Invariant λ -solitons

Irene Ortiz Sánchez (Centro Universitario de la Defensa de San Javier) Joint work with Antonio Bueno and Rafael López

Differential Geometry Workshop 2023

September 06-09 2023 University of lasi

ALEXANDRU IOAN CUZA UNIVERSITY of IAŞI

8th September, 2023 Supported by Fundación Séneca, REF. 21899/PI/22

Summary

- 1. Introduction
- 2. Characterizations of λ -solitons
- 3. Classification of rotational λ -solitons
- 4. Classification of cylindrical λ -solitons
- 5. Stability results of $\lambda\text{-solitons.}$ Plateau-Rayleigh phenomenon

Summary

1. Introduction

- 2. Characterizations of λ -solitons
- 3. Classification of rotational λ -solitons
- 4. Classification of cylindrical λ -solitons
- 5. Stability results of λ -solitons. Plateau-Rayleigh phenomenon

- Throughout this work, we consider Σ an orientable surface immersed into $\mathbb{R}^3.$

- Throughout this work, we consider Σ an orientable surface immersed into $\mathbb{R}^3.$
- The function $N:\Sigma \to \mathbb{S}^2$ stands for the Gauss map of the surface.

- Throughout this work, we consider Σ an orientable surface immersed into $\mathbb{R}^3.$
- The function $N:\Sigma \to \mathbb{S}^2$ stands for the Gauss map of the surface.
- The principal curvatures of Σ are denoted by κ_1 and κ_2 .

- Throughout this work, we consider Σ an orientable surface immersed into $\mathbb{R}^3.$
- The function $N:\Sigma \to \mathbb{S}^2$ stands for the Gauss map of the surface.
- The principal curvatures of Σ are denoted by κ_1 and κ_2 .
- The mean and Gaussian curvature of $\boldsymbol{\Sigma},$ are defined, respectively, by

$$H(p) = \kappa_1(p) + \kappa_2(p), \ K(p) = \kappa_1(p)\kappa_2(p), \ p \in \Sigma.$$

- Throughout this work, we consider Σ an orientable surface immersed into $\mathbb{R}^3.$
- The function $N:\Sigma \to \mathbb{S}^2$ stands for the Gauss map of the surface.
- The principal curvatures of Σ are denoted by κ_1 and κ_2 .
- The mean and Gaussian curvature of $\boldsymbol{\Sigma},$ are defined, respectively, by

$$H(p) = \kappa_1(p) + \kappa_2(p), \ K(p) = \kappa_1(p)\kappa_2(p), \ p \in \Sigma.$$

• The shape operator of Σ is denoted by A and it is satisfied that

$$|A|^2 = \kappa_1^2 + \kappa_2^2 = H^2 - 2K.$$

Definition (Translating λ -soliton)

Let $v \in \mathbb{R}^3$, |v| = 1, called the *density vector*. An oriented surface Σ in \mathbb{R}^3 is a *translating* λ -soliton with respect to v if

$$H_{\Sigma}(p) = \langle N_{p}, v \rangle + \lambda \quad \forall p \in \Sigma.$$
(1.1)

Definition (Translating λ -soliton)

Let $v \in \mathbb{R}^3$, |v| = 1, called the *density vector*. An oriented surface Σ in \mathbb{R}^3 is a *translating* λ -soliton with respect to v if

$$H_{\Sigma}(p) = \langle N_{p}, v \rangle + \lambda \quad \forall p \in \Sigma.$$
(1.1)

Observe that:

1. On the one hand, they are a particular case of prescribed mean curvature (PMC) surfaces.

 $H_{\Sigma}(p) = \mathcal{H}(N_p) \ \forall p \in \Sigma \text{ for a given } \mathcal{H} \in C^1(\mathbb{S}^2).$

In this case, $\mathcal{H}(N_p) = \langle N_p, v \rangle + \lambda$.

Definition (Translating λ -soliton)

Let $v \in \mathbb{R}^3$, |v| = 1, called the *density vector*. An oriented surface Σ in \mathbb{R}^3 is a *translating* λ -*soliton* with respect to v if

$$H_{\Sigma}(p) = \langle N_{p}, v \rangle + \lambda \quad \forall p \in \Sigma.$$
(1.1)

Observe that:

1. On the one hand, they are a particular case of prescribed mean curvature (PMC) surfaces.

 $H_{\Sigma}(p) = \mathcal{H}(N_p) \ \forall p \in \Sigma \text{ for a given } \mathcal{H} \in C^1(\mathbb{S}^2).$

In this case, $\mathcal{H}(N_p) = \langle N_p, v \rangle + \lambda$.

2. On the other hand, if $\lambda = 0$ they generalize self-translating solitons of the mean curvature flow.

Definition (Translating λ -soliton)

Let $v \in \mathbb{R}^3$, |v| = 1, called the *density vector*. An oriented surface Σ in \mathbb{R}^3 is a *translating* λ -*soliton* with respect to v if

$$H_{\Sigma}(p) = \langle N_{p}, v \rangle + \lambda \quad \forall p \in \Sigma.$$
(1.1)

Observe that:

1. On the one hand, they are a particular case of prescribed mean curvature (PMC) surfaces.

 $H_{\Sigma}(p) = \mathcal{H}(N_p) \ \forall p \in \Sigma \text{ for a given } \mathcal{H} \in C^1(\mathbb{S}^2).$

In this case, $\mathcal{H}(N_p) = \langle N_p, v \rangle + \lambda$.

- 2. On the other hand, if $\lambda = 0$ they generalize self-translating solitons of the mean curvature flow.
- 3. Moreover, they are closely related to CMC surfaces.

Consequently, to obtain results for translating $\lambda\text{-solitons}$ we take into account:

1. Results of PMC surfaces:

Consequently, to obtain results for translating $\lambda\text{-solitons}$ we take into account:

1. Results of PMC surfaces:

• Motivation: Minkowski's problem. $K(p) = \mathcal{K}(N(p))$.

- 1. Results of PMC surfaces:
 - Motivation: Minkowski's problem. $K(p) = \mathcal{K}(N(p))$.
 - Existence and uniqueness of PMC spheres: Alexandrov, Pogorelov, Hartman, Witner, B. Guan, P. Guan, Gálvez, Mira.

- 1. Results of PMC surfaces:
 - Motivation: Minkowski's problem. $K(p) = \mathcal{K}(N(p))$.
 - Existence and uniqueness of PMC spheres: Alexandrov, Pogorelov, Hartman, Witner, B. Guan, P. Guan, Gálvez, Mira.
 - Other problems of PMC surfaces: properly embedded; rotational; half-space theorems; Björling problem, other ambient spaces.

- 1. Results of PMC surfaces:
 - Motivation: Minkowski's problem. $K(p) = \mathcal{K}(N(p))$.
 - Existence and uniqueness of PMC spheres: Alexandrov, Pogorelov, Hartman, Witner, B. Guan, P. Guan, Gálvez, Mira.
 - Other problems of PMC surfaces: properly embedded; rotational; half-space theorems; Björling problem, other ambient spaces.
 - Related problems studied by the authors: prescribed Gaussian curvature and predetermined linear Weingarten curvature, ...

