PNMC biconservative surfaces in 4-dimensional Euclidean sphere

Simona Nistor

"Alexandru Ioan Cuza" University of Iaşi, Romania

September 06-09, 2023 Differential Geometry Workshop 2023 Article

• S. N., C. Oniciuc, N.C. Turgay, R. Yeğin Şen, *Biconservative surfaces in the 4-dimensional Euclidean sphere*, Ann. di Mat. Pura ed Appl., https://doi.org/10.1007/s10231-023-01323-0, **2023**.

Introducing biconservative submanifolds

Outline

Introducing biconservative submanifolds

Outline

Introducing biconservative submanifolds

Introducing biconservative submanifolds

2 Biconservative surfaces

Biharmonic maps

Let (M^m, g) and (N^n, h) be two Riemannian manifolds. Assume that M is compact and consider

Bienergy functional

$$E_2: C^{\infty}(M^m, N^n) \to \mathbb{R}, \qquad E_2(\boldsymbol{\varphi}) = rac{1}{2} \int_M |\boldsymbol{\tau}(\boldsymbol{\varphi})|^2 v_g$$

• Euler-Lagrange equation

$$\tau_2(\varphi) = -\Delta^{\varphi} \tau(\varphi) - \operatorname{trace}_g \mathbb{R}^N(d\varphi, \tau(\varphi)) d\varphi$$

= 0.

Critical points of E_2 are called biharmonic maps.

Biharmonic maps

Let (M^m, g) and (N^n, h) be two Riemannian manifolds. Assume that M^m is compact and consider

Bienergy functional

$$E_2: C^{\infty}(M^m, N^n)
ightarrow \mathbb{R}, \qquad E_2(oldsymbol{arphi}) = rac{1}{2} \int_M | au(oldsymbol{arphi})|^2 v_g$$

• Euler-Lagrange equation

$$\tau_2(\varphi) = -\Delta^{\varphi} \tau(\varphi) - \operatorname{trace}_g \mathbb{R}^N(d\varphi, \tau(\varphi)) d\varphi$$

= 0.

Critical points of E_2 are called biharmonic maps.

The biharmonic equation (G.Y. Jiang - 1986)

$$\tau_2(\boldsymbol{\varphi}) = -\Delta^{\boldsymbol{\varphi}} \boldsymbol{\tau}(\boldsymbol{\varphi}) - \operatorname{trace}_g R^N(d\boldsymbol{\varphi}, \boldsymbol{\tau}(\boldsymbol{\varphi})) d\boldsymbol{\varphi} = 0,$$

where

$$\Delta^{\varphi} = -\operatorname{trace}_{g}\left(\nabla^{\varphi}\nabla^{\varphi} - \nabla^{\varphi}_{\nabla}\right)$$

is the rough Laplacian on sections of $\varphi^{-1}TN^n$ and

$$R^{N}(X,Y)Z = \nabla_{X}^{N}\nabla_{Y}^{N}Z - \nabla_{Y}^{N}\nabla_{X}^{N}Z - \nabla_{[X,Y]}^{N}Z.$$

- is a fourth-order non-linear elliptic equation;
- any harmonic map is biharmonic;
- a non-harmonic biharmonic map is called proper-biharmonic;

The biharmonic equation (G.Y. Jiang - 1986)

$$\tau_2(\boldsymbol{\varphi}) = -\Delta^{\boldsymbol{\varphi}} \tau(\boldsymbol{\varphi}) - \operatorname{trace}_g \mathbf{R}^N(d\boldsymbol{\varphi}, \tau(\boldsymbol{\varphi})) d\boldsymbol{\varphi} = 0,$$

where

$$\Delta^{\varphi} = -\operatorname{trace}_{g}\left(\nabla^{\varphi}\nabla^{\varphi} - \nabla^{\varphi}_{\nabla}\right)$$

is the rough Laplacian on sections of $\varphi^{-1}TN^n$ and

$$R^{N}(X,Y)Z = \nabla_{X}^{N}\nabla_{Y}^{N}Z - \nabla_{Y}^{N}\nabla_{X}^{N}Z - \nabla_{[X,Y]}^{N}Z.$$

