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Notation

• Throughout this work, we consider Σ an orientable surface
immersed into R3.

• The function N : Σ→ S2 stands for the Gauss map of the
surface.

• The principal curvatures of Σ are denoted by κ1 and κ2.

• The mean and Gaussian curvature of Σ, are defined,
respectively, by

H(p) = κ1(p) + κ2(p), K (p) = κ1(p)κ2(p), p ∈ Σ.

• The shape operator of Σ is denoted by A and it is satisfied that

|A|2 = κ2
1 + κ2

2 = H2 − 2K .
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Translating λ-solitons
Definition (Translating λ-soliton)
Let v ∈ R3, |v | = 1, called the density vector. An oriented surface Σ in
R3 is a translating λ-soliton with respect to v if

HΣ(p) = 〈Np, v〉+ λ ∀p ∈ Σ. (1.1)

Observe that:

1. On the one hand, they are a particular case of prescribed mean
curvature (PMC) surfaces.

HΣ(p) = H(Np) ∀p ∈ Σ for a given H ∈ C 1(S2).

In this case, H(Np) = 〈Np, v〉+ λ.

2. On the other hand, if λ = 0 they generalize self-translating solitons
of the mean curvature flow.

3. Moreover, they are closely related to CMC surfaces.
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Translating λ-solitons

Consequently, to obtain results for translating λ-solitons we take
into account:

1. Results of PMC surfaces:

I Motivation: Minkowski’s problem. K (p) = K(N(p)).
I Existence and uniqueness of PMC spheres: Alexandrov,

Pogorelov, Hartman, Witner, B. Guan, P. Guan, Gálvez, Mira.
I Other problems of PMC surfaces: properly embedded;

rotational; half-space theorems; Björling problem, other
ambient spaces.

I Related problems studied by the authors: prescribed Gaussian
curvature and predetermined linear Weingarten curvature, ...

I A. Bueno, I. Ortiz, Invariant hypersurfaces with linear
prescribed mean curvature, J. Math. Anal. Appl. 487 (2020).
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Translating λ-solitons

Consequently, to obtain results for translating λ-solitons we take
into account:

2. Results of self-translating solitons of the mean curvature
flow:
I Widely studied during the last decades: Hoffman, Huisken,

Ilmanen, F. Martín, Spruck, White, Xiao.
I They are minimal surfaces in (R3, e2x3〈·, ·〉). In particular, the

tangency principle is satisfied.
I Cylindrical solitons and rotationals. Non orientable examples.
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Translating λ-solitons

Consequently, to obtain results for translating λ-solitons we take
into account:

3. Analogy with CMC: solutions of a variational problem.
Remind that if Σ is a surface and u ∈ C∞0 (Σ), u = 0 in ∂Σ, a normal

variation of compact support is defined by
ψ(p, t) = p + tu(p)N(p), |t| < ε, Σt = {ψ(p, t) : p ∈ Σ}.

CMC surfaces
• Area and volume functionals:

A(t) =

∫
Σ

dΣt , V(t) =

∫
[0,t]×Σ

|Jacψ|dV .

• First variation of the area and volume functionals:

A′(0) = −
∫

Σ

uHdΣ, V ′(0) =

∫
Σ

udΣ.

• Critical points of the area functional: minimal surfaces and CMC
surfaces preserving the enclosed volume (i.e.

∫
Σ
udΣ = 0).
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Translating λ-solitons

Consequently, to obtain results for translating λ-solitons we take
into account:
3. Analogy with CMC: solutions of a variational problem.

Translating λ-solitons

• Given φ ∈ C∞(R3), we define dΣφ = eφdΣ and dVφ = eφdV .

• Weighted area and volume functionals, Aφ and Vφ, are defined.

• First variation of the weighted area and volume functionals:

A′φ(0) = −
∫

Σ

u(H − 〈N,Dφ〉)dΣφ = −
∫

Σ

uHφdΣφ,

V ′φ(0) = −
∫

Σ

udΣφ.

• Critical points of the weighted area functional: surfaces with
Hφ = 0 and surfaces with Hφ = λ under variations preserving the
enclosed weighted volume (i.e.

∫
Σ
udΣφ = 0).
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First characterization of λ-solitons

λ-solitons ↔ theory of manifolds with density.

Definition (Weighted mean curvature)

The weighted mean curvature Hφ of an oriented surface Σ in R3

with respect to the density eφ ∈ C∞(R3) is defined by

Hφ := HΣ − 〈N,Dφ〉,

where D is the gradient operator in R3.

