Minimal Submanifolds of Compact Riemannian Symmetric Spaces - The Method of Eigenfamilies -

Sigmundur Gudmundsson

Department of Mathematics Faculty of Science Lund University

These lecture notes are available at

www.matematik.lu.se/matematiklu/personal/ sigma/slides/2023-09-06-Iasi.pdf

Iasi - 6th of September 2023

< □ > < □ > < □ > < □ > < □ > < □ > = □

Co-workers in Order of Appearance

 \star 1st wave - Martin Svensson (2006/09)

Sigmundur Gudmundsson Willingal Submanifolds O

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Co-workers in Order of Appearance

- \star 1st wave Martin Svensson (2006/09)
- \star 2nd wave Anna Sakovich (2008/09)

Sigmundur Gudmundsson Willingal Submannoids O

化压力 化压力

Co-workers in Order of Appearance

- \star 1st wave Martin Svensson (2006/09)
- \star 2nd wave Anna Sakovich (2008/09)
- \ast 3rd wave Anna Siffert, Marko Sobak, Elsa Ghandour(2020/23)

Sigmundur Gudmundsson VIIIIIIIIIII SUDIIIaIIII0IUS O

Co-workers in Order of Appearance

- \star 1st wave Martin Svensson (2006/09)
- \star 2nd wave Anna Sakovich (2008/09)
- \ast 3rd wave Anna Siffert, Marko Sobak, Elsa Ghandour (2020/23)

mai Suomannoids o

* 4th wave - Thomas Munn (2023)

Sigmundur Gudmundsson

Outline

1 Eigenfunctions - Eigenfamilies

- \bullet The Operators τ and κ
- The Definition and Examples

Sigmundur Gudmundsson Millina Submannoids O

A (10) + (10)

-

Outline

1 Eigenfunctions - Eigenfamilies

- The Operators τ and κ
- The Definition and Examples

2 Minimal Submanifolds

- The Main Result
- Compact Examples

Sigmundur Gudmundsson VIIIIIIIII Submanifolds O

E 5

Outline

1 Eigenfunctions - Eigenfamilies

- \bullet The Operators τ and κ
- The Definition and Examples

2 Minimal Submanifolds

- The Main Result
- Compact Examples

3 Riemannian Symmetric Spaces

- Cartan's Classification
- Classical Symmetric Spaces

Sigmundur Gudmundsson

IVIIII

Outline

1 Eigenfunctions - Eigenfamilies

- \bullet The Operators τ and κ
- The Definition and Examples

2 Minimal Submanifolds

- The Main Result
- Compact Examples

3 Riemannian Symmetric Spaces

- Cartan's Classification
- Classical Symmetric Spaces

Proof of The Main ResultAn Outline

Sigmundur Gudmundsson IVIIII

The Operators τ and κ The Definition and Examples

Let (M^m, g) be a Riemannian manifold, $T^{\mathbb{C}}M$ be the complexification of its tangent bundle TM and extend g to a complex-bilinear form on $T^{\mathbb{C}}M$.

Sigmundur Gudmundsson NIIIIIIIII Submaniiolus O

Let (M^m, g) be a Riemannian manifold, $T^{\mathbb{C}}M$ be the complexification of its tangent bundle TM and extend g to a complex-bilinear form on $T^{\mathbb{C}}M$.

Then the **gradient** of a C^1 -function $\phi = u + iv : (M,g) \to \mathbb{C}$ is the section of $T^{\mathbb{C}}M$ satisfying $\nabla \phi = \nabla u + i \nabla v$.

Sigmundur Gudmundsson NIIIIIIIIII Submanifolds O

Let (M^m, g) be a Riemannian manifold, $T^{\mathbb{C}}M$ be the complexification of its tangent bundle TM and extend g to a complex-bilinear form on $T^{\mathbb{C}}M$.

Then the **gradient** of a C^1 -function $\phi = u + iv : (M,g) \to \mathbb{C}$ is the section of $T^{\mathbb{C}}M$ satisfying $\nabla \phi = \nabla u + i \nabla v$.

The complex-linear Laplace-Beltrami operator τ on (M,g) acts locally on a C^2 -function ϕ as

$$\tau(\phi) = \operatorname{div}(\nabla \phi) = \sum_{X \in \operatorname{ONF}} X^2(\phi) - (\nabla_X X)(\phi).$$

Sigmundur Gudmundsson IVIIIIIIIIai Submannoids O

Let (M^m, g) be a Riemannian manifold, $T^{\mathbb{C}}M$ be the complexification of its tangent bundle TM and extend g to a complex-bilinear form on $T^{\mathbb{C}}M$.

Then the **gradient** of a C^1 -function $\phi = u + iv : (M,g) \to \mathbb{C}$ is the section of $T^{\mathbb{C}}M$ satisfying $\nabla \phi = \nabla u + i \nabla v$.

The complex-linear Laplace-Beltrami operator τ on (M,g) acts locally on a C^2 -function ϕ as

$$\tau(\phi) = \operatorname{div}(\nabla \phi) = \sum_{X \in \operatorname{ONF}} X^2(\phi) - (\nabla_X X)(\phi).$$

For two C^2 -functions $\phi, \psi: (M, g) \to \mathbb{C}$ we have

$$\tau(\phi \cdot \psi) = \tau(\phi) \cdot \psi + 2 \cdot \kappa(\phi, \psi) + \phi \cdot \tau(\psi),$$

where the **conformality operator** κ satisfies $\kappa(\phi, \psi) = g(\nabla \phi, \nabla \psi)$.

Sigmundur Gudmundsson Millinnal Submannoids

Let (M^m, g) be a Riemannian manifold, $T^{\mathbb{C}}M$ be the complexification of its tangent bundle TM and extend g to a complex-bilinear form on $T^{\mathbb{C}}M$.

Then the **gradient** of a C^1 -function $\phi = u + iv : (M,g) \to \mathbb{C}$ is the section of $T^{\mathbb{C}}M$ satisfying $\nabla \phi = \nabla u + i \nabla v$.

