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Let (Mm, g) be a Riemannian manifold, TCM be the complexification of its
tangent bundle TM and extend g to a complex-bilinear form on TCM .

Then the gradient of a C1-function ϕ = u + i v ∶ (M,g)→ C is the section of
TCM satisfying ∇ϕ = ∇u + i∇v.

The complex-linear Laplace-Beltrami operator τ on (M,g) acts locally
on a C2-function ϕ as

τ(ϕ) = div(∇ϕ) = ∑
X∈ONF

X2(ϕ) − (∇XX)(ϕ).

For two C2-functions ϕ,ψ ∶ (M,g)→ C we have

τ(ϕ ⋅ ψ) = τ(ϕ) ⋅ ψ + 2 ⋅ κ(ϕ,ψ) + ϕ ⋅ τ(ψ),

where the conformality operator κ satisfies κ(ϕ,ψ) = g(∇ϕ,∇ψ).

κ(ϕ,ϕ) = (∣∇u∣2 − ∣∇v∣2) + 2 i ⋅ g(∇u,∇v).

κ(ϕ,ϕ) = 0 if and only if

∣∇u∣2 = ∣∇v∣2 and g(∇u,∇v) = 0.
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Definition 1.1 ( Eigenfunction - Eigenfamily - SG, Sakovich (2008) )

Let (M,g) be a Riemennian manifold. Then a complex-valued function
ϕ ∶M → C is said to be an eigenfunction if it is eigen both with respect to
the Laplace-Beltrami operator τ and the conformality operator κ i.e. there
exist complex numbers λ,µ ∈ C such that

τ(ϕ) = λ ⋅ ϕ and κ(ϕ,ϕ) = µ ⋅ ϕ2.

A set E = {ϕi ∶M → C ∣ i ∈ I} of complex-valued functions is said to be an
eigenfamily on M if there exist complex numbers λ,µ ∈ C such that for all
ϕ,ψ ∈ E we have

τ(ϕ) = λ ⋅ ϕ and κ(ϕ,ψ) = µ ⋅ ϕ ⋅ ψ.
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Example 1.2 ( The Euclidean C ≅ R2n, (λ = 0, µ = 0) )

On the standard Euclidean space Cn ≅ R2n we define the functions
ϕ1, . . . , ϕn ∶ Cn → C by ϕj ∶ (z1, . . . , zn)↦ zj . Then the tension field τ and
the conformality operator κ on Cn satisfy

τ(ϕj) = 0 and κ(ϕj , ϕk) = 0.

Theorem 1.3 ( Fuglede (1978) + Ishihara (1979), (λ = 0 and µ = 0) )

A complex-valued C2-function ϕ ∶ (M,g)→ C on a Riemannian manifold is
a harmonic morphism if and only if it is an eigenfunction with λ = 0
and µ = 0. [τ(ϕ) = 0 and κ(ϕ,ϕ) = 0]

Theorem 1.4 ( Baird, Eells (1981), (λ = 0 and µ = 0) )

Let ϕ ∶ (M,g)→ C be a horizontally conformal [κ(ϕ,ϕ) = 0] function
from a Riemannian manifold. Then ϕ is harmonic [τ(ϕ) = 0] if and only
if its fibres are minimal at regular points of ϕ [∇ϕ ≠ 0].
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Example 1.5 ( S2n−1, (λ = −(2n − 1), µ = −1) )

Let S2n−1 be the odd dimensional unit sphere in the standard
Euclidean Cn ≅ R2n and define ϕ1, . . . , ϕn ∶ S2n−1 → C by

ϕj ∶ (z1, . . . , zn)↦
zj√

∣z1∣2 +⋯ + ∣zn∣2
.

