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Introducing biconservative submanifolds

Biharmonic maps

Let (Mm,g) and (Nn,h) be two Riemannian manifolds. Assume that M is
compact and consider

Bienergy functional

E2 : C∞ (Mm,Nn)→ R, E2 (ϕ) =
1
2

∫
M
|τ(ϕ)|2vg

Euler-Lagrange equation

τ2(ϕ) = −∆
ϕ

τ(ϕ)− traceg RN(dϕ,τ(ϕ))dϕ

= 0.

Critical points of E2 are called biharmonic maps.
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Introducing biconservative submanifolds

The biharmonic equation (G.Y. Jiang - 1986)

τ2(ϕ) =−∆
ϕ

τ(ϕ)− traceg RN(dϕ,τ(ϕ))dϕ = 0,

where
∆

ϕ =− traceg
(
∇

ϕ
∇

ϕ −∇
ϕ

∇

)
is the rough Laplacian on sections of ϕ−1TNn and

RN(X,Y)Z = ∇
N
X ∇

N
Y Z −∇

N
Y ∇

N
X Z −∇

N
[X,Y]Z.

is a fourth-order non-linear elliptic equation;
any harmonic map is biharmonic;
a non-harmonic biharmonic map is called proper-biharmonic;
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Introducing biconservative submanifolds

The stress-bienergy tensor

G.Y. Jiang, 1987 defined the stress-energy tensor S2 for the bienergy
functional, and called it the stress-bienergy tensor:

⟨S2(X),Y⟩=
1
2
|τ(ϕ)|2⟨X,Y⟩+ ⟨dϕ,∇τ(ϕ)⟩⟨X,Y⟩

−⟨dϕ(X),∇Yτ(ϕ)⟩−⟨dϕ(Y),∇Xτ(ϕ)⟩.

It satisfies
divS2 =−⟨τ2(ϕ),dϕ⟩.

ϕ = biharmonic ⇒ divS2 = 0.

If ϕ is a submersion, divS2 = 0 if and only if ϕ is biharmonic.

If ϕ : Mm → Nn is an isometric immersion then (divS2)
♯ =−τ2(ϕ)

⊤. In
general, for an isometric immersion, divS2 ̸= 0.

7 / 47



Introducing biconservative submanifolds

The stress-bienergy tensor

G.Y. Jiang, 1987 defined the stress-energy tensor S2 for the bienergy
functional, and called it the stress-bienergy tensor:

⟨S2(X),Y⟩=
1
2
|τ(ϕ)|2⟨X,Y⟩+ ⟨dϕ,∇τ(ϕ)⟩⟨X,Y⟩

−⟨dϕ(X),∇Yτ(ϕ)⟩−⟨dϕ(Y),∇Xτ(ϕ)⟩.

It satisfies
divS2 =−⟨τ2(ϕ),dϕ⟩.

ϕ = biharmonic ⇒ divS2 = 0.

If ϕ is a submersion, divS2 = 0 if and only if ϕ is biharmonic.

If ϕ : Mm → Nn is an isometric immersion then (divS2)
♯ =−τ2(ϕ)

⊤. In
general, for an isometric immersion, divS2 ̸= 0.

7 / 47



Introducing biconservative submanifolds

The stress-bienergy tensor

G.Y. Jiang, 1987 defined the stress-energy tensor S2 for the bienergy
functional, and called it the stress-bienergy tensor:

⟨S2(X),Y⟩=
1
2
|τ(ϕ)|2⟨X,Y⟩+ ⟨dϕ,∇τ(ϕ)⟩⟨X,Y⟩

−⟨dϕ(X),∇Yτ(ϕ)⟩−⟨dϕ(Y),∇Xτ(ϕ)⟩.

It satisfies
divS2 =−⟨τ2(ϕ),dϕ⟩.

ϕ = biharmonic ⇒ divS2 = 0.

If ϕ is a submersion, divS2 = 0 if and only if ϕ is biharmonic.

If ϕ : Mm → Nn is an isometric immersion then (divS2)
♯ =−τ2(ϕ)

⊤. In
general, for an isometric immersion, divS2 ̸= 0.

7 / 47



Introducing biconservative submanifolds

The stress-bienergy tensor

G.Y. Jiang, 1987 defined the stress-energy tensor S2 for the bienergy
functional, and called it the stress-bienergy tensor:

⟨S2(X),Y⟩=
1
2
|τ(ϕ)|2⟨X,Y⟩+ ⟨dϕ,∇τ(ϕ)⟩⟨X,Y⟩

−⟨dϕ(X),∇Yτ(ϕ)⟩−⟨dϕ(Y),∇Xτ(ϕ)⟩.

It satisfies
divS2 =−⟨τ2(ϕ),dϕ⟩.