The complex-linear Laplace-Beltrami operator τ on (M,g) acts locally on a C^2 -function ϕ as

$$\tau(\phi) = \operatorname{div}(\nabla \phi) = \sum_{X \in \operatorname{ONF}} X^2(\phi) - (\nabla_X X)(\phi).$$

For two $C^2\text{-functions }\phi,\psi:(M,g)\to\mathbb{C}$ we have

$$\tau(\phi \cdot \psi) = \tau(\phi) \cdot \psi + 2 \cdot \kappa(\phi, \psi) + \phi \cdot \tau(\psi),$$

where the **conformality operator** κ satisfies $\kappa(\phi, \psi) = g(\nabla \phi, \nabla \psi)$.

$$\kappa(\phi,\phi) = (|\nabla u|^2 - |\nabla v|^2) + 2i \cdot g(\nabla u, \nabla v).$$

 $\kappa(\phi, \phi) = 0$ if and only if

$$|\nabla u|^2 = |\nabla v|^2$$
 and $g(\nabla u, \nabla v) = 0$.

Sigmundur Gudmundsson Willingal Submanifolds

The Operators τ and κ The Definition and Examples

Definition 1.1 (Eigenfunction - Eigenfamily - SG, Sakovich (2008))

Let (M, g) be a Riemennian manifold. Then a complex-valued function $\phi: M \to \mathbb{C}$ is said to be an **eigenfunction** if it is eigen both with respect to the Laplace-Beltrami operator τ and the conformality operator κ i.e. there exist complex numbers $\lambda, \mu \in \mathbb{C}$ such that

$$\tau(\phi) = \lambda \cdot \phi \text{ and } \kappa(\phi, \phi) = \mu \cdot \phi^2.$$

Sigmundur Gudmundsson NIIIIIIIIIII Submaniioids O

Sigmundur Gudmundsson

The Operators τ and κ The Definition and Examples

nai Suomanno

10S O

Definition 1.1 (Eigenfunction - Eigenfamily - SG, Sakovich (2008))

Let (M, g) be a Riemennian manifold. Then a complex-valued function $\phi: M \to \mathbb{C}$ is said to be an **eigenfunction** if it is eigen both with respect to the Laplace-Beltrami operator τ and the conformality operator κ i.e. there exist complex numbers $\lambda, \mu \in \mathbb{C}$ such that

$$\tau(\phi) = \lambda \cdot \phi \text{ and } \kappa(\phi, \phi) = \mu \cdot \phi^2.$$

A set $\mathcal{E} = \{\phi_i : M \to \mathbb{C} \mid i \in I\}$ of complex-valued functions is said to be an **eigenfamily** on M if there exist complex numbers $\lambda, \mu \in \mathbb{C}$ such that for all $\phi, \psi \in \mathcal{E}$ we have

$$\tau(\phi) = \lambda \cdot \phi \text{ and } \kappa(\phi, \psi) = \mu \cdot \phi \cdot \psi.$$

The Operators τ and κ The Definition and Examples

(신문) (문)

Example 1.2 (The Euclidean $\mathbb{C} \cong \mathbb{R}^{2n}$, $(\lambda = 0, \mu = 0)$)

On the standard **Euclidean space** $\mathbb{C}^n \cong \mathbb{R}^{2n}$ we define the functions $\phi_1, \ldots, \phi_n : \mathbb{C}^n \to \mathbb{C}$ by $\phi_j : (z_1, \ldots, z_n) \mapsto z_j$. Then the tension field τ and the conformality operator κ on \mathbb{C}^n satisfy

 $\tau(\phi_j) = 0$ and $\kappa(\phi_j, \phi_k) = 0$.

Sigmundur Gudmundsson Willinnal Submannoids O

The Operators τ and κ The Definition and Examples

Example 1.2 (The Euclidean $\mathbb{C} \cong \mathbb{R}^{2n}$, $(\lambda = 0, \mu = 0)$)

On the standard **Euclidean space** $\mathbb{C}^n \cong \mathbb{R}^{2n}$ we define the functions $\phi_1, \ldots, \phi_n : \mathbb{C}^n \to \mathbb{C}$ by $\phi_j : (z_1, \ldots, z_n) \mapsto z_j$. Then the tension field τ and the conformality operator κ on \mathbb{C}^n satisfy

 $\tau(\phi_j) = 0$ and $\kappa(\phi_j, \phi_k) = 0$.

Theorem 1.3 (Fuglede (1978) + Ishihara (1979), ($\lambda = 0$ and $\mu = 0$))

A complex-valued C^2 -function $\phi : (M,g) \to \mathbb{C}$ on a Riemannian manifold is a harmonic morphism if and only if it is an eigenfunction with $\lambda = 0$ and $\mu = 0$. $[\tau(\phi) = 0$ and $\kappa(\phi, \phi) = 0]$

Sigmundur Gudmundsson Willinnal Submanniolos O

The Operators τ and κ The Definition and Examples

Example 1.2 (The Euclidean $\mathbb{C} \cong \mathbb{R}^{2n}$, $(\lambda = 0, \mu = 0)$)

On the standard **Euclidean space** $\mathbb{C}^n \cong \mathbb{R}^{2n}$ we define the functions $\phi_1, \ldots, \phi_n : \mathbb{C}^n \to \mathbb{C}$ by $\phi_j : (z_1, \ldots, z_n) \mapsto z_j$. Then the tension field τ and the conformality operator κ on \mathbb{C}^n satisfy

 $\tau(\phi_j) = 0$ and $\kappa(\phi_j, \phi_k) = 0$.

Theorem 1.3 (Fuglede (1978) + Ishihara (1979), ($\lambda = 0$ and $\mu = 0$)

A complex-valued C^2 -function $\phi : (M,g) \to \mathbb{C}$ on a Riemannian manifold is a harmonic morphism if and only if it is an eigenfunction with $\lambda = 0$ and $\mu = 0$. $[\tau(\phi) = 0$ and $\kappa(\phi, \phi) = 0]$

Theorem 1.4 (Baird, Eells (1981), $(\lambda = 0 \text{ and } \mu = 0)$)

Let $\phi : (M,g) \to \mathbb{C}$ be a horizontally conformal $[\kappa(\phi,\phi) = 0]$ function from a Riemannian manifold. Then ϕ is harmonic $[\tau(\phi) = 0]$ if and only if its fibres are minimal at regular points of $\phi [\nabla \phi \neq 0]$.