Then the tension field τ and the conformality operator κ on S2n−1 satisfy

τ(ϕj) = − (2n − 1) ⋅ ϕj and κ(ϕj , ϕk) = −1 ⋅ ϕj ⋅ ϕk.
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Example 1.6 ( CPn, (λ = −4(n + 1), µ = −4) )
Let CPn be the standard n-dimensional complex projective space. For
a fixed integer 1 ≤ α < n + 1 and 1 ≤ j ≤ α < k ≤ n + 1 define the function
ϕjk ∶ CPn → C by

ϕjk ∶ [z1, . . . , zn+1]↦
zj ⋅ z̄k

z1 ⋅ z̄1 +⋯ + zn+1 ⋅ z̄n+1
.

Then the tension field τ and the conformality operator κ on CPn satisfy

τ(ϕjk) = −4(n + 1) ⋅ ϕjk and κ(ϕjk, ϕlm) = −4 ⋅ ϕjk ⋅ ϕlm.

Note that
#({ϕjk ∣ j ≤ α < k}) = α ⋅ (n + 1 − α).
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Theorem 1.7 ( SG - Ghandour (2020) )

Let (M,g) be a Riemannian manifold and the set of complex-valued
functions

E = {ϕi ∶M → C ∣ i = 1,2, . . . , n}

be a finite eigenfamily i.e. there exist complex numbers λ,µ ∈ C such that
for all ϕ,ψ ∈ E

τ(ϕ) = λ ⋅ ϕ and κ(ϕ,ψ) = µ ⋅ ϕψ.

Then the set Pd(E) of complex homogeneous polynomials of degree d

Pd(E) = {P ∶M → C ∣P ∈ C[ϕ1, ϕ2, . . . , ϕn], P (α ⋅ ϕ) = αd ⋅ P (ϕ), α ∈ C}

is an eigenfamily on M such that for all P,Q ∈ Pd(E) we have

τ(P ) = (dλ + d(d − 1)µ) ⋅ P and κ(P,Q) = (d2µ) ⋅ P Q.

dimCPd(E) = (
n + d − 1

n
).
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Theorem 2.1 ( SG, Munn (2023) )

Let ϕ ∶ (M,g)→ C be a complex-valued eigenfunction on a Riemannian
manifold, such that 0 ∈ ϕ(M) is a regular value for ϕ. Then the fibre
F0 = ϕ−1({0}) is a minimal submanifold of M of codimension two.

Notice that along the fibre F0 = ϕ−1({0}) we have the following important
properties τ(ϕ) = λ ⋅ ϕ = 0 and κ(ϕ,ϕ) = µ ⋅ ϕ2 = 0.

The main ingredient for our proof is the following OLD result in the
special case when n = 2. For this we have a NEW proof ”avoiding” the
stress-energy tensor. , , ,

Theorem 2.2 ( Baird, SG (1992) )

Let ϕ ∶ (M,g)→ (Nn, h) be a submersion and Fy = ϕ−1({y}) for some
y ∈ N . If ϕ is horizontally conformal up to first order along Fy, then
the following two conditions are equivalent

(i) ϕ is n-harmonic along Fy i.e. τn(ϕ)(x) = 0, for all x ∈ Fy,

(ii) Fy is a minimal submanifold of (M,g).
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Definition 2.3 ( Baird, SG (1992) )

Let ϕ ∶ (M,g)→ (Nn, h) be a smooth submersion and let the functions
λ2
1, ..., λ

2
n denote the non-zero eigenvalues of the first fundamental form ϕ∗h

with respect to the metric g. Further, let F be a submanifold of M . Then ϕ
is said to be horizontally conformal up to first order along F if

(i) λ2
1(x) = ⋯ = λ2

n(x),
(ii) ∇(λ2

1(x)) = ⋯ = ∇(λ2
n(x)), for every x ∈ F .
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Example 2.4 ( SG, Munn (2023) )

Let S2n−1 be the odd-dimensional unit sphere in the standard Euclidean
Cn ≅ R2n and A ∈ Cn×n be a complex matrix which is invertible i.e.
detA ≠ 0. Further define the function Φ ∶ S2n−1 → C with

Φ ∶ z = (z1, z2, . . . , zn)↦
1

∣z∣2
⋅ (

n

∑
k≠l
akl zkzl + 1

2
⋅

n

∑
k=1

akk z
2
k).