- 1. Results of PMC surfaces:
 - Motivation: Minkowski's problem. $K(p) = \mathcal{K}(N(p))$.
 - Existence and uniqueness of PMC spheres: Alexandrov, Pogorelov, Hartman, Witner, B. Guan, P. Guan, Gálvez, Mira.
 - Other problems of PMC surfaces: properly embedded; rotational; half-space theorems; Björling problem, other ambient spaces.
 - Related problems studied by the authors: prescribed Gaussian curvature and predetermined linear Weingarten curvature, ...
 - A. Bueno, I. Ortiz, Invariant hypersurfaces with linear prescribed mean curvature, J. Math. Anal. Appl. 487 (2020).

Consequently, to obtain results for translating $\lambda\text{-solitons}$ we take into account:

2. Results of self-translating solitons of the mean curvature flow:

- 2. Results of self-translating solitons of the mean curvature flow:
 - Widely studied during the last decades: Hoffman, Huisken, Ilmanen, F. Martín, Spruck, White, Xiao.

- 2. Results of self-translating solitons of the mean curvature flow:
 - Widely studied during the last decades: Hoffman, Huisken, Ilmanen, F. Martín, Spruck, White, Xiao.
 - They are minimal surfaces in $(\mathbb{R}^3, e^{2x_3}\langle \cdot, \cdot \rangle)$. In particular, the tangency principle is satisfied.

- 2. Results of self-translating solitons of the mean curvature flow:
 - Widely studied during the last decades: Hoffman, Huisken, Ilmanen, F. Martín, Spruck, White, Xiao.
 - ► They are minimal surfaces in (R³, e^{2x₃} (·, ·)). In particular, the tangency principle is satisfied.
 - Cylindrical solitons and rotationals. Non orientable examples.

Consequently, to obtain results for translating $\lambda\text{-solitons}$ we take into account:

3. Analogy with CMC: solutions of a variational problem.

Consequently, to obtain results for translating $\lambda\text{-solitons}$ we take into account:

3. Analogy with CMC: solutions of a variational problem.

Remind that if Σ is a surface and $u \in C_0^{\infty}(\Sigma)$, u = 0 in $\partial \Sigma$, a normal variation of compact support is defined by

 $\psi(p,t) = p + tu(p)N(p), \quad |t| < \epsilon, \quad \Sigma_t = \{\psi(p,t) \colon p \in \Sigma\}.$

Consequently, to obtain results for translating $\lambda\text{-solitons}$ we take into account:

3. Analogy with CMC: solutions of a variational problem.

Remind that if Σ is a surface and $u \in C_0^{\infty}(\Sigma)$, u = 0 in $\partial \Sigma$, a normal variation of compact support is defined by

 $\psi(p,t) = p + tu(p)N(p), \quad |t| < \epsilon, \quad \Sigma_t = \{\psi(p,t) \colon p \in \Sigma\}.$

CMC surfaces

• Area and volume functionals:

$$\mathcal{A}(t) = \int_{\Sigma} d\Sigma_t, \quad \mathcal{V}(t) = \int_{[0,t] imes \Sigma} |\mathrm{Jac} \psi| dV.$$

Consequently, to obtain results for translating $\lambda\mbox{-solitons}$ we take into account:

3. Analogy with CMC: solutions of a variational problem.

Remind that if Σ is a surface and $u \in C_0^{\infty}(\Sigma)$, u = 0 in $\partial \Sigma$, a normal variation of compact support is defined by

 $\psi(p,t) = p + tu(p)N(p), \quad |t| < \epsilon, \quad \Sigma_t = \{\psi(p,t) \colon p \in \Sigma\}.$

CMC surfaces

• Area and volume functionals:

$$\mathcal{A}(t) = \int_{\Sigma} d\Sigma_t, \quad \mathcal{V}(t) = \int_{[0,t] imes \Sigma} |\mathrm{Jac} \psi| dV.$$

• First variation of the area and volume functionals:

$$\mathcal{A}'(0) = -\int_{\Sigma} u H d\Sigma, \quad \mathcal{V}'(0) = \int_{\Sigma} u d\Sigma.$$

Consequently, to obtain results for translating $\lambda\text{-solitons}$ we take into account:

3. Analogy with CMC: solutions of a variational problem.

Remind that if Σ is a surface and $u \in C_0^{\infty}(\Sigma)$, u = 0 in $\partial \Sigma$, a normal variation of compact support is defined by

 $\psi(p,t) = p + tu(p)N(p), \quad |t| < \epsilon, \quad \Sigma_t = \{\psi(p,t) \colon p \in \Sigma\}.$

CMC surfaces

• Area and volume functionals:

$$\mathcal{A}(t) = \int_{\Sigma} d\Sigma_t, \quad \mathcal{V}(t) = \int_{[0,t] imes \Sigma} |\mathrm{Jac} \psi| dV.$$

• First variation of the area and volume functionals:

$$\mathcal{A}'(0) = -\int_{\Sigma} u H d\Sigma, \quad \mathcal{V}'(0) = \int_{\Sigma} u d\Sigma.$$

Critical points of the area functional: minimal surfaces and CMC surfaces preserving the enclosed volume (i.e. ∫_Σ udΣ = 0).

Consequently, to obtain results for translating $\lambda\text{-solitons}$ we take into account:

3. Analogy with CMC: solutions of a variational problem.

Translating λ -solitons

Consequently, to obtain results for translating $\lambda\text{-solitons}$ we take into account:

3. Analogy with CMC: solutions of a variational problem.

Translating λ -solitons

• Given $\phi \in C^{\infty}(\mathbb{R}^3)$, we define $d\Sigma_{\phi} = e^{\phi}d\Sigma$ and $dV_{\phi} = e^{\phi}dV$.

Consequently, to obtain results for translating $\lambda\text{-solitons}$ we take into account:

3. Analogy with CMC: solutions of a variational problem.

Translating λ -solitons

- Given $\phi \in C^{\infty}(\mathbb{R}^3)$, we define $d\Sigma_{\phi} = e^{\phi}d\Sigma$ and $dV_{\phi} = e^{\phi}dV$.
- Weighted area and volume functionals, \mathcal{A}_{ϕ} and \mathcal{V}_{ϕ} , are defined.