Sigmundur Gudmundsson IVIIIIIIIIai Submaniioius O

・ロッ ・通 と ・ヨ と ・ ヨ と

-

The Operators τ and κ The Definition and Examples

Example 1.5 (S^{2n-1} , ($\lambda = -(2n-1)$, $\mu = -1$))

Let S^{2n-1} be the odd dimensional unit sphere in the standard Euclidean $\mathbb{C}^n \cong \mathbb{R}^{2n}$ and define $\phi_1, \ldots, \phi_n : S^{2n-1} \to \mathbb{C}$ by

$$\phi_j:(z_1,\ldots,z_n)\mapsto \frac{z_j}{\sqrt{|z_1|^2+\cdots+|z_n|^2}}.$$

Then the tension field τ and the conformality operator κ on S^{2n-1} satisfy

$$\tau(\phi_j) = -(2n-1)\cdot\phi_j$$
 and $\kappa(\phi_j,\phi_k) = -1\cdot\phi_j\cdot\phi_k$.

Sigmundur Gudmundsson Willinnal Submannoids O

伺い イラン イラン

The Operators τ and κ The Definition and Examples

Example 1.6 ($\mathbb{C}P^n$, ($\lambda = -4(n+1)$, $\mu = -4$))

Let $\mathbb{C}P^n$ be the standard *n*-dimensional **complex projective space**. For a fixed integer $1 \le \alpha < n+1$ and $1 \le j \le \alpha < k \le n+1$ define the function $\phi_{jk} : \mathbb{C}P^n \to \mathbb{C}$ by

$$\phi_{jk}: [z_1, \dots, z_{n+1}] \mapsto \frac{z_j \cdot \bar{z}_k}{z_1 \cdot \bar{z}_1 + \dots + z_{n+1} \cdot \bar{z}_{n+1}}$$

Then the tension field τ and the conformality operator κ on $\mathbb{C}P^n$ satisfy

$$\tau(\phi_{jk}) = -4(n+1) \cdot \phi_{jk} \text{ and } \kappa(\phi_{jk}, \phi_{lm}) = -4 \cdot \phi_{jk} \cdot \phi_{lm}.$$

Note that

$$#(\{\phi_{jk} \mid j \leq \alpha < k\}) = \alpha \cdot (n+1-\alpha).$$

Sigmundur Gudmundsson IVIIIIIIIIIIII Submaniiolus O

The Operators τ and κ The Definition and Examples

Theorem 1.7 (SG - Ghandour (2020))

Let (M,g) be a Riemannian manifold and the set of complex-valued functions

$$\mathcal{E} = \{\phi_i : M \to \mathbb{C} \mid i = 1, 2, \dots, n\}$$

be a finite **eigenfamily** i.e. there exist complex numbers $\lambda, \mu \in \mathbb{C}$ such that for all $\phi, \psi \in \mathcal{E}$

 $\tau(\phi) = \lambda \cdot \phi \quad and \quad \kappa(\phi, \psi) = \mu \cdot \phi \psi.$

Sigmundur Gudmundsson Millina Submannoids O

The Operators τ and κ The Definition and Examples

Theorem 1.7 (SG - Ghandour (2020))

Let (M,g) be a Riemannian manifold and the set of complex-valued functions

$$\mathcal{E} = \{\phi_i : M \to \mathbb{C} \mid i = 1, 2, \dots, n\}$$

be a finite **eigenfamily** *i.e.* there exist complex numbers $\lambda, \mu \in \mathbb{C}$ such that for all $\phi, \psi \in \mathcal{E}$

$$\tau(\phi) = \lambda \cdot \phi \quad and \quad \kappa(\phi, \psi) = \mu \cdot \phi \psi.$$

Then the set $\mathcal{P}_d(\mathcal{E})$ of complex homogeneous polynomials of degree d

$$\mathcal{P}_d(\mathcal{E}) = \{ P : M \to \mathbb{C} \, | \, P \in \mathbb{C}[\phi_1, \phi_2, \dots, \phi_n], \, P(\alpha \cdot \phi) = \alpha^d \cdot P(\phi), \, \alpha \in \mathbb{C} \}$$

is an eigenfamily on M such that for all $P, Q \in \mathcal{P}_d(\mathcal{E})$ we have

$$\tau(P) = (d\lambda + d(d-1)\mu) \cdot P \quad and \quad \kappa(P,Q) = (d^2\mu) \cdot PQ.$$

Sigmundur Gudmundsson IVIIIIIIIIIIII SUDIIIIIIIIIII

The Operators τ and κ The Definition and Examples

Theorem 1.7 (SG - Ghandour (2020))

Let (M,g) be a Riemannian manifold and the set of complex-valued functions

$$\mathcal{E} = \{\phi_i : M \to \mathbb{C} \mid i = 1, 2, \dots, n\}$$

be a finite **eigenfamily** *i.e.* there exist complex numbers $\lambda, \mu \in \mathbb{C}$ such that for all $\phi, \psi \in \mathcal{E}$

$$\tau(\phi) = \lambda \cdot \phi \quad and \quad \kappa(\phi, \psi) = \mu \cdot \phi \psi.$$

Then the set $\mathcal{P}_d(\mathcal{E})$ of complex homogeneous polynomials of degree d

$$\mathcal{P}_{d}(\mathcal{E}) = \{P : M \to \mathbb{C} \mid P \in \mathbb{C}[\phi_{1}, \phi_{2}, \dots, \phi_{n}], P(\alpha \cdot \phi) = \alpha^{d} \cdot P(\phi), \alpha \in \mathbb{C}\}$$

is an eigenfamily on M such that for all $P, Q \in \mathcal{P}_d(\mathcal{E})$ we have

$$\tau(P) = (d\lambda + d(d-1)\mu) \cdot P \quad and \quad \kappa(P,Q) = (d^2\mu) \cdot PQ.$$

$$\dim_{\mathbb{C}} \mathcal{P}_d(\mathcal{E}) = \binom{n+d-1}{n}.$$

Sigmundur Gudmundsson VIIIIIIIIII SUDIMAIIII010S

The Main Result Compact Examples

Theorem 2.1 (SG, Munn (2023))

Let $\phi: (M,g) \to \mathbb{C}$ be a complex-valued **eigenfunction** on a Riemannian manifold, such that $0 \in \phi(M)$ is a regular value for ϕ . Then the fibre $\mathcal{F}_0 = \phi^{-1}(\{0\})$ is a **minimal submanifold** of M of codimension two.