- is a fourth-order non-linear elliptic equation;
- any harmonic map is biharmonic;
- a non-harmonic biharmonic map is called proper-biharmonic;

• G.Y. Jiang, 1987 defined the stress-energy tensor S₂ for the bienergy functional, and called it the stress-bienergy tensor:

$$\begin{split} \langle S_2(X), Y \rangle = &\frac{1}{2} |\tau(\varphi)|^2 \langle X, Y \rangle + \langle d\varphi, \nabla \tau(\varphi) \rangle \langle X, Y \rangle \\ &- \langle d\varphi(X), \nabla_Y \tau(\varphi) \rangle - \langle d\varphi(Y), \nabla_X \tau(\varphi) \rangle \end{split}$$

It satisfies

$$\operatorname{div} S_2 = -\langle \tau_2(\boldsymbol{\varphi}), d\boldsymbol{\varphi} \rangle.$$

• G.Y. Jiang, 1987 defined the stress-energy tensor S₂ for the bienergy functional, and called it the stress-bienergy tensor:

$$\begin{split} \langle S_2(X), Y \rangle = &\frac{1}{2} |\tau(\varphi)|^2 \langle X, Y \rangle + \langle d\varphi, \nabla \tau(\varphi) \rangle \langle X, Y \rangle \\ &- \langle d\varphi(X), \nabla_Y \tau(\varphi) \rangle - \langle d\varphi(Y), \nabla_X \tau(\varphi) \rangle \end{split}$$

It satisfies

div
$$S_2 = -\langle \tau_2(\varphi), d\varphi \rangle.$$

 $\varphi = biharmonic \Rightarrow div S_2 = 0.$

• G.Y. Jiang, 1987 defined the stress-energy tensor S₂ for the bienergy functional, and called it the stress-bienergy tensor:

$$\begin{split} \langle S_2(X), Y \rangle = &\frac{1}{2} |\tau(\varphi)|^2 \langle X, Y \rangle + \langle d\varphi, \nabla \tau(\varphi) \rangle \langle X, Y \rangle \\ &- \langle d\varphi(X), \nabla_Y \tau(\varphi) \rangle - \langle d\varphi(Y), \nabla_X \tau(\varphi) \rangle . \end{split}$$

It satisfies

$$\operatorname{div} S_2 = -\langle \tau_2(\varphi), d\varphi \rangle.$$

 $\varphi = biharmonic \Rightarrow div S_2 = 0.$

If φ is a submersion, div $S_2 = 0$ if and only if φ is biharmonic.

• G.Y. Jiang, 1987 defined the stress-energy tensor S₂ for the bienergy functional, and called it the stress-bienergy tensor:

$$\begin{split} \langle S_2(X), Y \rangle = &\frac{1}{2} |\tau(\varphi)|^2 \langle X, Y \rangle + \langle d\varphi, \nabla \tau(\varphi) \rangle \langle X, Y \rangle \\ &- \langle d\varphi(X), \nabla_Y \tau(\varphi) \rangle - \langle d\varphi(Y), \nabla_X \tau(\varphi) \rangle . \end{split}$$

It satisfies

$$\operatorname{div} S_2 = -\langle \tau_2(\varphi), d\varphi \rangle.$$

 $\varphi = biharmonic \Rightarrow div S_2 = 0.$

If φ is a submersion, div $S_2 = 0$ if and only if φ is biharmonic.

If $\varphi : M^m \to N^n$ is an isometric immersion then $(\operatorname{div} S_2)^{\sharp} = -\tau_2(\varphi)^{\top}$. In general, for an isometric immersion, $\operatorname{div} S_2 \neq 0$.

Biharmonic and biconservative submanifolds

Definition 3.1

A submanifold $\varphi: M^m \to N^n$ is called biharmonic if φ is a biharmonic map, i.e., $\tau_2(\varphi) = 0$.

