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General Setting

Let (M , g) be a Riemannian manifold, V be an integrable
distribution on M and H its orthogonal complement distribution. We
will also denote by V ,H the orthogonal projections onto the
corresponding subbundles of TM and by F the foliation tangent to
V.
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Second Fundamental Forms
The second fundamental form BV of V is given by

BV(V ,W )  H(∇VW )  1
2 · H(∇VW + ∇WV ), where V ,W ∈ V .

The corresponding second fundamental form BH of H satisfies

BH (X , Y )  1
2 · V(∇XY + ∇YX ), where X , Y ∈ H .

The foliation F tangent to V is said to be conformal if there exists a
vector field V ∈ V such that

BH
 g ⊗ V

and F is said to be semi-Riemannian if V  0. Furthermore, F is
minimal if traceBV  0 and totally geodesic if BV  0. This is
equivalent to the leaves of F being minimal and totally geodesic
submanifolds of M, respectively.
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Motivation

Why should we care about minimal conformal foliations? Key result
by Baird and Eells:

Theorem 1 (Baird, Eells (1981) [1])
Let φ : (M , g) → (N2 , h) be a horizontally conformal submersion
from a Riemannian manifold to a surface. Then φ is harmonic if and
only if φ has minimal fibres.

A foliation is conformal if and only if its corresponding (local)
submersions are conformal, so the leaves of minimal conformal
foliations are locally fibres of harmonic morphisms into C.
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Conjectures
Conjecture 1 ( Ghandour, Gudmundsson, Turner (2021) [2])
Let (G, g) be a Lie group equipped with a left-invariant Riemannian
metric. Further let K be a subgroup generating a left-invariant
conformal foliation F , of codimension two, of G. Then

1. If K is semisimple then the foliation F is minimal.

2. If, additionally, K is compact, then F is totally geodesic.

K Compact Non-compact
Semisimple SU(2) × SU(2) SU(2) × SL2(R)
Non-semisimple SU(2) × SO(2) SL2(R) × SO(2)

An equivalent conjecture for the semi-Riemannian case was
investigated by Ghandour, Gudmundsson and Ottosson in [3].
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Lie Foliations
Let (G, g) be a semi-Riemannian Lie group i.e. a Lie group G
equipped with a left-invariant semi-Riemannian metric g. Further we
assume that (K , h) is a subgroup of G, of codimension two,
equipped with the natural induced metric h. Let {V1 , . . . , Vn , X , Y }
be an orthonormal basis for the Lie algebra g  k ⊕ m, such that
X , Y ∈ H . Then the Koszul formula implies that the second
fundamental forms BV and BH of the horizontal and vertical
distributions satisfy

2 · BV(Vj , Vk )  εX ·

(g([X , Vj], Vk ) + g([X , Vk ], Vj)


· X

+ εY ·

g([Y , Vj], Vk ) + g([Y , Vk ], Vj)


· Y ,

BH (X , Y ) 

n
i1

εi ·

g([X , Vi], Y ) + g([Y , Vi], X )


· Vi .

We would like to describe the Lie brackets of g with its structure
constants.
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Structure Constants

With this set-up, we can describe the Lie brackets of g by the
following system

[Vi , Vj] 
n

k1

ck
ij Vk , [X , Y ]  ρX +

n
k1

θk Vk

[X , Vi] 
n

k1

xk
i Vk + αiX + βiY ,

[Y , Vi] 
n

k1

yk
i Vk + γiX + ηiY ,
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Useful results
Proposition 1 (Ghandour, Gudmundsson, Ottosson (2022)[3])
Let (G, g) be a semi-Riemannian Lie group with a subgroup K
generating a left-invariant conformal foliation F on G. Let V be the
integrable distribution tangent to F and H be the orthogonal
complementary distribution of dimension two. Then

H[[V ,V],H]  0.

Proposition 2 (Ghandour, Gudmundsson, Ottosson (2022)[3])
Let (G, g) be a semi-Riemannian Lie group with a semi-simple
subgroup K , of codimension two, generating a left-invariant
conformal foliation F on G. Then the foliation F is
semi-Riemannian.
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Simplified Structure Constants

Since K is a semisimple subgroup of G generating the conformal
foliation F , it follows from Proposition 1 that H[V ,H]  0, and so
we can simplify to

adX (Vi)  [X , Vi] 
n

k1

xk
i Vk , adY (Vi)  [Y , Vi] 

n
k1

yk
i Vk .
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Structure constants and minimality
The structure constants of g can then be used to describe when the
foliation F is minimal or even totally geodesic. Using the above
results we get that

2 · BV(Vi , Vj)  εX · (εjx
j
i + εix i

j ) · X + εY · (εjy
j
i + εiy i

j ) · Y .