Sigmundur Gudmundsson NIIIIIIIIIII SUDIIIIaIIII0IUS O

化压力 化压力

The Main Result Compact Examples

Theorem 2.1 (SG, Munn (2023))

Let $\phi: (M,g) \to \mathbb{C}$ be a complex-valued **eigenfunction** on a Riemannian manifold, such that $0 \in \phi(M)$ is a regular value for ϕ . Then the fibre $\mathcal{F}_0 = \phi^{-1}(\{0\})$ is a **minimal submanifold** of M of codimension two.

Notice that along the fibre $\mathcal{F}_0 = \phi^{-1}(\{0\})$ we have the following important properties $\tau(\phi) = \lambda \cdot \phi = 0$ and $\kappa(\phi, \phi) = \mu \cdot \phi^2 = 0$.

Sigmundur Gudmundsson NIIIIIIIIIIII SUDIMAIIII0IUS O

The Main Result Compact Examples

Theorem 2.1 (SG, Munn (2023))

Let $\phi: (M,g) \to \mathbb{C}$ be a complex-valued **eigenfunction** on a Riemannian manifold, such that $0 \in \phi(M)$ is a regular value for ϕ . Then the fibre $\mathcal{F}_0 = \phi^{-1}(\{0\})$ is a **minimal submanifold** of M of codimension two.

Notice that along the fibre $\mathcal{F}_0 = \phi^{-1}(\{0\})$ we have the following important properties $\tau(\phi) = \lambda \cdot \phi = 0$ and $\kappa(\phi, \phi) = \mu \cdot \phi^2 = 0$.

The main ingredient for our proof is the following **OLD result** in the special case when n = 2. For this we have a **NEW proof** "avoiding" the **stress-energy tensor.** $\bigcirc \odot \odot$

Theorem 2.2 (Baird, SG (1992))

Let $\phi: (M,g) \to (N^n,h)$ be a submersion and $\mathcal{F}_y = \phi^{-1}(\{y\})$ for some $y \in N$. If ϕ is horizontally conformal up to first order along \mathcal{F}_y , then the following two conditions are equivalent

- (i) ϕ is n-harmonic along \mathcal{F}_y i.e. $\tau_n(\phi)(x) = 0$, for all $x \in \mathcal{F}_y$,
- (ii) \mathcal{F}_y is a minimal submanifold of (M, g).

Sigmundur Gudmundsson Millina Submannoids O

The Main Result Compact Examples

Definition 2.3 (Baird, SG (1992))

Let $\phi: (M,g) \to (N^n,h)$ be a smooth submersion and let the functions $\lambda_1^2, ..., \lambda_n^2$ denote the non-zero eigenvalues of the first fundamental form ϕ^*h with respect to the metric g. Further, let \mathcal{F} be a submanifold of M. Then ϕ is said to be **horizontally conformal up to first order along** \mathcal{F} if

(i)
$$\lambda_1^2(x) = \dots = \lambda_n^2(x),$$

(ii) $\nabla(\lambda_1^2(x)) = \dots = \nabla(\lambda_n^2(x)),$ for every $x \in \mathcal{F}.$

Sigmundur Gudmundsson Willingal Submannoids O

The Main Result Compact Examples

・ロト ・得ト ・ヨト ・ヨト

Minimal Submannoids o

-

Example 2.4 (SG, Munn (2023))

Sigmundur Gudmundsson

Let S^{2n-1} be the odd-dimensional **unit sphere** in the standard Euclidean $\mathbb{C}^n \cong \mathbb{R}^{2n}$ and $A \in \mathbb{C}^{n \times n}$ be a complex matrix which is invertible i.e. det $A \neq 0$. Further define the function $\Phi : S^{2n-1} \to \mathbb{C}$ with

$$\Phi: z = (z_1, z_2, \dots, z_n) \mapsto \frac{1}{|z|^2} \cdot \left(\sum_{k \neq l}^n a_{kl} \, z_k z_l + \frac{1}{2} \cdot \sum_{k=1}^n a_{kk} \, z_k^2\right)$$

The Main Result Compact Examples

Example 2.4 (SG, Munn (2023))

Let S^{2n-1} be the odd-dimensional **unit sphere** in the standard Euclidean $\mathbb{C}^n \cong \mathbb{R}^{2n}$ and $A \in \mathbb{C}^{n \times n}$ be a complex matrix which is invertible i.e. det $A \neq 0$. Further define the function $\Phi : S^{2n-1} \to \mathbb{C}$ with

$$\Phi: z = (z_1, z_2, \dots, z_n) \mapsto \frac{1}{|z|^2} \cdot \Big(\sum_{k \neq l}^n a_{kl} \, z_k z_l + \frac{1}{2} \cdot \sum_{k=1}^n a_{kk} \, z_k^2\Big).$$

Then Φ is a **submersive eigenfunction** and its compact fibres form a foliation of the unit sphere of codimension two. The fibre $\mathcal{F}_0 = \Phi^{-1}(\{0\})$ is a **minimal submanifold** of S^{2n-1} .

Sigmundur Gudmundsson MIIIIIIIIIII SUDINAIIII0IUS O

The Main Result Compact Examples

・ 同 ト ・ ヨ ト ・ ヨ ト

Example 2.4 (SG, Munn (2023))

Sigmundur Gudmundsson

Let S^{2n-1} be the odd-dimensional **unit sphere** in the standard Euclidean $\mathbb{C}^n \cong \mathbb{R}^{2n}$ and $A \in \mathbb{C}^{n \times n}$ be a complex matrix which is invertible i.e. det $A \neq 0$. Further define the function $\Phi : S^{2n-1} \to \mathbb{C}$ with

$$\Phi: z = (z_1, z_2, \dots, z_n) \mapsto \frac{1}{|z|^2} \cdot \Big(\sum_{k \neq l}^n a_{kl} \, z_k z_l + \frac{1}{2} \cdot \sum_{k=1}^n a_{kk} \, z_k^2\Big).$$

Then Φ is a **submersive eigenfunction** and its compact fibres form a foliation of the unit sphere of codimension two. The fibre $\mathcal{F}_0 = \Phi^{-1}(\{0\})$ is a **minimal submanifold** of S^{2n-1} .