• If we consider φv (x) = 〈x , v〉,

Σ is a λ-soliton ⇐⇒ Hφv = λ
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Second characterization of λ-solitons

• We have seen that λ-solitons appear as critical points of a
variational problem.

Definition (Weighted area and weighted volume)

Let Ω ⊂ R3 be a measurable set with Σ = ∂Ω. Then, the
weighted area and volume with respect to φv are

Aφv (Σ) :=

∫
Σ
eφvdΣ, Vφv (Ω) :=

∫
Ω
eφvdV ,

where dΣ and dV are the usual area and volume elements in R3.

• Σ is a λ-soliton ⇐⇒

A′φv
(0) = 0 ∀u ∈ C∞0 (Σ) s.t.

∫
Σ udΣφ = 0 ⇐⇒

Σ is a critical point under c.s.v of Lφv := Aφv − λVφv .
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Third characterization of λ-solitons

• Consider ψ : Σ→ R3 a λ-soliton.

• Then, the family of translations of ψ in the v direction given
by F (p, t) = ψ(p) + tv is the solution of the geometric flow(

∂F

∂t

)⊥
= (HΣ − λ)N,

which corresponds to the mean curvature flow with a constant
forcing term.

• Thus,
Σ is a λ-soliton ⇐⇒ Σ is a self-translating soliton of the

mean curvature flow with a constant forcing term.
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Characterizations of λ-solitons
Summing up, we get the following result.

Proposition

The following conditions are equivalent:
1. Σ is a λ-soliton.

2. Σ has constant weighted mean curvature Hφv = λ for the
density eφ ∈ C∞(R3), where φv (x) = 〈x , v〉.

3. Σ is a critical point of Aφv under compactly supported
variations preserving the enclosed weighted volume.

4. Σ is a critical point under compactly supported variations of
the functional Lφv := Aφv − λVφv .

5. Σ is a self-translating soliton of the mean curvature flow with
a constant forcing term.
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Classification of rotational λ-solitons
Theorem 1 (López, Bueno-Ortiz)
The rotational λ-solitons are given by:

• Either a vertical cylinder of radius rλ = 1/λ,

• or one of the resulting surfaces after rotate the following profile
curves around the axis x3.

λ > 1
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Rotational λ-solitons obtained rotating the profile curves

Rotational λ-solitons intersecting the
rotation axis.

Rotational λ-solitons non-intersecting
the rotation axis.
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Cylindrical λ-solitons
Definition (Cylindrical surface)
A surface Σ ⊂ R3 is cylindrical if it can be parametrized by

ψ(s, t) = α(s) + ta, a ∈ R3, |a| = 1. (4.1)

where α is a curve, called the base curve, contained in a 2-dimensional
plane Π orthogonal to the ruling direction a.

Observe that if Σ is a cylindrical λ-soliton:

• The principal curvatures are 0 and κα and N(ψ(s, t)) = nα(s).

• Then, from (1.1) we get the equation for cylindrical λ-solitons

κα(s) = 〈nα(s), v〉+ λ. (4.2)

• We assume that a and v are orthogonal and λ ≥ 0. (a = e2, v = e3)

• Thus, by (4.1) Σ can be parametrized as Ψ(s, t) = (α1(s), t, α3(s)).

• So, (4.2) can be written as

κα(s) = α′1(s) + λ⇒ θ′(s) = cos θ(s) + λ.
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Classification of cylindrical λ-solitons

Theorem 2 (López, Bueno-Ortiz)
The base curve of a cylindrical λ-soliton parametrized by
Ψ(s, t) = (α1(s), t, α3(s)) has the following behavior:

Case λ > 1
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Classification of cylindrical λ-solitons

Theorem 2 (López, Bueno-Ortiz)

The explicit parametrizations of the base curves of a cilyndrical
λ-soliton are:
• Case λ > 1:

α(s) =

(
−λs + 2 arctan

(√
λ+1
λ−1 tan( s

2

√
λ2 − 1)

)
, 0, log(λ− cos(s

√
λ2 − 1))

)
.

• Case λ = 1:
α(s) =

(
−s + 2 arctan(s), 0, log(1 + s2)

)
.

• Case λ < 1:

α(s) =

(
−λs + 2 arctan

(√
1+λ
1−λ

tanh( s
2

√
1− λ2)

)
, 0, log(−λ + cosh(s

√
1− λ2)

)
.
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Stability of λ-solitons
We define the stability for λ-solitons by analogy with CMC surfaces.