Consequently, to obtain results for translating $\lambda\mbox{-solitons}$ we take into account:

3. Analogy with CMC: solutions of a variational problem.

Translating λ -solitons

- Given $\phi \in C^{\infty}(\mathbb{R}^3)$, we define $d\Sigma_{\phi} = e^{\phi}d\Sigma$ and $dV_{\phi} = e^{\phi}dV$.
- Weighted area and volume functionals, \mathcal{A}_{ϕ} and \mathcal{V}_{ϕ} , are defined.
- First variation of the weighted area and volume functionals:

$$egin{aligned} \mathcal{A}_{\phi}'(0) &= -\int_{\Sigma} u(\mathcal{H}-\langle \mathcal{N}, \mathcal{D}\phi
angle) d\Sigma_{\phi} = -\int_{\Sigma} u\mathcal{H}_{\phi}d\Sigma_{\phi}, \ \mathcal{V}_{\phi}'(0) &= -\int_{\Sigma} ud\Sigma_{\phi}. \end{aligned}$$

Consequently, to obtain results for translating $\lambda\mbox{-solitons}$ we take into account:

3. Analogy with CMC: solutions of a variational problem.

Translating λ -solitons

- Given $\phi \in C^{\infty}(\mathbb{R}^3)$, we define $d\Sigma_{\phi} = e^{\phi}d\Sigma$ and $dV_{\phi} = e^{\phi}dV$.
- Weighted area and volume functionals, \mathcal{A}_{ϕ} and \mathcal{V}_{ϕ} , are defined.
- First variation of the weighted area and volume functionals:

$$egin{aligned} \mathcal{A}_{\phi}'(0) &= -\int_{\Sigma}u(\mathcal{H}-\langle N,D\phi
angle)d\Sigma_{\phi} = -\int_{\Sigma}u\mathcal{H}_{\phi}d\Sigma_{\phi}, \ \mathcal{V}_{\phi}'(0) &= -\int_{\Sigma}ud\Sigma_{\phi}. \end{aligned}$$

• Critical points of the weighted area functional: surfaces with $H_{\phi} = 0$ and surfaces with $H_{\phi} = \lambda$ under variations preserving the enclosed weighted volume (i.e. $\int_{\Sigma} u d\Sigma_{\phi} = 0$).

Summary

1. Introduction

2. Characterizations of λ -solitons

3. Classification of rotational λ -solitons

4. Classification of cylindrical λ -solitons

5. Stability results of λ -solitons. Plateau-Rayleigh phenomenon
First characterization of λ -solitons

 $\lambda\text{-solitons}\leftrightarrow\text{theory}$ of manifolds with density.

First characterization of λ -solitons

 $\lambda\text{-solitons} \leftrightarrow \text{theory of manifolds with density.}$

Definition (Weighted mean curvature)

The *weighted mean curvature* H_{ϕ} of an oriented surface Σ in \mathbb{R}^3 with respect to the density $e^{\phi} \in C^{\infty}(\mathbb{R}^3)$ is defined by

$$H_{\phi} := H_{\Sigma} - \langle N, D\phi \rangle,$$

where D is the gradient operator in \mathbb{R}^3 .

First characterization of λ -solitons

 $\lambda\text{-solitons} \leftrightarrow \text{theory}$ of manifolds with density.

Definition (Weighted mean curvature)

The *weighted mean curvature* H_{ϕ} of an oriented surface Σ in \mathbb{R}^3 with respect to the density $e^{\phi} \in C^{\infty}(\mathbb{R}^3)$ is defined by

$$H_{\phi} := H_{\Sigma} - \langle N, D\phi \rangle,$$

where *D* is the gradient operator in \mathbb{R}^3 .

• If we consider
$$\phi_{m{v}}(x) = \langle x, m{v}
angle$$
,

 Σ is a λ -soliton $\iff H_{\phi_v} = \lambda$

• We have seen that λ -solitons appear as critical points of a variational problem.

• We have seen that λ -solitons appear as critical points of a variational problem.

Definition (Weighted area and weighted volume)

Let $\Omega \subset \mathbb{R}^3$ be a measurable set with $\Sigma = \partial \Omega$. Then, the *weighted area and volume* with respect to ϕ_v are

$$\mathcal{A}_{\phi_{v}}(\Sigma) := \int_{\Sigma} e^{\phi_{v}} d\Sigma, \quad \mathcal{V}_{\phi_{v}}(\Omega) := \int_{\Omega} e^{\phi_{v}} dV,$$

where $d\Sigma$ and dV are the usual area and volume elements in \mathbb{R}^3 .

• We have seen that λ -solitons appear as critical points of a variational problem.

Definition (Weighted area and weighted volume)

Let $\Omega \subset \mathbb{R}^3$ be a measurable set with $\Sigma = \partial \Omega$. Then, the *weighted area and volume* with respect to ϕ_v are

$$\mathcal{A}_{\phi_{v}}(\Sigma) := \int_{\Sigma} e^{\phi_{v}} d\Sigma, \quad \mathcal{V}_{\phi_{v}}(\Omega) := \int_{\Omega} e^{\phi_{v}} dV,$$

where $d\Sigma$ and dV are the usual area and volume elements in \mathbb{R}^3 .

•
$$\Sigma$$
 is a λ -soliton \iff
 $\mathcal{A}'_{\phi_{\nu}}(0) = 0 \ \forall u \in C_0^{\infty}(\Sigma) \text{ s.t. } \int_{\Sigma} ud\Sigma_{\phi} = 0 \iff$
 Σ is a critical point under c.s.v of $L_{\phi_{\nu}} := \mathcal{A}_{\phi_{\nu}} - \lambda \mathcal{V}_{\phi_{\nu}}$.

Third characterization of λ -solitons

• Consider $\psi: \Sigma \to \mathbb{R}^3$ a λ -soliton.

Third characterization of λ -solitons

• Consider $\psi: \Sigma \to \mathbb{R}^3$ a λ -soliton.

 Then, the family of translations of ψ in the v direction given by F(p, t) = ψ(p) + tv is the solution of the geometric flow

$$\left(\frac{\partial F}{\partial t}\right)^{\perp} = (H_{\Sigma} - \lambda)N,$$

which corresponds to the mean curvature flow with a constant forcing term.

Third characterization of λ -solitons

• Consider $\psi: \Sigma \to \mathbb{R}^3$ a λ -soliton.

 Then, the family of translations of ψ in the v direction given by F(p, t) = ψ(p) + tv is the solution of the geometric flow

$$\left(\frac{\partial F}{\partial t}\right)^{\perp} = (H_{\Sigma} - \lambda)N,$$

which corresponds to the mean curvature flow with a constant forcing term.

• Thus,

 Σ is a λ -soliton $\iff \Sigma$ is a self-translating soliton of the mean curvature flow with a constant forcing term.

Characterizations of $\lambda\text{-solitons}$

Summing up, we get the following result.

Characterizations of λ -solitons

Summing up, we get the following result.

Proposition

The following conditions are equivalent:

- 1. Σ is a λ -soliton.
- 2. Σ has constant weighted mean curvature $H_{\phi_v} = \lambda$ for the density $e^{\phi} \in C^{\infty}(\mathbb{R}^3)$, where $\phi_v(x) = \langle x, v \rangle$.
- 3. Σ is a critical point of \mathcal{A}_{ϕ_v} under compactly supported variations preserving the enclosed weighted volume.
- 4. Σ is a critical point under compactly supported variations of the functional $L_{\phi_{\nu}} := A_{\phi_{\nu}} \lambda \mathcal{V}_{\phi_{\nu}}$.
- 5. Σ is a self-translating soliton of the mean curvature flow with a constant forcing term.

Summary

- 1. Introduction
- 2. Characterizations of λ -solitons
- 3. Classification of rotational λ -solitons
- 4. Classification of cylindrical λ -solitons
- 5. Stability results of λ -solitons. Plateau-Rayleigh phenomenon

Classification of rotational λ -solitons

Theorem 1 (López, Bueno-Ortiz)

The rotational $\lambda\text{-solitons}$ are given by:

- Either a vertical cylinder of radius $r_{\lambda} = 1/\lambda$,
- or one of the resulting surfaces after rotate the following profile curves around the axis x₃.