From this we see that the foliation F is minimal if and only if

n
i1

εi x i
i  0 

n
i1

εi y i
i ..

Furthermore, F is totally geodesic if and only if for all 1 ≤ i , j ≤ n
we have

εj x j
i + εi x i

j  0  εj y j
i + εi y i

j .
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Killing Form

Definition 2

The Killing form of a Lie algebra g is the function B : g × g→ R
given by B(X , Y )  trace(adX ◦ adY ).

Lemma 3

The Killing form B of g is a symmetric bilinear form that is invariant
under all automorphism of g and satisfies

B(adZ X , Y )  −B(X , adZ Y ).
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Cartan-Killing Metric

A Lie group is semisimple if and only if its Killing form B is
nondegenerate. In particular this means that the Killing form induces
a left-invariant semi-Riemannian metric on the semisimple subgroup
K .

Proposition 3

Let k be a semisimple Lie algebra over R. Then k is compact if and
only if the Killing form of k is strictly negative definite.
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We can define a left-invariant metric of any index using the Killing
form B.

Lemma 4

Let K be a semisimple Lie group, then there exists a so-called
Cartan involution θ of k such that −B(·, θ(·)) is a positive definite
bilinear form on k. −B(·, θ(·)) is called the Cartan-Killing metric

Let {V1 , . . . , Vn} be an orthonormal basis, with respect to the
Cartan-Killing metric gθ, then for any ε  (ε1 , . . . , εn) ∈ {±1}n We
define the semi-Riemannian metric gε on K by

gε(Vi , Vj)  εi · B(Vi , θ(Vj)).
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Idea of Proof

Theorem 5 (Gudmundsson, TM)

Let G be a Lie group equipped with left-invariant metric g and let K
be a subgroup of (G, g) generating a left-invariant conformal foliation
F of G of codimension two. If K is semisimple then F is minimal.

The structure of the proof is quite simple:

1. Show F is minimal when the metric on K is the previously
defined gε.

2. Show that the minimality of F is independent of choice of
left-invariant metric.

T.J. Munn Conformal Foliations on Lie Groups 14



Proposition 4 (Gudmundsson, TM )

Let K be a subgroup of the Lie group (G, g) generating a
left-invariant conformal foliation F of G of codimension two. If K is
semisimple and g |k×k  gε, then F is minimal.

Proof.

Since K is equipped with a Cartan-Killing metric, it follows that
B(Vi , Vj)  εiδijθj for a orthonormal basis {V1 , . . .Vn}. Then

B([Vi , Vj], X )  B(Vi , [Vj , X ])

 −B(Vi ,
n

k1

xk
j Vk )

 εiθix i
j .

□
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Proof (continued).

B([Vi , Vj], X )  B(Vi , [Vj , X ])

 −B(Vi ,
n

k1

xk
j Vk )

 εiθix i
j .

Since B([Vi , Vj], X )  −B([Vj , Vi], X ), the above steps show us that

εiθix i
j  −εjθjx

j
i .

Then for i  j we get that x i
i  −x i

i  0. By an identical argument
replacing X with Y it follows that y i

i  −y i
i and so F is minimal. □
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Corollary 6

Furthermore, if the metric on K is the Killing form, then F is totally
geodesic.

Proof.

In the case, we have the same argument, except where θi ≡ 1, so
we have that εix

j
i  −εjx i

j and εiy
j
i  −εjy

j
i so F is totally

geodesic. □

Remark 1

The above corollary can be extended to the case when K is
compact and equipped with a bi-invariant Riemannian metric, as
these are always proportional to the Killing form.
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Main Result
Theorem 7 (Gudmundsson, TM)

Let G be a Lie group equipped with left-invariant metric g and let K
be a subgroup of (G, g) generating a left-invariant conformal foliation
F of G of codimension two. If K is semisimple then F is minimal.

Proof.