This provides a complex n^2 -dimensional family of compact minimal submanifolds of S^{2n-1} .

The Main Result Compact Examples

くぼう くほう くほう

-

Example 2.5 (SG, Munn (2023) $(d \in \mathbb{Z}^+)$)

Sigmundur Gudmundsson

Let S^{2n-1} be the odd-dimensional **unit sphere** in the Euclidean $\mathbb{C}^n \cong \mathbb{R}^{2n}$, $d \in \mathbb{Z}^+$ and $(a_1, \ldots, a_n) \in \mathbb{C}^n$ such that $a_1, \ldots, a_n \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$. Further define the function $\Phi : S^{2n-1} \to \mathbb{C}$ with

$$\Phi: z = (z_1, z_2, \dots, z_n) \mapsto \frac{1}{|z|^d} \cdot \sum_{k=1}^n a_k \cdot z_k^d.$$

The Main Result Compact Examples

Example 2.5 (SG, Munn (2023) $(d \in \mathbb{Z}^+)$)

Let S^{2n-1} be the odd-dimensional **unit sphere** in the Euclidean $\mathbb{C}^n \cong \mathbb{R}^{2n}$, $d \in \mathbb{Z}^+$ and $(a_1, \ldots, a_n) \in \mathbb{C}^n$ such that $a_1, \ldots, a_n \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$. Further define the function $\Phi : S^{2n-1} \to \mathbb{C}$ with

$$\Phi: z = (z_1, z_2, \dots, z_n) \mapsto \frac{1}{|z|^d} \cdot \sum_{k=1}^n a_k \cdot z_k^d.$$

Then Φ is a **submersive eigenfunction** and its compact fibres form a foliation of the unit sphere of codimension two. The fibre $\mathcal{F}_0 = \Phi^{-1}(\{0\})$ is a **minimal submanifold** of S^{2n-1} .

Sigmundur Gudmundsson Willinnal Submannoids O

The Main Result Compact Examples

くぼ くほう くほう

Example 2.5 (SG, Munn (2023) $(d \in \mathbb{Z}^+)$)

Sigmundur Gudmundsson

Let S^{2n-1} be the odd-dimensional **unit sphere** in the Euclidean $\mathbb{C}^n \cong \mathbb{R}^{2n}$, $d \in \mathbb{Z}^+$ and $(a_1, \ldots, a_n) \in \mathbb{C}^n$ such that $a_1, \ldots, a_n \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$. Further define the function $\Phi : S^{2n-1} \to \mathbb{C}$ with

$$\Phi: z = (z_1, z_2, \dots, z_n) \mapsto \frac{1}{|z|^d} \cdot \sum_{k=1}^n a_k \cdot z_k^d.$$

Then Φ is a **submersive eigenfunction** and its compact fibres form a foliation of the unit sphere of codimension two. The fibre $\mathcal{F}_0 = \Phi^{-1}(\{0\})$ is a **minimal submanifold** of S^{2n-1} .

For each $d \in \mathbb{Z}^+$, this provides a complex *n*-dimensional family of compact minimal submanifolds of S^{2n-1} .

The Main Result Compact Examples

Example 2.6 (SG, Munn (2023))

Let $\mathbb{C}P^{2n-1}$ be the odd-dimensional **complex projective space** and $(a_1, \ldots, a_n) \in \mathbb{C}^n$ such that $a_1, \ldots, a_n \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$. Then define the function $\Phi : \mathbb{C}P^{2n-1} \to \mathbb{C}$ with

$$\Phi: z = (z_1, z_2, \dots, z_n) \mapsto \frac{1}{|z|^2} \cdot (a_1 \cdot z_1 \overline{z}_{n+1} + \dots + a_n \cdot z_n \overline{z}_{2n}).$$

Sigmundur Gudmundsson IVIIIIIIIIIIII Submaniiolus O

-

The Main Result Compact Examples

Example 2.6 (SG, Munn (2023))

Let $\mathbb{C}P^{2n-1}$ be the odd-dimensional **complex projective space** and $(a_1, \ldots, a_n) \in \mathbb{C}^n$ such that $a_1, \ldots, a_n \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$. Then define the function $\Phi : \mathbb{C}P^{2n-1} \to \mathbb{C}$ with

$$\Phi: z = (z_1, z_2, \dots, z_n) \mapsto \frac{1}{|z|^2} \cdot (a_1 \cdot z_1 \overline{z}_{n+1} + \dots + a_n \cdot z_n \overline{z}_{2n}).$$

Then Φ is a **eigenfunction** and its compact fibre $\mathcal{F}_0 = \Phi^{-1}(\{0\})$ is a **minimal submanifold** of $\mathbb{C}P^{2n-1}$ of codimension two.

Sigmundur Gudmundsson VIIIIIIIIIII SUDINAIIII0IUS O

The Main Result Compact Examples

(1日) (1日) (日)

Example 2.6 (SG, Munn (2023))

Sigmundur Gudmundsson

Let $\mathbb{C}P^{2n-1}$ be the odd-dimensional **complex projective space** and $(a_1, \ldots, a_n) \in \mathbb{C}^n$ such that $a_1, \ldots, a_n \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$. Then define the function $\Phi : \mathbb{C}P^{2n-1} \to \mathbb{C}$ with

$$\Phi: z = (z_1, z_2, \dots, z_n) \mapsto \frac{1}{|z|^2} \cdot (a_1 \cdot z_1 \overline{z}_{n+1} + \dots + a_n \cdot z_n \overline{z}_{2n}).$$

Then Φ is a **eigenfunction** and its compact fibre $\mathcal{F}_0 = \Phi^{-1}(\{0\})$ is a **minimal submanifold** of $\mathbb{C}P^{2n-1}$ of codimension two.

This provides a complex *n*-dimensional family of compact minimal submanifolds of $\mathbb{C}P^{2n-1}$.