Biharmonic and biconservative submanifolds

Definition 3.1

A submanifold $\varphi: M^m \to N^n$ is called biharmonic if φ is a biharmonic map, i.e., $\tau_2(\varphi) = 0$.

Definition 3.2 (Hasanis, Vlachos - 1995; Caddeo, Monataldo, Oniciuc, Piu - 2014)

A submanifold $\varphi : M^m \to N^n$ is called biconservative if div $S_2 = 0$, i.e., $\tau_2(\varphi)^\top = 0$.

M^m biconservative

M^m biconservative

M^m biharmonic

M^m biconservative

M^m biharmonic

 $M^m minimal (H = 0)$

Characterization results

Proposition 3.3

Let $\varphi: M^m \to N^n$ be a submanifold in the *n*-dimensional manifold. The following conditions are equivalent:

- M is biconservative;
- 3 trace $A_{\nabla_{(\cdot)}^{\perp}H}(\cdot)$ + trace $(\nabla A_H)(\cdot, \cdot)$ + trace $(R^N(\cdot, H)\cdot)^{\top} = 0;$
- 4 trace $A_{\nabla_{(\cdot)}^{\perp}H}(\cdot) + m \operatorname{grad}(|H|^2) + 4 \operatorname{trace}(R^N(\cdot,H)\cdot)^{\top} = 0;$
- 4trace $(\nabla A_H)(\cdot, \cdot) m \operatorname{grad}(|H|^2) = 0.$

Direct consequences

Corollary 3.4

- If $\varphi: M^m \to N^n$ has $\nabla A_H = 0$, then it is biconservative.
- If φ : M^m → Nⁿ(c) is a PMC submanifold, i.e. ∇[⊥]H = 0, in a space form of constant sectional curvature c, then it is biconservative.
- If $\varphi: M^m \to N^{m+1}(c)$ is a CMC hypersurface, i.e. |H| is constant, then it is biconservative.
- If $\varphi: M^m \to N^{m+1}(c)$ is a hypersurface, then it is biconservative if and only if

$$A(\operatorname{grad} f) = -\frac{m}{2}f\operatorname{grad} f.$$

Here, f = traceA/m denotes the mean curvature function.

Outline

2 Biconservative surfaces

Theorem 4.1 (Loubeau, Oniciuc - 2014; Montaldo, Oniciuc, Ratto - 2016; N. - 2017)

Let $\varphi: M^2 \to N^n$ be a CMC surface. Then the following properties are equivalent:

- *M* is biconservative;
- $\langle A_H(\partial_z), \partial_z \rangle$ is holomorphic;
- A_H is a Codazzi tensor field.

Theorem 4.1 (Loubeau, Oniciuc - 2014; Montaldo, Oniciuc, Ratto - 2016; N. - 2017)

Let $\varphi: M^2 \to N^n$ be a CMC surface. Then the following properties are equivalent:

- *M* is biconservative;
- $\langle A_H(\partial_z), \partial_z \rangle$ is holomorphic;
- A_H is a Codazzi tensor field.

Theorem 4.2 (Loubeau, Oniciuc - 2014; Montaldo, Oniciuc, Ratto - 2016)

Let $\varphi : M^2 \to N^n$ be a CMC biconservative surface. If M^2 is topologically a sphere \mathbb{S}^2 , then it is pseudo-umbilical.

Theorem 4.1 (Loubeau, Oniciuc - 2014; Montaldo, Oniciuc, Ratto - 2016; N. - 2017)

Let $\varphi: M^2 \to N^n$ be a CMC surface. Then the following properties are equivalent:

- *M* is biconservative;
- $\langle A_H(\partial_z), \partial_z \rangle$ is holomorphic;
- A_H is a Codazzi tensor field.

Theorem 4.2 (Loubeau, Oniciuc - 2014; Montaldo, Oniciuc, Ratto - 2016)

Let $\varphi : M^2 \to N^n$ be a CMC biconservative surface. If M^2 is topologically a sphere \mathbb{S}^2 , then it is pseudo-umbilical.