Then Φ is a submersive eigenfunction and its compact fibres form a
foliation of the unit sphere of codimension two. The fibre F0 = Φ−1({0}) is
a minimal submanifold of S2n−1.

This provides a complex n2-dimensional family of compact minimal
submanifolds of S2n−1.
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Example 2.5 ( SG, Munn (2023) (d ∈ Z+) )

Let S2n−1 be the odd-dimensional unit sphere in the Euclidean Cn ≅ R2n,
d ∈ Z+ and (a1, . . . , an) ∈ Cn such that a1, . . . , an ∈ C∗ = C ∖ {0}. Further
define the function Φ ∶ S2n−1 → C with

Φ ∶ z = (z1, z2, . . . , zn)↦
1

∣z∣d
⋅

n

∑
k=1

ak ⋅ zdk .

Then Φ is a submersive eigenfunction and its compact fibres form a
foliation of the unit sphere of codimension two. The fibre F0 = Φ−1({0}) is
a minimal submanifold of S2n−1.

For each d ∈ Z+, this provides a complex n-dimensional family of compact
minimal submanifolds of S2n−1.
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Example 2.6 ( SG, Munn (2023) )

Let CP 2n−1 be the odd-dimensional complex projective space and
(a1, . . . , an) ∈ Cn such that a1, . . . , an ∈ C∗ = C ∖ {0}. Then define the
function Φ ∶ CP 2n−1 → C with

Φ ∶ z = (z1, z2, . . . , zn)↦
1

∣z∣2
⋅ (a1 ⋅ z1z̄n+1 + ⋅ ⋅ ⋅ + an ⋅ znz̄2n).

Then Φ is a eigenfunction and its compact fibre F0 = Φ−1({0}) is a
minimal submanifold of CP 2n−1 of codimension two.

This provides a complex n-dimensional family of compact minimal
submanifolds of CP 2n−1.
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Cartan’s Classification
Classical Symmetric Spaces

Definition 3.1 ( Riemannian Symmetric Space )

A Riemannian manifold (M,g) is said to be a symmetric space if to each
point p ∈M there exists a global isometry σp ∶ (M,g)→ (M,g) such that
σp(p) = p and the differential dσp ∶ TpM → TpM at p satisfies

dσp = − idTpM .

The irreducible Riemannian symmetric spaces were classified by Élie
Cartan in 1926. They constitute 20 countably infinite families and 24
exceptional single cases. They are quotents of Lie groups and come in pairs
(U/K,G/K), where U/K is compact and G/K is non-compact.

Sm = SO(1 +m)/SO(m) ∗ RHm = SOo(1,m)/SO(m)
CPm =U(1 +m)/U(1) ×U(m) ∗ CHm =U(1,m)/U(1) ×U(m)

HPm = Sp(1 +m)/Sp(1) × Sp(m) ∗ HHm = Sp(1,m)/Sp(1) × Sp(m)
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Cartan’s Classification
Classical Symmetric Spaces

Theorem 3.2 ( SG, Svensson (2009), (λ = 0 and µ = 0) )

Let (M,g) be an irreducible Riemannian symmetric space other than the
compact G2/SO(4) or its non-compact dual G∗2/SO(4).

Then for each
point p ∈M there exists a non-constant complex-valued harmonic
morphism ϕ ∶ U → C defined on an open neighbourhood U of p. If the
space (M,g) is of non-compact type then the domain U can be chosen to be
the whole of M .

Theorem 3.3 ( SG, Svensson (2009), Burstall (2023), (λ = 0 and µ = 0) )

Let (M,g) be an irreducible Riemannian symmetric space. Then for each
point p ∈M there exists a non-constant complex-valued harmonic
morphism ϕ ∶ U → C defined on an open neighbourhood U of p. If the
space (M,g) is of non-compact type then the domain U can be chosen to be
the whole of M .

