PNMC biconservative surfaces in 4-dimensional Euclidean sphere

Simona Nistor

"Alexandru Ioan Cuza" University of laşi, Romania

September 06-09, 2023
Differential Geometry Workshop 2023

Articles

- S. N., C. Oniciuc, N.C. Turgay, R. Yeğin Şen, Biconservative surfaces in the 4-dimensional Euclidean sphere, Ann. di Mat. Pura ed Appl., https://doi.org/10.1007/s10231-023-01323-0, 2023.

Outline

(1) Introducing biconservative submanifolds

Outline

(1) Introducing biconservative submanifolds
(2) Biconservative surfaces

Outline

(1) Introducing biconservative submanifolds
(2) Biconservative surfaces
(3) Biconservative surfaces in \mathbb{S}^{4}

Outline

(1) Introducing biconservative submanifolds

2 Biconservative surfaces

(3) Biconservative surfaces in \mathbb{S}^{4}

Biharmonic maps

Let $\left(M^{m}, g\right)$ and $\left(N^{n}, h\right)$ be two Riemannian manifolds. Assume that M is compact and consider

- Bienergy functional

$$
E_{2}: C^{\infty}\left(M^{m}, N^{n}\right) \rightarrow \mathbb{R}, \quad E_{2}(\varphi)=\frac{1}{2} \int_{M}|\tau(\varphi)|^{2} v_{g}
$$

- Euler-Lagrange equation

$$
\begin{aligned}
\tau_{2}(\varphi) & =-\Delta^{\varphi} \tau(\varphi)-\operatorname{trace}_{g} R^{N}(d \varphi, \tau(\varphi)) d \varphi \\
& =0 .
\end{aligned}
$$

Critical points of E_{2} are called biharmonic maps.

Biharmonic maps

Let $\left(M^{m}, g\right)$ and $\left(N^{n}, h\right)$ be two Riemannian manifolds. Assume that M^{m} is compact and consider

- Bienergy functional

$$
E_{2}: C^{\infty}\left(M^{m}, N^{n}\right) \rightarrow \mathbb{R}, \quad E_{2}(\varphi)=\frac{1}{2} \int_{M}|\tau(\varphi)|^{2} v_{g}
$$

- Euler-Lagrange equation

$$
\begin{aligned}
\tau_{2}(\varphi) & =-\Delta^{\varphi} \tau(\varphi)-\operatorname{trace}_{g} R^{N}(d \varphi, \tau(\varphi)) d \varphi \\
& =0 .
\end{aligned}
$$

Critical points of E_{2} are called biharmonic maps.

The biharmonic equation (G.Y. Jiang - 1986)

$$
\tau_{2}(\varphi)=-\Delta^{\varphi} \tau(\varphi)-\operatorname{trace}_{g} R^{N}(d \varphi, \tau(\varphi)) d \varphi=0
$$

where

$$
\Delta^{\varphi}=-\operatorname{trace}_{g}\left(\nabla^{\varphi} \nabla^{\varphi}-\nabla_{\nabla}^{\varphi}\right)
$$

is the rough Laplacian on sections of $\varphi^{-1} T N^{n}$ and

$$
R^{N}(X, Y) Z=\nabla_{X}^{N} \nabla_{Y}^{N} Z-\nabla_{Y}^{N} \nabla_{X}^{N} Z-\nabla_{[X, Y]}^{N} Z .
$$

- is a fourth-order non-linear elliptic equation;
- any harmonic map is biharmonic;
- a non-harmonic biharmonic map is called proper-biharmonic;

The biharmonic equation (G.Y. Jiang - 1986)

$$
\tau_{2}(\varphi)=-\Delta^{\varphi} \tau(\varphi)-\operatorname{trace}_{g} R^{N}(d \varphi, \tau(\varphi)) d \varphi=0
$$

where

$$
\Delta^{\varphi}=-\operatorname{trace}_{g}\left(\nabla^{\varphi} \nabla^{\varphi}-\nabla_{\nabla}^{\varphi}\right)
$$

is the rough Laplacian on sections of $\varphi^{-1} T N^{n}$ and

$$
R^{N}(X, Y) Z=\nabla_{X}^{N} \nabla_{Y}^{N} Z-\nabla_{Y}^{N} \nabla_{X}^{N} Z-\nabla_{[X, Y]}^{N} Z .
$$