Theorem 4.3 (Balmuş, Montaldo, Oniciuc - 2013)

Let $\varphi: M^2 \to N^n$ be a pseudo-umbilical surface. Then M^2 is biconservative if and only if M^2 is CMC.

Theorem 4.4 (Loubeau, Oniciuc - 2014; N. - 2017)

Let $\varphi: M^2 \to N^n$ be a compact CMC biconservative surface. If M^2 has no pseudo-umbilical points, then it is topologically a torus.

Theorem 4.4 (Loubeau, Oniciuc - 2014; N. - 2017)

Let $\varphi : M^2 \to N^n$ be a compact CMC biconservative surface. If M^2 has no pseudo-umbilical points, then it is topologically a torus.

Theorem 4.5 (Loubeau, Oniciuc - 2014; N. - 2017)

Let $\varphi : M^2 \to N^n$ be a compact CMC biconservative surface. If the Gaussian curvature $K \ge 0$, then $\nabla A_H = 0$ and K = 0 or M^2 is pseudo-umbilical.

2 Biconservative surfaces

Biconservative surfaces in \ensurface{S}^4

I. *PMC* surfaces in $N^4(c)$

I. *PMC* surfaces in \mathbb{R}^4 ([B.Y. Chen - 1973; S.T. Yau - 1974])

PMC surfaces in R⁴:

- -- CMC surfaces in a 3-dimensional sphere of R^4
- or in a hyperplane of \mathbb{R}^4
- -- minimal surfaces in a 3-dimensional sphere of R^4
- or in a hyperplane of \mathbb{R}^4

I. *PMC* surfaces in \mathbb{S}^4 ([B.Y. Chen - 1973; S.T Yau - 1974])

I. *PMC* surfaces in \mathbb{H}^4 ([B.Y. Chen - 1973; S.T. Yau - 1974])

PMC surfaces in H⁴:

-- CMC surfaces in a totally umbilical or a totally geodesic hypersurface of H⁴

-- minimal surfaces in a totally umbilical or a totally geodesic hypersurface of H⁴

II. The study of *CMC* biconservative surfaces in $N^4(c)$

II. The study of *CMC* biconservative surfaces in $N^4(c)$

II. The study of *CMC* biconservative surfaces in \mathbb{R}^4 ([Montaldo, Oniciuc, Ratto - 2016])

II. The study of *CMC* biconservative surfaces in \mathbb{S}^4 or in \mathbb{H}^4 ([Montaldo, Oniciuc, Ratto - 2016])

III. The study of non- $C\!M\!C$ biconservative surfaces in $N^4(c)$

III. The study of non- $C\!M\!C$ biconservative surfaces in $N^4(c)$

Very difficult to handle!

III. The study of *PNMC* (and non-*CMC*) biconservative surfaces in $N^4(c)$

PNMC surfaces in $N^4(c)$ = parallel normalized mean curvature vector field surfaces in $N^4(c)$

III. The study of *PNMC* (and non-*CMC*) biconservative surfaces in \mathbb{R}^4 ([Turgay, Yeğin Şen - 2018])

III. The study of *PNMC* (and non-*CMC*) biconservative surfaces in S^4 ([N., Oniciuc, Turgay, Yeğin Şen - 2023])

III. The study of PNMC (and non-CMC) biconservative surfaces in \mathbb{H}^4

Work in progress!

The *PNMC* (and non-*CMC*) biconservative surfaces in \mathbb{S}^4

General context:

- connected, oriented, *PNMC*, non-*CMC* biconservative surfaces M^2 in \mathbb{S}^4
- f = |H| > 0, grad $f \neq 0$ at any point of M^2
- M² is completely contained in S⁴, i.e., for any open subset of M² there exists no great hypersphere S³ of S⁴ such that it lies in S³.

• positively oriented global orthonormal frame fields $\{E_1, E_2\}$ in the tangent bundle TM^2 and $\{E_3, E_4\}$ in the normal bundle NM^2

$$E_1 = rac{\mathrm{grad}f}{|\mathrm{grad}f|}$$
 and $E_3 = rac{H}{f}$.

