Rayleigh instability result for A-solitons
Proof.
Case A >1

e «is periodic with T =27/v/A2 -1, 5o = T/2.
a([—so + 0,5 + 0]), o € [0, o], generates a fundamental piece:
a([0, 2s0]) a([—so, s0])

We define f(s) = sin (ﬁs +Z(1- %)) e—3(s)/2.
e Then,
Qu(u) = I = (167r2 — 312/ 1\ + cos(m/ﬁ))) )

e Equaling to 0 the above parenthesis we get the expected result.
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Plateau-Rayleigh instability result for A-solitons
Proof.
Case A =1

e «is a graph in (—1,1) and its projection on the x;-axis is
(1-75,-1+4+7%). Thus, for any sp < 1, X(sp; L) is stable.
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Plateau-Rayleigh instability result for A-solitons
Proof.
Case A =1

e «is a graph in (—1,1) and its projection on the x;-axis is
(1-75,-1+4+7%). Thus, for any sp < 1, X(sp; L) is stable.

e Consequently, we study the instability of symmetric compact pieces
of a(s) for s € [—sp, S0, 5o > 1.
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Plateau-Rayleigh instability result for A-solitons
Proof.
Case A =1
e «is a graph in (—1,1) and its projection on the x;-axis is
(1-75,-1+4+7%). Thus, for any sp < 1, X(sp; L) is stable.

e Consequently, we study the instability of symmetric compact pieces
of a(s) for s € [—sp, S0, 5o > 1.

o We define f(s) = (s — sg)e—as(S)/?
Case A <1

e We give a numerical analysis with f(s) = cos (%) e 3(5)/2,
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Plateau-Rayleigh instability result for A-solitons

e Now, we can obtain similar results for the problem of strong stability.
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Plateau-Rayleigh instability result for A-solitons

e Now, we can obtain similar results for the problem of strong stability.

e It is expectable that for strong stability the length of ¥ reduces
compared to the stable case.
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Plateau-Rayleigh instability result for A-solitons

e Now, we can obtain similar results for the problem of strong stability.

e It is expectable that for strong stability the length of ¥ reduces
compared to the stable case.

e In this case, we remove the assumption fz ud¥4 =0, and consider
g(t) =sin(wt/L).
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Plateau-Rayleigh instability result for A-solitons

e Now, we can obtain similar results for the problem of strong stability.

e It is expectable that for strong stability the length of ¥ reduces
compared to the stable case.

e In this case, we remove the assumption fz ud¥4 =0, and consider
g(t) =sin(wt/L).

Corollary 6 (Bueno, Lépez, Ortiz)
Let > be a A-soliton. Then, for any case of A\, X* is strongly stable if
L> Lo/2.

where L is the corresponding bound of Theorem 5 depending on the
value of \.
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Thank you very much
for your attention!
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