Definition (Stability in CMC surfaces)
Second variation of the area functional:

A′′(0) = −
∫

Σ

u(∆u + |A|2u)dΣ.

• A CMC surface Σ is strongly stable if A′′(0) ≥ 0,∀u ∈ C∞0 (Σ) .
• A CMC surface Σ is stable if A′′(0) ≥ 0,∀u ∈ C∞0 (Σ) s.t.∫

Σ
udΣ = 0.

Definition (Stability in λ-solitons)
Second variation of the weighted area functional:

A′′φ(0) = −
∫

Σ

u(∆u + 〈∇u, v〉+ |A|2u)dΣφ.

• A λ-soliton Σ is strongly stable if A′′φ(0) ≥ 0,∀u ∈ C∞0 (Σ) .
• A λ-soliton Σ is stable if A′′φ(0) ≥ 0,∀u ∈ C∞0 (Σ) s.t.∫

Σ
udΣφ = 0.
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Stability of λ-solitons
Definition (Stability operator for λ-solitons)
The stability operator for λ-solitons is defined as a second order
operator on C∞0 (Σ) given by

Jφu = ∆u + 〈∇u, v〉+ |A|2u.

• Jφ is self-adjoint w.r.t. the weighted inner product
∫

Σ
uvdΣφ.

• Then, a quadratic form Qφ can be defined as follows

Qφ(u) = −
∫

Σ

uJφudΣφ =

∫
Σ

(|∇u|2 − |A|2u2)dΣφ.

• A λ-soliton Σ is strongly stable if Qφ(u) ≥ 0,∀u ∈ C∞0 (Σ).

• A λ-soliton Σ is stable if Qφ(u) ≥ 0,∀u ∈ C∞0 (Σ) s.t.
∫

Σ
udΣφ = 0.

Example
Planes are strongly stable since |A| = 0.
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First stability results of λ-solitons

Theorem 3 (Bueno, López, Ortiz)

Let Σ be a graphical λ-soliton. Then Σ is strongly stable.

Theorem 4 (Bueno, López, Ortiz)

Let Σ be a compact λ-soliton which is a graph over Ω ⊂ {x3 = 0}.
Then Σ is a minimizer for Aφ in the class of all surfaces in Ω× R
with the same boundary and same weighted volume.

• In the particular case λ = 0 we can drop the assumption on
the constancy of the weighted volume.
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Plateau-Rayleigh instability phenomenon

• In 1873, Plateau observed that a stream of water dropping vertically
was divided into smaller packets with the same volume but less
surface area.

• Later, Rayleigh proved that a stream of radius r breaks into drops
when its length L > 2πr .

• This fact can be explained by the theory of CMC surfaces:

A CMC cylinder CL
r with length L and radius r is stable ⇔

L ≤ 2πr .

• It is known as Plateau-Rayleigh instability phenomenon.
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Plateau-Rayleigh instability for λ-solitons
Our purpose: to study the Plateau-Rayleigh instability for

λ-solitons.

• Let Σ be a cylindrical λ-soliton parametrized by

Ψ(s, t) = (α1(s), t, α3(s)), v = e3, a = e2.

• Fix an interval [a, b] in the domain of α.

• Since Σ is invariant along the a-direction, we take a compact piece
Σ∗ of length L > 0 in the t-parameter,

Σ∗ = Σ(a, b, L) = Ψ([a, b]× [0, L]).

• Motivated by the Plateau-Rayleigh instability phenomenon, we
answer the following question:

Given [a, b] ⊂ I , does there exist L0 > 0 s.t. Σ∗ is unstable for
any L > L0?
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Plateau-Rayleigh instability result for λ-solitons
• We analyze the Plateau-Rayleigh instability depending on the value

of λ: λ > 1, λ = 1 and λ < 1.

• Note that for λ = 0, α corresponds to the grim reaper, then the
surface is a graph on vT and strongly stable by Theorem 3.

Theorem 5 (Bueno, López, Ortiz)
Let Σ be a cylindrical translating λ-soliton.
1. Case λ > 1. Let be s0 = T/2, where T denotes the period of α.

Then, Σ∗ = Σ(−s0 + σ, s0 + σ, L) with σ ∈ [0, s0] is unstable if

L > L0 =
4π√

3
√
λ2 − 1(λ+ cos(σ

√
λ2 − 1))

.

2. Case λ = 1. Σ∗ = Σ(−σ, σ, L) with σ > s0 ∼ 1.0213 is unstable if

L > L0 = 8πσ5/2
(
15(

σ3

3
+ 9σ −

(
9 + 6σ2 − 3σ4) tan−1(σ))

)−1/2

.