ϕ = biharmonic ⇒ divS2 = 0.

If ϕ is a submersion, divS2 = 0 if and only if ϕ is biharmonic.

If ϕ : Mm → Nn is an isometric immersion then (divS2)
♯ =−τ2(ϕ)

⊤. In
general, for an isometric immersion, divS2 ̸= 0.

7 / 47



Introducing biconservative submanifolds

Biharmonic and biconservative submanifolds

Definition 3.1
A submanifold ϕ : Mm → Nn is called biharmonic if ϕ is a biharmonic map, i.e.,
τ2(ϕ) = 0.

Definition 3.2 (Hasanis, Vlachos - 1995; Caddeo, Monataldo, Oniciuc, Piu -
2014)

A submanifold ϕ : Mm → Nn is called biconservative if divS2 = 0, i.e.,
τ2(ϕ)

⊤ = 0.
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Introducing biconservative submanifolds

Mm submanifold of Nn

Mm biconservative

Mm biharmonic

Mm minimal
(H = 0)
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Introducing biconservative submanifolds

Characterization results

Proposition 3.3

Let ϕ : Mm → Nn be a submanifold in the n-dimensional manifold. The
following conditions are equivalent:

1 M is biconservative;
2 traceA

∇⊥
(·)H

(·)+ trace(∇AH)(·, ·)+ trace
(
RN(·,H)·

)⊤
= 0;

3 4traceA
∇⊥
(·)H

(·)+mgrad
(
|H|2

)
+4trace

(
RN(·,H)·

)⊤
= 0;

4 4trace(∇AH)(·, ·)−mgrad
(
|H|2

)
= 0.
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Introducing biconservative submanifolds

Direct consequences

Corollary 3.4

If ϕ : Mm → Nn has ∇AH = 0, then it is biconservative.
If ϕ : Mm → Nn(c) is a PMC submanifold, i.e. ∇⊥H = 0, in a space form of
constant sectional curvature c, then it is biconservative.
If ϕ : Mm → Nm+1(c) is a CMC hypersurface, i.e. |H| is constant, then it is
biconservative.
If ϕ : Mm → Nm+1(c) is a hypersurface, then it is biconservative if and only
if

A(grad f ) =−m
2

f grad f .

Here, f = traceA/m denotes the mean curvature function.

11 / 47



Biconservative surfaces

Outline

1 Introducing biconservative submanifolds

2 Biconservative surfaces

3 Biconservative surfaces in S4

12 / 47



Biconservative surfaces

Theorem 4.1 (Loubeau, Oniciuc - 2014; Montaldo, Oniciuc, Ratto - 2016; N. -
2017)

Let ϕ : M2 → Nn be a CMC surface. Then the following properties are
equivalent:

M is biconservative;
⟨AH (∂z) ,∂z⟩ is holomorphic;
AH is a Codazzi tensor field.

Theorem 4.2 (Loubeau, Oniciuc - 2014; Montaldo, Oniciuc, Ratto - 2016)

Let ϕ : M2 → Nn be a CMC biconservative surface. If M2 is topologically a
sphere S2, then it is pseudo-umbilical.

Theorem 4.3 (Balmuş, Montaldo, Oniciuc - 2013)

Let ϕ : M2 → Nn be a pseudo-umbilical surface. Then M2 is biconservative if
and only if M2 is CMC.
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Biconservative surfaces

Theorem 4.4 (Loubeau, Oniciuc - 2014; N. - 2017)

Let ϕ : M2 → Nn be a compact CMC biconservative surface. If M2 has no
pseudo-umbilical points, then it is topologically a torus.

Theorem 4.5 (Loubeau, Oniciuc - 2014; N. - 2017)

Let ϕ : M2 → Nn be a compact CMC biconservative surface. If the Gaussian
curvature K ≥ 0, then ∇AH = 0 and K = 0 or M2 is pseudo-umbilical.
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Biconservative surfaces in S4

I. PMC surfaces in N4(c)
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Biconservative surfaces in S4

I. PMC surfaces in R4 ([B.Y. Chen - 1973; S.T. Yau -
1974])
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Biconservative surfaces in S4

I. PMC surfaces in S4 ([B.Y. Chen - 1973; S.T Yau -
1974])
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Biconservative surfaces in S4

I. PMC surfaces in H4 ([B.Y. Chen - 1973; S.T. Yau -
1974])
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Biconservative surfaces in S4

II. The study of CMC biconservative surfaces in N4(c)

∇⊥H = 0 |H| is constant
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Biconservative surfaces in S4

II. The study of CMC biconservative surfaces in R4

([Montaldo, Oniciuc, Ratto - 2016])
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Biconservative surfaces in S4

II. The study of CMC biconservative surfaces in S4 or
in H4 ([Montaldo, Oniciuc, Ratto - 2016])
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Biconservative surfaces in S4