Sigmundur Gudmundsson Minimal Submanifolds of Compact Riemannian Symmetric Spaces - The Method of Eigenfamilies -



Eigenfunctions - Eigenfamilies
Minimal Submanifolds

Riemannian Symmetric Spaces
Proof of The Main Result

Cartan’s Classification
Classical Symmetric Spaces

Theorem 3.2 ( SG, Svensson (2009), (λ = 0 and µ = 0) )

Let (M,g) be an irreducible Riemannian symmetric space other than the
compact G2/SO(4) or its non-compact dual G∗2/SO(4). Then for each
point p ∈M there exists a non-constant complex-valued harmonic
morphism ϕ ∶ U → C defined on an open neighbourhood U of p.

If the
space (M,g) is of non-compact type then the domain U can be chosen to be
the whole of M .

Theorem 3.3 ( SG, Svensson (2009), Burstall (2023), (λ = 0 and µ = 0) )

Let (M,g) be an irreducible Riemannian symmetric space. Then for each
point p ∈M there exists a non-constant complex-valued harmonic
morphism ϕ ∶ U → C defined on an open neighbourhood U of p. If the
space (M,g) is of non-compact type then the domain U can be chosen to be
the whole of M .

Sigmundur Gudmundsson Minimal Submanifolds of Compact Riemannian Symmetric Spaces - The Method of Eigenfamilies -



Eigenfunctions - Eigenfamilies
Minimal Submanifolds

Riemannian Symmetric Spaces
Proof of The Main Result

Cartan’s Classification
Classical Symmetric Spaces

Theorem 3.2 ( SG, Svensson (2009), (λ = 0 and µ = 0) )

Let (M,g) be an irreducible Riemannian symmetric space other than the
compact G2/SO(4) or its non-compact dual G∗2/SO(4). Then for each
point p ∈M there exists a non-constant complex-valued harmonic
morphism ϕ ∶ U → C defined on an open neighbourhood U of p. If the
space (M,g) is of non-compact type then the domain U can be chosen to be
the whole of M .

Theorem 3.3 ( SG, Svensson (2009), Burstall (2023), (λ = 0 and µ = 0) )

Let (M,g) be an irreducible Riemannian symmetric space. Then for each
point p ∈M there exists a non-constant complex-valued harmonic
morphism ϕ ∶ U → C defined on an open neighbourhood U of p. If the
space (M,g) is of non-compact type then the domain U can be chosen to be
the whole of M .

Sigmundur Gudmundsson Minimal Submanifolds of Compact Riemannian Symmetric Spaces - The Method of Eigenfamilies -



Eigenfunctions - Eigenfamilies
Minimal Submanifolds

Riemannian Symmetric Spaces
Proof of The Main Result

Cartan’s Classification
Classical Symmetric Spaces

Theorem 3.2 ( SG, Svensson (2009), (λ = 0 and µ = 0) )

Let (M,g) be an irreducible Riemannian symmetric space other than the
compact G2/SO(4) or its non-compact dual G∗2/SO(4). Then for each
point p ∈M there exists a non-constant complex-valued harmonic
morphism ϕ ∶ U → C defined on an open neighbourhood U of p. If the
space (M,g) is of non-compact type then the domain U can be chosen to be
the whole of M .

Theorem 3.3 ( SG, Svensson (2009), Burstall (2023), (λ = 0 and µ = 0) )

Let (M,g) be an irreducible Riemannian symmetric space. Then for each
point p ∈M there exists a non-constant complex-valued harmonic
morphism ϕ ∶ U → C defined on an open neighbourhood U of p. If the
space (M,g) is of non-compact type then the domain U can be chosen to be
the whole of M .