3. Case λ < 1. We have numerical evidences of instability.
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Plateau-Rayleigh instability result for λ-solitons
Proof.

• To get the results, we must find a test function u ∈ C∞0 (Σ∗)
s.t.

Qφ(u) < 0, u = 0 at ∂Σ∗
∫

Σ∗
udΣφ = 0,

where ∂Σ∗ = (α([a, b])× {0, L}) ∪ ({α(a), α(b)} × [0, L]).

• We consider u(s, t) = f (s)g(t) = f (s) sin
(2πt

L

)
, satisfying:

I f (a) = f (b) = 0, g(0) = g(L) = 0.
I
∫

Σ∗ udΣφ =
∫ b

a
f (s)eα3(s)ds

∫ L

0 g(t)dt = 0.

I Qφ(u) = L
2

∫ b

a

(
f ′2 −

(
(α′1 + λ)2 − 4π2

L2

)
f 2
)
eα3(s)ds, since

I 〈∇u, v〉 = f ′g ′α′3,
I ∆u = f ′′g ‘ + fg ′′, and
I K = 0.

• How to define f (s)?

5. Stability results of λ-solitons. Plateau-Rayleigh phenomenon λ-solitons 29 / 34



Plateau-Rayleigh instability result for λ-solitons
Proof.

• To get the results, we must find a test function u ∈ C∞0 (Σ∗)
s.t.

Qφ(u) < 0, u = 0 at ∂Σ∗
∫

Σ∗
udΣφ = 0,

where ∂Σ∗ = (α([a, b])× {0, L}) ∪ ({α(a), α(b)} × [0, L]).

• We consider u(s, t) = f (s)g(t) = f (s) sin
(2πt

L

)
, satisfying:

I f (a) = f (b) = 0, g(0) = g(L) = 0.
I
∫

Σ∗ udΣφ =
∫ b

a
f (s)eα3(s)ds

∫ L

0 g(t)dt = 0.

I Qφ(u) = L
2

∫ b

a

(
f ′2 −

(
(α′1 + λ)2 − 4π2

L2

)
f 2
)
eα3(s)ds, since

I 〈∇u, v〉 = f ′g ′α′3,
I ∆u = f ′′g ‘ + fg ′′, and
I K = 0.

• How to define f (s)?

5. Stability results of λ-solitons. Plateau-Rayleigh phenomenon λ-solitons 29 / 34



Plateau-Rayleigh instability result for λ-solitons
Proof.

• To get the results, we must find a test function u ∈ C∞0 (Σ∗)
s.t.

Qφ(u) < 0, u = 0 at ∂Σ∗
∫

Σ∗
udΣφ = 0,

where ∂Σ∗ = (α([a, b])× {0, L}) ∪ ({α(a), α(b)} × [0, L]).

• We consider u(s, t) = f (s)g(t) = f (s) sin
(2πt

L

)
, satisfying:

I f (a) = f (b) = 0, g(0) = g(L) = 0.

I
∫

Σ∗ udΣφ =
∫ b

a
f (s)eα3(s)ds

∫ L

0 g(t)dt = 0.

I Qφ(u) = L
2

∫ b

a

(
f ′2 −

(
(α′1 + λ)2 − 4π2

L2

)
f 2
)
eα3(s)ds, since

I 〈∇u, v〉 = f ′g ′α′3,
I ∆u = f ′′g ‘ + fg ′′, and
I K = 0.

• How to define f (s)?

5. Stability results of λ-solitons. Plateau-Rayleigh phenomenon λ-solitons 29 / 34



Plateau-Rayleigh instability result for λ-solitons
Proof.

• To get the results, we must find a test function u ∈ C∞0 (Σ∗)
s.t.

Qφ(u) < 0, u = 0 at ∂Σ∗
∫

Σ∗
udΣφ = 0,

where ∂Σ∗ = (α([a, b])× {0, L}) ∪ ({α(a), α(b)} × [0, L]).

• We consider u(s, t) = f (s)g(t) = f (s) sin
(2πt

L

)
, satisfying:

I f (a) = f (b) = 0, g(0) = g(L) = 0.
I
∫

Σ∗ udΣφ =
∫ b

a
f (s)eα3(s)ds

∫ L

0 g(t)dt = 0.

I Qφ(u) = L
2

∫ b

a

(
f ′2 −

(
(α′1 + λ)2 − 4π2

L2

)
f 2
)
eα3(s)ds, since

I 〈∇u, v〉 = f ′g ′α′3,
I ∆u = f ′′g ‘ + fg ′′, and
I K = 0.