Cartan's Classification Classical Symmetric Spaces

(* (E)) * (E))

Definition 3.1 (Riemannian Symmetric Space)

A Riemannian manifold (M, g) is said to be a **symmetric space** if to each point $p \in M$ there exists a global isometry $\sigma_p : (M, g) \to (M, g)$ such that $\sigma_p(p) = p$ and the differential $d\sigma_p : T_pM \to T_pM$ at p satisfies

 $d\sigma_p = -\operatorname{id}_{T_pM}.$

Sigmundur Gudmundsson Willingal Submannoids O

Cartan's Classification Classical Symmetric Spaces

Definition 3.1 (Riemannian Symmetric Space)

A Riemannian manifold (M, g) is said to be a **symmetric space** if to each point $p \in M$ there exists a global isometry $\sigma_p : (M, g) \to (M, g)$ such that $\sigma_p(p) = p$ and the differential $d\sigma_p : T_pM \to T_pM$ at p satisfies

$$d\sigma_p = -\operatorname{id}_{T_pM}.$$

The irreducible Riemannian symmetric spaces were **classified by Élie Cartan** in 1926. They constitute 20 countably infinite families and 24 exceptional single cases. They are quotents of Lie groups and come in **pairs** (U/K, G/K), where U/K is **compact** and G/K is **non-compact**.

Cartan's Classification Classical Symmetric Spaces

Definition 3.1 (Riemannian Symmetric Space)

A Riemannian manifold (M, g) is said to be a **symmetric space** if to each point $p \in M$ there exists a global isometry $\sigma_p : (M, g) \to (M, g)$ such that $\sigma_p(p) = p$ and the differential $d\sigma_p : T_pM \to T_pM$ at p satisfies

$$d\sigma_p = -\operatorname{id}_{T_pM}.$$

The irreducible Riemannian symmetric spaces were **classified by Élie Cartan** in 1926. They constitute 20 countably infinite families and 24 exceptional single cases. They are quotents of Lie groups and come in **pairs** (U/K, G/K), where U/K is **compact** and G/K is **non-compact**.

$$S^{m} = \mathbf{SO}(1+m)/\mathbf{SO}(m) \quad * \quad \mathbb{R}H^{m} = \mathbf{SO}_{o}(1,m)/\mathbf{SO}(m)$$
$$\mathbb{C}P^{m} = \mathbf{U}(1+m)/\mathbf{U}(1) \times \mathbf{U}(m) \quad * \quad \mathbb{C}H^{m} = \mathbf{U}(1,m)/\mathbf{U}(1) \times \mathbf{U}(m)$$
$$\mathbb{H}P^{m} = \mathbf{Sp}(1+m)/\mathbf{Sp}(1) \times \mathbf{Sp}(m) \quad * \quad \mathbb{H}H^{m} = \mathbf{Sp}(1,m)/\mathbf{Sp}(1) \times \mathbf{Sp}(m)$$

Sigmundur Gudmundsson IVIIIIIIIal Submannoids (

Cartan's Classification Classical Symmetric Spaces

Theorem 3.2 (SG, Svensson (2009), ($\lambda = 0$ and $\mu = 0$))

Let (M,g) be an irreducible Riemannian symmetric space other than the compact $G_2/SO(4)$ or its non-compact dual $G_2^*/SO(4)$.

Sigmundur Gudmundsson NIIIIIIIIIIII SUDIMAIIII0IUS O

・ 同 ト ・ ヨ ト ・ ヨ ト

Sigmundur Gudmundsson

Cartan's Classification Classical Symmetric Spaces

→ Ξ → → Ξ →

Theorem 3.2 (SG, Svensson (2009), ($\lambda = 0$ and $\mu = 0$))

Let (M, g) be an irreducible Riemannian symmetric space other than the compact $G_2/SO(4)$ or its non-compact dual $G_2^*/SO(4)$. Then for each point $p \in M$ there exists a non-constant complex-valued harmonic morphism $\phi: U \to \mathbb{C}$ defined on an open neighbourhood U of p.

Sigmundur Gudmundsson

Cartan's Classification Classical Symmetric Spaces

nai Suomannoids o

Theorem 3.2 (SG, Svensson (2009), ($\lambda = 0$ and $\mu = 0$))

Let (M, g) be an irreducible Riemannian symmetric space other than the compact $G_2/SO(4)$ or its non-compact dual $G_2^*/SO(4)$. Then for each point $p \in M$ there exists a non-constant complex-valued harmonic morphism $\phi: U \to \mathbb{C}$ defined on an open neighbourhood U of p. If the space (M, g) is of non-compact type then the domain U can be chosen to be the whole of M.

Cartan's Classification Classical Symmetric Spaces

Theorem 3.2 (SG, Svensson (2009), ($\lambda = 0$ and $\mu = 0$))

Let (M,g) be an irreducible Riemannian symmetric space other than the compact $G_2/SO(4)$ or its non-compact dual $G_2^*/SO(4)$. Then for each point $p \in M$ there exists a non-constant complex-valued harmonic morphism $\phi: U \to \mathbb{C}$ defined on an open neighbourhood U of p. If the space (M,g) is of non-compact type then the domain U can be chosen to be the whole of M.

Theorem 3.3 (SG, Svensson (2009), Burstall (2023), ($\lambda = 0$ and $\mu = 0$))

Let (M,g) be an irreducible Riemannian symmetric space. Then for each point $p \in M$ there exists a non-constant complex-valued harmonic morphism $\phi: U \to \mathbb{C}$ defined on an open neighbourhood U of p. If the space (M,g) is of non-compact type then the domain U can be chosen to be the whole of M.