Rotational $\lambda\text{-solitons}$ obtained rotating the profile curves

Rotational λ -solitons intersecting the rotation axis.

Rotational λ -solitons non-intersecting the rotation axis.

Summary

- 1. Introduction
- 2. Characterizations of λ -solitons
- 3. Classification of rotational λ -solitons
- 4. Classification of cylindrical λ -solitons
- 5. Stability results of λ -solitons. Plateau-Rayleigh phenomenon

Definition (Cylindrical surface)

A surface $\Sigma \subset \mathbb{R}^3$ is cylindrical if it can be parametrized by

$$\psi(s,t) = \alpha(s) + ta, \quad a \in \mathbb{R}^3, \ |a| = 1.$$
 (4.1)

where α is a curve, called the **base curve**, contained in a 2-dimensional plane Π orthogonal to the ruling direction *a*.

Definition (Cylindrical surface)

A surface $\Sigma \subset \mathbb{R}^3$ is cylindrical if it can be parametrized by

$$\psi(s,t) = \alpha(s) + ta, \quad a \in \mathbb{R}^3, \ |a| = 1.$$
(4.1)

where α is a curve, called the **base curve**, contained in a 2-dimensional plane Π orthogonal to the ruling direction *a*.

Observe that if Σ is a cylindrical λ -soliton:

Definition (Cylindrical surface)

A surface $\Sigma \subset \mathbb{R}^3$ is cylindrical if it can be parametrized by

$$\psi(\mathbf{s}, \mathbf{t}) = \alpha(\mathbf{s}) + \mathbf{t}\mathbf{a}, \quad \mathbf{a} \in \mathbb{R}^3, \ |\mathbf{a}| = 1.$$
 (4.1)

where α is a curve, called the **base curve**, contained in a 2-dimensional plane Π orthogonal to the ruling direction *a*.

Observe that if Σ is a cylindrical λ -soliton:

• The principal curvatures are 0 and κ_{α} and $N(\psi(s,t)) = n_{\alpha}(s)$.

Definition (Cylindrical surface)

A surface $\Sigma \subset \mathbb{R}^3$ is cylindrical if it can be parametrized by

$$\psi(s,t) = \alpha(s) + ta, \quad a \in \mathbb{R}^3, \ |a| = 1.$$
(4.1)

where α is a curve, called the **base curve**, contained in a 2-dimensional plane Π orthogonal to the ruling direction *a*.

Observe that if Σ is a cylindrical λ -soliton:

- The principal curvatures are 0 and κ_{α} and $N(\psi(s,t)) = n_{\alpha}(s)$.
- Then, from (1.1) we get the equation for cylindrical λ -solitons

$$\kappa_{\alpha}(s) = \langle n_{\alpha}(s), v \rangle + \lambda.$$
(4.2)

Definition (Cylindrical surface)

A surface $\Sigma \subset \mathbb{R}^3$ is cylindrical if it can be parametrized by

$$\psi(s,t) = \alpha(s) + ta, \quad a \in \mathbb{R}^3, \ |a| = 1.$$
(4.1)

where α is a curve, called the **base curve**, contained in a 2-dimensional plane Π orthogonal to the ruling direction *a*.

Observe that if Σ is a cylindrical $\lambda\text{-soliton}$:

- The principal curvatures are 0 and κ_{α} and $N(\psi(s,t)) = n_{\alpha}(s)$.
- Then, from (1.1) we get the equation for cylindrical λ -solitons

$$\kappa_{\alpha}(s) = \langle n_{\alpha}(s), v \rangle + \lambda.$$
(4.2)

• We assume that a and v are orthogonal and $\lambda \geq$ 0. $(a = e_2, v = e_3)$

Definition (Cylindrical surface)

A surface $\Sigma \subset \mathbb{R}^3$ is cylindrical if it can be parametrized by

$$\psi(s,t) = \alpha(s) + ta, \quad a \in \mathbb{R}^3, \ |a| = 1.$$
(4.1)

where α is a curve, called the **base curve**, contained in a 2-dimensional plane Π orthogonal to the ruling direction *a*.

Observe that if Σ is a cylindrical λ -soliton:

- The principal curvatures are 0 and κ_{α} and $N(\psi(s,t)) = n_{\alpha}(s)$.
- Then, from (1.1) we get the equation for cylindrical λ -solitons

$$\kappa_{\alpha}(s) = \langle n_{\alpha}(s), v \rangle + \lambda.$$
(4.2)

- We assume that a and v are orthogonal and $\lambda \geq$ 0. $(a = e_2, v = e_3)$
- Thus, by (4.1) Σ can be parametrized as $\Psi(s, t) = (\alpha_1(s), t, \alpha_3(s))$.

Definition (Cylindrical surface)

A surface $\Sigma \subset \mathbb{R}^3$ is cylindrical if it can be parametrized by

$$\psi(s,t) = \alpha(s) + ta, \quad a \in \mathbb{R}^3, \ |a| = 1.$$
 (4.1)

where α is a curve, called the **base curve**, contained in a 2-dimensional plane Π orthogonal to the ruling direction *a*.

Observe that if Σ is a cylindrical $\lambda\text{-soliton}$:

- The principal curvatures are 0 and κ_{α} and $N(\psi(s,t)) = n_{\alpha}(s)$.
- Then, from (1.1) we get the equation for cylindrical λ -solitons

$$\kappa_{\alpha}(s) = \langle n_{\alpha}(s), v \rangle + \lambda.$$
(4.2)

- We assume that a and v are orthogonal and $\lambda \geq 0$. $(a = e_2, v = e_3)$
- Thus, by (4.1) Σ can be parametrized as Ψ(s, t) = (α₁(s), t, α₃(s)).
- So, (4.2) can be written as

$$\kappa_{\alpha}(s) = \alpha'_1(s) + \lambda \Rightarrow \theta'(s) = \cos \theta(s) + \lambda.$$

Classification of cylindrical λ -solitons

Theorem 2 (López, Bueno-Ortiz)

The base curve of a cylindrical λ -soliton parametrized by $\Psi(s, t) = (\alpha_1(s), t, \alpha_3(s))$ has the following behavior:

- Not embedded, not closed.
- Periodic (x_1 -axis), $T = 2\pi/\sqrt{\lambda^2 - 1}$

- Symmetric (*x*₃-axis).
- Unique self-intersection point.
- $egin{array}{ll} n_lpha o (0,0,-1) \ {
 m as} \ |s| o \infty. \end{array}$

- Symmetric (*x*₃-axis).
- Unique self-intersection point.
- $n_{\alpha} \rightarrow (\pm \sqrt{1-\lambda^2}, 0, -\lambda).$

Classification of cylindrical λ -solitons

Theorem 2 (López, Bueno-Ortiz)

The explicit parametrizations of the base curves of a cilyndrical $\lambda\text{-soliton}$ are:

• Case $\lambda > 1$:

$$\alpha(s) = \left(-\lambda s + 2\arctan\left(\sqrt{\frac{\lambda+1}{\lambda-1}}\tan(\frac{s}{2}\sqrt{\lambda^2-1})\right), 0, \log(\lambda - \cos(s\sqrt{\lambda^2-1}))\right).$$

• Case
$$\lambda = 1$$
:
 $\alpha(s) = \left(-s + 2 \arctan(s), 0, \log(1 + s^2)\right).$

• Case $\lambda < 1$: $\alpha(s) = \left(-\lambda s + 2 \arctan\left(\sqrt{\frac{1+\lambda}{1-\lambda}} \tanh(\frac{s}{2}\sqrt{1-\lambda^2})\right), 0, \log(-\lambda + \cosh(s\sqrt{1-\lambda^2})\right).$

Summary

- 1. Introduction
- 2. Characterizations of λ -solitons
- 3. Classification of rotational λ -solitons
- 4. Classification of cylindrical λ -solitons
- 5. Stability results of $\lambda\text{-solitons.}$ Plateau-Rayleigh phenomenon

We define the stability for λ -solitons by **analogy with CMC surfaces**.