- is a fourth-order non-linear elliptic equation;
- any harmonic map is biharmonic;
- a non-harmonic biharmonic map is called proper-biharmonic;

The stress-bienergy tensor

- G.Y. Jiang, 1987 defined the stress-energy tensor S_{2} for the bienergy functional, and called it the stress-bienergy tensor:

$$
\begin{aligned}
\left\langle S_{2}(X), Y\right\rangle= & \frac{1}{2}|\tau(\varphi)|^{2}\langle X, Y\rangle+\langle d \varphi, \nabla \tau(\varphi)\rangle\langle X, Y\rangle \\
& -\left\langle d \varphi(X), \nabla_{Y} \tau(\varphi)\right\rangle-\left\langle d \varphi(Y), \nabla_{X} \tau(\varphi)\right\rangle .
\end{aligned}
$$

It satisfies

$$
\operatorname{div} S_{2}=-\left\langle\tau_{2}(\varphi), d \varphi\right\rangle .
$$

The stress-bienergy tensor

- G.Y. Jiang, 1987 defined the stress-energy tensor S_{2} for the bienergy functional, and called it the stress-bienergy tensor:

$$
\begin{aligned}
\left\langle S_{2}(X), Y\right\rangle= & \frac{1}{2}|\tau(\varphi)|^{2}\langle X, Y\rangle+\langle d \varphi, \nabla \tau(\varphi)\rangle\langle X, Y\rangle \\
& -\left\langle d \varphi(X), \nabla_{Y} \tau(\varphi)\right\rangle-\left\langle d \varphi(Y), \nabla_{X} \tau(\varphi)\right\rangle .
\end{aligned}
$$

It satisfies

$$
\begin{gathered}
\operatorname{div} S_{2}=-\left\langle\tau_{2}(\varphi), d \varphi\right\rangle \\
\varphi=\text { biharmonic } \Rightarrow \operatorname{div} S_{2}=0 .
\end{gathered}
$$

The stress-bienergy tensor

- G.Y. Jiang, 1987 defined the stress-energy tensor S_{2} for the bienergy functional, and called it the stress-bienergy tensor:

$$
\begin{aligned}
\left\langle S_{2}(X), Y\right\rangle= & \frac{1}{2}|\tau(\varphi)|^{2}\langle X, Y\rangle+\langle d \varphi, \nabla \tau(\varphi)\rangle\langle X, Y\rangle \\
& -\left\langle d \varphi(X), \nabla_{Y} \tau(\varphi)\right\rangle-\left\langle d \varphi(Y), \nabla_{X} \tau(\varphi)\right\rangle .
\end{aligned}
$$

It satisfies

$$
\begin{gathered}
\operatorname{div} S_{2}=-\left\langle\tau_{2}(\varphi), d \varphi\right\rangle \\
\varphi=\text { biharmonic } \Rightarrow \operatorname{div} S_{2}=0 .
\end{gathered}
$$

If φ is a submersion, $\operatorname{div} S_{2}=0$ if and only if φ is biharmonic.

The stress-bienergy tensor

- G.Y. Jiang, 1987 defined the stress-energy tensor S_{2} for the bienergy functional, and called it the stress-bienergy tensor:

$$
\begin{aligned}
\left\langle S_{2}(X), Y\right\rangle= & \frac{1}{2}|\tau(\varphi)|^{2}\langle X, Y\rangle+\langle d \varphi, \nabla \tau(\varphi)\rangle\langle X, Y\rangle \\
& -\left\langle d \varphi(X), \nabla_{Y} \tau(\varphi)\right\rangle-\left\langle d \varphi(Y), \nabla_{X} \tau(\varphi)\right\rangle .
\end{aligned}
$$