III. The study of non-CMC biconservative surfaces in
N4(c)

Very difficult to handle!
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Biconservative surfaces in S4

III. The study of PNMC (and non-CMC) biconservative
surfaces in N4(c)
PNMC surfaces in N4(c) = parallel normalized mean curvature vector field
surfaces in N4(c)

∇⊥H = 0 ∇⊥ H
|H| = 0
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Biconservative surfaces in S4

III. The study of PNMC (and non-CMC) biconservative
surfaces in R4 ([Turgay, Yeğin Şen - 2018])
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Biconservative surfaces in S4

III. The study of PNMC (and non-CMC) biconservative
surfaces in S4 ([N., Oniciuc, Turgay, Yeğin Şen - 2023])
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Biconservative surfaces in S4

III. The study of PNMC (and non-CMC) biconservative
surfaces in H4

Work in progress!
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Biconservative surfaces in S4

The PNMC (and non-CMC) biconservative surfaces in S4
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Biconservative surfaces in S4

General context:
connected, oriented, PNMC, non-CMC biconservative surfaces M2 in S4

f = |H|> 0, grad f ̸= 0 at any point of M2

M2 is completely contained in S4, i.e., for any open subset of M2 there
exists no great hypersphere S3 of S4 such that it lies in S3.

M2 is completely
contained in S4

The rank of the
first normal bundle of M2

N1 = spanIm(B) is 2

positively oriented global orthonormal frame fields {E1,E2} in the tangent
bundle TM2 and {E3,E4} in the normal bundle NM2

E1 =
grad f
|grad f |

and E3 =
H
f
.

E2f = 0.
Notations: A3 = AE3 and A4 = AE4 .
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Biconservative surfaces in S4

Theorem 5.1

Let ϕ :
(
M2,g

)
→ S4 be a PNMC biconservative immersion. Then, the following

hold:
(i)

∇E1E1 = ∇E1 E2 = 0, ∇E2E1 =−3
4

E1f
f

E2, ∇E2E2 =
3
4

E1f
f

E1 (1)

and
∇
⊥E3 = 0, ∇

⊥E4 = 0;

(ii)

A3 =

(
−f 0
0 3f

)
, A4 =

(
cf 3/2 0

0 −cf 3/2

)
,

where c is a non-zero real constant;
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Biconservative surfaces in S4

Theorem (5.1 - continued)

(iii)
1−K = 3f 2 + c2f 3, (2)

thus 1−K > 0 on M2;
(iv) the level curves of K are circles of M2 with positive constant signed

curvature
κ =

3
4
|grad f |

f
=

|gradK|
4f 2 (2+ c2f )

> 0; (3)

(v) f satisfies

f ∆f + |grad f |2 + 4
3

f 2 −4f 4 − 4
3

c2f 5 = 0; (4)
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Biconservative surfaces in S4

Theorem (5.1 - continued)

(vi) around any point of M2 there exists a positively oriented local chart
Xf = Xf (u,v) such that (

f ◦Xf
)
(u,v) = f (u,v) = f (u)

and f satisfies the following second order ODE

f ′′f − 7
4
(
f ′
)2 − 4

3
f 2 +4f 4 +

4
3

c2f 5 = 0 (5)

and the condition f ′ > 0. The first integral of the above second order ODE
is (

f ′
)2 −2C2f 7/2 +

16
9

f 2 +16f 4 +
16
9

c2f 5 = 0, (6)

where C is a non-zero real constant.

Remark

We note that the constant c is unique, depends on
(
M2,g

)
and it is not an

indexing constant.
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Biconservative surfaces in S4

Intrinsic approach

Extrinsic approach
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Biconservative surfaces in S4

Intrinsic approach

Prove that if there are two PNMC biconservative immersions from a given
abstract surface ϕ1,ϕ2 :

(
M2,g

)
→ S4, then they are congruent;

The main result: given an abstract surface
(
M2,g

)
, then it admits a

(unique) PNMC biconservative immersion ϕ :
(
M2,g

)
→ S4 iff. the abstract

surface
(
M2,g

)
satisfies certain intrinsic conditions.