We define the stability for λ -solitons by **analogy with CMC surfaces**.

Definition (Stability in CMC surfaces)

Second variation of the area functional:

$$\mathcal{A}''(0) = -\int_{\Sigma} u(\Delta u + |\mathcal{A}|^2 u) d\Sigma.$$

We define the stability for λ -solitons by **analogy with CMC surfaces**.

Definition (Stability in CMC surfaces)

Second variation of the area functional:

$$\mathcal{A}''(0) = -\int_{\Sigma} u(\Delta u + |\mathcal{A}|^2 u) d\Sigma.$$

- A CMC surface Σ is strongly stable if $\mathcal{A}''(0) \ge 0, \forall u \in C_0^{\infty}(\Sigma)$.
- A CMC surface Σ is stable if $\mathcal{A}''(0) \ge 0, \forall u \in C_0^{\infty}(\Sigma)$ s.t. $\int_{\Sigma} u d\Sigma = 0.$

We define the stability for λ -solitons by **analogy with CMC surfaces**.

Definition (Stability in CMC surfaces)

Second variation of the area functional:

$$\mathcal{A}''(0) = -\int_{\Sigma} u(\Delta u + |\mathcal{A}|^2 u) d\Sigma.$$

- A CMC surface Σ is strongly stable if $\mathcal{A}''(0) \ge 0, \forall u \in C_0^{\infty}(\Sigma)$.
- A CMC surface Σ is stable if $\mathcal{A}''(0) \ge 0, \forall u \in C_0^{\infty}(\Sigma)$ s.t. $\int_{\Sigma} u d\Sigma = 0.$

Definition (Stability in λ -solitons)

Second variation of the weighted area functional:

$$\mathcal{A}_{\phi}^{\prime\prime}(0)=-\int_{\Sigma}u(\Delta u+\langle
abla u,v
angle+|\mathcal{A}|^{2}u)d\Sigma_{\phi}.$$

We define the stability for λ -solitons by **analogy with CMC surfaces**.

Definition (Stability in CMC surfaces)

Second variation of the area functional:

$$\mathcal{A}''(0) = -\int_{\Sigma} u(\Delta u + |\mathcal{A}|^2 u) d\Sigma.$$

- A CMC surface Σ is strongly stable if $\mathcal{A}''(0) \ge 0, \forall u \in C_0^{\infty}(\Sigma)$.
- A CMC surface Σ is stable if $\mathcal{A}''(0) \ge 0, \forall u \in C_0^{\infty}(\Sigma)$ s.t. $\int_{\Sigma} u d\Sigma = 0.$

Definition (Stability in λ -solitons)

Second variation of the weighted area functional:

$$\mathcal{A}_{\phi}^{\prime\prime}(0)=-\int_{\Sigma}u(\Delta u+\langle
abla u,v
angle+|\mathcal{A}|^{2}u)d\Sigma_{\phi}.$$

- A λ -soliton Σ is strongly stable if $\mathcal{A}_{\phi}''(0) \geq 0, \forall u \in C_0^{\infty}(\Sigma)$.
- A λ -soliton Σ is stable if $\mathcal{A}_{\phi}^{\prime\prime}(0) \geq 0, \forall u \in C_{0}^{\infty}(\Sigma)$ s.t. $\int_{\Sigma} u d\Sigma_{\phi} = 0.$

Definition (Stability operator for λ -solitons)

The *stability operator for* λ *-solitons* is defined as a second order operator on $C_0^{\infty}(\Sigma)$ given by

$$J_{\phi}u = \Delta u + \langle \nabla u, v \rangle + |A|^2 u.$$

Definition (Stability operator for λ -solitons)

The stability operator for λ -solitons is defined as a second order operator on $C_0^{\infty}(\Sigma)$ given by

$$J_{\phi}u = \Delta u + \langle \nabla u, v \rangle + |A|^2 u.$$

• J_{ϕ} is self-adjoint w.r.t. the weighted inner product $\int_{\Sigma} uvd\Sigma_{\phi}$.

Definition (Stability operator for λ -solitons)

The stability operator for λ -solitons is defined as a second order operator on $C_0^{\infty}(\Sigma)$ given by

$$J_{\phi}u = \Delta u + \langle \nabla u, v \rangle + |A|^2 u.$$

- J_{ϕ} is self-adjoint w.r.t. the weighted inner product $\int_{\Sigma} uvd\Sigma_{\phi}$.
- Then, a quadratic form Q_{ϕ} can be defined as follows

$$Q_{\phi}(u) = -\int_{\Sigma} u J_{\phi} u d\Sigma_{\phi} = \int_{\Sigma} (|\nabla u|^2 - |A|^2 u^2) d\Sigma_{\phi}.$$

Definition (Stability operator for λ -solitons)

The stability operator for λ -solitons is defined as a second order operator on $C_0^{\infty}(\Sigma)$ given by

$$J_{\phi}u = \Delta u + \langle \nabla u, v \rangle + |A|^2 u.$$

- J_{ϕ} is self-adjoint w.r.t. the weighted inner product $\int_{\Sigma} uvd\Sigma_{\phi}$.
- Then, a quadratic form Q_{ϕ} can be defined as follows

$$Q_{\phi}(u) = -\int_{\Sigma} u J_{\phi} u d\Sigma_{\phi} = \int_{\Sigma} (|
abla u|^2 - |A|^2 u^2) d\Sigma_{\phi}.$$

A λ-soliton Σ is strongly stable if Q_φ(u) ≥ 0, ∀u ∈ C₀[∞](Σ).