It satisfies

$$
\begin{gathered}
\operatorname{div} S_{2}=-\left\langle\tau_{2}(\varphi), d \varphi\right\rangle \\
\varphi=\text { biharmonic } \Rightarrow \operatorname{div} S_{2}=0 .
\end{gathered}
$$

If φ is a submersion, $\operatorname{div} S_{2}=0$ if and only if φ is biharmonic.
If $\varphi: M^{m} \rightarrow N^{n}$ is an isometric immersion then $\left(\operatorname{div} S_{2}\right)^{\sharp}=-\tau_{2}(\varphi)^{\top}$. In general, for an isometric immersion, $\operatorname{div} S_{2} \neq 0$.

Biharmonic and biconservative submanifolds

Definition 3.1

A submanifold $\varphi: M^{m} \rightarrow N^{n}$ is called biharmonic if φ is a biharmonic map, i.e., $\tau_{2}(\varphi)=0$.

Biharmonic and biconservative submanifolds

Definition 3.1

A submanifold $\varphi: M^{m} \rightarrow N^{n}$ is called biharmonic if φ is a biharmonic map, i.e., $\tau_{2}(\varphi)=0$.

```
Definition 3.2 (Hasanis, Vlachos - 1995; Caddeo, Monataldo, Oniciuc, Piu - 2014)
```

A submanifold $\varphi: M^{m} \rightarrow N^{n}$ is called biconservative if $\operatorname{div} S_{2}=0$, i.e., $\tau_{2}(\varphi)^{\top}=0$.

M^{m} submanifold of N^{n}

M^{m} submanifold of N^{n}

M^{m} biconservative

M^{m} submanifold of N^{n}

M^{m} biconservative
M^{m} biharmonic

M^{m} submanifold of N^{n}

M^{m} biconservative
M^{m} biharmonic
M^{m} minimal
($H=0$)

Characterization results

Proposition 3.3

Let $\varphi: M^{m} \rightarrow N^{n}$ be a submanifold in the n-dimensional manifold. The following conditions are equivalent:
(1) M is biconservative;
(2) $\operatorname{trace} A_{\nabla \frac{1}{\cdot} \cdot} H(\cdot)+\operatorname{trace}\left(\nabla A_{H}\right)(\cdot, \cdot)+\operatorname{trace}\left(R^{N}(\cdot, H) \cdot\right)^{\top}=0$;
(3) 4 trace $A_{\nabla \stackrel{\perp}{(\cdot)} H}(\cdot)+m \operatorname{grad}\left(|H|^{2}\right)+4 \operatorname{trace}\left(R^{N}(\cdot, H) \cdot\right)^{\top}=0$;
(4) $4 \operatorname{trace}\left(\nabla A_{H}\right)(\cdot, \cdot)-m \operatorname{grad}\left(|H|^{2}\right)=0$.

Direct consequences

Corollary 3.4

- If $\varphi: M^{m} \rightarrow N^{n}$ has $\nabla A_{H}=0$, then it is biconservative.
- If $\varphi: M^{m} \rightarrow N^{n}(c)$ is a PMC submanifold, i.e. $\nabla^{\perp} H=0$, in a space form of constant sectional curvature c, then it is biconservative.
- If $\varphi: M^{m} \rightarrow N^{m+1}(c)$ is a CMC hypersurface, i.e. $|H|$ is constant, then it is biconservative.
- If $\varphi: M^{m} \rightarrow N^{m+1}(c)$ is a hypersurface, then it is biconservative if and only if

$$
A(\operatorname{grad} f)=-\frac{m}{2} f \operatorname{grad} f
$$

Here, $f=$ trace A / m denotes the mean curvature function.