Sigmundur Gudmundsson Minimal Submanifolds of Compact Riemannian Symmetric Spaces - The Method of Eigenfamilies -



Eigenfunctions - Eigenfamilies
Minimal Submanifolds

Riemannian Symmetric Spaces
Proof of The Main Result

Cartan’s Classification
Classical Symmetric Spaces

Example 3.4 ( SG, Sakovich (2008) ∗∗ λ ⋅ µ ≠ 0 )

Eigenfamilies on the compact symmetric spaces

SO(n), SU(n), Sp(n)

Example 3.5 ( SG, Siffert, Sobak (2020) ∗∗ λ ⋅ µ ≠ 0 )

Eigenfunctions on the compact symmetric spaces

SU(n)/SO(n), Sp(n)/U(n), SO(2n)/U(n), SU(2n)/Sp(n),

Sigmundur Gudmundsson Minimal Submanifolds of Compact Riemannian Symmetric Spaces - The Method of Eigenfamilies -



Eigenfunctions - Eigenfamilies
Minimal Submanifolds

Riemannian Symmetric Spaces
Proof of The Main Result

Cartan’s Classification
Classical Symmetric Spaces

Example 3.4 ( SG, Sakovich (2008) ∗∗ λ ⋅ µ ≠ 0 )

Eigenfamilies on the compact symmetric spaces

SO(n), SU(n), Sp(n)

Example 3.5 ( SG, Siffert, Sobak (2020) ∗∗ λ ⋅ µ ≠ 0 )

Eigenfunctions on the compact symmetric spaces

SU(n)/SO(n), Sp(n)/U(n), SO(2n)/U(n), SU(2n)/Sp(n),

Sigmundur Gudmundsson Minimal Submanifolds of Compact Riemannian Symmetric Spaces - The Method of Eigenfamilies -



Eigenfunctions - Eigenfamilies
Minimal Submanifolds

Riemannian Symmetric Spaces
Proof of The Main Result

Cartan’s Classification
Classical Symmetric Spaces

Example 3.6 ( SG, Ghandour (2022) ∗∗ λ = −(m + n), µ = −2 )

Eigenfamilies on the compact real Grassmannians

SO(m + n)/SO(m) × SO(n)

Example 3.7 ( SG, Ghandour (2023) ∗∗ λ = −2(m + n), µ = −2 )

Eigenfamilies on the compact complex Grassmannians

U(m + n)/U(m) ×U(n)

Example 3.8 ( SG, Ghandour (2023) ∗∗ λ = −2(m + n), µ = −1/2 )

Eigenfamilies on the compact quaternionic Grassmannians

Sp(m + n)/Sp(m) × Sp(n)
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Theorem 4.1 ( SG, Munn (2023) )

Let ϕ ∶ (M,g)→ C be a complex-valued eigenfunction on a Riemannian
manifold, such that 0 ∈ ϕ(M) is a regular value for ϕ. Then the fibre
F0 = ϕ−1({0}) is a minimal submanifold of M .

Definition 4.2 ( Baird, SG (1992) )

Let ϕ ∶ (M,g)→ (Nn, h) be a smooth submersion and let the functions
λ2
1, ..., λ

2
n denote the non-zero eigenvalues of the first fundamental form ϕ∗h

with respect to the metric g. Further, let F be a submanifold of M . Then ϕ
is said to be horizontally conformal up to first order along F if

(i) λ2
1(x) = ⋯ = λ2

n(x),
(ii) ∇(λ2

1(x)) = ⋯ = ∇(λ2
n(x)), for every x ∈ F .
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Lemma 4.3

Let ϕ = u + iv ∶ (M,g)→ (C, h) be a smooth submersion that is eigen with
respect to the horizontal conformality operator κ i.e. κ(ϕ,ϕ) = µ ⋅ ϕ2. Then
the eigenvalues of the first fundamental form ϕ∗h are given by

λ1,2 =
1

2
⋅ ((∣∇u∣2 + ∣∇v∣2) ± µ ⋅ (u2 + v2)).

Proof ( of Main Result ).

For a point p in the fibre F0, over (u, v) = (0,0) ∈ C, we have λ2
1 = λ2

2 and

X(λ2
1 − λ2

2)(p) = X(µ ⋅ (∣∇u∣2 + ∣∇v∣2) ⋅ (u2 + v2))(p)

= µ ⋅X(∣∇u∣2 + ∣∇v∣2)(p) ⋅ (u2 + v2)(p)
+µ ⋅ (∣∇u∣2 + ∣∇v∣2)(p) ⋅X(u2 + v2)(p)

= 2µ ⋅ (∣∇u∣2 + ∣∇v∣2)(p)(X(u) ⋅ u +X(v) ⋅ v)(p)
= 0.
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Let ϕ = u + iv ∶ (M,g)→ (C, h) be a smooth submersion that is eigen with
respect to the horizontal conformality operator κ i.e. κ(ϕ,ϕ) = µ ⋅ ϕ2. Then
the eigenvalues of the first fundamental form ϕ∗h are given by

λ1,2 =
1

2
⋅ ((∣∇u∣2 + ∣∇v∣2) ± µ ⋅ (u2 + v2)).