Studying the PNMC
biconservative immersions

ϕ :
(
M2,g

)
→ S4

Studying the abstract surfaces(
M2,g

)
satisfying

certain conditions

Objective: To prove the existence and the classification of all abstract
surfaces that satisfy those conditions.
Idea: To work with the curvature κ of the level curves of K; to show that κ

satisfies a third order ODE and κ determines uniquely the abstract surface.
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Biconservative surfaces in S4

The intrinsic characterization theorem

Theorem 5.2

Let
(
M2,g

)
be an abstract surface. Then M2 admits locally a (unique) PNMC

biconservative embedding in S4 if and only if the metric g is given by

g(u,s) = du2 + e2
∫ u

0 κ(τ) dτ ds2,

where κ is a positive solution of the following ODE

3κκ
′′′+26κ

2
κ
′′−3κ

′
κ
′′+72κ

3
κ
′+32κ

3 +32κ
5 = 0, (7)

which bears certain conditions.
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Biconservative surfaces in S4

Initial data:
κ(0) = κ0 > 0, (κ is positive)
κ ′(0) = κ ′

0 >−1−κ2
0 , (1−K > 0)

−4κ0 −6κ0κ ′
0 −4κ3

0 < κ ′′(0) = κ ′′
0 < 1

3

(
−8κ0 −14κ0κ ′

0 −8κ3
0

)
.

(8)

Therefore, the curvature κ of the level curves of K determines the abstract
surface which we look for. The correspondence

κ = κ(u)−→ g = g(u,s)

is bijective (up to isometries of the metric and translations of the argument for
κ).
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Biconservative surfaces in S4

Question: How many non-isometric PNMC biconservative surfaces in S4 are?

Answer: We can perform a change of coordinates such that we can see that
the abstract surfaces

(
M2,g

)
that admit a PNMC biconservative immersion in

S4 form a family indexed by 2 parameters.
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Biconservative surfaces in S4

The intrinsic characterization theorem

Theorem 5.3

Let
(
M2,g

)
be an abstract surface. Then M2 admits locally a (unique) PNMC

biconservative embedding in S4 if and only if the metric g is given by

g(f , t) =
1

2C2f 7/2 − 16
9 c2f 5 −16f 4 − 16

9 f 2
df 2 +

1
f 3/2 dt2,

where C and c are arbitrary non-zero real constants.
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Biconservative surfaces in S4

Extrinsic approach

We will present a geometric description of the biconservative surface M2 in S4,
but viewed in R5.

Find some properties of the integral curves of E1 (for example, E2 is
constant along these curves viewed in R5).
Find some properties of the integral curves of E2 (for example, these
curves are circles in R5).
Find the local parametrization of M2 in R5. This parametrization will rely
on a solution f of a second order ODE and on a certain curve in S3,
uniquely determined by f and the condition that its position vector has to
make a specific angle with a constant direction.
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Biconservative surfaces in S4

Theorem 5.4

Let ϕ :
(
M2,g

)
→ S4 be a PNMC biconservative immersion and denote

Φ = i◦ϕ : M2 → R5, where i : S4 → R5 is the canonical inclusion. We identify
M2 with its image, and then, M2 can be locally parametrized by

Φ(u, t) = γ̂(u)+
1

κ̂(u)
((cos(t)−1)c1 + sin(t)c2) ,

where
(i) κ̂(u) = 3|C|

2
√

2
f 3/4(u), with f = f (u) is a positive solution of the second order

ODE (5), with f ′ > 0, and whose first integral is (6). The non-zero
constant C is given in (6);

(ii) c1 and c2 are constant orthonormal vectors in R5;
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Biconservative surfaces in S4

Theorem (5.4 - continued)

(iii) γ̂ = γ̂(u) is a curve in R5 such that γ̂ = i◦ γ̃, where γ̃ is a curve
parametrized by arc-length which lies in a great hypersphere S3 = S4 ∩Π;
the hyperplane Π contains the origin and is orthogonal to c2. Moreover,
the curvature and torsion of γ̃, as a curve in S3, are given by

k(u) = f (u)
√

1+ c2f (u) (9)

and

τ(u) =
|c|
√

2C2f 7/2(u)− 16
9 f 2(u)−16f 4(u)− 16

9 c2f 5(u)

2
√

f (u)(1+ c2f (u))
, (10)

and the curve γ̂ must satisfy

⟨γ̂(u),c1⟩=
1

κ̂(u)
. (11)
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Biconservative surfaces in S4

Final answer
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Biconservative surfaces in S4

The codimension reduction for PNMC biconservative
surfaces

Theorem 5.5

Let ϕ :
(
M2,g

)
→ Sn, n ≥ 5, be a PNMC biconservative surface. Assume that

the rank of the first normal bundle is 2 or 3. Then, M2 lies in some
4-dimensional great sphere S4 of Sn.

{E1,E2} diagonalizes all the Aα , α ∈ {3,4, . . . ,n}, simultaneously and
therefore M2 has flat normal bundle.
the first normal bundle of M2 in Sn is given by
N1 = spanIm(B) = span{B(E1,E1) ,B(E2,E2)}
N1 is a parallel with respect to the normal connection, i.e.,
∇⊥

Ei
B(Ej,Ej) ∈ C (N1), for i, j = 1,2.

the codimension reduction result follows from Erbacher - 1971.
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