Outline

(1) Introducing biconservative submanifolds
(2) Biconservative surfaces
(3) Biconservative surfaces in \mathbb{S}^{4}

Theorem 4.1 (Loubeau, Oniciuc - 2014; Montaldo, Oniciuc, Ratto - 2016; N. 2017)

Let $\varphi: M^{2} \rightarrow N^{n}$ be a CMC surface. Then the following properties are equivalent:

- M is biconservative;
- $\left\langle A_{H}\left(\partial_{z}\right), \partial_{z}\right\rangle$ is holomorphic;
- A_{H} is a Codazzi tensor field.

Theorem 4.1 (Loubeau, Oniciuc - 2014; Montaldo, Oniciuc, Ratto - 2016; N. 2017)

Let $\varphi: M^{2} \rightarrow N^{n}$ be a CMC surface. Then the following properties are equivalent:

- M is biconservative;
- $\left\langle A_{H}\left(\partial_{z}\right), \partial_{z}\right\rangle$ is holomorphic;
- A_{H} is a Codazzi tensor field.

Theorem 4.2 (Loubeau, Oniciuc - 2014; Montaldo, Oniciuc, Ratto - 2016)
Let $\varphi: M^{2} \rightarrow N^{n}$ be a CMC biconservative surface. If M^{2} is topologically a sphere \mathbb{S}^{2}, then it is pseudo-umbilical.

Theorem 4.1 (Loubeau, Oniciuc - 2014; Montaldo, Oniciuc, Ratto - 2016; N. 2017)

Let $\varphi: M^{2} \rightarrow N^{n}$ be a CMC surface. Then the following properties are equivalent:

- M is biconservative;
- $\left\langle A_{H}\left(\partial_{z}\right), \partial_{z}\right\rangle$ is holomorphic;
- A_{H} is a Codazzi tensor field.

Theorem 4.2 (Loubeau, Oniciuc - 2014; Montaldo, Oniciuc, Ratto - 2016)
Let $\varphi: M^{2} \rightarrow N^{n}$ be a CMC biconservative surface. If M^{2} is topologically a sphere \mathbb{S}^{2}, then it is pseudo-umbilical.

Theorem 4.3 (Balmuş, Montaldo, Oniciuc - 2013)
Let $\varphi: M^{2} \rightarrow N^{n}$ be a pseudo-umbilical surface. Then M^{2} is biconservative if and only if M^{2} is CMC.
Theorem 4.4 (Loubeau, Oniciuc - 2014; N. - 2017)
Let $\varphi: M^{2} \rightarrow N^{n}$ be a compact CMC biconservative surface. If M^{2} has no pseudo-umbilical points, then it is topologically a torus.
Theorem 4.4 (Loubeau, Oniciuc - 2014; N. - 2017)
Let $\varphi: M^{2} \rightarrow N^{n}$ be a compact CMC biconservative surface. If M^{2} has no pseudo-umbilical points, then it is topologically a torus.

Theorem 4.5 (Loubeau, Oniciuc - 2014; N. - 2017)
Let $\varphi: M^{2} \rightarrow N^{n}$ be a compact CMC biconservative surface. If the Gaussian curvature $K \geq 0$, then $\nabla A_{H}=0$ and $K=0$ or M^{2} is pseudo-umbilical.

Outline

(1) Introducing biconservative submanifolds

2 Biconservative surfaces
(3) Biconservative surfaces in \mathbb{S}^{4}

I. $P M C$ surfaces in $N^{4}(c)$

I. PMC surfaces in \mathbb{R}^{4} ([B.Y. Chen-1973; S.T. Yau 1974])

I. PMC surfaces in \mathbb{S}^{4} ([B.Y. Chen - 1973; S.T Yau 1974])

I. PMC surfaces in \mathbb{H}^{4} ([B.Y. Chen - 1973; S.T. Yau 1974])

II. The study of $C M C$ biconservative surfaces in $N^{4}(c)$

II. The study of $C M C$ biconservative surfaces in $N^{4}(c)$

II. The study of CMC biconservative surfaces in \mathbb{R}^{4} ([Montaldo, Oniciuc, Ratto - 2016])

II. The study of $C M C$ biconservative surfaces in \mathbb{S}^{4} or in \mathbb{H}^{4} ([Montaldo, Oniciuc, Ratto - 2016])

III. The study of non-CMC biconservative surfaces in

 $N^{4}(c)$

III. The study of non-CMC biconservative surfaces in

 $N^{4}(c)$

Very difficult to handle!