Sigmundur Gudmundsson Willinnal Submanniolus

Cartan's Classification Classical Symmetric Spaces

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Example 3.4 (SG, Sakovich (2008) $\star \star \lambda \cdot \mu \neq 0$)

Eigenfamilies on the compact symmetric spaces

SO(n), SU(n), Sp(n)

Sigmundur Gudmundsson Willingal Submannoids O

Cartan's Classification Classical Symmetric Spaces

Example 3.4 (SG, Sakovich (2008) ** $\lambda \cdot \mu \neq 0$)

Eigenfamilies on the compact symmetric spaces

SO(n), SU(n), Sp(n)

Example 3.5 (SG, Siffert, Sobak (2020) ** $\lambda \cdot \mu \neq 0$)

Eigenfunctions on the compact symmetric spaces

SU(n)/SO(n), Sp(n)/U(n), SO(2n)/U(n), SU(2n)/Sp(n),

Sigmundur Gudmundsson Willingan Submanifolds O

Cartan's Classification Classical Symmetric Spaces

・ 同 ト ・ ヨ ト ・ ヨ ト …

Example 3.6 (SG, Ghandour (2022) ** $\lambda = -(m+n), \, \mu = -2$)

Eigenfamilies on the compact real Grassmannians

 $\mathbf{SO}(m+n)/\mathbf{SO}(m) \times \mathbf{SO}(n)$

Sigmundur Gudmundsson Millinnal Submannolds O

Cartan's Classification Classical Symmetric Spaces

Example 3.6 (SG, Ghandour (2022) ** $\lambda = -(m+n), \mu = -2$)

Eigenfamilies on the compact real Grassmannians

 $SO(m+n)/SO(m) \times SO(n)$

Example 3.7 (SG, Ghandour (2023) ** $\lambda = -2(m+n), \mu = -2$)

Eigenfamilies on the compact complex Grassmannians

 $\mathbf{U}(m+n)/\mathbf{U}(m)\times\mathbf{U}(n)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Cartan's Classification Classical Symmetric Spaces

Example 3.6 (SG, Ghandour (2022) ** $\lambda = -(m+n), \mu = -2$)

Eigenfamilies on the compact real Grassmannians

 $\mathbf{SO}(m+n)/\mathbf{SO}(m) \times \mathbf{SO}(n)$

Example 3.7 (SG, Ghandour (2023) ** $\lambda = -2(m+n), \mu = -2$)

Eigenfamilies on the compact complex Grassmannians

 $\mathbf{U}(m+n)/\mathbf{U}(m) \times \mathbf{U}(n)$

Example 3.8 (SG, Ghandour (2023) ** $\lambda = -2(m+n), \mu = -1/2$)

Eigenfamilies on the compact quaternionic Grassmannians

 $\mathbf{Sp}(m+n)/\mathbf{Sp}(m) \times \mathbf{Sp}(n)$

Sigmundur Gudmundsson Willinnal Submannolus (

・ロッ ・通 と ・ヨ と ・ ヨ と

An Outline

Theorem 4.1 (SG, Munn (2023))

Let $\phi: (M,g) \to \mathbb{C}$ be a complex-valued **eigenfunction** on a Riemannian manifold, such that $0 \in \phi(M)$ is a regular value for ϕ . Then the fibre $\mathcal{F}_0 = \phi^{-1}(\{0\})$ is a **minimal submanifold** of M.

Definition 4.2 (Baird, SG (1992))

Let $\phi: (M, g) \to (N^n, h)$ be a smooth submersion and let the functions $\lambda_1^2, ..., \lambda_n^2$ denote the non-zero eigenvalues of the first fundamental form $\phi^* h$ with respect to the metric g. Further, let \mathcal{F} be a submanifold of M. Then ϕ is said to be **horizontally conformal up to first order along** \mathcal{F} if

Sigmundur Gudmundsson IVIIIIIIII Submanifolds (

化原因 化原因

An Outline

Lemma 4.3

Let $\phi = u + iv : (M, g) \to (\mathbb{C}, h)$ be a smooth submersion that is eigen with respect to the horizontal conformality operator κ i.e. $\kappa(\phi, \phi) = \mu \cdot \phi^2$. Then the eigenvalues of the first fundamental form ϕ^*h are given by

$$\lambda_{1,2} = \frac{1}{2} \cdot \left(\left(|\nabla u|^2 + |\nabla v|^2 \right) \pm \mu \cdot (u^2 + v^2) \right).$$

Sigmundur Gudmundsson Willinnal Submannoids O

An Outline

Lemma 4.3

Let $\phi = u + iv : (M, g) \to (\mathbb{C}, h)$ be a smooth submersion that is eigen with respect to the horizontal conformality operator κ i.e. $\kappa(\phi, \phi) = \mu \cdot \phi^2$. Then the eigenvalues of the first fundamental form ϕ^*h are given by

$$\lambda_{1,2} = \frac{1}{2} \cdot \left((|\nabla u|^2 + |\nabla v|^2) \pm \mu \cdot (u^2 + v^2) \right).$$

Proof (of Main Result).

For a point p in the fibre \mathcal{F}_0 , over $(u, v) = (0, 0) \in \mathbb{C}$, we have $\lambda_1^2 = \lambda_2^2$ and

$$X(\lambda_{1}^{2} - \lambda_{2}^{2})(p) = X(\mu \cdot (|\nabla u|^{2} + |\nabla v|^{2}) \cdot (u^{2} + v^{2}))(p)$$

Sigmundur Gudmundsson IVIIIIIIIIai Submanniolus C

An Outline

Lemma 4.3

Let $\phi = u + iv : (M, g) \to (\mathbb{C}, h)$ be a smooth submersion that is eigen with respect to the horizontal conformality operator κ i.e. $\kappa(\phi, \phi) = \mu \cdot \phi^2$. Then the eigenvalues of the first fundamental form ϕ^*h are given by

$$\lambda_{1,2} = \frac{1}{2} \cdot \left((|\nabla u|^2 + |\nabla v|^2) \pm \mu \cdot (u^2 + v^2) \right).$$

Proof (of Main Result).

For a point p in the fibre \mathcal{F}_0 , over $(u, v) = (0, 0) \in \mathbb{C}$, we have $\lambda_1^2 = \lambda_2^2$ and

$$\begin{aligned} X(\lambda_1^2 - \lambda_2^2)(p) &= X\Big(\mu \cdot (|\nabla u|^2 + |\nabla v|^2) \cdot (u^2 + v^2)\Big)(p) \\ &= \mu \cdot X(|\nabla u|^2 + |\nabla v|^2)(p) \cdot (u^2 + v^2)(p) \\ &+ \mu \cdot (|\nabla u|^2 + |\nabla v|^2)(p) \cdot X(u^2 + v^2)(p) \end{aligned}$$

Sigmundur Gudmundsson IVIIIIIIIIai Subinaniioius O

An Outline

Lemma 4.3

Let $\phi = u + iv : (M, g) \to (\mathbb{C}, h)$ be a smooth submersion that is eigen with respect to the horizontal conformality operator κ i.e. $\kappa(\phi, \phi) = \mu \cdot \phi^2$. Then the eigenvalues of the first fundamental form ϕ^*h are given by

$$\lambda_{1,2} = \frac{1}{2} \cdot \left(\left(|\nabla u|^2 + |\nabla v|^2 \right) \pm \mu \cdot (u^2 + v^2) \right).$$

Proof (of Main Result).