• $E_2 f = 0$.

• Notations: $A_3 = A_{E_3}$ and $A_4 = A_{E_4}$.

Theorem 5.1

and

Let $\varphi : (M^2, g) \to \mathbb{S}^4$ be a PNMC biconservative immersion. Then, the following hold:

(i)

$$\nabla_{E_1} E_1 = \nabla_{E_1} E_2 = 0, \quad \nabla_{E_2} E_1 = -\frac{3}{4} \frac{E_1 f}{f} E_2, \quad \nabla_{E_2} E_2 = \frac{3}{4} \frac{E_1 f}{f} E_1$$
(1)
$$\nabla^{\perp} E_1 = 0, \quad \nabla^{\perp} E_2 = 0, \quad \nabla_{E_2} E_2 = \frac{3}{4} \frac{E_1 f}{f} E_1$$
(1)

$$\nabla^{\perp} E_3 = 0, \qquad \nabla^{\perp} E_4 = 0;$$

(ii)

$$A_3=\left(\begin{array}{cc} -f & 0\\ 0 & 3f \end{array}\right),\quad A_4=\left(\begin{array}{cc} cf^{3/2} & 0\\ 0 & -cf^{3/2} \end{array}\right),$$

where c is a non-zero real constant;

Theorem (5.1 - continued)

(iii)

$$1 - K = 3f^2 + c^2 f^3,$$

thus 1 - K > 0 on M^2 ;

(iv) the level curves of *K* are circles of *M*² with positive constant signed curvature

$$\kappa = \frac{3}{4} \frac{|\text{grad}f|}{f} = \frac{|\text{grad}K|}{4f^2 (2 + c^2 f)} > 0;$$
(3)

(v) f satisfies

$$f\Delta f + |\text{grad}f|^2 + \frac{4}{3}f^2 - 4f^4 - \frac{4}{3}c^2f^5 = 0;$$
(4)

(2)

Theorem (5.1 - continued)

(vi) around any point of M^2 there exists a positively oriented local chart $X^f = X^f(u, v)$ such that

$$\left(f \circ X^{f}\right)(u,v) = f(u,v) = f(u)$$

and f satisfies the following second order ODE

$$f''f - \frac{7}{4}(f')^2 - \frac{4}{3}f^2 + 4f^4 + \frac{4}{3}c^2f^5 = 0$$
(5)

and the condition f' > 0. The first integral of the above second order ODE is

$$(f')^2 - 2C^2 f^{7/2} + \frac{16}{9} f^2 + 16f^4 + \frac{16}{9} c^2 f^5 = 0,$$
 (6)

where C is a non-zero real constant.

Remark

We note that the constant *c* is unique, depends on (M^2, g) and it is not an indexing constant.

- Intrinsic approach
- Extrinsic approach

Intrinsic approach

- Prove that if there are two *PNMC* biconservative immersions from a given abstract surface φ₁, φ₂ : (M², g) → S⁴, then they are congruent;
- The main result: given an abstract surface (M^2, g) , then it admits a (unique) *PNMC* biconservative immersion $\varphi : (M^2, g) \to \mathbb{S}^4$ iff. the abstract surface (M^2, g) satisfies certain intrinsic conditions.

Objective: To prove the existence and the classification of all abstract surfaces that satisfy those conditions.

Idea: To work with the curvature κ of the level curves of *K*; to show that κ satisfies a third order *ODE* and κ determines uniquely the abstract surface.

The intrinsic characterization theorem

Theorem 5.2

Let (M^2, g) be an abstract surface. Then M^2 admits locally a (unique) *PNMC* biconservative embedding in \mathbb{S}^4 if and only if the metric g is given by

 $g(u,s) = du^2 + e^{2\int_0^u \kappa(\tau) d\tau} ds^2,$

where κ is a positive solution of the following *ODE*

 $3\kappa\kappa''' + 26\kappa^2\kappa'' - 3\kappa'\kappa'' + 72\kappa^3\kappa' + 32\kappa^3 + 32\kappa^5 = 0,$

which bears certain conditions.