III. The study of PNMC (and non-CMC) biconservative

 surfaces in $N^{4}(c)$PNMC surfaces in $N^{4}(c)=$ parallel normalized mean curvature vector field surfaces in $N^{4}(c)$

III. The study of $P N M C$ (and non-CMC) biconservative surfaces in \mathbb{R}^{4} ([Turgay, Yeğin Şen - 2018])

III. The study of PNMC (and non-CMC) biconservative surfaces in \mathbb{S}^{4} ([N., Oniciuc, Turgay, Yeğin Şen - 2023])

III. The study of PNMC (and non-CMC) biconservative surfaces in \mathbb{H}^{4}

Work in progress!

The PNMC (and non-CMC) biconservative surfaces in \mathbb{S}^{4}

General context:

- connected, oriented, $P N M C$, non-CMC biconservative surfaces M^{2} in \mathbb{S}^{4}
- $f=|H|>0, \operatorname{grad} f \neq 0$ at any point of M^{2}
- M^{2} is completely contained in \mathbb{S}^{4}, i.e., for any open subset of M^{2} there exists no great hypersphere \mathbb{S}^{3} of \mathbb{S}^{4} such that it lies in \mathbb{S}^{3}.

$$
\begin{aligned}
& M^{2} \text { is completely } \\
& \text { contained in } \mathbb{S}^{4}
\end{aligned}
$$

The rank of the first normal bundle of M^{2}

$$
N_{1}=\operatorname{span} \operatorname{Im}(B) \text { is } 2
$$

- positively oriented global orthonormal frame fields $\left\{E_{1}, E_{2}\right\}$ in the tangent bundle $T M^{2}$ and $\left\{E_{3}, E_{4}\right\}$ in the normal bundle $N M^{2}$

$$
E_{1}=\frac{\operatorname{grad} f}{|\operatorname{grad} f|} \quad \text { and } \quad E_{3}=\frac{H}{f}
$$

- $E_{2} f=0$.
- Notations: $A_{3}=A_{E_{3}}$ and $A_{4}=A_{E_{4}}$.

Theorem 5.1

Let $\varphi:\left(M^{2}, g\right) \rightarrow \mathbb{S}^{4}$ be a PNMC biconservative immersion. Then, the following hold:
(i)

$$
\begin{equation*}
\nabla_{E_{1}} E_{1}=\nabla_{E_{1}} E_{2}=0, \quad \nabla_{E_{2}} E_{1}=-\frac{3}{4} \frac{E_{1} f}{f} E_{2}, \quad \nabla_{E_{2}} E_{2}=\frac{3}{4} \frac{E_{1} f}{f} E_{1} \tag{1}
\end{equation*}
$$

and

$$
\nabla^{\perp} E_{3}=0, \quad \nabla^{\perp} E_{4}=0 ;
$$

(ii)

$$
A_{3}=\left(\begin{array}{cc}
-f & 0 \\
0 & 3 f
\end{array}\right), \quad A_{4}=\left(\begin{array}{cc}
c f^{3 / 2} & 0 \\
0 & -c f^{3 / 2}
\end{array}\right),
$$

where c is a non-zero real constant;

Theorem (5.1 - continued)

(iii)

$$
\begin{equation*}
1-K=3 f^{2}+c^{2} f^{3}, \tag{2}
\end{equation*}
$$

thus $1-K>0$ on M^{2};
(iv) the level curves of K are circles of M^{2} with positive constant signed curvature

$$
\begin{equation*}
\kappa=\frac{3}{4} \frac{|\operatorname{grad} f|}{f}=\frac{|\operatorname{grad} K|}{4 f^{2}\left(2+c^{2} f\right)}>0 ; \tag{3}
\end{equation*}
$$