For a point p in the fibre \mathcal{F}_0 , over $(u, v) = (0, 0) \in \mathbb{C}$, we have $\lambda_1^2 = \lambda_2^2$ and

$$\begin{aligned} X(\lambda_1^2 - \lambda_2^2)(p) &= X\Big(\mu \cdot (|\nabla u|^2 + |\nabla v|^2) \cdot (u^2 + v^2)\Big)(p) \\ &= \mu \cdot X(|\nabla u|^2 + |\nabla v|^2)(p) \cdot (u^2 + v^2)(p) \\ &+ \mu \cdot (|\nabla u|^2 + |\nabla v|^2)(p) \cdot X(u^2 + v^2)(p) \\ &= 2\mu \cdot (|\nabla u|^2 + |\nabla v|^2)(p)(X(u) \cdot u + X(v) \cdot v)(p) \\ &= 0. \end{aligned}$$

Sigmundur Gudmundsson WIIIIIIIai SubinaiiIIoids O

An Outline

Thank you for your attention !!

Sigmundur Gudmundsson IVIIIIIIIIai Submanniolus O

化压力 化压力

An Outline

Example 4.4 (SG, Munn (2023))

Let us consider the real-valued functions $x_{11}, x_{12} : \mathbf{SO}(n) \to \mathbb{C}$ with $x_{j\alpha} : x \mapsto e_j \cdot x \cdot e_{\alpha}^t$. For a tangent vector $Y_{rs} \in B_{\mathfrak{so}(n)}$ we have

$$Y_{12}(x_{11}) = -\frac{x_{12}}{\sqrt{2}}, \ Y_{13}(x_{11}) = -\frac{x_{13}}{\sqrt{2}}, \ \dots, \ Y_{1n}(x_{11}) = -\frac{x_{1n}}{\sqrt{2}}$$

$$Y_{12}(x_{12}) = \frac{x_{11}}{\sqrt{2}}, \ Y_{23}(x_{12}) = -\frac{x_{13}}{\sqrt{2}}, \ \dots, \ Y_{2n}(x_{12}) = -\frac{x_{1n}}{\sqrt{2}}$$

Then define the complex-valued function $\Phi : \mathbf{SO}(n) \to \mathbb{C}$ with $\Phi(x) = (x_{11} + i x_{12})$. The above derivatives show that the gradient

$$\nabla \Phi = \nabla x_{11} + i \nabla x_{12}$$

never vanishes along $\mathbf{SO}(n)$, so Φ induces a foliation on $\mathbf{SO}(n)$ of codimension two. Here Φ is an eigenfunction. Hence the fibre $\Phi^{-1}(\{0\})$ is a **compact minimal submanifold** of $\mathbf{SO}(n)$.

Sigmundur Gudmundsson IVIIIIIIIIIII SUDIIIaIIII0IUS

An Outline

Example 4.5 (SG, Munn (2023))

Let the complex-valued function $\phi : \mathbf{U}(n) \to \mathbb{C}$ be defined by $\Phi : z \mapsto z_{11}$. Then the following coefficients of the gradient $\nabla \Phi$ satisfy

$$iD_1(\Phi) = i z_{11}, \ Y_{12}(\Phi) = -\frac{z_{12}}{\sqrt{2}}, \ Y_{13}(\Phi) = -\frac{z_{13}}{\sqrt{2}}, \ \dots, \ Y_{1n}(\Phi) = -\frac{z_{1n}}{\sqrt{2}}$$

Since the first row $(z_{11}, z_{12}, \ldots, z_{1n})$ can not vanish, at least one of these derivatives, and hence the gradient $\nabla \Phi$ of Φ is non-zero along the unitary group $\mathbf{U}(n)$. This means that Φ induces a foliation of $\mathbf{U}(n)$ of codimension two. Here Φ is an eigenfunction. This implies that the fibre $\Phi^{-1}(\{0\})$ is a **compact minimal submanifold** of $\mathbf{U}(n)$.

Sigmundur Gudmundsson WIIIIIIIIII SUDIMAIIIIOIUS O

An Outline

Example 4.6 (SG, Munn (2023))

Sigmundur Gudmundsson

For $n \geq 3$, we define the complex-valued function $\Phi : \mathbf{U}(n) \to \mathbb{C}$ by

$$\Phi: z \mapsto (z_{11} \cdot z_{22} - z_{12} \cdot z_{21}) = \det \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}$$

Here Φ is an eigenfunction on $\mathbf{U}(n)$ and the gradient $\nabla \Phi$ is non-vanishing along $\mathbf{U}(n)$. This implies that the compact fibres of $\Phi : \mathbf{U}(n) \to \mathbb{C}$ form a foliation on $\mathbf{U}(n)$ of codimension two. The fibre $\Phi^{-1}(\{0\})$ is a **compact minimal submanifold** of $\mathbf{U}(n)$.

くぼ く ほ と く ほ と

An Outline

Example 4.7 (SG, Munn (2023))

Sigmundur Gudmundsson

On the quaternionic unitary group $\mathbf{Sp}(n)$ we define the complex-valued eigenfunction $\Phi : \mathbf{Sp}(n) \to \mathbb{C}$ with

 $\Phi: q = z + jw \mapsto z_{11}.$

The function $\Phi : \mathbf{Sp}(n) \to \mathbb{C}$ is submersive along $\mathbf{Sp}(n)$. Hence we obtain a foliation on $\mathbf{Sp}(n)$ of codimension two. The leaves are **compact** and the fibre $\Phi^{-1}(\{0\})$ over $0 \in \mathbb{C}$ is **minimal**.

nai Suomannoids o

An Outline

Thank you for your attention !!

Sigmundur Gudmundsson IVIIIIIIIIai Submanniolus O

化压力 化压力