Definition (Stability operator for λ -solitons)

The stability operator for λ -solitons is defined as a second order operator on $C_0^{\infty}(\Sigma)$ given by

$$J_{\phi}u = \Delta u + \langle \nabla u, v \rangle + |A|^2 u.$$

- J_{ϕ} is self-adjoint w.r.t. the weighted inner product $\int_{\Sigma} uvd\Sigma_{\phi}$.
- Then, a quadratic form Q_{ϕ} can be defined as follows

$$Q_{\phi}(u) = -\int_{\Sigma} u J_{\phi} u d\Sigma_{\phi} = \int_{\Sigma} (|
abla u|^2 - |A|^2 u^2) d\Sigma_{\phi}.$$

- A λ-soliton Σ is strongly stable if Q_φ(u) ≥ 0, ∀u ∈ C₀[∞](Σ).
- A λ-soliton Σ is stable if Q_φ(u) ≥ 0, ∀u ∈ C₀[∞](Σ) s.t. ∫_Σ udΣ_φ = 0.
Stability of λ -solitons

Definition (Stability operator for λ -solitons)

The stability operator for λ -solitons is defined as a second order operator on $C_0^{\infty}(\Sigma)$ given by

$$J_{\phi}u = \Delta u + \langle \nabla u, v \rangle + |A|^2 u.$$

- J_{ϕ} is self-adjoint w.r.t. the weighted inner product $\int_{\Sigma} uvd\Sigma_{\phi}$.
- Then, a quadratic form Q_{ϕ} can be defined as follows

$$Q_{\phi}(u) = -\int_{\Sigma} u J_{\phi} u d\Sigma_{\phi} = \int_{\Sigma} (|
abla u|^2 - |A|^2 u^2) d\Sigma_{\phi}.$$

- A λ-soliton Σ is strongly stable if Q_φ(u) ≥ 0, ∀u ∈ C₀[∞](Σ).
- A λ-soliton Σ is stable if Q_φ(u) ≥ 0, ∀u ∈ C₀[∞](Σ) s.t. ∫_Σ udΣ_φ = 0.

Example

Planes are strongly stable since |A| = 0.

First stability results of λ -solitons

Theorem 3 (Bueno, López, Ortiz)

Let Σ be a graphical λ -soliton. Then Σ is strongly stable.

First stability results of λ -solitons

Theorem 3 (Bueno, López, Ortiz)

Let Σ be a graphical λ -soliton. Then Σ is strongly stable.

Theorem 4 (Bueno, López, Ortiz)

Let Σ be a compact λ -soliton which is a graph over $\Omega \subset \{x_3 = 0\}$. Then Σ is a minimizer for \mathcal{A}_{ϕ} in the class of all surfaces in $\Omega \times \mathbb{R}$ with the same boundary and same weighted volume. First stability results of λ -solitons

Theorem 3 (Bueno, López, Ortiz)

Let Σ be a graphical λ -soliton. Then Σ is strongly stable.

Theorem 4 (Bueno, López, Ortiz)

Let Σ be a compact λ -soliton which is a graph over $\Omega \subset \{x_3 = 0\}$. Then Σ is a minimizer for \mathcal{A}_{ϕ} in the class of all surfaces in $\Omega \times \mathbb{R}$ with the same boundary and same weighted volume.

• In the particular case $\lambda = 0$ we can drop the assumption on the constancy of the weighted volume.

• In 1873, Plateau observed that a stream of water dropping vertically was divided into smaller packets with the same volume but less surface area.

- In 1873, Plateau observed that a stream of water dropping vertically was divided into smaller packets with the same volume but less surface area.
- Later, Rayleigh proved that a stream of radius r breaks into drops when its length $L > 2\pi r$.

- In 1873, Plateau observed that a stream of water dropping vertically was divided into smaller packets with the same volume but less surface area.
- Later, Rayleigh proved that a stream of radius r breaks into drops when its length $L > 2\pi r$.
- This fact can be explained by the theory of CMC surfaces:

A CMC cylinder C_r^L with length L and radius r is stable \Leftrightarrow $L \leq 2\pi r$.

- In 1873, Plateau observed that a stream of water dropping vertically was divided into smaller packets with the same volume but less surface area.
- Later, Rayleigh proved that a stream of radius r breaks into drops when its length $L > 2\pi r$.
- This fact can be explained by the theory of CMC surfaces:

A CMC cylinder C_r^L with length L and radius r is stable \Leftrightarrow $L \leq 2\pi r$.

• It is known as Plateau-Rayleigh instability phenomenon.

Our purpose: to study the Plateau-Rayleigh instability for $\lambda\text{-solitons.}$

Our purpose: to study the Plateau-Rayleigh instability for $\lambda\text{-solitons.}$

Let Σ be a cylindrical λ-soliton parametrized by

$$\Psi(s,t) = (\alpha_1(s), t, \alpha_3(s)), v = e_3, a = e_2.$$

Our purpose: to study the Plateau-Rayleigh instability for λ -solitons.

• Let Σ be a cylindrical λ -soliton parametrized by

$$\Psi(s,t) = (\alpha_1(s), t, \alpha_3(s)), v = e_3, a = e_2.$$

• Fix an interval [a, b] in the domain of α .

Our purpose: to study the Plateau-Rayleigh instability for λ -solitons.

• Let Σ be a cylindrical λ -soliton parametrized by

$$\Psi(s,t) = (\alpha_1(s), t, \alpha_3(s)), v = e_3, a = e_2.$$

- Fix an interval [a, b] in the domain of α .
- Since Σ is invariant along the *a*-direction, we take a compact piece Σ^* of length L > 0 in the *t*-parameter,

$$\Sigma^* = \Sigma(a, b, L) = \Psi([a, b] \times [0, L]).$$

Our purpose: to study the Plateau-Rayleigh instability for λ -solitons.

• Let Σ be a cylindrical λ -soliton parametrized by

$$\Psi(s,t) = (\alpha_1(s), t, \alpha_3(s)), v = e_3, a = e_2.$$

- Fix an interval [a, b] in the domain of α .
- Since Σ is invariant along the *a*-direction, we take a compact piece Σ^* of length L > 0 in the *t*-parameter,

$$\Sigma^* = \Sigma(a, b, L) = \Psi([a, b] \times [0, L]).$$

• Motivated by the Plateau-Rayleigh instability phenomenon, we answer the following question:

Our purpose: to study the Plateau-Rayleigh instability for λ -solitons.

• Let Σ be a cylindrical λ -soliton parametrized by

$$\Psi(s,t) = (\alpha_1(s), t, \alpha_3(s)), v = e_3, a = e_2.$$

- Fix an interval [a, b] in the domain of α .
- Since Σ is invariant along the *a*-direction, we take a compact piece Σ^* of length L > 0 in the *t*-parameter,

$$\Sigma^* = \Sigma(a, b, L) = \Psi([a, b] \times [0, L]).$$

• Motivated by the Plateau-Rayleigh instability phenomenon, we answer the following question:

Given $[a, b] \subset I$, does there exist $L_0 > 0$ s.t. Σ^* is unstable for any $L > L_0$?

 We analyze the Plateau-Rayleigh instability depending on the value of λ: λ > 1, λ = 1 and λ < 1.

- We analyze the Plateau-Rayleigh instability depending on the value of λ : $\lambda > 1$, $\lambda = 1$ and $\lambda < 1$.
- Note that for λ = 0, α corresponds to the grim reaper, then the surface is a graph on v^T and strongly stable by Theorem 3.

- We analyze the Plateau-Rayleigh instability depending on the value of λ: λ > 1, λ = 1 and λ < 1.
- Note that for $\lambda = 0$, α corresponds to the grim reaper, then the surface is a graph on v^{T} and strongly stable by Theorem 3.

Theorem 5 (Bueno, López, Ortiz)

Let Σ be a cylindrical translating $\lambda\text{-soliton}.$

- We analyze the Plateau-Rayleigh instability depending on the value of λ: λ > 1, λ = 1 and λ < 1.
- Note that for $\lambda = 0$, α corresponds to the grim reaper, then the surface is a graph on v^{T} and strongly stable by Theorem 3.