(v) f satisfies

$$
\begin{equation*}
f \Delta f+|\operatorname{grad} f|^{2}+\frac{4}{3} f^{2}-4 f^{4}-\frac{4}{3} c^{2} f^{5}=0 ; \tag{4}
\end{equation*}
$$

Theorem (5.1-continued)

(vi) around any point of M^{2} there exists a positively oriented local chart $X^{f}=X^{f}(u, v)$ such that

$$
\left(f \circ X^{f}\right)(u, v)=f(u, v)=f(u)
$$

and f satisfies the following second order ODE

$$
\begin{equation*}
f^{\prime \prime} f-\frac{7}{4}\left(f^{\prime}\right)^{2}-\frac{4}{3} f^{2}+4 f^{4}+\frac{4}{3} c^{2} f^{5}=0 \tag{5}
\end{equation*}
$$

and the condition $f^{\prime}>0$. The first integral of the above second order ODE is

$$
\begin{equation*}
\left(f^{\prime}\right)^{2}-2 C^{2} f^{7 / 2}+\frac{16}{9} f^{2}+16 f^{4}+\frac{16}{9} c^{2} f^{5}=0, \tag{6}
\end{equation*}
$$

where C is a non-zero real constant.

Remark

We note that the constant c is unique, depends on $\left(M^{2}, g\right)$ and it is not an indexing constant.

- Intrinsic approach
- Extrinsic approach

Intrinsic approach

- Prove that if there are two PNMC biconservative immersions from a given abstract surface $\varphi_{1}, \varphi_{2}:\left(M^{2}, g\right) \rightarrow \mathbb{S}^{4}$, then they are congruent;
- The main result: given an abstract surface $\left(M^{2}, g\right)$, then it admits a (unique) PNMC biconservative immersion $\varphi:\left(M^{2}, g\right) \rightarrow \mathbb{S}^{4}$ iff. the abstract surface $\left(M^{2}, g\right)$ satisfies certain intrinsic conditions.

Studying the PNMC biconservative immersions $\varphi:\left(M^{2}, g\right) \rightarrow \mathbb{S}^{4}$

Studying the abstract surfaces
(M^{2}, g) satisfying
certain conditions

Objective: To prove the existence and the classification of all abstract surfaces that satisfy those conditions.
Idea: To work with the curvature κ of the level curves of K; to show that κ satisfies a third order $O D E$ and κ determines uniquely the abstract surface.

The intrinsic characterization theorem

Theorem 5.2

Let $\left(M^{2}, g\right)$ be an abstract surface. Then M^{2} admits locally a (unique) PNMC biconservative embedding in \mathbb{S}^{4} if and only if the metric g is given by

$$
g(u, s)=d u^{2}+e^{2 \int_{0}^{u} \kappa(\tau) d \tau} d s^{2},
$$

where κ is a positive solution of the following $O D E$

$$
\begin{equation*}
3 \kappa \kappa^{\prime \prime \prime}+26 \kappa^{2} \kappa^{\prime \prime}-3 \kappa^{\prime} \kappa^{\prime \prime}+72 \kappa^{3} \kappa^{\prime}+32 \kappa^{3}+32 \kappa^{5}=0, \tag{7}
\end{equation*}
$$

which bears certain conditions.

Initial data:

$$
\left\{\begin{array}{l}
\kappa(0)=\kappa_{0}>0, \quad(\kappa \text { is positive }) \tag{8}\\
\kappa^{\prime}(0)=\kappa_{0}^{\prime}>-1-\kappa_{0}^{2}, \quad(1-K>0) \\
-4 \kappa_{0}-6 \kappa_{0} \kappa_{0}^{\prime}-4 \kappa_{0}^{3}<\kappa^{\prime \prime}(0)=\kappa_{0}^{\prime \prime}<\frac{1}{3}\left(-8 \kappa_{0}-14 \kappa_{0} \kappa_{0}^{\prime}-8 \kappa_{0}^{3}\right) .
\end{array}\right.
$$

Therefore, the curvature κ of the level curves of K determines the abstract surface which we look for. The correspondence

$$
\kappa=\kappa(u) \longrightarrow g=g(u, s)
$$

is bijective (up to isometries of the metric and translations of the argument for $\kappa)$.