Proof ( of Main Result ).

For a point p in the fibre F0, over (u, v) = (0,0) ∈ C, we have λ2
1 = λ2

2 and

X(λ2
1 − λ2

2)(p) = X(µ ⋅ (∣∇u∣2 + ∣∇v∣2) ⋅ (u2 + v2))(p)

= µ ⋅X(∣∇u∣2 + ∣∇v∣2)(p) ⋅ (u2 + v2)(p)
+µ ⋅ (∣∇u∣2 + ∣∇v∣2)(p) ⋅X(u2 + v2)(p)

= 2µ ⋅ (∣∇u∣2 + ∣∇v∣2)(p)(X(u) ⋅ u +X(v) ⋅ v)(p)
= 0.
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Example 4.4 ( SG, Munn (2023) )

Let us consider the real-valued functions x11, x12 ∶ SO(n)→ C with
xjα ∶ x↦ ej ⋅ x ⋅ etα. For a tangent vector Yrs ∈ Bso(n) we have

Y12(x11) = −
x12√
2
, Y13(x11) = −

x13√
2
, . . . , Y1n(x11) = −

x1n√
2
,

Y12(x12) =
x11√
2
, Y23(x12) = −

x13√
2
, . . . , Y2n(x12) = −

x1n√
2
.

Then define the complex-valued function Φ ∶ SO(n)→ C with
Φ(x) = (x11 + i x12). The above derivatives show that the gradient

∇Φ = ∇x11 + i∇x12

never vanishes along SO(n), so Φ induces a foliation on SO(n) of
codimension two. Here Φ is an eigenfunction. Hence the fibre Φ−1({0}) is a
compact minimal submanifold of SO(n).
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Example 4.5 ( SG, Munn (2023) )

Let the complex-valued function ϕ ∶U(n)→ C be defined by Φ ∶ z ↦ z11.
Then the following coefficients of the gradient ∇Φ satisfy

iD1(Φ) = i z11, Y12(Φ) = −
z12√
2
, Y13(Φ) = −

z13√
2
, . . . , Y1n(Φ) = −

z1n√
2
.

Since the first row (z11, z12, . . . , z1n) can not vanish, at least one of these
derivatives, and hence the gradient ∇Φ of Φ is non-zero along the unitary
group U(n). This means that Φ induces a foliation of U(n) of codimension
two. Here Φ is an eigenfunction. This implies that the fibre Φ−1({0}) is a
compact minimal submanifold of U(n).
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Example 4.6 ( SG, Munn (2023) )

For n ≥ 3, we define the complex-valued function Φ ∶U(n)→ C by

Φ ∶ z ↦ (z11 ⋅ z22 − z12 ⋅ z21) = det [
z11 z12
z21 z22

] .

Here Φ is an eigenfunction on U(n) and the gradient ∇Φ is non-vanishing
along U(n). This implies that the compact fibres of Φ ∶U(n)→ C form a
foliation on U(n) of codimension two. The fibre Φ−1({0}) is a compact
minimal submanifold of U(n).
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Example 4.7 ( SG, Munn (2023) )

On the quaternionic unitary group Sp(n) we define the complex-valued
eigenfunction Φ ∶ Sp(n)→ C with

Φ ∶ q = z + jw ↦ z11.

The function Φ ∶ Sp(n)→ C is submersive along Sp(n). Hence we obtain a
foliation on Sp(n) of codimension two. The leaves are compact and the
fibre Φ−1({0}) over 0 ∈ C is minimal.
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