Theorem 5 (Bueno, López, Ortiz)

Let Σ be a cylindrical translating λ -soliton.

1. Case $\lambda > 1$. Let be $s_0 = T/2$, where T denotes the period of α . Then, $\Sigma^* = \Sigma(-s_0 + \sigma, s_0 + \sigma, L)$ with $\sigma \in [0, s_0]$ is unstable if

$$L > L_0 = rac{4\pi}{\sqrt{3\sqrt{\lambda^2 - 1}(\lambda + \cos(\sigma\sqrt{\lambda^2 - 1}))}}.$$

- We analyze the Plateau-Rayleigh instability depending on the value of λ: λ > 1, λ = 1 and λ < 1.
- Note that for $\lambda = 0$, α corresponds to the grim reaper, then the surface is a graph on v^{T} and strongly stable by Theorem 3.

Theorem 5 (Bueno, López, Ortiz)

Let Σ be a cylindrical translating λ -soliton. 1. Case $\lambda > 1$. Let be $s_0 = T/2$, where T denotes the period of α . Then $\Sigma^* = \Sigma(-s_0 + \sigma, s_0 + \sigma, I)$ with $\sigma \in [0, s_0]$ is unstable if

$$1 > 1_0 = \frac{4\pi}{4\pi}$$

$$\sqrt{3\sqrt{\lambda^2 - 1}(\lambda + \cos(\sigma\sqrt{\lambda^2 - 1}))}$$

2. Case $\lambda = 1$. $\Sigma^* = \Sigma(-\sigma, \sigma, L)$ with $\sigma > s_0 \sim 1.0213$ is unstable if

$$L > L_0 = 8\pi\sigma^{5/2} \left(15(\frac{\sigma^3}{3} + 9\sigma - (9 + 6\sigma^2 - 3\sigma^4)\tan^{-1}(\sigma)) \right)^{-1/2}$$

- We analyze the Plateau-Rayleigh instability depending on the value of λ: λ > 1, λ = 1 and λ < 1.
- Note that for $\lambda = 0$, α corresponds to the grim reaper, then the surface is a graph on v^{T} and strongly stable by Theorem 3.

Theorem 5 (Bueno, López, Ortiz)

Let Σ be a cylindrical translating λ -soliton.

1. Case $\lambda > 1$. Let be $s_0 = T/2$, where T denotes the period of α . Then, $\Sigma^* = \Sigma(-s_0 + \sigma, s_0 + \sigma, L)$ with $\sigma \in [0, s_0]$ is unstable if

$$L > L_0 = rac{4\pi}{\sqrt{3\sqrt{\lambda^2 - 1}(\lambda + \cos(\sigma\sqrt{\lambda^2 - 1}))}}$$

2. Case $\lambda = 1$. $\Sigma^* = \Sigma(-\sigma, \sigma, L)$ with $\sigma > s_0 \sim 1.0213$ is unstable if

$$L > L_0 = 8\pi\sigma^{5/2} \left(15(\frac{\sigma^3}{3} + 9\sigma - (9 + 6\sigma^2 - 3\sigma^4)\tan^{-1}(\sigma)) \right)^{-1/2}$$

3. Case $\lambda < 1$. We have numerical evidences of instability.

• To get the results, we must find a test function $u \in C_0^\infty(\Sigma^*)$ s.t.

$$Q_{\phi}(u) < 0, \ u = 0 ext{ at } \partial \Sigma^* \ \int_{\Sigma^*} u d\Sigma_{\phi} = 0,$$

where $\partial \Sigma^* = (\alpha([a, b]) \times \{0, L\}) \cup (\{\alpha(a), \alpha(b)\} \times [0, L]).$

• To get the results, we must find a test function $u \in C_0^\infty(\Sigma^*)$ s.t.

$$Q_{\phi}(u) < 0, \; u = 0 ext{ at } \partial \Sigma^* \; \int_{\Sigma^*} u d\Sigma_{\phi} = 0,$$

where $\partial \Sigma^* = (\alpha([a, b]) \times \{0, L\}) \cup (\{\alpha(a), \alpha(b)\} \times [0, L]).$

• We consider $u(s,t) = f(s)g(t) = f(s)\sin\left(\frac{2\pi t}{L}\right)$, satisfying:

• To get the results, we must find a test function $u \in C_0^{\infty}(\Sigma^*)$ s.t.

$$Q_{\phi}(u) < 0, \,\, u = 0 \,\, \mathrm{at} \,\, \partial \Sigma^* \,\, \int_{\Sigma^*} u d \Sigma_{\phi} = 0,$$

where $\partial \Sigma^* = (\alpha([a, b]) \times \{0, L\}) \cup (\{\alpha(a), \alpha(b)\} \times [0, L]).$

We consider u(s, t) = f(s)g(t) = f(s) sin (^{2πt}/_L), satisfying:
 F(a) = f(b) = 0, g(0) = g(L) = 0.

• To get the results, we must find a test function $u \in C_0^{\infty}(\Sigma^*)$ s.t.

$$Q_{\phi}(u) < 0, \,\, u = 0 \,\, \mathrm{at} \,\, \partial \Sigma^* \,\, \int_{\Sigma^*} u d \Sigma_{\phi} = 0,$$

where $\partial \Sigma^* = (\alpha([a, b]) \times \{0, L\}) \cup (\{\alpha(a), \alpha(b)\} \times [0, L]).$

We consider u(s, t) = f(s)g(t) = f(s) sin (^{2πt}/_L), satisfying:
 f(a) = f(b) = 0, g(0) = g(L) = 0.
 ∫_{Σ*} udΣ_φ = ∫_a^b f(s)e^{α₃(s)}ds ∫₀^L g(t)dt = 0.

• To get the results, we must find a test function $u \in C_0^{\infty}(\Sigma^*)$ s.t.

$$Q_{\phi}(u) < 0, \,\, u = 0 \,\, \mathrm{at} \,\, \partial \Sigma^* \,\, \int_{\Sigma^*} u d \Sigma_{\phi} = 0,$$

where $\partial \Sigma^* = (\alpha([a, b]) \times \{0, L\}) \cup (\{\alpha(a), \alpha(b)\} \times [0, L]).$

We consider u(s, t) = f(s)g(t) = f(s) sin (^{2πt}/_L), satisfying:
f(a) = f(b) = 0, g(0) = g(L) = 0.
∫_{Σ*} udΣ_φ = ∫_a^b f(s)e^{α₃(s)}ds ∫₀^L g(t)dt = 0.
Q_φ(u) = ½ ∫_a^b (f'² - ((α'₁ + λ)² - ^{4π²}/_{L²}) f²) e^{α₃(s)}ds, since
⟨∇u, v⟩ = f'g'α'₃,
Δu = f''g' + fg'', and
K = 0

• To get the results, we must find a test function $u \in C_0^{\infty}(\Sigma^*)$ s.t.

$$Q_{\phi}(u) < 0, \,\, u = 0 \,\, \mathrm{at} \,\, \partial \Sigma^* \,\, \int_{\Sigma^*} u d \Sigma_{\phi} = 0,$$

where $\partial \Sigma^* = (\alpha([a, b]) \times \{0, L\}) \cup (\{\alpha(a), \alpha(b)\} \times [0, L]).$

- We consider $u(s, t) = f(s)g(t) = f(s)\sin\left(\frac{2\pi t}{L}\right)$, satisfying: • f(a) = f(b) = 0, g(0) = g(L) = 0. • $\int_{\Sigma^*} ud\Sigma_{\phi} = \int_a^b f(s)e^{\alpha_3(s)}ds \int_0^L g(t)dt = 0$. • $Q_{\phi}(u) = \frac{L}{2}\int_a^b \left(f'^2 - \left((\alpha'_1 + \lambda)^2 - \frac{4\pi^2}{L^2}\right)f^2\right)e^{\alpha_3(s)}ds$, since • $\langle \nabla u, v \rangle = f'g'\alpha'_3$, • $\Delta u = f''g' + fg''$, and • K = 0.
- How to define f(s)?