Question: How many non-isometric $P N M C$ biconservative surfaces in \mathbb{S}^{4} are?

Answer: We can perform a change of coordinates such that we can see that the abstract surfaces $\left(M^{2}, g\right)$ that admit a $P N M C$ biconservative immersion in \mathbb{S}^{4} form a family indexed by 2 parameters.

The intrinsic characterization theorem

Theorem 5.3

Let $\left(M^{2}, g\right)$ be an abstract surface. Then M^{2} admits locally a (unique) PNMC biconservative embedding in \mathbb{S}^{4} if and only if the metric g is given by

$$
g(f, t)=\frac{1}{2 C^{2} f^{7 / 2}-\frac{16}{9} c^{2} f^{5}-16 f^{4}-\frac{16}{9} f^{2}} d f^{2}+\frac{1}{f^{3 / 2}} d t^{2},
$$

where C and c are arbitrary non-zero real constants.

Extrinsic approach

We will present a geometric description of the biconservative surface M^{2} in \mathbb{S}^{4}, but viewed in \mathbb{R}^{5}.

- Find some properties of the integral curves of E_{1} (for example, E_{2} is constant along these curves viewed in \mathbb{R}^{5}).
- Find some properties of the integral curves of E_{2} (for example, these curves are circles in \mathbb{R}^{5}).
- Find the local parametrization of M^{2} in \mathbb{R}^{5}. This parametrization will rely on a solution f of a second order $O D E$ and on a certain curve in \mathbb{S}^{3}, uniquely determined by f and the condition that its position vector has to make a specific angle with a constant direction.

Theorem 5.4

Let $\varphi:\left(M^{2}, g\right) \rightarrow \mathbb{S}^{4}$ be a PNMC biconservative immersion and denote $\Phi=i \circ \varphi: M^{2} \rightarrow \mathbb{R}^{5}$, where $i: \mathbb{S}^{4} \rightarrow \mathbb{R}^{5}$ is the canonical inclusion. We identify M^{2} with its image, and then, M^{2} can be locally parametrized by

$$
\Phi(u, t)=\hat{\gamma}(u)+\frac{1}{\hat{\kappa}(u)}\left((\cos (t)-1) c_{1}+\sin (t) c_{2}\right)
$$

where
(i) $\hat{\kappa}(u)=\frac{3|C|}{2 \sqrt{2}} f^{3 / 4}(u)$, with $f=f(u)$ is a positive solution of the second order ODE (5), with $f^{\prime}>0$, and whose first integral is (6). The non-zero constant C is given in (6);
(ii) c_{1} and c_{2} are constant orthonormal vectors in \mathbb{R}^{5};

Theorem (5.4-continued)

(iii) $\hat{\gamma}=\hat{\gamma}(u)$ is a curve in \mathbb{R}^{5} such that $\hat{\gamma}=i \circ \tilde{\gamma}$, where $\tilde{\gamma}$ is a curve parametrized by arc-length which lies in a great hypersphere $\mathbb{S}^{3}=\mathbb{S}^{4} \cap \Pi$; the hyperplane Π contains the origin and is orthogonal to c_{2}. Moreover, the curvature and torsion of $\tilde{\gamma}$, as a curve in \mathbb{S}^{3}, are given by

$$
\begin{equation*}
\mathrm{k}(u)=f(u) \sqrt{1+c^{2} f(u)} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau(u)=\frac{|c| \sqrt{2 C^{2} f^{7 / 2}(u)-\frac{16}{9} f^{2}(u)-16 f^{4}(u)-\frac{16}{9} c^{2} f^{5}(u)}}{2 \sqrt{f(u)}\left(1+c^{2} f(u)\right)}, \tag{10}
\end{equation*}
$$

and the curve $\hat{\gamma}$ must satisfy

$$
\begin{equation*}
\left\langle\hat{\gamma}(u), c_{1}\right\rangle=\frac{1}{\hat{\kappa}(u)} . \tag{11}
\end{equation*}
$$