Let {V1 , ..., Vn , X , Y } be an orthonormal basis for g with respect to
g such that {V1 , ..., Vn} generate K . Notice

trace(adX ) 
n

i1

εix i
i + g(adX (Y ), Y ),

trace(adY ) 
n

i1

εiy i
i + g(adY (X ), X ).

□
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Proof. (continued).

Now equip G with an additional left-invariant metric ĝ, which we can
fully describe by its action on g. First define ĝ |V×V  gε and then let

ĝ |H×H  g |H×H , ĝ |V×H  g |V×H .

Then we can use the Gram-Schmidt process to obtain an
orthonormal basis {B1 , ..., Bn , X , Y } with respect to ĝ. Since both
metrics are left-invariant and of the same signature, changing
metrics simply amounts to a change of basis. Then it follows from
Proposition 4 that the structure constants with respect to ĝ,

x̂ i
i  ĝ(Bi , [X , Bi])

are equal to zero. □
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Proof. (continued).

Then since the trace of a linear operator is invariant under change of
basis, and the fact that X and Y are orthonormal for both g and ĝ,
we have that

n
i1

εix i
i  trace(adX ) − g(adX (Y ), Y )

 trace(adX ) − ĝ(adX (Y ), Y )



n
i1

εi x̂ i
i

 0.

Similarly we obtain

n
i1

εiy i
i 

n
i1

εi ŷ i
i  0,
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Recall that we proved the corollary

Corollary 8

If K is compact and equipped with a bi-invariant Riemannian metric,
then F is totally geodesic.

One may ask if the result requires the stronger condition of a
bi-invariant metric. The following example shows that K being
compact and equipped with a left-invariant metric is not sufficient to
ensure that F is totally geodesic.
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Berger Sphere
Consider k  su(2) equipped with the Berger metric, which is given
by

g 


λ 0 0
0 1 0
0 0 1


,

for some λ > 0. So an orthonormal basis with respect to g will be
written

{A, B,C}.
Then the Lie brackets are given by

[A, B]  2√
λ

C , [C , A]  2√
λ

B, [B,C]  2
√
λA.
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Proposition 5

Let (G, g) be a five dimensional Riemannian Lie group with a
subgroup SU(2) generating a left-invariant conformal foliation F on
G. Let g |su(2) be the standard Berger metric on SU(2) with λ  0.
Let g  su(2) ⊕ m be an orthogonal decomposition of the Lie
algebra g of G and {A, B,C , X , Y } be the orthonormal basis for g
such that A, B and C generate the subalgebra su(2). Then F need
not be totally geodesic.
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Proof.

Then since SU(2) is a simple Lie subgroup generating a
left-invariant conformal foliation, it follows from Proposition 1 that the
remaining Lie bracket relations for g are given by

[X , A]  a11A + a12B + a13C , [Y , A]  a21A + a22B + a23C ,

[X , B]  b11A + b12B + b13C , [Y , B]  b21A + b22B + b23C ,

[X ,C]  c11A + c12B + c13C , [Y ,C]  c21A + c22B + c23C ,

[X , Y ]  ρX + θ1A + θ2B + θ3C ,

for some constant coefficients. Since g is a Lie algebra, the Lie
brackets must satisfy the Jacobi identity, which allows us to simplify
the above coefficients. □
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Proof (continued).

After simplifying with the Jacobi identity we obtain:

[X , A]  a12B + a13C , [Y , A]  a22B + a23C ,

[X , B]  −a12λA − c12C , [Y , B]  −a22λA − c22C ,

[X ,C]  −a13λA + c12B, [Y ,C]  −a23λA + c22B.

Then notice that
g(C , [X , A])  a13

and
g(A, [X ,C])  −λ · a13.

So F is not totally geodesic whenever λ  1 and a13  0 since
BH (A,C)  0.

□
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When we have the additional condition that K is a closed subgroup
of G, the leaf space L2  G/K has a unique structure such that the
natural projection is a Riemannian submersion.
Since the 2-dimensional Riemannian space G/K is homogeneous it
is of constant Gaussian curvature KL. For this special situation, we
will now employ O’Neill’s famous curvature formula

KL  K (X , Y ) + 3
4 · |V[X , Y ]|2.

Using structure constants, we can write

K (X , Y )  −ρ2 − 3
4

n
k1

(θk )2 ,

and obtain that the leaf space L has constant non-positive Gaussian
curvature KL  −ρ2.
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Thank you for your attention!
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