• α is periodic with $T = 2\pi/\sqrt{\lambda^2 - 1}$, $s_0 = T/2$.

- α is periodic with $T = 2\pi/\sqrt{\lambda^2 1}$, $s_0 = T/2$.
- $\alpha([-s_0 + \sigma, s_0 + \sigma]), \sigma \in [0, s_0]$, generates a fundamental piece: $\alpha([0, 2s_0])$ $\alpha([-s_0, s_0])$

- α is periodic with $T = 2\pi/\sqrt{\lambda^2 1}$, $s_0 = T/2$.
- $\alpha([-s_0 + \sigma, s_0 + \sigma]), \sigma \in [0, s_0]$, generates a fundamental piece: $\alpha([0, 2s_0])$ $\alpha([-s_0, s_0])$ • We define $f(s) = \sin\left(\frac{\pi}{2s_0}s + \frac{\pi}{2}(1 - \frac{\sigma}{s_0})\right)e^{-\alpha_3(s)/2}$.

- α is periodic with $T = 2\pi/\sqrt{\lambda^2 1}$, $s_0 = T/2$.
- $\alpha([-s_0 + \sigma, s_0 + \sigma]), \sigma \in [0, s_0]$, generates a fundamental piece: $\alpha([0, 2s_0])$ • We define $f(s) = \sin\left(\frac{\pi}{2s_0}s + \frac{\pi}{2}(1 - \frac{\sigma}{s_0})\right)e^{-\alpha_3(s)/2}$. • Then.

$$Q_{\phi}(u) = \frac{\pi}{8L\sqrt{\lambda^2-1}} \left(16\pi^2 - 3L^2\sqrt{\lambda^2-1}(\lambda + \cos(\sigma\sqrt{\lambda^2-1}))\right).$$

- α is periodic with $T = 2\pi/\sqrt{\lambda^2 1}$, $s_0 = T/2$.
- $\alpha([-s_0 + \sigma, s_0 + \sigma]), \sigma \in [0, s_0]$, generates a fundamental piece: $\alpha([0, 2s_0])$ $\alpha([-s_0, s_0])$
- We define $f(s) = \sin\left(\frac{\pi}{2s_0}s + \frac{\pi}{2}(1-\frac{\sigma}{s_0})\right)e^{-\alpha_3(s)/2}.$
- Then,

$$Q_{\phi}(u) = \frac{\pi}{8L\sqrt{\lambda^2 - 1}} \left(16\pi^2 - 3L^2\sqrt{\lambda^2 - 1}(\lambda + \cos(\sigma\sqrt{\lambda^2 - 1})) \right).$$

• Equaling to 0 the above parenthesis we get the expected result.

• α is a graph in (-1, 1) and its projection on the x_1 -axis is $(1 - \frac{\pi}{2}, -1 + \frac{\pi}{2})$. Thus, for any $s_0 < 1$, $\Sigma(s_0; L)$ is stable.

- α is a graph in (-1, 1) and its projection on the x_1 -axis is $(1 \frac{\pi}{2}, -1 + \frac{\pi}{2})$. Thus, for any $s_0 < 1$, $\Sigma(s_0; L)$ is stable.
- Consequently, we study the instability of symmetric compact pieces of $\alpha(s)$ for $s \in [-s_0, s_0]$, $s_0 > 1$.

- α is a graph in (-1, 1) and its projection on the x_1 -axis is $(1 \frac{\pi}{2}, -1 + \frac{\pi}{2})$. Thus, for any $s_0 < 1$, $\Sigma(s_0; L)$ is stable.
- Consequently, we study the instability of symmetric compact pieces of α(s) for s ∈ [-s₀, s₀], s₀ > 1.

• We define
$$f(s) = (s^2 - s_0^2)e^{-\alpha_3(s)/2}$$

- α is a graph in (-1, 1) and its projection on the x_1 -axis is $(1 \frac{\pi}{2}, -1 + \frac{\pi}{2})$. Thus, for any $s_0 < 1$, $\Sigma(s_0; L)$ is stable.
- Consequently, we study the instability of symmetric compact pieces of $\alpha(s)$ for $s \in [-s_0, s_0]$, $s_0 > 1$.

Case $\lambda < 1$

• We define
$$f(s) = (s^2 - s_0^2)e^{-lpha_3(s)/2}$$

• We give a numerical analysis with $f(s) = \cos\left(\frac{\pi s}{2s_0}\right) e^{-\alpha_3(s)/2}$.

• Now, we can obtain similar results for the problem of strong stability.
Plateau-Rayleigh instability result for λ -solitons

- Now, we can obtain similar results for the problem of strong stability.
- It is expectable that for strong stability the length of $\boldsymbol{\Sigma}$ reduces compared to the stable case.

Plateau-Rayleigh instability result for λ -solitons

- Now, we can obtain similar results for the problem of strong stability.
- It is expectable that for strong stability the length of Σ reduces compared to the stable case.
- In this case, we remove the assumption $\int_{\Sigma} u d\Sigma_{\phi} = 0$, and consider $g(t) = \sin(\pi t/L)$.

Plateau-Rayleigh instability result for λ -solitons

- Now, we can obtain similar results for the problem of strong stability.
- It is expectable that for strong stability the length of Σ reduces compared to the stable case.
- In this case, we remove the assumption $\int_{\Sigma} u d\Sigma_{\phi} = 0$, and consider $g(t) = \sin(\pi t/L)$.

Corollary 6 (Bueno, López, Ortiz)

Let Σ be a $\lambda\text{-soliton}.$ Then, for any case of $\lambda,\,\Sigma^*$ is strongly stable if

$$L > L_0/2$$
.

where L_0 is the corresponding bound of Theorem 5 depending on the value of λ .

References

- A. Bueno, R. López, I. Ortiz, The Plateau-Rayleigh instability of translating λ-solitons, preprint, arXiv:2301.06042.
- A. Bueno, I. Ortiz, Invariant hypersurfaces with linear prescribed mean curvature. J. Math. Anal. Appl. 487 (2020), 124033.
- R. López, Invariant surfaces in Euclidean space with a log-linear density. Adv. Math. 339 (2018) 285–309.
- R. López, Compact λ -translating solitons with boundary, Mediterranean J. Math. **15** (2018).
- R. López, Plateau-Rayleigh instability of singular minimal surfaces. Commun. Pure Appl. Anal. 21 (2022), 2981–2997.

Thank you very much for your attention!