Final answer

The codimension reduction for PNMC biconservative surfaces

Theorem 5.5

Let $\varphi:\left(M^{2}, g\right) \rightarrow \mathbb{S}^{n}, n \geq 5$, be a PNMC biconservative surface. Assume that the rank of the first normal bundle is 2 or 3 . Then, M^{2} lies in some 4-dimensional great sphere \mathbb{S}^{4} of \mathbb{S}^{n}.

The codimension reduction for PNMC biconservative surfaces

Theorem 5.5

Let $\varphi:\left(M^{2}, g\right) \rightarrow \mathbb{S}^{n}, n \geq 5$, be a PNMC biconservative surface. Assume that the rank of the first normal bundle is 2 or 3 . Then, M^{2} lies in some 4-dimensional great sphere \mathbb{S}^{4} of \mathbb{S}^{n}.

- $\left\{E_{1}, E_{2}\right\}$ diagonalizes all the $A_{\alpha}, \alpha \in\{3,4, \ldots, n\}$, simultaneously and therefore M^{2} has flat normal bundle.
- the first normal bundle of M^{2} in \mathbb{S}^{n} is given by $N_{1}=\operatorname{span} \operatorname{Im}(B)=\operatorname{span}\left\{B\left(E_{1}, E_{1}\right), B\left(E_{2}, E_{2}\right)\right\}$
- N_{1} is a parallel with respect to the normal connection, i.e., $\nabla \stackrel{\perp}{E_{i}} B\left(E_{j}, E_{j}\right) \in C\left(N_{1}\right)$, for $i, j=1,2$.
- the codimension reduction result follows from Erbacher - 1971.

References I

[1] A. Balmuş, S. Montaldo, and C. Oniciuc, Biharmonic PNMC submanifolds in spheres, Ark. Mat. 51 (2013), 197-221.
[2] R. Caddeo, S. Montaldo, C. Oniciuc, and P. Piu, Surfaces in three-dimensional space forms with divergence-free stress-bienergy tensor, Ann. Mat. Pura Appl. (4) 193 (2014), 529-550.
[3] B.Y. Chen,
On the surface with parallel mean curvature vector, Indiana Univ. Math. J. 22 (1973), 655-666.
[4] J. Erbacher,
Reduction of the codimension of an isometric immersion, J. Differential Geometry 5 (1971), 333-340.
[5] Th. Hasanis, Th. Vlachos, Hypersurfaces in E^{4} with harmonic mean curvature vector field, Math. Nachr. 172 (1995), 145-169.

References II

[6] G.Y. Jiang,
2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A7(4) (1986), 389-402.
[7] G.Y. Jiang,
The conservation law for 2-harmonic maps between Riemannian manifolds, Acta Math. Sinica 30 (1987), 220-225.
[8] E. Loubeau, C. Oniciuc,
Biharmonic surfaces of constant mean curvature, Pacific J. Math. 271 (2014), 213-230.
[9] S. Montaldo, C. Oniciuc, and A. Ratto, Biconservative surfaces, J. Geom. Anal. 26 (2016), 313-329.
[10] S. Nistor,
On biconservative surfaces, Differential Geom. Appl. 54 (2017), 490-502.

References III

[11] S. Nistor, C. Oniciuc, N.C. Turgay, R. Yeğin Şen, Biconservative surfaces in the 4-dimensional Euclidean sphere, Ann. di Mat. Pura ed Appl.,
https://doi.org/10.1007/s10231-023-01323-0, 2023.
[12] R. Yeğin Şen, N.C. Turgay,
On biconservative surfaces in 4-dimensional Euclidean space, J. Math. Anal. Appl. 460 (2018), 565-581.
[13] S.T. Yau,
Submanifolds with constant mean curvature I, Am. J. Math. 96 (1974), 346-366.

Thank you for your attention!