• How to define f (s)?

5. Stability results of λ-solitons. Plateau-Rayleigh phenomenon λ-solitons 29 / 34



Plateau-Rayleigh instability result for λ-solitons
Proof.

• To get the results, we must find a test function u ∈ C∞0 (Σ∗)
s.t.

Qφ(u) < 0, u = 0 at ∂Σ∗
∫

Σ∗
udΣφ = 0,

where ∂Σ∗ = (α([a, b])× {0, L}) ∪ ({α(a), α(b)} × [0, L]).

• We consider u(s, t) = f (s)g(t) = f (s) sin
(2πt

L

)
, satisfying:

I f (a) = f (b) = 0, g(0) = g(L) = 0.
I
∫

Σ∗ udΣφ =
∫ b

a
f (s)eα3(s)ds

∫ L

0 g(t)dt = 0.

I Qφ(u) = L
2

∫ b

a

(
f ′2 −

(
(α′1 + λ)2 − 4π2

L2

)
f 2
)
eα3(s)ds, since

I 〈∇u, v〉 = f ′g ′α′3,
I ∆u = f ′′g ‘ + fg ′′, and
I K = 0.

• How to define f (s)?

5. Stability results of λ-solitons. Plateau-Rayleigh phenomenon λ-solitons 29 / 34



Plateau-Rayleigh instability result for λ-solitons
Proof.

• To get the results, we must find a test function u ∈ C∞0 (Σ∗)
s.t.

Qφ(u) < 0, u = 0 at ∂Σ∗
∫

Σ∗
udΣφ = 0,

where ∂Σ∗ = (α([a, b])× {0, L}) ∪ ({α(a), α(b)} × [0, L]).

• We consider u(s, t) = f (s)g(t) = f (s) sin
(2πt

L

)
, satisfying:

I f (a) = f (b) = 0, g(0) = g(L) = 0.
I
∫

Σ∗ udΣφ =
∫ b

a
f (s)eα3(s)ds

∫ L

0 g(t)dt = 0.

I Qφ(u) = L
2

∫ b

a

(
f ′2 −

(
(α′1 + λ)2 − 4π2

L2

)
f 2
)
eα3(s)ds, since

I 〈∇u, v〉 = f ′g ′α′3,
I ∆u = f ′′g ‘ + fg ′′, and
I K = 0.

• How to define f (s)?

5. Stability results of λ-solitons. Plateau-Rayleigh phenomenon λ-solitons 29 / 34



Plateau-Rayleigh instability result for λ-solitons
Proof.

Case λ > 1
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• α is periodic with T = 2π/
√
λ2 − 1, s0 = T/2.

• α([−s0 + σ, s0 + σ]), σ ∈ [0, s0], generates a fundamental piece:

α([0, 2s0])
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• We define f (s) = sin
(
π

2s0
s + π

2 (1− σ
s0

)
)
e−α3(s)/2.

• Then,
Qφ(u) = π

8L
√
λ2−1

(
16π2 − 3L2

√
λ2 − 1(λ+ cos(σ

√
λ2 − 1))

)
.

• Equaling to 0 the above parenthesis we get the expected result.
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Plateau-Rayleigh instability result for λ-solitons
Proof.

Case λ = 1

-4 -2 2 4

1
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3

4

• α is a graph in (−1, 1) and its projection on the x1-axis is
(1− π

2 ,−1 + π
2 ). Thus, for any s0 < 1, Σ(s0; L) is stable.

• Consequently, we study the instability of symmetric compact pieces
of α(s) for s ∈ [−s0, s0], s0 > 1.

• We define f (s) = (s2 − s2
0 )e−α3(s)/2.

Case λ < 1
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• We give a numerical analysis with f (s) = cos
(
πs
2s0

)
e−α3(s)/2.
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Plateau-Rayleigh instability result for λ-solitons

• Now, we can obtain similar results for the problem of strong stability.

• It is expectable that for strong stability the length of Σ reduces
compared to the stable case.

• In this case, we remove the assumption
∫

Σ
udΣφ = 0, and consider

g(t) = sin(πt/L).

Corollary 6 (Bueno, López, Ortiz)
Let Σ be a λ-soliton. Then, for any case of λ, Σ∗ is strongly stable if

L > L0/2.

where L0 is the corresponding bound of Theorem 5 depending on the
value of λ.
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Thank you very much
for your attention!
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