(7)

Initial data:

$$\begin{cases} \kappa(0) = \kappa_0 > 0, \quad (\kappa \text{ is positive}) \\ \kappa'(0) = \kappa'_0 > -1 - \kappa_0^2, \quad (1 - K > 0) \\ -4\kappa_0 - 6\kappa_0\kappa'_0 - 4\kappa_0^3 < \kappa''(0) = \kappa''_0 < \frac{1}{3} \left(-8\kappa_0 - 14\kappa_0\kappa'_0 - 8\kappa_0^3 \right). \end{cases}$$
(8)

Therefore, the curvature κ of the level curves of *K* determines the abstract surface which we look for. The correspondence

$$\kappa = \kappa(u) \longrightarrow g = g(u,s)$$

is bijective (up to isometries of the metric and translations of the argument for κ).

Question: How many non-isometric *PNMC* biconservative surfaces in \mathbb{S}^4 are?

Answer: We can perform a change of coordinates such that we can see that the abstract surfaces (M^2, g) that admit a *PNMC* biconservative immersion in \mathbb{S}^4 form a family indexed by 2 parameters.

The intrinsic characterization theorem

Theorem 5.3

Let (M^2, g) be an abstract surface. Then M^2 admits locally a (unique) *PNMC* biconservative embedding in \mathbb{S}^4 if and only if the metric g is given by

$$g(f,t) = \frac{1}{2C^2 f^{7/2} - \frac{16}{9}c^2 f^5 - 16f^4 - \frac{16}{9}f^2} df^2 + \frac{1}{f^{3/2}} dt^2,$$

where C and c are arbitrary non-zero real constants.

Extrinsic approach

We will present a geometric description of the biconservative surface M^2 in \mathbb{S}^4 , but viewed in \mathbb{R}^5 .

- Find some properties of the integral curves of E_1 (for example, E_2 is constant along these curves viewed in \mathbb{R}^5).
- Find some properties of the integral curves of *E*₂ (for example, these curves are circles in ℝ⁵).
- Find the local parametrization of M^2 in \mathbb{R}^5 . This parametrization will rely on a solution f of a second order *ODE* and on a certain curve in \mathbb{S}^3 , uniquely determined by f and the condition that its position vector has to make a specific angle with a constant direction.

Theorem 5.4

Let $\varphi : (M^2, g) \to \mathbb{S}^4$ be a *PNMC* biconservative immersion and denote $\Phi = i \circ \varphi : M^2 \to \mathbb{R}^5$, where $i : \mathbb{S}^4 \to \mathbb{R}^5$ is the canonical inclusion. We identify M^2 with its image, and then, M^2 can be locally parametrized by

$$\Phi(u,t) = \hat{\gamma}(u) + \frac{1}{\hat{\kappa}(u)} \left((\cos(t) - 1) c_1 + \sin(t) c_2 \right),$$

where

- (i) κ̂(u) = ^{3|C|}/_{2√2}f^{3/4}(u), with f = f(u) is a positive solution of the second order ODE (5), with f' > 0, and whose first integral is (6). The non-zero constant C is given in (6);
- (ii) c_1 and c_2 are constant orthonormal vectors in \mathbb{R}^5 ;

Theorem (5.4 - continued)

(iii) γ̂ = γ̂(u) is a curve in ℝ⁵ such that γ̂ = i ∘ γ̂, where γ̂ is a curve parametrized by arc-length which lies in a great hypersphere S³ = S⁴ ∩ Π; the hyperplane Π contains the origin and is orthogonal to c₂. Moreover, the curvature and torsion of γ̂, as a curve in S³, are given by

$$k(u) = f(u)\sqrt{1 + c^2 f(u)}$$
 (9)

and

$$\tau(u) = \frac{|c|\sqrt{2C^2 f^{7/2}(u) - \frac{16}{9}f^2(u) - 16f^4(u) - \frac{16}{9}c^2 f^5(u)}}{2\sqrt{f(u)}\left(1 + c^2 f(u)\right)},$$
 (10)

and the curve $\hat{\gamma}$ must satisfy

$$\langle \hat{\gamma}(u), c_1 \rangle = \frac{1}{\hat{\kappa}(u)}.$$
 (11)

Final answer

The codimension reduction for *PNMC* biconservative surfaces

Theorem 5.5

Let $\varphi : (M^2, g) \to \mathbb{S}^n$, $n \ge 5$, be a PNMC biconservative surface. Assume that the rank of the first normal bundle is 2 or 3. Then, M^2 lies in some 4-dimensional great sphere \mathbb{S}^4 of \mathbb{S}^n .

The codimension reduction for *PNMC* biconservative surfaces

Theorem 5.5

Let $\varphi : (M^2, g) \to \mathbb{S}^n$, $n \ge 5$, be a PNMC biconservative surface. Assume that the rank of the first normal bundle is 2 or 3. Then, M^2 lies in some 4-dimensional great sphere \mathbb{S}^4 of \mathbb{S}^n .

- $\{E_1, E_2\}$ diagonalizes all the A_{α} , $\alpha \in \{3, 4, ..., n\}$, simultaneously and therefore M^2 has flat normal bundle.
- the first normal bundle of M^2 in \mathbb{S}^n is given by $N_1 = \operatorname{span} \operatorname{Im}(B) = \operatorname{span} \{B(E_1, E_1), B(E_2, E_2)\}$
- N_1 is a parallel with respect to the normal connection, i.e., $\nabla_{E_i}^{\perp} B(E_j, E_j) \in C(N_1)$, for i, j = 1, 2.
- the codimension reduction result follows from Erbacher 1971.

References I

- A. Balmuş, S. Montaldo, and C. Oniciuc, Biharmonic PNMC submanifolds in spheres, Ark. Mat. 51 (2013), 197–221.
- [2] R. Caddeo, S. Montaldo, C. Oniciuc, and P. Piu, Surfaces in three-dimensional space forms with divergence-free stress-bienergy tensor, Ann. Mat. Pura Appl. (4) 193 (2014), 529–550.

[3] B.Y. Chen,

On the surface with parallel mean curvature vector, Indiana Univ. Math. J. 22 (1973), 655–666.

[4] J. Erbacher,

Reduction of the codimension of an isometric immersion, J. Differential Geometry 5 (1971), 333–340.

[5] Th. Hasanis, Th. Vlachos,

Hypersurfaces in E^4 with harmonic mean curvature vector field, Math. Nachr. 172 (1995), 145–169.

References II

[6] G.Y. Jiang,

2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A7(4) (1986), 389–402.

[7] G.Y. Jiang,

The conservation law for 2*-harmonic maps between Riemannian manifolds*, Acta Math. Sinica 30 (1987), 220–225.

[8] E. Loubeau, C. Oniciuc,

Biharmonic surfaces of constant mean curvature, Pacific J. Math. 271 (2014), 213–230.

[9] S. Montaldo, C. Oniciuc, and A. Ratto, *Biconservative surfaces*, J. Geom. Anal. 26 (2016), 313–329.

[10] S. Nistor, On biconservative surfaces, Differential Geom. Appl. 54 (2017), 490–502.

References III

- [11] S. Nistor, C. Oniciuc, N.C. Turgay, R. Yeğin Şen, Biconservative surfaces in the 4-dimensional Euclidean sphere, Ann. di Mat. Pura ed Appl., https://doi.org/10.1007/s10231-023-01323-0, 2023.
- [12] R. Yeğin Şen, N.C. Turgay, On biconservative surfaces in 4-dimensional Euclidean space, J. Math. Anal. Appl. 460 (2018), 565–581.

[13] S.T. Yau,

Submanifolds with constant mean curvature I, Am. J. Math. 96 (1974), 346–366.

Thank you for your attention!